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Abstract: Low-stiffness or compliant materials are inherently difficult to characterize in terms of
dynamic mechanical properties. Their free-vibration behavior is not frequently analyzed, given that
performing classic vibration testing in these type of materials may imply the tampering of the results
by external sources, either by changes in the geometry of the sample, by gravity-induced buckling,
or the instrumentation itself (e.g., the mass of accelerometers). This study proposes an approach
to determine the frequency response of these types of materials, using a noncontact methodology
based on acoustic excitation and displacement measurement by Laser Döppler Vibrometry. The
detailed method may be optimized by changing the sample design into a half-cane configuration to
increase sample stiffness. This approach significantly increases the sample eigenmodes, facilitating
their excitation by the acoustic pressure source. Numerical analysis using the values of the dynamic
Young’s modulus from the experimental approaches validates the overall procedure. It is shown that
the combination of numerical analysis and the proposed experimental method is a possible route for
the determination of the dynamic Young’s modulus of these types of materials by inverse engineering.

Keywords: Laser Döppler Vibrometry; modal analysis; frequency response function; low stiffness;
inverse engineering

1. Introduction

The optimization of industrial systems and mechanisms is frequently dependent
on their dynamic behavior [1]. The displacements and overall dynamic behavior of a
mechanical system have a strong impact on its performance, as its poor planning usually
implies a loss in accuracy and velocities [2], and even compromise structural integrity [3].

Current numerical approaches (e.g., modal and harmonic analysis) allow a very
close prediction of the dynamic behavior of structures [4], given that the input parame-
ters for these computational routines are correctly implemented [5]. Material properties,
for instance, are fundamental to obtain a reliable prediction of the dynamic behavior of
a structure.

There are still challenges in the characterization of the dynamic mechanical behavior
of compliant samples. Even though there are experimental techniques that allow the
estimation of the viscoelastic properties of these materials, such as Dynamic Mechanical
Analysis, they usually require the pre-tension of the samples [6] and are limited in their
range of frequencies (generally up to 200 Hz) [7]. Thus, these methods do not allow the
characterization of samples in free-vibration and a wide range of frequencies.

Within the most common equipment to excite samples in experimental modal anal-
ysis are shakers and impact hammers [8], using a nondestructive approach with high
repeatability [9], sensitivity [10], and resolution [11]. The measurement of instant velocities
or accelerations in the samples is commonly performed by the use of vibrometers and
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accelerometers [12,13]. Most of these techniques, however, may not be appropriate in
samples with low density (i.e., mass) and low stiffness [14]. In fact, the mass of these in-
struments may effectively influence the dynamic response of properties with such physical
properties [15]. This generates a need to design techniques and methods to characterize
the free-vibration mechanical properties of compliant materials.

Sound pressure using a loudspeaker, for instance, could be a possible route that allows
noncontact sample excitation in a wide range of frequencies. This technique, as a relatively
low-power method, may be appropriate for low-mass and low-stiffness samples [16], and
rather than performing a single-point excitation of the samples, this technique applies a
well-distributed pressure on the surface of the samples. Bokil and Shirahatti [17] developed
an analytical model based on a sound–structure interaction for modal analysis purposes;
however, the method does not contemplate damping effects. A general problem is the
insufficient use of acoustic pressure to excite these types of samples is not sufficient to
obtain a frequency response function (FRF) due to the absence of load monitoring.

Previous experiments by Wu and Moslehi [18] have shown that such an approach may
be used to extract similar modal parameters as single-point excitation approaches. Tech-
niques such as these have been used to perform Operational Modal Analysis (OMA) [12],
in which the tested sample is subjected to equivalent conditions to its real application and
no external excitation is used. Xu and Zhu [19] have used OMA techniques in aluminum
plates that are excited by a loudspeaker, while having also performed classic modal analysis
using an impact hammer. Results from both approaches have been shown to display a 1.5%
resonant frequency variation.

Roozen et al. [20] used an array of loudspeakers to generate a diffuse field in build-
ing elements, measuring the response by laser vibrometry. Urban et al. [21] proposed
an approach to determine façade sound insulation by using an acoustic source, measure
acoustic insulation by microphones, and analyze vibrometry in the tested structures us-
ing accelerometers.

Amraoui and Lieven [12] developed an acoustic reflector constituted by an elliptic
plate with an acoustic source powered through a focal point to perform a localized acoustic
excitation. Referring to the described experimental apparatus, modal analysis was per-
formed in epoxy–carbon fiber laminates. Results have shown that there may be a shift
in the value of the resonant frequencies by the structural and acoustic excitations. These
differences are more significant as the sample mass is lower.

Sattiyaraju and Ramesh [22] studied the dynamic response of a microcantilever beam
excited by a loudspeaker, and displacements were recorded by digital microscopy. The ex-
perimental results were compared and validated by numerical simulations using COMSOL.
Recently, it has been shown that the vibrational analysis of microsized strings by Laser
Döppler Vibrometry is influenced by unidirectional frequency changes using different laser
power settings, especially in systems coupled with phase-change materials [23].

This study reports an approach that uses a loudspeaker to perform well-distributed
acoustic excitation in low-mass and low-stiffness samples, while displacement velocity is
monitored using Laser Döppler Vibrometry. To address the measurement of loads in the
sample, sound pressure was measured by a microphone. Different sample geometries were
used to address the issues caused by low stiffness in the membrane samples.

2. Methodology

Samples were collected from Kraft paper rolls. Given their thin configuration (0.32 mm
thickness), the overall samples were very compliant. This new method to determine the
dynamic behavior of membranes is divided into two approaches: (i) modal analysis in a
cantilever beam sample and (ii) in an optimized sample for the developed approach in a
half-cane sample.
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2.1. Modal Analysis—Cantilever Beam Approach

Samples were sectioned from Kraft paper rolls into rectangular (100 × 8 mm2) can-
tilever shapes. According to Figure 1a, a 20 mm length of the samples was used to fix
the samples using rigid support. Ten reflectors (3M Scotchlite Reflective Material SOLAS
Grade 3150) with adhesive taping backs were then glued to the surface of the paper, in
accordance with the schematics in Figure 1a. A total of five samples were tested using
this configuration.

Figure 1. Detail of (a) samples and (b) instrumentation for cantilever beam modal analysis.

Figure 1b details the instrumentation used for these tests, corresponding to the ap-
paratus shown in Figure 2. Sample excitation was performed by a loudspeaker (50 mm
distance to the samples) radiating white noise in a 40 to 400 Hz frequency range, generated
by a spectral analyzer (LMS Scadas Mobile, Leuven, Belgium). The 40 Hz minimum was
established based on the range of the minimum frequency that may have been produced by
the loudspeaker. Sound pressure during sample excitation was recorded by a microphone
(PCB Piezotronics 130E20, Depew, USA), and displacement velocity was measured using a
Döppler Laser Vibrometry (Polytec PFV-5000, Wildbronn, Germany). Laser signals and
microphone measurements were collected by the referred spectral analyzer and analyzed
using the TestXpress V10 software. The frequency response function of the individual
samples was also combined into an average response of the multiple beams using the
aforementioned software. To avoid result tampering due to external noise sources or room
acoustic conditions, tests were conducted inside a fully anechoic chamber with tempera-
tures and relative humidity of, respectively, 18–22 ◦C and 47–55%. According to the study
of Adriana et al. [24] on the dynamic mechanical properties of Kraft paper samples, it is
expected that the testing environment (i.e., temperature and humidity) does not impact the
stiffness and internal friction in these types of materials. Consequently, they should not be
considered variables in this analysis.
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2.2. Modal Analysis—Optimized Half-Cane Sample

One of the main problems with the sample configuration in the previous section
is its low stiffness. This type of sample is prone to buckling and may easily deform by
exterior loads (e.g., effect of gravity in measurement instruments, such as shakers and
accelerometers) that tamper with the test results. Thus, a novel sample configuration
was designed to increase the stiffness in the sample and address these issues without the
introduction of external pre-tension. According to Figure 3, Kraft paper samples were
molded into a half-cane configuration with a 32.4 mm diameter (D), fixed (glued with
epoxy resin) by two rigid steel rods (A304) with the same diameter. It is estimated that the
half-cane configuration (I = 0.1098(R4 − r4) − 0.283R2r2(R − r)/(R + r)~393.23 mm4, where
R and r are, respectively the major and minor radius of the sample) itself (i.e., excluding
the effect of the steel rods) is able to significantly increase the moment of area, relative to
the cantilever configuration (I = bh3/12~0.02 mm4, where b and h are, respectively the
width and thickness of the beam).
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Figure 3. Design of the half-cane configuration to increase membrane stiffness detailing the geomet-
rical details and fixation to steel rods.

A model of the testing apparatus for the half-cane approach is shown in Figure 4, in
which the same acoustic excitation through a loudspeaker and displacement measurement
by a Laser Döppler Vibrometer may be observed. Given the higher stiffness of this system
(i.e., structural shape), it is expected that the eigenfrequencies are also higher; thus, the
white noise was generated in the range of 40–2000 Hz. A total of 24 equidistant (14 mm)
reflectors (3M Scotchlite Reflective Material SOLAS Grade 3150) with adhesive taping
backs were glued to its 350 mm length.
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instrumentation.

Sound pressure was also monitored by a microphone (PCB Piezotronics 130E20), and
data were recorded using a spectral analyzer (LMS Scadas Mobile) and analyzed referring
to the LMS TestXPress V10 software. The real apparatus may be visualized in Figure 4. A
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total of five samples were tested using this configuration. The frequency response function
of the individual samples was also combined into an average response of the multiple
beams using the aforementioned software. To avoid result tampering due to external noise
sources or room acoustic conditions, tests were conducted inside an anechoic chamber
with temperatures and relative humidity of, respectively, 19–24 ◦C and 47–53%.

Given the complex shape of the half-cane configuration, the modal behavior was detailed
using numerical simulations. The ANSYS 17. software 0 was used to design and simulate
the modal behavior in the first four eigenmodes of these samples using, respectively, the
Design Modeler and Modal Analysis modules. The virtual model (Figure 5a) was designed
in accordance with the dimensions of the real sample, assuming that the base material is
isotropic and elastic with a Poisson’s ratio of 0.2, a static Young’s modulus of 1.02 MPa,
and a density of 602 kg/m3. While this value of modulus was used as an input for the
first simulation and determining the shapes of the eigenmodes, the Young’s modulus was
used as a variable in an updating process to correlate the experimental and numerical
eigenfrequencies to determine the dynamic Young’s modulus of each mode.
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Figure 5. Detail of the numerical model showing the (a) boundary conditions and (b) meshing.

According to Figure 5a, boundary conditions were introduced by fixing the lateral
sides of the half-cane sample in its length direction. Meshing was optimized by dis-
cretizing the model with 0.1 × 0.5 mm2 SHELL181 elements, as shown in Figure 5b, as
Nguyen et al. [25] showed that 2D elements are suited for this type of simulation.

3. Results and Discussion
3.1. Cantilever Beam Approach

According to the Euler–Bernoulli beam theory [13], the eigenfrequencies (ωn) and
shapes of the eigenmodes (Wn(x)) of an isotropic and uniform cantilever beam (Figure 5)
are described by Equations (1) and (2), where the term βn is correlated with a defined n
eigenmode and is able to fulfill the condition in Equation (3).

ωn = (βnl)2

√
EIz

ρAl4 (1)

Wn(x) = (cosβnx − coshβnx)− cosβnl + coshβnl
senβnl + senhβnl

(senβnx − senhβnx) (2)

cosβnl coshβnl + 1 = 0 (3)

For a cantilever beam, Wn(x) of an isotropic and uniform cantilever beam (Figure 5)
are described by Equations (2) and (3). The first three eigenmodes are described by the
relations β1l = 1.875, β2l = 4.694, and β3l = 7.855. For n > 3 eigenmodes, the values of βnl
may be determined using Equation (4).

βnl = (n − 0.5)π (4)
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For a cantilever with a rectangular cross-section with a thickness H, Equation (1) may
be reorganized into Equation (5), allowing the estimation of the Young’s modulus (E) of the
material in conformity with the E756-05 standard [26]. Cn is the dimensionless constant,
related to the eigenmode n associated with the term βnl in Equation (6).

E =
12ρl4 f 2

n
H2C2

n
(5)

Cn =
(βnl)2

2π
(6)

From Equation (6), it is possible to determine that for the first three eigenmodes,
C1 = 0.560, C2 = 3.507, and C3 = 9.819. For higher eigenmodes (i.e., n > 3), the values of Cn
may be determined by Equation (7).

Cn = (n − 0.5)2 π

2
(7)

The analytical analysis of Equations (1)–(6) allows the estimation of the eigenfre-
quencies, shapes of the eigenmodes, and the dynamic (i.e., frequency-dependent) Young’s
modulus of the samples. These values may be compared with the results of the proposed
experimental procedure to assess its validity.

Figure 6 displays the average frequency response functions (FRFs) of the five cantilever
beam samples that were excited by acoustic pressure and monitored by Laser Döppler Vi-
brometry. Based on these results, it is established that the samples have a good repeatability
due to the high correlation of their results (R2 = 0.93).
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Figure 6. Frequency response function (FRF) of five cantilever beams with three eigenfrequencies
(59 Hz, 161 Hz, and 321 Hz).

The results portrayed in Figure 6 were used to determine the eigenfrequencies, and
the experimental measurement of the amplitude in the measurement points was used
to plot the shapes of the eigenmodes. These were also correlated with the shapes of the
eigenmodes predicted by the analytic analysis and are combined in Table 1.

By the comparison between the experimental and analytical shapes, it may be observed
that they can be correlated for n = 2 to 4. The first mode, however, could not be visualized
in the experimental approach. This is due to the loudspeaker’s physical inability to excite
frequencies lower than 40 Hz.
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Table 1. Experimental eigenfrequencies and comparison with analytical eigenmodes.

Eigenmode Experimental Eigenfrequency (Hz)
Shape

Experimental Analytical

1 N.A. N.A.
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Based on the experimental eigenfrequencies of the cantilever samples, the values of
the dynamic Young’s modulus could be determined by an inverse engineering approach
using Equation (5), as presented in Table 2.

Table 2. Experimental dynamic Young’s modulus.

Eigenmode Dynamic Young’s Modulus (MPa)

2 0.782 ± 0.003
3 0.813 ± 0.002
4 0.821 ± 0.005

3.2. Optimized Half-Cane Sample Approach

An attempt to increase the overall eigenfrequencies in low-stiffness samples was
performed by changing their geometry into a half-cane configuration (see Figures 3 and 4).
Figure 7 shows the average FRF of the five tested samples, in which a high correlation was
assured between the specimens (R2 = 0.91).
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This analysis allowed the extraction of the eigenfrequencies of the half-cane samples,
according to Table 3. It is shown that the change of the sample geometry was an effective
route to increase the overall eigenfrequencies of the system (e.g., comparing second to
fourth eigenmodes in Tables 1 and 3). Given the more complex geometry of the samples,
relative to the cantilever beam configuration, the numerical simulations were used to
correlate the monitored experimental eigenfrequencies with their correct eigenfrequency
and, more importantly, determine if it was possible to excite the first eigenmode using
this approach.

The comparison of the experimental and numerical eigenfrequencies shows that there
is a high correlation between the two methods (R2 = 0.99). It may be seen that due to the
increase in sample stiffness, the first eigenmode was able to be excited by the loudspeaker.

A final validation of the correlation between the experimental and numerical analysis
was performed by the comparison between the resultant eigenmode shapes (Table 4).
While it is apparent that the shapes obtained by the two methods are the same, the Modal
Assurance Criterion (MAC) matrix in Figure 8 shows that there is an excellent correlation
to the results of both methods.

Additionally, Table 3 displays the values of the dynamic Young’s modulus that were
obtained by inverse engineering using an updating approach (i.e., correlating experimental
and numerical eigenfrequencies with the Young’s modulus as a variable). Comparing these
values with those calculated for the cantilever approach (Table 2), it is determined these
tend to slightly increase (i.e., increase stiffness) as frequency is also increased.

Table 3. Comparison between experimental and numerical eigenfrequencies in half-cane samples.

Eigenmode
Eigenfrequency (Hz)

Experimental Numerical ∆—Variation (%) Dynamic Young’s
Modulus (MPa)

1 635 ± 3 683 −4.6 0.832
2 675 ± 3 710 −5.2 0.837
3 1118 ± 14 1047 6.4 0.842
4 1664 ± 22 1656 0.5 0.861

Table 4. Comparison between experimental and numerical eigenmode shapes in half-cane samples.

Eigenmode
Shape

Experimental Numerical

1
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3.3. Considerations on the Method for the Determination of Dynamic Young’s Modulus

It has been established that acoustic pressure may be successfully used to excite
samples with low stiffness and low mass, and Laser Döppler Vibrometry is an efficient
route to measure the amplitude in the samples. The use of a half-cane geometry is also
essential to increase the stiffness of samples so they may be fully characterized in terms of
modal analysis.

This also allows the coupling of the developed method with numerical routines, such
as modal analysis by finite-element analysis, to estimate the dynamic Young’s modulus of
membranes with low mass and low stiffness. Therefore, the combination of all these details
generates the approach detailed in the flowchart from Figure 9.
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4. Discussion

This study shows the development of a methodology to characterize the dynamic
behavior and determine the dynamic Young’s modulus in compliant materials. While the
latter are inherently difficult to characterize, due to their tampered response in regular
testing techniques (e.g., using accelerometers and shakers), it is found that their behavior
may be captured by the use of acoustic excitation coupled with Laser Döppler Vibrometry.

The method may, however, be optimized by changing the geometry of the samples.
Given the difficulty in exciting low frequencies by acoustic sources (in this study, below
40 Hz), it is found that it is possible to promote excitation of the first eigenfrequency by
testing samples with a half-cane configuration. This significantly enhances the stiffness
of the tested sample and increases the first eigenfrequency into a range, which may be
easily excited.

It is also shown that numerical routines display highly correlated results in the
proposed method. Numerical eigenfrequencies that use the dynamic (i.e., frequency-
dependent) Young’s modulus as an input have been validated by a MAC matrix, meaning
that the coupling of numerical analysis with the proposed method may also be performed.
A novel methodology is proposed for that effect, being a future useful tool to determine
the dynamic Young’s modulus in these types of materials.
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