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Abstract: This review systematically outlines the recent advances in the application of circular
bioeconomy technologies for converting agricultural wastewater to value-added resources. The
properties and applications of the value-added products from agricultural wastewater are first
summarized. Various types of agricultural wastewater, such as piggery wastewater and digestate
from anaerobic digestion, are focused on. Next, different types of circular technologies for recovery
of humic substances (e.g., humin, humic acids and fulvic acids) and nutrients (e.g., nitrogen and
phosphorus) from agricultural wastewater are reviewed and discussed. Advanced technologies, such
as chemical precipitation, membrane separation and electrokinetic separation, are evaluated. The
environmental benefits of the circular technologies compared to conventional wastewater treatment
processes are also addressed. Lastly, the perspectives and prospects of the circular technologies for
agricultural wastewater are provided.
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1. Introduction

Clean drinking water is a crucial substance needed by all living beings to survive.
Contaminated drinking water can result in the spread of various diseases [1,2]. Thus, the
United Nations placed clean drinking water on its priority list of Sustainable Development
Goals (SDG-6: Clean Water and Sanitation) for achieving overall sustainability. To achieve
this goal, each country decided its quality standards to ensure cleanliness and hygiene.
Water collected from the river and groundwater, or reused wastewater from industry and
agriculture, water must be filtered or processed before the distribution. In general, water
pollutants may originate from point sources or dispersed sources. Dispersed source pollu-
tants are uncontrollable, carrying plant nutrition, pathogenic organisms, organic-inorganic
chemicals and pesticides, due to their unconfined locations. The major dispersed sources
include urban stormwater drainage and illegal effluent, i.e., especially from agriculture and
industries wastewater. To avoid pollution and obtain more available water, it is essential to
enforce proper land use plans and develop more eco-efficient technologies for wastewater
treatment.

Wastewater is any type of water that has undergone some sort of human intervention
and is then not able to be disposed of into surface or ground waters without certain
treatment. Agricultural wastewater is fundamentally the excess water that emerges from
fields into basins, furrows, border strips and flooded areas during irrigation. Such types of
agricultural wastewater are also referred to as “irrigation tailwater”. Another source of
agricultural wastewater is from the harvesting of plants and preparation of those plants
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for processing foods, which is usually composed of fats/oils, nutrients, disease causing
bacteria and viruses, high biochemical oxygen demand and suspended solids [3]. In other
words, agricultural wastewater consists of different forms of contaminants, and it should
be treated properly before being disposed of in the environment. If the wastewater is
disposed of inappropriately, it would cause eutrophication in surface and ground waters,
leading to heavy trade waste charges.

In general, agricultural wastewater includes several major sources: (1) husbandry
wastewater, (2) aquaculture wastewater, (3) liquid digestate from anaerobic digestion us-
ing agricultural wastes and (4) surface runoff from farmlands. Owing to the different
physicochemical properties of the sources, the subsequent treatment processes are different
accordingly. For farming processes, pollution is generated due to surface runoff, which
contains pesticides, animal feed stocks, slurries and organic residues. Nitrogen and phos-
phorus are the key pollutants in agricultural runoff which are applied to agricultural land in
the form of pesticides, manures, effluent or sludge [4,5]. Apart from nitrogen and phospho-
rus, humic substances are the additional pollutants found with heavy agricultural runoff.
However, the surface runoff from farmlands is difficult to monitor and measure. Instead,
husbandry wastewater, aquaculture wastewater and liquid digestate are easy to collect and
utilize, which provides opportunities to realize a circular economy. Table 1 compiles the
physicochemical characteristics of different agricultural point–source wastewaters reported
in the literature. In general, agricultural point–source wastewaters contain a number of
elements, such as organic carbons (humic substances), volatile fatty acids, nutrients (e.g.,
phosphorus and nitrogen) and metal ions. These components can be considered to be raw
materials of various chemical compounds. The United Nations announced the concept of
closing the loop of circular economy in 2014, which would decouple economic growth and
environmental degradation. The concept of a circular bioeconomy (CBE) aims to create
a sustainable and resource-efficient world with a low carbon footprint [6]. As shown in
Figure 1, the life of bio-based production can be prolonged to become the source of biomass
and bioenergy with integrated and multi-output production chains. Energy efficiency and
resource sustainability are the main concepts in CBE, and thus CBE pushes the practitioner
towards an energy-efficient and renewable method of agriculture production. Phosphorus
has usually been recovered and separated by precipitation in the form of crystalline struvite,
and can be utilized as fertilizers in the agriculture department. Thus, the valuable resources
in agricultural wastewater should be recycled and reused for environmental sustainability.
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Figure 1. The concept of the circular bioeconomy (CBE) and its elements. Adapted from the ref. [6]. 
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Table 1. Physicochemical characteristics of different agricultural wastewaters reported in the literature. a.

Parameter Husbandry Wastewater (Manure Slurry) Liquid Digestate from Anaerobic Digestion Aquaculture Wastewater

Type Unit Raw Swine
Excreta

Pig Slurry/
Cattle Slurry Pig Slurry Pig Manure

Hydrolysate
Co-Digested With

Cattle and Pig Slurry b
Pig

Manure Pig Slurry Kitchen
Food Waste

Aquaculture
Wastewater

Aquaculture
Wastewater

Basis

pH - 6.91 7.68/7.81 7.61–7.66 7.3 7.99 7.5 8.11–8.75 8.0 7.5 -

EC mS/cm - 10.26/6.11 - - 7.47 - - - - -

DO mg/L - - - - - - - - - 2.45

Organics

COD mg/L - - 3625–77,886 52690 - 5585 9095–14943 - 38.4 66.6

TS % 25.02 - 0.54–5.19 8.29 - 1.93 1.13–1.48 - - -

VS % 20.06 1.95/6.14 0.3–3.5 6.36 4.36 0.39 0.64–0.75 - - -

TSS % - - - 5.89 - - - - - -

TOC % - 0.97/2.34 - - 1.84 - - - - -

VFA mg/L ~8500 -

AA: 0–1845
PA:0–406
BA:0–26
VA:0–27

9540 - -

AA: 0–2000
PA: 0–3782
BA: 0–5266
VA: 0–1035

- - -

Nutrients

C/N ratio - 16.76 - - - - - - - - -

TN mg/g 4.67 3.31/2.97 - - 3.45 - - - 0.153 c 0.004

TAN mg/g 4.67 2.54/1.35 - - 1.82 1.36 - - - -

NH4
+-N mg/L - - 993–6708 3410 - - 1858–3013 4016 - 2.35

Soluble
phosphorus (P) mg/L - - 2.3–57.0 580 - 53.3 0–82.4 665 16.1 0.23 d

Metals

Zn mg/kg - - - - - - - 32.9 - -

Cu mg/kg - - - - - - - 1.6 - -

K mg/L - - 614–5780 3320 - - 0–2269 2015 195.1 -

Ca mg/L - - 43–686 1060 - - 0–37 6756 168.9 -

Mg mg/L - - 21–76 530 - 84.6 0–12 113.7 39.6 -

Na mg/L - - 160–1460 690 - - 0–720 1150 246.4 -

Reference [7] [8] [9] [10] [8] [11] [9] [12] [13] [14]
a TS: total solid; VS: volatile solid; TSS: total suspended solid; VFA: volatile fatty acid; AA: acetic acid; PA: propionic acid; BA: butyric acid; VA: valeric acid; TN: total nitrogen; TAN: total ammonia nitrogen
(ammoniacal-N), including NH3-N and NH4-N. b Various organic materials, including maize silage and glycerol/fish silage (c. 20% by volume), were co-digested with cattle and pig slurry. c This value indicates
the concentration of NO3-N. d This value indicates the total phosphorus.



Environments 2021, 8, 20 4 of 21

This review describes and evaluates the performances of different circular technolo-
gies for converting agricultural wastewater into value-added resources. These substances
can be utilized for beneficial activities, such as plant growth, metabolism and seed germi-
nation. We firstly summarize the characteristics of potential value-added products from
agricultural wastewater, such as humic substances and nutrients. Then, we discuss the
advances in the application of CBE technologies for converting agricultural wastewater
to value-added products. We also summarize the environmental and economic benefits
of these circular technologies. Lastly, we illustrate the perspectives and prospects of the
circular technologies for agricultural wastewater towards CBE system.

2. Value-Added Products from Agricultural Wastewater: Properties and Applications
2.1. Organic (Humic) Substances

One of the main compositions in agricultural wastewater is organic and/or humic sub-
stances, which are usually classified as natural organic matter (NOM) [15]. NOM are organic
compounds produced directly from biological and chemical degradation of animal and plant
remnants. They are a complex mixture of organic materials including viruses, bacteria, polysac-
charides, proteins and humic elements (such as fulvic acids and humic acids). Water with
these substances may become yellow-brownish, odorous and have foul taste, which makes
water undrinkable [16]. Meanwhile, NOM could cause a number of technical issues in water
treatment [17], such as membrane fouling and the formation of dihaloacetonitrile (toxic to
human health) during chlorination processes. NOM have various shapes, sizes and molec-
ular weights, and can be classified into two broad categories: (1) hydrophobic compounds
and (2) hydrophilic compounds. Hydrophobic compounds are made up of aromatic carbon,
phenolic structures and conjugated carbon double bonds, and consist of mostly humic and
fulvic substances. Hydrophilic compounds are made up of aliphatic carbon structures, nitrogen
structures and other compounds, such as proteins, carboxylic acids and carbohydrates. Table 2
summarizes the classifications and characteristics of organic substances that are commonly
found in agricultural wastewater. For instance, humic substances are the most chemically active
compounds in soil that undergo anion and cation exchange with soil. These humic substances
are mixtures including phenolic and carboxylic substituents, which form humic acid. The humic
acid is highly reactive with ions, such as Mg2+, Ca2+, Fe2+, and Fe3+, due to its reactivity to form
chelating agent metal complexes.

Table 2. Classifications and characteristics of natural organic matter that are commonly found in agricultural wastewater.

Category Type Chemical Group Chemical/General Formula Molecular
Weight (g/mol) Polarity/Hydrophobicity Reference

Humic
Substances

Acids

Humic Acid C187H186O89N9S1 4015.55 Polar/Hydrophilic [18,19]

Fulvic Acid C14H12O8 308.24 Amphiphilic [20]

Aromatic Acid CnH2n+1COOH - Polar/Hydrophilic [21]

Neutral

Hydrocarbons CxHx (many different types) - Non-polar/Hydrophobic [22]

Ethers R–O–R′ - Non-polar/Hydrophobic [23]

Aldehydes CnH2n+1 - Non-polar/Hydrophobic [24]

Bases
Proteins RCH(NH2)COOH - Polar/Hydrophilic [25]

Aromatic Amines CnH2n−476y - Non-polar/Hydrophobic [26]

Non-humic
Substances

Acids

Sugars C12H22O11 342.3 Polar/Hydrophilic [27]

Hydroxy Acids RCH(OH)COOH - Polar/Hydrophilic [28]

Carbohydrates (CH2O)x - Polar/Hydrophilic [29]

Neutral

Polysaccharides Cx(H2O)y - Non-polar/Hydrophobic [30]

Ketones RC(=O)R’ - Polar/Hydrophilic [23]

Aldehydes CnH2n+1 - Polar/Hydrophilic [24]

Bases

Amino Acids RCH(NH2)COOH - Polar/Hydrophilic [25]

Purines C5H4N4 120.11 Non-polar/Hydrophobic [31]

Pyrimidines C4H4N2 80.09 Non-polar/Hydrophobic [32]
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Humic acids consist of humic substances that are organic matter residing in sediments
of vegetable decay and residue, terrestrial soil as well as natural water. Humic acid is
also one of the major substances that need to be recovered from agricultural wastewater.
This compound is an amphiphilic substance and is partially soluble in water, completely
soluble in alkaline solutions and insoluble in acidic solutions. This property makes it
widely used in medicine, pharmaceuticals, pollution remediation and agriculture. As
a weak acid, humic acids are found in substances used as an electrolyte and contains
carboxylic (-C(=O)OH) and phenolic groups. It is also a parent form of another organic
compound called fulvic acid. They differ in their oxygen and carbon contents, acidity,
molecular weight and polymerization. The way to form humic acid is through natural and
sustainable fermentation using an empty fruit bunch of palm trees as a substrate. It can also
be produced by chemical methods such as polymerization and condensation reactions [33].
Figure 2 depicts the model molecular structure of humic acid predicted by Stevenson in
1982 [34]. The structure of humic acid is complex, with many binding sites where several
interactions can take place between humic acid and the environmental media (e.g., soil and
water). Each binding site of the compound has a different form of stereochemistry, which
is determined by the interactions and mechanisms with other compounds [35].
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Humic acid is closely associated with plant nutrition as it binds to the roots and
shoots of plants to help them receive water and nutrients. It can also progress activities
with heavy metal complexation, anti-inflammation and anti-viruses [36]. As a result, the
deficiency of humic acid hinders farmers and gardeners from providing their crops with
optimum nutrition. Rose et al. [37] conducted a meta-analysis by reviewing the plant
growth responses to humic substances and found that the growth of both the roots and
shoots could be enhanced by 15−20% after introducing humic acid to the plants. The
key mechanism is that the stability of the humic substance–micronutrient complex brings
micronutrients to the plants [37]. The sources of humic acid are critical when choosing
elements for plant growth. Humic substances extracted from peat and coal are less effective
than those extracted from compost and soil. Those derived from compost and soil have a
positive effect on plant growth due to their chemical formula and structure. The amide
functional group in the humic substances depletes more quickly in the soil and compost,
showing that the rate of its biological activities through decomposition is faster. On the
other hand, when using humic acid as an organic fertilizer for plant growth, the recovery
of humic acid from agricultural wastewater becomes more important. Various ways to
recover humic acid from agricultural wastewater have been developed [38]. Nonetheless,
humic acid is not the only nutrient that plants need. Phosphates and ammonium are also
important for farming. The information on nitrogen- and phosphorus-based nutrients and
the methods to recover value-added products from agricultural wastewater are described
in the coming chapter.
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2.2. Nitrogen- and Phosphorus-Based Nutrients

Besides humic substances, there are many other value-added substances that are
necessary to be recovered or removed from agricultural wastewater, such as nitrogen and
phosphorus. Nitrogen (e.g., ammonium) and phosphorus (e.g., phosphates) are important
for farming and have many external uses, such as fish and animal feeds and biofuels.
For instance, several studies have reported that about 5–7% of global energy production
is consumed for the mining of phosphorus-containing rocks [39–42]. However, research
has reported that inefficient utilization of phosphorus will be the main cause of increased
eutrophication and leakage of fertilizers, detergent and sewage containing phosphorus
into water bodies [43]. This provides evidence to highlight the importance and significance
of recovering nutrients from agricultural wastewater [44]. These nutrients are commonly
removed and then recovered through processes known as nitrification and phosphate
struvite precipitation, with the aid of several other methods.

The demand for nitrogen, especially nitrogen-based fertilizers, has rapidly increased.
Currently, these nitrogen-based fertilizers are manufactured through the Haber–Bosch
process to produce ammonia or other nitrogen-based materials. The Haber–Bosch process
chemically combines nitrogen and hydrogen to form ammonia using catalysts and reproves
in the production of plant fertilizers. The nitrogen recovered from wastewater gets diffused
into the air as N2 gas. For this process, a lot of energy is required due to food production,
and the requirement of nitrogen is also high. For wastewater, nitrogen recovery generally
requires an energy-intensive process to be converted into fertilizers, which means that
technologies used for the recovery have to be properly chosen [45].

Phosphorus is a non-renewable resource that is commonly mined underground to be
used as fertilizers. Phosphorus also comes in limited quantities and cannot be replaced
by any other element, which makes it even more crucial that it be efficiently recovered.
It is an element that is vital for human life and food production. Therefore, the use of
phosphorus is essential because of its role in fertilizer; it converts nutrients into disposable
building blocks that are vital for the plants to grow [46]. In addition to this element’s use
in fertilizers, it is a crucial component of adenosine triphosphate, i.e., the form of energy in
plants produced during photosynthesis.

3. Recovery of Humic Substances from Agricultural Wastewater

There are bare databases on the recovery of humic acid since it possesses a large and
versatile structure with 187 carbon atoms. Nevertheless, several approaches can be found
in the literature to remove (bare recovery) humic substances from agricultural wastewater:
(1) chemical method with NaOH and KOH such as alkaline solvents and (2) physical
separation methods, such as coagulation–flocculation and membrane filtration [47]. The
coagulation–flocculation method is conducted using a coagulant to separate solid particles
from the liquid, which destabilizes pollutants through a reaction with the water and gets
rid of the solid particles. Membrane filtration methods depend on their pore size and
functions to separate the humic substance. Li et al. [48] indicated that alkaline pretreatment,
ultrafiltration separation and subsequent anaerobic digestion are considered to be effective
for the recovery or removal of humic substances. Kliaugaitė et al. [49] also indicated
that electrochemical methods should provide a valid option for the recovery of humic
substances and could potentially emulate other coagulation methods and conventional oxi-
dation. Several important processes are illustrated to remove or recover humic substances
from agricultural wastewater.

3.1. Coagulation and Flocculation

Coagulation and flocculation are the common methods for agricultural wastewater
and raw water treatments. There are two types of coagulation methods that can be used:
chemical coagulation and electrocoagulation. Both methods can remove humic substances
from wastewater, but they have different mechanisms. Coagulation and flocculation play
a huge role in wastewater treatment by separating solid particles from the liquid. After
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coagulation happens, the process of floatation occurs to grow floc, and then sedimentation
filtration can be conducted for the final stage of recovery. In chemical coagulation, specific
coagulants are used and react in water to form hydrolysis products (such as Al(OH)3).
These coagulants are usually aluminum- or iron-based salts. Equation (1) represents the
coagulation mechanism of aluminum sulfate released into the water, which reacts with
calcium bicarbonate to form aluminum hydroxide precipitates.

Al2(SO4)3 + 3 Ca(HCO3)2 → 2 Al(OH)3 + 3 CaSO4 + 6 CO2 (1)

The most widely used aluminum coagulants include aluminum chloride, aluminum
sulfate and sodium aluminate. Common iron salts used as coagulants include ferrous
sulfate, ferric sulfate, ferric chloride sulfate and ferric chloride. The metal cation from these
salts and the hydroxide from the water can reduce repulsion forces between the colloids
(see Figure 3) and trap particles with their coagulant, which makes them destabilize the
pollutants [50]. The performance of the coagulants depends on the pH of the solution,
the mixing intensity and the dose of coagulants. Finally, the trapped particles settle to
the bottom and form a bottom layer of sludge. However, a significant amount of sludge
forms as a result of the coagulants reacting with humic substances in the water. These
sludges can be quite hazardous at times, which make them difficult to dispose of. It can
also be extremely difficult to separate the formed sludge from the water due to their heavy
water content.
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Electrocoagulation is an alternative technique to chemical coagulation. It has been
proven to be an efficient method for the removal of contaminants from agricultural wastew-
ater. This method also destabilizes pollutants without the use of chemicals. Oils, suspended
solids, heavy metals and greasy particles can be recovered thoroughly. Instead of utiliz-
ing salts as coagulants, electrical currents are passed through the water and provide the
electromotive force required for such chemical reactions to take place. By introducing the
electrical current into the water, this process can undermine dissolved, emulsified and sus-
pended contaminants in the aqueous medium. In general, aluminum electrodes are used
in electrocoagulation with the cathodic (Equation (2)) and anodic (Equation (3)) reactions.
One of the main limitations of electrocoagulation is electrode passivation, which occurs
when the metal used in the process coats the anode. This phenomenon is disadvantageous
to electrocoagulation because once the metal coats the anode it limits the number of metal
ions and amount of current that can be further passed through into the water [51].

Cathodic reaction: 2H+ + 2e− → H2 (2)

Anodic reaction (or any other metal present): Al→ Al3+ + 3e− (3)
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Both chemical coagulation and electrocoagulation treatment are followed by floccu-
lation afterwards. Technically, coagulation takes place successively because the events
keep cycling. Flocculation is when the fine, destabilized particles from coagulation col-
lide together and then accumulate to form clumps, which are technically recognized as
“flocs” [52]. Compared to coagulation, flocculation is a relatively slow process that in-
volves gentle mixing of the destabilized particles in the water. This is also regarded as
an electro-neutralization process where the positively charged and destabilized particles
are adsorbed onto negatively charged substances, which are the ones that result in the
color, clay, turbidity and other particles. The particles must be gently mixed so that they
have the opportunity to adsorb instead of splitting further apart within the water in harsh
conditions. The rate of flocculation is directly proportional to the velocity gradient of
mixing [53]. After flocculation, the particles either sink to the bottom sedimentation or
float up to the top for further recovery processes.

3.2. Membrane Filtration

Membrane filtration processes are one of the most feasible and efficient methods due to
a number of advantages, such as relatively low energy consumption and compactness [54].
Membrane filtration is a crucial process in wastewater treatment because it can be used
to separate humic acid without any chemical contaminations [55]. Membrane filtration
methods generally include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and
reverse osmosis (RO). These membrane processes have different features and serve different
purposes of application [56]. Table 3 describes the various physicochemical parameters,
such as pressure, pore size and operational cost of different membrane filtration processes.
MF involves the largest pore size among the four processes along with low operational
costs; therefore, it is mainly used within the dairy and wastewater treatment industry. It is
used for purification, separation and concentration of large macromolecules. UF utilizes
a fairly high operational pump pressure compared to MF, and thus UF membranes are
used for reusing and recycling wastewater that does not contain any solid material. UF is
preferred over other traditional wastewater treatment methods because no chemicals are
used. The quality of the treated water remains constant and the plant size is closely packed
and it is capable of removing 90–100% of the pathogens from the water [57]. However, the
pressure can occasionally be too high for smaller flocculation particles, and this is difficult
to regulate and sample them accurately since flocs come in a variety of different sizes. In
general, MF and UF are used to remove particles, turbidity, microorganisms and natural
organic matter [58,59]. Prisciandaro et al. [54] suggested that the UF process should be
more efficient than the MF processes, because MF membranes are only effective when the
process is conducted in a tubular configuration.

Table 3. Operating factors of different pressure-driven membranes for wastewater treatment.

Membrane Removal
Target

Pressure
(bar)

Pore Size
(microns)

Operation Cost
(USD) Types of Rejected Materials Reference

Microfiltration (MF) Humic Acid <4 0.1 0.5–1 million Particles, Algae, Bacteria, Protozoa [60]
Ultrafiltration (UF) Humic Acid 2–10 0.01 10 million Colloids, Viruses [61,62]

Nanofiltration (NF) Humic Acid 5–30 0.001 2–4 million Dissolved organics, Divalent ions
(Mg2+, Ca2+) [63,64]

Reverse Osmosis (RO) Humic Acid 10–100 Non-porous 15 million Monovalent Species (Na+, Cl−) [65]

NF has a small pore size as well as high operational costs. NF membranes cleave matter
that can easily pass through UF membranes but cannot pass through RO membranes. It is
considered to be one of the most promising technologies in this field for separating neutral
and charged solutes dissolved in aqueous solutions [66]. NF membranes also have the
unique ability to separate charged solutes in electrolytes in their process. RO is largely used
in brackish water treatment for removing numerous types of ions, molecules and bacteria
from different solutions. RO is also widely used in the potable water production industry;
however, it requires higher operational costs. Due to its non-porous characteristics, only
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small substances can fit through, separating the molecules and ions by their sizes via
applying pressure. A specialty of RO is that it is a self-cleansing system; it can self-clean
through cross-flow where fluid passes through the membrane and the large molecules that
get rejected from the membrane get swished away [67]. Through these membranes, the
flow rate of the water passing can be measured by Equation (4):

∆p = 128× η × l ×Q
π × d4 (4)

where ∆p (Nm−2) stands for the pressure drop; η (N s m−2) stands for the dynamic viscosity
of the fluid; l (m) stands for the pore length; Q (m3s−1) stands for the volumetric flow rate;
d (m) stands for the diameter of the pore. The pore diameter is vital in the flow rate of the
water, indicating that since different membranes differ in pore size by a factor of 10, their
water flux differs by a factor of 100 [68].

Membrane fouling is a phenomenon where foreign particles/impurities deposit and
block the pores of membranes. It occurs when many substances accumulate on the surface
of the membrane as well as the membrane pores, and results in the retrogression of the
membrane’s performance when recovering chemicals from the water. The side effects of
membrane fouling include the formation of disinfection byproducts, which can cause the
water to diminish in quality as well as causing severe flux decline [69]. If the membrane
fouling is more serious, it usually requires severe cleaning and even membrane replacement.
Therefore, the prevention of membrane fouling usually results in a high operational cost
for membrane filtration processes. NOM, such as humic acid, fulvic acid and tannic
acid, often results in a consequential amount of membrane fouling when recovered from
agricultural wastewater. This occurs because other materials, such as silica, clay, iron,
oil and sulfur, are also present in agricultural wastewater. Other nutrients contained in
agricultural wastewater are also classified within the NOM and are the main cause of
membrane fouling [70]. Various approaches were developed to mitigate membrane fouling,
such as coagulation, activated carbon adsorption and oxidation. These processes are
mostly served as a pretreatment before membrane filtration to prevent the accumulation
of substances on the pores of membranes [71]. Zhu et al. [58] investigated the effect of
humic acid on membrane fouling and found that, other than the molecular weight loss
and mineralization of the structure of humic acid, the other changes that occur in its
structure after photocatalytic oxidation play a vital role in preventing membrane fouling.
Photocatalytic oxidation works well for mitigating membrane fouling because it introduces
oxygen-containing functional groups into the structure of humic acid. This can assist in
increasing its hydrophilicity and eventually reducing its interactions with the membrane
and its foulant [72].

3.3. Exchange Adsorption

Adsorption techniques are known to be one of the most efficient techniques for the
removal of organic contaminants (or NOM) from wastewater. Compared to electrochemical
methods or biological methods, adsorption is more reliable due to its simplicity, low
operational costs and a limited amount of maintenance and supervision. Activated carbon
is one of the most common adsorbents used in pollution control in the industries. It
can be used for the removal of non-degradable organic and inorganic compounds from
various sources of water, such as groundwater, process water and drinking water. In cases
of removing pollutants from large and varied quantities, using other adsorbents—such
as salicylic acid, silica or activated aluminum—may be an alternative option [63]. For
manufacturing adsorbents (e.g., activated carbon), the raw ingredients can be found in the
localities, such as agricultural wastes, natural materials and industrial wastes [73].

Adsorption is a surface phenomenon and is the mass transfer process that occurs when
a substance is transferred to a solid from a liquid phase and bounded either chemically or
physically. Therefore, the structure of the adsorbent surface plays a critical role in surface
reactivity and adsorption capacity. When a solid with a reactive or ionic surface makes
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contact with a highly adsorbable solute, the intermolecular forces of attraction between the
liquid and the solid surface allow the liquid to be deposited on the porous surface. The
temperature, pH and column design also affect the adsorption efficiency. Recent solutions
use exchange adsorption methods to remove and recover humic acid from wastewater [74].
Undergoing NF and then electrodialysis to regenerate both anions and cations, humic acid
can at least be separated from other salts present in the surroundings. Nonetheless, there
have been a couple of new inventions and ideas by scientists who have been trying to
recover humic acid. In 2015, two companies, i.e., Royal Haskoning DHV (an engineering
company) and Vitens (a water supply company) jointly invented a novel technology, called
“HumVi” as shown in Figure 4, to recover humic acid in its natural state as a fertilizer. The
HumVi technology originates in Holland and is used to reclaim humic acid in its purest
form and other salts from agricultural wastewater [75]. There is not much information or
many studies on this technology; however, the concept of the process flow and designs can
be utilized in future research.
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3.4. Limitations and Opportunities

Since organic substances can be divided into a large variety of properties, it is diffi-
cult to recover the organic matter using a single method [76]. Conventionally, treatment
processes can be used to remove humic substances from water, such as chemical coag-
ulation, electrocoagulation, flocculation and membrane filtration followed by flotation
and sedimentation. However, although the above methods are efficient in NOM removal,
it is still hard to recover humic substances in a high concentration and purity because
of their complex structures. From the technological point of view, due to its complex
structure and great molecular size, we believe that the sorption-based separation should be
more efficient in terms of energy expenditure, as compared to the pressure-driven and/or
electrokinetic separation.

Furthermore, the recovered humic acid still has several limitations in its usage, espe-
cially in water and soil research. The main limitation is that it is still difficult to precisely
identify the structure and characteristics of humic acid. Its characteristics are highly depen-
dent on the structure, such as amphiphilic properties, solubility, pH dependence, metal
chelation and hydrophobic interactions [77]. Malcolm and MacCarthy [78] collected sam-
ples of humic acid from five different sources, analyzed them through cross polarization
and NMR spectroscopy, and then studied the relation between humic acids’ characteris-
tics and the environmental media (such as streams and other water bodies). The results
indicated that there were distinctive differences between the interactions of each sample of
humic acid. With various sources and structures of humic acid, it is vital and necessary
to identify a technique to separate and recover humic acid from agricultural water. It is
important to estimate the potential and amount of humic acid that can be recovered. One
of the simple ways to analyze the concentration of humic acid (or other NOM) is using
ultraviolet-visible (UV-VIS) spectroscopy through coagulation. According to the principle
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of the Beer–Lambert Law, the UV-VIS absorbance obtained through specific wavelengths is
directly proportional to the concentration of the substance [79]. Other indirect methods
for analyzing the quantity of humic acid are the increase in surface area and solubility.
However, varying the water-holding capacity of different sources of humic acids may
interfere with the accuracy [80].

4. Recovery of Nutrients from Agricultural Wastewater

Several separation mechanisms can be used to remove and/or recover nitrogen and
phosphorus, e.g., chemical crystallization, electrokinetic separation and bioconversion.
Here, we illustrate the advances of several potential circular technologies for recovering
nutrients from agricultural wastewater.

4.1. Struvite Precipitation

Struvite, known as magnesium ammonium phosphate hexahydrate (MgNH4PO4·6H2O)
is a precipitated mineral containing ammonium, magnesium and phosphate ions [53].
Struvite is a form of white crystal which originates from either a neutral or alkali source.
Nutrients, such as nitrogen and phosphorus, are recovered from wastewater through
precipitation as crystalline struvite. The struvite crystallization method is a promising
technique for reducing levels of water pollution due to the low utilization efficiency of
phosphorus. Once phosphorus is recovered, it can be used in chemical industries immedi-
ately [81]. This crystalline struvite can be used as a fertilizer or a general raw material in
the same industry [82]. As well as the recovery of phosphorus, struvite precipitation is an
efficient technology for the removal of ammonium from acidic wastewater [83]. Equation
(5) represents the chemical equation for the basic formation of struvite. This is one of
the most common processes that happen through either precipitation or crystallization.
Drawing the focus on the recovery of phosphorus, struvite formation is a relatively new
and beneficial method for wastewater companies and industries, since the recovered phos-
phorus is beneficial for other agricultural use. However, one of the limitations of struvite
precipitation is that, as seen in Equation (5), there is a release of hydrogen ions in the water
when magnesium and ammonium react; therefore, the pH of water decreases. The pH of
the solution is an extremely important factor for this process because an insufficient pH
level generates the conversion of ammonium ions to gaseous ammonia, thereby reducing
the nitrogen concentration in water and altering the Mg/N/P ratio [84].

Mg2+ + NH4
+ + HnPO4

3−n + 6 H2O⇔MgNH4PO4·6H2O + n H+ (n = 0,1,2) (5)

Figure 5 illustrates the schematic diagram of nitrogen and phosphorus recovery from
wastewater. The pH of the solution is mainly responsible for the rate of this reaction.
The multivalent metal ions, e.g., calcium, aluminum and iron, are commonly used in
precipitation. In the precipitation mechanism, lime/calcium hydroxide is introduced to
raise the pH of the solution and leads to the formation of calcium carbonate. Struvite
crystallization proceeds in a two-stage process. The first stage is nucleation and the second
stage is crystal growth. These two stages allow the struvite to develop from its generation
stage to its development stage. Nucleation occurs when Mg2+, NH4

+ and PO4
3− collide

under proper pH conditions and form a saturated solution from the mixing of the ions.
The mixing velocities play a critical role in the quantity of struvite crystal formation, which
further affects the recovery ratio of phosphorus from wastewater.

Struvite precipitation is considered the most adequate process in terms of phosphorus
recovery (around 80–99%), and thus it can be applicable for fertilizer industries [85–88].
Laridi and Auclair [89] attempted to increase the performance of struvite precipitation
by introducing ferric chloride and other flocculants into the wastewater and observed a
greater recovery of phosphorus. Furthermore, the struvite precipitation can be combined
with a pre-concentration process using membrane separation; for instance, the recovery of
nitrogen using membrane–precipitation processes can be as high as 99–100% with energy
consumption of 10 kWh/m3 [90]. In addition to membrane separation, other techniques
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can be combined with a subsequent struvite precipitation for nutrient recovery, such as air
stripping of ammonia from anaerobic digestion [85,91] and ion-exchange adsorption [92].
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4.2. Electrochemical Separation

Electrochemical methods are processes where an electric field is implemented between
the anode and cathode to separate pollutants from the wastewater [93]. Electrochemical
separation can remove organic compounds, inorganic ions and microorganisms. Two major
types of electrochemical methods, electro-redox reactions and electrokinetic separation,
have been developed for wastewater treatment and reuse. The electro-redox reactions
include electrocoagulation, electroflotation, electro-Fenton, disinfection, mineralization
of organic pollutants, recovery of metals and extraction of cyanides and sulfides. For
instance, both electrocoagulation and electroflotation are used for the removal of suspended
particles. Electro-Fenton enables the local collection of catalysts which reduce sludge
formation. The energy consumption of electro-Fenton for 60 min using the current of
1 A was ~63.6 kWh/kg without the filtration of the substances [94,95]. For electrokinetic
separation processes, a number of devices, such as electrodialysis, electrodeionization and
capacitive deionization, have been applied for desalination (or so-called demineralization)
and for the generation of energy by salinity gradients [96]. In the case of electrodeionization,
the energy consumption of desalination for brackish water (e.g., from a salinity of 5 g/L
down to 0.5 g/L) was approximately 0.354–0.657 kWh/m3 [96,97]. Similarly, capacitive
deionization uses porous chemically modified electrodes to separate ions from wastewater
with the recovery of electric energy [98,99].

Electrochemical devices can be combined with biological elements, such as microbial
fuel cell, to enhance the recovery of electric energy. With the opportunities for energy
recovery, a microbial fuel cell (e.g., 750 Ω external resistor, 0.3 mA current production,
and the anode potential controlled to +100 mV vs. SHE0) requires only a low energy
consumption of 0.317 kWh per m3 of wastewater [100]. However, electro-biochemical
technologies are sometimes unsatisfactory, but they still have their perks [101]. Recently,
Zhang et al. [102] developed a novel Removing-Recovering Bio-Electrochemical System
(“R2-BES”) technology to recover organic nutrients, such as nitrogen and phosphorus,
from wastewater. The R2-BES system, as shown in Figure 6, involves the oxidation of
organic compounds to lure the ammonium ions to circulate away from the wastewater via
electricity generation. The system also involves processes of electrolysis, where hydroxide
ions are produced through the cathodic reactions and those ions then replace the phosphate
ions from wastewater. Moreover, the removal and recovery of phosphorus requires specific
conditions, such as high pH and reduction at the cathode. As well as removing nitrogen
and phosphorus through those mechanisms, when extra external voltage is applied, there
is removal of COD and other nutrients increase through the amalgamation into existing
treatment facilities [102]. Overall, this system is a form of microbial interaction accompa-
nied by solid electron donors and acceptors. This method is considered environmentally
friendly because it uses bioenergy from the wastewater itself, and it does not consume any
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external energy from the environment. However, one of the main limitations in R2-BES
is that it can be time consuming since it is still a challenge to recover both nitrogen and
phosphorus simultaneously.
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4.3. Microalgae Uptake

An alternative method of recovering value-added nutrients from agricultural wastew-
ater is by utilizing microalgae. Microalgae, a group of primary producers, are a diverse
group of eukaryotic microorganisms that can be found in freshwater or marine sediments.
They also exhibit better opportunities than other technology to be an economical resource
for efficient removal of metals and other high-value nutrients from wastewater [103]. Mi-
croalgae can uptake both nitrogen and phosphorus, as well as a more remote generation of
biomass which can be used as a further source of producing energy-rich and high-value
compounds. They are considered economical because they are an alternative method
to high-resolution and professional technologies that would require more funding. The
method also minimizes the emission of greenhouse gases and saves energy throughout
the process, which makes it relatively environmentally friendly [104]. However, there are
several limitations; for instance, the adaptability of microalgae in wastewater is difficult to
evaluate due to the complex configurations of different forms of wastewater. Thus, efficient
design and optimization of the microalgae uptake have yet to be found [105].

5. Environmental Benefits for Deployment of Circular Technologies

Recovering resources from agriculture wastewater not only reduces the environmental
impacts but also gives a chance to achieve a resource-efficient and sustainable world. Nowa-
days, the shortages of water, energy and resources are worldwide crises due to pollution,
extreme weather and population increase. As a result, recovering value-added resources
from agriculture wastewater can assist in addressing the optimization of water, energy and
food nexus, while realizing a CBE system, as shown in Figure 7. Selecting suitable circular
techniques for agricultural wastewater is important to optimize the environmental benefits.

Firstly, removing nutrients out of the effluent would reduce pollution risk and produce
reclaimed water. Humic acid itself has several negative environmental impacts when it
is present in wastewater. The environmental impacts include the effect of the water’s
color, odor and taste. Humic acid reacts with the chlorine present in the surroundings,
producing toxic materials, and it also aids in the production of complexes which contain
heavy metal ions [106]. The removal of humic acid is meant to create a positive impact
on the environment. As mentioned above, the binding of humic acid with pollutants in
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the water destabilizes them so they can be removed. The biological method where the
microalgae are used to remove nutrients from wastewater minimizes environmental impact
by reducing energy consumption [107]. Secondly, the nitrogen/phosphorus in wastewater
is known for its various environmental downsides, such as eutrophication. The nitrogen
that enters the waste streams always gets released into the atmosphere as nitrogen gas.
Moreover, when nitrogen is removed biologically, nitrogen dioxide is emitted in the gas
phase. The emission of nitrogen dioxide is an intense concern since nitrogen dioxide plays
a significant role in the greenhouse gas footprint of the water and atmosphere chains. As
an alternative to consuming electricity and destroying organic matter (including nitrogen),
scientists have come up with a relatively environmentally friendly method to generate
methane directly from wastewater which produces a reusable substance that can be used
in fertilizers [45].
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Because of increasing population, demand for phosphorus application in agricultural
production is increasing rapidly throughout the globe. However, phosphorus is a nonre-
newable resource and phosphate rock is rapidly depleted [108]. Although applications of
phosphorus for fertilization improve the soil fertility and agriculture yield, it also leads
to environmental damage. For example, for phosphate rock mining, several heavy met-
als and radionuclides may be exposed in crop fields and may be found in water bodies
worldwide [109]. Therefore, the recovery of phosphorus from the agriculture wastewater is
required to enhance the efficiency of the nutrient and resource recycling process. During the
recovery of phosphorus, various methods take place to aid the process since phosphorus
can be recovered from a range of different mediums/sources. When it is recovered from a
liquid medium, the environmental impacts are either very acute or positive because the
energy demand for the certain technology is fairly low. On the contrary, when phosphorus
is recovered from sewage sludge, the energy demand as well as the gaseous emission
is quite high. It also leads to a large amount of heavy metal contamination. Lastly, the
recovery of ash has the least environmental impact—if any, it is positive. This method has
the greatest potential for recycling phosphorus [110].

6. Perspectives and Prospects

Sustainable Development Goals (SDGs) proposed by the United Nations in 2015
aimed to improve environment quality while enhancing social equality and human well-
being. Among SDGs, clean water and sanitation (SDG-6), decent work and economic
growth (SDG-8), sustainable cities and communities (SDG-11) and responsible consumption
and production (SDG-12) highlighted the importance of resource efficiency and waste
management for a circular economy. Thus, advanced research and development for circular
technologies are required. The environmental impact evaluation and economic analysis
should be conducted with various techniques for integration process in the future. The
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route to successful implementation of bioeconomy is establishing the new business model
to carry out the concept throughout the world. Here, we point out several priority research
directions for the development and deployment of circular technologies for agricultural
wastewater in the future.

6.1. Development of Circular Technologies in Accordance with Green Chemistry Principles

The circular technologies should be economically viable, environmentally friendly
and engineering efficient [111]. Green Chemistry Principles (GCP) have been developed to
prevent chemical hazard, benefit the economy and sustain the natural environment. The
12 GCPs can achieve the SDGs by waste prevention, energy and resource efficacy and safety
assurance; for instance, Chen et al. [112] provided several strategies on the implementation
of GCPs toward the circular economy. With the GCP concept, the production of value-
added products from agricultural wastewater should meet the GCPs’ requirement. The
electrical-driven technologies, such as membrane and electrochemical separation, are more
acceptable than others using chemicals. Therefore, future research should focus on the
energy efficiency design for energy-based techniques. Otherwise, for CBE, it is critical to
redesign the traditional technologies for recovering resources from agricultural wastewater
as a green chemical process and developing alternative technology.

6.2. Comprehensive Technology Evaluation: Integration for Innovation

The technologies for resource recovery mentioned in the second part of this article are
processes to separate compounds individually. However, in order to reuse the value-added
product recovered as feedstock, integrated processes can provide multiple outcomes for
precise separation and resource recovery. To achieve that, the technical and economic
analyses of each of these technologies are required, such as productivity, energy-intensive
and cost–benefit assessment. Although the CBE technologies provide much environmental
benefit, the environmental impacts from the recovering process itself also need to be consid-
ered and analyzed, e.g., the energy consumption, greenhouse gas emission, by-product and
derivation. Life cycle assessment (LCA) is a method to evaluate the environmental impacts
of a product or a process [113]. The results for LCA can be used to compare different
conditions or design of technologies with different input or output. For these methods,
the optimal integration process with various technologies can be set up as Figure 8. On
the other hand, to implement the CBE concept and integration process successfully, in-
formation and communication technology can provide solutions in many aspects. For
instance, Demestichas and Daskalakis [114] conducted an extensive academic literature
review on prominent information and communications technology solutions paving the
way towards a CBE. The most popular technologies include internet of things for data
collection, artificial intelligence for data analysis, 5G for data transmission with digital
platforms and software tools. Furthermore, Francesca, Ans and Siri [115] investigated the
digital platform organization, called “circularity broker”, for the transfer and recovery of
discarded resources from food waste by network and circular supply chain research.
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6.3. Innovative Business Models for Green Circularity

CBE is a key element of the green economy, which is resource-focused on saving
material costs, improving security of supply to promote economic growth by creating
new businesses and circularity work as well as reducing environmental impacts [116,117].
It solves the linear economic problems by new circular resource flows, decoupling eco-
nomic growth from resource consumption. Kalmykova et al. [117] constructed the Circular
Economy Strategies Database that is applied in each part of the value chain in the circular
economy, as shown in Figure 9. Industrial symbiosis is one of the successful implemen-
tations of the circular economy to share and circularly input the resource. In addition to
developing technology for improving energy efficiency and reducing resource consump-
tion, a new business model is more critical for enterprises to gain economic benefits and
sustainable development. A growing amount of research is focused on business model
innovation [118,119]. For consumers and public buyers, the green certification and green
finance, e.g., carbon negative products and green bonus, can also be a component in the
business model and support the development of CBE.
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7. Conclusions

The recovery of humic acid and other high-value added nutrients depends largely on
the situation and technique used to recover or remove the nutrients. Analysis of recovery
will vary from structure to structure because humic acid has such versatile formations.
Research databases state that the scarcity and demand for clean water will keep increasing
due to growing world population, improving living standards, variance in consumption
patterns and development in agricultural irrigation norms. The efficiency of the methods
for recovering nutrients from agricultural wastewater needs to be improved. Scarcity of
clean water is not limited to only drinking water; it occurs not only because the methods
that have been analyzed in this paper have limitations, but because of other issues, such
as mismanagement of water resources. There are various methods which are utilized in
order to recover high-value added nutrients such as nitrogen and phosphorus. These
methods consist of biological, chemical and physical methods. However, all of these
methods, though they may be efficient in their own ways, have scope for improvement.
With GCPs and SDGs, more detailed research of these technologies is needed. For economic
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feasibility and environmental benefits, integration process and life cycle assessment should
be conducted in the future. Finally, development of innovative business models is the key
to successfully and sustainably implementing the circular bioeconomy.
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