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Abstract: Spin-orbital interaction of light attracts much attention in nanophotonics opening new
horizons for modern optical systems and devices. The photonic spin Hall effect or Imbert-Fedorov
shift takes a special place among the variety of spin-orbital interaction phenomena. It exhibits as
a polarization-dependent transverse light shift usually observed in specular scattering of light at
interfaces with anisotropic materials. Nevertheless, the effect of the polarization mixing caused by
anisotropy on the Imbert-Fedorov shift is commonly underestimated. In this work, we demonstrate
that polarization mixing contribution cannot be ignored for a broad range of optical systems.
In particular, we show the dominant influence of the mixing term over the standard one for the
polarized optical beam incident at a quarter-wave plate within the paraxial approximation. Moreover,
our study reveals a novel contribution with extraordinary polarization dependence not observable
within the simplified approach. We believe that these results advance the understanding of photonic
spin Hall effect and open new opportunities for spin-dependent optical phenomena.

Keywords: photonic spin Hall effect; Imbert-Fedorov shift; polarization mixing; anisotropy;
quarter-wave plate; Gaussian beam

1. Introduction

Light, as well as mechanical objects, possesses three fundamental constants of motion associated
with special symmetry conditions (namely, homogeneity of time, homogeneity and isotropy of space)
and commuting with the Hamiltonian under the Poisson brackets—energy, momentum, and angular
momentum [1]. Energy of light is the most commonly estimated value discovered in the modern era
of photodiodes, phototransistors, and solar cells through the photoelectric effect. Light momentum
associated with the Poynting vector can be transferred to the surface under illumination resulting in
radiation pressure that was predicted by J. C. Maxwell [2], and firstly demonstrated by P. Lebedev [3]
and independently by E. Nichols and G. Hull [4] in 1901. The first insights on angular momentum of
light were conducted by J. Poynting in 1909 [5], who had drawn a parallel between a revolving shaft
and a circularly polarized optical beam. However, the real splash of interest to optical angular
momentum was followed by L. Allen et al. [6] discovering the orbital angular momentum for
Laguerre-Gaussian beams. For paraxial optical beams, the total angular momentum represents the sum
of two contributions—the spin and orbital parts. Spin-orbital interactions of light lead to a number of
phenomena and applications including spin-dependent effects such as optical beam shifts and spin-Hall
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effects in inhomogeneous media and at optical interfaces [7], spin-controlled light manipulation using
anisotropic and chiral structures as converters and generators [8], robust spin-directional coupling
resulting in the transverse [7,9,10] and longitudinal [11] spin angular momentum of the surface
plasmon-polariton.

Another appealing feature related to spin-orbit interactions is the shifts of optical beams. Here,
we focus on the ‘Imbert-Fedorov’ (IF) shifts meaning that the planes of incident and reflected or
transmitted light beams differ. This kind of a transverse shift was theoretically predicted by F. Fedorov
in 1955 [12] and experimentally observed by C. Imbert in 1972 [13]. Complete theoretical description
of reflection and refraction of a Gaussian beam at the interface between two media obeying the total
angular momentum conservation was proposed by K. Bliokh and Y. Bliokh [14] and then experimentally
verified by O. Hosten and P. Kwiat via the quantum week measurements concept in 2008 [15].
Generally, IF shifts could be observed for any polarization of incident light. However, the most
attractive case, called ‘photonic spin Hall effect’ (PSHE), is observed under circularly polarized beam
illumination. PSHE may offer potential applications in various spin-dependent optical components
including beam splitters [16,17] and surface sensing [18,19]. The PSHE enhancement was demonstrated
for different anisotropic materials and structures including uniaxial crystals [20,21], polarizers [22],
polymer films [23], liquid crystals [24], metasurfaces [16,25–28], hyperbolic metamaterials [29–31], etc.

Nevertheless, despite a plethora of works regarding IF shifts and PSHE with different structures
and interfaces, the influence of anisotropy on the PSHE has not been studied consistently. It is
well-known that an anisotropic medium leads to polarization mixing (PM) between TE (s) and TM
(p) polarizations resulting in non-zero cross-polarization TE-TM Fresnel coefficients. Thus, the total
Fresnel matrix F̂a demonstrates both conventional purely polarized TE and TM contributions f a

ss and
f a
pp, and off-diagonal polarization mixing terms f a

sp and f a
ps:

F̂a
0 (ϑ, ka) =

(
f a
pp f a

ps
f a
sp f a

ss

)
. (1)

Here, f a
ij are the reflection (transmission) amplitudes, where the first and second indices mean

the polarization of incident and reflected (transmitted) waves, respectively. Index a = r, t denotes the
reflected and transmitted beam, respectively. The detailed derivation procedure of Fresnel coefficients
is provided in Appendix A. Obviously, the PM terms are zero ( f a

sp = f a
ps = 0) for the case, when the

optical axis of the uniaxial crystal lies in the plane of the interface parallel or perpendicular to the
plane of incidence of a plane wave (see Figure 2). However, even in this simple case, the optical beam
formed by a set of different plane waves with slightly different wavevectors ka and angles of incidence
ϑ, possesses the PM contribution. To the best of our knowledge, most of the studies about IF shifts
and PSHE in anisotropic systems have not taken the PM terms into accounts and missed an additional
contribution to PSHE, which may be significant for some systems.

In this work, for the first time, we derive the analytical formulas for linear and angular IF shifts
of light beams in paraxial approximation revealing an additional contribution to IF shift appeared
due to polarization mixing. We demonstrate the cases whereas the PM terms dominate over the
conventional ones resulting in opposite physical effects. For instance, the IF shift to the left according
to standard definition could be indeed the shift to the right by taking into account the PM terms.
Finally, we analyze the dependence of the PM contribution on the anisotropy degree. We believe these
results will complement the modern theory of optical beam shifts and will significantly enrich their
application areas.

2. Account on Polarization Mixing Contribution

We follow the theoretical formalism developed in Ref. [32] for calculation of linear and angular IF
shifts by introducing the Fresnel matrix (1) taking into account the off-diagonal PM terms. We derive
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the Fresnel tensor relating the incident |E0) and secondary
∣∣Ẽa) = F̂a |E0) fields in the beam

coordinate frame:

F̂a =

(
f a
pp − 2 f a

spν cot ϑ f a
sp − ν cot ϑ( f a

ss − f a
pp)

f a
sp − ν cot ϑ( f a

ss − f a
pp) f a

ss + 2 f a
spν cot ϑ

)
, (2)

where ν specifies the transverse deflection of non-central wavevectors from the incident plane.
The derivation procedure of Fresnel’s tensor (2) is provided in Appendix A. It is important to note that
additional terms proportional to mixing coefficients fsp = fps result in additional contributions to the
IF shifts.

In the following, we set the optical axis in the plane of interface and designate the angle between
the optical axis and the beam incidence plane as β. Furthermore, we consider two of the most critical
cases (Figure 1):

(1) β = 0, π/2 – propagation along or across optical axis;

(2) β = ±π/4 – maximum mixing occurs.

optical axis, case (1) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

P

optical axis, case (2)

Figure 1. Geometry of the problem demonstrating schematically the beam incident on uniaxial
medium at angle ϑ, when optical axis is parallel (case 1) or rotated by an angle π/4 with respect to
beam incidence plane (case 2). Y and P show the linear and angular IF shifts, respectively.

The transverse linear (Ya) and angular (Pa) beam shifts are calculated as the expectation values of
the coordinate r̂ = i∂/∂k and momentum p̂ = k operators, respectively:

Ya =

〈
Ẽa
∣∣∣∣ i

∂

∂ka
Y

∣∣∣∣ Ẽa
〉
(Na)−1 , (3)

Pa =
〈
Ẽa
∣∣ ka

Y

∣∣ Ẽa〉 (Na)−1 , (4)

where ka
Y = νk is the out-of-plane wavevector component of a plane wave in the beam coordinate

frame, k = 2π/λ is the wavevector in free space and Na =
〈
Ẽa|Ẽa〉 is the normalization factor.

Normalization factors for cases 1 and 2 are:

Na
1 =

(
| f a

pp|2 +
1
2
| f̃ a

sp|2 − cot ϑ · <[ f̃ a∗
sp ( f a

pp + f a
ss)]

)
|ex|2+(

| f a
ss|2 +

1
2
| f̃ a

sp|2 + cot ϑ · <[ f̃ a∗
sp ( f a

pp + f a
ss)]

)
|ey|2,

(5)

Na
2 =

(
| f a

pp|2 + | f̃ a
sp|2
)
|ex|2 +

(
| f a

ss|2 + | f̃ a
sp|2
)
|ey|2+

S2 · <[ f̃ a
sp f a∗

pp + f̃ a∗
sp f a

ss]− S3 · =[ f̃ a
sp f a∗

pp + f̃ a∗
sp f a

ss].
(6)
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Hereinafter, <[ ] and =[ ] mean the real and imaginary parts, respectively; (ex, ey) are the unit
polarization vectors of the incident field; S1 = |ex|2 − |ey|2, S2 = 2<[exe∗y ] and S3 = −2=[exe∗y ] are the
corresponding Stokes parameters [33], and f̃ a

sp = (∂ f a
sp/∂ν)|ν=0.

Finally, we derive the standard (Y0, P0) and total (Ytot, Ptot) IF shifts without and with taking into
account the PM term (YPM, PPM) for both cases. The linear IF shifts are the following:

Y(1,2)
0 · k = 1

Na
1,2

cot ϑ
2

(
−S2 · =

[
f a
pp f a∗

ss − f a∗
pp f a

ss

]
− S3 · <

[
| f a

pp|2 + | f a
ss|2 − f a

pp f a∗
ss − f a∗

pp f a
ss

])
, (7)

Y(1)
PM · k = 1

Na
1

1
2

(
S2 · <

[
f̃ a
sp f a∗

pp − f̃ a∗
sp f a

ss

]
+ S3 · =

[
f̃ a
sp f a∗

pp − f̃ a∗
sp f a

ss

])
, (8)

Y(2)
PM · k = 1

Na
2

cot ϑ
2

(
−S1 · =

[
f̃ a
sp( f a

pp + f a
ss)
]
− 4S3 · | f̃ a

sp|2 − 2=
[

f̃ a∗
sp ( f a

pp − f a
ss)
])

, (9)

Y(1,2)
tot = Y1,2

0 + Y1,2
PM. (10)

The angular IF shifts are the following:

P(1,2)
0 · κ2

k = 1
Na

1,2

cot ϑ
2 S2

(
| f a

pp|2 − | f a
ss|2
)

, (11)

P(1)
PM ·

κ2

k = 1
Na

1

1
2

(
S2 · <

[
f̃ a
sp f a∗

pp + f̃ a∗
sp f a

ss

]
− S3 · =

[
f̃ a
sp f a∗

pp + f̃ a∗
sp f a

ss

])
, (12)

P(2)
PM ·

κ2

k = − 1
Na

2
cot ϑ S1 <

[
f̃ a∗
sp ( f a

pp + f a
ss)
]

, (13)

P(1,2)
tot = P1,2

0 + P1,2
PM, (14)

where κ = kw0/
√

2 and w0 is the beam waist. One should notice that Equations (7)–(14) are written in
the dimensionless form in order to exclude the influence of the incident wavelength for linear and the
beam waist for angular IF shifts.

3. Results and Discussion

One should notice that the thickness of the uniaxial crystal slab affects the IF shifts in a usual
well-understood way via phase delay and optical path. Here, we demonstrate the impact of the PM
contribution on linear and angular IF shifts for a conventional quarter-wave plate (QWP), which
is a typical birefringent slab used in optical beam shifts investigation. We assume the ordinary
and extraordinary refractive indices are equal to no = 1.95 and ne = 2.05, respectively, giving the
anisotropy degree:

∆n =
|ne − no|

0.5(|ne|+ |no|)
= 0.05. (15)

The plate thickness is δz = 2.5λ representing a standard zero-order QWP. Following the previous
discussion we consider two cases when the optical axis of the QWP and the beam incidence plane
are (1) mutually parallel and (2) at 45◦ to each other. Finally, we analyze the dependence of PM
contribution on the anisotropy degree and demonstrate the importance of our approach on cases where
the total result completely contradicts the one obtained without accounting for PM terms.

3.1. Parallel Optical Axis: β = 0◦

In this part, we assume the optical axis of the QWP and in-plane wavevector of the Gaussian
beam central wave are parallel. Figure 2 presents the main result of this work and shows the IF shifts
with and without taking into account the PM contribution for the linear 45◦ (S2 = 1) and right-handed
circular (S3 = 1) polarizations of the incident Gaussian beam.

The central plane wave does not obviously exhibit the PM contribution (Figure 2a). All other plane
waves composing the beam possess extremely small but non-zero PM terms. In the co-polarized case,
the integral contribution from the constituent plane waves (except the central one) of the beam is zero
due to the mirror symmetry of the problem with respect to the central plane wave. However, it becomes
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non-zero in the cross-polarized case resulting in additional contributions to linear Y(1)
PM [Equation (8)]

and angular P(1)
PM [Equation (12)] IF shifts, shown by the dashed green lines in Figure 2b–i. Surprisingly,

these additional PM contributions could be comparable with linear Y(1)
0 [Equation (7)] and angular

P(1)
0 [Equation (11)] IF shifts following conventional definition [32], shown by dashed cyan lines in

Figure 2b–g. The significant impact of the PM contribution is especially pronounced, when total linear
Y(1)

tot [Equation (10)] and angular P(1)
tot [Equation (14)] IF shifts, shown by blue lines in Figure 2b–i,

acquire the opposite sign with respect to the standard IF shifts (green regions in Figure 2b,d–g).
It means that one will observe the transverse shifts to the right instead of the shifts to the left predicted
by the imperfect standard approach or vice versa. Finally, the PM term explains the non-zero angular
IF shift under circularly polarized beam illumination impossible under the conventional approach [32],
see Figure 2h,i.

The difference between the total and standard linear IF shifts is more pronounced in the reflection
configuration. The maximum values of the total linear IF shifts reach |Y(1)

tot · k| ≈ 0.4 for the QWP

under consideration. The total angular IF shifts in the same case reach |P(1)
tot · κ2/k| ≈ 0.5 and ≈ 0.2 for

linear 45◦ and circular polarizations, respectively. The absolute values of the total linear IF shifts will
be enlarged with stronger anisotropy and bigger thickness of uniaxial medium, while the absolute
value of angular IF shift is proportional to beam variance in k-space [34].
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Figure 2. Case 1: the optical axis of the QWP is parallel to beam incidence plane (β = 0◦).
(a) co-polarized (blue and red lines) and cross-polarized (dashed green line) transmittances (Tij = | f t

ij|
2)

for a central plane wave. (b–i) linear (b–e) and angular (f–i) IF shifts in reflection (b,f,d,h) and
transmission (c,g,e,i) configurations for the linear at 45◦ (b,c,f,g) and right-handed circular (d,e,h,i)
polarization characterized by the Stokes parameters S2 = 1 and S3 = 1, respectively. Dashed cyan and
solid blue lines correspond to the standard (Equation (7) for linear and Equation (11) for angular) and
total (Equation (10) for linear and Equation (14) for angular) IF shifts, respectively. The total one takes
into account the PM contribution (Equation (8) for linear and Equation (12) for angular) shown by the
dashed green line. The green regions in subfigures (b,d,e,f,g) mark the areas, where total and standard
IF shifts have opposite directions.

Finally, we compare the PM and standard contributions to the IF shift by introducing the PM factor:

ξ =
|YPM|

|Y0|+ |YPM|
. (16)
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This factor shows the PM effect with respect to the standard one passing from ξ = 0 for the
negligible PM contribution to ξ = 1 for the case when PM contribution is determinant. Figure 3
demonstrates the PM factor angular dependence for linear and angular IF shifts with linear 45◦

polarization. One can notice that in the reflection configuration for both linear and angular IF shifts
is ξ & 0.5 for almost any incident angle, while in the transmission configuration it is pronounced
mainly for angular IF shifts and for linear IF shifts at large angles of incidence. The results explicitly
demonstrate that PM contribution cannot be neglected.

� (rad)

ξ

ξ Y

ξ P

a) b)

� (rad)

Figure 3. Polarization mixing factor for linear (magenta line) and angular (orange line) in reflection (a)
and transmission (b) configurations. Here, we consider case (1) and assume the linear 45◦ polarization
of a Gaussian beam. Here, ξY and ξP correspond to PM factors for the linear and angular IF shifts,
respectively.

3.2. Rotated Optical Axis: β = 45◦

In this part, we assume the optical axis of the QWP is rotated by angle β = π/4 with respect to the
in-plane wavevector of the Gaussian beam central wave. Figure 4 shows the IF shifts with and without
taking into account the PM contribution for horizontal (S1 = 1), linear 45◦ (S2 = 1), and right-handed
circular (S3 = 1) polarizations of the incident Gaussian beam.
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Figure 4. Case 2: the optical axis of the QWP is rotated at β = 45◦ with respect to beam incidence
plane, see insert in (b). (a–j) linear (a,b,e,f,i,j) and angular (c,d,g,h) IF shifts in reflection (a,c,e,g,i) and
transmission (b,d,f,h,j) configurations for the horizontal (a–d), linear at 45◦ (e–h) and right-handed
circular (i,j) polarizations characterized by the Stokes parameters S1 = 1, S2 = 1 and S3 = 1,
respectively. Dashed cyan and solid blue lines correspond to the standard (Equation (7) for linear
and Equation (11) for angular) and total (Equation (10) for linear and Equation (14) for angular) IF
shifts, respectively. The total one takes into account the PM contribution (Equation (9) for linear and
Equation (13) for angular) shown by the dashed green line. (k,l) co-polarized (blue and red lines) and
cross-polarized (dashed green line) (k) reflectances (Rij = | f r

ij|
2) and (l) transmittances (Tij = | f t

ij|
2) for

a central plane wave.
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In this case, the off-diagonal terms of Fresnel matrix emerge even for the central plane wave
(Figure 4k,l). PM brings novel contributions with unconventional polarization dependences. Namely,
linear Y(2)

tot [Equation (10)] and angular P(2)
tot [Equation (14)] IF shifts are determined solely by PM

contributions Y(2)
PM, P(2)

PM [Equations (9) and (13)] under S1 = 1 polarization (Figure 4a–d) and by

standard contribution Y(2)
0 , P(2)

0 [Equations (7) and (11)] under S2 = 1 polarization (Figure 4e–h).
It is important to note that the contribution proportional to S1 is usually associated not with the
Imbert-Fedorov, but rather with the Goos-Hänchen shift. However, a strict analysis shows that even
an IF shift is non-zero under this condition due to the polarization mixing in sharp contrast to the
standard approach. For S3 = 1 polarization, the total IF shift is mainly defined by the PM contribution
(Figure 4i,j).

3.3. Dependence on Anisotropy Degree

A comparison between case 1 (β = 0◦, Figure 2) and case 2 (β = 45◦, Figure 4) shows that both
linear and angular IF shifts for case 2 are a few times larger than those for case 1 in both reflection
and transmission configurations. When the optical axis is out of the incident plane, both TE and
TM polarization components contribute to increase of the IF shift due to off-diagonal components of
the permittivity tensor. This fact can be used for the enhancement of PSHE for the same anisotropy
degree ∆n.

In addition, we study the dependence of the linear IF shift on the anisotropy degree of an uniaxial
medium. Figure 5 shows the standard (Equation (7)) and total (Equation (10)) IF shifts for different
anisotropy degrees ∆n = 0.01, 0.05 and 0.1. It is well-known that a linear IF shift is proportional to
the slab thickness and anisotropy degree. We consider the same thickness δz = 2.5λ, so only case of
∆n = 0.05 corresponds to QWP. Therefore, in this case, the IF shift depends only on the anisotropy
degree that is manifested in Figure 5. One can see that the PM contribution is almost negligible for the
weak anisotropy case (Figure 5c), while it is comparable with the standard contribution for ∆n = 0.05
(Figure 5b) and it is dominant for large values of the anisotropy degree (Figure 5a).
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Figure 5. The dependence of the standard (cyan dashed line) and total (solid blue line) linear IF shifts
on different anisotropy degrees: (a) ∆n = 0.1, (b) ∆n = 0.05 and (c) ∆n = 0.01. We consider the case (1)
in transmission configuration, the slab thickness is δz = 2.5λ and right-handed circular polarization.

3.4. Simulated Field Patterns

We performed the full-wave numerical simulations of a Gaussian beam incident on a quarter-wave
plate. The details of this numerical simulation are given in Appendix B. In order to support our
theoretical results introduced above, we consider a specific situation corresponding to case 1 with
linear 45◦ polarization of the incident beam in the reflection configuration (Figure 2b). We consider two
important points explicitly confirming previous investigations and the self-consistence of the developed
analytical approach: (i) ϑ = 0.65 and (ii) ϑ = 0.9 radians (Figure 2b). The first case corresponds to
the perceptible transverse linear shift of the reflected optical beam to the right according to the
PM-modified theory, while the standard linear IF shift should be zero. Figure 6a,b show the electric
field distribution in the vicinity of the incident and reflected beam centers, respectively, thus confirming
a non-zero IF shift to the right in good agreement with the analytical results. The second case discovers
a near-zero transverse shift of the optical beam, while the standard approach exhibits a linear IF shift
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to the left. Figure 6c,d apparently demonstrate the coincidence with the predicted (Figure 6b) by
Euations (7), (8) and (10) near-zero IF shift. In addition to the Imbert-Fedorov shift, one can also notice
a pronounced Goos-Hänchen shift in Figure 6d.

 

 

 

a)

b) IF
shift

 

 

 

c)

d)
θ = 0.65

θ = 0.65

θ = 0.9

θ = 0.9

E max

E min

Figure 6. Simulated field distributions of the (a,c) incident and (b,d) reflected beam center at the
angle of incidence (a,b) ϑ = 0.65 and (c,d) ϑ = 0.9 radians. Here, we consider the beam and material
parameters presented in Figure 2b and working region 500× 500 nm2 within the uniaxial slab interface
at the incident wavelength λ = 633 nm. The IF shift represents the lateral distance between the incident
and reflected beam centers, and is 160 nm for ϑ = 0.65 and 65 nm for ϑ = 0.9 radians, respectively.
Pronounced Goos-Hänchen shift of 150 nm occurs for (d).

4. Conclusions

In summary, we have investigated the influence of medium anisotropy on the IF shifts and the
PSHE of the polarized optical beams within the paraxial approximation in reflection and transmission.
We have shown that the polarization mixing caused by anisotropy brings novel essential contribution
with unconventional polarization dependence. The polarization-mixing term can be comparable or
even more prominent than standard pure polarization term discovering new possibilities for the
transverse optical beam shifts.

It is important to note that the considered cases are typical for most of natural uniaxial
crystals and commercial wave plates while their thickness is hundreds of times bigger. Thus, the
polarization-mixing contribution effect must be taken into account for major part of research devoted
to optical beam shifts and spin-orbital interaction phenomena. One should take into account that for
generic non-paraxial optical fields, the discussed effect of the polarization mixing can be even more
pronounced. Apart from natural anisotropic materials, metamaterials can exhibit large anisotropy and
are the key to significantly enhancing the PSHE. Our findings may provide further understanding for
the enhancement of PSHE on anisotropic materials and structures, and could be extended for biaxial
and hyperbolic media actively attracting attention in quantum physics.
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PSHE Photonic spin Hall effect
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QWP Quarter-wave plate

Appendix A. Derivation of Fresnel Coefficients for Uniaxial Slab

Any anisotropic slab can be characterized by four reflection (rss, rsp, rps, and rpp) and four
transmission (tss, tsp, tps, and tpp) coefficients forming the total Fresnel matrix (1). The first and second
indices mean the polarization of incident and reflected/transmitted waves, respectively. The reflection
and transmission coefficients for the beam plane-wave components were obtained in analytical form
following the derivations given in Ref. [35] for an uniaxial plate surrounded by vacuum for simplicity.
We assume that z- and x-axis are perpendicular and parallel to the slab interface, respectively, and both
axes are directed along the corresponding components of the wave vector of an incident plane wave k.
We also introduce the angle φ between x-axis and optical axis lying in the plane of the slab interface.

The Fresnel coefficients for both polarizations can be derived from the boundary conditions for
electromagnetic fields at uniaxial slab interface using the following compact matrix equations [35]

ts = L̂rs,

tp = L̂rp.
(A1)

Here, rs, rp, ts and tp are column vectors expressed through reflection and transmission coefficients
as follows

rs =


rsp cos ϑ

1 + rss

−k rsp

k (1− rss) cos ϑ

 , ts =


tsp cos ϑ

tss

k tsp

k tss cos ϑ

 ,

rp =


(1 + rpp) cos ϑ

rps

k (1− rpp)

−k rps cos ϑ

 , tp =


tpp cos ϑ

tps

k tpp

k tps cos ϑ

 ,

(A2)

where k = 2π/λ is the wavevector in free space and ϑ is the angle of incidence. The 4× 4 layer matrix
L̂ depends on the ordinary (no) and extraordinary (no) refractive indices and the thickness (δz) of a
uniaxial slab. It could be derived in terms of interface mode matrix M̂ and phase matrix P̂ as follows

L̂ = M̂P̂M̂−1. (A3)
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The matrix M̂ is derived from the boundary conditions, while the matrix P̂ accounts for the wave
propagation within the slab:

M̂ =


−qo sin φ qo sin φ q2

o cos φ q2
o cos φ

qo cos φ −qo cos φ k2
o sin φ k2

o sin φ

−k2
o sin φ −k2

o sin φ k2
oqe cos φ −k2

oqe cos φ

q2
o cos φ q2

o cos φ k2
oqe sin φ −k2

oqe sin φ

 ,

P̂ =


exp(iδzqo) 0 0 0

0 exp(−iδzqo) 0 0
0 0 exp(iδzqe) 0
0 0 0 exp(−iδzqe)

 ,

(A4)

where ko = nok, qo = k
√

n2
o − sin2 ϑ and qe = k

√
n2

e − sin2 ϑ (n2
e − b2 (n2

e − n2
o)) /n2

o are z-components
of ordinary and extraordinary wave vectors in the slab, respectively. Note that M̂-matrix and column
vectors (rs, rp, ts and tp) elements have different dimensionality, but complement each other folding
complete boundary conditions. In this notation, L̂ becomes a transfer matrix not in the basis of ordinary
and extraordinary plane waves, but rather in the basis of their certain linear combination.

Then, we finally find the Fresnel coefficients by solving the system of linear Equations (A1),
which is equivalent to eight equations for eight Fresnel coefficients – tss, tsp, tps, tpp, rss, rsp, rps,
and rpp. In our case, when optical axis is parallel to slab interface, we obtain explicitly the symmetric
relations tps = tsp and rps = rsp resulting in six independent Fresnel coefficients that constitute the
total Fresnel matrix (1). Some example plots for reflectances Rij = | f r

ij|2 and transmittances Tij = | f t
ij|2

of a beam central plane wave are shown as functions of incidence angle ϑ in Figure 2a (note that in this
case Rss = 1− Tss and Rpp = 1− Tpp, hence reflectances are not marked) and Figure 4k–l in the main
text for specific no, ne, φ, k, and δz.

The Fresnel tensor relating the incident |E0) and secondary |Ẽa) = F̂a |E0) fields in the beam
coordinate frame has the form

F̂a = Û† F̂a
0 Û, (A5)

where F̂a
0 (ϑ, ka) is the Fresnel matrix for the uniaxial crystal slab (1), and Û(ϑ, ka) is the rotation matrix

from beam coordinate frame to the basis of s and p modes represented in paraxial approximation [32] as

Û(ϑ, ka) =

(
1 ν cot ϑ

−ν cot ϑ 1

)
, (A6)

where ν is the transverse deflection of a non-central wave vector of a certain plane wave from the
plane of incidence corresponding to the central plane wave of a beam. The explicit form of a Fresnel
tensor (2) is derived by following Euations (A5) and (A6) and neglecting O(ν2) terms.

Appendix B. Numerical Simulation

The numerical simulations were conducted using the finite element method (COMSOL
Multiphysics). We used a paraxial Gaussian beam with beam parameter κ = π

√
2 corresponding the

the beam waist equal to the incident wavelength. Then, we simulated oblique incidence of a Gaussian
beam on the uniaxial slab in a 3D model surrounded by perfectly matched layer box at the typical
optical wavelength λ = 633 nm. The material parameters and beam polarization correspond to ones
considered in Section 3. First, we have calculated the case without slab to obtain the incident field.
Then, we have simulated the beam incidence on the slab giving the total field consisting of incident and
reflected fields. The reflected field was obtained by subtracting the incident field calculated without
slab at the first step from the total field calculated with slab.
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