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Abstract: The increasing spread of invasive plants has become a critical driver of global environmental
change. Once established, invasive species are often impossible to eradicate. Therefore, predicting
the spread has become a key element in fighting invasive species. In this study, we examined the
efficiency of a logistic regression model as a tool to identify the spatial occurrence of an invasive plant
species. We used Eragrostis curvula (Weeping Lovegrass) as the dependent variable. The independent
variables included temperature, precipitation, soil types, and the road network. We randomly selected
68 georeferenced points to test the goodness of fit of the logistic regression model to predict the
presence of E. curvula. We validated the model by selecting an additional 68 random points. Results
showed that the probability to successfully predict the presence of E. Curvula was 82.35%. The overall
predictive accuracy of the model for the presence or absence of E. Curvula was 80.88%. Additional
tests including the Chi-square test, the Hosmer–Lemeshow (HL) test, and the area under the curve
(AUC) values, all indicated that the model was the best fit. Our results showed that E. curvula was
associated with the identified variables. This study suggests that the logistic regression model can be
a useful tool in the identification of invasive species in New Jersey.
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1. Introduction

Global human migration has contributed to the movement and establishment of non-native
plants into new environments. Throughout history, in addition to agriculture-related plant species
dissemination, plant species have been intentionally or unintentionally introduced to new environments.
Moreover, the increased mobility of humans over the past century has led to escalating rates of invasive
species spread [1–6]. In the United States, new plants grown for decorative purposes or erosion control
were found to be the primary dispersal source of nonnative species, and accidental introductions
through seed contaminants were the secondary source [7].

Urban and suburban areas offer habitats with high levels of disturbance that provide new
germination and colonization sites for non-native species [8,9]. Globally, non-native plant species
are currently a substantial part of the vegetation of urban ecosystems, and they have had significant
deleterious economic and ecological effects on these habitats, as well as in adjacent, more natural
ecosystems [9]. In natural areas, non-native plants may reduce biodiversity, alter biogeochemical
processes [10], and alter the natural disturbance regimes [11].

New Jersey is the most densely populated state in the United States, yet is characterized by vast
stretches of forested and natural habitats. For centuries, the state’s more disturbed environments
have been occupied by non-native species, and many have spread from these urban centers to more
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rural sections of the state. It has been estimated that invasive species cover hundreds of thousands of
acres in New Jersey, costing a third of the State’s total agricultural income [12]. The first documented
extensive distribution of non-indigenous plant species in New Jersey was the result of ballast dumping
near its seaports at the beginning of the nineteenth century [13–15]. Since then, the spatial extent of
non-indigenous plants has expanded [15], and the New Jersey Invasive Species Council [12] provided
an updated overview of some of these species, including the type of harms created within the state.
A more up-to-date, all-inclusive inventory of non-native species including their spatial location,
is presented on the web by the New Jersey Invasive Species Strike Team [16].

Invasive species are defined in Executive Order (EO) 13112 [17] as “an alien species whose
introduction does or is likely to cause economic or environmental harm or harm to human health.”
This definition is clarified in the National Invasive Species Management Plan (NISMP)’s executive
summary as “a species that is non-native to the ecosystem under consideration and whose introduction
causes or is likely to cause economic or environmental harm or harm to human health” [18].
Richardson et al. [19,20] provided a definition “based exclusively on ecological and biogeographical
criteria.” Factors favoring intruders include certain morphological and physiological traits [21,22]
or broad environmental tolerance, adaptability, and fast growth rates [22–30]. Several studies have
highlighted the harmful impacts that invasive species might have on native plant species and the entire
ecosystem [31–34]. There is an increasing commitment from researchers, managers, and policy-makers
to manage invasive species and their ecological, economic, and social impacts [34].

Measures are being taken to avoid further loss of native diversity and additional negative
socio-economic and ecological consequences of invasive plants by restricting their spread, eliminating
them, and restoring the habitat to its pre-invasion status. Eradication or control of an established
invasive species is arduous and time-consuming, and often ineffective. Therefore, more emphasis
needs to be placed on predicting future invasions based on individual species’ biology and ecological
preferences relative to the available habitat and disturbance regimes [35,36]. The prediction of invasive
grasses is essential as many successful invaders belong to this family and they may cause a substantial
change in biodiversity and ecological functions once they become established in a new location [37].

Eragrostis curvula (Schrad.) Nees, commonly known as Weeping Lovegrass, is an invasive grass in
New Jersey [12,15,16]. It is a perennial, warm-season species native to Africa where it occupies a wide
range of ecosystems [38–40] and where its dispersal is contained through a variety of mechanisms
including interspecific competition, human-made and/or natural fire, and wildlife grazing. It was
introduced in the southern United States of America in the early 1900s for forage and to assist in
the erosion control of sandy soils [38,41]. In New Jersey, E. curvula was first planted by maintenance
crews along the Garden State Parkway in four counties, including Burlington County, Atlantic County,
Ocean County, and Monmouth County, in the late 1950s [41]. In 1997, the New Jersey Department
of Transportation (NJDOT) replanted it along a 14-mile stretch of Route 55 southbound as a result
of the “highway beautification project” [42]. Due to improper management and its ability to grow
in nutrient-poor and limited-water-resource regions [43], E. curvula has since expanded beyond its
initially intended areas to include a much wider and diverse ecosystem [16,41]. The aggressive spatial
competitiveness of this invasive plant species has been found to result in the reduction of native plant
diversity, causing disruptions to autochthonous ecosystem functions [21,22], and altering natural
disturbance regimes [44,45].

Numerous environmental factors, including soil and climate, control the growth and the
propagation of E. curvula. Although this species grows on a wide range of soil types [38,46], it prefers
sandy loams and well-drained fertile soils [47–49]. Studies [38,48,50] have also found that this species
has successfully colonized environments where the coldest month precipitation varies from 400 to
1000 mm, and mean temperatures vary from 0 to 20 ◦C. We hypothesized we could predict E. curvula
presence from the knowledge of these environmental and human-related factors.

The objective of this study was to evaluate the effectiveness of a logistic regression model as a
cost-saving and reliable tool to identify the spatial occurrence of an invasive plant, using E. curvula in
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New Jersey as a case study. We integrated readily available GIS data into a logistic regression model
with the hopes that this approach would provide a simple technique that can be transferrable across
landscapes and species. We used logistic regression to evaluate if it was an appropriate statistical tool
to investigate the relationship between a binary dependent variable such as E. curvula that only takes
two values (0 and 1, or absence vs. presence) and the four independent variables [51,52]. The overall
intention is for this methodology to accelerate the prediction and control process of any particular
invasive species by identifying potential habitats based on the species’ ecological preferences and the
current environment.

2. Materials and Methods

2.1. Study Area and Rationale

This study was conducted over the entire state of New Jersey in the United States of America
(Figure 1). New Jersey was selected because it offered two significant advantages: (1) All essential
spatially georeferenced data for the study were readily available over the internet and; (2) human-related
dispersal of invasive species is relatively high due to the long state history of European settlement
and industrialization. New Jersey is about 240 km long, with the two furthest points from north to
south being 270 km apart. On average, the state’s east-west width is about 100 km, and the overall
area is 22,610 km2 (8729 mi2). The northwestern part of the state, which is a part of the Appalachian
Valley and Ridge Physiographic Province consisting mainly of elevated highlands and valleys, has a
continental type of climate with much cooler temperatures. The south, central, and northeastern parts,
mostly affected by the Atlantic Ocean, have a humid climate with generally warmer winters and cooler
summers. The coldest month is January with average high temperatures of 3.8 ◦C (mid-30s ◦ F) and
the warmest month is August with high temperatures of 28.9 ◦C (80◦ F) [53,54].
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The human population in New Jersey has a distinctive spatial distribution pattern likely to be
related to the patterns of species invasion. Despite being among the states with the highest average
population density, approximately 467.2 people per km2 [55], its spatial distribution is uneven. Higher
population densities are found around the New York and Philadelphia Metropolitan areas. Rural
counties such as Salem in the southwest and Warren in the west had a population density of 76.5 and
117.5 persons per km2, respectively [55]. As a result of its high population density, New Jersey also has
the most traffic in the northeastern states, as measured by the vehicle lane miles traveled annually [42],
as well as the highest density of road networks.

2.2. Data and Analysis Tools

A logistic regression model was used to analyze the distribution of E. curvula as a function of the
selected environmental factors. This statistical tool helps to investigate the probability of occurrence
of a dichotomous dependent variable by fitting the log odds and independent variables to a linear
model [51,52,56], as shown in Equation (1). Previous environmental studies have also utilized logistic
regression either for prediction, modeling, or monitoring purposes [35,57–61].

y = log
( P

1− P

)
= b0 + b1x1 + b2x2 + . . .+ bnxn (1)

The probability of occurrence could be predicted by the logistic function using the following
Equation (2):

p(Y) =
1

1 + exp[−(b0+b1x1+b2x2+...+bnxn)]
(2)

where x1 . . . xn are the independent environmental variables, y represents the presence (y = 1) or
absence (y = 0) of E. curvula, b0 is the intercept of the model, and b1 . . . bn are the regression model
parameters. Function y is represented as the log of the odds or likelihood ratio that the dependent
variable is 1 (Equation (1)). We expected that the presence of E. curvula would result in higher
probabilities or otherwise lower probabilities.

To test the significance of the binary logistic regression model, we examined the results using the
maximum-likelihood method based on the following Equation (3):

2(LL1 − LL0) = (−2LL0) − (−2LL1) (3)

where df = k − k0 and where LL1 refers to the full log-likelihood model, and LL0 refers to the model
with only the intercept b0 and no other coefficients.

The goodness of fit of the model was determined using the Hosmer–Lemeshow (HL) test. The HL
statistic was calculated based on the following Equation (4):

g∑
i=1

2∑
j=1

(
obsi j − expi j

)2

expi j
(4)

where g = the number of groups, obs = observed values, and exp = expected values. The test statistic
was evaluated using the chi-square distribution with g − 2 degrees of freedom. A significant HL test
result indicates that the model is not a good fit, whereas a non-significant HL test indicates a good fit.

The goodness of fit of the logistic regression model was also produced to confirm and evaluate
the predictive accuracy of the model by producing a classification table. In this table, the number of
successes (y = 1) predicted by the logistic regression model were compared to the number actually
observed Similarly, the number of failures (y = 0) predicted by the logistic regression model were
compared to the number observed. Classification table results (Table 1) are presented as follows:
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Table 1. Classification table [52].

Number of Cases Suc-Obs Fail-Obs Total Predicted

Suc-Pred TP FP PP

Fail-Pred FN TN PN

Total OP ON TO

In Table 1, Suc-Pred = Successes predicted, Fail-Pred = Failures predicted, Suc-Obs = Successes observed, Fail-Obs
= Failures observed, TP = True Positives, FP = False Positives, TN = True Negatives, FN = False Negatives,
PP = predicted positive = TP + FP, PN = predicted negative = FN + TN, OP = observed positive = TP + FN, ON =
observed negative = FP + TN and TO = the total sample size = TP + FP + FN + TN. The overall accuracy ((TP +
TN)/TO) is a measure of the fit of the logistic regression model.

Site data points used in this study were randomly selected throughout the entire state using
ArcGIS. Sixty-eight sites were used as training sites to test the actual model, and 68 additional sites
were selected for the validation of the model. In each situation, half of these sites were selected
from places where E. curvula was present and the remaining half from places where it was absent.
We corroborated the location of each site on the ground using a global positioning system (GPS) device.
ArcGIS was also used to extract the values related to each point corresponding to each of the four
environmental and human-related datasets used in this study. These point values were exported to
Microsoft Excel (Microsoft Excel 2010, Microsoft Corporation, Redmond, Washington, DC, USA). Real
Statistics Resource Pack software (Release 6.2, Real Statistics, Oliva Gessi, Italy), an add-in tool within
Microsoft Excel, was used to perform the binary logistic regression and data analysis.

Four factors were identified as the main variables controlling the spatial distribution of E. curvula in
New Jersey. Three of them were environmental factors—temperature, precipitation, and soil types [48].
The fourth factor was anthropogenic—the road network.

E. curvula georeferenced data were downloaded from the New Jersey Invasive Species Strike
Team [16] website. The shape-file formatted datasets attribute table included several fields. In addition
to the names of all identified invasive species, the relational attribute table consisted of essential
information such as the name of the county, the ecosystem, as well as the type of property where each
species was found.

Additional downloaded georeferenced datasets included soil, road network, temperature, and
precipitation. Two types of datasets related to the New Jersey road network were downloaded from
the New Jersey Office of GIS Open Data [62] and US Census Bureau [63,64] websites. These 2016
TIGER/Line files included U.S. Highways, State Highways, County Highways, and town and city
streets. After testing other potential multi-ring buffer widths, a 500 m constant width was found to be
the satisfactory buffer width to study species distribution away from the road network. The multi-ring
buffers were created around selected roads using ArcGIS. Soil data were downloaded for each county
from the USDA National Geospatial Center of Excellence (NGCE)|NRCS [65,66] website and were
joined together in ArcGIS to create a soil layer for the entire New Jersey state. The attribute table
related to the soil map has information about the type of soil for each map unit [66]. We used ArcGIS
to reclassify these soil units into three numeric classes based on their texture, mineral composition, and
organic matters using the Soil Survey soil taxonomy [66]. Thus, all very good soils were attributed
a value of 3, and the value 2 was assigned to moderate soil types, and the value 1 was assigned
to relatively poor soil types. Data related to temperature and precipitation were downloaded from
the PRISM Climate Group [67]. In both cases, the raster-formatted 800 m ground resolution was
30-years normal annual averages from 1981 to 2010. The metric units used for precipitation were
in millimeters and temperature in degrees Celsius. The elevation data derived from the digital
elevation model (DEM) high-resolution grid were obtained from the USGS National Elevation Dataset
(https://viewer.nationalmap.gov/basic/) [68].

https://viewer.nationalmap.gov/basic/
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3. Results and Discussion

After running the binary logistic regression, results related to datasets training sites used to test
the model and results used for validation were presented using tables and graphs. We performed
several statistical tests following the recommendation by the American Statisticians Association (ASA),
who advised that conclusions based solely on the results from p-values may not be sufficient and that
some statisticians prefer to supplement p-values with other approaches [69]. For instance, concerning
the earlier mentioned classification table (Table 1), our results are displayed in Tables 2 and 3.

Table 2. The number of successes/failures predicted by the logistic regression model compared to the
number observed using the test sites.

Suc-Obs
Presence E. Curvula

Fail-Obs
Absence E. Curvula Total

Suc-Pred 28 7 35

Fail-Pred 6 27 33

Total 34 34 68

Accuracy 0.823529 0.794118 0.808824

Table 3. The number of successes/failures predicted by the logistic regression model compared to the
number observed using the validation sites.

Suc-Obs
Presence E. Curvula

Fail-Obs
Absence E. Curvula Total

Suc-Pred 27 8 35

Fail-Pred 7 26 33

Total 34 34 68

Accuracy 0.794118 0.764706 0.779412

The datasets training set model accurately predicted the presence of E. Curvula by 82.35%, while
the validation model predicted by 79.41%. The overall accuracy, using the interpretation scheme from
Table 1, is 80.88% for the datasets training model and 77.94% for the validation model. Based on the
accuracy of these relatively close results, we could conclude that the logistic regression model was a
good fit for such this study.

We also analyzed the overall performance of the model by looking at the Chi-squares and p-values
of the datasets training set model compared to the validation-sites model (Table 4).

Table 4. Model comparison using the Chi Square.

Datasets Training Set Model Validation Set Model

LL0 −47.134 −47.134

LL1 −24.8012 −31.7043

Chi Square 44.66558 30.85932

df 4 4

p-value 4.67 × 10−9 3.27 × 10−6

alpha 0.05 0.05

significance yes yes

LL0 refers to a log-likelihood model with only the intercept b0 and no other coefficients. LL1 refers to the full
log-likelihood model. df refers to the degrees of freedom.
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In both cases represented in Table 4, the results show once again that the logistic regression model
is a good fit in the analysis of the distribution of E. Curvula in the state of New Jersey.

We further analyzed results from the Hosmer–Lemeshow (HL) test to determine the goodness of
fit of the logistic regression model on the two sites (Table 5).

Table 5. Model comparison based on Hosmer–Lemeshow test.

Datasets Training Set Model Validation Set Model

Hosmer-Lemeshow 46.37123 59.09845

df 66 66

p-value 0.968234 0.713769

alpha 0.05 0.05

significance no no

The HL statistic for the datasets training set’s model was 46.371 and the p-value 0.968 > 0.05,
and for the validation sites, it was 59.098 and the p-value 0.714 > 0.05. In both cases, it resulted in a
non-significant HL test indicating that the logistic model was a good fit.

The accuracy of the model was further evaluated using the area under the curve (AUC) values
from the relative operating characteristic (ROC) curve (Figure 2). Bazzichetto et al. [35], Hosmer and
Lemeshow [51], Pearce and Ferrier [60], and Zaiontz [52], have suggested that the closer an AUC
value was to 1 the better was the model fit and the better was the ability of the model to discriminate
between success and failure. The AUC value for the datasets training points was 0.907, and for the
validation sites, it was 0.862. Hence, we concluded that our model was a good fit and it had an excellent
discrimination capability.
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Results from Table 6 show the significance of each selected variable to the fitness of the model.
All the variables had p-values less than 0.05.

Table 6. Logistic regression parameters for datasets training sites including the intercept, their
coefficients, standard errors (s.e.), p = values, and their confidence intervals.

Coeff b s.e. Wald p-value exp(b) Lower Upper

Intercept −22.3593 23.46228 0.908192 0.340595 1.95 × 10−10

Mean annual
temperature 3.415998 1.238602 7.60627 0.005817 30.44733 2.686886 345.0239

Soil classes 2.015138 0.64378 9.797938 0.001747 7.501764 2.124109 26.49415

Precipitation −0.02105 0.01294 2.645039 0.033874 0.979175 0.954653 1.004326

Distance away
from road −6.2 × 10−5 3.12 × 10−5 3.880523 0.048849 0.999938 0.999877 1

A map of probability of occurrence of E. curvula (Figure 3) was created using the logistic function
from Equation (3). Higher probability values designated areas where the presence of E. curvula was
very likely to be present (lighter gray tone on the map), while lower values indicated the least likely
areas to find the species (darker gray tone on the map).
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E. curvula has not spread throughout the entire state of New Jersey. Soil and climate parameters,
as demonstrated by the predictive model, have helped to identify its range of growth and adaptation.
Results from the spatial analysis of the distribution of E. curvula revealed that the species is mostly
concentrated in the southern part of the state. The eight counties where the species has been spotted are
all within the Coastal Plain Physiographic Province of New Jersey (Atlantic County, Burlington County,
Camden County, Cape May County, Cumberland County, Gloucester County, Middlesex County, and
Salem County) [70]. While this physiographic province occupies three-fifths of New Jersey, and it is
part of a much larger system that stretches over 3540 km from Cape Cod, Massachusetts, to the Mexican
border [70,71]. Much of the soils in this province are sandy, dry, and acidic, with low fertility that
makes it unconducive to agricultural use aside from blueberries and cranberries. Therefore, large areas
within the Coastal Plain Province remain undeveloped. In addition to the soil quality being consistent
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with E. curvula locations noted in the literature, the climatic conditions in southern New Jersey may
be relatively similar to the ones characterized by previous studies that documented environmental
conditions [38–40,47,48] as ideal for the species to thrive.

Whereas most invasive plant species thrive in the highly disturbed ecosystems found in urban and
suburban areas, the results from this study showed that a high human population density might not
be associated with a high concentration of E. curvula. Two counties (Atlantic County and Burlington
Counties) where the species was found in its highest abundance had a relatively low population density.
On the other hand, counties with the highest population density including Union, Essex, and Hudson
in the New York Metropolitan Area, do not have any documented occurrences of E. curvula. Densely
populated areas have more impervious areas that inhibit the growth of the species as opposed to areas
with more open space and the presence of soil. Many reported cases were found in ecologically-intact
forests that are protected by the State, Federal Government, or the New Jersey Conservation Foundation
(e.g., Wharton State Forest, Edwin B. Forsythe Wildlife Refuge, Higbee Beach Wildlife Management
Area, and Franklin Parker Preserve).

This study found that the road network, in combination with other environmental factors, plays
a role in species dispersal in New Jersey. In addition to climate restriction, all of the reported cases
were found only within the 500 m-buffer zones of the roads (Figure 4). Cars or trucks appear to be the
mechanism of dispersal. However, the road-speed limit has some impacts on the species dispersal
because local roads (town toads) that have a 25-miles limit do not have any E. curvula species. More
than half of reported cases were found along US and State highways (US Highway 322, US Highway
40, State Route 168, State Routes 72 and 73). The remaining identified species were located along
county or rural roads. The actual species spatial distribution did not show its presence within its
500-meter buffer zone even though it was first planted along the Garden State Parkway [41]. Vehicle
tires may have been playing a dominant role in the seed dispersal as opposed to other suggested
dispersal mechanisms [72].
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In southern New Jersey, the species grows primarily on sandy soil but has been documented on
a wide range of soils. Using the United States Department of Agriculture classification scheme [73],
the species was found on Lakehurst series soil and Atsion sand series. These soil types consist of deep,
moderately well, or somewhat poorly drained soils and are typically found in lowland or upland areas.
It also grows on Downer and Manahawkin sand series—a loamy type of sand that can be found on
0 to 5 percent slopes. Even though previous studies have indicated that the species has adapted to
survive in coarse-textured soils, the results from the logistic model have shown that it has not adapted
to surviving and growing in fine-textured soils in our study area.

The increasing spread of invasive plants is a critical driver of global environmental change [34].
Conservation managers recognize that predicting infestations of invasive plants will help in planning
for long-term environmental management [36]. Over the past decades, remote sensing has improved
our understanding of the drivers, processes, and effects of plant invasions through features such as
identifying invaded ecosystems, predicting the distributions of invasive species, and in comprehending
landscape invasibility and associated ecological impacts [34]. In this study, we have offered an
additional avenue of prediction. While this study focused on one invasive grass species, we believe
that the methods of incorporating readily available GIS data into a logistic regression model can serve
as a reliable tool to identify and predict the spatial occurrence of other invasive plants.

E. curvula can spread throughout non-planted sites, but the variables highlighted throughout this
study control its distribution. Predictive models, such as logistic regression, can be built to predict its
distribution. Even though some studies have suggested the efficiency of prioritizing the removal of
low-density subpopulations of invasive species [74], we believe that it is cost-effective to concentrate on
the southern end of New Jersey, where it is likely to be found as ascertained by the logistic regression
model [75]. Out of the four original counties [41], today the species is not found in Ocean County
and Monmouth County. It has spread mostly west into new counties, including Camden, Cape May,
Cumberland, Gloucester, Salem, and Middlesex. However, more than 75% of newly discovered plants
are still located in the Atlantic and Ocean Counties. Even though E. curvula has invaded new soil types,
the species has been predicted to grow mostly on preferred soil types. The road network has been the
principal route of its dispersal. For its eradication, attention must be paid to areas along the roads and
in forested or protected environments.

As GIS and remote sensing technology continues to develop, we will see an increased effort to use
these tools as predictors of invasion and to support management decision making. Here we present
one such model that land managers can adopt. The next step is to bridge the divide between model
theory and management practices in the development of efficient conservation solutions [35].
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