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Abstract: In aquatic environment, engineered nanoparticles (ENPs) are present as complex mixtures
with other pollutants, such as trace metals, which could result in synergism, additivity or antagonism
of their combined effects. Despite the fact that the toxicity and environmental risk of the ENPs have
received extensive attention in the recent years, the interactions of ENPs with other pollutants and
the consequent effects on aquatic organisms represent an important challenge in (nano)ecotoxicology.
The present review provides an overview of the state-of-the-art and critically discusses the existing
knowledge on combined effects of mixtures of ENPs and metallic pollutants on aquatic organisms. The
specific emphasis is on the adsorption of metallic pollutants on metal-containing ENPs, transformation
and bioavailability of ENPs and metallic pollutants in mixtures. Antagonistic, additive and synergistic
effects observed in aquatic organisms co-exposed to ENPs and metallic pollutants are discussed in
the case of “particle-proof” and “particle-ingestive” organisms. This knowledge is important in
developing efficient strategies for sound environmental impact assessment of mixture exposure in
complex environments.

Keywords: nanomaterials; mixtures; trace metals; nanotoxicity; environmental risk assessment;
synergy; antagonism

1. Introduction

Engineered nanomaterials with significantly enhanced properties showed a lot of promises for
direct and indirect benefits in almost all sphere of the modern society [1]. However, with increasing
production and ever-expanding applications, engineered nanoparticles (ENPs) are unavoidably
released to water, soil and atmosphere throughout their lifecycle [2–4]. Hence, the concerns about
environmental safety of ENPs have significantly raised. Indeed, the abundant information on the
environmental implications of ENPs can be found in recent review papers [5–13], evidencing the
potential of ENPs to harm aquatic organisms if present in enough high concentrations. Nevertheless, in
most cases the existing information is obtained considering pollution by ENPs individually, neglecting
that in the environment the organisms are exposed simultaneously to mixtures of diverse pollutants.
Therefore, evaluation of the potential risk of ENPs can be significantly under- or over-estimated if the
cocktail effects are neglected.

Assessing the effects of mixtures of environmental pollutants, and more generally multiple
stressors, is a central topic in the modern ecotoxicology [14,15]. Approaches to assess mixture
effects were thoroughly reviewed for toxic metals, pharmaceutical products or pesticides [16,17].
Fundamental concepts in describing the mixture effects can be divided into two major categories
depending on the existence or not of the interactions between the components in the mixture and
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their mode-of-toxic-action [16,18]. In a case when no interaction between the mixture components
exists, two major concepts are used to predict mixture effects: the concentration addition (CA) and the
independent action (IA). CA applies when the sum of the effects of individual components is equal
to the toxicity of a mixture as a whole. It assumes identical mechanisms of toxicity and same target
sites for the individual components. By contrast, IA applies when the components of the mixture
are acting independently and do not influence the toxicity of each other. It assumes that individual
components have different mode-of-toxic-action and different biological target sites. In a case where
interactions between the mixture components exist, the observed effects will differ from the CA and IA
predictions. In a case that the observed toxicity is stronger than predicted one, the mixture toxicity
effects are described as synergistic. By contrast, when the toxicity of a mixture is less than expected by
CA or IA, the mixture effects are described as antagonistic.

ENPs possess enhanced physical and chemical properties, and very high reactivity because of
their smaller size and larger specific surface area, which favor the interactions with various biotic
and abiotic components, including pollutants in the aquatic systems [19]. Therefore, similarly to the
naturally present nanoparticles and colloids [20], ENPs could affect significantly the behavior and
effects of pollutants in the aquatic environment. For example, based on the free metal ion and biotic
ligand models [21], ENPs could be expected to decrease the concentration of the free metal ions in the
exposure medium, thus to reduce metal bioavailability and toxicity. Naasz et al. recently reviewed
the knowledge on the co-exposure to ENPs and different micropollutants in in-vitro and in-vivo
biological test systems with a special focus on the Trojan-horse phenomenon and its ecotoxicological
relevance [19]. The authors assigned the effects in mixtures containing ENPs to 6 groups, including
Trojan horse (+) and (−), surface enrichment, retention, inertism and coalism [19], and underlined the
necessity of considering different processes, such as adsorption and desorption, bioavailability and
internalization in which individual components in mixtures are involved, to better understand and
predict the mixture toxicity.

In such a context, the present review paper provides an overview and discusses relevant processes
driving the interactions in mixtures of metal-containing ENPs and metallic pollutants with aquatic
organisms. The specific focus is on: (i) adsorption of metallic pollutants on metal-containing ENPs;
(ii) transformation processes in exposure medium containing mixture of ENPs and metallic pollutant;
and (iii) adsorption and internalization of ENPs and metallic pollutants by aquatic organisms. The
evidences of the toxicity to aquatic organisms co-exposed to mixtures of metal-containing ENPs and
metallic pollutants as well as conceptualization of the toxic outcome are discussed. The important
knowledge gaps and the further research needs are identified, too. Such information is critical in
developing efficient strategies for assessment of environmental impact of ENPs and metal co-exposure
in complex environments.

2. Key Processes at The Exposure Medium—Organism Interface

In the aquatic environment the ENPs and metallic pollutants interact with different biotic and
abiotic constituents. As a result, they are present as complex and dynamic mixture of aggregates,
different dissolved metal forms (free metal ions, bound to inorganic and organic ligands, forming labile
or inert complexes), metal adsorbed on ENPs, natural nanoparticles, colloids and their aggregates.
All these entities shape physicochemical speciation in the exposure medium and exhibit different
reactivity towards biota. The key chemo- and bio-dynamic processes driving the interactions in the
mixtures of metal-containing ENPs and metallic pollutants with aquatic (micro)organisms are shown
in Figure 1. As these processes were recently reviewed for metal-containing ENPs [13], here we
will focus specifically on the adsorption of the metallic pollutants on ENPs, the transformations of
mixtures in exposure medium, the adsorption and internalization of ENPs and metallic pollutants by
aquatic organisms.
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Figure 1. Schematic representation of key processes at the exposure medium—organisms’ interface,
which govern the interactions in the mixtures of metal-containing engineered nanoparticles (ENPs)
and metallic pollutants. Different forms of ENPs and metallic pollutants are transported towards
the organism surface via diffusion (1). This process is size-dependent and differs for metal ions,
metal complexes, ENPs and aggregates. Once at the vicinity of the organism, different species are
adsorbed (5) on the organisms’ surface. ENPs and their aggregates (and sorbed metallic pollutants)
adhere on the cell walls and cell membrane. Then ENPs could penetrate (6) through the membrane
(but not necessarily) by different pathways, including endocytosis for the case of “particle-ingestive”
organisms, alteration in cell membrane permeability for the “particle-proof” organism or other possible
mechanisms [7,13,22,23]. Dissolved metallic pollutants first adsorb to different sites of the organism
surface. Next, they could cross the membrane by facilitated (e.g., via channel mediated diffusion) or
active (e.g., through the essential trace metal transporters) transport. Once inside the cell, ENPs and
metallic pollutants interact with intracellular structures and biomolecules, such as proteins, lipids and
DNA, and could affect vital cellular processes; ENPs or metallic pollutants can be transformed (8) via
different processes such as intracellular complexation, dissolution of ENPs, sulfidation or excreted (9).
The complex interplay between all the processes will determine the overall effect of the mixture of
ENPs and metallic pollutants.

2.1. Adsorption of Metallic Pollutants on Metal-Containing ENPs

The adsorption of metallic pollutants on ENPs is widely studied from different perspectives,
for example from nanocatalysis [24,25], wastewater treatment [26,27] and remediation [28,29]. The
most studied metal-containing ENPs include metallic ENPs, metal oxide ENPs, quantum dots (QDs)
and mixtures of different ENPs. Strong sorption on metallic ENPs is due to the presence of metal
coordination sites (terrace, edge, kink or corner sites) on the particle surface which exhibit quite
different coordination chemistry towards reactants, intermediates and products [30]. Atoms on the
surface of metallic ENPs, especially the ones at the edges and corners are active center of the catalyst
and the adsorption [31,32]. For example, a distinct decrease of AgNPs major peaks observed after
adsorption of HgCl2 suggested that one of the adsorption mechanisms could be the formation of an
amalgam between the two metals AgmHgn [33]. Adsorption of Au(III), Pd (II) and Pt(IV) on CuSNPs
was related to high affinity between exposed sulfur atoms on CuSNPs and noble metal ions [34].
Several articles focused on the interaction between QDs and dissolved metals. For instance, CdSe/ZnS
QDs could be used to detect Hg(II) and Cu(II) [35]. PEG-ZnSQD @ZIF-67 hybrid nanocomposite
could be used as fluorescence probe for Cu(II) [36]. CdSe/ZnS QDs exhibited ultrasensitive and highly
selective detection of Zn(II) ions [37]. Carboxyl-terminal groups coupled polymer coated core/shell
CdSe/ZnSQDs adsorbed significant amounts of dissolved Cu and Pb and affected their uptake in green
algae Chlorella kesslerii and Chlamydomonas reinhardtii [38] and in metal-resistant bacterium Cupriavidus
metallidurance [39].
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In addition to the high specific surface area, many metal oxide ENPs, such as ZnONPs, Al2O3NPs
and TiO2NPs possess properties of both Lewis bases and acids [40–42]. Residual hydroxyl groups and
anions/cations holes increase the surface activity of metal oxide ENPs [43,44]. Among the metal oxide
ENPs, the most studied is TiO2NPs [45–48]. Selected examples demonstrated its strong adsorption
capacity: TiO2NPs (Degussa P25) with primary size of 21 nm sorbed rapidly (equilibrium within
30 min) Cd(II) and As(V) [3,49]; P25, TiO2NPs (anatase synthesized by sol-gel method) and titanate
nanotubes adsorbed >99% of inorganic mercury (Hg) present in the medium [50]. Similarly, TiO2NPs
(Rutile/Anatase: 87/13) with size of 10 nm retained 96% of IHg in 45 min [51], whereas TiO2NPs
(Rutile/Anatase: 85/15) of 20 nm removed 98.6% of IHg [52]. Comparative study of four metal oxide
ENPs revealed that the adsorption capacity of TiO2NPs (5–10 nm) and Al2O3NPs (50-100 nm) to As(V)
were higher than that of ZnONPs (10–20 nm) and CuONPs (<10 nm) [53]. In some cases, the adoption
of metallic pollutants is also accompanied with an oxidation process. For example, As(III) adsorbed on
TiO2NPs was oxidized to As(V) on the particle surface in the presence of UV light (Yan and Jing 2019).

Recent studies demonstrated that binary metal oxides show enhanced adsorption of metals
as compared with single metal oxides [54,55]. For example, Al-Mn binary oxides exhibited higher
adsorption capacity for Cd(II) [56]. Fe3O4-TiO2NPs completely removed As(V) and 93% of As(III) from
the medium in 1h [57]. Fe-Mn binary oxides combining the oxidation property of manganese dioxide
and the high adsorption features of iron oxides were highly efficient in the removal of both As(V) and
As(III) [58]. Fe-Mn binary oxides have also high adsorption capacity for Cr(VI) with the carboxyl-
and the hydroxyl-groups participating in the adsorption process [59]. Superparamagnetic iron oxide
nanoparticles functionalized with 3-mercaptopropionic acid were very efficient in sorbing metals:
Ag(I) and Hg(II) interact strongly with the thiol groups, while the Pb(II) seems to adsorb mostly via
electrostatic interaction [60]. When present in mixture with dissolving ENPs, the stable ENPs were
also shown to adsorb the released ions. For example, the combined effects of ZnONPs dissolution and
Zn(II) adsorption onto TiO2NPs controlled the concentration of dissolved Zn(II) in the ZnONPs and
TiO2NPs mixture [61].

Overall, these studies revealed that the characteristics of ENPs, metallic pollutants and exposure
medium influence the amount of adsorbed metallic pollutants. The adsorption of metallic pollutants
on ENPs could results in their surface modification, which could change their properties and the way
they interact with aquatic biota [62]. Nevertheless, the sorption of metallic pollutants on the ENPs
has received only limited attention in (nano)ecotoxicology context and systematic studies on how the
adsorption of the metallic pollutants on the ENPs will affect their reactivity towards the organisms are
still missing.

2.2. Transformations of Mixture of ENPs and Metallic Pollutants in The Aquatic Environment

In the environment ENPs are subject to different transformations including dissolution,
agglomeration, aggregation and sedimentation, [63] which determine their stability and affect the
interactions with aquatic organisms (Figure 1). The transformations of ENPs (and adsorbed metallic
pollutants) strongly depend on: (i) Characteristics of ENPs (composition, size, shape, surface properties,
crystal structure, etc.); for example, TiO2NPs, SiO2NPs and Al2O3NPs of smaller size aggregate easier
than larger ones [64]; Rutile TiO2NPs aggregate stronger than anatase of comparable size [65];
TiO2NPs with sodium citrate were more stable than polyvinylpyrrolidone, sodium dodecyl sulfate
and polyethylene glycol [66]. (ii) Exposure medium variables (ionic strength, pH, composition and
concentration of dissolved organic matter (DOM) etc.); for example, TiO2NPs or Al2O3NPs and cells
significantly aggregated at neutral pH or low ionic strength, while SiO2NPs at low pH or high ionic
strength [64,67]. Extracellular polymeric substance (EPS) extracted from bacterium Bacillus subtilis
stabilized TiO2NPs [68].

Furthermore, once adsorbed on the ENPs metallic pollutants could alter the surface properties
of ENPs and thus influence their aggregation and dissolution. For example, TiO2NPs sorbed Zn(II)
released from ZnONPs and also co-aggregated with ZnONPs [69]. Hetero-aggregates formed by
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electrostatic interaction between AgNPs and hematite prevented AgNPs to have a direct contact with
Escherichia coli cells [70]. CeO2NPs and TiO2NPs aggregated when present as a mixture in bacterial
culture medium due to their opposite surface charges, while CeO2NPs had no effect on ZnONPs
stability [71]. Magnetic Fe3O4NPs with different surface functionalities adsorbed various metal ions
(Cr(III), Co(II), Ni(II), Cu(II), Cd(II), Pb(II) and As(III)) by different mechanisms (chelation, ion exchange
or/and electrostatic interaction etc.) [72,73].

2.3. Adsorption and Internalization of ENPs and Metallic Pollutants in Mixtures by Aquatic Organisms

Adsorption of ENPs (and associated metallic pollutants) onto the surface of aquatic organisms is a
key step determining their bioavailability [13,23]. Different interaction forces could drive the adsorption
process, including Van der Waals forces, hydrophobic forces, electrostatic attraction, hydrogen bonding
and receptor-ligand interactions [23,74,75]. For the specific case of “particle-proof” microalgae,
examples include adsorption of SiO2NPs and CeO2NPs on Raphidocelis subcapitata [76], TiO2NPs on
Phaeodactylum tricornutum [77], CuONPs [78] and TiO2NPs [13] on Chlamydomonas reinhardtii, AgNPs
on Euglena gracilis [79]. AuNPs adsorbed on the carapace and appendages of water flea Daphnia magna,
inducing mechanical disruptions of the feeding appendages [80]. Given the enhanced adsorption
of metallic pollutant by ENPs (Section 2.1), ENPs can play a role of carriers facilitating the entry of
metallic pollutants into the “particle-ingestive” organisms (“Trojan-horse effect”). For example, Pb(II)
sorption on TiO2NPs facilitated its accumulation by freshwater bivalve Corbicula fluminea [81]. Binding
of Cd(II) on TiO2NPs resulted in an alleviation of Cd(II) toxicity to Chlamydomonas reinhardtii [82],
however has no consequences for the uptake and toxicity of Cd(II) by Daphnia magna and Lumbriculus
variegatus [83]. The above examples demonstrated the complexity of the interactions between biota
and mixtures of ENPs and metallic pollutants, as well as the ENPs, metals and species dependence.

ENPs (and associated metallic pollutants) adsorbed onto the organisms can undergo translocation
into the intracellular environment via different mechanisms, such as diffusion and endocytosis, as
evidenced by several studies [13,75]. Endocytosis occurs by multiple mechanisms that fall into two broad
categories, “phagocytosis” and “pinocytosis” [84]. Different examples demonstrated the relevance of
endocytosis for various microorganisms: internalization of AgNPs [85] and thioglycolic acid stabilized
CdTe QDs [86] by the golden-brown alga Ochromonas danica, TiO2NPs by the blue-green alga Anabaena
variabilis [87]. The 3.4 nm AuNPs were taken up into macrophage cells via pinocytosis [88]. Carboxylic
CdSe/ZnS QDs were shown to enter into the ciliate Tetrahymena thermophila by phagocytosis and
clathrin-mediated endocytosis [89], as did AgNPs, AuNPs, CuONPs and TiO2NPs [90]. Nonetheless,
it is still unclear to what extent the majority of microorganisms have specific mechanisms of
ENPs internalization.

The internalization of ENPs by zooplankton is still poorly understood [12]. The water flea and
shrimp can feed on particles of 0.4–40 µm, and ENPs and their aggregates are taken up via water
filtration. The uptake of AuNPs by Gammarus pulex varied depending on the surface coatings, with
Au-mercaptoundecanoic acid and Au-citrate NPs being taken up to a greater extent than Au-NH2

and Au-PEG NPs in a range of standard ecotoxicity media and natural waters. No relationships were
observed between the aggregation state of different AuNPs and the uptake, suggesting that the widely
accepted assumption that AuNP uptake is related to particle size is, in fact, not verified [91]. No similar
studies exist on the uptake of ENPs-metallic pollutant complexes, but in principle the mechanisms
known for ENPs should be relevant.

It is still unclear how the processes of adsorption of metallic pollutants on ENPs and their
aggregation could influence the bioavailability of ENPs-metallic pollutants’ complexes. The recent
work of Tan et al. evidenced that the biouptake of Cd(II) in Daphnia magna may either increase or
reduce depending on the aggregation state of the TiO2NPs [92]. This study highlighted the linkage
between the aggregation of ENPs, adsorption of metallic pollutants and bioaccumulation. The ENPs
compositions and concentrations were shown to impact the metallic pollutants uptake. For example,
TiO2NPs enhanced Cr(VI) bioavailability to freshwater alga Scenedesmus obliquus, while Al2O3NPs had
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no significant effect [93]. The bioavailability of ENPs and the feeding behavior of the aquatic organisms
could also modulate metal uptake. For example, filter feeders, such as daphnids and shrimps can
actively take up ENPs into their guts, thus facilitating accumulation of the adsorbed metal [92].

Adsorption and consequent internalization of dissolved metal is another key step in the overall
biouptake process in co-exposure to ENPs and metallic pollutants. Dissolved fraction contains various
species originating from the metallic pollutants and ENPs exhibiting different reactivities towards
biota [94,95]. They bind to different functional groups (e.g., carboxyl-, hydroxyl-, phosphate, amino-
and sulfhydryl-) in the cell wall and membrane constituents of aquatic microorganisms, such as
algae [96] and bacteria [97]. Since the majority of metal species are hydrophilic, their transport through
the biological membrane is mediated by specific proteins through the channels, channel carriers and
pumps [98]. Common transporter families in eukaryotes and bacteria are well studied [99–102]. There
is a consensus that for the majority of metals, the uptake is driven by the free metal ions [94,95] and the
amount of metal bound to the biotic ligands [21]. Therefore, any environmental variables (including
the ENPs) that could affect the speciation in the exposure medium as well as the competition between
the metals for the biotic ligands will influence the amount of the metal taken up by the organisms.

Based on the available literature for ENPs and metallic pollutants, as well as limited literature
about the mixtures, the processes at the medium–organism interface in mixtures could depend on: (i)
the physicochemical properties of the ENPs (e.g. size, shape, surface modification, etc.); (ii) the nature
and characteristics of the metallic pollutants; (iii) the water quality variables (e.g., pH, ionic strength
and the type/concentration of DOM); (iv) the characteristics of the aquatic organisms (e.g., membrane
permeability, differentiation stage and cellular uptake pathways).

3. Toxicity of Mixtures of ENPs and Metallic Pollutants to Aquatic Organisms

Current knowledge on the co-exposure of aquatic organisms to mixtures of ENPs and metallic
pollutants was nicely summarized in the literature [19]. Here we provide some more recent examples
in Table 1. In general, the studies were designed in a way to consider the effect of mixture exposure
by making comparison with the effect of individual components. Thus, toxicity outcomes of mixture
exposure can be grouped in three categories: (i) ENPs have no significant effect on the toxicity of
metallic pollutants; (ii) ENPs increase the toxicity of metallic pollutants; (iii) ENPs reduce toxicity of
metallic pollutants (Table 1). However, this categorization is operational and dependent on different
experimental factors, including species, exposure duration, etc. For instance, co-exposure of two Bacillus
species to TiO2NPs and Cu(II) under the same test conditions resulted in different effects, showing the
species dependence of the observed effects [103]. Acute and chronic exposure of Tigriopus japonicus to
mixtures of ZnONPs and Cd(II) or Pb(II) resulted in the contrasting effects [104]. However, chronic
exposure of Daphnia magna to mixture of TiO2NPs and As(III)/As(V) led to comparable toxicity [105].

3.1. No Significant Effect of ENPs on The Toxicity of Metallic Pollutants

ENPs have no significant effect on the toxicity of other metallic pollutants when there was no
interaction between ENPs and metallic pollutants, and ENPs itself had no effect on the organisms [19].
Vale et al. states that Cd(II) uptake and antioxidant enzyme activities by bivalve Corbicula fluminea
were comparable in the absence and presence TiO2NPs [106]. Similarly, TiO2NPs did not affect specific
metal-induced responses (metallothionein induction) and Cd(II) accumulation in tissues of marine
bivalve Mytilus galloprovincialis [107]. AgNPs had no influence on the Cd(II) toxicity to green alga
Chlamydomonas reinhardtii [108]. The lack of modulation of the metal toxicity in the presence of ENPs
could be also related with the lowering of the concentrations of the suspended ENPs which can interact
with planktonic organisms due to the formation of the big aggregates that sedimented. For example,
the real concentration of dispersed TiO2NPs was by far lower than the nominal one, mainly due to
particle concentration dependent aggregation and sedimentation [109].
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Table 1. Selected recent examples of studies investigating the combined effects of metals and ENPs on plankton species including algae, bacteria, ciliate and zooplankton.

ENPs Metal Organisms Test Conditions End Point/
Mixture Effect Ref.

Al2O3 Pb(II) Marine alga Isochrysis galbana 10–20 nm Al2O3NPs, modified Guillard f2 medium,
Exposure time 72 h

Growth inhibition, chlorophyll fluorescence/Synergistic effect in
the presence of 10mg L−1 Al2O3NPs [110]

TiO2 Cu(II) Bacterium Bacillus thuringiensis P25, Physiological saline buffer,
Exposure time 24 h Viability, ROS a generation, enzymatic activity, Cu uptake/Increase [103]

TiO2 Cu(II) Bacterium Bacillus megaterium P25, Physiological saline buffer, Exp. time 24 h Viability, ROS generation, enzymatic activity, Cu uptake/No effect [103]

TiO2 Cd(II) Bacterium Escherichia coli Anatase 5–10 nm, Exposure time 3 h Growth reduction, Antagonistic interaction [111]

TiO2 Pb(II) Zebrafish larvae 5 nm TiO2NPs, Exposure time 48 h Mortality, malformation rate, No effect; Locomotion/Decrease;
Biouptake and depuration/Increase [112]

TiO2
Cd(II), As(III),

Ni(II) Nematode Caenorhabditis elegans Two sizes: 5 and 15 nm; strong aggregation
Exposure time 12 h

Cd uptake/Decrease
Reproduction and development toxicity/Increase [113]

TiO2 As(III), As(V) Water flea Daphnia magna 21 nm TiO2, Acute immobilization test,
Exposure time 48 h Immobilization/Decrease [105]

TiO2 As(III), As(V) Water flea Daphnia magna 21 nm TiO2, Chronic test,
Exposure time 21 d Body length and reproduction/Decrease [105]

TiO2
* Cu(II) Water flea Daphnia magna 29.5 nm TiO2 with surface modified by Al(OH)3,

Exposure time 48 h Bioaccumulation and oxidative stress/Increased [114]

TiO2
* Cu(II) Water flea Daphnia magna 36.7 nm TiO2 with surface modified by Al(OH)3 +

stearic acid, 48 h High intestinal damage [114]

ZnO Cd(II), Pb(II) Marine copepod Tigriopus japonicus 22 nm ZnONPs, artificial seawater Exposure time 96 h Acute test, mortality/Increase [104]

ZnO Cd(II), Pb(II) Marine copepod Tigriopus japonicus 22 nm ZnONPs, artificial seawater Exposure time 96 h
20 ◦C, 21 days

Chronic test, Reproduction (spawning rate, time to hatch, Nb of
nauplii)/Decrease [104]

ZVI **
Pb(II),
Cd(II),
Zn(II)

Bacterium
Vibrio fischeri

ZVI 67 nm, Microtox®Test,
Exposure time 5 min

Toxicity impact index / Increase (Pb(II)); antagonistic interaction
Decrease (Cd(II), Zn(II))
Synergistic interaction

[115]

ZVI
Pb(II),
Cd(II),
Zn(II)

Nematode Caenorhabditis elegans ZVI 67 nm,
Exposure time 96 h

Growth, reproduction, survival
Improvement (Cd(II), Zn(II))

No effect (Pb(II))
[115]

ZVI
Pb(II),
Cd(II),
Zn(II)

Green alga Scenedesmus intermedius ZVI 67 nm,
Exposure time 72h

Growth rate inhibition
NOEC b, IC50 c/Increase [115]

ZVI
Pb(II),
Cd(II),
Zn(II)

Cyanobacterium Microcystis
aeruginosa

ZVI 67 nm,
Exposure time 72h

Growth rate inhibition
NOEC, IC50/Increase [115]

*hydrophobic. **ZVI: zero valent iron. aROS: reactive oxygen species. bNOEC: non-observed effect concentration. cIC: mean inhibitory concentration.
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Moreover, Canesi et al. suggested that ENPs interact with organic matter produced by the
organisms (mucus, fecal pellets, gametes), promoting the adsorption on mussel shell and byssal
threads, as well as the sedimentation, thus affecting ENPs capability to adsorb contaminants [116]. All
these processes may account for the low ENPs concentrations found in water samples collected during
exposure, clearly indicating that only a minor fraction of the ENPs (and associated pollutants) in the
dispersed form is available to the test organisms.

There are some evidences showing that ENPs had no significant effect on the toxicity of other
metallic pollutants even though there was interaction between ENPs and metallic pollutants, and ENPs
had an effect on the organism. For instance, the acute toxicities of As(V) and Cu(II) were unaffected by
citrate-coated AgNPs despite the fact that their bioaccumulation was reduced [117].

3.2. Increase of Toxicity/Bioavailability of Metallic Pollutants by ENPs

Since ENPs are efficient adsorbents for metallic pollutants, they can play a role of carriers
facilitating the entry of metallic pollutants into the organisms (“Trojan-horse effect”), which may lead
to enhancement of metallic pollutant toxicity to aquatic organisms. Indeed, TiO2NPs (21 nm) greatly
promoted the accumulation of Cd(II) in Cyprinus carpio and the cumulative Cd(II) concentrations in
the presence of TiO2NPs were 2.5 times higher than in the absence [3]. Similarly, TiO2NPs increased
As(V) accumulation in Cyprinus carpio by 44% [118], suggesting that TiO2NPs played a role of carrier
promoting the uptake. TiO2NPs increased the bioconcentration of Pb(II), which led to the disruption of
thyroid endocrine and neuronal system in zebrafish larvae [119]. Toxicity and bioavailability of Cd(II)
and Zn(II) to Daphnia magna increased significantly after TiO2NPs pre-exposure [120], as was observed
for Cu(II) accumulation [121]. The presence of hydrophobic TiO2NPs increased simultaneously the
bioaccumulation of Cu(II) and Ti(IV) and induced high oxidative stress injury [114]. TiO2NPs enhanced
Cd uptake in the “particle-ingestive” protozoa Tetrahymena thermophila, with 46.3% of internalized Cd
corresponded to Cd-TiO2NPs complex [122].

The presence of ENPs can also increase the uptake and toxicity of different pollutants to unicellular
organisms with no endocytosis. For example, Hartmann et al. showed that despite of the decrease
of Cd(II) concentration due to the adsorption to TiO2NPs, algal growth inhibition increased [123].
This observation was explained by: (i) adsorption of Cd(II) on TiO2NPs resulting in an increase of
Cd(II) concentration in algal cells surface; the main component of the algal cell wall is cellulose, which
also usually contains glycoproteins and polysaccharides [124]. These components can act as binding
sites to promote the adsorption of ENPs by algae [125,126]. Large aggregates of TiO2NPs entrapped
almost all Pseudokirchneriella subcapitata cells [127]. It was also observed that algae Chlorella vulgaris
and Raphidocelis subcapitata absorb large amount of AgNPs [128]. TiO2NPs at low concentrations (<1.0
mgL−1) significantly enhanced the toxicity of Zn(II) to Anabaena sp. [129]. (ii) TiO2NPs changed the
permeability of the cells and increased the bioavailability of Cd(II). Indeed, various ENPs such as
TiO2NPs, CuONPs and QD were shown to induce membrane damage to different unicellular organisms,
such as algae or bacteria [78,130–132]. (iii) TiO2NPs can transfer Cd into the algae cells as a carrier.
The algae cell walls are semipermeable, and their structure is usually porous [124]. The diameter of
these pores is in the range of 5–20 nm [133,134], which makes the ENPs in the size smaller than the
maximal pore size can pass through the cell wall easily. Once the ENPs pass through the cell wall,
ENPs will encounter the second barrier—the plasma membrane. Endocytosis and passive diffusion
are considered to be the main pathway for ENPs to cross the bilayer lipid membrane [135,136]. In
addition, the permeability of the cell wall may change during cell cycling, with the newly synthesized
cell wall being more permeable to ENPs, thereby increasing the uptake of ENPs by algal cells [128,137].
Al2O3NPs loaded with Pb(II) penetrated Isochrysis galbana cells and a synergistic effect was also found
for the toxic effect of Pb(II) [110].

ENPs adhered to the bacterial surface and enhanced the membrane damage and metal
accumulation in bacterial cell [138]. Co-exposure to TiO2NPs and Cu(II) resulted in an increased uptake
of Cu(II) by Bacillus thuringiensis, leading to increase of growth inhibition and oxidative stress [103].
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ENPs mainly affected cell membrane by the oxidative damage and membrane integrity [139]. AgNPs
induced an excessive generation of ROS in the cell membrane and the production of membrane protein
crystals of Dunaliella salina [140]. ENPs can also accumulate in the cell membrane and lead to cell wall
depression, which causes changes in cell membrane permeability, until cell apoptosis occurs [141].

3.3. Reduction of The Toxicity/Bioavailability of Metallic Pollutants by ENPs

Most of the existing studies on reduced combined toxic effects of ENPs and metallic pollutants
were based on the adsorption consideration and reduction of metallic pollutants bioavailability in a
way similar to those of natural nanoparticles and colloids [20]. For instance, TiO2NPs reduced the
growth inhibitory effect of Cd(II) on Chlamydomonas reinhardtii due to the adsorption of Cd(II) by
TiO2NPs and reduction of the concentrations of free Cd(II) ions [82,142]. High TiO2NPs concentration
effectively reduced the soluble Zn(II) (and its toxicity) concentrations by adsorbing Zn(II) on ENPs
and settling to the bottom of the reactor [129]. Growth inhibition, oxidative stress and Cu(II) uptake
by Scenedesmus obliquus were lower in mixture exposure with Al2O3NPs [143]. TiO2NPs reduced the
toxicity of Cd(II) to bacterium Escherichia coli and the combined toxicity decreased with the increasing
TiO2NPs concentrations, which can be explained by the reduction of the free Cd(II) concentration in the
exposure medium [111]. Furthermore, ENPs may interfere with the metabolism of co-existed metals.
Indeed, TiO2NPs altered the metabolization of arsenic by polychaete Laeonereis acuta and increased the
proportions of dimethyl arsenic forms [144].

The well dispersed TiO2NPs and their µm-sized aggregates lessened Cd(II) toxicity to Daphnia
magna, however the alleviation mechanisms were different. The µm-sized aggregates were actively
ingested by Daphnia magna which resulted in an accumulation of Cd(II) in the daphnid gut. Whereas,
the well dispersed TiO2NPs were taken up mainly by endocytosis which resulted in their accumulation
in abdominal areas and the gut of Daphnia magna. Accumulation of Cd(II) was considerably impaired
because of the metal’s rapid dissociation from the ENPs surfaces during endocytosis of the metal-ENPs
complexes [92].

Li et al. showed that ENPs can modulate the toxicity of metallic pollutants by influencing their
subcellular distribution in the test organisms, too. TiO2NPs (25 nm) decreased the toxicity of As(III) to
Daphnia magna, as TiO2NPs accumulated in intestinal tract may act as a barrier, blocking the intestinal
absorption of As(III) [145]. Excretion is another important process that may impact the eventually
toxicological effects of the mixtures. It was found that organisms may excrete compounds as a feedback
response, to alter the ENPs’ toxicity [146–148]. The excretion behavior of the mixtures may differ
among the organisms as a function of their physiology, exposure routes, ENPs and metallic pollutants.
For instance, the main elimination routes for AgNPs in Daphnia magna were excretion (63%) and fecal
production [37]. In addition, the excretion rate constant of AgNPs in daphnids was much lower than
that of Ag, suggesting the difficulty of eliminating AgNPs [149]. The majority of CdSe/ZnSQDs adhered
to the external carapace or free floating within the gastrointestinal tract were excreted, whereas there
were still a significant number of QDs retained by Ceriodaphnia dubia within the digestive tract [150].
No studies are currently available about ENPs excretion for microalgae. Only studies about the
biosynthesis of ENPs in microalgae have been reported [151–153].

Overall, the existing research on combined effects of mixtures containing ENPs and metallic
pollutants focused on the effects of fixed concentrations of ENPs on the toxicity of metallic pollutants,
without considering the varied proportions of ENPs and metallic pollutants in the real environment.

4. Possible Bioaccumulation and Toxicity Outcome Scenarios during Co-Exposure to ENPs and
Metallic Pollutants

4.1. Exposure of “Particle-Proof” Organisms to Mixtures of ENPs and Metallic Pollutants

Based on the available literature, we propose 10 possible toxicity outcome scenarios of
ENPs-metallic pollutants mixtures on the “particle-proof” organisms (Figure 2).
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Figure 2. Conceptual presentation of different scenarios concerning combined effects of mixtures of
ENPs and metallic pollutants to “particle-proof” microorganisms like Chlamydomonas reinhardtii.

1. No interaction between ENPs and metallic pollutants; ENPs do not adsorb or penetrate algal
cells. ENPs have no significant effect on algae. Metallic pollutants’ bioaccumulation and toxicity
to the algae are unchanged.

2. No interaction between ENPs and metallic pollutants; ENPs adsorb and penetrate into algal cells.
Metallic pollutants’ bioaccumulation in the algae is unchanged. Effects of ENPs and metallic
pollutants on the organism are independent. Combined toxicity may remain the same or increase
depending on the species and concentrations of ENPs.

3. No interaction between ENPs and metallic pollutants; ENPs and metallic pollutants compete
for the same binding sites on algal surface. Under this condition, the metallic pollutants’
bioaccumulation decreases. Whereas the combined toxicity may increase, decrease or remain the
same depending on the toxicity of ENPs.

4. No interaction between ENPs and metallic pollutants; ENPs adsorb, but do not enter algal
cells. ENPs affect cell membrane permeability, resulting in increase of bioaccumulation of
metallic pollutants.

5. No interaction between ENPs and metallic pollutants; ENPs adsorb and alter cell membrane
permeability. ENPs and metallic pollutants enter the algal cells independently. Bioaccumulation
of ENPs and metallic pollutants both increase.

6. Metallic pollutants adsorb onto ENPs; ENPs do not interact with algal cells. Bioaccumulation
and effect of metallic pollutants decrease.

7. Metallic pollutants adsorb onto ENPs; ENPs with adsorbed metallic pollutants accumulate
on the surface of algal cells. Bioaccumulation of metallic pollutants increases whereas the
toxicity decreases.

8. Metallic pollutants adsorb onto ENPs; ENPs affect membrane permeability and enter algal cells.
There is no desorption of metallic pollutants from ENPs. Bioaccumulation of metallic pollutants
increases whereas the toxicity decreases.

9. Metallic pollutants adsorb onto ENPs; ENPs alter cell membrane permeability and enter algal cells.
Metallic pollutants desorb from ENPs. In this case, the bioaccumulation of metallic pollutants
increases. Desorption of chemical from ENPs is an important process for microorganisms with
the food vacuoles. The pH in the food vacuoles becomes acidic (pH<4) within 1h after vacuole
formation [154]. ENPs tend to release adsorbed environmental pollutants under the acidic
condition [155].
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10. Free metal ions released from ENPs compete with metallic pollutants for algal cell binding and
internalization sites. Accumulation of metallic pollutants in algal cells decreases. The biological
outcome is uncertain depending the species and concentration of ENPs.

4.2. Exposure of “Particle-Ingestive” Organisms to Mixtures of ENPs and Metallic Pollutants

Based on the available literature here we summarized 6 possible toxicity outcome scenarios for
mixtures of ENPs and metallic pollutants (Figure 3). These scenarios are proposed considering several
dominating processes that determine the toxicity outcome of ENPs metallic pollutants mixtures, namely
(i) aggregation, (ii) type of interaction between ENPs and metallic pollutants, (iii) internalization of
ENPs by test organisms, (iv) desorption of metallic pollutants from ENPs upon contact to organisms
and (v) excretion of ENPs, metallic pollutants and their complexes. We also assumed that invertebrates
like Daphnia magna and shrimps take up more metallic pollutants adsorbed on ENPs via water filtration
than exposed to metallic pollutants alone, and monodispersed ENPs can easier get deep inside the
organisms and harder to be excreted compared with aggregated ENPs.

Figure 3. Conceptual presentation of different scenarios concerning combined effects of mixtures of
ENPs and metallic pollutants to ecologically important freshwater zooplankton species Daphnia magna.

1. No aggregation of ENPs. No interaction between ENPs and metallic pollutants. Bioaccumulation
and effect of metallic pollutants are unchanged.

2. No aggregation of ENPs. Adsorption of metallic pollutants onto ENPs. No desorption of metallic
pollutants from ENPs in the organism. Metallic pollutants uptake is facilitated by ENPs but the
bioavailability of metallic pollutants decreases because of the reduction of the concentration of
free metallic pollutants.
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3. Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. Desorption of
metallic pollutant from ENPs in the organism. Increased body burden and bioavailability as a
result of desorption of metallic pollutants from ENPs.

4. Aggregation of ENPs. No interaction between ENPs and metallic pollutants. Bioaccumulation and
toxicity of metallic pollutants are unchanged as the metallic pollutants and ENPs act independently.

5. Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. No desorption of
metallic pollutants from ENPs in the organism. Reduced bioavailability of the metallic pollutants
due to the decline in the concentration of free metallic pollutants.

6. Aggregation of ENPs. Adsorption of metallic pollutants onto ENPs in medium. No desorption of
metallic pollutants from ENPs in the organism. Increased body burden and toxicity as a result of
desorption of metallic pollutants from ENPs.

5. Conclusions and Outlook

Aquatic organisms are typically exposed to multi-component mixtures of environmental pollutants,
including ENPs. However, the current environmental risk assessment considers the effects of single
pollutant which might be over-simplistic and this results to underestimation the possible risks. Since it
is not realistic to test every possible combination of ENPs and environmental pollutants, development
of the conceptual frames allowing to predict the cocktail effects is very important. The existing concepts
of CA and IA were developed for dissolved pollutant mixtures; therefore, it is necessary to verify their
applicability and to make an adjustment (if necessary) in the specific case of mixtures containing ENPs.

Significant progress was achieved in the understanding of the bioavailability and cocktail effects
of mixtures containing ENPs and metallic pollutants. There is a consensus that ENPs can either
increase, decrease or have no effect on the trace metal bioavailability and toxic effect depending on
the feeding pattern of the organisms (e.g., “particle-proof” or “particle-ingestive” organism). Among
the metallic ENPs, the most studied is TiO2NPs given its wide use [156,157], and among the metallic
pollutants Cd(II) due to its high toxicity [158]. All the studies that analyzed the joint action of defined
mixtures were combinations of only 2 components—ENPs and one metallic pollutant. The results on
the combined exposure of model species, such as Daphnia magna and different algae, to ENPs and
metallic pollutants revealed no interactions, positive or negative interactions between them. However,
the limited data availability and low comparability make difficult the comparison between metals,
ENPs and species.

Despite the growing literature dealing with combined effects of ENPs and metallic pollutants on
phyto- and zoo-plankton, numerous knowledge gaps still need to be filled. Coming studies should
focus on the better understanding of the interactions between ENPs and metallic pollutants and go
beyond of the sorption equilibrium considerations. Cocktail effects of mixtures containing low doses
of ENPs and metallic pollutants, when individual components have no effects are to be explored. Most
of the results are obtained in well controlled lab conditions with quite high concentrations of ENPs
and metallic pollutants with unrealistic ratios, which make difficult the extrapolation of the obtained
results to natural environments. Better understanding of the mechanisms driving bioavailability and
effects of mixtures containing ENPs and metals in the complex environment settings (e.g., presence of
dissolved organic matter), more realistic ENPs/ metallic pollutant ratios will enable relevant lab-to-field
extrapolation of toxicity data. Incorporation of the time-dependent size distribution of dispersed and
internalized ENPs in the bioavailability modeling [159] was proposed. Overall, a more systematic
approach considering the combined pressure of multiple stressors [160] and reconceptualization of
exposure and effects of chemical cocktails containing ENPs is necessary and will be in the center of
forthcoming nanoecotoxicology agenda.
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