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Abstract: The aim of this contribution is to present numerical comparisons of model-order reduction
methods for geometrically nonlinear structures in the general framework of finite element (FE)
procedures. Three different methods are compared: the implicit condensation and expansion (ICE),
the quadratic manifold computed from modal derivatives (MD), and the direct normal form (DNF)
procedure, the latter expressing the reduced dynamics in an invariant-based span of the phase
space. The methods are first presented in order to underline their common points and differences,
highlighting in particular that ICE and MD use reduction subspaces that are not invariant. A
simple analytical example is then used in order to analyze how the different treatments of quadratic
nonlinearities by the three methods can affect the predictions. Finally, three beam examples are
used to emphasize the ability of the methods to handle curvature (on a curved beam), 1:1 internal
resonance (on a clamped-clamped beam with two polarizations), and inertia nonlinearity (on a
cantilever beam).

Keywords: reduced-order model; direct normal form; geometric nonlinearity; modal derivatives;
implicit condensation and expansion

1. Introduction

Model reduction methods have been investigated for a long time for thin structures
experiencing large-amplitude vibrations with geometric nonlinearities [1,2]. The two
main identified difficulties are that the nonlinearity is distributed, and that the dynamical
phenomena displayed by these nonlinear vibrations are numerous, including jump phe-
nomena [3], bifurcations of solutions [4,5], internal resonance and modal interactions [6–9],
strong couplings [10], transition to chaos [11,12], and wave turbulence [13]. Consequently,
deriving accurate and predictive reduced-order models (ROMs) requires tackling these
two problems in such a manner that the possible dynamics of the ROM can mimic all of
the complexity of the full-order solution. In this contribution, only the nonlinear reduction
methods, where a curved subspace is derived as a reduction manifold and/or a nonlinear
mapping is used, are considered. All of the linear methods based on optimal orthogonal ba-
sis selection, such as Proper Orthogonal Decomposition (POD), are not taken into account
in the discussion and comparisons, since they have already been covered in numerous
articles. The interested reader is referred, e.g., to [14–19] and references therein for the
literature on these linear methods.

Focusing on the nonlinear methods, the first steps can be traced back to the pioneering
work by Shaw and Pierre, who introduced invariant manifolds—tangent at the origin to the
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linear eigensubspaces—as nonlinear normal modes (NNMs) of the vibrating structures [20,
21]. Using a technique used to compute the center manifold from dynamical systems
theory [22,23], they proposed a general methodology that is applicable for model-order
reduction of vibratory systems, which has been applied successfully on a number of
examples [24–26]. Later on, the normal form approach, which is also a key feature of
the general theory of dynamical systems, was applied to vibratory systems with the aim
of proposing a method for model-order reduction [27–29]. In particular, the method
generalizes the development led by Shaw and Pierre by proposing a full third-order
nonlinear mapping, allowing one to pass from the modal coordinates to an invariant-based
span of the phase space. Applications to shell problems demonstrated the ability of the
method to propose efficient ROMs that are able to capture important dynamical phenomena,
such as 1:1 resonance [19,28,30]. A recent development generalizes the notion of invariant
manifolds and NNMs in order to propose a mathematically well-justified framework,
allowing one to tackle conservative as well as dissipative systems. Spectral submanifolds
(SSMs) were introduced in [31], and their use in model reduction was emphasized with
different applications [32–35] to underline the accuracy of the method.

Most of the tools presented in the previous paragraph emerged from the dynamical
system theory and were scarcely applied to finite element (FE)-based methods, probably
because of the large size of the models. Moreover, the intensive use of industrial numerical
codes in engineering applications led to the problem of using them in a non-intrusive man-
ner, i.e., without the need to enter at the elementary level to derive the reduction method,
but instead using the standard procedures and outputs of a general code to produce an
ROM [36]. In this realm, the stiffness evaluation procedure (STEP), first proposed in [37]
and then extended in [38], allows direct computation of the modal nonlinear coupling
coefficients of a modal ROM from a set of prescribed displacements and simple algebra.
However, one can note that, as such, STEP is not a reduction method, since it only offers
a method to efficiently compute these coupling coefficients, without solving the issue of
selecting the relevant modes of the ROM or reducing its size. On the other hand, the
implicit condensation and expansion (ICE) method was introduced in [39–42]. In this case,
a set of prescribed loads is used to construct a so-called stress manifold, which is then fitted
in order to derive the ROM [43,44]. More recently, modal derivatives and their extension
with the definition of a nonlinear mapping were used to create a quadratic manifold (QM)
approach, which was derived in [45,46].

Keeping in mind their non-intrusive characteristics, applications of the methods from
dynamical system theory to the peculiarity of FE-based procedures have recently been
further investigated. In [47], a third-order general method was derived, whose formula
allowed retrieval of the invariant manifold approach proposed by Shaw and Pierre. On the
other hand, the normal form approach was adapted to the FE context in [48]. In this last
contribution, a special emphasis was put on how to use the method in a non-intrusive
manner in order to create accurate ROMs from the FE mesh, including forcing and damping.
The method was named DNF (direct normal form).

A comparison of the ICE and QM methods with invariant manifold and spectral sub-
manifolds was proposed in [49–51], showing that from the theoretical point of view, the first
two methods need a slow/fast assumption between the master and slave coordinates to
propose accurate ROMs. In this contribution, the comparison is put not on the theoretical
basis of the methods, but rather on the given results, and numerous beam cases discretized
with the FE procedure are used as illustrative examples. A particular emphasis is put on
comparing the ICE method, the QM method—using either full modal derivatives (MDs) or
their simplified versions, called static modal derivatives (SMDs)—and the DNF approach.

The paper is organized as follows. In Section 2, the general framework of a geomet-
rically nonlinear structure with the FE procedure is first recalled in Section 2.1; then, the
three reduction methods to be compared are reviewed. The ICE method is briefly sketched
in Section 2.2, the QM method using MDs and SMDs is described in Section 2.3, and the
DNF approach is detailed in Section 2.4. Section 2 closes with an analytical example used
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in Section 2.5—a linear beam resting on a nonlinear elastic foundation—clearly illustrating
the advantages and shortcomings of the different methods. Section 3 investigates three
different beam examples discretized with the FE method. Section 3.1 first considers the
case of a clamped–clamped beam with increasing curvature, transforming a straight beam
into a non-shallow arch. Section 3.2 considers the two polarizations of a straight clamped–
clamped beam, thus tackling the case of 1:1 internally resonant dynamics where two master
modes are needed. Finally, Section 3.3 considers the case of a cantilever beam. Conclusions
are drawn in Section 4.

2. Reduced-Order Models for Finite Element Structures

In this section, the three reduction methods that will be compared are introduced
in the general framework of finite element structures with geometric nonlinearity. The next
section recalls the general background and starting equations.

2.1. Theoretical Framework

A continuous structure, semi-discretized in space with the finite element (FE) method,
is considered. Since our interest is in large-amplitude vibrations, geometric nonlinearities
are included in the model with a nonlinear Green–Lagrange relationship between strains
and displacements. The constitutive law is linear elastic, of the Saint–Venant–Kirchhoff
type [52–54]. The starting point is thus the equations of motion written in the physical
basis for the N-dimensional vector u of generalized displacements at the nodes, where
N is the number of degrees of freedom (dofs) of the FE problem. The semi-discrete,
finite-dimensional equation of motion reads:

Mü + Cu̇ + F(u) = Q, (1)

where M is the mass matrix, C is the damping matrix, F(u) represents the nonlinear
restoring force, and Q represents the external force. In this contribution, the case of
Rayleigh damping will be specifically considered, as commonly used in an FE context, so
that one can specify for the damping matrix C = ζMM + ζKK, where ζM and ζK are two
coefficients to be selected. In the context of geometrically nonlinear structures, the nonlinear
part of the stiffness is polynomial and contains only quadratic and cubic terms [36,54,55],
such that the restoring force is expressed as:

F(u) = Ku + G(u, u) + H(u, u, u), (2)

where K is the tangent stiffness matrix, and G and H represent, respectively, the quadratic
and cubic terms. Detailed indicial expressions of G and H are reported in Appendix A
for the sake of completeness. For the next developments, the linear mode basis needs
to be introduced. The eigenmode shape φi and its corresponding eigenfrequency ωi are
solutions of (

K−ω2
i M
)

φi = 0. (3)

The equations of motion (1) can be rewritten in the modal space using the linear
change of coordinates u = PφX, where Pφ is the matrix of eigenvectors φi and X represents
the modal coordinates. After projection, the dynamics read

Ẍ + Ω2X + DẊ + g(X, X) + h(X, X, X) = F, (4)

where Ω2 stands for the diagonal matrix composed of squared eigenfrequencies, while g
and h are the quadratic and cubic terms expressed in the modal basis [37,54], the detailed
expressions of which are given in Appendix A. The diagonal damping matrix in the modal
basis reads D = PT

φCPφ, and the external force vector reads F = PT
φQ.

Reduction methods are needed in an FE context, since the number of dofs N can be
prohibitively large, preventing either direct calculation of Equation (1) or the possibility of
building the problem in modal space, as in Equation (4). Due to the geometric nonlinearity,
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nonlinear terms G and H create important couplings among dofs and among modes, which
impede simple analyses or even simple truncation schemes based on linear ideas using,
e.g., the frequency content of the input force Q. Consequently, numerous methods have
been proposed in the past in order to reduce Equation (1) to a smaller subset of well-selected
master coordinates. The next sections present three of these methods that will be compared
and evaluated on dedicated beam examples.

2.2. Implicit Condensation and Expansion

The implicit condensation and expansion (ICE) method was first introduced by
McEwan, Gordon, and Hollkamp [39–42], and was recently used by Kuether et al. [44]
and Frangi and Gobat [43]. It is sometimes also called the applied force method (AMF),
since it relies on applying a set of selected static forces on the FE model as a first step for
deriving the ROM. This is in contrast with the stiffness evaluation procedure (STEP), which
applies a set of prescribed static displacements to the structure from which, following
simple algebra, the quadratic and cubic modal coupling coefficients, gp

ij and hp
ijk, can be

deduced [37,38]. On the other hand, for the ICE method, a stress manifold is built from the
set of prescribed applied loads [43]. This explains, in particular, why the coefficients from
the ICE method strongly depend on the amplitude of the applied load, since they follow
the curvature of the stress manifold, while the modal coupling coefficients of the STEP do
not depend on the amplitude of the applied displacement on a large interval, since linear
modal eigenspaces are not curved [51,55].

Let us briefly recall the main steps needed for deriving the ICE method. The interested
reader is referred to [42,43,51] for further details. The first step is to impose body forces Q
that are proportional to the inertia of a number of selected linear modes, Q = βiMφi in
Equation (1), with i = 1 . . . m, m being the number of master coordinates retained in the
ROM. A static problem is then solved with the FE code, and the obtained displacement field
is projected onto the eigenmodes in order to get the modal displacements Xp corresponding
to the imposed force for p = 1 . . . m. A mapping is thus constructed with entries βi and
outputs Xp. Assuming that the functional relationship is invertible, one obtains Xp(βi),
from which the ROM can be built. At the last step, a fitting procedure is executed in order
to derive functional forms from the computed clouds of points to obtain the β(X) from the
the map X(β).

The reduced-order dynamics derived by the ICE method are m-dimensional and read:

Ẍ + Ω2X + DẊ + β(X) = F, (5)

One main advantage is that the method implicitly takes into account the axial-bending
nonlinear coupling that causes geometric nonlinearities; it is thus particularly appealing
when working with thin, flat structures. The main drawback of the method is the fact that
a fitting procedure is needed after application of the forces in order to get the nonlinear
restoring force on the stress manifold. If this is not problematic when working with a
single master coordinate, the inclusion of more and more master modes makes the method
difficult to implement in a general m-dimensional case. More importantly, the method then
becomes very sensitive to the values of the applied loads [51]. As shown in [51], the implicit
condensation can never perform better than the usual static condensation, so one cannot
expect to obtain better results than with the use of static condensation. A quantitative
and analytic comparison with the invariant manifold approach also underlines that the
stress manifold is not an invariant subspace, and that ICE can give reliable results only in
cases where a slow/fast approximation exists between master and slave coordinates [49,51].
This slow/fast approximation refers to the case where the eigenfrequencies of the slave
modes are very large as compared to those of the master modes, ensuring that the slave
coordinates display much stiffer dynamics. A formal demonstration of this result is given
in [49] as a theorem, and a practical rule to apply the slow/fast approximation was given
in [51] by stating that the frequency gap between slave and master eigenfrequencies should
be larger than 6 to get reliable results.
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2.3. Quadratic Manifold with Modal Derivatives

In this section, the quadratic manifold (QM) method based on modal derivatives,
which was first introduced in [45,46], is presented. The main idea is to derive a nonlinear
mapping by using the modal derivatives as a quadratic dependence on the master coordi-
nates to pass from the FE nodes to a reduced subspace built on a quadratic manifold. In a
first subsection, we recall the definition of modal derivatives and then explain how the
quadratic manifold is built from them. The presentation summarizes a general develop-
ment shown in [50], where the QM method was compared to the normal form approach.

2.3.1. Definition of Full and Static Modal Derivatives

Modal derivatives were first introduced in [56] with the idea of accounting for the
variation in the eigenmodes with amplitude. In that respect, let us denote as φ̃i(u) the
amplitude-dependent eigenvector. The ij-th modal derivative Θij is thus introduced as the
derivative of φ̃i with respect to the j-th coordinate used for the reduced basis, so that one
can write [45,46,50,57]:

Θij
.
=

∂φ̃i(u)
∂Xj

∣∣∣∣
u=0

. (6)

In order to derive an explicit problem of which the MD will be the solution, it is
convenient to rewrite the eigenvalue system defined in Equation (3) and to state the explicit
dependence of the mode shape and eigenfrequency on the amplitude u, thus obtaining:(

∂F(u)
∂u

− ω̃2
i (u)M

)
φ̃i(u) = 0, (7)

where the tangent stiffness matrix K has been replaced by the derivative of the full nonlinear
restoring force F with respect to the amplitude. Note also that it has been assumed that the
mass matrix is not amplitude-dependent. Expanding Equation (7) in Taylor series for small
vibrations, one can observe that the first term will reproduce the usual linear eigenproblem,
while the next term will make the modal derivative Θij appear. Since the frequency’s
dependence on amplitude also appears, a second equation is used to close the problem,
and the developments shown in [45,46,57] advocate for the use of the mass normalization
equation: φ̃T

i Mφ̃i = 1. Expanding in Taylor series also produces a second equation; finally,
grouping the two gives the system from which one can compute the MD:

[
K −ω2

i M −Mφi
−φT

i M 0

]{Θij
∂ω2

i
∂Xj

}
=

{
−2G(φj, φi)

0

}
. (8)

The solution of Equation (8) is generally difficult to obtain because of the singularity
of the K − ω2

i M in the eigenmode directions. In addition, obtaining all the terms in
Equation (8) with FE software is not straightforward, since some of them do not correspond
to standard operations. Consequently, most of the results found in the literature on MDs
simplify the problem given by Equation (8) by neglecting the inertia, thus defining the
so-called static modal derivatives (SMDs), which are the solution of the simpler problem:

KΘij = −2G(φj, φi). (9)

As remarked in [45,46,50], the computation of these SMDs can be performed in a
non-intrusive manner with a standard FE code.

2.3.2. Reduction with the Quadratic Manifold

The modal derivatives were first introduced with the aim of completing the linear
mode basis with additional vectors (MDs) in order to take into account the new spanning
directions given by the curvature of the invariant manifold in phase space, and have been
used as such in numerous contexts; see, e.g., [58]. However, it then appeared logical to
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embed these added vectors in a nonlinear mapping. Indeed, from the definition of the
modal derivatives, it is possible to define a nonlinear mapping from the initial physical
dofs to the master coordinates, stating that the quadratic part of the mapping is conveyed
by the introduced MDs or SMDs. Following [45,46,50], one can write such a relationship in
a compact form as

u = Ξ(X) = ΦX +
1
2

Θ̄(X, X) =
m

∑
i=1

φiXi +
1
2

m

∑
i=1

m

∑
j=1

Θ̄ijXiXj, (10)

where Ξ stands for the quadratic nonlinear mapping, and Φ is the N ×m matrix of the
master eigenvectors only, i.e., it is the restriction of Pφ to the m selected master modes;
Θ̄ij = (Θij + Θji)/2 is the symmetrized MD. The reduced-order dynamics are obtained by
applying the second-order nonlinear mapping (10) to the original equations of motion (1).
For that purpose, one can introduce the tangent space of the manifold PΞ as [45,46]:

PΞ =
∂Ξ

∂X
(11)

where PΞ is a matrix whose k-th column [PΞ]k is written as

[PΞ]k =
∂Ξ

∂Xk
= φk +

m

∑
j=1

Θ̄jkXj. (12)

Deriving (10) two times with respect to t leads to:

u̇ = Ξ̇ = PΞẊ, (13a)

ü = Ξ̈ = PΞẌ +

(
∂PΞ

∂X
Ẋ
)

Ẋ. (13b)

Substituting for these in Equation (1), the reduced-order dynamics read:

Pt
ΞMΞ̈ + Pt

ΞCΞ̇ + Pt
ΞKΞ + Pt

ΞG(Ξ, Ξ) + Pt
ΞH(Ξ, Ξ, Ξ) = Pt

ΞQ. (14)

One can note, in particular, that the quadratic and cubic terms G(Ξ, Ξ) and H(Ξ, Ξ, Ξ)
will produce higher orders (up to power four for the first and power six for the second),
and these higher orders will not be balanced by additional terms being taken into account
in the nonlinear mapping, which is a common feature in such asymptotic developments.
Consequently, it might appear more reasonable to also truncate Equation (14) to the third
order to maintain consistency. Following [50], one finally obtains, in full indicial notation,
and by including Rayleigh damping, the third-order reduced dynamics, reading ∀p =
1, . . . , m:

Ẍp + ω2
pXp + (ζM + ζKω2

p)Ẋp +
m

∑
i,j=1

(
(gp

ij +
ω2

p

2
θ̄

p
ij)XiXj + θ̄

p
ij(ẊiẊj + XiẌj) + θ̄

j
pi(ω

2
j XiXj + XiẌj)

)

+ζM

m

∑
i,j,k=1

(
2(θ̄p

ij)ẊiXj +
N

∑
s=1

(θ̄s
pk θ̄s

ij)ẊiXjXk

)
+ ζKω2

p

N

∑
i,j,k=1

(
2(θ̄p

ij)ẊiXj +
N

∑
s=1

(θ̄s
pk θ̄s

ij)ẊiXjXk

)

+
m

∑
i,j,k=1

((
hp

ijk +
N

∑
s=1

(
gp

is θ̄s
jk(gs

ij +
ω2

s
2

θ̄s
ij)

))
XiXjXk +

N

∑
s=1

(θ̄s
pk θ̄s

ij)(ẊiẊjXk + ẌiXjXk)

)
= Fp.

(15)
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In these equations, gp
ij and hp

ijk are the modal coupling coefficients that can be obtained
by applying the STEP, and θ̄ij is the symmetrized expression of the MD in the modal space,
which is connected to the MD via:

Θ̄ij = Pφθ̄ij =
N

∑
s=1

φs θ̄s
ij. (16)

In the right-hand side of Equation (15), only Fp appears, since it has been assumed
that for the case under study, the forcing term is oriented along a master coordinate that
is orthogonal to the symmetrized MD Θ̄. As shown, for example, in [50], the quadratic
manifold produced by the QM approach is not an invariant subspace. In addition, the
method gives reliable results only when a slow/fast assumption holds between the slave
and master coordinates. In [50], it was estimated that this slow/fast assumption is well
fulfilled as soon as the ratio between the eigenfrequencies of slave and master coordinates
is larger than 4.

2.4. Direct Normal Form Approach

The third method that will be used for comparison purposes is the direct normal form
(DNF) proposed in [48]. The DNF allows direct computation of the nonlinear mapping
that enables one to pass from the physical space (dofs of the FE mesh) to the invariant
manifolds of the system that are tangent to their linear counterpart at the origin (nonlinear
normal modes in the sense of Shaw and Pierre [20,21]). The method builds on earlier results
where the normal form was computed from the problem expressed on the modal basis
(Equation (4) [27,28]). The main advantage of the direct approach proposed in [48] is that it
bypasses the step of eigenmode projection, since this can be out of reach in a complex FE
mesh with millions of dofs. Instead, the method uses Equation (1), i.e., the physical space
and the dofs of the FE mesh, as a starting point.

The general method presented in [27,28] develops a nonlinear mapping up to the third
order. On the other hand, two versions of the DNF are presented in [48], a second-order
and a third-order development. In addition, a method for taking Rayleigh damping into
account is proposed so that one can get reduced dynamics where the losses of the reduced
dynamics do not neglect those of the slave modes. At present, the inclusion of the Rayleigh
damping is only possible with the second-order DNF. For that reason, the presentation
retained here will focus on the case of the second-order DNF with inclusion of damping.

The nonlinear mapping reads:

u =
n

∑
i

φiXi +
n

∑
i=1

n

∑
j=1

āijXiXj +
n

∑
i=1

n

∑
j=1

b̄ijẊiẊj +
n

∑
i=1

n

∑
j=1

c̄ijXiẊj, (17)

where n is the number of master modes used to build the ROM, and Xi, together with its
velocity Yi = Ẋi, is the coordinate used to span the i-th invariant manifold. In Equation (17),
φi is the eigenvector and āij, b̄ij, and c̄ij are second-order tensors, the full expressions of
which are not given here for the sake of conciseness; the interested reader can find all the
details in [48].

The reduced dynamics are then given by the normal form of the problem, up to the
third order, by taking the Rayleigh damping into account with an assumption of small
damping ratios on the master modes. It reads, ∀ p = 1, . . . m:

Ẍp + (ζM + ζKω2
p)Ẋp + ω2

pXp +
n

∑
i=1

n

∑
j=1

n

∑
k=1

[(Ap
ijk + hp

ijk)XiXjXk + Bp
ijkXiẊjẊk + Cp

ijkXiXjẊk] = Fp, (18)
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where the coefficients Ap
ijk, Bp

ijk, Cp
ijk arise from the cancellation of non-resonant quadratic

terms, Their full expression reads [48]:

Ap
ijk = 2φT

p G(φi, ājk), (19a)

Bp
ijk = 2φT

p G(φi, b̄jk), (19b)

Cp
ijk = 2φT

p G(φi, c̄jk). (19c)

The reduced dynamics given in (18) are expressed on the 2m dimensional invariant
manifold. For that reason, there is no need to fulfill a slow/fast assumption to produce
correct predictions. In addition, it has been shown, e.g., in [27], that the reduction to a
single master coordinate is able to predict the correct hardening/softening behavior. This
result was applied to analyze the type of nonlinearity of shallow spherical-cap shells in [59],
and recent comparisons underline that the DNF approach follows the correct prediction,
whereas the QM method fails to compute the hardening/softening behavior when the
slow/fast assumption is not met [60].

2.5. Analytical Example: A Linear Beam on a Nonlinear Elastic Foundation

In order to give a first illustration of the capabilities of the different methods, a simple
analytical example is first used: a simply supported linear beam resting on a nonlinear
elastic foundation. This example has already been studied in, e.g., [61–63], in order to
underline the use of invariant manifolds for producing accurate reduced-order models.
As the nonlinear elastic foundation is composed of quadratic and cubic power laws,
simple analytical formulas are easily derived, allowing full computation of modal coupling
coefficients so that a comprehensive comparison of the abilities of the different reduction
methods to predict the correct type of nonlinearity can be achieved.

2.5.1. Model Equations and Type of Nonlinearity

In non-dimensional form, the undamped transverse vibrations of the linear beam on a
nonlinear elastic foundation are governed by [61–63]:

∂2w
∂t2 +

∂4w
∂x4 + α2w2 + α3w3 = 0, (20)

where w(x, t) is the transverse displacement, and α2 and α3 are the two free parameters
that balance the relative importance of quadratic and cubic couplings. Simply supported
boundary conditions are assumed, reading:

w(x, t) = 0,
∂2w
∂x2 = 0, for x = 0, 1. (21)

The eigenmodes and the eigenfrequencies are easily computed as:

φn(x) =
√

2 sin(nπx), ωn = n2π2. (22)

Denoting as Xp the modal coordinate associated with the p-th linear mode, modal
projection yields the equation of motion in the form of Equation (4), where individual
quadratic and cubic modal coupling coefficients respectively read:

gp
ij = α2

∫ 1

0
φi(x)φj(x)φp(x)dx,

hp
ijk = α3

∫ 1

0
φi(x)φj(x)φk(x)φp(x)dx.

(23)

The three methods will be compared according to their ability to correctly predict the
type of nonlinearity (hardening/softening behavior) when reducing the dynamics to a
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single master coordinate. In such a reduction, in the first order, the master coordinate can
be written as Xp(t) = a cos(ωNLt), and the nonlinear amplitude–frequency relationship
(backbone curve) can be simply expressed as ωNL = ω

(
1 + Γa2), where ωNL is the nonlin-

ear frequency, a is the amplitude, and Γ is a coefficient dictating the type of nonlinearity;
Γ > 0 induces a hardening behavior, whereas Γ < 0 gives a softening behavior. Depending
on the reduction method used, different values of Γ are obtained. Let us derive their full
analytical expressions using previous developments made in [50,51,63].

Apart from the three methods listed, for this example, we will also consider the
prediction given if one reduces the dynamics to the eigenmode subspace. Assuming
only the linear modal coordinate p is present in the dynamics (i.e., Xi = 0 for all i 6= p),
and denoting as Γp

LN the coefficient for that case, one arrives easily at [27,63]:

Γp
LN = − 5

12ω2
p
(

gp
pp

ωp
)2 +

3
8ω2

p
hp

ppp. (24)

For the case of the ICE method, since the problem at hand has been projected onto the
linear modes basis with all modal coupling coefficients known, the method reduces to a
simple static condensation, so that the Γp

ICE coefficient can be derived as [51]:

Γp
ICE = − 5

12ω2
p
(

gp
pp

ωp
)2 +

3
8ω2

p

hp
ppp −

N

∑
s=1
s 6=p

2
(gs

pp)
2

ω2
s

. (25)

For the QM method based on MDs and SMDs, general formulas were derived in [50].
The Γ coefficients for these two cases read, first assuming a QM built on full modal
derivatives:

Γp
MD = − 5

12ω2
p
(

gp
pp

ωp
)2 +

3
8ω2

p

hp
ppp −

N

∑
s=1
s 6=p

2(
gs

pp

ωs
)2

(
1 +

ω2
p(4ω2

s − 3ω2
p)

3(ω2
s −ω2

p)
2

). (26)

If the QM is built from the simplified expression given by the SMDs, then the formula
simplifies to:

Γp
SMD = − 5

12ω2
p
(

gp
pp

ωp
)2 +

3
8ω2

p

hp
ppp −

N

∑
s=1
s 6=p

2(
gs

pp

ωs
)2

(
1 +

4ω2
p

3ω2
s

). (27)

Finally, for the DNF, since in that case, the initial problem has been projected onto
the linear modes, then the full expressions of normal form given in [27,63] allow one to
directly write the Γp

NF coefficient, which reads:

Γp
NF = − 5

12ω2
p
(

gp
pp

ωp
)2 +

3
8ω2

p

hp
ppp −

N

∑
s=1
s 6=p

2(
gs

pp

ωs
)2

(
1 +

4ω2
p

3(ω2
s − 4ω2

p)

). (28)

From the above Equations (24)–(28), it is obvious that regions of hardening or soften-
ing behavior in the parameter plane (α2,α3) are different, so all of the studied methods will
predict different results. The aim of the next section is to highlight this and compare the pre-
dictions to a full-order solution in order to understand the ability of the reduction methods
to correctly retrieve the first important nonlinear characteristics in nonlinear oscillations.
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2.5.2. Results

Figure 1 shows the hardening/softening regions for the first three modes of the beam
as predicted by the different methods proposed in the parameter space (α2, α3). Only the
sign of the prediction (hardening/softening) is reported—the lines showing the points
of cancellation where Formulas (24)–(28) are vanishing. In each case, the upper left part
of the plane (corresponding to large values of the cubic nonlinearity α3) are linked to a
hardening behavior, since a large cubic positive term is dominating. On the other hand,
in the lower right part of the figure (large values of quadratic nonlinearity α2), a softening
behavior is at hand. The continuous line denotes the hardening/softening transition as
predicted by the different methods. Five curves are compared each time. The first one
corresponds to the reduction to a single linear normal mode, Equation (24). Although this
simplification has been known for a long time to produce incorrect predictions in most
of cases, it is reported here for the sake of completeness. The prediction given by the ICE
method, Equation (25), is reported in purple, while both predictions using MD or SMD
QM, Equations (26) and (27), are given in brown and blue. Finally, the prediction given by
the normal form approach, Equation (28), is in red. As known from theoretical results—see,
e.g., [27,63]—at the first order, the prediction given by the normal form gives the correct
result, so all of the other methods can be compared to this reference. This will next be
confirmed numerically by comparing to full-order solutions.
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Figure 1. Hardening/softening regions in the parameter plane (α2,α3) for the first three modes of a simply supported beam
resting on a nonlinear elastic foundation. (a): Mode 1, (b): Mode 2, (c): Mode 3. In the legend, LN: single linear mode; ICE:
implicit condensation and expansion; MD: quadratic manifold (QM) with full modal derivatives; SMD: QM with static
modal derivatives; DNF: single nonlinear normal mode built from the normal form.

For the first mode, one can observe that the predictions given by all five methods are
fully coincident. This means, in particular, that the first invariant manifold shows only a
very slight curvature and is very close to the linear eigensubspace, such that restriction
to a single linear mode is already correct. In that context, one also easily understands
that all other reduction methods are able to catch a simple linear behavior, and thus offer
good predictions. Only the ICE method gives a very slight departure, which, however,
remains negligible. For mode 1, one can also observe that the slow/fast assumption is well
retrieved, since the ratio ω2/ω1 is equal to 4, meaning that all the slave modes fulfill the
criteria given in [50,51] about the slow/fast assumption for the ICE and QM methods.

For all of the other modes, all of the methods give very different predictions, as shown
in Figure 1 for modes 2 and 3. As already reported in [63], restriction to a single linear
mode gives a completely erroneous prediction, meaning that the invariant manifolds
have important curvatures and strongly depart from the linear subspace. Regarding
the slow/fast (S/F) assumption, one can now easily understand, e.g., by forming the
ratios ωn/ω2 and ωn/ω3 for modes 2 and 3, that the assumption is not fulfilled anymore.
For mode 2, one has, for example, ω1/ω2 = 1/4 and ω3/ω2 = 2.25; two slave modes do
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not meet the S/F assumption. For mode 3, four slave modes do not fulfill the constraint.
Consequently, all three reduction methods that need this frequency separation (ICE and
QM with either MD or SMD) fail to accurately predict the type of nonlinearity.

In order to give more insight into these results, four specific points corresponding to
selected values of (α2, α3) are retained, and the backbone curves are compared with a refer-
ence solution that was obtained by keeping ten linear modes in the truncation, a number
sufficiently large to achieve comfortable convergence. The four points are denoted with
diamonds and the letters a, b, c, and d in Figure 1. Point a is selected for mode 2, while
points b, c, and d refer to mode 3. Their specific locations were selected in order to under-
line the different possible predictions given by all tested methods. The backbone curves
were obtained numerically with a continuation method using an asymptotic–numerical
method combined with harmonic balance, which was implemented in the Manlab soft-
ware [64–66]. The reference solution was obtained by using Equation (4) with ten modes.
On the other hand, the reduction methods used the reduced dynamics, as given in Equa-
tion (5) for the ICE method, Equation (15) for the MD and SMD QM (discarding damping),
and Equation (18) for the DNF (again without damping).

Figure 2 reports the obtained results. Figure 2a, corresponding to point a in Figure 1,
was selected, since only the DNF and QM–SMD methods should predict softening behavior,
while the QM–MD and ICE methods should predict hardening. This was verified by the
numerical computation. One can observe that only the normal form was able to catch the
correct behavior. The softening behavior computed by the QM–SMD was is overestimated,
while the MD and ICE methods predicted an unreliable solution. One can observe that this
case corresponds to a quite large value of α2 as compared to α3, meaning that quadratic
terms dominate the cubic ones. This example thus clearly illustrates that the ICE and
QM methods, with the slow/fast assumption not fulfilled, offer an incorrect processing of
quadratic terms, finally leading to an incorrect prediction of the type of nonlinearity.

Figure 2b, corresponding to point b in Figure 1, shows a case where only the QM–SMD
method predicts a softening behavior; all other methods give a hardening one. This result is
effectively verified by the numerical computation. The solution given by the DNF method
is close to the reference solution, but finally departs at large amplitudes as a consequence of
the fact that the DNF method is an asymptotic expansion up to order three. In this specific
case, even if the slow/fast assumption is not met for mode 3, the predictions given by the
ICE and QM–MD methods are good. Even if the exact correct curvature of the backbone is
not retrieved at small amplitudes, the prediction does not remain too far from the reference
up to a comfortable amplitude.

Figure 2c reports a case that is close to that of Figure 2a, but now for mode 3, underlin-
ing again how incorrect predictions can be obtained. Finally, Figure 2d shows a case where
the cubic nonlinearity dominates the quadratic one. In that case, one clearly observes that
all of the methods are able to produce correct solutions.

As a conclusion to this simple analytical example, it has been shown that when the
slow/fast assumption is not met, the ICE and QM methods based on MDs or SMDs
can predict incorrect results for the type of nonlinearity. The incorrect treatment of the
quadratic terms by these methods has been also specifically underlined, another concern
that is different from the S/F assumption involving the eigenfrequencies. It has been
shown on selected examples that when the quadratic nonlinearity is dominant, the ICE
and QM methods can predict incorrect results, e.g., a hardening behavior instead of
softening or values of the curvature of the backbone that are too large compared to the
reference. On the other hand, the DNF method always produces the correct first-order
assumption, and can only fail at large amplitudes due to its limitation related to the
third-order asymptotic expansion.
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Figure 2. Backbone curves for the linear beam on a nonlinear elastic foundation. (a) Second mode, α2 = 12, α3 = 0.5, (b)
third mode, α2 = 12, α3 = 3, (c) third mode, α2 = 12, α3 = 0.5. (d) third mode, α2 = 0.5, α3 = 12. Reference solution (thick
black line): continuation on a solution built from the 10 linear modes retained.

3. Beam Structures Discretized with Finite Elements

In this section, the reduction methods are compared on finite element beam structures,
and all of the calculations were realized with the open-source finite element software
Code_Aster [67]. Three different beam examples were selected in order to test the accuracy
of the methods in different contexts. The first example is a clamped–clamped beam
becoming an arch through an increase in curvature. The second example is a straight beam
with 1:1 internal resonance between the two possible polarizations of the fundamental
mode, which was selected in order to test the methods on a case where two internally
resonant master modes are needed. Finally, a cantilever beam was selected so as to illustrate
the behavior of the methods when inertia nonlinearity is important.

3.1. A Clamped–Clamped Beam with Increasing Curvature

The first example is a clamped–clamped beam, which is initially straight (case 1),
for which two different levels of curvature are added to the neutral line in order to transform
the beam into a shallow arch (case 2), and then into a non-shallow arch (case 3). Note
that this example was first introduced in [50], where the comparison between the normal
form result and the QM–MD and QM–SMD methods were compared on the backbone
curves only. In this section, we extend these results by first adding the ICE method to the
comparisons and, second, by considering a frequency-response function with damping
and forcing. The geometries of the beams and the retained mesh are shown in Figure
3. The straight beam has a length of L = 0.7 m, and a square cross-section with equal
thickness h and width b, h = b = 5 cm. The material is linear elastic (Young modulus E
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= 124 GPa, Poisson’s ratio ν = 0.3, and the density ρ = 4400 kg.m−3). The height of the
static deflection of the shallow arch is 5.5 cm, while that of the non-shallow arch is 25 cm.
Three-dimensional hexahedral finite elements with 20 nodes are used in each case. For the
straight beam, 60 elements (four in the section and 15 in the length), resulting in a total
number of 1287 dofs, were selected, while for the arches, a total of 96 solid elements (four
in the section and 24 in the length), resulting in 2097 dofs, were used.

Figure 3. The three beams under investigation with the mesh used and the deformed shape of the bending mode under
study—flat beam with 60 elements; arches with increasing curvature and 96 elements.

In each case, reduction to a single master mode is targeted by considering the nonlinear
vibrations of the first bending mode. For the straight beam, the eigenfrequency of the first
bending mode is f1 = 545.60 Hz. For the shallow arch, the first bending appears as the
second mode (by order of increasing frequency), with an eigenfrequency f2 = 372.28 Hz,
and for the non-shallow arch, it appears in the fourth position with f4 = 1004 Hz. Let us
first illustrate in this case how the ICE method is used to retrieve the nonlinear stiffness.
Figure 4 shows the nonlinear relationship found by applying a static load of amplitude β
on the first bending mode and its fitting by polynomial laws of orders 3, 5, and 7. A total
of 100 values of applied loads were selected for the flat beam and the shallow arch cases,
and 122 for the non-shallow arch. The load scales, as defined from the ICE method—see,
e.g., [42–44,51]—were chosen to obtain displacements around the range of ±1.4 times the
thickness for the beam case, −2 h to 3.8 h for the shallow arch, and −2.74 h to 1.56 h for the
non-shallow arch. In each case, the application of the static force gives the displacement
as a function of β, from which the fits allow one to invert the relationship. In particular,
one can observe the appearance of strong even powers in the polynomial expansion for the
last two cases with a non-symmetric restoring force. In these last two cases, the third-order
approximation is not sufficient to correctly retrieve the stiffness behavior law, and an order
of at least 5 is needed.
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Figure 4. Illustration of the fitting procedure for the ICE method: Blue stars ∗ represent the outputs obtained from the static
applied force on the finite element (FE) model, and the dashed curve is the fitted polynomial; black: order 3, red: order 5,
blue: order 7. (a) Straight beam, (b) shallow arch for which the first bending mode appears as the second mode, and (c)
non-shallow arch (first bending mode in fourth position).

Figure 5 displays the backbone curves obtained for the three beams with increasing
curvature. A reference solution was obtained via numerical continuation on all degrees of
freedom by using a code with parallel implementation of the harmonic balance method
and pseudo arc-length [68]. On the other hand, as the reduced dynamics were composed
of a single master mode, the backbones were obtained numerically by continuation using a
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method combining harmonic balance and an asymptotic–numerical method implemented
in Manlab [64–66].

In Figure 5a for the straight clamped–clamped beam, the slow/fast assumption is
very well fulfilled and all methods easily catch the correct nonlinear behavior. The shallow
arch results are shown in Figure 5b. In that case, the slow/fast assumption is just below
the limit proposed in [50], since the ratio of eigenfrequencies between the first and the
third bending modes is equal to 3.44. In addition, quadratic nonlinear couplings between
bending modes appeared. For this main reason, the QM–SMD method fails to predict the
correct nonlinear behavior of the backbone, as already remarked in [50]. The QM–MD and
DNF reductions give almost equivalent results in terms of the backbone, which are close
to the reference solution, but slightly depart when the amplitudes become large. Finally,
in that case, the ICE method provides the best approximation to the reference solution,
mostly because the fitting procedure is able to correctly retrieve the quadratic nonlinearity,
and because the slow/fast assumption is not strongly violated. Note that for all of the
figures, the ICE method was used in the reduction with the seventh-order fitted polynomial.
Consequently, the order in the asymptotics is larger than in the other methods, which could
also explain its better performance in that case.
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Figure 5. The backbone curves for (a) the straight beam, (b) the shallow arch, and (c) the non-shallow arch. The reference
solution with numerical continuation is in black. Comparison of the reduction methods with a single master coordinate;
purple: ICE method, blue: QM–SMD, brown: QM–MD, and red: DNF.

In the case of the non-shallow arch, Figure 5c, the frequency ratio between third and
first bending is 1.66, meaning that the slow/fast assumption is strongly broken. The con-
sequence is that three methods are not able to retrieve the correct softening nonlinearity
anymore: QM–MD and QM–SMD, as well as the ICE method, even though the ICE method
is still pushed to the seventh order. In that case, the unfulfillment of the slow/fast assump-
tion is stronger, so that whatever the order in the ICE method is, it will not converge to
the correct value. On the other hand, the DNF method still predicts the correct nonlinear
behavior and shows a slight departure at larger amplitudes, which is the only known
limitation of the method and is linked to its asymptotic development.

A further insight is given into these results by computing the frequency-response
functions (FRFs) for the three tested beams. In each case, a pointwise harmonic forcing is
considered, located at the center of the beam, with an excitation frequency in the vicinity
of the first bending mode. Rayleigh damping is added to the FE model, and a stiffness-
proportional damping is taken into account such that the damping matrix reads C = bK.
The value of the coefficient b was selected such that a damping ratio of 0.5% for the first
bending mode was at hand, which leads to the following numerical values: b = 2.91× 10−6

s for the straight beam, b = 4.27× 10−6 s for the shallow arch, and b = 1.58× 10−6 s for
the non-shallow arch.

Figure 6 shows the obtained results when the four reduction methods are compared
to the reference. Note that the treatment of the damping factor is strongly different in
each case. The ICE method is the least efficient method for treating the damping. Indeed,
by working on the fitting procedure of the nonlinear stiffness only, the method does not
provide any means of including the damping of the slave modes in the reduced dynamics.
Consequently, only the damping of the master mode is considered, which generally leads to
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a strong underestimation of the losses in the ROM. This is particularly true for the straight
beam case in Figure 6a. On the other hand, for the two arches, the level of damping in the
master mode is sufficient to approximately predict the correct maximum value in the FRF.

1 1.05 1.1 1.15

/
1

0

0.2

0.4

0.6

0.8

u
m

a
x

/h

(a)

0.96 0.98 1 1.02

/
1

0

0.1

0.2

0.3

0.4

u
m

a
x

/h

(b)

0.98 1 1.02

/
1

0

0.1

0.2

0.3

u
m

a
x

/h

(c)

Figure 6. The frequency-response functions (FRFs) for the beam (a), shallow arch (b), and non-shallow arch (c). Red: DNF,
blue: SMD, brown: MD, purple: ICE method, black: reference solution.

The other nonlinear reduction methods, QM and DNF, take the damping of the slave
modes in the reduction process thanks to the nonlinear mapping. This leads to a perfect
match with the reference solution in the beam case. For the arches, the problems already
underlined in the backbone persist for the FRF. In particular, the QM–SMD method is not
able to predict a correct FRF for the two arches, while the QM–MD method gives a correct
computation for the shallow arch, but departs in the non-shallow arch case. The DNF
method generally gives a correct approximation, but misses some slight quantitative
information for the two arches, mainly due to the two approximations used to build the
ROM: the asymptotics at the second order only and the treatment of the forcing, which
are not strictly aligned with the nonlinear direction of the manifold, but simply with the
linear eigenspace. The ICE method with an order of seven was used in each case, giving an
excellent result in the shallow arch case, but it was generally expected to underestimate the
losses, as observed in the beam and non-shallow arch cases.

As a conclusion of this example, one can observe that the ICE and QM methods need
the fulfillment of the slow/fast assumption between the master and slave modes in order to
predict the correct results. As already noted in [50], an incorrect treatment of the quadratic
nonlinear terms in the QM–SMD method leads to problematic results once the second-order
terms in the restoring force are important. The ICE method is able to rapidly propose an
ROM with possibly higher orders, but fails as soon as the slow/fast assumption is violated.
In addition, the method is not able to take into account the losses of the slave mode in
the dynamics of the master mode. Finally, the DNF method always proposes the correct
trend in terms of hardening/softening behavior, is able to properly take the damping of
the slave modes into account, and is only limited to its fundamental assumptions linked to
the asymptotics used and the treatment of the forcing.

3.2. Clamped Beams with 1:1 Resonance

The second example is a straight clamped–clamped beam that is allowed to vibrate
in the two bending directions, leading to different polarizations and, consequently, a 1:1
internal resonance. The objective of the comparison is to illustrate the ability of the methods
to handle a more complex case with two master modes and bifurcations due to the presence
of the internal resonance with the existence of coupled and uncoupled solutions [69,70].

Two different cases were investigated, where the constant parameters were: the length
of the beam, 1 m, the density, ρ = 4400 kg/m3, the Young modulus, E = 1.04× 1011 Pa,
and Poisson’s ratio, v = 0.3. For the space discretization, 3D hexahedral brick elements
with 20 nodes, and with 40 elements in the length and four in the cross-section, were
used. The difference between the two beams is in their relative values of width b and
thickness h. A first case with a perfect square section with h = b = 3 cm gives no detuning
between the eigenfrequencies of the two polarizations of the first bending modes, which
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are perfectly equal. On the other hand, a second case with h = 3 cm and b = 3.15 cm
allows the creation of a detuning of 4.92% between these two eigenfrequencies. Table 1
summarizes the geometrical parameters, and Figure 7 shows the retained mesh and the two
polarizations of the fundamental bending mode (displacements along these two directions
are denoted as u and v, and w is the in-plane motion).

Table 1. Dimensions and eigenfrequencies of the clamped beams with and without detuning, where
ε = (ω2 −ω1)/ω1.

Case Length
(m)

Thickness
(m)

Width
(m)

ω1
(rad/s)

ω2
(rad/s)

Detuning
ε

a 1 0.03 0.03 941.37 941.40 0.0
b 1 0.03 0.0315 941.47 987.83 4.92%

Figure 7. The beam mesh and the two polarizations of the first bending mode.

Since the reduced dynamics contain two master coordinates, the fitting procedure for
the ICE method first needs to create the two-dimensional stress manifold from which the
nonlinear restoring force is deduced. The fitting procedure is illustrated in Figure 8. A total
of 44 static load cases with different values of (β1, β2) are selected, where βi is the modal
force amplitude factor applied on mode i. From these, the modal displacements (X1, X2)
are retrieved from the static deformation, and a stress manifold is obtained, as shown in
space (X1, X2, β1) in Figure 8. The load scales are chosen so as to obtain amplitudes of
displacements in the range of ±1 times the thickness. The perfect and detuned cases are
considered, and they show a clear symmetric stress manifold.

Figure 8. Illustration of the fitting procedure in the ICE method with two master modes for the case of the clamped beam
without detuning ε = 0 (left) and with detuning ε = 4.92% (right).

3.2.1. Backbone Curves

We first report the computation of the backbone curves in the two selected cases
with and without detuning. As in the previous section, a reference solution was derived
thanks to numerical continuation on the full-order model, and was compared to the
ROMs with two master coordinates. The analytical solution derived in [70] allows a
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better understanding of the expected results. In particular, when detuning is present,
an uncoupled solution in which only the lowest frequency mode is excited exists until a
pitchfork bifurcation point, where this solution becomes unstable in favor of a coupled
solution corresponding to an elliptic mode.

Figure 9 shows the obtained results. The first row corresponds to the case without
detuning, while the second row corresponds to the case with detuning. In order to correctly
represent the two vibration polarizations, the displacements at the center of the beam in the
two u and v directions (see Figure 7) are reported. When there is no detuning, two types
of backbone curves are numerically retrieved: an unstable solution, corresponding to an
uncoupled mode where only the displacement along u is excited (such that v = 0), and a
stable coupled solution with both u 6= 0 and v 6= 0. With the detuning, the coupled solution
branches from the uncoupled one at a pitchfork bifurcation point. The main conclusion is
that all of the methods are able to correctly retrieve the unforced and undamped dynamics
of this problem, with all the specific analytical features in terms of existence, stability, and
bifurcations of the 1:1 internally resonant dynamics. This is easily explained by looking at
the reduced dynamics computed by each of the methods, which are reported in Appendix B.
As a matter of fact, the dynamical equations contain only the four resonant monomial
terms that are also retained in the analytical developments provided in [70]. All of the other
terms are negligible. The slow/fast assumption is very well fulfilled, and no quadratic
terms are present. Consequently, all of the methods are able to retrieve such dynamics,
which are fully driven by only four cubic terms, without invariant-breaking terms.
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Figure 9. Backbone curves of the clamped–clamped beam in 1:1 resonance. First row: without detuning, second row: with
detuning. Left column: first polarization in the u direction, center column: zoom, right column: second polarization in the v
direction. Comparison of the full-order reference solution (black line) to reduced-order models (ROMs) with two master
modes; purple: ICE, blue: QM–SMD, brown: QM–MD, red: DNF. The green curve represents the analytical solution.

3.2.2. Frequency-Response Curves

The forced–damped dynamics are now investigated by computing the FRFs. A forcing
term aligned with direction u is imposed at the center of the beam in order to excite
one polarization and to observe the nonlinear coupling with the second polarization
along v. A Rayleigh damping of the form C = bK is selected, with b = 1.0622× 10−5s,
corresponding to a damping ratio of 0.5 percent for the first mode. The reduction methods
are compared to the full-order reference solution, all of them being obtained by numerical
continuation. Note, however, that the continuation method implemented in [68] is not yet
able to perform the stability computation or to locate pitchfork bifurcation points. In order
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to circumvent the second limitation, a small forcing in the v direction, with an amplitude
selected as 1% of the amplitude in the u direction, is also applied. Consequently, the solution
is perturbed with a non-zero solution in the v direction, allowing the continuation method
to retrieve the coupled branch. On the other hand, the FRFs of the reduced dynamics are
computed with Manlab [64–66], which reports stability and detects pitchfork bifurcations.

Let us first illustrate the results found in the case without detuning, shown in Figure 10,
where the amplitude of the forcing is set to 300 N. The topology of the solution, which was
already reported in other cases (see, e.g., [28]), is characterized by a pitchfork bifurcation
point from which the branch of coupled solutions arise. Along this solution branch, two
Neimark–Sacker bifurcation points exist, leading to quasi-periodic solutions in this area.
Importantly, all of the methods are able to retrieve all of these important dynamical features.
Small quantitative differences are observable. The ICE method strongly underestimates
the damping in the reduced dynamics. This is, again, a consequence of the treatment of
the losses by the reduction method, which is not able to take into account the damping
factors of the slave modes. On the other hand, the QM and DNF methods produce a very
satisfactory prediction of the full dynamics. The QM–MD and QM–SMD methods give
completely equivalent results in this case; the curves fully overlap. Indeed, as reported in
Appendix B, in this particular case, using either MDs or SMDs in the reduction method
for building the quadratic manifold produces exactly the same equations for the reduced
dynamics. Consequently, in this section, only the results of the QM–SMD method are
shown in the figures. A slightly better quantitative prediction is given by the DNF method
on the second polarization (companion mode); in any case, this difference is small. One
can also remark that the trick used to get the coupled solution for the full-order model is
visible close to the imperfect pitchfork bifurcation points for the second polarization.
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Figure 10. Frequency-response functions for the beam with 1:1 resonance without detuning. The left column is the solution
in the u direction (driven mode), and the right column is the solution in the v direction (second polarization, companion
mode). The full-order reference solution (black, without stability) is compared to different ROMs. (a,b): ICE (purple) and
DNF (red) methods. (c,d): QM–SMD method (blue). PF: pitchfork bifurcation point. NS: Neimark–Sacker bifurcation.
Solid curves: stable part, dashed curve: unstable solution, dash-dotted curve: unstable solution between the NS points
(quasi-periodic solution).
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The results for the beam with detuning ε = 4.92% are shown in Figure 11, where the
Rayleigh damping is now mass-proportional and has been set to C = aM with a = 9.4147
s −1 (still following the rule of 0.5 percent for the first mode), and the amplitude of the
forcing is 1500 N, a large value that is needed in order to correctly enter the coupled branch
solution, reaching vibration amplitudes close to two times the thickness. One can note that,
in this case, all of methods give very close results. In particular, using mass-proportional
damping creates damping ratios that decrease with increasing frequencies. Consequently,
the damping values of the slave modes are smaller and smaller. The consequence is that
most of the losses are given by the modal damping factor of the master modes, so that the
ICE method is now able to give a correct prediction as compared to the other methods. The
QM–MD and QM–SMD methods again perfectly overlap for the same reason as before;
consequently, only the QM–SMD curve is shown. The branch of coupled solutions arises
from in a pitchfork bifurcation, and two Neimark–Sacker bifurcation points exist along this
branch, leading to quasi-periodic solutions. Once again, these dynamical features can be
retrieved by all of the methods.

0.8 1 1.2 1.4 1.6

/
1

0

0.5

1

1.5

2

u
m

a
x

/h

PF

NS

d

c

(a)

NS

1 1.1 1.2 1.3 1.4

/
1

0

0.2

0.4

0.6

0.8

1

1.2
v

m
a
x

/h

PF

NS

(b)

NS

1.41 1.42 1.43 1.44 1.45 1.46

/
1

1.18

1.2

1.22

1.24

1.26

1.28

u
m

a
x

/h

(c)

1.6 1.65 1.7 1.75

/
1

1.6

1.7

1.8

1.9

2

u
m

a
x

/h

(d)

Figure 11. Frequency-response functions for the beam with 1:1 resonance with a detuning of 4.92%. (a) The u direction
(driven mode), (b) the v direction (companion mode). (c,d) Close-up views. Full-order reference solution (black) compared
to ROMs obtained with the ICE method (purple), the DNF method (red), and the QM–SMD method (blue).

As a conclusion of this case, one can observe that all of the methods are able to
reproduce the 1:1 internally resonant dynamics well by taking two master modes into
account. The main reason resides in the fact that the reduced dynamics are only driven by
four resonant monomial terms that are easy to retrieve, regardless of the method used. In
addition, the slow/fast assumption is very well verified, so the ICE and QM methods can
predict the correct results. All of these conclusions should be different in the case of a shell
with 1:1 internal resonance, since in this case, the slow/fast assumption and the appearance
of strong quadratic couplings would completely change the picture. A preliminary result
in this direction is reported in [60], where it is observed that for a spherical-cap shell, the
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QM method is not able to retrieve the correct type of nonlinearity due to the violation of
the slow/fast assumption.

3.3. A Cantilever Beam

The last of the investigated examples is a cantilever beam with length L = 1 m and a
cross-section with width b = 0.05 m and thickness h = 0.02 m. The material parameters
used are the density, ρ = 4400 kg/m3, the elastic modulus, E = 1.04× 1011 Pa, and Poisson’s
ratio, ν = 0.3. The beam is discretized with a 3D hexahedral element with 20 nodes. A total
of 50 elements in the length and four elements in the cross-section are used. For this last
example, the backbone curve of the fundamental mode is under study, together with time-
domain simulations with multi-frequency forcings, in order to test the ability of the ROMs
to retrieve the correct type of nonlinearity and their accuracy with more than one master
mode in the reduction basis. The first five radian eigenfrequencies of the cantilever beam
are ω1 = 99.00 (rad/s), ω2 = 246.79 (rad/s), ω3 = 619.31 (rad/s), ω4 = 1529.1 (rad/s), and
ω5 = 1729.3 (rad/s), showing no obvious internal resonance relationships among them.

Let us first illustrate the computation of the backbone curve of the fundamental bend-
ing mode. The ICE procedure is illustrated in Figure 12 using a single master coordinate.
A total of 100 values of applied load cases were selected to obtain displacements at the tip
of the cantilever in the range of ±0.47 m, meaning that very large displacements of up to
almost one-half the length were considered. One can observe that the fitting with the third
order is not accurate enough, indicating the need for a higher order. In the remainder of
the computations, the ROM obtained with the ICE method is considered up to order seven.
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Figure 12. Illustration of the fitting procedure for the ICE method on the cantilever beam. Blue stars
represent the outputs obtained from static applied force on the FE model, and the dashed curve is the
fitted polynomial; black: order 3, red: order 5, blue: order 7. The range of displacements in the x-axis
corresponds to half the length of the cantilever beam.

Figure 13 shows the backbone curves. Apart from the classical analytical model
initially proposed in [71] and asymptotically truncated to the third order, for which the
backbone curves of the first bending modes were computed, for instance, in [72,73], very
few numerical attempts to accurately compute those backbone curves for very large ampli-
tudes have been proposed. The only reference is [74], which is based on a geometrically
exact beam model (GEBM). Figure 13 reports those results with black stars, which are
labeled as GEBM. Each point corresponds to the time integration of the beam model, dis-
cretized with 20 Timoshenko first-order finite elements, under harmonic driving in the
steady state at the nonlinear resonance (the point at which the amplitude is maximal),
which is very close to the phase resonance corresponding to the backbone curve (see [74]
for details about the geometrically exact beam model and [75] for the phase resonance).
This reference solution attests to a slight hardening behavior up to very large amplitudes
that are equivalent to more than half the length of the beam. The results of this beam
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model are very close to the reference full-order solution that was obtained with the present
3D finite element model of the beam; the slight difference is attributed to the differences
between the models (3D and beam model).
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Figure 13. Backbone curves of the fundamental mode of the cantilever beam. Comparison of the
reference solution (black) to the single-mode reduced dynamics given by the ICE method with
fitting up to order 7 (purple), as those given by the DNF (red), QM–MD (dotted brown), QM–SMD
(dashed blue), and QM–SMD-f (solid blue) methods. Black stars: reference solution obtained with
the geometrically exact beam model (GEBM) taken from Figure 8 of [74].

Comparing the ROMs, the ICE method gives the most incorrect result, with a strong
overprediction of the hardening behavior. As the method is essentially static, it is known
that it faces important failures when an inertia nonlinearity is present. The DNF method
gives the correct behavior up to a vibration amplitude of approximately 0.2 m, meaning that
the method is reliable up to 1/5 of the beam’s length. Then, the solution strongly departs
from the reference. This limitation is due to the third-order dynamics of the reduction
method, and taking higher orders into account would improve the result.

The QM methods—using either MDs or SMDs—give identical reduced dynamics
again in this case. Importantly, they offer the best solution for this specific case, with vi-
bration amplitudes of up to more than 0.6 times the length of the beam. One can note
that the result presented here is different from the one reported in [46], where the QM–
SMD method was found to fail in a similar cantilever case. In order to understand this
discrepancy, another implementation of the QM-SMD method was applied to the same
case, and is referred to as “QM-SMD-f” case (where the added letter -f refers to “full” QM
SMD approach). In this version, the reduced dynamics used to compute the backbone
curve are the untruncated ones given by Equation (14), with polynomial terms up to order
seven, which are the ones used in [46] and are different from the ones we used throughout
this paper, where all reduced dynamics given by the QM method have been truncated
to the third order. Interestingly, the full implementation of the QM–SMD method gives
very incorrect results, following the conclusions drawn in [46]. On the other hand, our
implementation of the QM method with dynamics truncated up to order three gives an
excellent result, underlining that unbalanced higher-order terms have a huge effect on the
prediction of the reduced dynamics in this specific case.

In order to further illustrate the comparison, time responses were computed with
harmonic forcings with two and three driving frequencies that were located at the free
tip of the cantilever in order to test the ability of the different methods with either two
or three master modes. In this last comparison, only the QM-based methods and the
DNF method were studied. Indeed, as already reported in [44,51], the fitting procedure
with an increasing number of master modes in the ICE method becomes more and more
difficult and subject to important variations depending on the load scales selected. Second,
the computations reported in [76] underline the limits of the ICE method for tackling a
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problem including inertia nonlinearity, such as in the present case of a cantilever beam.
Finally, the incorrect results found with only one master mode, as well as preliminary
computations with two master modes, clearly underline that the ICE method gives results
that are too far from the reference. Therefore, the results of the ICE method will no longer
be shown in this case.

For the numerical time integration, a Newmark-β scheme with β = 0.25 and γ = 0.5
was selected. The time step of τ = 0.0001 s corresponds to a sampling rate of 10 kHz
with 20 points per period, ensuring accuracy up to mode 6. In addition, this value is large
compared to the selected forcing frequency, and thus excites the low-frequency modes in
the range of [15, 300] Hz. A mass-proportional Rayleigh damping with C f = 2[M] (in s−1)
is taken into account, corresponding to a damping ratio of 1% for the first mode. In each
case, the initial conditions correspond to the structure at rest.

The first case considers a two-frequency harmonic excitation, with driving frequencies
in the vicinity of the first and third eigenfrequencies of the structure. More precisely,
the temporal content of the external force reads f (t) = F0(sin(1.21ω1t) + sin(0.97ω3t)),
and two different amplitudes of the forcing are tested, F0 = 400 N and F0 = 800 N, in order
to reach vibration amplitudes of up to 0.2 m (1/5 of the length of the cantilever) and
0.4 m, respectively. Figure 14 shows the obtained results, where the full-order solution
assuming a linear restoring force is also shown in green. Neglecting the nonlinear terms in
Equation (1) allows a direct assessment of the level of excited nonlinearity. In Figure 14a
with F0 = 400 N, the level of nonlinearity is too small and all vibrations’ data are very
close to each other for the reduced models as well as for the linear assumption. This
is not the case anymore for F0 = 800 N, and Figure 14b,c show both the temporal and
frequency content. The importance of the nonlinearities is particularly well assessed in
Figure 14c, where one can observe that the linearized system is not able to reproduce
the important frequency content outside the excitation frequencies. Now, comparing the
reduction methods, the QM–MD and QM–SMD methods offer the best comparison to
the full-order reference solution, with time traces and spectra that are very close. On the
other hand, the DNF method slightly departs from the reference solution. This is again
attributed to the second-order truncation used in the present DNF approach, and higher
orders should be able to recover better results. However, one can note that the correct
predictive behavior of the DNF method fails to accurately reproduce details in the time
trace, but remains very close to the reference in terms of frequency content, meaning that
only slight phase problems are present.

The gains in using ROMs for time integration are very important. The full-order
analysis was run using Code_Aster for approximately 24 h on a 12-core processor computer
with 16 GB of RAM and a CPU at 2.20GHz, and the construction and utilization of the
reduced-order models only took about 3 min for the same simulation.

The last case under study is an excitation with three driving frequencies, temporal
content selected as f (t) = sin(1.21ω1t) + sin(0.97ω3t) + sin(0.98ω5t), and an amplitude
of 400 N. The ROMs were built with three master coordinates corresponding to modes 1, 3,
and 5. Figure 15 shows the results obtained in both the time and frequency domains. In
this case, the nonlinearity is sufficiently excited with a forcing amplitude of 400 N, and
very important differences already appear between time traces and frequency content.
Regarding the ROMs, one can observe that the QM-based methods give excellent results
that are almost coincident with those of the full-order model. On the other hand, the DNF
method shows a slight departure from the reference solution. One can note, however,
that this departure is moderate, with small shifts in the time domain, but a very good
recovery of the frequency content. The full-order analysis was run using Code_Aster
for approximately 20 h on the same computer mentioned above; the construction and
utilization of the reduced-order models still only took about three minutes.
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Figure 14. Time evolution of the vertical displacement of a point at the tip end of the cantilever beam in response to
an applied concentrated force with a temporal content of f (t) = F0(sin(1.21ω1t) + sin(0.97ω3t)). The reference solution
(in black) is compared to three different ROMs built with two modes corresponding to master coordinates 1 and 3; blue:
QM–SMD, brown: QM–MD, red: DNF. Shown in green is the full-order model assuming a linear restoring force. (a) F0 = 400
N. (b) F0 = 800 N. (c) The frequency content of the time signals is shown in (b) for F0 = 800 N.
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Figure 15. Vibration response of the cantilever beam to a concentrated force applied at the tip, with an amplitude of 400 N
and temporal content of f (t) = sin(1.21ω1t) + sin(0.97ω3t) + sin(0.98ω5t). (a1) Full view of the time response in the first
0.7 s; (a2) close-up view. (b1) Fourier spectrum of the vibration up to 500 Hz; (b2,b3) close-up views of the first frequency
peak (mode 1) and the second frequency peak, corresponding to mode 3. The reference solution compared to three different
ROMs built with three modes is shown in black: blue: QM–SMD, brown: QM–MD, red: DNF. Full-order model with linear
restoring force is shown in green.

To conclude this example, the three reduction methods (ICE, QM, and DNF) were
tested on a cantilever beam. The ICE method was not able to successfully handle this case,
mainly due to the importance of the nonlinear inertia effects that are missed in the con-
struction of the ROM. The DNF method gave good results up to an amplitude of 1/5 of the
length of the cantilever, in line with the results reported in [48] on a clamped–free fan blade.
One advantage of the method is that it always predicts the correct hardening/softening
behavior at the first order, and it relies on invariant manifold theory. On the other hand,
when reaching very large amplitudes, the limitation of using third-order asymptotics
comes into play. The QM methods gave excellent results in this case when used with
either full or static modal derivatives. This is in contrast with the results of [46], where
an untruncated version of the reduced dynamics was used for that case, such that the
higher-order terms introduced in the dynamics by the quadratic part were not balanced by
higher-order terms in the nonlinear mapping. On the other hand, our computations show
that, when limited to the third order, the QM methods give excellent predictions in the
cantilever case. This result would need further investigation in order to offer a complete
understanding. Indeed, at present, there are no theoretical arguments supporting a better
behavior of the QM method. As demonstrated in [50], the QM methods do not project
the problem on an invariant manifold and need the slow/fast assumption to retrieve the
correct results. Even though the slow/fast separation is well fulfilled in this case, there is
no explanation that the methods could provide such perfect predictions up to very large
amplitudes. One reason might come from the acceleration terms that are produced by the
method in the reduced dynamics.
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4. Conclusions

In this contribution, three nonlinear reduction methods for thin beam structures
vibrating with large amplitudes were compared: the implicit condensation and expansion
(ICE) method, the quadratic manifold (QM) methods using either full modal derivatives
(MDs) or only static modal derivatives (SMDs), and the direct normal form (DNF) method.
From the theoretical point of view, the three methods propose a reduction of a curved
subspace, a feature that is needed to take the nonlinear couplings into account. Only the
last two propose a nonlinear mapping to go from the physical space to the reduction space,
and only the DNF method relies on invariant manifolds, which is a key feature in order
to produce accurate and reliable ROMs. Indeed, when the reduction subspaces are not
invariant, the trajectories produced by the ROM do not correspond to any trajectory of the
full system, which might be problematic. An important consequence shown in [49–51] is
that the ICE and QM-based methods need a slow/fast separation between the master and
slave coordinates in order to predict the correct results.

The methods were first compared on an academic, analytical example, a linear beam
resting on a nonlinear elastic foundation, with the main aim of underlining how the ICE
and QM methods can fail in their predictions due to the fact that the slow/fast assumption
is not fulfilled. A feature also underlined in [50] is the incorrect treatment of the quadratic
nonlinearity by the QM–SMD method, leading to unreliable results when the quadratic
terms dominate.

Then, FE-based beam examples were selected in order to offer a more complete picture
of the advantages and drawbacks of the methods. In the first example, the curvature
was added to a straight clamped–clamped beam, enforcing important nonlinear quadratic
couplings together with an unfulfillment of the slow/fast assumption. Similar conclusions
to those from the academic, analytical example were drawn. A straight beam with two
polarizations was then studied, showing that all of the tested methods were able to correctly
retrieve these 1:1 internally resonant dynamics. Finally, a cantilever beam was investigated,
showing that ICE method could not catch the correct behavior from the small amplitudes,
whereas the DNF method allowed correct prediction of up to 1/5 of the length of the beam,
and the QM methods gave excellent results up to larger amplitudes, more than 1/2 of the
length for the backbone of the fundamental mode. It has been underlined that these results
need further investigation, as they are different from the results reported in [46], and there
is no theoretical support yet that can explain such good results.

As a summary of the different methods, one can underline the following results.
For the ICE method, the main advantage resides in its ease of use and in the rapid and
correct results it might give when only one master mode is considered and the slow/fast
assumption is verified. On the other hand, it is not reliable when the S/F assumption is
not valid anymore, and as it is a static method in essence, it encounters strong difficulties
in a case such as the cantilever beam. Finally, the treatment of the damping is elementary,
and the loss factors of the slave modes are not taken into account in the reduced dynamics,
generally leading to underprediction of the losses in the reduced dynamics.

The QM methods also need the slow/fast assumption and fail in predicting the correct
type of nonlinearity when it is not fulfilled. The QM–SMD method proposes a treatment of
the quadratic nonlinearity that can lead to erroneous predictions. On the other hand, the
QM-MD method generally gives better results. The QM methods propose an improvement
as compared to the ICE method, as shown in the numerous examples derived in this article.
In particular, the treatment of the damping is more robust and takes the slave modes into
account. Further insight is needed in the case of the cantilever to better understand the
behavior of the reduction method.

The DNF method has the invariance property embedded and generally includes the
most appealing theoretical features without needing any extra assumptions for its use. It is
limited to its third-order asymptotics, so the results are expected to deteriorate at very large
amplitudes, which was clearly observed in the cantilever beam example. It offers a general
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treatment of damping that includes the slave modes. Other limitations are linked to the
assumption made to take into account the forcing, which might need further developments.

All of the results presented in this paper are limited to beam examples. Further studies
should enlarge the scope to include more complex structures and, more specifically, the
case of shells, where the differences between the methods should be more pronounced.
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Appendix A. Representation of Quadratic and Cubic Nonlinear Terms

In this appendix, detailed expressions of the quadratic and cubic polynomial terms
representing the nonlinear internal restoring force are provided for clarity. The equations
of motion in physical coordinates are given by Equations (1) and (2), where the internal
force vector reads F(u) = Ku + G(u, u) + H(u, u, u). Explicit expressions of G(u, u) and
H(u, u, u) are written as:

G(u, u) =
N

∑
r=1

N

∑
s=1

Grsurus, (A1)

H(u, u, u) =
N

∑
r=1

N

∑
s=1

N

∑
t=1

Hrsturusut, (A2)

where Grs and Hrst are the N-dimensional vectors of coefficients Gp
rs and Hp

rst for p =
1, . . . , N. Using the matrix of eigenvectors, this problem can be rewritten on the modal
basis as in Equation (4), using similar notations for the quadratic and cubic tensors of
coefficients. The k-th modal equation thus reads:

Ẍk + 2ζkωkẊk + ω2
k Xk +

N

∑
i=1

N

∑
j=i

gk
ijXiXj +

N

∑
i=1

N

∑
j=i

N

∑
l=j

hk
ijlXiXjXl = Qk, (A3)

and the relationships between G and g and H and h read:

gij = PT
φG(φi, φj), (A4a)

hijk = PφH(φi, φj, φk). (A4b)

Appendix B. Reduced Dynamics for the Clamped Beam with 1:1 Resonance

In this appendix, the explicit equations used for the reduced-order dynamics of the
clamped–clamped beam with 1:1 internal resonance between the two polarizations are



Vibration 2021, 4 201

given in order to offer a better understanding of the simulated dynamics. The equations
are given only in the case without detuning and for the undamped–unforced case.

Using the ICE method, the polynomial third-order fitting from the set of imposed
forcings allows one to retrieve the following reduced dynamics:

R̈1 + 8.8618e5R1 + 4.3527e8R3
1 + 4.5018e8R1R2

2 = 0, (A5a)

R̈2 + 8.8624e5R2 + 4.3575e8R3
2 + 4.4893e8R2

2R1 = 0. (A5b)

Note that, in the fitting procedure, only the nonlinear terms are assessed. The linear
ones are given as known from the eigenanalysis. The small difference between the two
squared eigenfrequencies is the consequence of the small difference in the computed
eigenfrequencies reported in Table 1, which is due to numerical roundoff. Only four
monomial terms are needed, and they correspond to the ones studied in [70].

The ROM computed with the DNF method reads:

R̈1 + 8.8618e5R1 + 4.5659e8R3
1 + 4.5657e8R1R2

2 + 0.1265R1Ṙ2
1 + 0.0042R2Ṙ1Ṙ2 + 0.1224R1Ṙ2

2 = 0, (A6a)

R̈2 + 8.8624e5R2 + 4.5657e8R2
1R2 + 4.5659e8R3

2 + 0.1265R2Ṙ2
2 + 0.0042R1Ṙ1Ṙ2 + 0.1224R2Ṙ2

1 = 0. (A6b)

The linear part is left unchanged (identity-tangent nonlinear mapping). One can observe
that the additional monomials (involving squared velocities) are obviously negligible as
compared to the four resonant cubic terms already present in Equation (A5). This clearly
underlines that the dynamics are completely driven by the most simple system, with only
four resonant monomial terms corresponding to 1:1 internal resonance.

Using the QM–SMD method, a different nonlinear mapping is introduced. As already
observed in [50], the QM–SMD method produces many more monomial terms in the re-
duced dynamics, with additional terms involving the accelerations. The reduced dynamics
now read:

R̈1 + 8.8618e5R1 + 4.5670e8R3
1 + 4.5668e8R1R2

2 + 0.1263R2
1R̈1 + 0.1243R1R2R̈2 + 0.0021R2

2R̈1 (A7a)

+ 0.1263Ṙ2
1R1 + 0.1243Ṙ1Ṙ2R2 + 0.0021Ṙ2

2R1 = 0,

R̈2 + 8.8624e5R2 + 4.5670e8R3
2 + 4.5668e8R2

2R1 + 0.1263R2
2R̈2 + 0.1243R2R1R̈1 + 0.0021R2

1R̈2 (A7b)

+ 0.1263Ṙ2
2R2 + 0.1243Ṙ2Ṙ1R1 + 0.0021Ṙ2

1R2 = 0.

Again, one can observe that in this particularly simple case of a straight beam, all of
the added terms have negligible coefficients. Again, the dynamics are driven by the simple
system composed of only four cubic terms. The same is also observed when applying the
QM–MD method, leading to the following reduced dynamics:

R̈1 + 8.8618e5R1 + 4.5670e8R3
1 + 4.5668e8R1R2

2 + 0.1264R2
1R̈1 + 0.1243R1R2R̈2 + 0.0021R2

2R̈1 (A8a)

+ 0.1264Ṙ2
1R1 + 0.1243Ṙ1Ṙ2R2 + 0.0021Ṙ2

2R1 = 0,

R̈2 + 8.8624e5R2 + 4.5670e8R3
2 + 4.5668e8R2

2R1 + 0.1264R2
2R̈2 + 0.1243R2R1R̈1 + 0.0021R2

1R̈2 (A8b)

+ 0.1264Ṙ2
2R2 + 0.1243Ṙ2Ṙ1R1 + 0.0021Ṙ2

1R2 = 0.

In this particular case, the reduced dynamics given by QM–SMD and QM–MD are
completely equivalent, explaining that the methods produce exactly the same predictions.
Note, however, that this result is specific to the studied case, and more complex structures
generally lead to different formulations for the MD and SMD approaches.
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