INSECT DIVERSITY OF BUKIT HAMPUAN FOREST RESERVE, SABAH, MALAYSIA

A.Y.C. Chung¹, S.K.F. Chew², R. Majapun³ & R. Nilus⁴

² Kipandi Butterfly Park, P. O. Box 12785, 88831 Kota Kinabalu, Sabah, Malaysia

ISSN Online 0974-7907 Print 0974-7893

OPEN ACCESS

Abstract: An insect diversity survey was carried out at Bukit Hampuan Forest Reserve, adjacent to Kinabalu Park in Sabah, Malaysia. The nocturnal insect diversity was very high, with a mean of 113 species recorded from one square metre of light-trapping cloth. Diurnal insects were sampled using sweep nets and fine forceps. A total of 19 Bornean endemic insect species were recorded, comprising 15 moth and four beetle species. A few of the endemic moths are confined to Sabah, namely *Buzara saikehi*, *Cyana saulia* and *Lyclene mesilaulinea*. Forty-two butterfly species were recorded. Endemic insect species sampled from this survey indicate the significance of protecting and conserving this forest reserve. Such findings provide important data to enhance the need and effort in biodiversity conservation. The recent gazettement of Bukit Hampuan Forest Reserve is appropriate, and it is also recommended that Bukit Hampuan Forest Reserve be connected to the adjacent Kinabalu Park, i.e. to gazette the connecting state land area into a forest reserve. Forest fires, illegal hunting for wild animals and orchids, and agricultural activities are among the threats to Bukit Hampuan Forest Reserve which directly affect its insect diversity. To mitigate these threats, it is important to adopt a multi-disciplinary and participatory approach in a smart partnership involving relevant stakeholders and the local communities in monitoring, enforcement and promoting environmental awareness.

Keywords: Biodiversity conservation, Bukit Hampuan, endemic, Heart of Borneo, Insect diversity.

Bahasa Malaysia Abstract: Satu tinjauan kepelbagaian serangga telah dijalankan di Hutan Simpan Bukit Hampuan, berdekatan dengan Taman Kinabalu di Sabah, Malaysia. Kepelbagaian serangga nokturnal amat tinggi, dengan purata 113 spesies direkodkan dalam satu meter persegi pada kain perangkap lampu. Serangga-serangga diurnal disampel menggunakan jaring sapu dan penyepit halus. Sebanyak 19 spesies serangga yang endemik di Borneo telah direkodkan, merangkumi 15 spesies rama-rama (moth) dan 4 spesies kumbang. Beberapa spesies rama-rama hanya terdapat di Sabah, iaitu Buzara saikehi, Cyana saulia dan Lyclene mesilaulinea. Empat puluh dua (42) spesies kupu-kupu (butterfly) telah direkodkan. Rekod spesies-spesies serangga yang endemik dari tinjauan ini mengesyorkan kepentingan untuk terus melindungi serta memulihara hutan simpan ini. Hasil-hasil kajian ini menyumbang kepada usaha-usaha pemuliharaan kepelbagaian. Perwartaan Hutan Simpan Bukit Hampuan adalah tepat pada masanya. Adalah disyorkan juga hutan simpan ini disambung terus ke Taman Kinabalu, i.e. mewartakan kawasan bukan hutan simpan (stateland) yang menghubungkan hutan simpan berkenaan. Kebakaran hutan, pemburuan haram, pengambilan orkid serta aktiviti-aktiviti pertanian adalah antara ancaman kepada Hutan Simpan Bukit Hampuan, yang secara tidak langsung boleh mempengaruhi kepelbagaian serangga. Untuk mengatasi masalah-masalah ini, adalah penting bagi mengambil pendekatan multi-disiplin serta penyertaan yang melibatkan agensi-agensi yang berkaitan dan penduduk tempatan dalam pengawasan, penguatkuasaan dan juga mempergiatkan kesedaran persekitaran.

DOI: http://dx.doi.org/10.11609/JoTT.o3243.4461-73 | ZooBank: urn:lsid:zoobank.org:pub:12D0FF1A-86CD-408E-94AD-9EB91D8E280E

Editor: B.A. Daniel, Zoo Outreach Organization, Coimbatore, India.

Date of publication: 26 June 2013 (online & print)

Manuscript details: Ms # o3243 | Received 29 June 2012 | Final received 12 May 2013 | Finally accepted 01 June 2013

Citation: Chung, A.Y.C., S.K.F. Chew, R. Majapun & R. Nilus (2013). Insect diversity of Bukit Hampuan Forest Reserve, Sabah, Malaysia. *Journal of Threatened Taxa* 5(10): 4461–4473; http://dx.doi.org/10.11609/JoTT.o3243.4461-73

Copyright: © Chung et al. 2013. Creative Commons Attribution 3.0 Unported License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: Ministry of Natural Resources & Environment, Malaysia through the Sabah Forestry Department (the logo provided is Sabah Forestry Department).

Competing Interest: None.

Acknowledgements: This is part of the Heart of Borneo (HoB) Programme with funding from the 9th Malaysian Plan through the Federal Ministry of Natural Resources & Environment (NRE). Within the Sabah Forestry Department, this programme is managed under the Deputy Director (Forest Sector Planning), Mr. Frederick Kugan. The Director of Sabah Forestry Department, Datuk Sam Mannan, Deputy Director (R&D), Dr. Lee Ying Fah and Head of FRC Insect Diversity Programme, Dr. Chey Vun Khen are acknowledged for their support.

Author Contribution: AYCC, RN & RM participated in this survey. SKFC is an expert on beetles and other montane insects, and he has contributed significantly in identification.

Author Details: ARTHUR Y.C. CHUNG and STEVEN K.F. CHEW are entomologists based in Sabah. AYCC is a senior researcher at the Sabah Forestry Department with a DPhil on tropical entomology from Oxford University. REUBEN NILUS is a senior researcher on forest ecology while RICHARD MAJAPUN is a researcher of the same institution.

¹arthur.chung@sabah.gov.my (corresponding author), ²chewichewlucanus@gmail.com,

³ richard.majapun@sabah.gov.my, ⁴ reuben.nilus@sabah.gov.my

INTRODUCTION

Malaysia is one of the 12 mega-biodiverse countries in the world, and much attention has been focussed on biodiversity conservation (e.g., Yong 2009; CVB 2010). Insects contribute significantly to the high biodiversity of Malaysian rainforests. They are ubiquitous in the environment and play important roles in maintaining the stability of ecosystems by being part of the food chain, mediating decomposition processes and through various ecological interactions such as pollination, predation and herbivory (Cheng & Kirton 2007).

Despite the loss of forest cover in the last 40 years, more than half of the land area in Sabah is still covered with forests (Mannan 2011). The state government, through the Sabah Forestry Department, has been proactive in implementing various programs that contribute to sustainable forest management, such as the Heart of Borneo (HoB) initiative. About 39,000km² of the state's landmass has been set aside for this initiative, mainly comprising important inland and highland forest

ecosystems, with the main objective to protect and conserve the biodiversity of these areas, including insects (Chung et al. 2011). Bukit Hampuan is a recently gazetted forest reserve that lies within the HoB area (Fig. 1).

Under the HoB programme, the purpose of this study was to document the insect fauna of the Bukit Hampuan Forest Reserve (FR) and to investigate the threats affecting insect diversity, as well as to provide recommendations that would contribute towards biodiversity conservation of the study area.

MATERIALS AND METHODS

Bukit Hampuan FR is a Class I Forest Reserve which was only recently gazetted in 2009 (SFD 2010a). It is conserved primarily for environmental protection and biodiversity conservation, protected by law from any form of land conversion or timber exploitation.

In the forest reserve classification, Bukit Hampuan

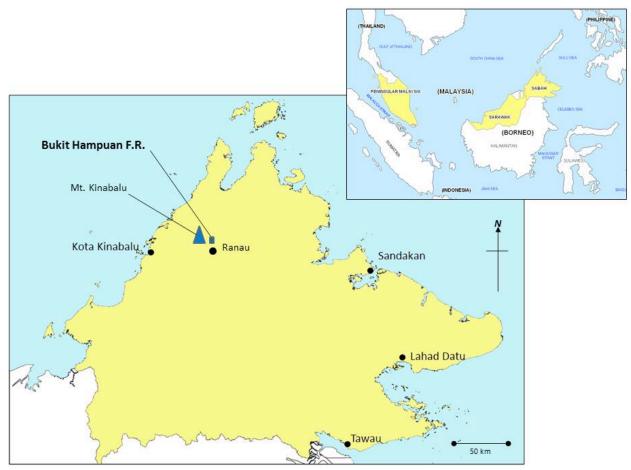


Figure 1. Location of Bukit Hampuan Forest Reserve in Sabah. Inset: Sabah is one of the Malaysian states in Borneo.

FR covers a relatively small area of 1,253ha, under the jurisdiction of the District Forestry Officer of Ranau. The vegetation consists of upland dipterocarp forest to lower montane forest, with the elevation ranging from 670–1,500 m. However, much of the reserve at the lower elevation has been degraded, mainly due to forest fire and human activities in the past. Nilus et al. (2012) provided the details of botanical and forest assessments of this ultramafic forest reserve.

An abandoned massive pit of the former Mamut Copper Mine (MCM) is located at the fringe (northwest) of this reserve. The mine was in operation from 1975–1999. The pit formed a lake at the bottom, with greenish-blue, highly acidic and metal-contaminated water, unsafe for consumption. It is a restricted area under the management of the Federal Department of Minerals and Geoscience.

Bukit Hampuan FR is also situated adjacent to Kinabalu Park, separated by stateland at the north, at a distance of less than 2km. This forest reserve is also significant as a water catchment area for some of the villages, especially Kg. Lohan and Kg. Kilimu. The source of the water is from the streams within the forest reserve, and not originated from the copper mine lake.

The study was conducted as part of the Bukit Hampuan expedition under the Heart of Borneo (HoB) programme of the Sabah Forestry Department from 10 to 14 May, 2010. The base camp was at Kg. Kilimu (05°58′52″N & 116°40′37″E, at 573m elevation), a village located beside the Ranau-Kota Kinabalu highway, south of Bukit Hampuan FR.

Light trap was used to sample nocturnal insects while sweep net and manual collecting (with forceps) were used to sample diurnal insects.

Light trap

The trap consists of a vertical white sheet (2x2 m) illuminated by a 250W mercury-lithium bulb. It was set up in an open area facing the forest reserve, from 19:00–21:00 hr. A GPS (Model: Garmin etrex Vista) was used to determine the coordinates of each sampling site (Table 1). To evaluate diversity of the sampling area, insect species and individuals (≥5mm in length) within the 1x1 m square of the white cloth were enumerated from 20:30–21:00 hr. This is a rapid biodiversity assessment method because by the end of the sampling time, species and individual numbers can be obtained, and the data can be used to calculate diversity indices, i.e. Shannon Wiener, Simpson and Fisher Alpha, using Species Diversity & Richness version IV (SDR 2006). This method is simple, fast and can be carried out by non-

Table 1. Light-trapping sites at Bukit Hampuan Forest Reserve

Sampling site	Coordinates	Elevation (m)	Sampling date	Remarks
Hampuan 1	06°00'42"N & 116°39'19"E	1,347	11.v.2010	Cold and misty night, without moonlight
Hampuan 2	06°01′24.9″N & 1 116°39′46″E	1,493	12.v.2010	Raining and heavy mist during sampling, without moonlight.
Hampuan 3	N06º00'49.8" E116º39'19.3"	1,365	13.v.2010	Windy and drizzling during sampling, without moonlight.

Table 2. Daytime sampling sites at Bukit Hampuan Forest Reserve

	Sampling site	Starting point coordinates	Elevation (m)	Sampling distance (km)
1	Mamut Copper Mine graveled road	06°00'42"N & 116°39'19"E	1,345-1,495	2
2	Mamut Copper Mine area	06º01'59"E & 116º39'14"N	1,345–1,362	2
3	Kg. Lohan Bongkud area	06º00'52"N & 116º41'41"E	677–775	1
4	Bukit Hampuan open area	06º01'06"N & 116º39'51"E	1,367-1,400	1

insect specialists. To avoid compounding human error, the same staff was assigned to count the species and individual numbers throughout the sampling period.

Sweep net and manual collection

Sweep nets were used to collect flying insects, such as butterflies and dragonflies while other insects were sampled using fine forceps. Butterflies and dragonflies were put in triangle papers while other specimens were put in vials with 75% ethanol solution. Most of the trails were going up the slope (mostly 20%) heading towards the ridge or peak within the area.

Insect specimens and identification

This survey focussed on certain insect groups, i.e., butterflies, moths, beetles, cicadas and dragonflies. Only insect species of high importance (e.g., those based on Otsuka (1988), Tung (1983), Holloway (1996b) and Orr (2003)) were sampled, as to minimize the workload at the laboratory in preparing the specimens for identification. Common insects were not sampled but photographed for record purposes.

All specimens were dry-mounted and sorted to family and some to the generic and species level. The specimens sampled from this study are deposited at the Forest Research Centre (FRC), Sepilok, Sabah. Dry-mounted specimens were identified based on the FRC Entomology Collection and various reference materials, e.g. Otsuka (1988 & 2001) and Corbet & Pendlebury (1992) for butterflies; Holloway (1983, 1985, 1986, 1988, 1989, 1993, 1996a, 1997, 1998a & b, 1999, 2001, 2003, 2005, 2008 & 2009) and Robinson et al. (1994) for moths; Mizunuma & Nagai (1994), Makihara (1999) and Tung (1983) for beetles; Orr (2003) for dragonflies. Dr. Bakhtiar Effendi Yahya of Universiti Malaysia Sabah assisted in ant identification.

RESULTS AND DISCUSSION

Overall nocturnal insect diversity

Despite the degraded areas within the Bukit Hampuan FR, the nocturnal insect diversity was very high, with a mean of 113 species within a 1m². The high diversity is reflected in various diversity indices in Table 3. A total of 125 insect species were recorded from a 1m² at the first night of light-trapping (Hampuan 1), at

the elevation of 1,347m. However, the diversity indices were comparatively low because of a hymenopteran species with 90 individuals. It was the nuptial flight of this flying ant. Of all the indices, the low diversity value at Hampuan 1 was obvious on the Simpson's Index, which is more sensitive towards dominant species. The species distribution was very even in Hampuan 3 (as each species is represented by 1.1 individuals; see Table 3), followed by Hampuan 2 (one species recorded 13 individuals), compared to Hampuan 1 with a distinct prominent species. The distribution of nocturnal insect species from the three sites is reflected in the speciesrank abundance curves in Fig. 2. Although it was raining with heavy mist on day two (Hampuan 2) and drizzling on day three (Hampuan 3) of the light-trapping, insect diversity as indicated by Shannon, Simpson and Fisher Alpha indices were impressively high.

When the nocturnal insect diversity results are compared with other forest reserves in Sabah, Bukit Hampuan FR appears to be impressively high, second to Crocker Range FR as indicated in species richness (Fig. 3a) and Shannon's Index (Fig. 3b). The results also indicate that insect diversity is generally higher in the lower montane forests.

Such high diversity for insects from 670-1500 m

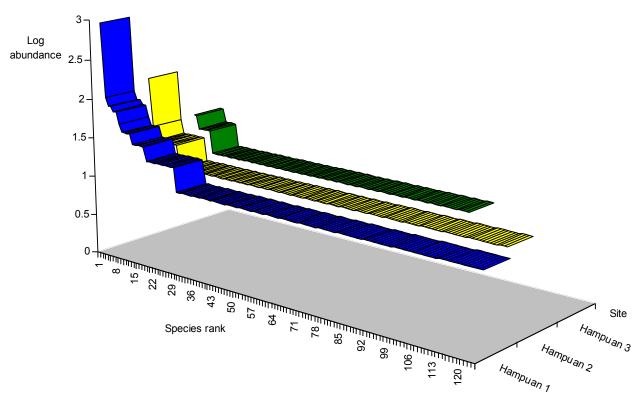


Figure 2. Species-rank abundance curves of the sampling sites at Bukit Hampuan Forest Reserve.

Table 3. Insect diversity within a 1m² as sampled through light-trapping at Bukit Hampuan Forest Reserve

	Sampling site	Species	Ind.	Shannon	Simpson	Fisher Alpha
1	Hampuan 1	125	286	3.73	9.69	84.64
2	Hampuan 2	119	142	4.61	111.23	346.35
3	Hampuan 3	96	105	4.53	496.40	543.44
	Mean(±SD)	113±15	178±96	4.29±0.5	205.77±256.76	324.81±230.16

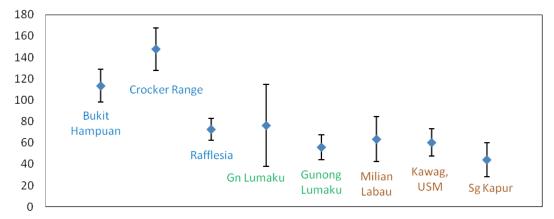


Figure 3a. Species number (±standard deviation) within one square metre as assessed through light-trapping at various forest reserves in Sabah (blue text = lower montane forest, green text = upland dipterocarp forest and brown text = lowland dipterocarp forest).

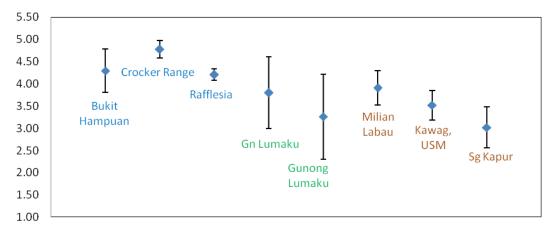


Figure 3b. Shannon's Index (±standard deviation) within one square metre as assessed through light-trapping at various forest reserves in Sabah (blue text = lower montane forest, green text = upland dipterocarp forest and brown text = lowland dipterocarp forest).

could be due to its proximity to the pristine Kinabalu Park. As highlighted by Wong & Phillips (1996) and Holloway (1996b), the insect life of Mount Kinabalu is one of the most enthralling ever known and continues to perplex the most experienced of scientists. It is also incredibly rich in endemic species. A total of 19 Bornean endemic insect species were recorded within a short sampling period (Table 4). In the same survey, 66 Bornean endemic plant species were recorded, including

Microtropis sabahensis (Celastraceae) which is confined to Sabah and Pittosporum linearifolium (Pittosporaceae) which is only found at Bukit Hampuan FR (Nilus et al. 2012). Beaman (1996), Meijer (1996) and Corner (1996) noted that the rare and endemic plants within the Mount Kinabalu area are mainly due to its ultramafic geology, cold climate and high elevation.

Table 4. Bornean endemic insect species recorded from Bukit Hampuan Forest Reserve during the survey.

	Order	Family (Subfamily)	Species	Author
1	Lepidoptera (Moth)	Arctiidae (Arctiinae)	Aethalida borneana	Holloway
2	Lepidoptera (Moth)	Arctiidae (Arctiinae)	Nyctemera kinibalina	Snellen
3	Lepidoptera (Moth)	Arctiidae (Arctiinae)	Spilosoma groganae	Holloway
4	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Adites hosei	Holloway
5	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Barsine euprepia	Hampson
6	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Cyana cruentata	Talbot
7	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Cyana saulia	Swinhoe
8	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Lyclene mesilaulinea	Holloway
9	Lepidoptera (Moth)	Arctiidae (Lithosiinae)	Lyclene multiramorum	Holloway
10	Lepidoptera (Moth)	Arctiidae (Syntominae)	Auriculoceryx pterodactyliformis	Holloway
11	Lepidoptera (Moth)	Cossidae	Zeuzera borneana	Roepke
12	Lepidoptera (Moth)	Geometridae (Geometrinae)	Spaniocentra megaspilaria	Guenee
13	Lepidoptera (Moth)	Noctuidae (Aganainae)	Asota kinabaluensis	Rothschild
14	Lepidoptera (Moth)	Noctuidae (Catocalinae)	Buzara saikehi	Holloway
15	Lepidoptera (Moth)	Thyrididae	Banisia intonsa	Whalley
16	Coleoptera (Beetle)	Cerambycidae	Neosarmydus costipennis	Fisher
17	Coleoptera (Beetle)	Lucanidae	Cyclommatus giraffa	Mollenkamp
18	Coleoptera (Beetle)	Scarabaeidae	Chalcosoma moellenkampi	Kolbe
19	Coleoptera (Beetle)	Scarabaeidae	Fruhstoferia nigromuliebris	Nagai

Butterfly (Lepidoptera) diversity

A total of 42 butterfly species were recorded from Bukit Hampuan FR (Appendix 1). Comparatively, the diversity was lower compared to Gn. Lumaku and Imbak Canyon (Table 5). Distribution of species is shown in Fig. 4. Many of the butterflies were sampled between 680 –780 m at the fringe of the upland dipterocarp forest at Kg. Lohan Bongkud. Fewer specimens were sampled along the Mamut Copper Mine road but the Kinabalu Bush Orange, *Mycalesis marginata pitan* which is only found in Sumatra and Borneo, was sampled here.

The large and iconic butterfly species recorded from Bukit Hampuan FR were the Rajah Brooke's Birdwing (*Troides brookiana*), the Common Birdwing (*Troides helena*) and the Tree Nymph (*Idea stolli*). A number of Bornean endemic butterflies are found in the Kinabalu region (Otsuka 1988) but unfortunately none of them were sampled during this survey.

Moth (Lepidoptera) diversity

Various moth species were attracted to the light trap set up at three locations facing the forest of Bukit Hampuan between 1,350–1,500 m. A list of the recorded moths is provided in Appendix 2 & 3. Fifteen Bornean endemic moth species were recorded from this survey,

namely 10 species from Arctiidae, one Cossidae, one Geometridae, two Noctuidae and one Thyrididae (Image 1). It is not surprising that many endemics were sighted, as Holloway (1996b) has noted that the Mount Kinabalu area is high in moth endemism, with 112 macro-moth species recorded only from Kinabalu.

Some of the endemic species are only found in Sabah. The noctuid *Buzara saikehi* is a hyper-endemic, as it is only recorded from the Mamut, Ranau and the holotype is in the FRC collection at Sepilok (Holloway 2005). It was named after the late Saikeh Lantoh, a senior research assistant at FRC. In this survey, it was attracted to the light trap at Hampuan 1 (1,347m). Other Sabah endemics sampled were the arctiid *Cyana saulia* and *Lyclene mesilaulinea*. *Cyana saulia* was previously recorded from Paitan at the coast of Sabah while *Lyclene mesilaulinea* was sampled from Mesilau and Mt. Monkobo (Holloway 2001).

Nyctemera kinibalina and Nyctemera tripunctaria (both Arctiidae) are day-flying moths and they were sampled with the sweep net at the Mamut Copper Mine road. Nyctemera muelleri, however, was attracted to the light trap.

Table 5. Comparison of butterfly diversity between Bukit Hampuan Forest Reserve, Gn. Lumaku Forest Reserve and Imbak Canyon Conservation Area.

Sampling site	Method	Species	Ind.	Shannon	Simpson	Fisher Alpha
Bukit Hampuan Forest Reserve	Sweep net & observation	42	78	3.48	31.95	37.09
Gg. Lumaku Forest Reserve	Sweep net & observation	52	106	3.56	29.76	40.37
Imbak Canyon*	Fruit bait, sweep net & observation	72	133	4.09	70.22	64.10

^{*} Source: Lim-Hasegawa & Chey (2009)

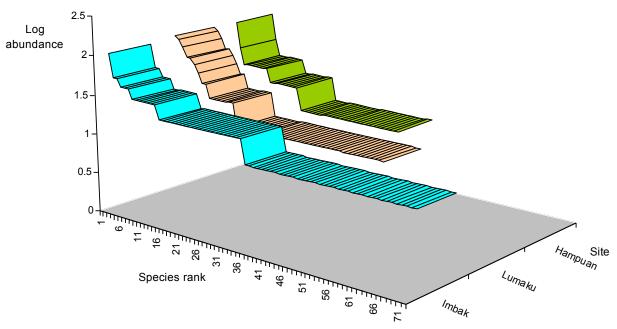


Figure 4. Species-rank abundance curves of butterflies sampled from Imbak Canyon Conservation Area, Gn. Lumaku F.R. and Bukit Hampuan Forest Reserve

Beetle (Coleoptera) diversity

A total of 26 species of macro-beetles were recorded (Appendix 4). Many were sampled through light-trapping. At least four species are endemic to Borneo, namely Fruhstoferia nigromuliebris, Neosarmydus costipennis, Cyclommatus giraffa and Chalcosoma moellenkampi. The first two species are rare while Cyclommatus giraffa is confined to the montane areas, such as Kinabalu Park and Crocker Range. The Three-horned Beetle Chalcosoma moellenkampi is common throughout Sabah although it is only found in Borneo.

Other insects

Unlike butterflies, moths and beetles, no concerted effort was deployed to sample other insect groups. However, a few species of cicadas and dragonflies were sampled, as listed in Appendix 5. Some dragonfly species were sampled along the streams in the forest adjacent to

Kg. Lohan Bongkud, e.g. *Macromia westwoodii* at about 700m while others were collected at the Bukit Hampuan FR open area at 1,370m, e.g. *Pantala flavescens. Macromia westwoodii* is a large dragonfly, with its hindwing measuring up to 50mm. It is fairly common on clear fast forest streams from the lowlands to 900m but is extremely inconspicuous and wary. *Pantala flavescens* is the most wide ranging odonate species in the world, being found throughout the tropics and subtropics, from dense primary forest up to at least 3000m (Orr 2003).

A striking Yellow-banded Cicada *Tacua speciosa*, measuring 55mm, was collected at about 1,500m during daytime by the Botany team. It is also known as the 'Emperor Cicada'. Two species of unidentified Hemiptera, from the family Tomaspididae were also sampled, from about 1,400m.

Myrmicaria ants were frequently encountered feeding on extrafloral nectaries of wild orchids along the

Mamut Copper Mine road. It is likely to be *Myrmicaria* subcarinata, but it could be more than one species (Bakhtiar E. Yahya, pers. comm. June 2010).

Threats and recommendations for insect diversity and conservation at Bukit Hampuan FR

Prior to the recent gazettement of Bukit Hampuan as a Class I Forest Reserve in 2009, the area was under stateland status. About 28% of the area is classified as degraded due to series of forest fires in the past, and 2% was encroached for agricultural activities (Nilus et al. 2012).

The northwestern part of Bukit Hampuan FR was part of the copper mining area, covering about 87ha. This is the area where the overburdens and waste rocks from the mining pit were dumped. The vegetation in this area is poor and sparse. The trees planted by the copper mine management were stunted, e.g., Falcataria moluccana. Only certain plant species were found to be growing well. As such, the overall biodiversity within the present Bukit Hampuan FR is not spectacular, compared to the adjacent pristine Kinabalu Park, with the exception of the nocturnal insects sampled from this survey. Insects, such as moths and beetles are very mobile, and they could have traveled from the adjacent pristine forest. Kinabalu Park is less than 2km north of Bukit Hampuan FR nevertheless, the high diversity of nocturnal insects may suggest that Bukit Hampuan FR is still conducive, providing suitable habitats for many of these insects because of the cool environment.

To sustain and improve the biodiversity of Bukit Hampuan FR, it is, thus, highly recommended that the area between the reserve at the northern part and Kinabalu Park be gazetted as a forest reserve. This area which is presently under the stateland status is still in pristine forest condition, but it is subject to any land-use changes and development. By gazetting to a Class I Forest Reserve, the area will be fully protected by law and any encroachment can be penalized. This connectivity will be permanent and it will allow wildlife (especially large animals) to move about from Bukit Hampuan to Kinabalu Park and vice versa. It will also indirectly enhance the diversity of insects in Bukit Hampuan FR.

The State Culture, Tourism and Environment Minister, Datuk Masidi Manjun noted that connectivity and corridors have been overlooked. Even with more than 50% forest cover in Sabah, conservation will not be effective if the fragmented forests are not connected. Lately, the State Government through the Sabah Forestry Department as well as other agencies, has put in much concerted effort in highlighting the importance of forest

connectivity and wildlife corridors, and discussed the way forward in implementation (SFD 2010b).

Forest fire is a common problem in forest reserves during drought. The impact is irreversible, as seen in some degraded areas in Bukit Hampuan FR. To prevent further damage by fire, the forest staff would have to be more alert and work together with the kampung folks on this matter, e.g., via appointment of honorary forest wardens. Environmental awareness and education can be promoted and enhanced among the villagers and their children on the importance of forest and its services. Such awareness will also help to curb illegal hunting for wild animals and orchids, which were common in Bukit Hampuan in the past. For effective implementation, it is important to adopt a multi-disciplinary and participatory approach involving relevant stakeholders, such as Wildlife Department, Environmental Protection Department, Education Department, Fire & Rescue Department, NGOs and the local communities. Funding from local, as well as international agencies would greatly contribute towards the success of the implementation.

Constant monitoring and enforcement by the relevant authorities will minimize encroachment into the forest reserve. Setting up of gates and warning signs at restricted areas would hopefully reduce the number of trespassers. Signage at the forest reserve border will remind the villagers of the boundary and limit of land clearing for agriculture.

CONCLUSION

The nocturnal insect diversity at Bukit Hampuan FR was impressively high despite some degraded areas within the forest reserve. Many endemic insect species sampled from this survey within a short period indicates the significance of protecting and conserving this forest reserve. Such findings provide important data to enhance the need and effort in biodiversity conservation. The recent gazettement of Bukit Hampuan as a Class I Forest Reserve is appropriate and timely. It is also crucial for Bukit Hampuan FR to be connected to Kinabalu Park, i.e., to gazette the connecting stateland area into a Class I Forest Reserve. This connectivity is the prime means of physically linking wildlife habitat and allow some species to move between otherwise isolated area. It can help to replenish isolated populations. Ideally, the connectivity itself also meets some or all of the need for shelter, protection, food and breeding sites. Constant monitoring, enforcement, cooperation with relevant stakeholders and local communities, and

promotion of environmental awareness are among the recommendations to mitigate the threats in Bukit Hampuan FR.

REFERENCES

- **Beaman, J.H. (1996).** Evolution and phytogeography of the Kinabalu flora, pp. 95–99. In: Wong, K.M. & A. Phillips (eds.). *Kinabalu: summit of Borneo*. The Sabah Society & Sabah Parks.
- Cheng, S. & L.G. Kirton (2009). Overview of insect biodiversity research in Peninsular Malaysia, pp. 121–128. In: Chua, L.S.L., L.G. Kirton & L.G. Saw (eds.). Status of biological diversity in Malaysia and threat assessment of plant species in Malaysia. Proceedings of the Seminar & Workshop, 28–30 June, 2005. FRIM, KL.
- Chung, A.Y.C., R. Majapun, R. Nilus & F. Kugan (2011). Insect diversity within the Heart of Borneo (HoB) in Sabah: research undertaken by the Sabah Forestry Department, pp. 79–90. In: Gan, K.S., S. Mahmudin & M.Y. Mohd. Nor (eds.). Proceedings of the International Symposium on Forestry & Forest Products Addressing Global Concerns & Changing Societal Needs. Forest Research Institute Malaysia.
- Corner, E.J.H. (1996). The plant life of Kinabalu an introduction, pp. 101–149. In: Wong, K.M. & A. Phillips (eds.). Kinabalu: summit of Borneo. The Sabah Society & Sabah Parks.
- CVB (2010). A Common Vision on Biodiversity in Government and the Development Process. The Ministry of Natural Resources and Environment, Putrajaya, 111pp.
- Holloway, J.D. (1983). Moths of Borneo (part 4): family Notodontidae Malayan Nature Journal 37: 1–107.
- Holloway, J.D. (1985). Moths of Borneo (part 14): Family Noctuidae: subfamilies Euteliinae, Stictopterinae, Plusiinae, Pantheinae Malayan Nature Journal 38: 157–317.
- Holloway, J.D. (1986). Moths of Borneo (part 1): key to families: families Cossidae, Metarbelidae, Ratardidae, Dudgeoneidae, Epipyropidae and Limacodidae. Malayan Nature Journal 40: 1–166.
- Holloway, J.D. (1988). The Moths of Borneo (Part 6): Family Arctiidae, Subfamilies Syntominae, Euchromiinae, Arctiinae; Noctuidae Misplaced In Arctiidae (Camptoloma, Aganainae). Southdene Sdn. Bhd., Kuala Lumpur, 101pp.
- Holloway, J.D. (1989). The Moths of Borneo (Part 12): Family Noctuidae, Trifine Subfamilies: Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphipyrinae, Agaristinae. Southdene Sdn. Bhd., Kuala Lumpur, 226pp.
- Holloway, J.D. (1993). The Moths of Borneo (Part 11): Family Geometridae, Subfamily Ennominae. Southdene Sdn. Bhd., Kuala Lumpur, 309pp.
- Holloway, J.D. (1996a). The moths of Borneo (part 9): family Geometridae, subfamilies Oenochrominae, Desmobathrinae and Geometrinae. *Malayan Nature Journal* 49: 147–326.
- Holloway, J.D. (1996b). Butterflies and moths, pp. 291–313. In: Wong, K.M. & A. Phillips (eds.). *Kinabalu: summit of Borneo*. The Sabah Society & Sabah Parks.
- Holloway, J.D. (1997). The moths of Borneo (part 10): family Geometridae, subfamilies Sterrhinae & Larentiinae. *Malayan Nature Journal* 51: 1–242.
- Holloway, J.D. (1998a). The moths of Borneo (part 8): families Castniidae, Callidulidae, Drepanidae & Uraniidae. Malayan Nature Journal 52: 1–155.
- Holloway, J.D. (1998b). The moths of Borneo (part 3): superfamily Bombycoidea: families Lasiocampidae, Eupterotidae, Bombycidae,

- *Brahmaeidae, Saturniidae, Sphingidae*. Southdene Sdn. Bhd., Kuala Lumpur, 199pp.
- Holloway, J.D. (1999). The moths of Borneo (part 5): family Lymantriidae. *Malayan Nature Journal* 53: 1–188.
- Holloway, J.D. (2001). The Moths of Borneo (Part 7): Family Arctiidae, Subfamily Lithosiinae. Southdene Sdn. Bhd., Kuala Lumpur, 486pp.
- Holloway, J.D. (2003). The Moths of Borneo (Part 18): Family Nolidae. Southdene Sdn. Bhd., Kuala Lumpur. 279pp.
- Holloway, J.D. (2005). The moths of Borneo: family Noctuidae, subfamily Catocalinae. *Malayan Nature Journal* 58(1–4): 1–529.
- Holloway, J.D. (2008). The moths of Borneo: family Noctuidae, subfamilies Rivulinae, Phytometrinae, Herminiinae, Hypeninae and Hypenodinae. Malayan Nature Journal 60(1–4): 1–268.
- Holloway, J.D. (2009). The moths of Borneo (part 13): family Noctuidae, subfamily Pantheinae (part), Bagisarinae, Acontiinae, Aediinae, Eustrotiinae, Bryophilinae, Araeopteroninae, Aventiinae, Eublemminae and further miscellaneous genera. *Malayan Nature Journal* 62(1&2): 1–240.
- **Lim-Hasegawa, D. & V.K. Chey (2009).** Diversity of Lepidoptera in Imbak Canyon Conservation Area. *Sepilok Bulletin* 11: 15–36.
- Makihara, H. (1999). Atlas of longicorn beetles in Bukit Soeharto Education Forest, Mulawarman University, East Kalimantan, Indonesia. *PUSREHUT Special Publication No. 7.* Mulawarman University & JICA, 140 pp.
- **Mannan, S. (2011).** Multi-use forest management in Sabah the challenges and opportunities in attaining statewide certification under the Forest Stewardship Council (FSC) system. Speech delivered at the 6th FSC General Assembly at Kota Kinabalu, Sabah on 29 June, 2011.
- Meijer, W. (1996). Notes on the tree flora of Kinabalu, pp. 167–179. In: Wong, K.M. & A. Phillips (eds.). *Kinabalu: summit of Borneo*. The Sabah Society & Sabah Parks.
- Mizunuma, T. & S. Nagai (1994). The Lucanid Beetles of The World. Mushi-sha, Tokyo, Japan, 340pp.
- Nilus, R., J.B. Sugau, J.T. Pereira & S. Sabran (2012). Botanical and forest assessments of the Bukit Hampuan Forest Reserve. Departmental Report, Sabah Forestry Department.
- **Orr, A.G. (2003).** A Guide to The Dragonflies of Borneo: Their Identification and Biology. Natural History Publications (Borneo), Kota Kinabalu, 195pp.
- Otsuka, K. (1988). Butterflies of Borneo Vol. I. Tobishima Corporation, Tokyo, Japan, 61pp.
- Otsuka, K. (2001). A Field Guide to the Butterflies of Borneo and South East Asia. Hornbill Books, 224pp.
- Robinson, G.S., K.R. Tuck & M. Shaffer (1994). A Field Guide to Smaller Moths of South-east Asia. The Natural History Museum, London & Malaysian Nature Society, 309pp.
- **SDR (2006).** Species Diversity & Richness Version IV. Pisces Conservation Ltd., Lymington, UK.
- **SFD (2010a).** Fact sheets of forest reserves in Sabah. Sabah Forestry Department, 24pp.
- SFD (2010b). Compilation of papers. Regional Forum on Enhancing Forest Connectivity & Corridors within the Heart of Borneo in Sabah, 26–27 October, 2009. Kota Kinabalu, Sabah. Sabah Forestry Department, 176pp.
- Tung, V. W-Y. (1983). Common Malaysian Beetles. Longman, Kuala Lumpur, 142pp.
- Wong, K.M. & A. Phillips (eds.) (1996). Kinabalu: Summit of Borneo. The Sabah Society & Sabah Parks, 544pp.
- Yong, H.S. (eds.) (2009). Proceedings of the Conference on Biodiversity and National Development: Achievements, Opportunities and Challenges. Academy of Sciences Malaysia, 216pp.

Appendix 1. Butterflies from Bukit Hampuan Forest Reserve, Sabah (10–14 May 2010).

	Species	Author	Family	Digital photo no.
1	Appias indra plana	Butler	Pieridae	BHP1439
2	Catopsilia pomona pomona	Fabricius	Pieridae	BHP1486
3	Eurema sari sodalis	Moore	Pieridae	BHP1491
4	Leptosia nina malayana	Fruhstorfer	Pieridae	BHP1659
5	Pareronia valeria lutescens	Butler	Pieridae	spotted
6	Graphium agamemnon agamemnon	Linne	Papilionidae	spotted
7	Graphium antiphates itamputi	Butler	Papilionidae	BHP1665
8	Lamproptera curius curius	Fabricius	Papilionidae	BHP1675
9	Pachliopta aristolochiae antiphus	Fabricius	Papilionidae	BHP1544
10	Papilio helenus enganius	Doherty	Papilionidae	BHP1594
11	Papilio memnon memnon	Linne	Papilionidae	BHP1654
12	Papilio nephelus albolineatus	Forbes	Papilionidae	BHP1667
13	Troides brookiana brookiana	Wallace	Papilionidae	spotted
14	Troides helena mosychlus	Fruhstorfer	Papilionidae	BHP1580
15	Troides sp.		Papilionidae	spotted
16	Anosia genutia intensa	Moore	Nymphalidae	BHP1671
17	Athyma clerica clerica	Butler	Nymphalidae	BHP1221
18	Athyma selenophara amhara	Druce	Nymphalidae	BHP1435
19	Cethosia hypsea hypsea	Doubleday	Nymphalidae	BHP1269, 1272
20	Euploea leucostictos syra	Fruhstorfer	Nymphalidae	BHP1649
21	Euploea diocletianus Iowii	Butler	Nymphalidae	BHP1651
22	Euploea phaenareta butleri	Moore	Nymphalidae	BHP1278
23	Euploea tulliolus aristotelis	Moore	Nymphalidae	BHP1231
24	Euripus nyctelius borneensis	Distant	Nymphalidae	BHP1589
25	Hypolimnas bolina philippensis	Butler	Nymphalidae	BHP1612
26	Idea stolli virgo	Fruhstorfer	Nymphalidae	BHP1660
27	Ideopsis vulgaris interposita	Fruhstorfer	Nymphalidae	BHP1494
28	Lethe chandica delila	Staudinger	Nymphalidae	spotted
29	Moduza procris agnata	Fruhstorfer	Nymphalidae	spotted
30	Mycalesis anapita fucentia	Fruhstorfer	Nymphalidae	BHP1603
31	Mycalesis marginata pitan	Staudinger	Nymphalidae	BHP1195
32	Neptis leucoporos cresina	Fruhstorfer	Nymphalidae	BHP1591
33	Orsotriaena medus medus	Fabricius	Nymphalidae	BHP1682
34	Parantica aspasia aspasia	Fabricius	Nymphalidae	BHP1244
35	Parantica luzonensis praemacaristus	Fruhstorfer	Nymphalidae	BHP1264
36	Parthenos sylvia borneensis	Staudinger	Nymphalidae	spotted
37	Sumalia daraxa viridans	Fruhstorfer	Nymphalidae	BHP1210
38	Symbrenthia lilaea marius	Fruhstorfer	Nymphalidae	BHP1553
39	Tirumala septentrionis microsticta	Butler	Nymphalidae	BHP1639
40	Ypthima pandocus sertorius	Fruhstorfer	Nymphalidae	BHP1192, 1215
41	Lycaenidae sp. 1		Lycaenidae	BHP1211
42	Koruthaialos sindu sindu	C. & R. Felder	Hesperiidae	spotted

Appendix 2. Moths of Bukit Hampuan Forest Reserve, Sabah (10–14 May 2010).

		1	T	T	
	Species	Author	Family	Subfamily	Digital photo no.
1	Aethalida borneana	Holloway	Arctiidae	Arctiinae	BHP1363, 1710
2	Amerila astreus	Drury	Arctiidae	Arctiinae	BHP1344, 1348
3	Nyctemera kinibalina	Snellen	Arctiidae	Arctiinae	BHP1233
4	Nyctemera muelleri	Vollenhoven	Arctiidae	Arctiinae	BHP1312
5	Nyctemera tripunctaria	Linnaeus	Arctiidae	Arctiinae	BHP1219
6	Spilosoma groganae	Holloway	Arctiidae	Arctiinae	BHP1512
7	Adites hosei	Holloway	Arctiidae	Lithosiinae	BHP1366
8	Adites sp.		Arctiidae	Lithosiinae	BHP1727
9	Barsine euprepia	Hampson	Arctiidae	Lithosiinae	BHP1347
10	Barsine roseororatus	Butler	Arctiidae	Lithosiinae	BHP1333
11	Cyana cruentata	Talbot	Arctiidae	Lithosiinae	BHP1313, 1724
12	Cyana horsfieldii	Roepke	Arctiidae	Lithosiinae	BHP1770
13	Cyana malayensis	Hampson	Arctiidae	Lithosiinae	BHP1741
14	Cyana saulia	Swinhoe	Arctiidae	Lithosiinae	BHP1729
15	Cyana sp.		Arctiidae	Lithosiinae	BHP1751
16	Eugoa trifascia	Walker	Arctiidae	Lithosiinae	BHP1749
17	Lyclene circumdata	Walker	Arctiidae	Lithosiinae	BHP1695
18	Lyclene mesilaulinea	Holloway	Arctiidae	Lithosiinae	BHP1736
19	Lyclene multiramorum	Holloway	Arctiidae	Lithosiinae	BHP1760
20	Lyclene sp.		Arctiidae	Lithosiinae	BHP1707
21	Monosyntaxis sp.		Arctiidae	Lithosiinae	BHP1747
22	Padenia obliquifascia	Rothschild	Arctiidae	Lithosiinae	BHP1761
23	Teulisna sp.		Arctiidae	Lithosiinae	BHP1730
24	Auriculoceryx pterodactyliformis	Holloway	Arctiidae	Syntominae	BHP1768
25	Mustilia dierli	Holloway	Bombycidae		BHP1735
26	Zeuzera borneana	Roepke	Cossidae		BHP1532
27	Zeuzera indica	Herrich-Schaffer	Cossidae		BHP1737
28	Canucha specularis	Moore	Drepanidae		BHP1523
29	Tridrepana flava	Moore	Drepanidae		BHP1365
30	Amblychia infoveata	Prout	Geometridae	Ennominae	BHP1310
31	Bracca georgiata	Guenee	Geometridae	Ennominae	BHP1731
32	Dilophodes elegans	Butler	Geometridae	Ennominae	BHP1342
33	Krananda semihyalina	Moore	Geometridae	Ennominae	BHP1531
34	Milionia basalis	Walker	Geometridae	Ennominae	BHP1535
		 	Geometridae		
35	Ourapteryx claretta	Holloway		Ennominae	BHP1352
36	Plutodes argentilauta	Prout	Geometridae	Ennominae	BHP1370
37	Pogonopygia nigralbata	Warren	Geometridae	Ennominae	BHP1518
38	Agathia laetata	Fabricius	Geometridae	Geometrinae	BHP1517
39	Spaniocentra megaspilaria	Guenee	Geometridae	Geometrinae	BHP1740
40	Tanaorhinus rafflesii	Moore	Geometridae	Geometrinae	BHP1530
41	Calliteara cox	Schintlmeister	Lymantriidae	 	BHP1756
42	Calliteara diplozona	Collenette	Lymantriidae		BHP1757
43	Asota albiformis	Swinhoe	Noctuidae	Aganainae	BHP1773
44	Asota kinabaluensis	Rothschild	Noctuidae	Aganainae	BHP1511, 1521
45	Asota producta	Butler	Noctuidae	Aganainae	BHP1510
46	Clethrorasa pilcheri	Hampson	Noctuidae	Amphipyrinae	BHP1284
47	Avatha bubo	Geyer	Noctuidae	Catocalinae	BHP1297
48	Buzara saikehi	Holloway	Noctuidae	Catocalinae	BHP1283
49	Hamodes propitia	Guerin-Meneville	Noctuidae	Catocalinae	BHP1529
50	Нуроруга sp.		Noctuidae	Catocalinae	BHP1748
51	Thyas javanica	Gaede	Noctuidae	Catocalinae	BHP1744
52	Tiracola aureata	Holloway	Noctuidae	Hadeninae	BHP1507
53	Blenina sp.		Nolidae		BHP1305
54	Dichocrocis zebralis	Moore	Pyralidae	Crambinae	BHP1766
55	Pachynoa purpuralis	Walker	Pyralidae	Crambinae	BHP1304
00				i .	1

	Species	Author	Family	Subfamily	Digital photo no.
57	Nevrina procopia	Cramer	Pyralidae	Pyraustinae	BHP1514
58	Parotis laceritalis	Kenrick	Pyralidae	Pyraustinae	BHP1373
59	Syllepte fabiusalis	Walker	Pyralidae	Pyraustinae	BHP1513
60	Acherontia lachesis	Fabricius	Sphingidae		BHP1339
61	Acosmeryx shervilli	Boisduval	Sphingidae		BHP1354
62	Eurypteryx bhaga	Moore	Sphingidae		BHP1704
63	Banisia intonsa	Whalley	Thyrididae		BHP1728
64	Telchines vialis	Moore	Thyrididae		BHP1754
65	Lyssa menoetius	Hopffer	Uraniidae		BHP1746
66	Lyssa zampa	Butler	Uraniidae		BHP1318

Appendix 3. Bornean endemic moth species recorded from Bukit Hampuan Forest Reserve.

Aethalida borneana Arctiidae (Arctiinae)

Nyctemera kinibalina Arctiidae (Arctiinae)

Spilosoma groganae Arctiidae (Arctiinae)

Adites hosei Arctiidae (Lithosiinae)

Barsine euprepia Arctiidae (Lithosiinae)

Cyana cruentata Arctiidae (Lithosiinae)

Cyana saulia Arctiidae (Lithosiinae)

Lyclene mesilaulinea Arctiidae (Lithosiinae)

Lyclene multiramorum Arctiidae (Lithosiinae)

Auriculoceryx pterodactyliformis Arctiidae (Syntominae)

Zeuzera borneana Cossidae

Spaniocentra megaspilaria Geometridae (Geometrinae)

Asota kinabaluensis Noctuidae (Aganainae)

Banisia intonsa Thyrididae

Appendix 4. Beetles from Bukit Hampuan Forest Reserve, Sabah (10–14 May 2010).

	Species	Author	Family	Digital photo no.
1	Glenea elegans	Oliver	Cerambycidae	BHP1840
2	Macrotoma (Bandar) pascoei	Lansberge	Cerambycidae	BHP1383
3	Macrotoma (Bandar) ?fisheri	Waterhouse	Cerambycidae	BHP1394
4	Megopis marginalis	(Fabricius)	Cerambycidae	BHP1829
5	Neosarmydus costipennis	Fisher	Cerambycidae	BHP1567
6	Rhytidodera sp.		Cerambycidae	BHP1831
7	Epilachna sp.		Coccinellidae	BHP1598
8	Monochilus sp.		Coccinellidae	BHP1240
9	Curculionidae sp. 1		Curculionidae	BHP1447
10	Curculionidae sp. 2		Curculionidae	BHP1835, 1833
11	Elateridae sp. 1		Elateridae	BHP1421
12	Elateridae sp. 2		Elateridae	BHP1427
13	Elateridae sp. 3		Elateridae	BHP1430
14	?Eulichas sp.		Eulichadidae	BHP1415
15	Cyclommatus giraffa	Mollenkamp	Lucanidae	BHP1720, 1717
16	Dorcus thoracicus	Mollenkamp	Lucanidae	BHP1425
17	Odontolabis castelnaudi	Parryi	Lucanidae	BHP1408
18	Aceraius sp.		Passalidae	BHP1431
19	Chalcosoma moellenkampi	Kolbe	Scarabaeidae (Dynastinae)	BHP1236, 2020
20	Scarabaeidae sp. 1		Scarabaeidae (Dynastinae)	BHP1825
21	Hoplia sp.		Scarabaeidae (Melolonthinae)	BHP1698
22	Scarabaeidae sp. 2		Scarabaeidae (Melolonthinae)	BHP1565
23	Anomala sp.		Scarabaeidae (Rutelinae)	BHP1819
24	Fruhstoferia nigromuliebris	Nagai	Scarabaeidae (Rutelinae)	BHP1413
25	Scarabaeidae sp. 3		Scarabaeidae (Rutelinae)	BHP1558
26	Setenis sp.		Tenebrionidae	BHP1571

Appendix 5. Other insects from Bukit Hampuan Forest Reserve, Sabah (10–14 May 2010).

	Species	Author	Family	Digital photo no.
	Dragonflies			
1	Macromia westwoodii	Selys	Corduliidae	BHP1617
2	Pantala flavescens	(Fabricius)	Libellulidae	BHP1806
3	Neurothemis ramburii	Brauer	Libellulidae	BHP1239
4	Crocothemis sp.		Libellulidae	BHP1268
5	Orthetrum glaucum	Brauer	Libellulidae	BHP1225
6	Libellulidae sp. 1		Libellulidae	BHP1798
7	Libellulidae sp. 2		Libellulidae	BHP1185
	Cicadas			
1	Tacua speciosa	Illiger	Cicadidae	BHP1387
2	Platylomia viridimaculata	Distant	Cicadidae	BHP1576, 1574
3	Dundubia vaginata	Fabricius	Cicadidae	BHP1774
4	Dundubia rufivena	Walker	Cicadidae	
5	Tomaspididae sp. 1		Tomaspididae	BHP1196
6	Tomaspididae sp. 2		Tomaspididae	BHP1263
	Ant			
1	Mymicaria? subcarinata		Myrmicinae	BHP1453

