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Abstract: In this paper, the three-layer model of ballasted railway track with discrete supports is
analyzed to access its applicability. The model is referred as the discrete support model and abbreviated
by DSM. For calibration, a 3D finite element (FE) model is created and validated by experiments.
Formulas available in the literature are analyzed and new formulas for identifying parameters of
the DSM are derived and validated over the range of typical track properties. These formulas are
determined by fitting the results of the DSM to the 3D FE model using metaheuristic optimization. In
addition, the range of applicability of the DSM is established. The new formulas are presented as a
simple computational engineering tool, allowing one to calculate all the data needed for the DSM
by adopting the geometrical and basic mechanical properties of the track. It is demonstrated that
the currently available formulas have to be adapted to include inertial effects of the dynamically
activated part of the foundation and that the contribution of the shear stiffness, being determined
by ballast and foundation properties, is essential. Based on this conclusion, all similar models that
neglect the shear resistance of the model and inertial properties of the foundation are unable to
reproduce the deflection shape of the rail in a general way.

Keywords: ballasted track; structural vibrations; finite element method; discrete support model;
metaheuristic optimization; numerical calibration

1. Introduction

Numerical models of the railway track are fundamental tools for the study of their
dynamic behavior, with implications for the safety and comfort of rail transport. The
importance of these models has increased alongside the speed of the railway vehicles and
capacity of the network over the last decades.

The use of 3D FE models is common practice, but reduced models are still relevant,
due to simplicity of implementation and results interpretation, and low computational cost.
Despite the wide use of the reduced models, there are still relatively few studies about their
overall applicability and how to select appropriate parameters based on the properties
of the railway track. Most works determine the necessary parameters in a way to match
the response of the model to experimental measurements from the track. This means that
the range of applicability of the methods developed and the conclusions reached in these
works are always, to some extent, limited.

This paper provides a detailed analysis of the viability and applicability of the three-
layer discrete support model [1], for simplicity referred to as the discrete support model
and abbreviated by DSM, expanding on the work presented in [2] and analyzing the
formulas proposed in [3]. The DSM is a 2D model composed of a beam, representing the
rails, connected to sets of springs, dampers and masses that represent the support elements
of the track: the fastening system, sleepers, ballast, and subgrade. The DSM has significant
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advantages over the more detailed 3D FE model, which presents a high computational cost,
large number of results to analyze, the need for special boundary conditions, necessity for
high level of discretization, etc. Given its computational efficiency, the DSM and other, even
simpler models, are often used to study complex phenomena that arise in different railway
transportation problems. Examples of published works dealing with specific railway
problems include: (i) modelling the vehicle–track dynamic interaction on plain line [4–13]
but also in the case when the line is passing over bridge [14] or crossing a transition
zone [15,16]; (ii) assessing and diagnosing the deterioration of track components [17–22],
including switches and crossings [23–25], rail wear/corrugation [26–29] and hanging
sleepers [30,31]; (iii) studying other problems related to wheel–rail interaction, including
the effect of wheel flats [32–37] and rolling noise [38–42].

Published works with the aim of defining the properties of reduced models with
discrete supports consider the ballast pyramid model referred to in [43,44] and the Saller
assumption from 1932 which can be consulted in [45]. The pyramid model is further
detailed in [4], under the name stress cone model, where it is used not only for the definition
of the vertical ballast stiffness, but also for the identification of the oscillating ballast mass.
Further improvements include the superposition of the cones between adjacent sleepers, i.e.,
in the longitudinal direction [3]. Nevertheless, these works have two notable limitations:
(i) they do not propose theoretical expressions for all the elements of the model, (ii) they
each validate their models and theoretical expressions by comparison with experimental
measurements of a single railway track, and therefore cannot prove that they are widely
applicable to a range of different track properties. The two limitations are particularly
serious when considered together; since some parameters of the models are obtained by
fitting its results to experimental measurements for a single set of track parameters, it is not
possible to unequivocally determine if the other parameters are intrinsic to the physical
phenomena, or if the good approximation is obtained simply by virtue of the fitting process.

Therefore, the present work aims to provide a detailed analysis of the viability and
applicability of the DSM, to derive formulas for its components that are still missing and to
enhance formulas that are already available. This is achieved by fitting the DSM steady-
state vertical displacement of the rail under moving force to reference solutions that cover
a wide range of representative values of the track. The reference solutions are obtained
by a linear elastic 3D FE model, which is validated by the experimental measurements
published by Paixão [46]. The use of a linear elastic model is appropriate because the
focus is on the track’s short-term dynamic behavior. Analyzing the deflection shape of
the rail is also adequate, because obtaining a good approximation of the steady-state rail
displacement is a necessary prerequisite for studying more complex phenomena.

The DSM is fitted to the reference solutions using genetic algorithms, first individually
for each combination of track parameters, to evaluate its ability to approximate the results
of the 3D FE model and to define proportionality relationships between the properties of
the track and those of the DSM. After that, optimization is conducted simultaneously for
various combinations of track parameters. Based on these results, theoretical expressions
for all parameters of the DSM are derived as functions of the geometry and mechanical
properties of the track. It is shown that the currently available formulas have to be adapted
in a way to include inertial effects of the dynamically activated part of the foundation and
that the contribution of the shear stiffness which must account not only for ballast but also
for foundation, is essential. This is in agreement with [47,48], where it is shown that if the
shear stiffness of the model is neglected, then the critical velocity of a uniformly moving
force tends to zero with the dynamically activated mass of the model, which is not physical.
With this conclusion, all similar models that neglect the shear resistance of the model and
inertial properties of the foundation are unable to reproduce the deflection shape of the
rail in a general way. In addition to these new conclusions, the stress cone formulas are
improved by incorporating the superposition of the cones in the lateral direction. All
formulas are presented as a simple computational engineering tool, allowing the reader to
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calculate all the data needed for the DSM simply by adopting the geometrical and basic
mechanical properties of the track constituents.

This paper is organized in the following way: Section 2 describes the DSM and reviews
the relevant literature, Section 3 presents the 3D FE model and its validation, Section 4
is dedicated to the calibration of the DSM based on the results of the 3D FE model and
derivation of the theoretical expressions and Section 5 summarizes the main conclusions.

2. DSM

Regarding the evolution of the reduced models, it is worthwhile to mention that
discrete supports were introduced in [49] to remove the limitations of the Winkler and
Pasternak models, which consist of a beam continuously supported by an elastic or vis-
coelastic foundation. Newton and Clark [50] were the first to use the abbreviation DSM and
to consider the sleepers as discrete mass elements, which separated the stiffness and damp-
ing introduced by the fastening system from the one due to the ballast bed and subgrade,
creating two layers. In [51], another set of masses that represent the ballast were introduced,
and therefore, the stiffness and damping of the ballast and of the subgrade/foundation
got also separated, creating three layers. Zhai and Sun [4] then introduced springs and
dampers connecting consecutive ballast masses to model the shear behavior of the ballast,
which already cover all the DSM components, as depicted in Figure 1.
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Figure 1. DSM, based on [4].

The rail is modelled as a Timoshenko beam, for which the bending (EI) and shear
stiffness (GA∗), and the mass per unit length (m) are well-known. Likewise, the fastening
system stiffness and damping coefficient (Kpad and Cpad) can be determined experimentally.
The sleepers experience very little deformation during the normal use of the track, so
they are modelled as rigid elements that only contribute with their mass (Msleep), which is
well-defined. The remaining unknown parameters are the vertical stiffness and damping
coefficient of the ballast (Kb and Cb), the vertical stiffness and damping coefficient of the
subgrade (K f and C f ), the shear stiffness and damping coefficient of the ballast (Kw and Cw)
and the dynamically activated ballast mass (Mb).

In [3,4], formulas for calculation of the vertical stiffness of the ballast are proposed
as an adaptation of the stress cone (pyramid) method, which assumes that the stresses
are transmitted from the effective load-bearing area under the sleepers to the ballast, and
then dissipate at a constant angle, as shown in Figure 2a. The effective load-bearing area
under the sleepers is determined in [45], based on experimental observations and simple
geometrical considerations, requiring only the sleeper’s dimensions and the track gauge.
Then, the vertical stiffness Kb can be determined as a function of a distribution angle αb,
the Young modulus of the ballast and its depth. In [43], a reduction factor for the vertical
stiffness due to superposition of stress cones of 0.5 was proposed based on experimental
observations. In [3], superposition of the adjacent stress cones in the longitudinal direction
is introduced exactly. The cone volume such defined is then used for the estimation of the
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dynamically activated ballast mass, Mb. The area of the base of the stress cone is further
used to calculate the foundation vertical stiffness, K f , but for this, the experimentally
determined subgrade reaction modulus must be known.
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Figure 2. Stress cone load distribution in the ballast, adapted from [3]: (a) without superposition; (b) with superposition.

No functional dependence is proposed for all damping coefficients (Cb, C f and Cw),
for the shear stiffness of the ballast (Kw) and, in fact, also for the foundation stiffness K f .
There is also no justification for the value of the distribution angle αb. It is therefore the
objective of the present work to propose general formulas for all components of the DSM
without the necessity to call on experimental data. Alongside this, the range of applicability
of the DSM is obtained. Contrary to the arrangement given in Figure 1, it is proven that the
dynamically activated part of the foundation must be added to the ballast mass and that
the shear stiffness of the ballast must be increased by the contribution from the foundation
soils. If this is not respected, then the DSM is unable to reproduce the deflection shape of
the rail in a general way.

3. Three-Dimensional Model

To obtain the reference results necessary to calibrate the DSM, a 3D FE model of the
railway track is developed. This model has linear elastic behavior and can be used to obtain
static and dynamic vertical displacements in the rail. It is implemented using the ANSYS
parametric design language [51], so the model can be generated in a fully automatic way
for each set of parameters.

Static, modal and transient analyses are used to define the necessary discretization
and which type of boundary conditions (BCs) are suitable to the problem in study. The
static and modal analyses are necessary to validate the stiffness component of the BCs.
The 3D FE model is validated by modelling an existing railway track for which the rail
displacements due to a train passage are available in [46].

The sleepers, ballast and subgrade are modelled by brick and wedge solid elements,
and beam elements are used for the rail and discrete spring–damper elements in the three
orthogonal directions simulate the fastening system. The Timoshenko beam has the cross-
section properties of a 60E1 rail profile [52] and shear factor of 0.4 as in [5]. The sleepers
are spaced by 0.6 m and their geometry is based on the DW post-tensioned mono-block
concrete sleepers used by the Portuguese railway manager, I.P. S.A. [53,54], but altered
to achieve a regular mesh (the following parameters in m are used: length 2.6, bottom
width 0.3, top width 0.2 and height 0.22). The moment of inertia is approximately the
same as the real section, and the change in volume is corrected by applying a factor to the
mass of the material of 0.86. Another simplification is that no loss of contact is possible
between distinct materials, however, in the absence of sudden changes in stiffness or other
irregularities, no loss of contact occurs anyway. Symmetry along the vertical plane parallel
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to the rails (the xy-plane) is assumed, reducing the size of the model to half, as seen in
Figure 3. The shoulder width of 0.5 m and slope 1:2 are assumed for the ballast layer.
Two thicknesses will be used of 0.3 and 0.6 m, leading to the bottom width of 4.8 and
6 m. The subgrade is discretized using a regular orthogonal mesh. The regularity of the
mesh simplifies the process of implementing BCs and avoids spurious reflections between
elements of different sizes [55]. Preliminary tests have also shown that the BCs perform
worse at the interface between different element sizes. Convergence studies for static,
dynamic and transient analyses led to the choice of the mesh: rail (x) 0.05 m; longitudinal
direction (x) 0.075 m, lateral (z) and vertical direction except for sleepers (y) 0.1 m, along
sleeper height (y) 0.055 m.
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Figure 3. 3D FE model of the railway track.

The subgrade depth can be defined as the depth at which a significantly rigid substrate
is found, or as a reasonable depth after which the deformations due to surface loads are
negligible (the so-called active depth of the soil [56,57]). A great variety of such values
can be found in the literature: some adopt values of the order of 3 m [58,59], while others
consider much higher values, from 10 m [60,61] to 50 m [62–64] and as high as 70 m [65].
Given this variability, five different depths of the subgrade (hs) are studied: 3, 6 and 9 m
(relatively shallow subgrade), 25 m (an average depth) and 50 m (a high depth). Not
all the depths are considered for all the different analyses, as will be discussed in the
relevant section.

All materials are assumed to have linear elastic behavior, since the purpose of the
model is to analyze short-term behavior due to vehicle passage. Besides the elastic com-
ponents, there are discrete linear viscous dampers in the fastening system. No material
damping was considered in the ballast and subgrade, to avoid damping the dynamic
response. The material properties of the rail and sleepers are well defined, since they are
manufactured components that follow the relevant standards [53,54]. The properties of
the ballast and subgrade, on the other hand, show great variability across the literature,
particularly the Young modulus (see Rodrigues [66]), which generally has the greatest
influence on the short-term response of the track. Three values of the Young modulus were
chosen for the ballast and subgrade, which cover the relevant range found in the literature
while excluding extreme values that are not representative of typical railway tracks in good
condition. Table 1 summarizes these values, the most typical values of Poisson’s ratio and
mass density and the properties of the sleepers and rail.
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Table 1. Elastic material properties for the three-dimensional railway model.

Property Rail Sleeper Ballast Subgrade

Young’s modulus [MPa] 210·103 38·103 50,100,150 50,100,150
Poisson’s ratio 0.3 0.2 0.25 0.35

Density [kg/m3] 7850 2064 1 1750 1900
1 Modified by correction factor.

The range considered for Young’s modulus of the ballast may be considered large, but
it was justified by extensive literature search and by summarizing values from more than
40 sources. The histogram for ballast Young’s modulus, Poisson’s ratio and density are
presented in Figure 4.
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(c) density.

For the properties of the fastening system, the Vossloh Zw687a EVA rail pad with
direct fastening is used, to match IP S.A. [54]. In agreement with [67], the static stiffness
of 1300 MN/m and 100 MN/m, dynamic stiffness of 3550 MN/m and 280 MN/m and
damping coefficient of 36 kNs/m and 10 kNs/m were used, with the first value reflecting
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the vertical and the second value the lateral and longitudinal directions, respectively
(see [66] for more details).

In regard to the elastic part of the BCs, the normal stiffness of 4G/r and tangential
stiffness of 2G/r is used at the lateral surfaces, as derived for spherical waves in [68,69],
because they were found to work better than the ones derived for the cylindrical waves
that were used in [70]. The bottom boundary is considered either fixed or Eoed/h and G/h
are used for the normal and tangential stiffness, respectively, as in [70]. Here, G stands
for the shear modulus, r for the distance from the source, Eoed is the oedometric modulus
and h is the depth of the foundation not being modelled. At all (non-fixed) boundaries
damping coefficients of ρcp for normal and ρcs for tangential direction, as in [68–71] are
used. Here, ρ is the density and cp, cs, are the velocity of propagation of pressure and shear
waves, respectively.

The model was tested for different combinations of properties and showed good
convergence for the mesh specified for static displacement, the 10 first natural frequencies,
the transient response to a pulse load and to a moving load at velocities of 50 and 100 m/s.
Finally, the model was validated by comparison with results published in [46], where the
measured vertical vibrations of a railway line in Portugal due to the passage of a train at
220 km/h are compared to the results of a 2D FE model. 66 kN per wheel is used in the
front bogie. By adapting the properties of the 3D FE model developed for the purpose of
this paper, the vertical displacements seen in Figure 5 were obtained.
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Figure 5. Vertical displacement of the rail: comparison between experimental measurements, fitted
numerical results (2D) from [46] and numerical results (3D) obtained here; (a) full vehicle; (b)
first bogie.

It can be concluded that the 3D FE model provides a good approximation to the
experimental results, particularly when taking into account the variability of the track
properties and the random nature of the dynamic response for high frequencies due to
the short-wave irregularities of the rails and wheels. These results also confirm that the
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simplifications introduced in the model do not significantly impact its applicability, namely,
the assumption of linear elasticity and the use of moving forces.

The input data for the 3D FE model are taken from [46]. Besides the typical properties
related to the rail, rail pads and sleepers, there are other materials characterized by its
thickness, Youngs’s modulus, density and Poisson’s ratio: the ballast layer (0.3 m, 130 MPa,
1530 kg/m3, 0.2), sub-ballast layer (0.3 m, 200 MPa, 1935 kg/m3, 0.3), capping layer (0.2 m,
2820 MPa, 1935 kg/m3, 0.3), embankment soils (~7 m, 80 MPa, 2040 kg/m3, 0.3) and
natural foundation (~3.5 m, 300 MPa, 2040 kg/m3, 0.3). The depth of the embankment soils
and the stiffness of the natural foundation in relation to that of the former were deemed
high enough that the latter can be considered as a rigid substrate, therefore subgrade was
implemented with (7 m, 80 MPa, 2040 kg/m3, 0.3) because the capping layer, having low
thickness, does not influence the equivalent stiffness much. As far as the ballast layer, as the
generic model used for optimization has only one layer, (0.6 m, 150 MPa, 1530 kg/m3, 0.2)
was implemented, where 150 MPa corresponds to an equivalent modulus obtained by
considering the two layers characterized by equivalent springs connected in series.

4. Optimization

The optimization is performed using genetic algorithms (GA), which, being a heuristic
method, provides no guarantee that the solution found is the global optimum. Therefore,
several independent runs are necessary to guarantee the stability of the results obtained.
In what follows, only stable results will be shown for each set of optimization runs, for
the sake of brevity. For all optimization runs, the following parameters are used: the
population consists of 100 individuals, the number of generations is 20, the mutation rate
is 1% and an elite of two individuals is kept between generations (see [72] for definitions).
The objective function Φ is equal to the L2-norm of the difference between the rail displace-
ments resulting from the DSM and from the 3D FE model, divided by the L2-norm of the
displacement obtained by the 3D FE model. Therefore, Φ can theoretically reach zero when
both deflection shapes are identical.

The philosophy behind the optimization is the following: firstly, dependence on basic
mechanical properties is determined, identifying the proportionality factors; secondly,
mechanistic expressions are used to specify these proportionality factors in terms of some
geometric or similar specifications of the model. This is very important because the solution
of the optimization problem is not unique, i.e., several combinations of parameters can
lead to practically identical rail deflection shapes, but for some of those solutions, the
parameters have no physical meaning. Expressing the proportionality factors in terms of
some geometric parameters impose natural limits on the design space and consequently
guarantee the obtainment of physically admissible values.

Besides this, the optimization is divided in two steps. First, the stiffness parameters
characterizing the DSM are determined from the static analysis (v = 0 m/s). Then, a
dynamic analysis (v = {50, 100}m/s) is used to determine damping and mass parameters.
In addition, it is also important to distinguish the individual and combined optimizations.
For the individual optimization, a unique set of the discrete values of the parameters is
selected and the objective function Φ is used as specified above. For the combined optimiza-
tion, some parameters are unique (fixed) while others assume all possible combinations.
Then the objective function is defined as Φ = max

i
Φi, where i identifies the particular

combination.
As specified in previous section, the discrete values selected for variation are:

• The depth of the ballast (hb = {0.3, 0.6}m);
• The Young modulus of the ballast (Eb = {50, 150, 300}MPa);
• The depth of the subgrade (hs = {3, 6, 9, 25, 50}m);
• The Young modulus of the subgrade (Es = {50, 100, 150}MPa);
• The load velocity (v = {0, 50, 100}m/s).

Since the analysis is linear and velocities are mostly subcritical, the smooth evolution
of the response on all parameters can be assumed allowing for interpolation. For the fixed
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values of the Poisson ratio and density, the lowest velocity of propagation of Rayleigh
waves that is considered is approximately 92.3 m/s in the subgrade, which means that the
load velocity of v = 100 m/s is supercritical in this case.

4.1. Identification of Dependencies on Mechanical Properties
4.1.1. Stiffness Parameters (Static Solution), Individual Optimization

The parameters to be determined (compare with Figure 1) are Kb, Kw and K f . First,
the individual optimizations are performed, to establish some general trends. Each of the
18 possible combinations of Eb, Es and hb are assumed separately, while hs is kept at a
constant value of 6 m. The following observations were made:

• Φ is small for all combinations (1%–4%), so the DSM can adequately approximate the
3D FE model solution for a static load.

• The optimum value of K f varies linearly with Es and has the greatest influence on Φ.
• The optimum value of Kw varies significantly with both Eb and Es (and therefore with

the respective shear moduli, Gb and Gs), with the latter having a stronger influence,
thus the resulting optimum value of Kw can be suitably approximated using a linear
combination of Gb and Gs.

• Above a certain limit, the value of Kb does not have a significant impact on Φ, and so
the optimum values are spurious, with no clear dependence on Eb, Es or hb.

Although no clear conclusions can be drawn as regarding Kb, further analyses will
show that the formula proposed in [3] provides a good approximation. Therefore, taking
also into account the observations above, the following relations are proposed and will be
used in the combined optimization:

Kb = fK,bEb
K f = fK,sEoed

s
Kw = fK,w,bGb + fK,w,sGs

(1)

where Eoed
s is the oedometric modulus of the subgrade. The proportionality factors

( fK,b, fK,s, fK,w,b, fK,w,s) are in meters.

4.1.2. Stiffness Parameters (Static Solution), Combined Optimization

The static solution is optimized for all possible combinations of Eb and Es simulta-
neously, while hb is considered unique and hs are grouped in two sets: a typical range
hs = {6, 25, 50} m and a shallow range hs = {3, 6, 9} m. Some results can be presented
for all three depths from the set, some have to be separated, as shown in Table 2. For the
former set, the reference results of the 3D FE model were obtained using the elastic BCs at
the bottom, so that only a fraction of the subgrade depth had to be modelled, while for the
latter, the full subgrade depth was modelled with a fixed bottom boundary. The results of
four proportionality coefficients from Equation (1) are summarized in Table 2.

Table 2. Optimum values for the static case in combined optimizations.

hs = {6,25,50} m hs = {3,6,9} m

Parameter hb = 0.3 m Parameter hb = 0.3 m Parameter hb = 0.3 m

fK,b [m] 1.911 1.483 fK,b [m] 1.956 1.349
fK,s,6 [m] 0.215 0.221 fK,s,3 [m] 0.329 0.346
fK,s,25 [m] 0.151 0.137 fK,s,6 [m] 0.209 0.225
fK,s,50 [m] 0.151 0.140 fK,s,9 [m] 0.173 0.183
fK,w,b [m] 0.250 0.722 fK,w,b [m] 0.109 0.499

fK,w,s,6 [m] 3.674 3.751 fK,w,s,3 [m] 2.807 3.856
fK,w,s,25 [m] 4.920 6.398 fK,w,s,6 [m] 4.175 5.202
fK,w,s,50 [m] 5.033 6.906 fK,w,s,9 [m] 5.078 6.872

Φ 2.4%–5.7% 3.4%–5.5% Φ 1.7%–4.9% 1.7%–6.5%
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Some qualitative observations are listed below:

• fK,b decreases as hb increases, but not as much as for a purely inversely proportional
relation, which supports the stress cone theory;

• fK,s does not change significantly with hb, which suggests that superposition of the
stress cones occurs at a relatively shallow depth (see Figure 2);

• fK,s decreases when hs increases, but is stays nearly constant from 25 to 50 m, which
suggests that the relation between K f and hs is asymptotic in nature;

• fK,w,b increases with hb at a rate higher than direct proportionality;
• fK,w,s increases with hs, particularly in the shallower range, but not as much from 25

to 50, again suggesting an asymptotic relation;
• fK,w,s also increases with hb, in some cases very significantly, while in others not

so much;
• fK,b and fK,s,6 are very similar for the two different optimization sets;
• Despite differences in fK,w,b and fK,w,s,6 between the two sets, the optimum value of

Kw is similar.

The differences observed between the two sets for hs = 6 m are because for the
second set, the complete subgrade depth was modelled instead of using elastic BCs at the
bottom, which introduces some differences in the results. The impact on Φ, however, is
not significant.

4.1.3. Damping and Mass Parameters (Dynamic Solution), Individual Optimization

Admitting Kb, Kw and K f obtained for the static case, the remaining parameters
according to Figure 1 are: Cb, Cw, C f and Mb. They are optimized for the dynamic case
with a load velocity v = {50, 100}m/s. For simplicity, only a subgrade depth of hs = 6 m
is assumed, using the viscoelastic BCs discussed in the previous section. The following
observations were made for the individual optimizations:

• For v = 50 m/s, Φ ranges from 8% to 13%, while for v = 100 m/s, from 8% to 18%;
• The worst results for v = 100 m/s occur when Es = 50 MPa. When these combina-

tions are omitted, the maximum value of Φ is 13%, the same that was observed for
v = 50 m/s;

• The effect of Cb and Cw on Φ is negligible, and the optimum values are close to zero;
• C f has the most effect on Φ, and its optimum value increases with Es, but not with Eb;
• Mb shows significant variation in its optimum value (2.3–5.0 tons). The average value

is higher for hb = 0.6 m than for hb = 0.3 m, in agreement with [3];
• The effect of Mb on Φ is noticeable, but relatively small in comparison with C f .

Using its average value for all combinations of Eb and Es does not significantly affect
the solution.

The higher value of Φ for the soft subgrade when v = 100 m/s is because in this case,
the velocity is supercritical, as already mentioned. As the load velocity gets closer to the
critical velocity, the displacements are significantly amplified, especially in the upward
direction. If the load velocity is higher than the critical one, then there is a wider region
affected by the displacements and the maximum downward value shifts back gradually
from the point of load application. If the two models being compared have different critical
velocities, then this limits the validity of the comparison. Obviously, the wave propagation
in DSM is somehow limited leading to differences between the two models that cannot be
removed by improved optimization. In addition, the omission of horizontal displacements
prevents the development of Rayleigh waves in the DSM.

Given the results above, the dampers Cb and Cw were set to zero for combined
optimizations. It should be noted that this would not be the case if material damping was
used. Since only radiation/geometric damping is considered, the following relation was
adapted from [73]:

C f = fC,rad,s
3.4
√

Gsρs

π(1− νs)
(2)
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where fC,rad,s has unit of square meters.
As for the mass, Mb, although it showed variation with the properties of the foundation,

it was preliminarily assumed that the oscillating mass is proportional to the mass density of
the ballast, as suggested in [3]: Mb = fM,bρb where fM,b has a unit of cubic meters.

4.1.4. Damping and Mass Parameters (Dynamic Solution), Combined Optimization

The dynamic solutions for v = 50 m/s and v = 100 m/s are optimized for all possible
combinations of Eb and Es simultaneously, but hb is kept fixed and only hs = 6 m is
assumed. The results are summarized in Table 3, including the resulting value of Mb.

Table 3. Optimum values for the dynamic case in combined optimizations.

v = 50 m/s v = 100 m/s

v = 50 m/s v = 100 m/s v = 50 m/s v = 100 m/s v = 50 m/s v = 100 m/s

fC,rad,s [m] 0.387 0.418 fC,rad,s [m] 0.353 0.436
fM,b [m3] 1.876 2.521 fM,b [m3] 1.411 1.734

Mb [t] 3.283 4.412 Mb [t] 2.469 3.035
Φ 4.6%–8.2% 5.2%–11.5% Φ 7.0%–18.5% 8.5%–19.0%

Some qualitative observations:

• fC,rad,s increases with hb in a similar way to fK,s. This suggests that the area of the base
of the stress cone influences the rate of radiation damping, which agrees with [73];

• fM increases by 0.645 and 0.323 m3 with the increase in hb for v = 50 m/s and
v = 100 m/s, respectively;

• fC,rad,s for v = 100 m/s is slightly lower than for v = 50 m/s for hb = 0.3 m, but
slightly higher for hb = 0.6 m. These differences are likely due to the stochasticity of
the optimization method;

• fM for v = 100 m/s is 25%–31% lower than for v = 50 m/s.

Due to the high values of Mb obtained by the optimization, it is clear that the de-
pendence on foundation properties is important and it is thus necessary to increase the
oscillating mass by contribution from the foundation, as preliminarily indicated in the
previous section:

M = Mb + Ms (3)

where Ms is the dynamically activated foundation mass. Then, M will be used in place of
Mb in the DSM description from Figure 1. This means that the assumptions made in [3] are
qualitatively correct, but for the shear spring (Kw) as well as for the dynamically activated
mass (M), besides the ballast contribution, foundation contribution must also be added,
which is the main new contribution of this paper.

In general, it can be concluded that the DSM provides a very good approximation to
the 3D FE model, when the velocity of the load is not too close to the critical. Nevertheless,
the approximation for velocities close to the critical can still be considered as reasonable, as
can be seen in Figure 6.

4.2. Identification of Dependencies on Geometrical and Other Properties
4.2.1. Ballast Vertical Stiffness

The stress cone model assumes that stresses are transmitted from the effective load-
bearing area under the sleeper and then dissipate at a constant angle, αb. This assumption
approximates the static stress distribution of the 3D FE model, as shown in Figure 7.
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Figure 6. Normalized vertical displacement of the rail for the 3D FE model and the DSM for
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Figure 7. Static vertical stress in the 3D FE model of the railway track. Blue: maximum negative stress
in the ballast; red: 0% to 10% of the maximum negative stress; grey: values out of range; hb = 0.6 m.

In [3], the superposition of the stress cones in the longitudinal direction is considered.
Here, the superposition of the cones in both directions (i.e., also in the transversal direction
between rails, as shown in Figure 8) is taken into account. Figure 9 also illustrates the
effective load-bearing area of the sleeper. According to [45], the effective length of the
sleeper loaded under each rail is given by:

le = lsleep − lg (4)

where lsleep is the length of the sleeper and lg is the track gauge.
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The total depth of the ballast is hb, while hx and hz are the height at which adjacent
stress cones overlap in the longitudinal and transversal directions, respectively:

hx = min((ls − lb)/(2 tan αb), hb), hx = hb − hx
hz = min

((
lg − le

)
/(2 tan αb), hb

)
, hz = hb − hz

(5)

where ls is the spacing between sleepers. Thus, the dimensions of the cone-base are:

lx = min(lb + 2hx tan αb, ls)
lz = le + tan αb(hb + hz)

(6)

The vertical stiffness of the ballast is the inverse of the integral of the virtual strain
over its depth due to a vertical load at the top. Due to superposition, it is necessary to
combine three different sections:

fK,b = 1/( fb,1 + fb,2 + fb,3), Kb = Eb/( fb,1 + fb,2 + fb,3) (7)

fb,1 = ln
{

lb[le + 2 tan αbmin(hx, hz)]

le[lb + 2 tan αbmin(hx, hz)]

}
/[2(lb − le) tan αb] (8a)

fb,2 =


ln

[
( 1

2 lb+hx tan αb){le+tan αb[hz+ 1
2 (lg−le)]}

( 1
2 lb+hz tan αb){le+tan αb[hx+ 1

2 (lg−le)]}

]
tan αb[(2le−lb+(lg−le) tan αb)]

, hz < hx

ln
(

le+2hz tan αb
le+2hx tan αb

)
/(2ls tan αb), hz ≥ hx

(8b)

fb,3 = ln

 le + tan αb

[
hb +

1
2
(
lg − le

)]
le + tan αb

[
max(hx, hz) +

1
2
(
lg − le

)]
/(ls tan αb) (8c)

4.2.2. Ballast Shear Stiffness

The shear stiffness of the ballast, here designated as Kw,b does not come directly from
the stress cone assumption, and [3] does not provide a way to estimate it. It is proposed
here to use classical expressions from beam theory for shear and bending stiffness, adapted
to a representative ballast area. Given that the vertical stiffness of the ballast is calculated
based on the stress cone distribution, it is reasonable to assume that the representative
ballast area, Ab, is the cross-sectional area of the stress cone, as depicted in Figure 10:

Ab =
(

h2
b + 2hbhz − h2

z

)
tan αb/2 + lehb (9)
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4.2.2. Ballast Shear Stiffness 

The shear stiffness of the ballast, here designated as ,w b
K  does not come directly from 

the stress cone assumption, and [3] does not provide a way to estimate it. It is proposed 

here to use classical expressions from beam theory for shear and bending stiffness, 

adapted to a representative ballast area. Given that the vertical stiffness of the ballast is 

calculated based on the stress cone distribution, it is reasonable to assume that the repre-

sentative ballast area, b
A , is the cross-sectional area of the stress cone, as depicted in 

Figure 10: 
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The shear stiffness Kw,b is then equal to:

Kw,b =

((
Gb A∗b

ls

)−1

+

(
12Eb Ib

l3
s

)−1
)−1

, A∗b =
5
6

Ab, Ib =
h3

b
(
l2
e + 4lelz + l2

z
)

36(le + lz)
(10)

4.2.3. Subgrade Stiffness

In [3], it is assumed that the reaction modulus of the subgrade is known from ex-
perimental measurements, and therefore the vertical stiffness of the subgrade, K f , can be
calculated by multiplying this value by the area of the base of stress cone of the ballast.
In this paper, a general expression will be proposed based on the Vlasov model [74] that
prescribes evolution of the vertical displacement along the active depth of the soil, hs:

f (y) =
sinh(γ(hs − y))

sinh(γhs)
(11)

where γ is a parameter in m−1 that describes the rate at which the vertical displacement
in the foundation decreases with depth. When γ = 0, the displacement decreases linearly
with depth and the vertical stress in the soil is constant. Both the subgrade vertical reaction
modulus, Ks, and the shear reaction modulus, Ks,P, are calculated by minimizing the total
strain energy due to a uniform surface load ([74]):

Ks =
hs∫
0

Eoed
s

d2 f
dy2 dy = Eoed

s γ
sinh(γhs) cosh(γhs)+γhs

2sinh2(γhs)

Ks,P =
hs∫
0

Gs f 2(y)dy = Gs
sinh(γhs) cosh(γhs)−γhs

2γsinh2(γhs)

(12)

These values, when multiplied by the area of the base of stress cone of the ballast
(A f = lxlz), give the subgrade stiffness, K f , and the discrete rotational stiffness due to
shear, which can then be used to calculate the shear stiffness of the subgrade, Kw,s:

K f = Ks A f
Kw,s = Ks,P A f /l2

s
(13)

Figure 11 shows the variation of Ks and Ks,P with depth for different values of γ.
Except for γ = 0, both values become nearly constant after a certain depth of the

model, which is lower when γ is higher. This is in agreement with the results of the 3D FE
model, for which the static displacement for hs = 25 m and hs = 50 m was very similar, as
were the numerical optimal values of the DSM (Table 2). Applying the principles above to a
substructure with two distinct layers shows that, as long as the bottom layer is significantly
thicker than the top layer, the total vertical reaction modulus can be approximated as a
series of springs, while the shear reaction modulus can be approximated as parallel rotation
springs. This is consistent with the fact that the shear stiffness is proportional with the
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layer’s depth, and agrees with the numerical finding that the shear stiffness element of the
DSM, Kw, can be approximated as a linear combination of Gb and Gb.
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4.2.4. Dynamically Activated Mass

In [3], the ballast mass is calculated from the volume of the stress cone, which is here
adapted to consider superposition in both directions:

fM,b = fM,b,1 + fM,b,2 + fM,b,3, Mb = ( fM,b,1 + fM,b,2 + fM,b,3)ρb (14)

fM,b,1 =
4
3

tan2 αbmin(hx, hz)
3 + (lb + le) tan αbmin(hx, hz)

2 + lblemin(hx, hz) (15a)

fM,b,2 =


(hx − hz)

(
lble + 2

3 tan2 αb
(
h2

x + hxhz + h2
z + 3

(
lg − le

)
(hx + hz)

)
+ 1

2 tan αb
(
lb
(
lg − le + hx + hz

)
+ 2le(hx + hz)

))
, hz < hx

ls(hz − hx)(le + tan αb(hx + hz)), hz ≥ hx

(15b)

fM,b,3 =
1
2

ls(hb −max(hx, hz))
(
2le + tan αb

(
lg − le + hb + max(hx, hz)

))
(15c)

The other contribution specified in Equation (3) is based on [75] where vibrating mass
of the soil under foundation is analyzed. Using these formulas and taking into account that
the only half the track is being modelled, the following definition of the subgrade mass
is proposed:

Ms =
2ρs

1− νs

(
2lxlz

π

)3/2
(16)

4.2.5. Subgrade Damping

For the foundation damping, the formula proposed in [73] specifies:

fC,rad,s = cZ A f (17)
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where A f is the area of the foundation, in this case, the area of the base of the stress
cone, and cz is the rate of absorption, when cz = 1, in theory, full absorption of incident
waves occurs.

5. Fitting the Decisive Parameters to the Numerical Results

The expressions proposed in Equations (1), (3), (7), (8), (10), (12)–(17) define all the
parameters of the DSM from the known properties of the track, with the exception of the
angle of stress distribution in the ballast, αb, the rate of displacement decrease with depth
in the subgrade, γ, and the rate of absorption due to radiation damping, cz.

To determine the values for these parameters, the expressions above are fitted to the
numerical results obtained in the previous sections. Since there are only a few discrete
points to fit, a simple norm of the relative difference between the theoretical and numerical
results is used.

The first parameter to optimize is αb, which must fit both ballast depths, hb = 0.3 m
and hb = 0.6 m. The resulting optimum value for the first set in Table 2 is αb = 49.8◦, and
produces an error of ±9%, while for the second set in Table 2 it is αb = 47.6◦ with an error
of ±4%. The values are shown in Table 4.

Table 4. Optimized value of αb, fK,b [m] and respective error, optimum values from Table 2.

hb
[m]

Opt. Val. αb = 49.8◦
Error

Opt. Val. αb = 47.6◦
Error

fK,b fK,b fK,b fK,b

0.3 1.911 2.086 +9% 1.956 2.029 +4%
0.6 1.483 1.344 −9% 1.349 1.302 −4%

Using these values of αb, it is possible to define the area of the base of the stress cone
and proceed to the optimization of γ and fK,s. The optimum value for the first set in Table 2
is γ = 0.268 m−1, with an error of fK,s from−16% to +18%, and for the second set in Table 2
it is γ = 0.324 m−1, with an error of fK,s from −11% to +15%.

Then, it is possible to use the above determined values of αb and γ to compute the
shear stiffness of the ballast and the subgrade. Table 5 shows a summary of these results.

Table 5. Value of fK,w,b [m] and respective error, optimum values from Table 2.

hb
[m]

Opt. Val. αb = 49.8◦
Error

Opt. Val. αb = 47.6◦
Error

fK,w,b fK,w,b fK,w,b fK,w,b

0.3 0.250 0.226 −9% 0.109 0.222 +104%
0.6 0.722 0.949 +31% 0.499 0.930 +86%

It is seen that the error is quite high, nevertheless, this is not very important, because
the main shear contribution comes from the foundation. For the subgrade shear stiffness,
using the optimized values of αb and γ, the error of fK,w,s ranges from −9% to +34% for
the first set in Table 2 and from −29% to −14% for the second set. Both fK,s and fK,w,s
are plotted as a function of hs in Figure 12, for a rough average of the optimum values of
γ = 0.3 m−1.

It can be concluded that the approximation is quite reasonable, especially taking into
account that the optimum values of γ were obtained only from optimizing of fK,s.

The value of Φ obtained for the static solution using these expressions ranges from
3.3% to 14.8% for the first optimization set in Table 2 and from 3.3% to 13.8% for the second
set. Vertical displacements for the representative load of 40 kN are compared in Figure 13.
It can be concluded that the agreement between DSM with the proposed expressions and
the 3D FE model is excellent.
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Figure 13. Vertical displacement of the rail for the 3D FE model and the DSM for hb = 0.6 m, hs = 6 m
and different combinations of Eb and Es.

Further, the same comparison must be carried out for the dynamic case. Using the
optimum value of αb the error in the proposed expression can be calculated. The results
are summarized in Table 6.

Table 6. Values of the mass and respective error, optimum values from Table 3.

hb
[m]

Opt. Val.
v = 50 m/s αb = 49.8◦

Error

Opt. Val.
v = 100 m/s αb = 49.8◦

Error
M M M M

0.3 3.283 3.273 −3% 2.469 3.273 +33%
0.6 4.412 4.900 +11% 3.035 4.900 +61%

It is clear that the proposed equations provide a good approximation for the lower
velocity, but not for the high velocity, for which the optimal mass is 20% to 30% lower,
likely because the latter is close to the critical velocity of the track for a soft subgrade.
Since the proposed equations do not account for this effect, they work well for low to
moderate velocities, but not for high velocities, for which the dynamic amplification is
more pronounced.

As for the radiation damping, the numerical optimal values in Table 3 are used to
deduce the optimum value of cz. The results are summarized in Table 7. It can be concluded
that cz = 0.4 is a good recommendation for railway models with properties inside the
range studied here.
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Table 7. Optimum values of cz, based on Table 3.

hb[m] v = 50 m/s v = 100 m/s

0.3 0.393 0.358
0.6 0.347 0.361

The value of Φ obtained for the steady-state dynamic solution using these expressions
ranges from 8.1% to 13.1% for v = 50 m/s and from 8.3% to 43.6% for v = 100 m/s. The
higher errors are always observed for the soft subgrade (Es = 50 MPa), particularly for
v = 100 m/s, as shown in Figure 14, due to the aforementioned dynamic amplification
factor due to the critical velocity.Vibration 2020, 3 FOR PEER REVIEW  2 
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Figure 14. Normalized vertical displacement of the rail for the 3D FE model and the DSM, v = 100 m/s; hb = 0.3 m (a) stiff
ballast and subgrade; (b) soft ballast and subgrade (xF is the point of load application).

It is of note that the maximum upward and downward displacements for the worst
case are relatively close to the ones obtained on the 3D FE model, so the DSM and the
proposed expressions provide a reasonable approximation to the rail displacement even
when the load is moving with the velocity is close to the velocity of propagation of elastic
waves in the soil.

Finally, the results of the DSM are compared with the experimental results published
in [46], as was the case for the 3D FE model, using αb = 50◦, γ = 0.3 m−1 and cz = 0.4. The
vertical displacement obtained in the DSM due to the passage of the full train and a single
bogie at 220 km/h is presented in Figure 15.
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It can be concluded that the results of the DSM are very close to the ones of the 3D FE
model and provide a good approximation of the experimental results. In fact, the results are
in better agreement than the ones of the 2D model presented in [46], where the multibody
vehicle model was considered, justifying the assumption of moving forces adopted here.

6. Comparison with Other Works

As most of the literature does not present formulas for establishing the model data, as
a reference for comparison with other works the model presented in [3] is chosen. In [3],
values of Kb and Mb are calculated using αb = 35◦ and subgrade stiffness is calculated
using the given subgrade modulus Ks. Therefore, the comparison is performed in the
following way: the data kept in both models are related to the rail: EI = 6.62 MNm2,
m = 60.64 kg/m; to the sleepers: Msleep = 125.5 kg, ls = 0.545 m, lb = 0.273 m, le = 0.95 m;
to the rail pads: Kpad = 65 MN/m, Cpad = 75 kNs/m and to the ballast: Eb = 110 MPa,
hb = 0.45 m, ρb = 1800 kg/m3. Ballast vertical and shear damping are neglected as in the
final optimization steps.

There is no indication for Es in [3]. Thus, Ks = 90 MPa/m given in [3] is used with
the optimized γ = 0.3 m−1 and hs = 6 m, to give Es = 295.7 MPa. Table 8 summarizes the
differences in both models.

Table 8. Model data summary.

Parameter Formulas in This Paper [3]

Kw,b [MN/m] 27.3 78.4 *
Kw,s [MN/m] 500.9 —
Kw [MN/m] 528.2

Mb [kg] 595.7 531.4
Ms [kg] 3033.6 —
M [kg] 3629.3

Kb [MN/m] 168.27 137.75
K f [MN/m] 88.8 77.5
C f [kNs/m] 308 31.15 *

* Means that the value was used without justification.

It is necessary to highlight that values for Kw and M, given in Table 8 for the model
developed in this paper, are very high due to the contribution from the foundation, as
justified by optimizations. In fact, it would be more adequate to include them in a separate
foundation layer.

The representative force of 40 kN is used for results comparison, as in previous
sections. Static displacement is depicted in Figure 16.
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It is seen that the high shear stiffness of the model attenuates the upward displace-
ments which are not present in the 3D FE model. The deflection shape agreement is better
for the model presented in this paper. Further, the stabilized steady-state deflection shape
is compared to the moving load in Figure 17.Vibration 2020, 3 FOR PEER REVIEW  2 
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Figure 17. Steady-state vertical displacement of the rail: v = 100 m/s. Comparison of the model
proposed in this paper, the model from [3] and the 3D FE model.

Finally, the maximum displacement values in the absolute value are extracted as a
function of velocity. In Figure 18, the maximum value over the structure is plotted together
with the value in the load position. The values are normalized by static displacement. The
typical fact can be observed that by getting closer to the critical velocity, the maximum
downward displacement does not occur at the load position. It is confirmed that the
increase in oscillating mass as suggested in this paper makes the prediction of the critical
velocity more reasonable, bearing in mind the value of Es. This concludes the comparison.
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Figure 18. Maximum downward normalized displacement and normalized displacement under the
force as a function of velocity. Comparison of the model proposed in this paper and in [3].

It was shown that the new formulas led to much better agreement with the 3D
FE model, not only in regard to the deflection shape, but also for the prediction of the
critical velocity.

7. Conclusions

The present work establishes the validity and the range of applicability of the DSM.
It proposes general formulas for identifying all DSM properties without the necessity of
calling on experimental results. The formulas proposed are simple and straight-forward to
use and avoid the necessity of numerical calibration.
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It was shown that the DSM shows a good approximation to the 3D FE model for the
whole range of parameters considered—ballast and subgrade depth and the Young moduli.
However, since the DSM does not model the elastic wave propagation in the soil, it is less
reliable when the load moves at a speed close to the critical velocity. Good agreement was
observed up to a speed of 75% of the Rayleigh wave velocity in the subgrade (8%–13%
overall error), while at a speed very close to the Rayleigh waves, the error became more
significant (18%).

All DSM components can be determined from basic mechanical and geometrical
properties, except for three fundamental values, for which the following values were found
to provide a good approximation:

• Angle of stress distribution in the ballast: αb = 50◦;
• Rate of displacement reduction with depth in the subgrade: γ = 0.3 m−1;
• Rate of absorption for the radiation damping of the subgrade: cz = 0.4.

Regarding the formulas available in the literature, it was concluded that the oscillating
mass of the model cannot represent only the dynamically activated ballast mass, but
the contribution from the foundation must be added. The same conclusion was taken
regarding the shear stiffness of the model: the value determined for the ballast has to
be superposed with the contribution coming from the foundation. The shear stiffness of
the model is essential for achieving a good agreement. This means that reduced models
that are focusing mainly on the vertical dynamic equilibrium and/or are neglecting the
dynamically activated mass in the foundation, cannot represent the rail deflection shape
accurately within the range of typical track properties even in the subcritical velocity range.
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