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Abstract: High fidelity finite element (FE) models are widely used to simulate the dynamic responses
of geometrically nonlinear structures. The high computational cost of running long time duration
analyses, however, has made nonlinear reduced order models (ROMs) attractive alternatives. While
there are a variety of reduced order modeling techniques, in general, their shared goal is to project the
nonlinear response of the system onto a smaller number of degrees of freedom. Implicit Condensation
(IC), a popular and non-intrusive technique, identifies the ROM parameters by fitting a polynomial
model to static force-displacement data from FE model simulations. A notable drawback of these
models, however, is that the number of polynomial coefficients increases cubically with the number
of modes included within the basis set of the ROM. As a result, model correlation, updating and
validation become increasingly more expensive as the size of the ROM increases. This work presents
simultaneous regression and selection as a method for filtering the polynomial coefficients of a ROM
based on their contributions to the nonlinear response. In particular, this work utilizes the method of
least absolute shrinkage and selection (LASSO) to identify a sparse set of ROM coefficients during
the IC regression step. Cross-validation is used to demonstrate accuracy of the sparse models over a
range of loading conditions.

Keywords: reduced order models; nonlinear dynamics; finite element analysis; nonlinear normal
modes; parameter identification

1. Introduction

Finite element (FE) modeling is a common approach for simulating nonlinear dy-
namical systems. As the nonlinear equations of motion are not generally known in closed
form, most simulation techniques require numerical integration in the time domain. This
is computationally expensive for large models and is often unfeasible for large systems;
implicit integration and its many forms, see [1], are desirable for linear structural dynamics
applications because they are able to take large time steps, yet for geometrically nonlinear
analysis they have the drawback that at each iteration of each time step the stiffness matrix
must be reassembled and re-factored [1]. Explicit time integration, on the other hand, is
able to compute each step efficiently because it does not require assembly or factorization of
the global stiffness matrix [1]. The limiting factor for explicit integration is that the scheme
must adhere to a conditionally stable time step that is generally orders of magnitude
smaller than an implicit step.

A potential alternative to integrating the full FE model is to use a reduced order model
(ROM). In general, reduced order modeling techniques project a nonlinear system onto a
much smaller number of basis vectors. The lower-dimensional ROM can then be integrated
at a significantly lower cost. Reduced order modeling techniques can be broadly classified
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as being intrusive or non-intrusive with regard to how they access the implementation
of the FE software. Non-intrusive methods, which are the focus of this work, utilize FE
software to solve for static displacement due to an applied force or vice-versa. For an
introduction to intrusive methods, the reader is refereed to [2].

There are two common indirect approaches to nonlinear reduced order modeling.
The first is the enforced displacement (ED) procedure developed by Muravyov and Rizzi [3]
and further enhanced for application to complex structures by Perez and Mignolet [4,5].
One disadvantage of ED methods is that one must postulate the important displacements
ahead of time in order to create an accurate ROM. The other class of methods, termed
Implicit Condensation (IC), apply static loads to the structure [6,7], and hence the effects of
modes that are not included in the basis are still present implicitly in the load displacement
data; indeed, these methods create a ROM where any modes that are not included in
the basis are statically condensed onto the basis set [5,8]. A companion method was
later presented by Hollkamp and Gordon that recovers the statically condensed motions,
and was termed Implicit Condensation and Expansion (ICE) [9]; this was shown to be
important when predicting membrane stress. This work will focus on the IC/ICE family
of methods.

Implicit Condensation methods use least squares regression to estimate a polynomial
model that best fits the static force-displacement data from the FE model; e.g., they employ
polynomial kernel regression [6,10]. A drawback of this approach is that the number of
coefficients to identify during the regression step increases in the order of the largest polyno-
mial within the kernel. Thus, as the number of modes included within the ROM increases,
the number of coefficients to identify increases even faster. For geometrically nonlinear
systems, polynomial terms up to order three are typically used [11], and as such the number
of nonlinear stiffness coefficients in the ROM typically increases cubically with the number
of modes. For example 2, 4, and 8-mode ROMs contain 14, 120, and 1248 nonlinear stiffness
termsm respectively. Recent works have shown that polynomials up to ninth-order may be
needed in some cases [12], exacerbating this problem further. Many of these coefficients
typically have little contributions to the response and thus are not required to be estimated
but one has no way of knowing which to exclude a priori. McEwan et al. [6,7] explored
ways of measuring the importance of each term in a ROM in hopes of reducing its size,
but the efforts were not conclusive. A few other works have attempted to determine which
terms can be eliminated from a ROM. For example, Shen et al. [13] proposed to retain
only the resonant terms in a normal forms analysis; Mignolet et al. (see, e.g., [14]) have
presented various methods for eliminating the spurious terms from ED ROMs and some of
their ideas may apply to IC/ICE ROMs. In spite of these efforts, in the vast majority of all
recent works, all possible terms have been retained when creating IC/ICE ROMs.

Furthermore, model correlation, updating, and validation become daunting tasks
because there are many terms in the ROM that might need to be tuned to bring the ROM
into agreement with experimental results. It would be far preferable to identify a subset of
important coefficients to deal with. Mathematically, the goal is to minimize the number
of coefficients in the ROM, or the l0-norm of the coefficient vector. Although this is the
desirable approach, it is a computationally prohibitive because it requires an exhaustive
search of all possible subsets [15]. A common approach to approximate the ideal scenario
is to allow a convex relaxation of the l0-norm problem. This corresponds to invoking a
l1-norm penalty onto the regression problem [15].

In particular, this work explores the use of the method of least absolute selection
and shrinkage (LASSO) procedure as the simultaneous regression and selection routine.
LASSO was originally developed by Tibshirani [16] and is a popular tool in the fields
of machine learning, statistics and data analytics for creating sparse predictor models.
A sparse predictor model is one in which certain coefficients of the model are zero—
i.e., their influences on the system are removed. LASSO produces these sparse solutions by
penalizing the l1-norm of the coefficient vector during regression. As the penalization term
is increased, the predictor model becomes more sparse, revealing the most important ROM
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parameters. From a Bayesian perspective, enforcing the l1-norm penalty can be viewed as
placing a zero-mean Laplace prior distribution on the parameter vector [16].

A known difficulty of generating accurate ROMs is the selection of the scaling co-
efficients for the loads applied to the FE model [11,17]. The value of the scaling factor
determines the amount of nonlinearity that is excited in the system and thus the coefficients
to be estimated. Previous works [17,18] sought to find a set of optimal loads for which to
excite the structure such that the ROM is accurate. This approach, although shown to be
effective in certain cases, does not evaluate the ability of the ROM to generalize to other
load cases and may be case dependent. As such an analyst may spend a significant amount
of time trying to identify the "optimal" load scaling value for each load case. In this work
a data-driven approach was utilized in which multiple sets of loads were applied to the
FE model, significantly more than were required to create a single ROM, to obtain a large
amount of training data. More specifically, whereas in prior works we typically chose a
single load level when creating the ROM—for example, scaling all loads so that they would
produce a displacement of one thickness in a beam or panel—in this work a set of loads
was created with a Gaussian distribution parameterized with a certain mean and standard
deviation. Note that other distributions such as uniform, Lapacian, or logarithmic could
also be used to generate the load factors for training. This approach allows the model to be
trained with many sets of load cases, over a range of different load amplitudes, to ensure
that the ROM is accurate over a range of loading conditions.

Furthermore, an upfront metric to evaluate the accuracy of a ROM during the training
phase is used. This is accomplished through a cross-validation procedure, commonly used
in many scientific fields. The data generated for regression are split into two sets, a training
set and a validation set. The training data are used in the regression to estimate the model
coefficients and the validation set is used to evaluate the accuracy of the trained model on
unseen data. This procedure evaluates the core function of the nonlinear ROM, its ability to
accurately predict the nonlinear internal force for a given displacement state. Most works
in the field have used subsequent evaluation metrics, such as static displacement [5,11],
random response [5,11], and nonlinear normal modes [17,18]. These more complex and
computationally expensive metrics indirectly evaluate the ability of the ROM to predict the
nonlinear internal force. These cannot be readily incorporated into the current approach,
and so are used only to check the quality of the ROMs after the fact.

The paper is organized as follows: Section 2 outlines the theory related to nonlinear
structural dynamics, including the generation of ROMs, with focuses on the formulation
of the polynomial estimation process. The implementation of LASSO for the regression
problem at hand is detailed. Two numerical investigations of the procedure are presented
in Section 3, followed by conclusions in the Section 4.

2. Theory

This section covers the theoretical framework of the dynamics associated with ge-
ometrically nonlinear response, the model reduction procedure, and ROM parameter
identification via least squares and LASSO.

2.1. Nonlinear Dynamic Equations of Motion

The geometrically nonlinear elastic FE equations of motion for an n DOF system can
be written as

Mẍ + Cẋ + Kx + fnl(x) = f(t) (1)

where M, C, and K are the (n× n) mass, damping, and linear stiffness matrices respectively.
x, ẋ, and ẍ are the n × 1 displacement, velocity, and acceleration vectors. If the only
nonlinearities are geometric, then the nonlinear restoring force fnl(x) is only function of the
current displacements. The n× 1 external force vector f(t) can be random in both space
and time.

The first step in creating a nonlinear ROM is similar to that for a linear ROM in which
one must select which modes to include within the basis set used to span the subspace.
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Considering only the linear portions of Equation (1) with no damping and no external
forcing, the underlying linear modes are found by solving the generalized eigenvalue
problem in Equation (2)

(K−ω2
r M)ϕr = 0 (2)

where ϕr is the rth linear mode shape and ωr is the linear natural frequency associated with
the rth mode. The physical displacements can be expressed as a coordinate transformation
consisting of the linear mode shapes included in the basis set and the modal coordinates as

x(t) = ϕmq(t) (3)

where ϕm is the N ×m mass normalized mode matrix composed of the m mode shape vec-
tors in the reduced basis set and q is the m× 1 vector of time dependent modal displacements.

The nonlinear ROM equations of motion are obtained by first substituting the coordi-
nate transformation from Equation (3) back into Equation (1) and pre-multiplying by ϕT

m,
where ()T is the transpose operator. Then the rth nonlinear modal equation becomes

··
qr +cr q̇r + ω2

r + θr(q1, q2, ..., qm) = ϕT
r f(x, t) (4)

The ROM’s geometrically nonlinear restoring force in the modal domain, θr, is a
function of the modal displacements as follows:

θr(q) = φT
r fnl(’mq) (5)

In [11] it was shown that the nonlinear restoring force for a linear elastic system
with only geometric nonlinearities (using von Kármán kinematics) can be accurately
approximated with quadratic and cubic terms as

θr(q1, q2, ...qm) =
m

∑
i=1

m

∑
j=i

Ar(i, j)qi, qj +
m

∑
i=1

m

∑
j=i

m

∑
k=j

Br(i, j, k)qi, qj, qk (6)

where Ar and Br are the quadratic and cubic nonlinear stiffness terms respectively. How-
ever, in [12] it was shown that cubic nonlinearities in the full order FE model can lead to
terms up to 9th order in a ROM. In this work we restrict the ROM to third order, and so
a sufficient number of modes will need to be included such that cubic polynomials can
capture the force-displacement relationships.

2.2. Generating Static Force-Displacement Data

Estimating the nonlinear stiffness terms requires applying a series of static forces in
the shapes of the modes to the full FE model. Each static load case consists of combinations
of the m underlying linear mode shapes up to order three. For example, a multi-mode
force is the combination of the individual eigenvectors with associated scale factor, f̂r,
represented as

Fc = M( f̂1ϕ1 + f̂2ϕ2 + . . . f̂mϕm) (7)

The scale factor for each mode can be computed by prescribing a desired displacement
of a certain DOF of the model with the following equation

f̂r =
ω2

r
ϕT

rϕr

xc

ϕr,c
(8)

where ωr is the frequency of the mode of interest, xc is the desired displacement magnitude
of the DOF of interest, and ϕi,c is the entry of the DOF of interest in the mode shape
considered. From [11,17] it was found that displacements in the order of the thickness are
sufficient to excite the nonlinearity of the system. For flat structures, a single load case
would typically suffice but for curved structure multiple amplitudes are often required.
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In this work, as stated in the introduction, the load scaling values were generated from a
multivariate normal distribution with prescribed mean and standard deviation represented
as µ and Σ. Once the load cases have been solved, the displacements from the nonlinear
static solutions are then projected onto the reduced domain using the basis set as

qr = ϕT
r Mx (9)

Since the nonlinear stiffness coefficients of the ROM are represented as polynomial
terms, the training data for the regression problem can be transformed to a linear regression
problem through a polynomial kernel method. The training matrix can be formed as

G =


q2

1[1] q1q2[1] · · · q2
m[1] q3

1[1] q2
1q2[1] · · · q3

m[1]
q2

1[2] q1q2[2] · · · q2
m[2] q3

1[2] q2
1q2[2] · · · q3

m[2]
· · · · · ·

q2
1[N] q1q2[N] · · · q2

m[N] q3
1[N] q2

1q2[N] · · · q3
m[N]

 (10)

where [·] represents the sample number from one of the nonlinear static load cases from
the set of N cases. If multiple load levels are used in the training, then the total number of
cases consists of several sub-cases of data of size NL, each of which would contains enough
load-displacement data to create a single ROM, as described in [11]. The nonlinear portion
of the modal internal force, for each modal equation, is computed by removing the linear
contribution to the internal force:

br,nl =


br[1]−ω2

r qr[1]
br[2]−ω2

r qr[2]
...

br[N]−ω2
r qr[N]

 (11)

The regression problem to identify the parameters for the rth mode can then be written
in the following form.

GΘr = br,nl (12)

where Θr is the vector containing the unknown nonlinear stiffness coefficients Ar and Br.
Note that the same modal displacement matrix is used for each regression problem to
identify the parameters for a given mode. For a given system, the number of nonlinear
coefficients, NΘ, is a function of the number of modes m in the reduced linear basis set
given by

NΘ = m
(

m +m C2 + m2 +m C3

)
(13)

where mCk = m!
(m−k)!k! [11]. Clearly, the number of nonlinear terms that must be found

scales as O(m3). For large basis sets the number of terms becomes extremely large with
many terms that end up being negligible.

2.3. Estimating the Nonlinear Stiffness Terms

This section reviews least squares regression and its previous use in estimating the
nonlinear stiffness terms. The second subsection presents some of the rationale that could
be used to define a minimal ROM and explains how LASSO is used to obtain a specific
sparse solution set corresponding to statistically significant parameters.

2.3.1. Least Squares Estimator

Least squares regression is the approach used in most recent works (e.g., [11,17])
to estimate the nonlinear stiffness coefficients. The least squares approach is proven,
straightforward, and readily available in most scientific computing packages. For a set of
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observations, least squares finds the solution that minimizes the mean squared error on the
l2 norm as

min
Θr
||GΘr − b||22 (14)

The nonlinear stiffness terms from the least squares regression problem can be found
via a closed form expression known as the normal equations as

Θr = (GTG)−1GTbr (15)

or if the system size is large, this can be solved iteratively using a gradient descent approach
or one of its many variants [19].

2.3.2. Least Absolute Shrinkage and Selection Operator (LASSO)

Even though ROMs significantly reduce the number of DOF in a given system,
the number of parameters of the ROM can still be exceptionally large. Another draw-
back of computing ROMs using least squares regression is that there is no metric for
determining which nonlinear stiffness terms contribute most to the dynamic response. This
work explores the use of least absolute shrinkage and selection operator (LASSO) to drive
the cost function for low-contributing nonlinear stiffness terms to zero.

In essence the goal is to find a set of model coefficients Θr that minimizes the squared
error and also that minimizes the number of terms in Θr or its l0 norm, as mentioned earlier.
These are two competing objectives, so one would have to determine a weighting between
them that produces the best results—i.e., the smallest model that has acceptable accuracy.
In practice it proves difficult to use the l0 norm; however, an algorithm from the machine
learning community known as LASSO is able to solve a similar problem.

For a set of observations, LASSO determines the solution that minimizes the mean
squared error on the l2 norm as well and the l1 norm of the coefficient vector. LASSO adds a
penalty term to the least squares optimization function that is proportional to the l1 norm,
where a penalty of zero is simply least squares regression. LASSO, then minimizes the
following optimization function

min
Θr
||GΘr − br||22 + λ||Θr||1 (16)

where λ is a regularization term associated with the LASSO procedure. The solutions
become more sparse as this parameter is increased. There is no closed form solution of
Equation (16) but it is still a convex optimization problem and can be solved iteratively
using a coordinate descent algorithm [20].

2.3.3. Repeated K-Fold Cross-Validation and Hyper-Parameter Selection

Cross-validation is used in this work to provide an up-front identification of the accu-
racy of a ROM and to identify the optimal regularization term, λ. In this work we are using
k-fold cross validation, although other forms are available, such as exhaustive cross valida-
tion, leave-p-out cross validation, and leave-one-cross validation, among many more [21].
K-fold cross validation is a simple form of cross validation in which the set of available
data is split into two portions, the training set and the validation set, with the number k
referring to the number of groups the data are split into. A graphical representation is
demonstrated in Figure 1.
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Figure 1. Graphical depiction of k-fold cross validation with 4 folds.

The error function used during the cross validation is

Ek(λ) = ∑
i∈k

(br,i −GiΘr,i(λ))
2 (17)

where the matrix Gi consists of a subset of the polynomial coefficient matrix from
Equation (10) and the vector br,i consists of the a subset of the nonlinear modal forces
corresponding to the validation set as defined by the k-fold cross validation procedure.
The polynomial coefficients, Θr,i(λ), are the polynomial coefficients subset of the coeffi-
cients estimated using the training set. The total error during cross-validation is found as

CV(λ) =
1
K

K

∑
k=1

Ek(λ) (18)

Once the scores are retained from the cross-validation stage, one is able to select the
hyper-parameter, the lasso regularization parameter λ in this work, that provides the most
accurate model. In the context of this work, the most accurate model is represented by the
model which has the lowest mean squared error (MSE) during cross validation. In this
work the MSE is used as the error metric for each k-split, but there are other options as well,
such as median absolute error (MAE), which is less sensitive to outliers in the residual.
There is potential that this error metric would produce an optimal model with different
regularization parameter λ.

2.3.4. Discussion on Computational Cost

One disadvantage of such an approach is that it requires a larger number of nonlinear
static load cases to generate the training data for a ROM compared to traditional IC method.
However, this cost is offline and completely parallelizable, as each static load case can be
computed independently of the others. Once the coefficients of the sparse ROM have been
identified via LASSO, the computational cost of using the ROM in subsequent analyses—
static solvers, time integrator, etc.—is comparable to that of a traditional IC ROM when
both have a low number of modes included. As the number of modes in the basis set
increases, the number of nonlinear terms increases in the order of cubically, resulting in a
larger evaluation cost of the nonlinear force function Equation (6). The sparse ROM has the
ability to reduce this cost with savings proportional to the sparsity of the resulting ROM.
The computational savings are analogous to those of dense vs. sparse matrix multiplication.

As mentioned, the coordinate descent algorithm is used to solve the regularized
regression problem of Equation (16). This is an iterative solver which for a design matrix
of N samples by p parameters scales O(Np). As the number of modes (m) increases, the
number of nonlinear stiffness terms, i.e., design parameters, increases O(m3), resulting in
each iteration of the coordinate descent algorithm scaling with respect to modes asO(Nm3).
It is also possible that for larger systems with many parameters that the number of iterations
to converge will increase. Fortunately, the coordinate descent can be parallelized and some
of this computational burden can be alleviated.
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3. Numerical Examples
3.1. Flat Beam

The first numerical study is a flat clamped-clamped beam that exhibits geometric
nonlinearity. This beam has been used in numerous previous studies [22,23] to evaluate
ROM building procedures. The beam has a length of 228.6 mm (9 in), a width of 12.7 mm
(0.5 in), a thickness of 0.7874 mm (0.031 in), a modulus of elasticity of E = 2.0684× 105 N

mm2

(2.97× 107 lb
in2 ), a density of ρ = 7.8× 10−6 kg

mm3 (7.36× 10−4 lb·s2

in4 ), and a Poisson’s ratio
of 0.29. The beam was modeled with 40 2-node beam elements and restrained to in-plane
motion resulting in a total of 117 DOF. The first eight linear normal modes of the beam are
presented in Figure 2. In this case a 2-DOF ROM is considered, consisting of the modes 1
and 3 of the flat beam. The ROM contains seven nonlinear stiffness terms per modal DOF,
three quadratic, and four cubic, resulting in 14 total terms.

Figure 2. Linear normal modes of the flat beam. Modes 1 and 3 are used within the base set.

3.1.1. ROM Training and Nonlinear Stiffness Terms

The training data for the flat beam ROM consisted of 10 separate sets of load case data,
each of which contained eight load cases and was a complete set in that it contained all
of the typical permutations of the modal loadings [22] and thus could have been used to
obtain a single ROM with the conventional approach. The result was 80 total static load
cases with the matrix G from the linear system of equations presented in Equation (12)
having size 80× 7. The load scaling values for the forces used to excite the model were
created from a normal distribution with a mean of 0.5× thk and σ = 0.05× thk, where thk
is the thickness of the beam (0.031 in). The cross-validation training results for the ROMs
are presented in Figure 3. The MSE is plotted as a function of the regularization parameter.
In both cases it was found that the optimal penalty term and the corresponding number
of terms per modal DOF were both four, corresponding to a model that contains only the
cubic terms. The actual decrease in MSE relative to the LS solution was less than 1% in
both cases, indicating that this model has an MSE that is nearly as low as a model with
many more coefficients. The 1σ STD value identified on the plots can be used as a metric to
determine how much MSE may be acceptable relative to the optimal model. For the flat
beam case at hand, the sparsity did not change between the optimal model and 1σ model
so there would be no benefit to using the 1σ model. For other application cases there could
be large variations in the sparsity between the optimal and 1σ model in which it may be
advantageous to use the sparser model and the 1σ point allows reference to amount of
additional error associated with the model.
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Figure 3. Mean squared error (MSE) and standard error (SE) of a 1,3-mode reduced order model
(ROM) when using k-fold cross validation for each λ value. The two subplots on the right are zoomed
in portions of the plots on the left and center.

The nonlinear stiffness coefficients of the 2-DOF ROM identified via LASSO are
presented in Figure 4. In each plot the nonlinear stiffness coefficients are normalized to the
values identified using least squares regression. For the first modal equation, the terms that
are removed first are the quadratic ones. Following that, the B1,1,2 is removed but shortly
after comes back into the solution as B2,2,1 is removed. Then at a value of λ = 3.28 the only
term to remain is the B1,1,1 term. The sparse predictor models created via LASSO for the
first modal equation correspond well with what is known about the beam. The quadratic
terms are known to be negligible because the beam is flat and it makes sense that the most
important term is the B1,1,1 parameter. For the second modal equation the same trend was
found, with the quadratic terms being removed early on and again the last term retained
in the model being the cubic value associated with the second mode alone B2,2,2.

Figure 4. Nonlinear stiffness coefficients of the first and third modal equations versus the least
absolute selection and shrinkage (LASSO) regularization parameter λ. The nonlinear stiffness
coefficients were normalized with respect to the values estimated using least squares.

3.1.2. Evaluation of Accuracy

To evaluate the accuracy of the ROMs created using LASSO, the models were com-
pared with the least squares model. The metrics used to compare the numerical models
were the nonlinear normal modes (NNMs), which define the amplitude-frequency de-
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pendence of a nonlinear system, and hence enable a strong comparison between the
ROMs [23,24]. The two NNMs of the numerical models, represented as frequency energy
plots (FEPs), are shown in Figure 5. The NNMs were computed using the Multi-Harmonic
Balance (MHB) method as in [25] with three harmonics included within the solution.
The two-mode ROM created in this example contained only these two modes.
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Figure 5. Frequency energy plot of the first (left) and third (right) nonlinear normal modes (NNMs)
of the flat beam for ROMs created using least squares and using LASSO with various penalty terms.

The ROMs made using LASSO were comparable with the NNM computed from the
LS ROM. The LASSO ROMs remained accurate compared to the LS ROM for the first NNM
when it was reduced down to six terms, or only (0.43%) of its original size. For the second
NNM, the LASSO ROMs maintained accuracy when reduced down to eight nonlinear stiffness
terms, or a sparsity value of (0.57%). After less than eight terms were retained within the
ROM, the NNM started to lose accuracy. This was expected because from Figure 3 the MSE
during cross-validation increases after removing more than optimal number of terms, three per
modal DOF, resulting in six in total removed. This simple example has shown that LASSO
with cross-validation can identify those terms in a simple ROM that are most important,
and that it produces results that agree with our expectations based on the physics of the
problem. The next section tackles a more challenging problem.

3.2. Curved Panel

The second numerical study is on a curved panel, originally presented in [11] and also
studied in [9]. The panel is 247.65 mm (9.75 in) by 400.05 mm (15.75) in along the curved
direction which has a radius of curvature of 2540 mm (100 in). The panel has fixed boundary
conditions along all sides. The finite element of the panel is shown in Figure 6 consisting of
63 elements along the curved direction and 24 along the flat direction. The panel is made
of stainless steel with a modulus of elasticity of E = 204.8 GPa (28,500 ksi), poisson’s ratio
of ν = 0.3, and a density of ρ = 7870 kg/m3 (7.48 × 10−4 lb · s2/in4).

Figure 6. Finite element model of the curved panel.

Based on insights in previous work [8], one must include a significant number of the
symmetric bending modes in the basis set in order to accurately capture the response of the
structure to a base excitation (equivalent to a uniform pressure load on the panel). The basis
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set for the largest reduced order model used for this structure consisted of modes 1, 2, 3, 4, 5,
8, and 10—seven modes in total. The linear modes of the structure used within the basis set
are shown in Figure 7. This 7-mode ROM will be used in the evaluation of accuracy section
to follow but due to the size of the ROM (112 stiffness terms per modal DOF resulting in
784 nonlinear stiffness terms total) it is difficult to portray the nonlinear stiffness terms and
training results as was done in the previous section. For each ROM made, the load cases
consisted of 10 observations of loading such that each case (378 static loads) contained
enough information to generate a single ROM. The result is 3780 total static load cases with
the matrix G from the linear system of equations presented in Equation (12) having size
3780× 112. The scaling factors of each of the 10 observations were again sampled from a
normal distribution with a mean of 1x the plate’s thickness and a standard deviation of 0.1×
the thickness. Before showing those results, a 4-mode ROM consisting of modes 1, 2, 3, and
4 was used to demonstrate the training and nonlinear stiffness parameter identification.

Figure 7. Shapes of the linear modes included in the basis set for the ROM used in this study.

3.2.1. Training and Nonlinear Stiffness Identification

The cross-validation results when generating the a 4-mode ROM are presented in
Figure 8 for each mode included within the ROM. The MSE of the k-fold cross validation is
presented along with the standard error (SE) of the MSE for each value of λ. Furthermore,
the optimal lambda is presented for each case. For each case the MSE is relatively constant
from low values of lambda, corresponding to near least squares solutions, up until the
optimal values for each mode. For modes 1, 3, and 4 the optimal λ values were near 1.
For mode 2, the primary bending mode, the optimal λ corresponded to a λ = 0 or a least
squares solution. For modes 1, 3, and 4 the optimal regularization coefficient occurs right
before the model began to become inaccurate, because too many coefficients were removed.

Three sparsity plots are shown in Figure 9, showing the terms that would be retained
and their relative magnitudes for three cases: (1) the least squares solution (all terms
retained), (2) the optimal solution identified via cross-validation, and (3) a solution in
which terms with the smallest magnitude are removed. The later is used to demonstrate
that lasso does not simply remove the lowest magnitude prediction variables; the magni-
tude selection procedure removes different parameters from the model than LASSO does,
and furthermore, if one were to perform a procedure in this manner, the parameters that
are retained in the model would not be changed from the initial LS estimate and may not
be optimal.

The same procedure was applied to ROMs from single mode up to the 7-mode ROM
with modes (1–5,8,10) as described earlier, and the resulting sparsities for the optimal
model and 1-standard deviation error models are presented in Figure 10. The sparsity
parameter, Sp, is the ratio of non-zero coefficients retained in the model to the number of
total coefficients of the LS model. In each case the LASSO procedure identifies an optimal
model, in terms of MSE during cross-validation, that is sparse. In many of the cases the
1− σ error model produces a similar sparsity model as the optimal.
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Figure 8. Mean squared error (MSE) and standard error (SE) of k-fold cross validation for each λ value.

1 2 3 4

 Mode Index

11

22

33

44

12

13

14

23

24

34

111

112

113

114

221

222

223

224

331

332

333

334

441

442

443

444

123

124

134

234

 K
n

l T
e

rm

 Full K
nl

-2

0

2

4

6

8

10

12

1 2 3 4

 Mode Index

11

22

33

44

12

13

14

23

24

34

111

112

113

114

221

222

223

224

331

332

333

334

441

442

443

444

123

124

134

234

 K
n

l T
e

rm

 Optimal K
nl

 Sp = 47.5%

 Lasso and Cross-Validation

-2

0

2

4

6

8

10

12

1 2 3 4

 Mode Index

11

22

33

44

12

13

14

23

24

34

111

112

113

114

221

222

223

224

331

332

333

334

441

442

443

444

123

124

134

234

 K
n

l T
e

rm

 47.5% Sparsity K
nl

 Magnitude Selection

-2

0

2

4

6

8

10

12

Figure 9. Nonlinear stiffness coefficient matrices for three different sets of sparsity approaches: (1) The least squares solution
(all terms shown would be retained), (2) the optimal solution identified via cross-validation (terms in white are eliminated),
and (3) a solution in which terms with the smallest magnitude are removed (terms in white are eliminated). The colorbar
gives the log of the stiffness term; values below 10−2 are zero.



Vibration 2021, 4 244

(1) (1,2) (1,2,3) (1,2,3,4) (1,2,3,4,5) (1,2,3,4,5,8) (1,2,3,4,5,8,10)

Indices of Modes in Rom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
p
a
rs

it
y
 F

a
c
to

r 
: 
S

p

LS : Full

LA : Optimal

LA : 1  Error

Figure 10. Bar plot depicting the sparsity factors for various orders of ROMs.

3.2.2. Dynamic Accuracy Evaluation

For this structure the dynamic accuracy was evaluated by computing NNMs of the
ROM using the multi-harmonic balance method [25], projecting the response to the physical
domain via the basis set to obtain an initial displacement, x0, and integrating the response
over one period. The accuracy is then determined by the periodicity of the response as
in [26], using the following definition,

ε =
||xT − x0||)
||x0||

(19)

where xT is the displacement at the end of the integration over the period. This metric
provides a measure of how well the NNM of the ROM captures the true NNM of the full
FE model. The first two nonlinear normal modes of the curved panel are presented in
Figure 11 in subplots (a) and (b) respectively. For both NNMs there is little discrepancy
between the curves for each of the numerical models.
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Figure 11. Nonlinear normal modes of the curved panel computed from ROM with modes 1, 2, 3, 4, 5, 8, and 10 included
within the basis set. Subplot (a), NNM of first mode. Subplot (b), NNM of the second mode. NNMs were computed using
the Multi-Harmonic Balance (MHB) method with 5 harmonics included.

The displacements along the NNM at the points described in subplot(b) of Figure 11
for the full sparsity ROM model are presented in Figure 12 along the first row where the
contour units are inches. The percent difference between the optimal sparsity ROM and
the full sparsity ROM are plotted along the second row where the contour units are percent
difference. In general the percent difference in the displacement field is low, less than 5%,
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for each solution except near the nodal lines of the mode. The percent difference between
the 1σ sparsity ROM and the full sparsity ROM are plotted along the third row. In general
the 1σ ROM does a good good at predicting the displacement field except at the third
solution point near 300Hz where there are differences about 10% across a large portion of
the model.

Figure 12. The first row of contours are the full finite element (FE) model displacements at the NNM solutions designated
in Figure 11 for the full ROM model. The second row of contours are the percentage differences in the displacements
fields of the optimal model with respect to the full model. The third row of contours are the percentage differences in the
displacement fields of the optimal model with respect to the full model.

The periodicity metric for each of the points designated in Figure 11 for the second
NNM are presented in Table 1 for each model. Additionally, the periodicity values from a
model using a single set of load cases is presented to compare with previous ROM building
approaches (e.g., in [17]). For example, when using least squares with all load cases,
the periodicity value at point B is 0.0070 indicating that when the full FEM is integrated
over one cycle using the initial conditions found by that ROM, the response of the full
FEM is periodic with a maximum error of only 0.7%. In contrast, using the authors’ prior
approach (second row of Table 1), the error is more than two times higher at 1.91%. Looking
at the LASSO results, we see that, although the LS model performs better than the LASSO
models at all three points along the NNM, the LASSO model with optimal MSE increases
the periodicity error only very slightly and yet it has a sparsity value of 0.358, or is 64.2%
smaller. The 1− σ model has larger error, especially at point C, where the maximum
response amplitude is 3× the thickness of the structure. A value of NA is given at point C
for the LS model, which was generated with only one set of data with load levels set to
give a deformation of 1× the thickness, because the NNM computation algorithm was not
able to converge up to that high of a response; often a faulty ROM cannot be integrated in
time or shows instability for large displacements.

Table 1. Periodicity values, ε as defined in Equation (19), for the NNM solutions presented in subplot
(b) of Figure 11.

Point A B C

LS : All Load Cases 0.0059 0.0070 0.0463

LS : Single Load 1xThk 0.0079 0.0191 NA

LA : All Load Cases-Optimal 0.0063 0.0075 0.0513

LA : All Load Cases-1σ error 0.0093 0.0108 0.1074
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4. Conclusions

This work has demonstrated that simultaneous regression and selection via LASSO
is an effective procedure to reduce the number nonlinear stiffness terms in a ROM while
maintaining accurate response predictions. In particular, the procedure was applied to a
well-characterized case study of a flat beam in which the procedure removed the known
unimportant terms, the quadratic terms of the system.

Application of LASSO to the curved plate better demonstrated its benefit as a use-
ful tool to help to identify the important nonlinear stiffness parameters of the ROM,
which could not be predicted easily using physical arguments. In the 7-mode ROM case,
the LASSO approach was able to reduce the number of coefficients by 64% while maintain-
ing accurate response predictions, as evaluated by using nonlinear normal modes. Even
then, the level of reduction achieved was far less than was possible for the flat beam; this
deserves further investigation in a future study.

Furthermore, a procedure has been developed and applied to the systems at hand
using a data-driven approach to alleviate the need to identity optimal scaling factors for the
load cases used to generate the ROM. This procedure is enhanced by using cross-validation
during the training stage to evaluate the accuracy of the ROM. In both cases, the results
showed that the larger MSE during cross-validation corresponded to less accurate ROMs
in terms of their NNMs, supporting the use of cross-validation as a metric to evaluate
the ROMs.
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