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Abstract: We present an extension of the polarization coherence theorem (PCT) for the case in
which two qubits play similarly important roles. The standard version of the PCT: V2 +D2 = P2,
involves three measures, visibility V , distinguishability D, and the degree of polarization P , all of
which refer to a single qubit, regardless of its physical realization. This is also the case with the
inequality that is implied by the PCT: V2 +D2 ≤ 1, which was originally derived in an attempt to
quantify Bohr’s complementarity principle. We show that all of these constraints hold true, no matter
how the involved qubits are physically realized, either as quantum or else as classical objects.
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1. Introduction

Somewhat prematurely perhaps, a “second quantum revolution” has already been announced
while research institutions and industry are still making efforts to develop the most basic quantum
technologies. Alongside other platforms, optics and photonics are expected to play a key role in this
enterprise. Technological breakthroughs are widely expected, based on quantum properties, such as
coherent state superposition, entanglement, and measurement collapses. It is rather ironic that precisely
these three quantum properties have been identified and highlighted by the optics community [1].
Indeed, despite the widely held identification of those properties as unique quantum ones, they are
also exhibited by classical electromagnetic fields [2]. For example, a polarized plane wave can be
represented as the coherent superposition of, say, horizontally and vertically polarized states [3].
Entanglement may involve two or more degrees of freedom (DOFs) that are carried along by classical
light beams [4–10]. A polarizing beam-splitter supplemented with a couple of birefringent plates
constitute the perfect analog of a Stern–Gerlach device, giving rise to measurement collapses [11].
Even so, it is not our purpose here to deny the possibility of so-called quantum advantages. Rather,
we aim at sharpening the identification of those resources that could allow us to implement these
advantages. It might be the case that what is really exploited by some quantum algorithms, quantum
protocols, and the like, are, in fact, features that are not exclusively tied to quantum phenomena, but to
the linear algebraic formalism used to describe these phenomena. In that case, we could widen the
spectrum of physical tools that can be employed for reaching quantum advantage. This spectrum
might include physical phenomena and techniques that belong to the classical domain. The sweet
spot of such a development would be a stage at which one has reached quantum advantage without
quantum fragility. Thus, it seems worthwhile to strip off the quantum or classical rhetoric that often
accompany our mathematical description of physical phenomena and so lay bare the essential features
that we are actually addressing.

In this work, we address a feature that is often referred to as a genuinely quantum one:
wave-particle duality. We will show that what recent, quantitative approaches to wave-particle duality
in fact engage, is a couple of DOFs. As long as the latter can be ascribed to both quantum and
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classical entities, we can exhibit wave-particle duality by employing quantum as well as classical
tools, e.g., photons and classical light beams. Perhaps considering a mechanical-electrical analogy
helps to clarify what we mean. The said analogy applies when an electric circuit and a mechanical
system obey one and the same differential equation, e.g., the one established in the textbook cases of
an LCR circuit and a damped mass-spring system. It is merely a matter of convention to say that one
system simulates the other, so that, by means of, say, the time-varying position, one can simulate the
time-varying electric current. Suppose next that we design some protocol based on properties of the
common differential equation governing the two cases, the mechanical and the electrical. We could
implement this protocol either with mechanical or else with electrical tools. Even if we mentally
link the differential equation with an electric current and we imagine this current as being made of
electrons, i.e., spin-1/2, charged particles that interact with an ion-lattice, nothing of this is captured
by the differential equation. Something similar could happen with those features that exclusively stem
from the linear algebraic structure that is used to describe some quantum phenomena. Even though
we keep connecting said algebraic structure with the phenomena it is supposed to describe, the linear
structure by itself could also describe phenomena of a very different nature, as it occurs with the
mechanical-electrical analogy.

We will illustrate the foregoing state of affairs by first addressing two recent results about
wave-particle duality, which have been couched in quantum-mechanical terms. As we shall see,
the very same results hold true when dealing with classical light beams. That is, what we really engage
here is a linear algebraic structure that underlies the description of some properties that are shared
by quantum and classical light. Each of the two examples incorporates a feature hitherto neglected
when dealing with wave-particle duality. In one case, the new feature is polarization [12] and in the
other case it is entanglement [13]. We should stress that polarization can be defined whenever we deal
with a two-state system and entanglement whenever we deal with two vector spaces, out of which
we construct their tensor product space. The corresponding physical realization might be optical or
something else.

We will also present an extension of the polarization coherence theorem (PCT) [14–16] to the case in
which two qubits are engaged. Besides having a richer structure than the standard PCT, this extension
makes clear how many DOFs are actually engaged in one and the other case. Here, again, it is the
linear algebraic structure what really matters, irrespective of its physical realization, which could be
classical or quantal.

2. Two-Slit Interference and Wave-Particle Duality

A general setting for addressing wave-particle duality is the Young-type, two-beam interference
setup that is schematically shown in Figure 1. In the quantum context, this setup is used to
exhibit wave and particle properties. In accordance with our mental pictures of particles and
waves, we put which-path information in the set of particle-like features, and the capability to
produce an interferometric pattern in the set of wave-like features. One set is complementary to
the other, which means that, the more features from one set show up, the less show up from the other.
Complementarity can be quantified by defining measurable quantities that we naturally associate
with the features we have in mind. In the Young-type scenario, there are three locations, ra, rb, and rc,
at which we perform measurements (see Figure 1). These measurements essentially consist on some
counting process (of particles, excitations, etc.). In the quantum case, counting leads to probability
measurements, and in the classical case it leads to intensity measurements. To fix ideas, let us suppose
that we measure intensities at the three locations. We get Ia and Ib at the two fixed locations, ra and rb,
respectively, and Ic at the variable location rc on the detection screen.
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Figure 1. Young setup.

Now, the two-path alternative of the Young-type setup can be mathematically encoded in terms of
a two-dimensional vector space, whose members can be written as |ψ〉 = ca |ϕa〉+ cb |ϕb〉. Here, and in
what follows, the Dirac notation does not necessarily refer to a quantum description. Indeed, |ϕa〉 may
denote just the a-beam, a concept that can be both quantal (photon beam) and classical (optical beam).
For the sake of concreteness, let us take |ψ〉 as describing the path-state at the two-slit screen. When this
state propagates towards the detection screen, the coefficients ca and cb change, being modified by
propagation factors. The path difference is what matters, i.e., the difference between |rc − ra| and
|rc − rb|. Denoting this difference by z, the intensity at point rc on the detection screen will be of
the form

Ic = Ia + Ib + 2|〈c∗a cb〉| cos(arg〈c∗a cb〉+ z), (1)

with Ik = 〈|c|2k〉, k = a, b, and with the angular brackets denoting statistical averages. By changing
the detection point rc, viz. z, we display the periodic variation of Ic that makes up the interferometric
pattern. We interpret this pattern in terms of constructive and destructive interferences, something
attributable to a wave-like phenomenon. The difference between Ia and Ib gives us instead which-path
information, something that is attributable to a particle-like phenomenon.

In order to give quantitative support to our interpretations, we first construct a 2× 2 matrix M
with elements 〈c∗i cj〉, where i, j ∈ {a, b}. We next define distinguishability (D) and visibility (V) by

D :=
|Ia − Ib|
Ia + Ib

≡ |Maa −Mbb|
Maa + Mbb

, V :=
Imax
c − Imin

c
Imax
c + Imin

c
≡ 2|Mab|

Maa + Mbb
. (2)

We see that D and V are defined in terms of a single DOF that is associated with a two-level
system, a qubit in modern parlance. This DOF can be physically realized in different ways: as a
two-path alternative, as a horizontally/vertically polarized state, as a spin up/down state, as a
two-state Josephson junction, etc. The hermitian matrix M gives rise to a third definition, which is
similar to those of D and V . We define the “degree of polarization” in terms of the eigenvalues λ± of
M, as follows:

P :=
|λ+ − λ−|
λ+ + λ−

. (3)

Using λ± = 2−1
(
(Maa + Mbb)±

√
(Maa −Mbb)2 + 4|Mab|2

)
, we obtain

P2 ≡ (Maa −Mbb)
2

(Maa + Mbb)2 +
4|Mab|2

(Maa + Mbb)2 . (4)
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On considering (2) and (4), we get the PCT:

D2 + V2 = P2. (5)

From P ≤ 1, it follows the constraint D2 + V2 ≤ 1, which was established by different authors
(see [14,17–19] and references therein), before the PCT was known [14]. Equation (5), in turn, has also
been subsequently derived in different ways and with various backgrounds. Correspondingly, people
have used different definitions of distinguishability. For instance, it has been occasionally called
“predictability” by other authors [17]. The meaning we give here to D should be unambiguous, as it is
fixed by its mathematical definition. The same holds for V and P . In what follows, we focus on two
recent results that involve these quantities.

2.1. Complementarity and the Degree of Polarization

In Ref. [12], the PCT is obtained by considering two orthogonal polarization modes
{|ψx〉 , |ψy〉}, where |ψx〉 = |1〉x |0〉y represents a single-photon polarized along direction x,
and similarly |ψy〉 = |0〉x |1〉y. A general, possibly mixed polarization state can be represented
by a density matrix ρ. This matrix can be written in the form [20]

ρ = γρc + (1− γ)ρic, (6)

where ρc = |ψc〉〈ψc|, with |ψc〉 = cx |ψx〉 + cy |ψy〉 being a coherent superposition,
while ρic = |cx|2|ψx〉〈ψx|+ |cy|2|ψy〉〈ψy| contributes an incoherent mixture, and 0 ≤ γ ≤ 1. Given a
density matrix ρ = (ρij), one can always decompose it as in Equation (6), by setting γ = |ρ12|/

√
ρ11ρ22.

In Ref. [12], the PCT is re-derived and written in the form

d2
0(r1, r2) + v2(r) = p2(r0). (7)

The derivation rests upon the following results [12]:

p(r0) =
{

1− 4|cx|2|cy|2(1− γ2)
}1/2

(8)

d0(r1, r2) =
∣∣∣|cx|2 − |cy|2

∣∣∣ (9)

v(r) = 2|cx||cy|γ, (10)

with |cx|2 + |cy|2 = 1. There is a lot of physical background in Ref. [12], of which we want to
point out only some few features. Two-point Stokes parameters are introduced as Sj(x1, x2) =

Tr[ρÊ(−)(x1)σjÊ(+)(x2)], with j = 0, . . . , 3. Here, σ0 is the 2× 2 identity matrix, σ1,2,3 are the Pauli
matrices and Ê(±)(x) are the positive and negative frequency parts of the electric field operator.
The quantum parameters Sj(x1, x2) are analogs of classical, two-point Stokes parameters [21–24].
The one-point, standard Stokes parameters are given by Sj(x) = Sj(x, x). “Intensity distinguishability”
is similarly defined to D in Equation (2), substituting Ia → S0(r1) and Ib → S0(r2), whereas visibility
is expanded from being a single quantity to four similarly defined quantities, one for each
Stokes parameter. Such an approach unveils several hitherto neglected aspects of complementarity.
However, the point that we want to make here is that none of these aspects effectively enter Equation (7).
Indeed, let us write ρ of Equation (6) explicitly:

ρ =

(
|cx|2 γc∗xcy

γc∗ycx
∣∣cy
∣∣2
)

. (11)

By applying the definitions of D, V and P given in (2) and (3), with M→ ρ, we obtain d0(r1, r2),
v(r) and p(r0), as above. That is, despite all of the physical background that is supposed to underlie
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Equation (7), what this relationship is actually capable of exhibiting is no more than what is contained
in (5). The exclusive dependence of ρ on cx and cy, cf. (11), makes clear that reference to four different
locations in d0(r1, r2), v(r) and p(r0) is rather decorative than informative. Hence, experiments testing
or exploiting (5) and (7) can be equally performed with polarized single photons, polarized optical
beams, or any two-state system of whatever sort. Our interpretation, in terms of wave-particle duality,
largely depends on our mental pictures rather than on bare facts. If, for instance, our two-state system
is a polarized state, as assumed in [12,25], there are no actual paths involved and the Young-type setup
only exists in the abstract polarization space. To talk about “wave” and “particle” in this case seems
to be out of place and, yet, such a parlance would be no less supported by experimental facts than
the corresponding one that is associated to a Young, double-slit experiment conducted with electrons
or photons.

2.2. Entanglement as an Additional Coherence

Let us now turn to another recent result in which wave-particle duality has been couched in
quantum terms [13]. In this case, entanglement is addressed by writing (5) in the form [13,26]

D2 + V2 + C2 = 1, (12)

where C denotes Wooters’ concurrence [27]. Equation (12) and (5) are the same, because for pure,
bipartite states, it holds C2 + P2 = 1 [28–31]. According to [13], Equation (12) is the correct
single-particle duality restriction. This is so, because the restrictionD2 +V2 ≤ 1 allows that bothD and
V simultaneously increase or decrease, it being possible that D = V = 0. In this last case, we should
say that we have neither a particle nor a wave, while we can be dealing with, say, a detectable photon
in a state for which C = 1. Thus, concurrence provides what is missing in the constraint D2 + V2 ≤ 1.
Ref. [13] reports the experimental tests of (12) that were conducted with single photons prepared in
the state

|Ψ〉 = ca |1a〉 ⊗ |sa〉+ cb |1b〉 ⊗ |sb〉 , (13)

with |ca|2 + |cb|2 = 1. The vectors |1a,b〉 represent propagation modes and |sa,b〉 polarization modes,
with |sa〉 = |h〉 and |sb〉 = eiξ cos θ |h〉+ sin θ |v〉. Here, |h〉 and |v〉 stand for horizontally and vertically
polarized photons, respectively. Seven points lying on an octant of the VDC-sphere defined by (12)
were experimentally tested. D, V and C were expressed in terms of the control parameters R = |cb/ca|
and θ, as [13]

D =

∣∣∣∣1− R2

1 + R2

∣∣∣∣ , V =
2R| cos θ|

1 + R2 , C = 2R| sin θ|
1 + R2 . (14)

The experimental results reported in [13] closely match the theoretical expressions, including the
caseD2 + V2 = 0, for which “traditional duality” is “turned off” [13]. In such a case, the single-particle
coherence that remains active is entanglement. These results were interpreted as a manifestation of
self-interference and self-entanglement of individual quantum particles [13].

Here again, what has been effectively tested is something that can be equally well ascribed to
quantum and to classical phenomena. Indeed, the state |Ψ〉 in (13) belongs to a tensorial product
space that can be physically realized in different ways. |Ψ〉 is a two-qubit, pure state, alternatively
represented by the density matrix ρΨ = |Ψ〉〈Ψ|. By tracing over one DOF, one obtains a 2× 2, reduced
density matrix that describes the other DOF. The reduced density matrix corresponds to a mixed state,
unless the two-qubit state |Ψ〉 is a factorable one.

Hence, we can define ρ1 = Tr2 ρΨ and ρ2 = Tr1 ρΨ. Using the definitions of D and V that are
given in (2), first with M→ ρ1 and then with M→ ρ2, we obtain

D1 =
∣∣∣|ca|2 − |cb|2

∣∣∣ , V1 = 2|ca||cb|| cos θ| (15)

D2 =
∣∣∣|ca|2 + |cb|2 cos(2θ)

∣∣∣ , V2 = |cb|2| sin(2θ)| (16)
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D1 and V1 are the same as D and V in (14). As for P , using (3), we get, for both ρ1 and ρ2,

P2 = |ca|4 + |cb|4 + 2|ca|2|cb|2 cos(2θ). (17)

It should be clear that P has the same value for ρ1 and ρ2, because the two-qubit state |Ψ〉 can
be brought to the Schmidt form |Ψ〉 =

√
λ+|u(+)

a 〉 ⊗ |v
(+)
b 〉+

√
λ−|u(−)

a 〉 ⊗ |v
(−)
b 〉, with |u(±)

a 〉 and

|v(±)b 〉 orthonormal basis vectors in their respective subspaces. The eigenvalues of the reduced density
matrices, ρ1 and ρ2, are, thus, λ±, and P is defined in terms of these eigenvalues. On replacing (17) in
C2 = 1−P2, we recover the expression for C given in (14).

We can readily see that the two pairs, D1, V1 and D2, V2, satisfy Equation (12). Hence, (12) could
be tested with ρ2, as it was with ρ1. Of course, the experimental setup should be changed.
Moreover, the experiments that were reported in [13] could have been conducted with optical light
beams. The conclusions would have been the same, because all that enters in the tested results is the
interplay between two DOFs, mathematically encoded in two qubits. It would be a matter of pure
convention to say that one type of experiment simulates the other. Laying bare what we are really
addressing also has practical advantages. Because the relationships (5) and (12) are, in fact, the same,
by testing one of them, we are also testing the other. However, in order to obtain C experimentally, it is
common practice to perform two-qubit tomography. This generally requires sixteen measurements and
maximum-likelihood parameter estimation [32]. To obtain P instead, one measures the four Stokes
parameters that belong to any of the two single-qubit, reduced density matrices ρ1 or ρ2. Of course,
two-qubit tomography provides more information than single-qubit tomography, but this information
is not captured by the single parameter C any more than it is captured by P .

We have seen in the two cases above that they essentially address some DOFs, which can be
carried by classical or quantum entities. Each of the two cases effectively deals with only one qubit.
In what follows, we will discuss similar approaches that deal with two qubits.

3. Two Qubits in Alternating Roles

As we already said, before the PCT was established, the constraint D2 + V2 ≤ 1 had been derived
by several authors. This constraint also follows from the PCT: D2 + V2 = P2, on account of P ≤ 1.
However, the underlying interferometric scenarios are not exactly the same in all cases and this can
cause some confusion, in particular regarding the number of DOFs that are actually involved. One or
the other DOF has been addressed, depending on the underlying interferometric scenario. Each DOF,
though, is assigned to a qubit. For example, Englert [17] addressed two qubits: the path-mode of a
two-way interferometer and some “internal” DOF, such as spin or polarization. The idea in [17] is
that the second qubit serves as a “marker” of the first, path-qubit. The more effective the marker is,
the less visible should be the interference fringes. Now, even though the derivation of D2 + V2 ≤ 1,
given in [17], seemingly requires dealing with two qubits, the actual definitions of D and V involve
only one qubit, as we shall see below. Our main goal here is to present an extension of the PCT, which
effectively involves two qubits. As it turns out, both the single-qubit case and the two-qubit case can
be addressed with reference to the Mach–Zehnder (MZ) type interferometric setup that is shown in
Figure 2.

To begin with, let us refer to inequality D2 + V2 ≤ 1, as derived in [17]. The interferometric setup
considered in [17] is essentially the same as that of Figure 2. The system of interest, called “quanton”,
is submitted to the action of the two-way interferometer. The second system is the which-way marker,
or “detector”. This marker-system is an internal DOF that is carried by the “quanton”; for example,
spin in the case of neutron interferometry, or polarization in the case of photons. In order to make the
marker effective, a unitary transformation U is applied to it, conditioned on the path followed by the
quanton. In the case of polarization, U could be performed by three birefringent plates, set on one of
the two paths (see Figure 2).
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Figure 2. Mach–Zehnder-type setup to deal with two qubits. The path-qubit, associated to the
two-way alternative, plays the role of the “system” or “quanton”. A quanton’s internal qubit (spin,
polarization, etc.) serves as a which-way “marker”. The unitary U acts on the marker-qubit. BS1 and
BS2 are beam splitters. An unbalanced BS1 can produce path states of the form |ψ〉 = α|1〉+ β|2〉.
The initial, system-marker state ρ

(i)
S ⊗ ρ

(i)
M is available after BS1 and submitted to a non-local unitary

(see text). By setting U to the identity one can address the single-qubit case.

3.1. Quanton without Marker

Let us first address the quanton alone, which is submitted to the interferometer of Figure 2, with U
being removed. Such a configuration is then essentially the same as the Young setup that we discussed
before. The quanton goes from an initial state ρ

(i)
Q to a state ρ

( f )
Q = UMZρ

(i)
Q U†

MZ. Here, UMZ =

UBSUphUBS, where UBS = (σ1 + σ3)/
√

2 represents beam splitting and Uph = exp(iφσ3/2) phase
shifting. The Pauli matrices σi=1,2,3 are defined, so that σ3 |±〉 = ± |±〉, where |±〉 correspond to the

two paths of the interferometer. By considering the intensity pattern at one output, I = Tr(|+〉〈+|ρ( f )
Q ),

we can define (fringe) visibility, as in (2): V = (Imax− Imin)/(Imax + Imin). The input state in the Young
configuration corresponds to the state after the first beam-splitter in the MZ configuration: ρ

(w)
Q =

UBSρ
(i)
Q U†

BS. The corresponding intensities on each arm of the interferometer are I± = Tr(|±〉〈±|ρ(w)
Q ).

In terms of these intensities, we define distinguishability as in (2): D = |I+ − I−|/(I+ + I−). This was
called “predictability” in [17].

We may define Stokes parameters Sk=0,...,3 by writing ρ
(i)
Q in terms of the identity σ0 and the

Pauli matrices:

ρ
(i)
Q =

1
2

3

∑
k=0

Tr
(

ρ
(i)
Q σk

)
σk ≡

1
2

3

∑
k=0

Skσk. (18)

Setting ρ
(i)
Q = ρ for brevity, the explicit expressions for the Sk are:

S0 = ρ11 + ρ22 (19)

S1 = 2|ρ12| cos ϕ (20)

S2 = 2|ρ12| sin ϕ (21)

S3 = ρ11 − ρ22, (22)
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where ρ12 = |ρ12| exp(−iϕ). By applying the definitions of D and V , i.e., those of (2) with M → ρ,
we get

D2 =

(
S3

S0

)2
, V2 =

(
S2

1
S0

)2

+

(
S2

2
S0

)2

. (23)

As for the degree of polarization, P , it is also easily calculated in terms of S0 and S = (S1, S2, S3).
We can write ρ in the form ρ = (Soσ0 + |S|n̂ · σ)/2, with n̂ = S/|S|. Thus, the eigenvalues of ρ are
λ± = (S0 ± |S|)/2. The definition of P , cf. (3), leads then to

P2 =
S2

1 + S2
2 + S2

3
S2

0
. (24)

From (23) and (24), we again derive the PCT: D2 + V2 = P2. Hence, we arrive at the very same
constraint by following a different approach.

3.2. Marker without Quanton

We now activate the marker by placing U on one arm of the interferometer. The action of the
setup that is shown in Figure 2 on a system-marker initial state ρ

(i)
SM can be described by a unitary

transformation USM. Here again, we can define fringe visibility V in terms of the output intensity. When
considering a symmetric interferometer, one obtains V =

∣∣∣Tr
(

Uρ
(i)
M

)∣∣∣, with ρ
(i)
M = TrS ρ

(i)
SM [17,33].

As for distinguishability DE, it may be defined in terms of the trace-distance between the two marker
states, ρU

M = Uρ
(i)
M U† and ρ

(i)
M . As shown in Ref. [17], V and DE are mutually constrained by

V2 + D2
E ≤ 1. (25)

According to [17], (25) and V2 +D2 ≤ 1 “convey utterly different messages despite their great
similarity”. The reason would be thatD and DE stand for two different kinds of which-way knowledge.
Englert [17] attributes the constraint on D to the “positivity of the initial state of the quanton”.
Instead, the constraint on DE would derive from “the quantum properties of the detector” [17], i.e.,
the marker. While the positivity of the quanton state amounts to the Hermiticity of the 2× 2 matrix
that we mentioned before, which certainly leads to the constraint on D, Englert’s statement concerning
DE requires some qualifications. To begin with, (25) can be derived by addressing the interferometric
setup of Figure 2, regardless of the quantal or classical nature that we ascribe to the carriers of the two
involved DOFs, one called “quanton” and the other “marker” (or “detector”) in [17]. As shown in [33],
it holds

D2 + V2 = cos2
(γ

2

)
+ P2 sin2

(γ

2

)
, (26)

where we have reverted to writing D instead of DE, for the reasons we explain below. In (26), γ is the
rotation angle that belongs to U = exp (iγn̂ · σ/2), where n̂ is a unit vector along the rotation axis.
Equation (26) implies the PCT for γ = π, and, hence, also (25) with D → DE.

It might be disputed that (25) and the PCT follow from (26), because the PCT addresses one qubit,
while (25) and (26) involve two qubits, the quanton and its marker. However, the actual definitions ofD
and V in [17,33] are equivalent to V :=

∣∣∣Tr
(

Uρ
(i)
M

)∣∣∣ and D := Tr
∣∣∣ρU

M − ρ
(i)
M

∣∣∣ /2, where |M| ≡
√

M† M
for matrix M. The definitions of V and D refer then to a single qubit: the marker. This is also the case
with P in (26), which is given by the eigenvalues of ρ

(i)
M [33]. Therefore, (26) exclusively refers to the

marker qubit. The quanton (path-qubit) does not take part in this constraint.
Hence, while the marker was incorporated to store which-way information about the quanton,

we end up establishing a constraint that involves the marker alone. This is a consequence of having
taken the beam-splitter BS1 in Figure 2 as a symmetric one. The two paths have then equal weights.
Setting an unbalanced beam-splitter BS1 and removing U lead us back to the situation already
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discussed, of a quanton without marker. Therefore, we need an unbalanced beam-splitter and U
in place, in order to activate both quanton and marker. We do this next.

4. Two-Qubit Extension of the PCT

Our previous considerations naturally lead us to ask what happens when both the marker-qubit
and the path-qubit are equally active. Let us start with the pure-mixed case, in which the path-qubit
(the “system” or quanton) is in a pure state and the marker-qubit is in a mixed state. The initial,
system-marker state is given by

ρ
(i)
SM = ρ

(i)
S ⊗ ρ

(i)
M ,

ρ
(i)
S = |ψ(i)

S 〉〈ψ
(i)
S |, with |ψ(i)

S 〉 = α|1〉+ β|2〉,

ρ
(i)
M =

1
2

(
σ0 + S(i) · σ

)
. (27)

State ρ
(i)
SM is available after BS1 (see Figure 2) and then submitted to the unitary transformation

USM = |1〉〈1| ⊗U + e−iφ|2〉〈2| ⊗ σ0,

U = exp (iγn̂ · σ/2). (28)

Before BS2, the state of the two-qubit system is given by ρSM = USMρ
(i)
SMU†

SM. The corresponding
single-qubit states can be obtained by partial tracing. These states are ρS = TrM ρSM, whose explicit
form we presently do not need, and

ρM = TrS ρSM = |α|2ρU
M + |β|2ρ

(i)
M , with ρU

M = Uρ
(i)
M U†. (29)

We see that ρM is the sum of two states, each one related to one path of the interferometer.
This prompts us to define distinguishability D as the trace-distance between these two states:

D = Tr
∣∣∣|α|2ρU

M − |β|2ρ
(i)
M

∣∣∣ . (30)

If the probabilities or intensities that are associated with the two paths are equal, i.e., |α|2 =

|β|2 = 1/2, then D reduces to the previously defined distinguishability [17]: D = Tr
∣∣∣ρU

M − ρ
(i)
M

∣∣∣ /2.
The definition of D in (30) takes into account the two elements that contribute to distinguish one path
from the other: the biased path-choice and the triggering or not of the unitary transformation.

To quantify visibility, we consider the intensity at one output of the second beam-splitter (BS2):

I =
1
2

{
1 + 2 Re

[
αβ∗ TrM

(
Uρ

(i)
M

)
e−iφ

]}
. (31)

We then define visibility as fringe contrast, thereby obtaining

V =
Imax − Imin

Imax + Imin
= 2|α||β|

∣∣∣Tr
(

Uρ
(i)
M

)∣∣∣ . (32)

From the above expression, we obtain

V2 = 4|α|2|β|2
(

e2
0 + e2P2 cos2 ϕ

)
. (33)

Here, we use the Euler–Rodrigues parameters e0 = cos(γ/2) and e = sin(γ/2)n̂,
which characterize R ∈ SO(3), the 3D-rotation matrix that corresponds to our U ∈ SU(2).
Moreover, n̂ · ŝ(i) = cos ϕ, with ŝ(i) = S(i)/|S(i)|, and P = |S(i)| = |RS(i)|, which is also given
by the difference of the eigenvalues (1± |S(i)|)/2 of matrix ρ

(i)
M .
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As for D, we obtain from Equation (30)

D2 =

{
|S|2 if

(
|α|2 − |β|2

)2 ≤ |S|2,(
|α|2 − |β|2

)2 if
(
|α|2 − |β|2

)2 ≥ |S|2,
(34)

where
S = |α|2

(
RS(i)

)
− |β|2S(i). (35)

Using |S|2 =
{
|α|4 + |β|4 − 2|α|2|β|2

[
(e2

0 − e2 + 2e2 cos2 ϕ)
]}
P2, we get

D2 + V2 =

{
D2

wP2 + V2
w
(
e2

0 + P2e2) , for D2
w ≤ |S|2

1 + e2V2
w
(
P2 cos2 ϕ− 1

)
, for D2

w ≥ |S|2
(36)

where Dw =
∣∣|α|2 − |β|2∣∣ and Vw = 2|α||β|.

Equation (36) extends the PCT to the two-qubit case. It contains all of the previous results,
as can be checked by setting α = β = 1/

√
2. In this case, we must pick the first option in (36), setting

Dw = 0 and Vw = 1, so that D2 + V2 = e2
0 +P2e2. On substituting e0 = cos(γ/2) and e2 = sin2(γ/2),

we obtain Equation (26), the one-qubit extension of the PCT. As we see, our generalization of the PCT
comprises visibilities and distinguishabilities that refer to two qubits. While Dw and Vw refer to the
path-qubit alone, D and V involve both the path-qubit and marker-qubit.

Next, we lift the restriction that the path-qubit is initially in a pure state and assume that it may
be prepared, like the marker-qubit, in a mixed state. By writing the initial state of the path-qubit as a
statistical mixture of pure states, we can use the above results and obtain (for details, see Appendix A):

V2 +D2 =

e2
0
(
V2

w + P2D2
w
)
+ P2

{
e2 + (e · ŝ(i))2[P2

w − 1]
}

, for w2
3 ≤ |S|2

D2
w + V2

w

(
e2

0 + P2(e · ŝ(i))2
)

, for w2
3 ≥ |S|2.

(37)

Equation (37) contains (36) as a special case. The two relationships are rather intricate. This is
the price that we have to pay for effectively engaging two qubits when dealing with visibility
and distinguishability.

5. Discussion

Bohr’s complementarity asserts that quantum systems may have properties that are mutually
exclusive. Wave-particle duality is a prominent case of complementarity, a case that has been quantified
by means of various constraints. These constraints were derived from so-called “genuinely quantum
properties”. It is common scientific practice to experimentally test whatever constraints have been
derived as necessary consequences of the assumed physical properties. However, problems may
arise when one takes a necessary condition as being also a sufficient one, without having proved the
implication in the two directions. In particular, quantumness may imply some mathematical constraint,
but—unless proved otherwise—the validity of this constraint does not necessarily imply quantumness.

We have shown that several constraints that were derived in order to exhibit quantum
wave-particle duality, in fact draw from interconnections between degrees of freedom that are by
themselves neither quantal nor classical. Experimental tests dealing with said constraints are often
conducted using quantum tools. This is perfectly valid; but, it is also valid to conduct similar tests using
classical tools. What is submitted to test in such a case is, so to say, blind to the kind of employed tools.

The aforementioned, logical shortcoming has a practical consequence. By taking quantumness
as a necessary condition—when it is not—for the implementation of some requirements, we can
unnecessarily limit the search of possible tools needed to achieve such an implementation.
Said requirements may be formulated as constraints, like those discussed in the present work, or as
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basic properties underlying algorithms and protocols. The latter might be the case in quantum
information science.

The cases we have discussed should illustrate how often some features not really captured by a
mathematical formulation can nonetheless be verbally addressed as if they were part of it. One can,
for instance, refer to single photons, even though only a DOF has been mathematically encoded, a DOF
that can be carried by both photons and optical light beams. One can refer to two qubits, even though
all quantities entering a mathematical formulation have been defined in terms of a single qubit.

It is a pending task to lay bare the actual physical properties that enter many a mathematical
formulation that has been claimed to expose genuinely quantum features. Such a task may be intimately
related with the goal of achieving the so-called quantum advantage.
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The following abbreviations are used in this manuscript:

PCT Polarization coherence theorem
DOF Degree of freedom
LCR Inductor, capacitor and resistor
MZ Mach-Zehnder

Appendix A

We can write the initial state of the path-qubit as a statistical mixture of pure states:
ρ
(i)
S = ∑k pk|ψ

(i)
k,S〉〈ψ

(i)
k,S|, with |ψ(i)

k,S〉 = αk|1〉 + βk|2〉, and ∑k pk = 1. We can thus readily see that
(31) generalizes to

I =
1
2

{
1 + 2 Re

[(
ρ
(i)
S

)
12

TrM

(
Uρ

(i)
M e−iφ

)]}
. (A1)

With ρ
(i)
S =

(
σ0 + S(i)

w · σ
)

/2, we get

I =
1
2
[1 + sin

(γ

2

)
n̂ · S(i)(w1 sin φ + w2 cos φ) + cos

(γ

2

)
(w1 cos φ− w2 sin φ)]. (A2)

Here, wi are components of the Stokes vector S(i)
w that belongs to ρ

(i)
S . The visibility is now given by

V =
Imax − Imin

Imax + Imin
=

[(
w2

1 + w2
2

)2 (
e2

0 + P2e2 cos2 ϕ
)]1/2

. (A3)

As for distinguishability, we define it as the statistical mixture:

D = ∑
k

pkDk, (A4)

Dk = Tr
∣∣∣|αk|2ρU

M − |βk|2ρ
(i)
M

∣∣∣ . (A5)

Working out the above definition, we obtain

D =
1
2

Tr |w3σ0 + S · σ| , (A6)

with

S =

(
1 + w3

2

)
RS(i) −

(
1− w3

2

)
S(i). (A7)
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Equation (A6) gives D = (1/2) ||w3 + |S||+ |w3 − |S|||. We then get

D2 =
1
2

∣∣∣w2
3 + |S|2 +

∣∣∣w2
3 − |S|2

∣∣∣∣∣∣ . (A8)

We have thus two possible cases:

D2 =

{
|S|2 if w2

3 ≤ |S|2,

w2
3 if w2

3 ≥ |S|2.
(A9)

For the path-qubit in the mixed state, it holds Dw = |w3|, Vw =
(
w2

1 + w2
2
)1/2 and

P2
w = |S(i)

w |2 = D2
w + V2

w. Hence,

V2 +D2 =

e2
0
(
V2

w + P2D2
w
)
+ P2

{
e2 + (e · ŝ(i))2[P2

w − 1]
}

, for w2
3 ≤ |S|2

D2
w + V2

w

(
e2

0 + P2(e · ŝ(i))2
)

, for w2
3 ≥ |S|2.

(A10)

We notice that D, V and P are joined with Dw, Vw and Pw in the first equation of (A10). In the
second equation instead, Pw does not take part. However, we can rewrite this second equation as

V2 +D2 = P2
w + e2V2

w(P2 cos2 ϕ− 1), (A11)

so that now Pw appears, while Dw is not explicitly included.
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