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Abstract: We report on the design and construction of a spin-flip Zeeman slower, a quadrupole
magnetic trap and a Feshbach field for a new machine for ultra-cold Li-7. The small mass of the Li-7
atom, and the tight lattice spacing, will enable to achieve a 100-fold increase in tunneling rates over
comparable Rb-87 optical lattice emulator experiments. These improvements should enable to access
new regimes in quantum magnetic phase transitions and spin dynamics.
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1. Introduction

1.1. Quantum Magnetism

In recent years, great development in the simulation of Hubbard and spin models has been
observed [1]. Hubbard models of condensed matter systems represent useful approximations for
many interesting problems, such as High-Tc superconductivity, frustrated anti-ferromagnetism and
spin liquids [2]. Ultra-cold atomic gases confined in an optical lattice allow for a practically perfect
realization of such models [3], with the advantage over magnetic materials that the parameters may be
changed faster, reversibly and more easily. Furthermore, in some limits, Hubbard models reduce to a
variety of interesting spin models, which cold atoms and ions can simulate [4]. Specifically, spin-spin
interactions can be implemented by controlled collisions [5], on-site interactions [6] and super-exchange
interactions [7]. Thus, optical lattice emulators open up a broad avenue for quantum simulations of
novel and exotic magnetic materials and represent a good candidate for performing scalable quantum
computations [8].

1.2. Li-7 Machine

Li-7 is a particularly suitable species for quantum simulation experiments with ultra-cold atoms,
as it presents broad Feshbach resonances at accessible magnetic fields, which can be used as a control
parameter for collision properties, and also due to its low mass, which translates into recoil energy
(ER = h2k2/2m) one order of magnitude larger than other comparable bosonic species, such as Rb-87 or
Na-23. Such higher recoil energies allow for faster tunneling rates, thus enabling the investigation of
new regimes in quantum magnetism and spin-dynamics. The Li-7 machine presented here represents
an improvement, and a slight simplification, over previous constructions [9], and will be used in the
future for optical lattice emulator experiments. One of the main distinction over previous designs for
bosonic ultra-cold atoms at Massachusetts Institute of Technology (MIT) the use of an optically plugged

Quantum Rep. 2020, 2, 378–387; doi:10.3390/quantum2030026 www.mdpi.com/journal/quantumrep

http://www.mdpi.com/journal/quantumrep
http://www.mdpi.com
https://orcid.org/0000-0003-0576-4491
http://dx.doi.org/10.3390/quantum2030026
http://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/2624-960X/2/3/26?type=check_update&version=2


Quantum Rep. 2020, 2 379

quadrupole magnetic trap. In this review, the different steps towards the design and construction of
the magnetic coils utilized in the Li-7 machine are described. The novelty of the work resides in the
construction of an optically plugged quadrupole magnetic trap, the first of its kind at MIT. Moreover,
the instrument design and the numerical simulations have been done specifically for Li-7 atoms,
since Li-7 can enable an increase in tunneling rates. There are no former designs, simulations, and
measurements for this species in combination with a plugged quadrupole trap, which readily warrants
sufficient originality for publication as a technical note in Quantum Reports.

In Section 2, we present the numerical simulation and experimental results for the (spin-flip)
Zeeman slower, where atoms are slowed down by a combination of radiation pressure and Zeeman
shift to velocities of a few (m/s). In Section 3, we present the numerical simulations and experimental
results for the construction of a quadrupole magnetic trap, which is used to trap the atoms at the main
chamber, as they leave the Zeeman slower. In Section 4, we present numerical results for Feshbach
fields. In Section 5, we briefly discuss the comparison between theoretical prediction and experimental
results for quadrupole magnetic trap. Finally, in Section 6 we outline the conclusions. The results
presented in this review are based on numerical simulations, and all numerical simulations are backed
up by successful measurements and experimental results. In particular, experimental results confirming
theoretical prediction for the Zeeman slower are presented in Figures 2 and 3, numerical results for
the quadrupole magnetic trap are presented in Figures 4–6, numerical results for the Feshbach fields
are presented in Figure 7, and experimental results confirming numerical prediction for quadrupole
magnetic trap are presented in Figures 8–10.

2. Zeeman Slower

2.1. Doppler Shift and Zeeman Force

We generate a large flux of thermal atoms by a standard effusive atomic beam oven technique [10,11].
The atomic beam leaving the oven has a typical temperature of 450 K (or more) and is collimated
enough in order to follow a Boltzmann distribution of longitudinal velocities. We designed the slower
for a characteristic (most probable) velocity of around v = 960 m/s. In order to maximize the flux
of particles, we want to build a Zeeman slower optimized for a range of velocities around this most
probable velocity. Typically, this range is 2/3 of the Boltzmann distribution [12]. The atoms are then
slowed down by means of a laser cooling technique known as Zeeman slowing, which uses a laser
beam counter-propagating to the atomic beam together with a spatially varying magnetic field [13].
As the atoms move with velocity v along the slower, they see the laser light shifted by an amount
proportional to their velocity v, due to Doppler shift. The Doppler shift makes the radiation pressure
on the atoms dependent on velocity via the change in the detuning frequency:

δ = δ0 − k·v, (1)

where δ0 =ωlaser −ωatom is the laser detuning, k indicates the wave-vector of the counter-propagating
laser beam, and v indicates the atom velocity. This means that as the atoms reduce their velocity they
get more and more out of tune with the laser frequency (δ increases) and therefore the radiation force
gets smaller.

A solution to this problem is to introduce a spatially dependent magnetic field B, which can shift
the atomic transitions and, in turn, compensate for the Doppler detuning. This is the main role of the
Zeeman slower, which provides a spatially varying external magnetic field.

For a transition involving a ground state g and excited state e, characterized with magnetic
quantum numbers Mg and Me, and Lande g-factors gg and ge, respectively, the energy shift introduced
by the external B-field is given by:

∆E = µ′µBB, (2)
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where µ′ = (geMe − ggMg), and µB is Bohr’s magneton. Thus, in order to compensate for the Doppler
shift, we need
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Here, we are assuming that v is the longitudinal velocity in the direction of the B-field, and the
counter-propagating laser beam is aligned with the direction of the B-field; therefore, Equation (3)
is scalar.

2.2. Spin-Flip Zeeman Slower

In order to have a large flux atom to trap, we need to slow a significant fraction, typically 2/3
(or more) of the Boltzmann distribution of velocities characterizing the atoms leaving the oven. In the
case of a field increasing slower for Li-7, this would require large magnetic fields (i.e., 1000 G or more),
which can introduce magnetic fringing at the trap position, located close to the end of the slower.
A spin-flip slower can be designed in order to reduce the magnitude of the field close to the trap.
The main idea is to design a field decreasing (Bini = 600 G) first section, a zero field (or spin-flip) middle
section and a field increasing final section (Bfinal = −400 G). By adjusting the laser detuning (600 MHz
for our species) and the initial and final fields, it is possible to achieve a field profile with a final B-field
of only a few hundred G near the vacuum chamber.

2.3. Simulations

The main criteria to decide if a Zeeman slower design is good enough is that the difference
between the ideal field and the field achieved by a winding a set of coils of different radii should be
less than the atomic line-width (i.e., 5.9 MHz in the case of Li-7 D2 line, which, in terms of B-field,
corresponds to approximately 5 G). Next, the acceleration along the slower should remain lower than
the maximum Doppler acceleration (amax) [12,13], or, in other words, the parameter f = a/amax should
remain smaller than 1 and fluctuate by less than 20% around the chosen target design parameter
(f = 0.6 in our case) since large fluctuations in f could produce atom losses.

The results for our numerical simulation of the B-field profile and f -parameter are shown in
Figure 1a,b, respectively. As shown in Figure 1c, the design consists of three sections (A, B, C). The first
section (A) is the field decreasing part and requires 11 layers with a number of turns ranging from 116
to 7. The current used for this first section in the simulations was I = 23 A. Next, there is the B = 0
or spin-flip segment (B). The length of this segment is eventually determined by the length of the
mechanical bellows. The last section (C) corresponds to the decreasing part of the slower. The first part
of this last section consists of a few turns with double spacing (weak turns) followed by four layers
with and increasing number of turns from 7 to 18. The current used for this second section was I = 40 A.
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2.4. Slower Measurements

We measured the field by probing the slower with a small current (3 A) for each section in series.
In order to prevent regions along the slower with this acceleration, a > amax, we measured the f
parameter (Figure 2) and found that at a specific position (z = 40 cm) f had an “unphysical” peak
(f > 1). This peak coincided with the ending of the decreasing section of the slower. We corrected for
this by adding one additional turn. Figure 3 shows a comparison between the initially measured field
(a) and the corrected field (b).

Quantum Rep. 2020, 2 FOR PEER REVIEW  4 

 

 

Figure 1. Numerical simulations showing (a) the achieved field profile (blue curve) and the ideal field 

profile (green curve) (b) acceleration along the slower, as quantified by the f parameter. (c) Scheme of 

Zeeman slower design indicating sections (A, B, C) and the number of coil windings.  

2.4. Slower Measurements 

We measured the field by probing the slower with a small current (3 A) for each section in series. 

In order to prevent regions along the slower with this acceleration, a > amax, we measured the f 

parameter (Figure 2) and found that at a specific position (z = 40 cm) f had an “unphysical” peak (f > 

1). This peak coincided with the ending of the decreasing section of the slower. We corrected for this 

by adding one additional turn. Figure 3 shows a comparison between the initially measured field (a) 

and the corrected field (b). 

 

Figure 2. Measured f parameter along the slower. The regions where f > 1 should be corrected to 

prevent atom losses. 

Figure 2. Measured f parameter along the slower. The regions where f > 1 should be corrected to
prevent atom losses.



Quantum Rep. 2020, 2 382Quantum Rep. 2020, 2 FOR PEER REVIEW  5 

 

 

Figure 3. (a) Initially measured field, (b) corrected field by adding coil windings. 

3. Quadrupole Magnetic Trap 

The quadrupole magnetic trap consists of two coils of opposite currents, which produce a 

magnetic field whose magnitude |B| increases (from zero) with the distance from the center of the 

trap. The main considerations in designing a quadrupole trap are the separation between coils (∆z), 

the inner radius of the coils (R), and the number of turns N. In order to fit the coils in our existing 

bucket windows, the separation should be ∆z = 3.81 cm, and the maximum outer radius should be 

16.51 cm. For thick copper wire (0.47625 cm), this corresponds to N = 8,9. Additionally, there is a 

limitation in the number of layers that can be added due to water cooling considerations. Our aim is 

to cool each layer separately so that each layer can have its own independent current. Taking this into 

account, 5 layers is approximately the maximum number that we can consider. 

3.1. Field Simulations 

The axial magnetic field from a single coil of radius R perpendicular to the z axis, centered at z 

= A, can be written as [14]: 

𝐵𝑍(𝑟, 𝑧) =  
𝜇0𝐼

2𝜋

1

[(𝑅 + 𝑍)2 + (𝑍 − 𝐴)2]1/2
× 𝐸(𝑘2) (4) 

where E(k2) is an elliptical integral [1], with μ0 = 4π × 10−7, for vacuum and SI units and k2 = [4Rr/(R + 

r)2 + (R − A)2]. In order to ease the notation, we shall call B the z-component of the magnetic field in 

the rest of the manuscript. 

3.2. Trap Fields 

Consider a design consisting of 5 layers, with 9 turns each, and a current of I = 400 A in each 

layer. The axial fields due to each layer (Bz), first derivative (
𝒅𝑩

𝒅𝒛
) and second derivatives (

𝒅𝑩𝟐

𝒅𝒛𝟐 ) are 

shown in Figures 4–6, respectively. 

The field gradient due to each coil individually is around 150 G/cm and can be used 

independently. Moreover, these graphs suggest that the total field gradient (i.e., the slope of sum 

|Bz|) due to the 5 coils is around 750 G/cm at 400 A (i.e., 1.875 G/cmA), while a field gradient of 

approx. 0.55 G/cmA is required for trapping 7Li, suggesting that our coils should be appropriate for 

our application. 

Figure 3. (a) Initially measured field, (b) corrected field by adding coil windings.

3. Quadrupole Magnetic Trap

The quadrupole magnetic trap consists of two coils of opposite currents, which produce a magnetic
field whose magnitude |B| increases (from zero) with the distance from the center of the trap. The main
considerations in designing a quadrupole trap are the separation between coils (∆z), the inner radius
of the coils (R), and the number of turns N. In order to fit the coils in our existing bucket windows,
the separation should be ∆z = 3.81 cm, and the maximum outer radius should be 16.51 cm. For thick
copper wire (0.47625 cm), this corresponds to N = 8 or 9. Additionally, there is a limitation in the
number of layers that can be added due to water cooling considerations. Our aim is to cool each layer
separately so that each layer can have its own independent current. Taking this into account, 5 layers
is approximately the maximum number that we can consider.

3.1. Field Simulations

The axial magnetic field from a single coil of radius R perpendicular to the z axis, centered at
z = A, can be written as [14]:

BZ(r, z) =
µ0I
2π

1

[(R + Z)2 + (Z−A)2]
1/2
× E

(
k2

)
(4)

where E(k2) is an elliptical integral [1], with µ0 = 4π × 10−7, for vacuum and SI units and k2 = [4Rr/(R +

r)2 + (R − A)2]. In order to ease the notation, we shall call B the z-component of the magnetic field in
the rest of the manuscript.

3.2. Trap Fields

Consider a design consisting of 5 layers, with 9 turns each, and a current of I = 400 A in each layer.
The axial fields due to each layer (B), first derivative ( dB

dz ) and second derivatives ( dB2

dz2 ) are shown in
Figures 4–6, respectively.

The field gradient due to each coil individually is around 150 G/cm and can be used independently.
Moreover, these graphs suggest that the total field gradient (i.e., the slope of sum |B|) due to the 5 coils is
around 750 G/cm at 400 A (i.e., 1.875 G/cmA), while a field gradient of approx. 0.55 G/cmA is required
for trapping Li-7, suggesting that our coils should be appropriate for our application.
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Figure 7 shows a simulation of the field that will be used to tune the Feshbach resonances. For 

this application, it is important that the curvature of the field is as small as possible at the position of 

Figure 6. Numerical simulation of (a) the first derivative dB
dz (G/cm) and (b) second derivative dB2

dz2 (G/cm2)
of axial field |z| due to individual layers of a set of coils separated by a distance Dz = 3.81 cm while
running equal currents (I = 400 A).
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4. Feshbach Fields

The Feshbach fields are obtained using the same coils but sending both currents in the same
direction so that |B| is maximum at the center of the trap. It is also important to have zero curvature
( dB2

dz2 = 0) in the Feshbach field at the trap location, for which the layers in the Helmholtz configuration
(R = ∆z) will be used. Note that by adding layers 1 and 2 it is possible to achieve fields of up to 900 G,
which seems within the range required for tuning the Li-7 resonances. Simulated Feshbach fields are
shown in Figure 7.
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Figure 7. Numerical simulation of axial field B due to (a) individual layers separated by distance
Dz = 3.81 cm, (b) the sum of fields due to individual layers, when running currents equal currents
(I = 400 A).

Figure 7 shows a simulation of the field that will be used to tune the Feshbach resonances. For this
application, it is important that the curvature of the field is as small as possible at the position of
the trap z = 0. For this purpose, layers 1 and 2 should be used, since those are the closest to the
Helmholtz configuration.

Windings and Measurements

Coil winding can be a very challenging task. One of the main aspects to take into account is that
the spacing between coils should be as small as possible and the layers should be as 2D as possible.
This means that it is necessary to introduce a lot of pressure and tension in the system, especially
during the large amount of time it takes for the Epoxi glue to cure (6 h approximately).

We measured the fields, on each layer in each coil, by sending a small current (5 A) and then
rescaling it. This is presented in Figure 8a,b and shows the corresponding numerical simulation.
The error in the field is within 10%, as expected due to small deviations in the shape of coils by bending
and additional Epoxi. In order to find the first and second derivatives of the measured field at the trap
position and then obtain the values for the gradient field and curvature, we fitted the fields with a
polynomial expansion [14–18]:

y =
∑
n=0

bnxn (5)
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Figure 8. (a) Measured magnetic field due to a single coil, (b) numerical simulation.

Once we obtained the fitting coefficients bn, we calculated the first and second derivatives. Figure 9
shows the measured (a) and simulated (b) first derivative of the field dB

dz (G/cm). The actual position of
the trap in (a) is 1.905 cm from z = 0. Agreement between numerical simulations and experimental
results is apparent.Quantum Rep. 2020, 2 FOR PEER REVIEW  9 
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Figure 9. (a) First derivative dB
dz (G/cm) of polynomial fit to the measured fields, (b) numerical simulation

of the first derivative.

Figure 10a Shows the second derivative of the polynomial fit to measured fields dB2

dz2 (G/cm2),
and Figure 10b shows the corresponding numerical simulations. The qualitative agreement between
numerical simulations and experimental results is revealed. The measured curvatures appear to range
between 25 and 75 G/cm2. The curvature of the field can eventually be corrected by running a small
negative current in the outermost layer.
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Figure 10. (a) Second derivative dB2

dz2 (G/cm2) of polynomial fit to the measured field, (b) numerical
simulation of the second derivative.

5. Discussion

The comparison between the experimental results and numerical simulations presented in
Figures 8–10 reveal the qualitative agreement between experiment and theory. From Figure 8, we note
that there is roughly a 10% difference in the magnitude of the measured field (Figure 8a, Bmax = 500 G)
and simulated fields (Figure 8b, Bmax = 450 G), this error can be ascribed to bias noise, limited precision,
Gaussmeter calibration errors, in addition to probe alignment errors. We attribute the difference in the
scales presented in the theoretical and numerical plots to such probe alignment errors. Experimental
errors within 10% in the measured B-field are later propagated in the first and second derivatives of the
field for each layer, resulting in roughly 20% and 30% divergence between measured and simulated
derivatives of the B-field.

6. Conclusions

We presented the design and construction of the magnetic coils for a new machine for ultra-cold
Li-7. In particular, we reported numerical simulations and experimental results for the spin-flip
Zeeman slower, quadrupole magnetic trap, and Feshbach fields. This machine will be employed to
emulate novel quantum phases of matter and quantum magnetism with ultra-cold Li-7 [19–21].
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