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Abstract: This paper presents the identification of both location and magnitude of impact forces
applied on different positions of a multi-storey tower structure using different types of transducers,
i.e., an accelerometer, a laser Doppler vibrometer, and a triangulation displacement sensor. Herein, a
model-based inverse method is exploited to reconstruct unknown impact forces based on various
recorded dynamic signals. Furthermore, the superposition approach is employed to identify the
impact location. Therein, it is assumed that several impact forces are applied simultaneously on
potential locations of the multi-storey tower structure, while only one impact has non-zero magnitude.
The purpose is then to detect the location of that non-zero impact. The influence of using different
hammer tip materials for establishing the transfer function is investigated, where it is concluded that
the hammer with a harder tip leads to a more accurate transfer function. An accuracy error function
is proposed to evaluate the reconstruction precision. Moreover, the effect of sensor type and location
on the accuracy of the reconstruction is studied, where it is shown that the proximity between the
impact and sensor locations is a dominant factor in impact force reconstruction. In addition, the
efficacy of using different transducers is studied for the impact localization, where it is demonstrated
that reducing the degree of under-determinacy by using a combination of system responses of the
same type can improve the localization accuracy.

Keywords: impact force identification; tower structure; impact localization; force history; inverse algorithm

1. Introduction

Many structures are subjected to impact forces, which can be a matter of serious
concern in terms of structural integrity. Measurement of these accidental impact forces is
of great importance since it can help prevent system failure through evaluating the system
stress and comparing it to its tolerance threshold or fatigue limit. Direct measurements of
impact forces are difficult, expensive, and tedious, especially for large structures due to
the difficulty of sensor installation and dynamic characteristic altering, while beforehand,
localization of the impact area can make the examinations more efficient. Using system
dynamic responses, captured by sensors placed distant from the impact location, the impact
forces can be estimated by inverse algorithms.

The basis of inverse algorithms is to indirectly identify the impact force using re-
sponses measured at given points of the body subjected to impact. Inverse algorithms
exploited in the literature can be categorized into two main classifications, namely, model-
based techniques [1,2] and neural networks [3–6]. The superiority of neural networks
emerges when the underlying dynamics is infeasibly complicated or inaccessible. How-
ever, as the accuracy of these techniques relies on massive training data, which is usually
impractical, the model-based methods are more widely used. In model-based methods, a
transfer function is found by utilizing the input and output of the system. Some examples
of these methods are as follows: deconvolution technique [7–14], state variable formula-
tion [15–20], and sum of weighted accelerations [21,22]. In [23], the inverse structural filter
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method, which leans on the dynamics state-space model, and the sum of the weighted
accelerations technique are compared. Therein, deficiencies of the mentioned strategies
are discussed and some modifications are proposed in order to enhance their performance.
Among the model-based methods introduced, the deconvolution method has received
significant attention in the literature. Two main attitudes of the deconvolution method are
the time-domain [1,2,24,25] and the frequency-domain approach [26]. In [23], a comparison
is made between the results of two time-domain strategies and those of a frequency-domain
approach in order to determine the pros and cons of each method. Generally speaking,
frequency-domain methods need lower computational efforts while they are usually infea-
sible for transient phenomena such as impact events. Solving a deconvolution problem
might not result in a sufficiently good outcome since the force reconstruction problem is
intrinsically ill-posed due to the ill-conditioned nature of the transfer function, i.e., the con-
dition number of the transfer function matrix is very large, making the problem sensitive to
small perturbations such as measurement errors or noise. To avoid divergent or inaccurate
results, it is usually necessary to exploit a regularization method.

Several regularization techniques have been proposed in the literature. The most
popular ones are Tikhonov regularization [27–31] and Singular Value Decomposition
(SVD) based methods, including truncated SVD (TSVD) [27,32,33]. These two methods
are compared in [34]. The theoretical backgrounds of five regularization methods, namely,
generalized cross-validation, singular value decomposition, iterative method, data filter-
ing approach, and Tikhonov regularization are introduced and main restrictions of each
method are discussed in [35]. Some other exploited methods in the literature are QR
factorization [36], explicit block inversion algorithms [37], Bayesian regularization [38],
and the least-square QR (LSQR) iterative regularization method [39]. A combination of l1
regularization and sparse reconstruction is proposed in [40]. In [11], a primal-dual interior
point method is exploited and compared to the Tikhonov method. More recently, noncon-
vex sparse regularization based on generalized minimax-concave (GMC) and non-negative
Bayesian learning are used in [25,41], respectively. In [42], Bayesian sparse regularization
is exploited for identification and localization of multiple forces in time domain, and
compared with Tikhonov regularization associated with the Generalized Cross Validation
(GCV) criterion. Existing regularization methods which are proposed for force reconstruc-
tion are vector-based, while for large-scale inverse problems, matrix-based regularization
has several privileges. Matrix-based regularization was recently introduced in [43] where
the parameter of regularization was chosen with the Bayesian Information Criterion (BIC).
Another issue that has been raised in recent years is that of moving force identification.
In [44], a comparison is made between four regularization methods, i.e., (i) truncated
generalized singular value decomposition (TGSVD), (ii) piecewise polynomial truncated
singular value decomposition (PP-TSVD), (iii) modified preconditioned conjugate gradient
(M-PCG) method, and (iv) preconditioned least-square QR-factorization (PLSQR) method,
all used for reconstruction of moving forces, where it is concluded that the TGSVD method
is preferred on the issue of identification accuracy. On the other hand, the M-PCG method
is recommended in regard to identification efficiency.

To perform a comprehensive identification of an impact force, both its magnitude
(force history) and location should be assessed. The location of the impact force is ob-
scure in numerous cases in practice, which violates the fundamental presumption of the
above mentioned methods. Various methods are introduced in the literature to localize
the impact force. In [45], an experimental method is used in which an objective function
is defined based on transfer functions and minimized in order to find the impact force
location and in [46], a pseudo-inverse direct method is utilized to identify both the magni-
tude and location of the impact force. More recently, [12] pursued a similarity searching
technique, and [14] introduces a superposition approach to estimate the impact location
and magnitude simultaneously.

In the current paper, the identification of (i) the impact force history, and (ii) the impact
location is presented. The impact force is applied on a scaled eight-storey tower structure
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in the laboratory. The identification is performed using recorded system outputs, i.e., the
displacement, velocity, and acceleration measurements at level 3, as well as the acceleration
measurement at level 8. The impact force reconstruction consists of two procedures, namely,
(i) obtaining a transfer function between a reference impact force and its resulting response
captured by a specific sensor, and (ii) identifying an unknown impact force using the
transfer function obtained and the responses. Herein, the deconvolution technique is
exploited to solve these inverse problems and the Tikhonov regularization method is used
in order to deal with the ill-conditioned nature of the transfer function. To identify the
impact location, the superposition approach is exploited where it is assumed that impact
forces are concurrently applied on all 8 potential locations, while only one of them has a
non-zero magnitude. This expresses the condition when only one impact is exerted at one
of the possible locations. The actual impact location is then detected among all potential
locations through an extended matrix form of the convolution equation.

The contributions of this paper are, firstly, investigating the influence of the hammer
tip material on the effectiveness of the transfer function obtained, secondly, proposing an
accuracy error function to evaluate the reconstruction precision, thirdly, studying the effect
of sensor type and location on the accuracy of the impact force reconstruction, fourthly,
using distinct sensors for the force reconstruction of different levels (i.e., using recorded
signals at level 3 for the lower half of the structure and employing measurements at level
8 for the upper half), and fifthly, studying the localization accuracy based on the system
responses used individually or in combination. The effectiveness of the method used
for impact force reconstruction is demonstrated for all positions, with steel, soft rubber,
medium rubber, and hard rubber tip hammers. The paper is organized as follows. The
problem formulation is presented in Section 2. The experimental set-up is introduced
in Section 3. Section 4 presents the results and discussion. Finally, the conclusions are
presented in Section 5.

2. Problem Formulation
2.1. Single Impact Force Reconstruction

The impact force reconstruction consists of two procedures, namely, (i) obtaining a
transfer function between a reference impact force and its resulting response captured
by a specific sensor, and (ii) identifying an unknown impact force using this transfer
function and the collected vibration responses. Suppose n sensors are deployed on a
structure subjected to impacts to measure impact responses (e.g., displacement, velocity or
acceleration) and the following assumptions hold:

• one impact is being applied at a time,
• structural responses are linear,
• the impact location is known.

Then, the relation between the impact force f applied at point x and the response r
measured at point y at time t is given by a convolution integral as follows:

r(y, t) =
∫ t

0
Ts(x, y, t− ζ) f (x, ζ)dζ, (1)

where Ts(x, y, t− ζ), s = 1, ...n, is the transfer function between the impact force at point x
and the sth sensor at point y at time t = ζ. The discretized form of the forward model (1),
which is more applicable in practice, can be written as follows:

r = Tsf, (2)

with r ∈ Rm, Ts ∈ Rm×m, f ∈ Rm, where r is the recorded response vector, f is the vector of
impact force which is to be reconstructed, and Ts is the impulse response matrix, which is
a lower triangular toeplitz matrix, given by
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r =


r(∆t)

r(2∆t)
...

r((m− 1)∆t)
r(m∆t)

, f =


f (∆t)

f (2∆t)
...

f ((m− 1)∆t)
f (m∆t)

,

Ts =


Ts(∆t) 0 . . . 0

Ts(2∆t) Ts(∆t) . . . 0
...

...
. . .

...
Ts((m− 1)∆t) Ts((m− 2)∆t) . . . 0

Ts(m∆t) Ts((m− 1)∆t) . . . Ts(∆t)

. (3)

In (3), m is the number of samples and ∆t is the time interval, which should be small
enough since the above discretization assumes that the impact force f is constant within
each time interval. In other words, with a higher sampling frequency, the results given by
(2) are theoretically more accurate.

The solution of (2) can be theoretically obtained by using the following least squares
problem:

min‖r− Tsf‖2
2, (4)

where r is contaminated by experimental errors in practice. Moreover, Ts is a matrix
with a very large condition number and hence is ill-conditioned. Therefore, the problem
must be regularized. The Tikhonov regularization method alternatively searches for an
approximation of f through the following penalized least-squares problem:

min{‖r− Tsf‖2
2 + δ‖If‖2

2}, (5)

where δ ≥ 0 is the regularization parameter, determined by L-curve method, and I is the
identity matrix.

2.2. Transfer Function

In order to solve (2), the transfer function Ts should be obtained in advance. This is
achieved by using a reference impact force, its corresponding measured response, and the
following relation:

r = Fts, (6)

with ts ∈ Rm, F ∈ Rm×m, where F is a lower triangular toeplitz matrix, and ts is the vector
of transfer function, as follows:

F =


f (∆t) 0 . . . 0 0
f (2∆t) f (∆t) . . . 0 0

...
...

. . .
...

...
f ((m− 1)∆t) f ((m− 2)∆t) . . . f (∆t) 0

f (m∆t) f ((m− 1)∆t) . . . f (2∆t) f (∆t)

, ts =


Ts(∆t)

Ts(2∆t)
...

Ts((m− 1)∆t)
Ts(m∆t)

. (7)

The solution of (6) can be obtained by using the following least squares problem:

min‖r− Fts‖2
2. (8)

However, in practice, the collected impact force and the measured dynamic response are
associated with noise, equivalent to high-frequency components of signals. This causes
matrix F to, potentially, have a large condition number, making it ill-conditioned. The large
condition number of F together with presence of noise in r results in deviated transfer
functions. Therefore, applying regularization is deemed necessary. Employing Tikhonov
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regularization method, an approximation of ts can be found instead, by the following
penalized least-squares problem:

min{‖r− Fts‖2
2 + β‖Its‖2

2}, (9)

with β ≥ 0 the regularization parameter, determined by the L-curve method.
Summarizing, impact force reconstruction consists of two steps:

1. obtaining the vector of transfer function ts by solving (6) (and converting it to the
triangular toeplitz transfer function matrix Ts),

2. solving (2) for the unknown impact force f.

As discussed, both above problems are ill-posed. Therefore, in this paper, the Tikhonov
regularization method is exploited in order to avoid the sensitivity to perturbations, which
can potentially make the solution unstable.

2.3. Impact Force Location

Two approaches have been employed in the literature for impact force localization:
the one-to-one approach and the superposition approach [14]. In the one-to-one approach,
the impact reconstruction is performed for each pair of impact and response location, while
in the superposition approach, the impact forces at all possible locations are reconstructed
concurrently. Generally speaking, the superposition approach considers a superposition
of responses corresponding to each impact force exerted at different locations. In the
following, the superposition approach is presented more in detail.

Assuming several impact forces at various points (i = 1, . . . , p) concurrently applied
to a structure, the vibration response collected by a single sensor installed at position s is,
therefore, a superposition of the responses generated by each individual impact force.

r =
p

∑
i=1

Ti
sfi, (10)

where fi is the impact force applied on the location i, i = 1, ..., p, and Ti
s is the transfer

function between the location i and the sth sensor location. Equation (10) can be written in
matrix-vector form as follows:

r =
[
T1

s T2
s . . . Tp

s
]


f1
f2
...

fp

. (11)

The procedure for creating the transfer functions were already discussed in Section 2.2. For
brevity, (11) is presented by r = Tsf. As previously pointed out, matrix Ts is ill-conditioned
and vector r is contaminated with noise, necessitating applying regularization to solve for
f. Similar to (5), Tikhonov regularization is implemented. It is worth mentioning that (11)
is severly under-determined, as there is one equation with p unknown forces. Now, let
us make an important assumption that is the magnitude of all impact forces but one is
actually equal to zero. This condition entails that an impact occurs at only one location.
The purpose is, therefore, to detect the actual impact location among all potential locations,
together with its force history. Using this approach, a reconstructed impact force is obtained
for each potential impact location. In other words, p impact forces, i.e., f1, f2, . . . fp, are
reconstructed, keeping in mind that there is only one actual non-zero impact force. The
reconstructed impact forces at spurious locations are expected to have zero magnitude as
no impact has actually occurred at these locations. However, there might be some non-zero
reconstructed impact forces at spurious locations. The reconstructed force at each location
is qualitatively assessed, addressing key characteristics of a normal impact force such as the
shape and the maximum amplitude of the first peak if applicable. A normal impact force
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has typically a smooth half-sine shape. More comprehensive description of this method
as well as various case studies can be found in previous works of the authors [10,12,14].
Figure 1 shows a schematic of the problem.

Figure 1. Schematic of impact force localization using the superposition approach.

3. Experimental Set-Up

To investigate the impact force reconstruction experimentally, the structure shown in
Figure 2 is used with the parameters given in Table 1. The structure is a hollow rectangular
steel beam, fixed at the bottom and free at the top, on which eight lumped masses are
clamped at equally distributed distances. In the following, these masses are called level 1
to 8 with level 1 at the bottom and level 8 at the top.

Four sensors, namely, two DC-response MEMS accelerometers (Measurement Special-
ties 4000A-005) at level 3 and level 8, a laser Doppler vibrometer (Polytec PDV-100) at level
3, and a laser triangulation sensor (Micro-Epsilon optoNCDT 1302, ILD 1302-50) at level 3
were employed to gauge system responses, as shown in Figure 2.

The impact forces were applied by a modally tuned instrumented impact hammer
that provided the measurement of the actual dynamic load. This hammer was used with
different tips (i.e., steel, hard rubber, medium rubber, and soft rubber tips) in order to
simulate various hit modes.

Figure 2. Experimentalset-up showing the multi-storey tower and primary response transducers
including (1) laser Doppler vibrometer, (2) laser triangulation sensor, and (3) accelerometer.
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Table 1. Experimental set-up parameters.

Parameter Value

Beam length 2 m
Beam cross-section 65.3 × 35 mm2

Beam thickness 2.5 mm
Lumped masses dimension 128× 98 × 50 mm3

Lumped masses weight 4 kg
Lumped masses distances 250 mm

4. Results and Discussion
4.1. Effect of Regularization

As stated previously, identification of transfer functions as well as reconstruction of
impact forces are both ill-posed problems. Solving (6) using the least-square technique
without applying regularization, given in (8), led to transfer functions with magnitudes
in the order of 103, while solving the problem considering regularization, defined in (9),
gave the transfer functions with magnitudes in the order of 10−5. Figure 3 depicts the
reconstructed impact force implementing the transfer function obtained with and without
regularization. In this figure, the impact force was applied at level 5, and the vibration
response was measured in level 8. As seen in Figure 3, the reconstruction process utilizing
the transfer function obtained without regularization yields a reconstructed impact force
with virtually zero amplitude. This is because the transfer function has large singular
values. The large singular values are inverted through the inverse algorithm, causing the
reconstructed force to approach zero.

-2 0 2 4 6 8

10
-4

0

500

1000

1500

2000

Measured

Reconstructed, TF with regularization

Reconstructed, TF without regularization

Figure 3. The effect of regularization in establishing the transfer function and reconstructing the
impact force.

4.2. Establishing the Transfer Function

Different hammer tips can produce different half-sine shapes of impact force, with
different rising patterns and time durations. As shown in Figure 4, harder tips produce
sharper graphs of impact force, i.e., closer to the graph of Dirac delta function. The sharpest
graph shows the results of the hammer with the hardest tip (steel tip), which, theoretically,
should result in the most accurate transfer function. This result is also shown illustratively
in Figure 5 in which the impact force applied by the soft rubber tip at level 4 is reconstructed
by using the measured acceleration at level 8 and different transfer functions established,
namely, by the steel tip, the hard rubber tip, the medium rubber tip, and the soft rubber
tip itself. As can be seen, the transfer function obtained by the steel tip gives the most
accurate force reconstruction result. Quantitatively, the correlation coefficient between
the measured impact force and the corresponding reconstructed forces, shown in Figure 5,
are 0.9917, 0.9829, 0.9917, and 0.9752, respectively, for the steel tip, the hard rubber tip,
the medium rubber tip, and the soft rubber tip. Additionally, the percentage of peak
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errors are, respectively, −1.12%, 7.50%, 11.29%, and −1.58%. Interestingly, the best force
reconstruction is not necessarily achieved when the transfer function is obtained with the
same tip as the tip generating force. Even if that were the case, it would not be applicable
as the material of the object impacting the structure is usually not known or predictable
in practice.

To show the effectiveness of the force reconstruction, two quantities, correlation
coefficient and peak error, should be considered simultaneously. In other words, the force
reconstruction with a higher correlation coefficient (i.e., closer to 1), and concurrently, lower
peak error (i.e., closer to 0%) is more desirable. Therefore, we introduce the following
reconstruction accuracy error in order to use only one variable:

e =
√
(correlation coe f f icient− 1)2 + (peak error)2. (12)

In the worst case scenario, the maximum value of the accuracy error is
√

2. On the other
hand, when e is closer to zero, the reconstruction is more precise. For instance, in Figure 5,
the reconstruction accuracy errors for steel tip, hard rubber tip, and medium rubber tip
are 0.0139, 0.0769, and 0.1132, respectively, which shows the reconstruction precision in
the case of steel tip as its corresponding accuracy error is closer to zero. Similar results
were observed for impact at other levels. It is worth mentioning that neither the correlation
coefficient nor the peak error can singly lead to this conclusion. As concluded from the
above discussion, from now on, the transfer functions are established by using the steel
tip hammer.

-1 0 1 2 3

10
-3

-500

0

500

1000

1500

2000

2500

3000
Hard Rubber

Medium Rubber

Soft Rubber

Steel

Figure 4. Impact force graphs produced using different hammer tips.
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Reconstructed using TF by steel tip

Reconstructed using TF by hard rubber tip

Reconstructed using TF by medium rubber tip

Reconstructed using TF by soft rubber tip

Figure 5. Impact force reconstruction using transfer functions (TF) established by different ham-
mer tips.
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4.3. Influence of Sensor Type and Location

As previously pointed out in Section 3, four transducers are mounted on the ex-
perimental set-up, measuring the displacement, velocity, and acceleration at level 3, as
well as the acceleration at level 8. These measurements can be utilized in combination or
individually for the force reconstruction.

Figure 6 shows the reconstruction of the impact forces applied by steel tip hammer
implementing different system responses (i.e., the velocity at level 3, acceleration at level
3, and acceleration at level 8). Since the results of using displacement at level 3 were not
satisfactory at all, these are not shown for better clarity. To investigate this comparison
quantitatively, Table 2 shows the values of the accuracy error for each condition, as well.

As shown in Figure 6 and Table 2, the distance between the impact location and
the sensor location is a dominant factor in impact force reconstruction. More specifically,
employing velocity measurement at level 3 leads to better reconstruction results for impacts
at lower levels (1, 2, 3, and 4). On the other hand, to reconstruct impact forces applied at
higher levels (5, 6, 7, and 8), using the acceleration measurement at level 8 is more effective.
Note that the minimum accuracy error in each row is colored in Table 2.

It is observed that making the problem over-determined (e.g., employing a combi-
nation of velocity at level 3 and acceleration at level 8) does not necessarily improve the
reconstruction. Therefore, in this paper, the problem is kept even-determined in order
not to use extra ineffective computation costs. In this regard, the impact forces will be
reconstructed by using the velocity measurement at level 3 when the impact location is
in the lower half of the structure and employing the acceleration measurement at level 8,
otherwise.

Table 2. Accuracy errors of impact force reconstruction using different system responses.

Impact Location
Measured Response

Vel. at Level 3 Acc. at Level 3 Acc. at Level 8

Level 1 0.0219 0.2448 0.0956

Level 2 0.0141 0.0182 0.0682

Level 3 0.0053 0.0551 0.0323

Level 4 0.0140 0.0342 0.0290

Level 5 0.1644 0.0908 0.0157

Level 6 0.5969 0.0223 0.0157

Level 7 0.3779 0.0518 0.0125

Level 8 0.7738 0.3177 0.0108

Figure 7 illustrates the reconstruction accuracy errors for impact forces applied on
different levels of the structure. As shown in Figure 7a, when using the velocity measure-
ment at level 3, the minimum of the accuracy error occurs when the impact force is applied
at level 3. Similarly, when it comes to using the acceleration measurement at level 8, the
accuracy error is the minimum if the impact location is also at level 8, as illustrated in
Figure 7c. Concerning the acceleration measurement at level 3, it gives its most accurate
result for mid-levels (not end-levels), as can be seen in Figure 7b. Figure 7d shows the
accuracy error when using the velocity at level 3 for the lower half of the structure (i.e.,
level 1 to 4), and employing the acceleration at level 8 for the upper half (i.e., level 5 to 8).
As can be seen both in Figure 7d and Table 2, the reconstruction is poorer when the impact
force is applied at level 1. The reason is that this level is very close to the fixed support,
which prevents the proper stimulation of vibration modes and hence the signal can not
satisfactorily be captured by sensors placed distant from this location. On the other hand,
the most accurate results are obtained at levels 3 and 8, exactly where the transducers are
placed, which demonstrates the effect of proximity of impact location and sensor location.
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(a) Impact force applied at level 1.
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(b) Impact force applied at level 2.
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(c) Impact force applied at level 3.
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(d) Impact force applied at level 4.
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(e) Impact force applied at level 5.
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(f) Impact force applied at level 6.
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(g) Impact force applied at level 7.
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(h) Impact force applied at level 8.

Figure 6. Using different transducers for impact force reconstruction at different locations.
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Figure 7. Relation between the sensor location and impact force reconstruction accuracy error.

In order to complement the above discussion, the impact forces applied by different
rubber tip hammers (i.e., soft, medium, and hard rubber tips) are reconstructed in the
following. Note that based on the conclusion made in Section 4.2, the transfer functions
are obtained by using the steel tip hammer. Additionally, based on the conclusion made
earlier in the current subsection, the velocity measurement at level 3 and the acceleration
measurement at level 8 are employed for lower half and upper half of the structure,
respectively. Table 3 shows the accuracy errors of the reconstruction for each rubber
hammer tip at different levels. These errors could be reduced by manually changing the
regularization parameter, however, it was not the purpose of the current paper. As shown,
the accuracy error is acceptable in most of the cases, which demonstrates the efficacy of the
transfer function obtained and the responses used.

Table 3. Accuracy errors of the reconstruction of impact forces applied by rubber tip hammers at different levels.

Hammer Tip
Impact Location

1 2 3 4 5 6 7 8

Soft rubber 0.0974 0.0516 0.0339 0.0576 0.0482 0.0642 0.0563 0.0604

Medium rubber 0.0863 0.0502 0.0590 0.0563 0.0967 0.0902 0.1031 0.0932

Hard rubber 0.0472 0.0239 0.0558 0.0404 0.0558 0.3282 0.0464 0.0421

4.4. Impact Force Location

In the following results, it is assumed that eight impact forces are applied concurrently
at levels 1 to 8, while the magnitude of only one impact force is non-zero. Herein, the
superposition approach introduced in Section 2.3 is employed for location identification.
Different scenarios were tested, namely, (i) using each of the available measurements singly,
and (ii) different combinations of two system responses. Among all, the combination of
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the acceleration at level 3 and the acceleration at level 8 leads to the most satisfactory
impact localization. This is shown quantitatively in Table 4, where the accuracy errors
corresponding to the reconstruction of the actual impact forces are presented for all above-
mentioned scenarios. The minimum possible accuracy error for each impact location
is colored in the table. As demonstrated, for most levels, the minimum occurs when
the combination of acceleration at level 3 and acceleration at level 8 is employed. It is
concluded that reducing the degree of under-determinacy can improve the localization
accuracy. Moreover, it seems that when the two measurements, selected in combination,
are of the same type, the impact force can be localized more accurately. Therefore, the
actual impact location can be detected through the following relation:

[
r3
r8

]
=

[
T1

3 T2
3 . . . T8

3
T1

8 T2
8 . . . T8

8

]
f1
f2
...

f8

, (13)

where r3 and r8 are the acceleration response at level 3 and 8, respectively, and Ti
j is the

transfer function between the impact location i, i = 1, ..., 8, and measurement location j,
j = 3, 8. As presented in Section 2.3, (13) is solved for fi, i = 1, ..., 8, where the magnitude
of one of these reconstructed forces is significantly greater that others which specifies the
actual impact location.

Figure 8 shows the reconstruction of impact forces at all possible locations when
the actual impact force is applied at levels 1 to 8, individually, and a combination of the
acceleration at level 3 and the acceleration at level 8 is considered as the system response.
It demonstrates the efficacy of the approach as the reconstructed impact force associated to
the true impact location has a smooth half-sine shape with a higher peak amplitude than
other possible locations, as expected.

Table 4. Accuracy errors of the reconstruction of actual impact force using different traducers at each individual level.

Measured Response
Impact Location

1 2 3 4 5 6 7 8

Vel. at level 3 0.9581 0.9370 0.2522 0.9395 0.9608 1.0389 0.9821 1.0117

Acc. at level 3 0.9303 0.8922 0.4225 0.8439 0.9145 0.9701 0.9706 0.9883

Acc. at level 8 1.0055 0.9861 0.9868 1.0233 0.9899 0.9831 0.9164 0.1559

Vel. at l3 and Acc. at l8 1.0093 0.9842 0.9934 1.0149 0.9992 1.0375 0.9067 0.1163

Acc. at l3 and Acc. at l8 0.8947 0.8839 0.3038 0.7664 0.8968 0.9948 0.8844 0.0991
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Figure 8. Cont.
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(f) True impact location is level 6.
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(h) True impact location is level 8.

Figure 8. Identification of the impact location.

5. Conclusions

Inverse identification of an impact force acting on a multi-storey tower structure was
studied experimentally using dynamic signals measured by different transducers. Herein,
both the magnitude and location of the impact force were investigated. It was shown
that using the hammer with the hardest tip can lead to a more accurate transfer function,
where an accuracy error function was proposed to evaluate the reconstruction precision as
a function of the correlation coefficient and the peak error. Moreover, it was observed that
the proximity between the impact and sensor locations is a dominant factor in impact force
reconstruction. Therefore, the velocity measurement at level 3 was used for the lower half
of the structure and the acceleration measurement at level 8 was employed for the upper
half and the effectiveness of this idea for impact force reconstruction at all positions was
demonstrated both for steel tip hammer and rubber tip hammers. For impact localization,
the superposition method was exploited, where the effect of different transducers was
studied. It was concluded that reducing the degree of under-determinacy by using a
combination of system responses of the same type can improve the localization accuracy.
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Therefore, a combination of the acceleration at level 3 and the acceleration at level 8 was
employed for the localization.

As a potential real-world application of this study, identification of impact forces
on bridge structures can be of great interest to the bridge owners and engineers. The
bridge can be modelled as a multi-degree of freedom system with the expansion joints
of the bridge deck taken as the potential impact locations. Measurement of the vibration
response generated by the impact of heavy trucks can be carried out using accelerometers
or contactless sensors such LDVs installed distant from the impact location. Another
possible application of the current study is in oil-well drilling industry. During the whirling
motion, the rotating drill string strikes the borehole wall, generating shocks from lateral
vibrations. The location and magnitude of these impact forces are unknown as it is indeed
impossible to place sensors on the string. However, using top-side measurements and
inverse algorithms, the impact force can be identified, which helps in stability analysis and
controller design for such structures.
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