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Abstract: It is widely known that agricultural practices can alter natural ecosystems, both from a
qualitative and quantitative point of view. Indeed, over the years, the intensification of production
through excessive or inappropriate use of pesticides and fertilisers in the agricultural sector has had a
negative impact on natural resources. This negative environment impact has had both minor and
major consequences for the natural resources present in the different areas of the European Union
(EU). This variability depends mainly on the different agricultural training of farmers and on their
ability to practise sustainable agriculture. Hence, with a specific set of agri-environmental indicators
provided by the Eurostat database, this paper analyses the spatial and temporal variation of the
agricultural land-use practices and the related environmental effects in EU countries. In pursuit of this
aim, descriptive statistics and multivariate analysis (factor analysis and hierarchical cluster analysis)
were adopted to determine the similarities/dissimilarities between the different types of agricultural
production in the EU and the dominant dimensions of agricultural production and activities there in
terms of their impact of natural resources in order to identify “homogeneity” among member states.
The main contribution of this paper lies, above all, in the fact that the classification of these countries
in four agro-ecosystems, with similar use of energy, pollution factors, and natural resources, could be
useful as a tool for policymakers. Importantly, it could help them to define different incentives that
could encourage farmers to adopt more sustainable agricultural production methods.

Keywords: agricultural activities; environment; European Union (EU) countries; Eurostat indicators;
multivariate statistical analysis; sustainability

1. Introduction

The purpose of the present paper is to analyse in some detail the different interactions between
agricultural practices and their related environmental effects in the 28 European Union (EU) member
states with a specific set of agri-environmental indicators (AEIs). The starting premise is that it is
possible to trace different agri-environmental profiles of the EU countries and provide important
information for assessing the effectiveness of agri-environmental policy measures through the use of
AEIs. Indeed, a discussion of the negative environmental impact of intensive agricultural practices on
natural resources (air, soil, and water) and its spatial and temporal variation in the 28 EU countries can
help policymakers to direct farmers towards more sustainable agricultural methods.

The excessive or inappropriate utilization of inputs, such as nutrients (nitrogen and phosphorus),
pesticides (fungicides, bactericides, insecticides, acaricides, herbicides, haulm destructors, and moss
killers), and energy has led to serious levels of pollution in water, soil, and air. Indeed, at the EU level,
regarding the impact on the air, by decreasing carbon sinks (e.g., desertification), the agricultural sector
is responsible for about 8% of total greenhouse gas (GHG) emissions, which includes carbon dioxide
(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs),
sulphur hexafluoride (SF6), and natrium trifluoride (NF3) [1].
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In contrast, the soil, which is viewed as a non-renewable resource, represents the interface between
agriculture and the environment. It is the basis for human activity, it provides our landscape, it is
part of our heritage, and it supplies raw materials. Given this importance, it is fundamental to
maintain this natural resource in good condition. However, serious soil degradation, which threatens
the productivity of the different soils, can be observed everywhere in the EU [2]. Such quantitative
and qualitative degradation processes result mainly from intensive agriculture and inappropriate
farming practices, such as an increase in the use of chemicals, low soil cover during winter, unbalanced
fertilisation, the use of heavy machinery, overgrazing, and animal excreta.

The impact of agricultural practices on water contamination is caused mainly by high levels of
production and by the use of manure and chemical fertilisers. Water quantity problems are particularly
relevant in EU countries where water consumption exceeds critical levels in relation to available water
resources [1].

Finally, energy consumption per agricultural sector amounted to 2.8% of final energy consumption
in the EU in 2017 and contributed to the depletion of non-renewable energy sources and to global
warming through energy-related emissions. However, there is a broad diversity among agricultural
systems in the EU: Despite the ongoing process of intensification, in EU countries there is still a
high proportion of semi-natural vegetation and low-intensity agriculture. In addition, in the last
20 years, since 2000, a trend towards a reduction of chemical inputs and of phosphorus surplus has
emerged [1]. Excessive nutrient releases into air from agriculture have also decreased since 2000,
even though they remain significant contributors to water quality degradation and eutrophication
in terrestrial ecosystems [1]. Thus, the constant monitoring of the sustainability of an agricultural
system with the use of quantitative and qualitative indicators can provide important information for
the implementation of the Common Agricultural Policy (CAP) over time [3]. Indeed, the utilization of
AEIs is considered by the literature to be one of the different tools for measuring the sustainability
of agricultural activities and for registering country differences within the EU’s agro-ecosystems.
In essence, indicators are considered as vehicles for communication [4,5] that can help to provide a
picture of the current state and trends related to agricultural production and land use (for decision
makers, farmers, and the general public). Furthermore, in the last decade, the increasing use of
AEIs, through the selection of an “essential” set of indicators [6,7], their aggregation [8], and their
validation [9] has constituted an alternative to direct impact measurements that require much more
time and investment. In the relevant literature, there are several studies that have designed different
sets of AEIs for the evaluation of sustainability in agro-ecosystems at international, national, and
regional levels [10–16]. The selection of indicators, according to specific needs for information related
to certain objectives, has also been determined by the different types of assessment methods that
researchers have used and developed since the 1990s [17–23]. For example, Payraudeau and van der
Werf (2005) [24] have applied six main types of method (environmental risk mapping, life cycle analysis,
environmental impact assessment, multi-agent system, linear programming, and AEIs) for assessing
the environmental impact of agriculture on the scale of a farming region. Furthermore, several studies,
with the application of the multivariate method to different sets of indicators, have synthesized relevant
data, shown change, or defined the status of a certain aspect of different agricultural systems at the
national, regional, and local level [25–33].

In line with these different AEI approaches and with the application of multivariate analysis
methods, spatial analysis and the development of a new and different classification of EU agricultural
systems as “homogeneous” groups were undertaken. This was done according to an appropriate set
of AEIs developed by Eurostat [34]. The intent was to give policymakers additional tools for a more
accurate evaluation of the different impacts of agricultural practice and production on the environment
in the 28 EU member states. However, the attention was focused on the analysis of the agricultural
features of these national areas, and the obtained “map” depended very much on the land-use
indicators and the types of agricultural production selected. As described above, several studies of the
sustainability of agricultural activities at the EU level have designed different sets of AEIs, but none
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have aimed to “map” agricultural systems in relation to land-use practice, agricultural production,
pressures and risks, and ecosystems. Within the debate surrounding agricultural policy over recent
decades, the concept of sustainability has become increasingly prominent. This has led policymakers
to pay more attention to the evaluation of agricultural practices and to assess sustainability aspects
with the use of an appropriate set of AEIs. For this purpose, it is important to have useful tools
that evaluate the sustainable use of natural resources. In the literature, some authors have proposed
different evaluation methods to address the question of the environmental impact of agriculture at the
local level [35,36]. The main aim of this research is to take into account a number of socio-economic
and environmental objectives concerning farm management skills, chemical inputs, energy and water
consumption, and soil erosion in order to quantify the degree to which these objectives are attained. In
the literature, there are very few publications in this area of study offering data on the evolution of the
impact of agricultural practices and production on the environment, so another goal of this research is
to fill this gap, while providing comprehensive responses to the following research questions (RQs):

RQ1: How can AEIs be aggregated to analyse the interrelations between agricultural practices and
environmental impacts?
RQ2: What are the information needs of farmers for the adoption of sustainable agricultural methods?
RQ3: How can policymakers define different incentives that could push farmers to adopt more
sustainable agricultural production methods?

The rest of the paper is structured as follows: Section 2 shows the materials and the methodology;
Section 3 presents the main results; and finally, Section 4 discusses the findings of the present study
in relation to previous research and outlines the conclusions of the analysis and the environmental
policy implications.

2. Materials and Methods

2.1. A Possible Aggregation of AEIs

To answer the first research question (RQ1), an appropriate set of 28 AEIs was extrapolated from
the Eurostat database [34]. As shown in Figure 1 and Table 1, for a better understanding and integration
of the full range of complex interactions between farmer training, agricultural management practices,
the impact of chemical inputs on natural resources, and the equilibria of ecosystems, the AEIs were
divided into the following four blocks:

(1) Farm management practices (FMPs);
(2) Agricultural production systems (APSs);
(3) Pressures and risks (PRs);
(4) Ecosystem (E).

The first block included eight driving force indicators: Two FMPs that described the changes in
farmer characteristics between 2005 and 2013 (farmer training level and farmer age) and six FMPs
(FMP3–FMP8) that showed the variation in management practices during the period 2007–2016 in the
use of nutrients (nitrogen, phosphorus), pesticides (fungicides, bactericides, insecticides, acaricides,
herbicides, haulm destructors, and moss killers), and energy. These indicators aimed to focus attention
on the temporal changes in the training of farmers and their management practice decisions.

The second block of state indicators were more consistent and grouped together 14 APSs that
described the effects of agriculture on the environment, for example land use practices and the estimated
soil erosion by water from 2000 to 2012. In EU countries, these indicators are undergoing marked
changes due to rapid shifts in consumer spending, consumer demand, and concerns over food safety
and environmental impact.

In the third block, there were four PR indicators that highlighted the variation between 2004 and
2014 in the gross nutrient balance of phosphorus (PR1), nutrient (PR2), ammonia (PR3), and GHG
emissions (PR4) from the agricultural sector.
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Finally, in the last group, only two indicators, those that described the common farmland bird
index (E1) and the incidence of the protected areas of land (E2) on the total areas, were included.
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Figure 1. The four blocks of agri-environmental indicators considered. Source: Author’s processing of
information from the EUROSTAT (Statistical Office of the European Communities) database.

Table 1. List of starting agri-environmental indicators (AEIs) included in this research.

Block Definition Unit Year

FMP1 Farm managers with full agricultural training Total number of holding Var% 2013–2005
FMP2 Farm manager age Total number of holding Var% 2013–2005
FMP3 Consumption of nitrogen Tonne Var% 2016–2007
FMP4 Consumption of phosphorus Tonne Var% 2016–2007
FMP5 Sales of fungicides and bactericides Kg of active ingredient Var% 2016–2011
FMP6 Sales of herbicides, haulm destructors, and moss killers Kg of active ingredient Var% 2016–2011
FMP7 Sales of insecticides and acaricides Kg of active ingredient Var% 2016–2011
FMP8 Final energy consumption by agriculture/forestry per hectare of UAA Kg OE/ha Var% 2016–2007

APS1 Area under organic farming %/UAA 2016
APS2 Irrigated area % irrigated area/irrigable area 2013
APS3 Water abstraction for agriculture million cubic metres 2015
APS4 Estimated soil erosion by water % of total 2012
APS5 Estimated soil erosion by water square km Var% 2012–2000
APS6 Arable land % of UAA 2013
APS7 Permanent grassland % of UAA 2013
APS8 Permanent crops % of UAA 2013
APS9 Bovine % bovine/LSU 2013

APS10 Horses, asses, mules and hinnies %/LSU 2013
APS11 Live swine domestic species %/LSU 2013
APS12 Live sheep %/LSU 2013
APS13 Live goats %/LSU 2013
APS14 Live poultry %/LSU 2013

PR1 Gross nutrient balance (phosphorus) kg per hectare Var% 2014–2004
PR2 Gross nutrient balance (nutrient) kg per hectare Var% 2014–2004
RR3 Ammonia emissions from agriculture % of total emissions 2015
PR4 Greenhouse gas emissions from agriculture % of total 2015

E1 Common farmland bird index [env_bio2] base = 2000 2014
E2 Protected areas of land % 2016

Source: Author’s elaboration of data from the EUROSTAT database. UAA: Utilised Agricultural Area; LSU: Number
of Livestock Units.
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2.2. The Methodology

With reference to the research questions, given the different set of heterogeneous indicators
included in the analysis, descriptive statistics and multivariate analysis were applied as they were
deemed the most appropriate methods. With the first analysis, the coefficient of variation (CV), as the
ratio between standard deviation and mean, was calculated to highlight the homogeneity and disparities
between EU countries. Subsequently, factor analysis (FA) was adopted to identify the dominant aspects
of the interactions between agricultural practices and the environment. Finally, hierarchical cluster
analysis (HCA) was applied in order to regroup the 28 EU countries into “homogeneous” clusters.
These analyses were carried out using the STATA programmer (Stata 12.32, software package created
in 1985 by Stata Corp), which serves as an environment for the management, analysis, and graphic
representation of data. Using this software, homogeneous countries were identified by arranging the
various impacts of agricultural practices on the environment in a square matrix measuring (m x n),
where m corresponds to the 28 EU countries and n to the temporal variation of the 28 AEIs. On the
basis of this matrix, data processing was performed in two successive phases: A core FA for each
aspect of the AEIs and an HCA.

FA allowed for the reduction of a significant number of variables to a meaningful, interpretable,
and manageable set of factors [37]. The application of FA allowed the eigenvalues to be determined,
which represent a share of the total variance. The aim of the FA is, above all, the analysis of the
dependence structure, which leads to a simple description of that structure [38]. The HCA phase in
contrast made use of Ward’s method of measuring the squared Euclidean distance. This method is
distinct from all others since it uses an analysis of variance approach to evaluate the distances between
clusters. In short, this method attempts to minimize the sum of squares (SS) of any two (hypothetical)
clusters that can be formed at each step (see Ward, 1963) [39].

The hierarchical methods are often classified as agglomerative and divisive, of which the
agglomerative approach has been the more popular and a large number of applications proves its
practical utility; but selecting the optimal number of clusters is one of the central problems [40]. For
this study, the final result was a classification “map” of EU countries, with differentiated agricultural
systems. Detailed information about cluster analysis is in Appendix A.

3. Results

3.1. The Descriptive Statistical Measures of Selected AEIs

For the 28 AEIs taken into account for this study, the statistical characteristics were determined,
which included the arithmetic mean, the minimum value, the maximum value, the standard deviation,
and the CV. Their values are presented in Table 2. With this first analysis, the measure of the
similarities/dissimilarities was conducted mainly on the basis of the values of the CV. These values
show the greatest heterogeneity in final energy consumption by agriculture and forestry per hectare of
the utilized agricultural area (UAA) (a −79.35:75.27 ratio between the lowest and the highest utilization)
and gross nutrient balance per hectare of the UAA (−40.91:115.79). As for farmer management,
the differences for farm managers with full agricultural training (−76.2 percentage variation: 300
percentage variation) and for the sales of fungicides and bactericides (−45.13 percentage variation:
1845.1 percentage variation) are also significant. This confirms, in accordance with recent studies [41,42],
that holdings managed by young farmers with full agricultural training represent a significant element
of the differentiation between EU countries.
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Table 2. Descriptive statistics of the country variables. Coefficient of variation (CV).

Variable Min Max Std. Dev. CV Skewness Kurtosis

FMP1 −76.18 300 75.50 6.19 0.0000 0.0003
FMP2 −74.2 1.17 19.12 −5.26 0.9909 0.9588
FMP3 −44.56 105.64 28.80 3.18 0.0022 0.0045
FMP4 −74.58 178.87 51.29 −9.19 0.0004 0.0016
FMP5 −45.13 1845.1 347.76 4.37 0.0000 0.0000
FMP6 −56.77 69.19 22.59 −7.31 0.0341 0.0084
FMP7 −74.5 1666.56 341.79 3.36 0.0000 0.0000
FMP8 −79.35 75.27 30.03 74.87 0.6062 0.0890

APS1 0.21 21.25 5.45 0.70 0.0334 0.5807
APS2 0 100 29.99 0.66 0.6782 0.1556
APS3 0 8282.54 1575.86 3.76 0.0000 0.0000
APS4 0 24.58 6.31 1.26 0.0007 0.0250
APS5 −86.54 62.58 27.50 −1.08 0.0865 0.0158
APS6 21 98.5 18.91 0.30 0.4439 0.8577
APS7 0 79 18.81 0.59 0.4385 0.5446
APS8 0 25 7.26 1.38 0.0015 0.1628
APS9 20.8 84 16.68 0.34 0.7935 0.7783

APS10 0.3 7.7 1.53 0.71 0.0000 0.0011
APS11 6.4 65.7 12.97 0.50 0.0302 0.0744
APS12 0.3 40.5 8.93 1.29 0.0000 0.0006
APS13 0 17.1 3.59 2.32 0.0000 0.0000
APS14 1 36.5 7.12 0.50 0.0834 0.0314

PR1 −100 100 55.92 −3.21 0.1454 0.6588
PR2 −40.91 115.79 38.40 8.89 0.0007 0.0192
PR3 78.5 99.5 6.09 0.07 0.1219 0.5158
PR4 2.6 30.8 6.29 0.56 0.0011 0.0279

E1 0 116.3 42.20 0.90 0.7179 0.0000
E2 8 38 8.51 0.43 0.0791 0.6709

Despite these dissimilarities, there were greater homogeneities between the same countries, mainly
regarding the following characteristics of agricultural systems: The ammonia emissions from the
agricultural sector associated with livestock production that requires large areas of land and the area of
arable land with intense cattle breeding. Livestock production systems occupy around 28% of the land
surface of the EU (equivalent to 65% of the agricultural land). About 18% of global GHG emissions
are caused by livestock production, with the main contributors being methane (CH4) from enteric
fermentation, nitrous oxide (N2O) from manure and fertilizer, and carbon dioxide (CO2) [43].

Finally, it should be noted that some of the variables show excess kurtosis or skewness and,
therefore, do not follow normal distributions; a fact that was taken into account when choosing the
techniques to be used in the later stages of the research.

3.2. FA: Country Indicators and Agro-Environment Dimensions

The principal factors were extracted on the basis of the data reported in Table 1. FA was used to
look for the dominant dimensions of the interaction between agricultural practices and the impacts
on natural resources. These dominant factors adequately summarise the information contained in
the original sets of indicators (RQ2: What are the information needs of farmers for the adoption of
sustainable agricultural methods?). Twenty-eight eigenvalues were identified, but the first 10 together
explained about 85% of the total variance (Table 3). Attention was focused on the first five factors
(about 61% of the variance) with eigenvalues greater than 2.
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Table 3. Total variance and percentage of individual factors. Results of factor analysis (FA).

Factor Eigenvalue Difference Proportion Cumulative

Factor1 5.29 1.39 19.03 19.03
Factor2 3.91 0.90 14.03 33.06
Factor3 3.01 0.58 10.8 43.86
Factor4 2.43 0.22 8.73 52.59
Factor5 2.21 0.49 7.95 60.55

Factor6 1.73 0.18 6.2 66.75
Factor7 1.54 0.27 5.54 72.29
Factor8 1.28 0.05 4.58 76.88
Factor9 1.23 0.18 4.41 81.29

Factor10 1.04 0.17 3.75 85.04

Factor11 0.88 0.21 3.15 88.19
Factor12 0.67 0.13 2.41 90.6
Factor13 0.54 0.00 1.94 92.54
Factor14 0.53 0.08 1.93 94.46
Factor15 0.46 0.08 1.64 96.1
Factor16 0.38 0.12 1.35 97.45
Factor17 0.26 0.11 0.93 98.39
Factor18 0.15 0.05 0.53 98.92
Factor19 0.10 0.02 0.37 99.29
Factor20 0.09 0.03 0.31 99.6
Factor21 0.06 0.03 0.21 99.81
Factor22 0.03 0.01 0.11 99.92
Factor23 0.02 0.02 0.08 100
Factor24 0.00 0.00 0.01 100
Factor25 0.00 0.00 0.00 100
Factor26 −0.00 0.00 0.01 100
Factor27 −0.00 0.00 0.02 100
Factor28 −0.00 0.00 0.03 100

The bold test indicates the factors considered in the analysis because showed eigenvalues greater than 2; The black
test, from factor 6 to factor 10, indicates factors eigenvalues greater than 1. Finally, the factors (from 11 to 24), were
not considered because highlight eigenvalues minor than 1.

Table 4 shows the matrix of rotated factor loadings that represents the correlation indexes of the
28 initial AEIs, which were regrouped into four blocks, showing the first five factors. These factors
represented the differentiation factors within the whole variable system in question. One factor loading
greater in absolute value than 0.5 is considered very significant [44]. The derived rotated 5-factor
structure is shown in Table 4, with the omission of factor loadings that were smaller in absolute
value than 0.45. Concerning the interpretation of the factors, Table 4 shows that the first three factors
were essentially related to three categories of variables: farmer management, agricultural production
systems, and pressures and risks. It can be observed that the variables from the ecosystem category
were not represented in any of the key factors. The analysis of the key factors demonstrated a high
level of heterogeneity among EU countries.
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Table 4. Matrix of rotated first five factors loadings. The factor loadings that were smaller in absolute
value than 0.45 were omitted.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Communalities

FMP1 0.214
FMP2 0.481 −0.479 0.750
FMP3 0.764 0.500
FMP4 0.837 0.972
FMP5 −0.995
FMP6 0.582 0.776
FMP7 0.708
FMP8 0.507 −0.236

APS1 0.454 0.535
APS2 0.464 0.327
APS3 0.689 0.541 1.105
APS4 0.541 1.412
APS5 0.614 1.987
APS6 −0.539 −0.670 −0.975
APS7 0.861 0.891
APS8 0.712 0.259
APS9 0.769 0.485

APS10 0.644 0.249
APS11 −0.686 −1.873
APS12 0.772 0.774
APS13 0.775 0.474 0.784
APS14 −0.510 0.849

PR1 0.597 0.926
PR2 0.699 1.521
PR3 1.417
PR4 0.471 0.458

E1 −0.689 −0.115
E2 0.597 0.870

Factor 1 “Pastoral system with a negative effect on the farmland bird index”: The first factor (more
than 19% of the explained variance) (Greece, Portugal, Slovenia, Cyprus, Croatia) was characterised by
a high percentage on the LSU (Number of Livestock Units) of live goats (+0.78) and sheep (+0.77),
with strong positive correlations with the permanent crops variable (+0.71) and negative correlations
with the common farmland bird index (−0.69). A negative correlation (−0.54) can also be noted with
arable land, which was an expected result.

Factor 2 “Extensive livestock system with a negative effect on soil and air”: 14% of the explained
variance (Ireland, Luxembourg, the UK, Slovenia). This factor was associated with a high percentage
of permanent grassland (+0.86) and a large percentage of bovines on the LSU (+0.77). It was also
related positively to estimated soil erosion by water (+0.61). Therefore, countries with a high score on
this factor are certainly poor, have a permanent grassland, and a traditional and essential agricultural
system based on animal husbandry with high GHG emissions from agriculture (+0.47).

Factor 3 “Intensive agricultural system with a positive variation of phosphorus balance”: (10.8%
of the explained variance) expressed high percentage variation (2016–2007) in the tonnes of phosphorus
and nitrogen used, which is associated with a high percentage on the LSU of horses, asses, mules, and
hinnies and consequently a positive percentage variation (2014–2004) in the gross nutrient balance
(phosphorus). The countries (Bulgaria, Ireland, Malta, Slovenia) with a high score on this factor have a
large number of holdings with farmers with full agricultural training.

Factor 4 “Agricultural system with a positive variation in the nutrient balance”: (8.7% of the
explained variance) (Austria, Hungary, Latvia, the Czech Republic) is associated with a positive
percentage variation in the sale of herbicides, haulm destructors, and moss killers (+0.58) and is



Environments 2020, 7, 33 9 of 18

positively correlated with the positive percentage variation in the final energy consumption by the
agriculture/forestry sector per hectare of the UAA (+0.51) and in the high percentage of area under
organic farming (+0.45).

Factor 5 “Agricultural system with high water abstraction for agriculture”: (about 8% of the
explained variance) (Greece, Romania, Poland, Bulgaria) shows, on the one hand, a negative correlation
with farm manager age (–0.48) and, on other hand, a positive correlation with the percentage of live
goats on the LSU (+0.48) and with the estimated soil erosion by water (+0.57).

3.3. Which Countries Have the Greatest Similarities? A Discussion of the HCA

Following the FA, HCA was used to look for groups of EU countries with similar levels of linkage
between agricultural activities and environmental impacts. The resulting dendrogram provides a visual
interpretation of the procedure and the findings of the hierarchical agglomeration for the observed
28 EU countries, from left to right (Figure 2). The first cluster comprised a great number of countries
(12.4%), especially from the north of the EU; the second group contains 7 EU countries, the third group
3 EU countries, and the fourth group 6 EU countries. It can be observed that the 28 EU countries
did not form a homogeneous group in terms of the relationship between agricultural practices and
environmental impacts. Indeed, four groups could be distinguished (Figure 3).

The “homogenous” clusters are mapped in Figure 3.
Cluster 1: “Intensive agricultural system”: This first group was the largest. It was made up of

12 countries, situated mainly in Northern and Central Europe (Figure 3). The main characteristic of
this cluster was the high percentage of bovines on the LSU. Luxembourg and Ireland showed the
highest value, 84% and 82.2%, respectively. The livestock agricultural system, as is well-known, causes
high emissions of ammonia and a high consumption of water [32,45–47]. Compared to the other three
groups, the average percentage of bovines on the LSU for each country was about 54% versus 50% for
the second group, 42% for the third group, and 44% for the last group. The agricultural sector of this
cluster utilized 43% of the community arable land and was responsible for 43% of the total ammonia
emissions and 50% of the GHG emissions (Table 5).
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Figure 2. Dendrogram by Ward’s method.
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Figure 3. “Homogenous” European Union (EU) countries groups.

Cluster 2: “Eco-sustainable agricultural system”: There were 7 countries in the second cluster:
Germany, Greece, Estonia, Italy, the United Kingdom, Finland, and Sweden. In this second cluster, there
were three countries (Estonia, Italy, and Sweden) of the five countries (Austria, the Czech Republic,
Estonia, Italy, and Sweden) that had the largest area of land under organic farming in the total area of
the EU. Indeed, the average percentage for these counties was 11.05. (Table 5). Organic farming, when
compared to conventional systems, is more sustainable because it generates less soil erosion, more
water conservation, and improved soil organic matter and biodiversity compared to conventional
systems [48,49].

Cluster 3: “Extensive agricultural system”: There were only three countries in the third group: the
Czech Republic, Spain, and Croatia. This cluster showed the highest average percentage of protected
areas (26%) compared to the other three groups. The high presence of permanent grassland (almost
34% against an average of 19.6% in all 28 EU countries) is an ideal measure for the prevention of soil
erosion from wind and water [50,51].

Cluster 4: “Nature inclusive agricultural system”: This fourth and final cluster contained six
countries: Denmark, Hungary, the Netherlands, Portugal, Slovenia, and Slovakia. These countries,
especially the Netherlands and Slovenia, in the period between 2004 and 2014, on one hand decreased
the use of P-fertiliser per hectare of UAA, which, as is well-known, can change the botanical
composition of grassland by favouring particular species over others. However, these countries also
registered an increase in the sale of insecticides and acaricides and in the final consumption of energy.
In the last 10 years, these countries adopted a more sustainable form of agriculture that minimizes
negative ecological impacts, maximizes positive impacts, and, at the same time, benefits from natural
processes [52].
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Table 5. Mean of each cluster and mean of the 28 EU countries.

Cluster FMP1 FMP2 FMP3 FMP4 FMP5 FMP6 FMP7

Cluster 1 27.38 −36.71 22.17 14.48 23.88 −5.27 34.90
Cluster 2 −6.69 −34.22 0.33 −16.87 277.99 3.75 327.12
Cluster 3 0.49 −38.83 −7.70 −29.90 8.04 −2.22 8.23
Cluster 4 9.74 −36.92 1.33 −20.37 −4.56 −7.16 19.46

Mean 28 EU countries 12.20 −36.36 9.04 −5.58 79.62 −3.09 101.79

Cluster FMP8 APS1 APS2 APS3 APS4 APS5 APS6

Cluster 1 5.83 6.00 48.58 280.50 4.51 −19.42 62.53
Cluster 2 −13.64 11.05 41.04 1183.22 5.63 −33.31 64.29
Cluster 3 −3.47 9.51 35.42 18.03 5.52 −29.46 58.60
Cluster 4 7.86 6.61 49.24 5.69 4.99 −26.66 61.13

Mean 28 EU countries 0.40 7.77 45.43 419.17 5.00 −25.52 62.25

Cluster APS7 APS8 APS9 APS10 APS11 APS12 APS13

Cluster 1 31.99 4.50 53.50 2.43 23.95 5.53 1.53
Cluster 2 30.23 5.44 49.54 2.17 21.41 11.47 2.63
Cluster 3 33.67 7.67 41.60 1.53 31.80 7.17 0.90
Cluster 4 33.37 5.35 44.08 1.92 31.47 4.37 0.63

Mean 28 EU countries 32.03 5.26 49.22 2.16 25.77 6.94 1.55

Cluster APS14 PR1 PR2 PR3 PR4 E1 E2

Cluster 1 12.93 −14.16 7.75 92.77 13.16 49.22 18.67
Cluster 2 12.74 −14.69 −6.88 91.07 8.81 56.17 16.43
Cluster 3 16.93 −9.09 −0.08 90.67 9.20 27.07 26.00
Cluster 4 17.50 −31.34 12.72 89.63 11.18 40.73 21.83

Mean 28 EU countries 14.29 −17.43 4.32 91.45 11.23 46.76 19.57

4. Discussion and the Environmental Policy Implications

The application of descriptive statistics and multivariate analyses to the 28 EU countries led
to a new and more accurate classification of the member states into four “homogeneous” territorial
agricultural systems (Figure 3). It also led to the creation of a new tool for policymakers to aid them in
developing environmental programmes for the future CAP post 2020 (2021–2027) and to increase the
knowledge of farmers (How can policymakers define different incentives that could push farmers to
adopt more sustainable agricultural production methods?).

In particular, with the aid of the four groups of AEIs extrapolated from the EUROSTAT (Statistical
Office of the European Communities) database and with the research questions derived mainly from
the previous literature, it was possible to highlight the difficult trade-off between the increase in the
intensification of agricultural production and the degradation of natural resources.

Initially, by using the CV, the differences and the similarities of each EU country were measured,
with respect to each indicator. This analysis highlighted the existence of large disparities between the
EU countries in relation to the final energy consumption of agriculture and forestry per hectare of the
UAA (a −79.35:75.27 ratio between the lowest and highest utilization) and the gross nutrient balance
per hectare of the UAA (−40.91:115.79). On the one hand, the maximum increase of direct electric and
fuel energy consumption (KgOE), from 2006 to 2016, was registered by Romania (+75.27 KgOE/ha).
On the other hand, the maximum decrease was recorded in Greece (−79.35 KgOE/ha). Other countries
with a consistent increase were Hungary, Cyprus, Austria, and the Czech Republic. In contrast, the
more “virtuous” countries were Sweden, Ireland, Bulgaria, and Lithuania. These disparities were
due mainly to the degree of cultivation intensity, the heating of livestock stables, and the training
level and age of farmers. In relation to age, older farmers were more likely to adopt more traditional
farming systems with a higher consumption of energy. For this reason, in this study, to assess energy
consumption, the data was linked to farm management and land use practices.
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In contrast, there were some similarities regarding ammonia emissions from the agricultural
sector, arable land coverage, and the intensity of cattle breeding. In particular, GHG emissions
from livestock production were closer to 51% of global GHG emissions [32,44–47]. These negative
effects of agricultural practices on the environment have a high correlation, in accordance with recent
studies [32,33], with an increase in almost all EU countries in livestock production, due, in the main
part, to an increase in meat consumption. The latter can be attributed to a lack of essential information
for consumers (sustainable education) and to an increase in consumer income in all EU countries.

Following this, an analysis of the territorial similarities of EU countries was carried out by
examining the principle factors brought to light by the statistical analysis. This allowed the identification
of the five most important factors and agricultural phenomena: “Pastoral system with a negative
effect on farmland bird index”; “Extensive livestock system with a negative effect on soil and air”;
“Intensive agricultural system with a positive variation of phosphorus balance”; “Agricultural system
with a positive variation in nutrient balance”; and “Agricultural system with high water abstraction
for agriculture”.

Based on the findings of this study, it is possible conclude that the linkages between agricultural
activities and environmental impacts are different among the 28 EU countries. Indeed, on the one hand,
the results of the HCA clearly show that the first group of EU countries (in the centre and north of the
EU), labelled “Intensive agricultural system” registered a high impact on natural resources (air and soil)
and a high use of water. This result provides evidence, in accordance with other recent studies [32,33],
of a strong relationship between GHG emissions and the livestock sector. In these countries, for more
environmentally-friendly and sustainable agriculture activities, any measures taken should aim to
limit the intensity of livestock farming to promote sustainable production and to limit resource use
(soil and water). In this regard, several studies have shown that a full and effective implementation of
environmentally-friendly farming practices (EFFPs) goes far beyond financial support and needs to be
based on a change in the behaviour and intentions of farmers [53–57].

On the other hand, the three clusters labelled: “Eco-sustainable agricultural system”, “Extensive
agricultural system”, and “Nature inclusive agricultural system” require action for the conservation
of the “diversity” of rural and agricultural systems. For this purpose, it is essential to implement
in these EU countries, direct payments, and the less favoured area scheme with the aim of both
preserving the extensive grazing systems and the traditional rural landscapes and avoiding land
abandonment and the disappearance of these landscapes. Moreover, the necessity to comply with
good agricultural and environmental standards in order to receive the full-decoupled direct payment,
and the implementation of agro-environmental payment schemes to encourage farmers to carry out
agricultural activities favourable to the maintenance of the countryside, has positively influenced
landscape provision. It is important to observe that, from the analysis, it emerged that the similarity
between agricultural systems is not linked to geographical position or environmental contexts but to
the characteristics of crops and production processes. In each of the groups created by the analysis,
a characterizing or unifying element was identified. For example, the Eco-sustainable agricultural
system was characterised by the prevalence of organic farming methods, a factor that united the
countries of this second cluster. In another case, it was a particularly polluting aspect of the production
process—the presence of a livestock dominated by bovines—that characterised the numerous and
diverse agricultural systems of group 1 (Intensive agricultural system) and made them very intensive
due to their high consumption of water and the significant emissions of climate-altering gases, in
particular ammonia. For the next long-term EU budget 2021–2027, the Commission has proposed to
modernize and simplify the CAP, stipulating that at least 30% of each rural development national
allocation be dedicated to environmental and climate measures. A total of 40% of the CAP’s overall
budget is expected to contribute to climate action.

In conclusion, the results of the analysis are in line with other studies [32,33,42,58] that have applied
multivariate analysis and confirm that policy design should not consider the EU context as a whole.
On the contrary, it should take into account the land-use practices and the productive particularities,
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as well as the temporal trends in the use of natural resources and chemical inputs (fertilizers and
pesticides). According to the study findings, policymakers could target specific measures to incentivize
good agricultural practices on the basis of the different realities in the four groups of countries at the
EU level. These targeted measures could lead to farms being run by individuals with greater training
in order to achieve the sustainable development of agricultural production methods. This will allow
policymakers and those involved in local government to have enhanced and more effective tools, as
required by the new CAP for the next operational period (2021–2027), for a more exact and better
monitoring of the impact of agricultural practices and production on natural resources.

The results of the research assess the viability of the different actions of the CAP on the basis of the
differences and analogies in agricultural impact on the environment among EU countries. However,
countries with similar, high impact agricultural practices and production methods might be steered
towards sustainable intensification with similar interventions. Therefore, the findings of this analysis
and its follow up could be useful to policymakers generally, in order to define tools that guide producers
towards more sustainable production methods; an objective pursued by the CAP with increasing
efforts. The EU needs high-quality AIE elaboration to design, implement, and monitor policies that
benefit all of its citizens. Furthermore, in order to highlight some of the main differences between
the results of the present study and previous research, a number of recent studies were scrutinised.
For example, on the one hand, there is much agreement between the intensity of nitrogen input in
both arable and grassland systems and the classification of countries, such as Romania, Bulgaria, and
Poland, as a group with high intensity agricultural systems (45–47). On the other hand, the results
are in line with another recent study [59] that classified some countries from Central and Eastern
Europe (Slovakia and the Czech Republic) as a group with the highest level of sustainability, therefore
mirroring this study’s classification: “Nature inclusive agricultural system”.

The main novelty of this study is that in the literature there are very few publications about
the geo-spatialised classification of EU countries that offer data on the evolution of the impacts of
agricultural practice and production on the environment. However, a limitation is that the research
used a selection of blocks of indicators, whereas a wider classification of variables could lead to a more
comprehensive assessment of the effects of different agricultural practices on the environment. A final
remark: Although the statistical techniques that were used in the paper were able to respond to the
goals of this research, it would be an interesting and promising task to conduct further analysis that
aims to compare results from different classification techniques.

Funding: The funders had no role in the design of the study; in the collection, analysis, or interpretation of data;
in the writing of the manuscript; or in the decision to publish the results.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Cluster Analysis

Cluster analysis (CA) can be defined as the statistical technique that aims to group a set of n
data units, represented in the usual matrix X =

[
xi j

]
, i = 1, . . . , n; j = 1, . . . , p, into clusters, which are

a collection of data units that are similar to one another within the same cluster and dissimilar to
the units in other clusters. This means that the observations are subdivided into a certain number of
clusters with respect to their level of “similarity”, this latter concept being assessed on the basis of
the values assumed by the p variables on each of the units. CA is considered an explorative tool in
the field of classification techniques, but it is employed for many different purposes: individuation of
particular typologies; forecasting based on clusters; reduction in the data; and the identification of
homogeneous strata for sampling. The different phases of a CA are usually summarised as follows:

(1) Choice of the variables. Particular attention has to be paid to the choice of the variables to use
in CA; the method has no mechanism for differentiating between “relevant” and “irrelevant” variables
and makes no distinction between “dependent” or “independent” variables. Consequently, the choice
of variables is very subjective and must be supported by a general knowledge of the whole phenomenon
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under investigation and/or a conceptual framework regarding the possible outputs of the analysis:
This is very important, because the clusters formed are very dependent on the variables included.

(2) Choice of a dissimilarity measure to assess the differences that exist between the statistical
units. In cases like ours, with quantitative variables, the usual choice is a distance measure belonging
to the general Minkowski metric, possibly after variable standardization; given two (row) vectors z′i
and z′l , containing the standardized p observations on statistical units i and l, we write the Minkowski
distance of order t:

td(z′i ,z
′

l)
= tdil =

t

√∑p

j=1

∣∣∣zij − zlj
∣∣∣t

It is common practice to calculate tdil for t = 1 (which gives the so-called Manhattan distance) or,
even more frequently, for t = 2 (obtaining the Euclidean distance).

(3) After the choice of the dissimilarity (or distance) measure, the third step is to decide which
clustering algorithm to adopt; there are a number of different methods that can be used for this purpose,
which can be classified as follows:

(a) Hierarchical methods, in which each observed unit starts in its own separate cluster. The two
“closest” (most similar) clusters are then combined and this is done repeatedly until all subjects are in
one cluster. Therefore, the final output of these methods is not a single partition of the n units, but a
series of partitions that are graphically represented by means of a “dendrogram”, which contains the
distance levels on the vertical axis and the single units on the horizontal axis. Hierarchical methods
differ only in the way in which distances are recalculated between the new cluster and those remaining
after the k-th fusion.

Denoted by Ca and Cb, any two clusters having, respectively, na and nb units; by i and l two
single units, with i ∈ Ca and l ∈ Cb; and by d(Ca, Cb), the distance between clusters Ca and Cb, the
most employed hierarchical algorithms, are the following:

− Single Linkage : d(Ca, Cb) = min
i∈Ca;l∈Cb

dil;

− Complete Linkage : d(Ca, Cb) = max
i∈Ca;l∈Cb

dil;

− Average Linkage : d(Ca, Cb) =
1

nanb

∑
i∈Ca

∑
j∈Cb

dil;

- Centroid: d(Ca, Cb) = d
(

¯
za,

¯
zb

)
, where

¯
za and

¯
zb are the centroids of the two clusters, i.e., the

vectors of the mean values of the p variables in clusters Ca and Cb:

zj;(cl) =
1

ncl

∑
i∈Ccl

zij for cl = a, b and j = 1, . . . , p

- Ward. Let us calculate the quantities:

T =
n∑

i=1

p∑
j=1

(
zij − zj

)2

where zj is the mean of the j-th variable with reference to the whole observations set: it is 0 when
dealing with standardised variables. Given a partition in g clusters, it can be decomposed in:

W =
∑g

k=1

∑nk

i=1

∑p

j=1

(
zij − zj;(k)

)2

with zj;(k) being the mean of the j-th variable in cluster k and

B =
∑g

k=1

∑p

j=1

(
zj;(k) − zj

)2
.
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The Ward method relies upon the well-known decomposition: T = W + B; in passing from k + 1
to k clusters, W tends to increase (less homogeneity in the new cluster with the addition of new units),
while of course B decreases: at each step of the Ward procedure, the clusters joined together will be the
two for which the increase in W is minimum.

(b) Non-hierarchical methods. In these methods, the desired number of clusters was specified in
advance and the ’best’ solution was chosen. The steps in such a method are as follows: (1) choose
initial cluster centres (essentially this is a set of single observations that are far apart); (2) assign each
unit to its “nearest” cluster, defined in terms of the distance to the centroid; (3) find the centroids of
the clusters that have been formed; (4) recalculate the distance from each subject to each centroid and
move observations that are not in the cluster that they are closest to; (5) continue until no centroid
is modified.

(4) The last step is the choice of the optimal number of clusters: This decision has to be made a
priori in non-hierarchical methods, while in hierarchical algorithms, the dendrogram may give some
insights into the best number of clusters to choose. A practical rule could be to take into account the
relative increase in merging distance, δk, for k = n− 1, n− 2, . . . , 1: Given the partition in k + 1 clusters
and the following partition in k clusters, it is possible to calculate: δk = (dk − dk+1)/dk+1 and choose
the number of clusters, for which δk is the maximum.

In real-world applications, it is common practice to repeat the analysis for a different number of
clusters and then calculate the objective function:

R2
(k) =

B(k)

T

Reporting on a plotted graph the number of clusters k (horizontal axis) and the R2
(k) values

(vertical axis), a good choice for the number of clusters will be the k, for which the graph presents an
“elbow” (sudden change in slope).
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