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Abstract: A frequency-adaptable tuned mass damper (FATMD) using metal cushions as tuneable
stiffness components is presented. The dynamic properties of the cushions with respect to stiffness
and damping are investigated experimentally in this context. The natural frequency of the experimen-
tal FATMD is found to be dependent on the precompression of the metal cushions, which behave like
nonlinear springs, yielding an adjustable frequency range from 67 to 826 Hz. As the precompression
is increased, the stiffness increases while the damping characteristics decrease, the effect of which
was quantified using a viscous mass damper model as a first approximation. Measurements have
been carried out under five different excitation amplitudes to investigate the amplitude dependency
of the resonance frequency. The FATMD was largely unaffected by changes in input amplitude.
It was concluded that metal cushions show great potential for use in FATMDs, surpassing the utility
of elastomers, especially with respect to their temperature stability.

Keywords: adaptive vibration absorber; adjustable vibration absorber; tuneable vibration absorber;
tuned mass damper; metal rubber; metal cushion; tangled metal wire; knitted wire mesh

1. Introduction

Tuned mass dampers (TMDs) are a well-established means of passive vibration reduc-
tion. Used in many areas of civil and mechanical engineering, they consist of an oscillator,
the mass, stiffness and damping properties of which are carefully chosen to tune the device
to supress the vibrations of the base structure the oscillator is attached to. Correct selection
of the tuned resonant frequency is essential for achieving optimal dynamic behaviour and
an analytical solution to this end has been known for decades [1]. Since the first analytical
description of the effect, TMDs have been studied in more detail both for structures with a
single degree of freedom (SDOF) and multiple degrees of freedom (MDOF), and various
optimisation strategies for their tuning and placement have been examined, using various
numerical methods like genetic algorithms and swarm optimisation [2]. A broad overview
on the optimal tuning of tuned mass dampers both for conventional and parametric pen-
dulum TMDs is given in [3]. The robust optimal design of a TMD is presented in [4]
using sequential quadratic programming for optimisation. Frequency-adaptable tuned
mass dampers (FATMDs) have been developed as a useful tool for the identification of
optimal absorber parameters in an experimental environment, or to account for structures
with altering resonances due to system kinematics, changing loads, or ageing. These use a
means of adjusting the characteristics of the TMD to alter its frequency tuning, allowing the
same device to target different frequencies. In a novel approach, the present work will
investigate the use of metal cushions as adjustable spring elements by taking advantage of
their nonlinear behaviour.

Various concepts for FATMDs (also known as ‘adjustable vibration absorbers’) have
been published. Whereas only a few comprise a variable mass (e.g., by pumping water [5]
or using inerter mass effects [6]), most concepts use a variable stiffness element. Some are
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based on the geometric change of bending elements or the pre-stressing of beams [7];
good results have also been achieved with a ring-shaped spring element with variable
support points [8]. Other works have studied the use of smart materials for the reali-
sation of adjustable vibration absorbers: shape-memory alloys [9], magneto-rheological
elastomers [10,11], magneto-rheological gels [12], dielectric elastomers [13] and shunted
piezoelectric transducers [14] have all been applied to FATMD concepts. The precom-
pression of elastomeric elements like low-cost O-rings has also been used to realise the
adjustable vibration absorbers [15]. However, metal cushions are yet to be used in this
application although recent works have been published investigating their use in dynamic
applications, studying their potential as high-speed railway pads [16,17].

Metal cushions, also known as ‘metal rubber’, ‘compressed knitted wire mesh’ and
‘tangled metal wire cushions’ are elastic elements made by compressing tangled metal
wire into round or square ‘cushions’ [18–22]. Though being made of steel, they have a low,
rubber-like stiffness that predestines them for applications in the field of vibration technol-
ogy. The many internal contact points within the knitted wire fabric lead to high internal
friction and energy dissipation, which result in characteristic curves with distinct hysteresis.
This hysteretic behaviour is beneficial for all applications where high damping is required.
Moreover, metal cushions have a highly nonlinear stiffness because of the rising number
of contact points with increasing compression or density [18,21,23–25], an effect that can
be used for the realisation of adjustable devices. Metal cushions are commonly used for
vibration damping in machinery and are preferred over their elastomeric counterparts
because of their high relative resistance to degradation in harsh environments and the wide
temperature range they can work in [26,27]. The same benefits, among others, apply to
the use of metal cushions in FATMDs. The thickness of the wire used, their compression
density and their microscopic structure influence the cushions’ mechanical behaviour; pre-
vious works have begun to investigate these complex effects on an analytical level [23,28].
If compressed, the cushions’ stiffness and damping properties change significantly—it is
this characteristic which offers potential for their use as the adjustable spring element in an
FATMD. This new application requires further investigation as little research is available
on the dynamic characteristics of metal cushions. The purpose of this work is to show the
dynamic behaviour of metal cushions under compression as used in an FATMD.

Hence the main aim of the present work is to demonstrate the potential benefits
of using metal cushions in an FATMD. In contrast to other works [25] that investigate
the feasibility of tangled metal wire particles in the application of adaptive vibration
absorbers, the presented work focusses on metal cushions that offer practical advantages
in terms of determined geometry and ease of fixation. In the present work, the damping
effects are investigated deeply as well as the nonlinear behaviour in dependence on the
excitation amplitude.

2. Materials and Methods

2.1. Experimental Set-Up

The metal cushions used in the experimental FATMD were provided by Hutchinson
Stop-Choc (Renningen, Germany) and are cylindrical in shape. Their properties are listed
in Table 1. Figure 1 shows a photo of one of the cushions used.

Table 1. Experimental metal cushion properties.

Parameter Value Unit

Outer diameter 40 mm

Inner diameter 15 mm

Height 20 mm

Mass 32 g

Relative density 19 %
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Figure 1. Metal cushion by Hutchinson Stop-Choc used in the FATMD. 

The experimental FATMD uses two metal cushions; its structure is shown in Figure 2. 
A cylindrical mass of 1 kg is suspended between two identical cushions, each held in place 
by an end plate, mounted on a threaded rod. The rod is in turn rigidly attached to a shaker 
for excitation. Accelerometers measure the acceleration in the Z-direction due to the input 
force at the base of the FATMD and the resulting acceleration in the Z-direction of the 
suspended mass. The latter accelerometer is fixed to the mass by a removable 3D printed 
cap (made of polyamide by selective laser sintering), the purpose of which is to minimise 
the lateral movement of the mass by maintaining a centric centre of gravity; this would be 
lost were the accelerometer attached directly to the side of the mass. A dynamic simulation 
of the cap showed its fundamental mode of vibration in the Z-direction (at 1415 Hz) to lie 
sufficiently above the range of input frequencies for this experiment (5 to 1000 Hz), 
ensuring its inclusion in the set-up would not affect the measurements taken. 

 
             (a)                                        (b) 

Figure 2. Diagram (a) and photo (b) of the FATMD with sensors attached. 

Figure 1. Metal cushion by Hutchinson Stop-Choc used in the FATMD.

The experimental FATMD uses two metal cushions; its structure is shown in Figure 2.
A cylindrical mass of 1 kg is suspended between two identical cushions, each held in place
by an end plate, mounted on a threaded rod. The rod is in turn rigidly attached to a shaker
for excitation. Accelerometers measure the acceleration in the Z-direction due to the input
force at the base of the FATMD and the resulting acceleration in the Z-direction of the
suspended mass. The latter accelerometer is fixed to the mass by a removable 3D printed
cap (made of polyamide by selective laser sintering), the purpose of which is to minimise
the lateral movement of the mass by maintaining a centric centre of gravity; this would be
lost were the accelerometer attached directly to the side of the mass. A dynamic simulation
of the cap showed its fundamental mode of vibration in the Z-direction (at 1415 Hz) to
lie sufficiently above the range of input frequencies for this experiment (5 to 1000 Hz),
ensuring its inclusion in the set-up would not affect the measurements taken.
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A schematic of the signal path is shown in Figure 3. A frequency-swept sine wave
was used as the excitation signal for the shaker. This was prepared by passing it through a
high pass filter to avoid high-stroke amplitudes (5 Hz corner frequency), thus preventing
damage to the shaker, followed by an amplifier and a signal converter before it reached the
shaker (these by TIRA, Schalkau, Germany). The shaker has a maximum force of 650 N and
a maximum acceleration of 42 g for sine excitation and allows for a maximum vibration
displacement of 40 mm (peak-peak). Since much smaller amplitudes are used for the tests,
unwanted effects due to hardware limitations can be excluded. A fast Fourier transform
analyser (Ono Sokki CF-3600AT, Yokohama, Japan) was used to process the measured
accelerations in real time, allowing live monitoring of the transfer function and subsequent
data collection.
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2.2. Experimental Method

Before being added to the FATMD assembly, a previously unused pair of metal
cushions were broken in by undergoing three cycles of compression and relaxation using a
compression-tension machine (Zwick/Roell BT1-FR10THW.A50, Ulm, Germany), up to
the maximal experimental compression of 40%. Their thickness was recorded and used to
check for plastic deformation throughout the experiment, which did not occur. When the
assembled FATMD was mounted to the shaker, the precompression C of the metal cushions
could be set. This was done with an uncertainty of ±0.25 mm, which equates to ±1.25% of
a cushion’s thickness.

A series of experiments was carried out at various cushion precompressions and
input signal amplitudes. Starting at 5%, the precompression was increased in steps of
5% up to a maximal 40% compression per cushion (a total of eight pre-sets) and at each
precompression, data were collected at five input signal amplitudes by altering the shaker’s
input voltage amplitude in steps of 0.1 V from 0.1 V to 0.5 V, resulting in an average input
amplitude range of 0.01 g to 0.05 g.

Each data set recorded the power sum average across 15 frequency-swept sine cycles
of the magnitude and phase of the frequency response as well as raw acceleration data
in the time domain, at a sample rate of 4096 per cycle. Each cycle swept from 0 Hz to
1000 Hz with a period of 1.6 s, resulting in a transfer function with 1601 data points with a
frequency step width of 0.625 Hz. The sweeps were performed with increasing frequency.

2.3. Analytical Modelling

Accurately modelling the dynamic behaviour of metal cushions has proven to be
difficult because of the frequency and amplitude dependency for both the dynamic stiffness
and damping [19,20]. For simplicity, the experimental FATMD in the present work was
assumed to follow the behaviour of a single degree of freedom system, or ‘simple oscillator’,
comprising a concentrated mass for which movement is limited to the Z-direction, a linear
massless spring and a viscous massless damper. The model is shown in Figure 4. In terms
of damping this modelling approach is inaccurate, since damping mainly results from
friction of the wires rubbing against each other. However, assuming the damping as purely
viscous shows good agreement between the model and the measurement data, as can be
seen in Section 3. Furthermore the use of a viscous damping model provides the possibility
of quantifying the FATMD damping performance in terms of the damping ratio D, which is
most commonly used for qualifying TMDs.
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Figure 4. Development of a simplified analytical model with one degree of freedom (z2) and excitation (z1).

This model yields the complex transfer function V, which is defined as the ratio
between mass amplitude and base amplitude (both being expressed either as displacement,
velocity, or acceleration) and is independent of the input force.

V( f ) =
k + id2π f

k + id2π f −m(2π f )2 , (1)

where k is the stiffness of the system, d is the damping factor, f is the frequency and m
is the mass in the FATMD. The real element of the transfer function corresponds to the
magnitude of vibrations while the imaginary part corresponds to the phase. The damping
factor, d, is expressed in Nsm−1 but a more useful quantity (practically speaking) is the
damping ratio, D. This is a dimensionless quantity related to the former by the equation

D =
1

2
√

km
d . (2)

As it is better suited for characterising a system, the damping ratio, rather than the
damping factor, was used throughout the analysis.

2.4. Methods of Analysis

To ascertain the stiffness and damping properties of the FATMD system, the following
methods were applied with the aim of maximising the similarity between the model and the
measured data. As the model does not perfectly represent the FATMD system’s behaviour,
an error between the model and the measurements was always observed. Quantification of
this error is described below.

The model is described by three independent parameters (m, k and d), however,
the mass is assumed to be independent of the precompression and directly related to the
physical mass. Therefore, it is determined by weighing the inner mass (and the attached cap
and sensor) and was found to be 1.082 kg. The two remaining parameters are determined
in the following way for each measurement:

(1) First, the damping ratio of the system is determined by regarding the magnitude of
the measured frequency response and identifying the peak. Its value is evaluated
according to the equation

D =

√
1

4max(V)2 − 5
. (3)
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This equation [29] is a very close approximation of the full analytical solution of the
transfer function given in Equation (1).

An alternative method, based on half-power points, takes the damping ratio to be
given by the equation

D =
fr − fl
fr + fl

, (4)

where fl and fr are the frequencies corresponding respectively to the two points below and
above (left and right of) the peak on the magnitude curve at which the magnitude is at a
factor 1√

2
of its value at resonance, i.e., at half power of the maximal magnitude. However,

this method was deemed unfavourable as the resulting model curve did not always fit the
measured curve as well as the curve produced using the former method, which provided
clearer, more consistent results.

(2) Second, the stiffness is evaluated using the equation

k = (2π fres)
2m

1
(1− 2D2)

, (5)

where fres is the resonant frequency. The resonant frequency is determined as the frequency
at which the peak of the magnitude lies.

(3) Third, the damping factor is evaluated by rearranging Equation (2). All components
necessary to produce the model curves using the transfer function (Equation (1)) are
now at hand.

2.5. Methods of Error Calculation

The approach described above will yield a model curve with a peak that always fits
perfectly with that of the measured curve. However, either side of the peak the model and
results deviate from one another for various reasons. This deviation is quantified in the
error E as a percentual value, derived from the average normalised discrepancy between
the measured and the model data points, as described by the following equation:

E =
1
n

n

∑
i

|L2,i|
L1

, (6)

where L2 is the difference between the measured data point and the corresponding model
data point, L1 is the maximal measured amplitude and n is the number of data points across
the frequency range measured. The values that L1 and L2 correspond to are illustrated in
Figure 5.
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The error can be attributed to the failure of the model to fully encompass the FATMD’s
behaviour due to certain assumptions made. While the model assumes the damping to be
purely viscous, the damping in the physical system is comprised of a mixture of viscous
and nonlinear frictional (Coulomb) damping with additional higher-order effects such as
those due to component elasticities. A model that can completely describe the behaviour
of the system presented here has not yet been created [19] and developing one with the
necessary complexity is beyond the scope of the present work. Hence the simplified model
shown in Figure 4 is used and consideration is given to the associated error.

3. Results and Discussion

3.1. Effect of Precompression on Resonant Frequency, Stiffness and Damping Ratio

The precompression of the cushions was found to affect the stiffness and damping
properties of the FATMD in such a way that its resonant frequency could be precisely
controlled. Figure 6 shows one set of transfer function curves produced by the experiment,
these at an input amplitude of 0.03 g. The left and right sides show the curves of magnitude
and corresponding phase, respectively, and both the measured and the model data are
displayed. The precompression increases from top to bottom of the figure.
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The model parameters for the dataset displayed in Figure 6 are given in Table 2.
Evidently, a higher precompression results in a higher resonant frequency. By adjusting
the precompression C, a desired resonance can be set, the bandwidth of adjustment being
limited by the cushions’ compression threshold. This behaviour speaks for the suitability
of the metal cushions for use in frequency-adjustable tuned mass dampers.

Table 2. Model parameters and error values for all precompressions at an input amplitude of 0.03 g.

C fres Vmax m k d D Emag Ephas

% Hz − kg N/mm Ns/m % % %

5 66.9 2.62 1.082 232 210 21.0 2.47 33.6

10 102.5 3.76 1.082 486 202 13.9 2.73 23.8

15 149.4 5.66 1.082 985 186 9.0 2.81 15.0

20 208.8 11.3 1.082 1880 126 4.4 2.10 5.97

25 314.4 21.7 1.082 4230 98.8 2.3 1.35 2.17

30 442.5 40.2 1.082 8370 74.9 1.25 0.65 1.17

35 610.0 163.7 1.082 15900 25.3 0.31 0.29 0.60

40 825.6 365.8 1.082 29100 15.3 0.14 0.46 0.80

Bandwidth 758.7

While the error for modelling the magnitude (Emag) is always below 3%, the error of
the phase (Ephas) rises above 30% for low precompressions. Reasons for these errors are
prosed in Section 3.3. As can be seen from Figure 6, this error mainly results from discrep-
ancies at frequencies higher than the resonance frequency. Because of this, the validity of
the applied model around the resonance frequency remains unaffected.

The FATMD’s resonant frequency is influenced by the stiffness and damping ratio of
the cushions and how they change with precompression. Figure 7 displays plots of the
resonant frequency (7a), damping ratio (7b) and stiffness (7c) against precompression for
the dataset introduced above. The damping and stiffness parameters are from the model,
calculated in accordance with the method presented in Section 2.4.

It was found that the change of both the resonance frequency and the dynamic stiffness
with precompression can be approximated well by a linear curve on a logarithmic scale.
Therefore, lines of best fit and their corresponding equations are shown in Figure 7a,c.
The increase of stiffness with precompression can be explained by the structure of the
metal cushions.

When uncompressed, the density of wire in a cushion is at a minimum and there
exist some air gaps within the cushion, with fewer contact points between wires. At low
precompressions, a force applied to the cushion serves mainly to reduce this space by
pushing the wires closer together, into contact with one another, such that the number of
contact points increases. At higher precompressions most of the air gaps in the cushion have
already been removed and the number of contact points is at a maximum. With increasing
precompression, the number of contact nodes increases and their average free wire length
decreases. According to basic mechanics, both effects serve to increase the overall stiffness.

Contrarily to the stiffness, Figure 7b shows the damping ratio decreasing nonlinearly
as the precompression is increased. Knowledge of damping characteristics is essential
when tailoring an FATMD’s design to a given application and can help decide whether the
inherent damping of the metal cushions is sufficient or whether additional damping mech-
anisms such as eddy current damping need to be included. In some FATMD applications,
such as TMDs designed to reduce vibrations at structural resonances, a higher damping
ratio is preferable whereas in others, such as in TMDs designed to reduce narrowband
vibrations caused by a harmonic excitation (also called neutralisers), less so. For this reason,
the damping ratio of the experimental FATMD is investigated below by considering a graph
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more useful for this purpose. It plots the damping ratio against the resonant frequency on a
logarithmic axis, revealing how large a role the damping plays at each resonance. Figure 8
shows this graph for one input amplitude.
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At lower resonant frequencies, the experimental FATMD is found to have a high damp-
ing effect. The measurement values can be well approximated by an exponential function,
showing a linear curve on the logarithmic axis. The equation of the line of best fit shown in
Figure 8 can be used for further analysis. As with the increase in stiffness, this behaviour
can be attributed to the way the structure of a cushion changes with its precompression.

Damping occurs when energy is dissipated through heat loss caused by friction within
the damper. Here, sliding friction is caused by wires rubbing against each other as the
metal cushion compresses and expands. At low precompressions there is more relative
movement between wires within the cushion because the stiffness is lower, resulting in a
greater displacement for the same force. This results in more so-called ‘slip’ between wires
that are in contact, hence more sliding friction. At higher precompressions the stiffness
is higher as there are less air gaps in the cushion. More wires are already in contact with
each other and there is insufficient space and movement for wires to rub together, hence
there is little slip. Instead, the wires ‘stick’ and where there are no wires rubbing together,
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there is no damping. Slip and stick have previously been used to describe the behaviour of
compressed wire mesh material [26].
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3.2. Effect of Input Amplitude on Resonant Frequency

To study the effect of the input amplitude on the behaviour of the FATMD, data were
collected at five input amplitudes for each precompression. The resonant frequency for
each dataset has been plotted at its corresponding input amplitude in Figure 9.
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The curves of the graph show that changing the input amplitude has a slight effect on
the FATMD’s resonant frequency. There is a small decrease in resonant frequency at higher
amplitudes, caused by a decrease in the stiffness of the cushions as the input amplitude
increases. At lower precompressions this effect is significantly greater than at higher ones,
with a maximal reduction of 43% at a precompression of 5%. The reduction in stiffness
at higher amplitudes seems to be due to the structure of the cushion, as dictated by the
manufacturing process, however further work is required to understand which factors
influence the amplitude dependency and how.

When using the FATMD in real applications, the comparatively large shift in reso-
nance frequency due to the size of the excitation amplitude for small precompressions
is of low relevance since damping is always well above 10% for small precompressions.
Damping makes the FATMD performance robust against shifts in resonance frequency.
Therefore, and because of the low resonance shift at higher frequencies, the presented
FATMD qualifies well for vibration reduction in real applications.

3.3. Effect of Precompression and Amplitude on Error between Data and Model

For reasons previously given, there exists a certain error between the model and the
measured results. The method for quantifying the error is described in Section 2.5 and
was applied to the experimental results. The errors at every precompression are shown
separately for the magnitude and phase curves in Figure 10a,b, respectively.
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Both plots show a general downward trend of the error as the precompression in-
creases. However, the order of magnitude of the phase curve error is greater than that
of the magnitude curve error at low precompressions. This is due to the large deviation
between the model and measured phase curves which occurs above the resonant frequency
at low precompressions, as observable on the right-hand side of Figure 6. This deviation
is due to the decreasing damping of the cushions at high frequencies, which has a large
influence on the phase above the resonance.

The general reduction in error in both the magnitude and the phase at higher precom-
pressions suggest that the model, based on a simple oscillator (see Figure 4), becomes a
more accurate description of the actual system when the stiffness is higher and the damp-
ing is lower. This can be explained by the decreasing influence of friction damping and
increasing influence of material damping and airflow damping, which have more viscous
characteristics, at higher precompressions.

Moreover, it can be observed that the error is generally smaller for small amplitudes,
since small amplitudes better fit with the linear model assumption.

4. Conclusions

Metal cushions can be used to realise easy-to-adapt tuneable vibration absorbers
due to the way their stiffness and damping properties can be altered by adjusting their
precompression. As the precompression is increased, stiffness increases and damping
decreases. The adjustment can be realised either in a purely mechanical way using standard
tools as in the configuration presented in this paper, or using an electrical motor and
position control, which could easily be integrated into the FATMD design. The latter option
is ideal for vibration control of fast changing dynamic systems or for the automatised
experimental identification of optimal parameters for TMDs.

The experimental FATMD was sufficiently well described by a spring-damper sim-
ple oscillator. Discrepancies between model and measurements can be explained by the
model’s disregard of complex internal damping mechanisms within the metal cushions
as it assumes purely viscous damping. At higher precompressions, the FATMD behaved
more like a simple oscillator as friction-based damping occurred less, resulting in a smaller
error between the model and the measured data. Further research dedicated to the de-
velopment of an accurate mathematical model describing the metal cushion behaviour
is recommended.

The presented FATMD can be used to practically identify the optimal TMD parameters
for a given vibration problem that should be addressed with the use of a passive TMD. The
FATMD was largely unaffected by changes in input amplitude and features an average
resonance frequency bandwidth of 754 Hz across the five input amplitudes measured
at. The low amplitude dependency, especially at high frequencies, the large frequency
range and the high damping ratio, especially at low frequencies, show the potential for the
creation of a highly versatile FATMD using metal cushions. The amplitude dependency
observed at low precompressions needs to be studied in more detail. For this, experiments
with different excitation signals (e.g., decreasing frequency swept sine, step sine, noise)
should be carried out. Moreover, further experiments with other metal cushions made of
different types of wire or using other manufacturing processes are recommended in order
to study the observed effects in more detail.
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