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Abstract: This paper investigates the effect of impeller diameter on the dynamic response of a cen-
trifugal pump using an inverse dynamic method. For this purpose, the equations of motion of the
shaft and the impeller are derived based on Timoshenko beam theory considering the impeller as
a concentrated mass disk. For practical modeling, the model of Jones and Harris is added to the
equation to include the effect of bearings. As a case study, the model is applied to a process pump
used in an oil refinery. Computing the eigenvalues of the model and comparing them with the natural
frequencies of the structure, the model updating of the problem is performed through an indirect
method. Three impellers with different diameters are applied to the updated model. The results
show that increasing the diameter of the pump impeller can increase the amplitude of vibration
up to 52% at critical speeds of the rotor. It is found that in addition to the hydraulic condition and
efficiency, the impeller diameter should be considered as an important factor in the selection of
centrifugal pumps.

Keywords: rotor dynamic; bearing; centrifugal pump; impeller diameter; Lagrangian equations

1. Introduction

Rotating machineries such as pumps, compressors, turbines, etc., play an important
role in many different industries. Accurate predictions of rotor system dynamic charac-
teristics are very important in the design of any type of machines. There have been many
studies relating to the field of rotor dynamic systems during the recent years. Engineers
have developed several new techniques about the dynamics of rotating machines.

The first recorded theory of rotor dynamics was in a classic paper of Jeffcott [1]. The
Jeffcott rotor model has been used to explain the whirling effect. It consists of a simply
supported flexible massless shaft with a rigid disc mounted at the mid-span. In the Jeffcott
model, the moments of inertia Ip and It are not considered. This is because there are no
gyroscopic moments exerted on the shaft. The disc is assumed to move in a plane that
is perpendicular to the shaft spin axis. By developments in the technology of rotating
machines, the rotational speed of rotors became higher, and so, the non-conservative
forces generated through the bearings of the rotor become considerable. To determine
the critical speeds in which resonance has occurred, it is necessary to know the natural
frequencies, mode shapes, and forced responses, which are caused by unbalancing in rotor
systems. Prohl studied the critical speed evaluation of a turbine shaft, and he suggested
the transfer matrix method [2]. The first application of the finite element method for a rotor
system was made by Ruhl and Booker [3]. In their study, the influences of the rotary
inertia, gyroscopic moment, bending, shear deformation, axial load, and internal damping
were neglected to simplify the model. The theory has been developed by considering the
rotary inertia, gyroscopic moment, and axial forces. Nelson and McVaugh extended this
to include gyroscopic effects. They derived the equations of motion for the shaft and the
effects of translational and rotary inertia and gyroscopic moments on it [4]. Erturka et al.
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presented an analytical method based on Timoshenko beam theory for calculating the
frequency response function (FRF) of a spindle–holder–tool combination. They proposed
a mathematical model and obtained the point FRF for a tool [5]. Subbiah et al. showed that
a rotor has certain speed ranges in which a large amplitude of vibration could occur. These
speed ranges are known as critical speed, which results in excessive rotor deflection [6].
Phadatare and Barun described a step forward in calculating the nonlinear frequencies
and resultant dynamic behavior of a high-speed rotor bearing system with unbalanced
mass. In this study, Fast Fourier Transform (FFT) analysis was established for finding
the fundamental frequencies of the rotor according to the variation of shaft diameter and
location of unbalanced mass [7]. Metsebo et al. have focused on the influence of the rotating
shaft on the dynamic of a rotor ball bearing system. They carried out a mathematical
modeling for the system considering the shaft as a Timoshenko beam [8].

Ball bearings are the essential elements of rotating machineries. So, the influence of
bearings on the performance of rotor-bearing systems is very important. El-Sayed derived
a set of equations for the stiffness of bearings using the Hertz theory and determined
the total deflections of inner and outer races caused by an applied load [9]. Tamura and
Tsuda performed a theoretical study about fluctuations of radial spring characteristics
of a ball bearing due to ball revolutions [10]. Many researchers also estimated bearing
stiffness by carrying out some experiments. Stone and Walford developed a rotor-bearing
test rig to estimate the bearing’s radial stiffness and damping by measuring the response
of the rotor [11]. Jairo et al. presented an experimental validation for a mathematical
modeling of ball bearing. In this model, the bearing was considered as a mass-spring-
damper system based on Hertz equations for contact deformation [12]. Xia sheng et al.
proposed a mathematical model for the stiffness of bearings, which is varying by speed.
They explained that the speed of a rolling bearing varies the stiffness of the bearing [13].
Zhang et al. investigated the effect of ring misalignment on the service characteristics of
ball bearing and rotor systems [14]. They improved a quasi-static model of ball bearing
considering the misalignment in its ring. Neisi et al. worked on the effect of off-sized
balls on contact stresses in a touchdown bearing [15]. Yi Qin et al. developed a dynamics
model for deep groove ball bearings with local faults based on coupled and segmented
displacement excitation [16]. Chandrasekaran et al. used computational fluid dynamic
(CFD) methods and mathematical modeling to investigate the impeller design parameters
on the effect of fluid follows in the centrifugal pumps [17].

The objective of this paper is investigation on the effect of impeller diameter on the
amplitude of vibration at critical speeds in an overhung centrifugal pump. Modeling of the
shaft and impeller is based on Timoshenko theory, and modeling of the bearing is based
on the work of Jones and Harris, which is added to the model of shaft simultaneously.
Then, numerical analysis for a real centrifugal pomp in the oil refinery has been done
based on the proposed model. It has shown that in addition of the effect of the geometrical
parameter of the shaft, the effect of the diameter of the impeller on the dynamical behavior
of the pump is very important.

The novelty of this research is the development of the mathematical model of the shaft,
impeller, and bearing simultaneously. Using this developed model, the effect of impeller
size diameter on the dynamic behavior of a centrifugal pump has been investigated, and it
has been shown that it is very considerable.

This paper includes four sections. In the first section, the literature has been reviewed
and the necessity of research has been recognized. In the second section, the model of
the system has been introduced and the equation of motion based on the energy method
has been derived by calculating the potential and kinetic energy of the system. In the
third section, the model of the bearing has been presented, and the governing equations of
motion for the ball bearing have been introduced. Finally, in the last section, the derived
equations have been used and solved.

For an actual centrifugal pump, the effect of impeller diameter on the amplitude of
vibration has been investigated.
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2. System Modeling

The rotor of a centrifugal pump is approximated by a simple model as shown in
Figure 1a. The model is composed of a shaft of length L and supported by two bearings
located at L1 and L2 along the shaft. u, v, and w reflect the displacement in the ex, ey, and ez
directions, respectively.
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The shaft is modeled as a Timoshenko beam. In this model, first-order shear defor-
mation theory with rotary inertia and gyroscopic effect has been considered. The shaft
rotates at a constant speed around its longitudinal axis. In addition, it has a uniform,
circular cross-section.

The equations of motion of the system are obtained using the Lagrangian equations as:

d
dt

∂T
∂

.
qn
− ∂T

∂qn
+

∂U
∂qn

= (Qnc)
T (1)

where T is the total kinetic energy of the system, U is the total potential energy of the
system, qn is the generalized coordinate and Qnc represents non-conservative forces that
are not directly related to the potential energy of the system. So, to derive the governing
equations of motion using Equation (1), one must calculate the kinetic and potential energy
of the system.

The total kinetic energy of a rotor system is estimated by the dynamic motion of the
shaft and disk [14].

T = Tdisk + Tsha f t (2)
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The kinetic energy due to the rotation of the disk is difficult to calculate. Therefore,
we assume that the disk is symmetric and rigid and has been fixed at the end of the shaft.
The motion of the disk can be defined as two superimposed rotations θx, θy and two
translational deflections u, v in directions ex, ey. So, the kinetic energy of the disk can be
expressed as:

Tdisk =
1
2

M
( .

u2
+

.
v2
)
+

1
2

It

(
.
θ

2
x +

.
θ

2
y

)
− IpΩ

.
θxθy +

1
2

IpLΩ2 (3)

where M is the mass of the rigid disk, It is the diametral mass moment of inertia, and Ip is

the polar mass moment of inertia. The term IpΩ
.
θxθy represents the gyroscopic effect, and

finally, the last term defines the kinetic energy due to the rotation of the disk.
The kinetic energy of the shaft involves the kinetic energy due to bending of the shaft,

effect of rotatory inertia, and gyroscopic effect. The kinetic energy of the shaft can be
derived as:

Tsha f t =
∫ l

0

1
2

ρsha f t A(
.
u2

+
.
v2
)dz +

∫ l

0

1
2

Jt(
.
θ

2
x +

.
θ

2
y)dz +

1
2

JpLΩ2 −
∫ l

0
IpΩ

.
θxθy dz (4)

where A is the cross-sectional area, ρsha f t is the density of the shaft, and Jt and Jp are the
diametric and polar inertia of the shaft, respectively. So, substituting Equations (3) and (4)
in Equation (2), the total kinetic energy of system has been obtained.

The potential energy of the system includes the strain energy due to the deformation
of the shaft (U1) and the strain potential energy due to the deflection of the bearing installed
on the shaft (U2) [12]:

U = U1 + U2. (5)

The strain energy of the shaft can be expressed as:

U1 =
1
2

∫ l

0
EI((

∂2u
∂2z

)2 + (
∂2v
∂2z

)2)dz +
1
2

∫ l

0
kGA

(
Φ2

x + Φ2
y

)
dz (6)

where E represents the modulus of elasticity, G is the shear modulus, and k is the shear
coefficient. In addition, A and I are the cross-section area and moment of inertia of the
shaft receptivity. In the above equation, the first term is related to the shaft bending, and
the second term is due to shear deformation. In addition, the potential energy caused by
bearing forces can be expressed as:

U2 = (−F1xu− F1yv)l1
+ (−F2xu− F2yv)l2

. (7)

Different forces work on the impeller as a consequence of the fluid. These forces
are non-conservative forces and are unknown, and they have been ignored for simplicity.
However, mass unbalance generates an additional centrifugal force that makes it possible
to calculate this non-conservative force. If the impeller is out of balance, the resulting
centrifugal force will induce the rotor to vibrate. When the shaft rotates at a speed equal
to the natural frequency, this vibration becomes large. Unbalance is defined by a small
mass mu situated at a distance du from the geometric center of the impeller, as shown
in Figure 2 [13].

The out of balance force at the end of the rotor is:

Fu = mu du Ω2. (8)

This rotating force can be resolved into two components in the x and y direction as:

Fu−x = mu du Ω2cosΩt
Fu−x = mu du Ω2sinΩt.

(9)
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It is assumed that the unbalance mass is in the x direction in the initial state. The
deflections in the x and y directions are expressed as:

u(z.t) = f (z)q1(t) = f (z)q1
v(z.t) = f (z)q2(t) = f (z)q2

(10)

where q1 and q2 are generalized independent coordinates and f (z) is the displacement
function that satisfies the boundary conditions of the system. As the rotor of the centrifugal
pump has simply supported at both ends, f (z) has been selected as [12]:

f (z) = sin
(

n.π
L2 − L1

z− L1

)
. (11)

The angular displacements θx and θy are assumed to be small. So, they are approx-
imated by the derivative of u and v with respect to the z-direction. Therefore, using
Equations (10) and (11), θx and θy have been expressed as:

θx(z.t) = − ∂u
∂z = − d f (z)

dz q1 = −g(z)q1

θy(z.t) = ∂v
∂z = d f (z)

dz q2 = g(z)q2.
(12)

To derive the equations of motion, the kinetic energy and the potential energy are
specified by generalized coordinates. So, using Equation (3), the kinetic energy of the disk
in generalized coordinates is expressed as:

Tdisk =
1
2

M f 2(L)
( .

q2
1 +

.
q2

2

)
+

1
2

Itg2(L)
( .

q2
1 +

.
q2

2

)
+

1
2

IpΩ2 + IpΩg2(L)
( .
q1q2

)
(13)

where

g(z) =
∂ f (z)

∂z
=

n π

(L2 − L1)
cos
(

n π

(L2 − L1)
z− L1

)
. (14)

In addition, Equation (4) in the generalized equation becomes:

Tsha f t =
1
2

ρA
∫ L

0
f 2(z)dz

( .
q2

1 +
.
q2

2

)
+

1
2

Jt

∫ L

0
g2(z)dz

( .
q2

1 +
.
q2

2

)
+

1
2

JpΩ2 + JpΩ
∫ L

0
g2(z)dz

( .
q1q2

)
. (15)

Likewise, using the generalized coordinates, the potential energy in the generalized
coordinate will be:

U = 1
2 EI

∫ L
0 h2(z)dz

( .
q2

1 +
.
q2

2

)
+ 1

2 KGA
∫ L

0

(
β2

x + β2
y

)
dz +

(
−F1x q1 − F1y q2

)
δ(z− L1)

+
(
−F2x q1 − F2y q2

)
δ(z− L2)

(16)
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where δ represnts the dirac delta function and

h(z) =
∂ f (z)

∂z
= −

(
n π

(L2 − L1)

)2
sin
(

n π

(L2 − L1)
z− L1

)
. (17)

In addition, substituting the displacement function into the kinetic energy of the mass
unbalance expression of Equation (11) gives:

Tu ∼= mudΩ f (L)
( .
q1 cosΩt− .

q2 sinΩt
)
. (18)

Ball Bearing Model

In this section, a mathematical model for calculating bearing stiffness is proposed
by analyzing the equations in the bearing dynamic model, which is based on Jones and
Harris’s efforts [14]. This mathematical model aims to give a comprehensive consideration
of the nonlinear stiffness of the ball bearing, and it can be seen that the bearing stiffness
is critically dependent on the preloading, g, of the rolling elements. In case of rolling
element bearings, the elastic deformation takes place at both the inner raceway and the
outer raceway with the rolling element. Based on the Hertzian contact theory, the relation
between load F and deflection is [15]:

F = kpδ3/2
p (19)

where δp is the contact deformation and kp is a load–deformation constant for a single
point contact (either at the inner or outer raceway). If the ball and raceway are made of
steel, then [16,17]:

kp = 2.15× 105(∑ ρ
)− 1

2 (δ∗)−3/2 N
mm1.5 (20)

where δ∗ is the dimensionless contact deformation and ∑ ρ is the curvature sum [14]. So,
one can write the stiffness of the inner and outer ring contact as:

kpi = 2.15× 105(∑ ρi)
− 1

2 (δ∗ i)
−3/2 N

mm1.5

kpo = 2.15× 105(∑ ρo)
− 1

2 (δ∗o)
−3/2 N

mm1.5

(21)

where
∑ ρi =

1
Db

(
4− 1

fi
+ 2γ

1−γ

)
∑ ρo =

1
Db

(
4− 1

fo
+ 2γ

1−γ

)
and

fi =
ri
Db

fo =
ro

Db
γ =

D
Dm

Dm =
1
2
(di + do) ∼=

1
2
(D + d).

In the above equations, subscripts i and o represent inner and outer raceways and
Db is the ball diameter. In addition, Dm is the pitch diameter, di and do are the inner and
outer ring raceway contact diameter, and ri and ro are the inner and outer raceway groove
radius, respectively.

The total deformation, δ, at a single rolling element location is given by:

δ = δpi + δpo = (
1

kpi
+

1
kpo

)F
2
3 . (22)

Equation (19) can be rewritten as:

F = kpioδ
3
2 (23)
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where

kpio =
kpikpo

(k
2
3
pi + k

2
3
po)

3/2 .

kpio is the load–deformation constant for two point contacts of a ball with raceways.
To calculate the deformations, the conventions shown in Figure 3 are used. Consider-

ing the presence of radial clearance, the force produced by every spring in the horizontal
and vertical direction can be obtained [18]:

Fx = kpio(g + ucosψi + vsinψi)
3
2 cosψi

Fy = kpio(g + vcosψi + vsinψi)
3
2 cosψi

(24)

where g is the radial preload between the ball and races, u and v are the displacements of
the moving ring in the x and y directions, respectively, and ψi is the angular position of the
i th element.
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𝐴 = ෍(𝑔 + 𝑢𝑐𝑜𝑠𝜓௜)ଵଶ௭
௜ୀଵ  𝑠𝑖𝑛ଶ𝜓௜ 

𝐵 = ෍(𝑔 + 𝑢𝑐𝑜𝑠𝜓௜)ଵ/ଶ௭
௜ୀଵ  𝑠𝑖𝑛𝜓௜ 𝑐𝑜𝑠𝜓௜ 

𝜓௜ = 𝜋𝑍 (2𝑖 − 1)         𝑖 = 1,2,3, … . 𝑧 

(25)

Figure 3. Bearing model.

Finally, the bearing stiffness can be simplified to [15]:

k(u) = kpio
z
∑

i=1
{g + ucosψi}

1
2 {cosψi − B

1·5A sinψi}cosψi

A =
z
∑

i=1
(g + ucosψi)

1
2 sin2ψi

B =
z
∑

i=1
(g + ucosψi)

1/2 sinψi cosψi

ψi =
π
Z (2i− 1) i = 1, 2, 3, . . . .z

(25)

where Z is the number of rolling elements.
It can be seen that the bearing stiffness is critically dependent on value of the preload-

ing g of the rolling elements.

3. Numerical Solution

The model is applied for an installed pump (P-502B) in a Kermanshah oil refinery in
Iran. This centrifugal pump and its impeller are shown in Figure 4.
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Figure 5. The schematic diagram of the pump rotor (P-502B).

The shaft of the mentioned pump is supported by two bearings SKF7308 and SKF6307,
which have been installed in distance L1 = 0.125 m and L2 = 0.521 m respectively, see
Figure 1a. In addition, three impellers with different diameters have been installed at the
end of the shaft.

The characteristics of shaft and impeller are shown in Tables 1 and 2, respectively.

Table 1. Characteristics of shaft P-502B.

Parameter Value

Material AISI4140

Length (m) 0.7

Equivalent diameter (m) 0.036

Young’s modulus (N/m2) 2.10 × 1011

Density (kg/m2) 7850

Mass (kg) 5.6

Polar inertia of mass (kg-m2) 0.000939

Diametric inertia of mass (kg-m2) 0.2373

Moment of inertia
(
m4) 8.24 × 108
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Table 2. Characteristics of impeller P-502B.

Parameter Value

Material GG25

Type closed

Equivalent thickness (m) 0.12

Diameters (m) 0.254–0.281–0.31

Density (kg/m2) 7150

Mass (kg) 4.3–5.2–6

Polar inertia of mass (kg-m2) 0.03467–0.05231–0.06153

Diametric inertia of mass (kg-m2) 0.017338–0.02422–0.03283

Bearing Stiffness of P-502B

To obtain the stiffness of the bearing, knowledge of the properties is necessary. The
general properties of these ball bearings are shown in Table 3.

Table 3. Dimensional specifications and extracted parameters in bearings.

SKF6307 SKF7308

Parameter Value value

Dm (mm) 57.5 65

Db (mm) 13.5 15

Z 8 8

g (mm) 0.051 0.053

ri ro (mm) 41.2 46.35

γ 0.23 0.23

fi 3.05 3.08

fo 3.05 3.08

∑ ρi (mm−1) 0.31 0.28

∑ ρo (mm−1) 0.24 0.22

F(ρ)i 0.216 0.215

F(ρ)o 0.212 0.211

δ∗i 0.9865 0.9866

δ∗o 0.9869 0.9871

kpi (N/mm1.5) 3.940× 105 4.146× 105

kpo (N/mm1.5) 4.472× 105 4.673× 105

kpio
(
N/mm1.5) 1.301× 105 1.342× 105

Limited Speed (RPM) 12,000 10,000

It can be seen that the bearing stiffness is critically dependent on the value of preload-
ing force g for the rolling elements.

Substituting the above values in Equation (25), the values of stiffness in the x and y
directions have been obtained as:

Bearing stiffness for SKF6307:

k(x) = k(y) =
(

1.101− 94.6x2
)
× 105 N

m
. (26)



Vibration 2021, 4 126

Bearing stiffness for SKF7308:

k(x) = k(y) =
(

1.13− 97.8x2
)
× 105 N

m
. (27)

Finally, using the Equations (3), (4), (6), (7) and Lagrangian Equation (1), the mathe-
matical equation for the case study can be expressed as:[

10.86 0
0 10.86

][ ..
q1..
q2

]
+

[
0 0.902Ω

−0.902Ω 0

][ .
q1.
q2

]
+

[
2.44× 107 + 125× 105q1

2 0
0 2.44× 107 + 125× 105q2

2

][
q1
q2

]
=

[
28.5× 10−5sinΩt 0

0 28.5× 10−5cosΩt

]
.

(28)

The above equation is a lumped parameter model that can be described as:

M̃
..
q−ΩD̃

.
q + K̃q = Q̃nc. (29)

Looking at Equation (28), one can see that the damping matrix is dependent on the
angular velocity of the shaft. The stiffness matrix is implicitly dependent on the amount
of amplitude of vibration and so, the equations of motion are nonlinear equations. This
will lead to a complicated model. So, for simplicity, normal clearance has been considered
to make the value of the stiffness coefficient independent from the deflection, and so,
the equations of motion will become linear ordinary differential equations. According to
the SKF General catalog, hence g = 0.051 and g = 0.053 used for SKF6307 and SKF7308
respectively, the equivalent stiffness for bearings in a normal clearance case have been
derived as follows:

k(r) = 1.040× 105 N
m for SKF6307

k(r) = 1.066× 105 N
m for SKF7308

To obtain the critical speed of the rotor, the eigenvalues and thus the natural frequen-
cies of the system must be determined. To do this, a slightly different but equivalent
approach can be used to combine the pair in Equation (29). By letting α = q2 − jq1 and
subtracting j× in the second Equation (29) from the first Equation (29), we have [19]:

M̃
..
α− jΩD̃

.
α + K̃α = 0. (30)

Now, we can solve this equation by letting α = α0ejΩt and taking the positive root to
obtain backward critical speed. If we let α = α0e−jΩt in which Ω is the forward critical speed,
one must add the out of balance moments to the system to determine the response. Thus:

M̃
..
α− jΩD̃

.
α + K̃α = Fu. (31)

Likewise, by α = q2− jq1 and subtracting j× in the second equation from the first, the
rotor amplitude is calculated [19]. In addition, to determine the effect of impeller diameter,
the various values of this parameter have been considered. To do this procedure, a code in
MATLAB software has been written, and the following outputs shown in Figures 6–8 have
been derived.

The amplitudes of the rotor response plots for all pump impellers that are recom-
mended by pump manufacture are shown in Figures 6–8. The summary of the results is
shown in Table 4.
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Table 4. Effect of impeller diameter on the amplitude of vibration and critical speed of the rotor.

Diameter of Impeller (mm) Amplitude of Vibration (m) Critical Speed (Backward)
(Rpm)

Critical Speed (Forward)
(Rpm)

254 0.198 13,480 14,646

281 0.380 12,909 14,437

310 0.401 12,493 14,184

So, one can see that by increasing the impeller diameter, the amplitude of vibration at
critical speed will be increased up to 52%, while the value of critical speed will decrease. The
value of amplitude of vibration shown in this table has been obtained without considering
the structural damping of the shaft, bearings, and impeller and also the effects of fluid
flow in the pump. So, in reality, these values are much smaller than the tabulated values
in Table 4.

4. Conclusions

In this paper, the equations of motion for the shaft of a centrifugal pump have been
derived using Lagrangian equations and based on Timoshenko beam theory and Jones and
Harris [20,21] modeling for bearings based on Hertzian theory for rolling element [22,23].
By these equations, it is possible to define a lumped parameter model for the system and
determine the amplitude of rotor in critical speeds [12,24]. The solutions of these equations
for an applied case study show that as the impeller diameter increases, the amplitude
of vibration at critical speeds increases, too. In this case study, by replacing the impeller
diameter in the equations with a larger size (impeller diameter 0.256 m replaced with
0.32 m), it is shown that the amplitude is approximately increased by 52% in the critical
speed. So, as the impeller trimming or impeller exchange is a general method for the
maintenance in plants, it must be considered that the bigger diameter will yield more
amplitude of vibration at critical speed.

It must be considered that modeling of the shaft, bearings, and impellers with details
and assembling them and then conducting finite element analysis is very complex, and
as the case study is a process pump in an oil refinery that works 24 h a day, stopping
the production line and then measuring, modeling, and conducting FEM analysis is very
expensive. On the other hand, the purpose of this manuscript is to introduce an analytical
model for all the essential rotary parts of a centrifugal pump in detail and then conduct
a sensitive analysis for the effect of impeller diameter on the critical speed of it inversely.
For this purpose, the dynamic inverse solution is very suitable when there are practical
limitations for FEM analysis, such as it being very complex and expensive.
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