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Abstract: We investigate quantum correlations appearing for two-qubit detectors which are initially
uncorrelated and locally coupled to a massless scalar field in a vacuum state. Under the perturbation
up to the second order in the coupling, the state of the detectors can be entangled through the
interaction with the scalar field but satisfies the Bell-CHSH inequality. The violation of the Bell-CHSH
inequality for such an entangled state is revealed by local filtering operations. In this paper, we
construct the optimal filtering operations for the qubit detectors and derive the success probability
of the filtering. The success probability characterizes the reliability of revealing the violation of the
Bell-CHSH inequality by the filtering operations. Through these analyses, we demonstrate a trade-off
relation between the success probability and the size of parameter region showing the violation of
the Bell-CHSH inequality.
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1. Introduction

In quantum information theory, quantum entanglement is known as a crucial property which
describes a nonlocal correlation [1]. As well as quantum entanglement, the Bell-CHSH inequality
also characterizes a nonlocal correlation in quantum mechanics [2]. The Bell-CHSH inequality [3] is
satisfied for local hidden variable theories, and a quantum state violating this inequality cannot be
described in that framework. The two aspects of quantum correlations, quantum entanglement and
the violation of the Bell-CHSH inequality, are not equivalent, and it was shown that a given quantum
state violating the Bell-CHSH inequality has quantum entanglement [4,5].

In quantum field theory, it is known that quantum correlations appear in various states of a
quantum field. Reeh and Schlieder showed that arbitrary states of a quantum field can be approximated
by acting some local operators on the Minkowski vacuum state [6], and such a property implies that
the vacuum state is spatially entangled. Furthermore, it was shown that the vacuum state violates
the Bell-CHSH inequality by examining the correlation of bounded observables between two spatial
separated regions [7]. The vacuum of a quantum field displays quantum entanglement and the
violation of the Bell-CHSH inequality, and these correlations characterize nonlocal features of the
quantum field.

In connection with the quantum correlations of the vacuum of a quantum field, the detection of
such correlations by local observers has been investigated. The so-called detector model is adopted to
characterize how quantum resources in the vacuum is available, and provides a suitable experimental
setting to detect the quantum correlation of the vacuum. The detector model is often described by
spatially localized harmonic oscillators [8–10] or qubit systems [11–18]. Reznik et al. [11] considered
the detection of quantum correlation by two-qubit detectors. These detectors are locally coupled
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to a massless scalar field and do not interact directly with each other. It was shown that quantum
entanglement can be extracted and the violation of the Bell-CHSH inequality was found by applying
a local filtering [19]. The local filtering operation is a kind of measurement processes acting on each
qubit by local observers Alice and Bob. The operation is constructed by post-selected (probabilistic)
local operations and classical communication (LOCC). The proper choice of the operation reveals the
violation of the Bell-CHSH inequality of the state of the detectors. This method is also applied to
the cosmological situation to reveal the quantum nonlocality in the early universe [20]. In quantum
information theory, the optimal construction of local filters which give the maximal violation of the
Bell-CHSH inequality was provided in the previous works [21,22].

In this paper, we investigate the quantum correlations in a vacuum through the model of two-qubit
detectors. The initial state of the detectors is usually assumed to be an uncorrelated ground state,
however, we also consider the excited state of detectors. By such a generalization of the initial state
of the detectors, we clarify what is playing a crucial role to reveal the quantum entanglement and
the violation of Bell-CHSH inequality in the vacuum. As an entanglement measure, we compute
the negativity of the qubit detectors, which completely characterizes the entanglement for two-qubit
system [23]. We also construct the optimal filtering operation for the two detectors by the method
given in Ref. [22] to reveal the violation of the Bell-CHSH inequality. We show that the constructed
local filtering corresponds to that given previously in Ref. [11] and derive the explicit formula of the
success probability of the filtering operation. From the formulas of quantum correlations and the
success probability, it is shown that the quantum correlations between the detectors decreases and the
success probability of the optimal filtering increases as the transition probability of the spontaneous
emission grows. This behavior means that there is a trade-off relation between the size of the parameter
region indicating the quantum correlation and the success probability.

This paper is organized as follows. In Section 2, we introduce the system composed of two-qubit
detectors and a massless scalar field. Up to the second order in the coupling, we solve the dynamics
assuming that the initial state of the total system is a product state of the detectors and the field in
the Minkowski vacuum. We obtain the reduced density matrix of the detectors represented by an X
state. In Section 3, we calculate the negativity and the expectation value of the Bell operator for an X
state. In Section 4, we explicitly construct the optimal filtering for an X state and derive the success
probability of the filtering. In Section 5, we discuss the quantum entanglement and the violation of
the Bell-CHSH inequality of detectors’ system and show the quantum correlation is determined by
the coherence and the spontaneous emission of scalar particles. In Section 6, we discuss the effect of
local emissions on the violation of the Bell-CHSH inequality and find the trade-off relation between
the parameter region revealing the violation of the Bell-CHSH inequality and the success probability
of the optimal filter. Section 6 is devoted to the summary and conclusion.

2. Perturbative Dynamics of Two Detectors Coupled to Scalar Field

The vacuum state of a quantum field has nonlocal quantum correlations [6,7]. To investigate the
extraction of the quantum correlations by local observers, we consider a free theory of a massless scalar
field and introduce qubit detectors locally coupled to the scalar field. The free Hamiltonian of the total
system is Hfree = HA + HB + Hφ with

HA =
Ω
2

σz
A, HB =

Ω
2

σz
B, Hφ =

1
2

∫
d3x
(
π2(x) + (∇φ(x))2), (1)

where σz
A,B is the Pauli matrix, Ω is the energy gap of the qubits, Hφ is the free Hamiltonian of the

massless scalar field φ and π := ∂tφ is the conjugate momentum of the scalar field. The interaction
Hamiltonian is

V(t) = g(t)
[
σx

A φ(xA) + σx
B φ(xB)

]
, (2)
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where xA and xB denote each spatial position of the two detectors, that is, the two detectors are at rest
at each position and locally interact with the scalar field. We assume that the switching function g(t)
has the Gaussian form

g(t) = g0 exp
[
− (t− t0)

2

2σ2

]
, (3)

where g0 is a coupling constant and σ is a time interval while the interaction turns on. Roughly
speaking, the detectors interact with the scalar field for |t− t0| ≤ σ. We assume that the initial state of
the total system is a product state

|Ψin〉 = |a, b〉|0φ〉, (4)

where a, b = ±1 denote eigenvalues of σz
A,B and |0φ〉 is the vacuum state of the scalar field. We also

use the notation | ↑〉 = |+1〉, | ↓〉 = |−1〉 to represent the state of qubits. In the interaction picture, the
out-state up to the second order in the coupling is given by

|Ψ̃out〉 ≈
[
I− i

∫ ∞

−∞
dt1Ṽ(t1)−

1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T[Ṽ(t1)Ṽ(t2)]

]
|Ψ̃in〉

= |a, b〉|0φ〉 − i|−a, b〉ΦA
−a|0φ〉 − i|a,−b〉ΦB

−b|0
φ〉

− 1
2
|a, b〉T[ΦA

a ΦA
−a]|0φ〉 −

1
2
|a, b〉T[ΦB

b ΦB
−b]|0φ〉 − |−a,−b〉T[ΦA

−aΦB
−b]|0

φ〉, (5)

where Ṽ is the interaction Hamiltonian in the interaction picture, T denotes the time ordering, and the
operators ΦA

a and ΦB
b acting on the state of the scalar field are defined by

ΦA
a =

∫ ∞

−∞
dt g(t) eiΩat φ(xA, t), ΦB

b =
∫ ∞

−∞
dt g(t) eiΩbt φ(xB, t). (6)

Each term in Equation (5) can be interpreted using the diagrammatic representation shown in
Figure 1. For example, the second term in Equation (5) denotes that detector A interacts once with the
scalar field, and the qubit A is flipped.

Figure 1. The diagrammatic representation of each term appeared in Equation (5).
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The reduced density matrix of the two detectors after the interaction is

ρAB =


E0(a, b) 0 0 X(a, b)

0 EA(a) EAB(a, b) 0
0 E∗AB(a, b) EB(b) 0

X∗(a, b) 0 0 X4(a, b)

 , (7)

where we assumed the basis {|1〉, |2〉, |3〉, |4〉} = {|a, b〉, |−a, b〉, |a,−b〉, |−a,−b〉}. The density matrix
with only non-diagonal components ρ23 := 〈2|ρAB|3〉 and ρ14 := 〈1|ρAB|4〉 is called an X state, which
has only the quantum coherences of the superpositions {|1〉, |4〉} or {|2〉, |3〉} and this property makes
the analysis of the quantum correlations easier. Concretely, the non-diagonal components of the density
matrix (7) are

EAB(a, b) =
∫

d3k〈−a, b, kφ|Ψ̃out〉〈Ψ̃out|a,−b, kφ〉 = 〈0φ|ΦB
b ΦA
−a|0φ〉, (8)

X(a, b) = 〈−a,−b, 0φ|Ψ̃out〉 = −〈0φ|T[ΦA
−aΦB

−b]
†|0φ〉, (9)

where |kφ〉 is the one-particle state for the scalar field. The diagonal components are given as

E0(a, b) = 1− EA(a)− EB(b)− X4(a, b), (10)

EA(a) = EAB(a, a)|r=0, (11)

EB(b) = EAB(b, b)|r=0, (12)

X4(a, b) = EA(a)EB(b) + |EAB(a, b)|2 + |X(a, b)|2, (13)

where r = |xA − xB| and the formula of X4(a, b) is derived by the Wick theorem. Note that the
non-diagonal components EAB(a, b) and X(a, b) depends on the Wightman function for the massless
scalar field

〈0φ|φ(xA, t)φ(xB, t′)|0φ〉 = −
1

4π2
1

(t− t′ − iε)2 − r2 , (14)

where ε is the UV cutoff parameter. Hence the detectors with an initial product state can be entangled
by the local interaction with the scalar field in Equation (2) through the two-point function. We can
explicitly compute EA(a), EB(b), EAB(a, b) and X(a, b) as

EA(a) =
g2

0
4π

(
e−(Ωσ)2

+ 2aΩσ Erfc[−aΩσ]
)
, (15)

EB(b) =
g2

0
4π

(
e−(Ωσ)2

+ 2bΩσ Erfc[−bΩσ]
)
, (16)

EAB(a, b) =
g2

0σ

4πir
eiΩ(a−b)t0−(Ωσ)2

(
exp

[(
−Ωσ

2
(a + b)− i

r
2σ

)2
]
Erfc

[
−Ωσ

2
(a + b)− i

r
2σ

]
− exp

[(
−Ωσ

2
(a + b) + i

r
2σ

)2
]
Erfc

[
−Ωσ

2
(a + b) + i

r
2σ

])
(17)

X(a, b) =
g2

0σ

4πir
eiΩ(a+b)t0−(Ωσ)2

(
exp

[(Ωσ

2
(a− b)− i

r
2σ

)2]
Erfc

[Ωσ

2
(a− b)− i

r
2σ

]
+ exp

[(
−Ωσ

2
(a− b)− i

r
2σ

)2]
Erfc

[
−Ωσ

2
(a− b)− i

r
2σ

])
, (18)

where Erfc[z] is the complementary error function defined by

Erfc[z] =
∫ ∞

0
dt e−(t+z)2

. (19)
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The detailed derivation (17) and (18) is presented in Appendix A. From the explicit formulas
for the density matrix, the quantum correlation of the scalar field detected via the two detectors can
be computed.

3. Negativity and Bell-CHSH Inequality for X State

As the state of the detectors depends on the two-point function for the scalar field, we expect
that the initial product state of the detectors becomes correlated after the interaction. To evaluate
the quantum correlation between the two detectors, we consider the negativity and the Bell-CHSH
inequality. The negativity is defined by the eigenvalues, λi, of a partial transposed density matrix
ρTA

AB as
N = ∑

λi<0
|λi|. (20)

If the negativity does not vanish, then the state is entangled. Especially, the converse the statement
is true when the Hilbert spaceHA ⊗HB is C2 ⊗C2 or C2 ⊗C3 [24]. Thus, the negativity completely
characterizes whether the state of the detectors is entangled or not. For an X state

ρAB =


ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44

 , (21)

the negativity is explicitly obtained as

N = max
[
N1, 0

]
+ max

[
N2, 0

]
, (22)

N1 =
1
2

(√
(ρ11 − ρ44)2 + 4|ρ23|2 − (ρ11 + ρ44)

)
, (23)

N2 =
1
2

(√
(ρ22 − ρ33)2 + 4|ρ14|2 − (ρ22 + ρ33)

)
. (24)

The conditions N1 > 0 or N2 > 0 are rewritten in the simple form as

√
ρ11ρ44 < |ρ23| or

√
ρ22ρ33 < |ρ14|. (25)

For the detectors’ density matrix (7), the first inequality in (25) is not satisfied because we find

√
ρ11ρ44 − |ρ23| ∼

√
EAEB + |EAB|2 + |X|2 − |EAB| ≥ 0 (26)

to the leading order in the coupling g0, where ρ11 = E0, ρ44 = X4 and ρ23 = EAB. Hence we can obtain
the condition of nonzero negativity for the detectors’ density matrix as√

EAEB < |X|. (27)

For a detailed understanding of the quantum correlation, it is important to evaluate the Bell-CHSH
inequality [3] given by the correlation function for the qubit A and B. To compute the Bell-CHSH
inequality, we introduce the Bell operator

BAB =
1
2

n · σA ⊗ (m + m′) · σB +
1
2

n′ · σA ⊗ (m−m′) · σB, (28)

where n, n′, m and m′ are unit vectors, σA and σB are the Pauli matrices. We consider the maximum
expectation value β of the Bell-CHSH operator

β(ρAB) = max
n,n′ ,m,m′

Tr[BAB ρAB]. (29)
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For separable states, β(ρAB) satisfies the following Bell-CHSH inequality

β(ρAB) ≤ 1. (30)

The inequality (30) holds for the local hidden variable theory, which includes any separable states.
For any physical states, β(ρAB) has the upper bound called the Tsirelson bound [25]

β(ρAB) ≤
√

2. (31)

For an X state, the maximum value β(ρAB) can be calculated explicitly as

β(ρAB) = max[β1, β2], (32)

β1 =
√
(ρ11 + ρ44 − ρ22 − ρ33)2 + 4(|ρ14|+ |ρ23|)2, (33)

β2 = 2
√
(|ρ14|+ |ρ23|)2 + (|ρ14| − |ρ23|)2, (34)

where we used the Horodecki theorem [26] which provides the method to obtain the explicit form
of β from the singular value of the matrix Rij = Tr[σi

Aσ
j
B ρAB]. Note that the Bell-CHSH inequality is

satisfied for the state of the two detectors system given by (15)–(18) within our perturbative treatment.
Since the order of the coupling g0 for the non-diagonal components EAB and X is O(g2

0), β1 and β2 for
a small g0 are evaluated as

β1 = 1− 2(EA + EB) + O(g4
0), β2 = O(g2

0), (35)

where EA and EB are O(g2
0). The maximum expectation value of the Bell operator β is smaller than

unity and the Bell-CHSH inequality is always satisfied. On the other hand, it is possible for the
detectors to have a nonzero negativity because the condition for the entangled state (27) does not
depend on the strength of coupling (both sides of the inequality (27) have the same order for the
coupling). Figure 2 shows the contour plot of the negativity in (Ωr, Ωσ) space for the detectors’ initial
state | ↓A↓B〉. The dashed line denotes the “null” curve r = σ and we find that the negativity has a
nonzero value for a region r > σ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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Ω
σ
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10-6
0.00001
0.00010

Figure 2. The contour plot of the negativity in the parameter space (Ωr, Ωσ) with the initial detectors’
state | ↓A↓B〉. The dashed line represents the null curve r = σ.

As we have seen above, the state of the detectors is entangled and satisfies the Bell-CHSH
inequality. Interestingly, it is known that the violation of the Bell-CHSH inequality for such a state can
be revealed by a local filtering operation [19].
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4. Local Filtering Operation for X States

We introduce a local filtering operation for a two-qubit system. The local filtering operation is
performed as follows: qubit locally interacts with a measurement apparatus and then an observer
picks up one outcome from the measurement apparatus. When two local observers, Alice and Bob,
perform the local filtering operation for each qubit, the filtered state ρ′AB is given by

ρ′AB =
1
p

MA ⊗ NB ρAB M†
A ⊗ N†

B, (36)

where ρAB is an initial density operator of a two-qubit system, MA and NB are local operators
(2× 2 matrices) for each subsystem. The success probability, p, to attain the filtered state is

p = Tr[M†
AMA ⊗ N†

B NB ρAB]. (37)

Those operators MA and NB have inverse and satisfy the conditions M†
AMA ≤ IA and N†

B NB ≤ IB,
where IA and IB are the identity operators on each Hilbert space of the qubit systems. It is known
that the local filtering is adopted to reveal the violation of Bell-CHSH inequality for the bipartite qubit
system [19,21,22].

4.1. Key Theorems

There are two important theorems to reveal the violation of Bell-CHSH inequality by the local
filtering operation [21,22]:

Theorem 1 ([21]). By a local filtering operation, a two-qubit state ρAB can be uniquely transformed into a Bell
diagonal state.

Theorem 2 ([22]). If the optimized β(ρ′AB) over all local operations MA and NB is larger than unity, then the
filtered state ρ′AB is a Bell diagonal state. The statement is represented by

max
MA,NB

β(ρ′AB) > 1 =⇒ ρ′AB =
3

∑
µ=0

λµ|Bellµ
AB〉〈Bellµ

AB|, (38)

where |Bellµ
AB〉 := σ

µ
A(| ↑A↑B〉+ | ↓A↓B〉)/

√
2 and σµ = {I, σx, σy, σz}.

According to the above theorems, we need the local operation which transforms a given state into
a Bell diagonal form to reveal the violation of Bell-CHSH inequality. In general, it is complicated to
construct such a local operation, however, we easily get it for an X state. We note that a Bell diagonal
state ∑3

µ=0 λµ|Bellµ
AB〉〈Bellµ

AB| has the form of an X state with its components given by

1
2


λ0 + λ3 0 0 λ0 − λ3

0 λ1 + λ2 λ1 − λ2 0
0 λ1 − λ2 λ1 + λ2 0

λ0 − λ3 0 0 λ0 + λ3

 ,
3

∑
µ=0

λµ = 1, λµ ≥ 0. (39)

This state corresponds to the X state with

ρ11 = ρ44, ρ22 = ρ33, ρ14 = ρ∗14, ρ23 = ρ∗23. (40)

All we have to do is to transform a given X state into the X state satisfying these conditions (40)
by an appropriate filtering operation. We apply the local z rotation exp[−iθ σz

A/2− iφ σz
B/2] to a given

X state. The diagonal components are invariant and the non-diagonal components are transformed as
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ρ14 → e−i(θ+φ)ρ14, ρ23 → e−i(θ−φ)ρ23. (41)

We can choose the parameters θ, φ so that ρ14, ρ23 are positive and satisfy ρ23 = ρ∗23, ρ14 = ρ∗14.
Without loss of generality, we assume that the diagonal components satisfy ρ11 ≥ ρ22 ≥ ρ33 ≥ ρ44.
From Theorem 1, we can uniquely transform the two-qubit system to a Bell diagonal form by a local
filtering operation. Hence it is sufficient to find one of the filtering operations converting a given X
state to a Bell diagonal state. For this purpose, we consider the local operation defined by

MA =

[
ηA 0
0 1

]
, NB =

[
ηB 0
0 1

]
, (42)

where 0 < η2
A ≤ 1 and 0 < η2

B ≤ 1. This operation corresponds to the amplitude damping channel
with a post selection and was used in Ref. [11] to detect the Bell-CHSH nonlocality. Under the local
operations (42), the X state is transformed to

ρ′AB =
1
p


η2

Aη2
B ρ11 0 0 ηAηB |ρ14|
0 η2

A ρ22 ηAηB |ρ23| 0
0 ηAηB |ρ23| η2

B ρ33 0
ηAηB |ρ14| 0 0 ρ44

 , (43)

where p = η2
Aη2

B ρ11 + η2
A ρ22 + η2

B ρ33 + ρ44. If the parameters ηA and ηB satisfy η2
Aη2

B ρ11 =

ρ44, η2
Aρ22 = η2

B ρ33, that is,

η2
A =

(ρ44ρ33

ρ11ρ22

)1/2
, η2

B =
(ρ44ρ22

ρ11ρ33

)1/2
, (44)

then the X state becomes the Bell diagonal state with the spectrum {λµ} given by

λ0 =

√
ρ11ρ44 + |ρ14|

2(
√

ρ11ρ44 +
√

ρ22ρ33)
, λ1 =

√
ρ22ρ33 + |ρ23|

2(
√

ρ11ρ44 +
√

ρ22ρ33)
,

λ2 =

√
ρ22ρ33 − |ρ23|

2(
√

ρ11ρ44 +
√

ρ22ρ33)
, λ3 =

√
ρ11ρ44 − |ρ14|

2(
√

ρ11ρ44 +
√

ρ22ρ33)
. (45)

Equation (44) provides the optimal filters for the detection of the violation of Bell-CHSH inequality
with the success probability p

p = 2ρ44

[
1 +

(ρ22ρ33

ρ11ρ44

)1/2]
. (46)

This probability characterizes the reliability of detecting the violation of Bell-CHSH inequality by
the local filtering operation.

4.2. Quantum Correlation of the Bell Diagonal State and Coherence of X State

To get a clear understanding of the quantum correlation for the X state, we investigate the detailed
properties of the Bell diagonal state and its relationship to the X state. The entanglement of the Bell
diagonal state is completely characterized by the negativity. The conditions of non-zero negativity (25)
for the Bell diagonal state are equivalent to

(λ0 − 1/2)(λ3 − 1/2) < 0 or (λ1 − 1/2)(λ2 − 1/2) < 0, (47)

where we used Equation (39). Hence, whenever the largest eigenvalue of λµ exceeds 1/2 (the spectrum
{λµ} is biased towards any one of the four Bell states), then the Bell diagonal state is entangled.
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Let us focus on the violation of Bell-CHSH inequality for the Bell diagonal state. When the
maximum value β is larger than 1 (that is, β1 > 1 or β2 > 1 in Equation (32)), the eigenvalues satisfy

(λ0 − λ2)
2 + (λ1 − λ3)

2 > 1/2 or (λ0 − λ1)
2 + (λ2 − λ3)

2 > 1/2, (48)

where λ0 ≥ λ3 and λ1 ≥ λ2 are imposed by Equation (45). If we assume λ0 > 1/2 then (λ1 − λ3)
2 ≤

1/4 and (λ2 − λ3)
2 ≤ 1/4 because ∑µ λµ = 1. We obtain the inequalities

λ0 − λ2 >
1
2

or λ0 − λ1 >
1
2

(49)

as the necessary condition of the violation of the Bell-CHSH inequality. To summarize, the typical
region of the spectra satisfying the entanglement condition (47) and the violation of Bell-CHSH
inequality (necessary) conditions (49) are presented in Figure 3. The Bell diagonal state has the
Bell-CHSH nonlocal correlation when one of the spectra {λµ} approaches unity.

Figure 3. The typical region of {λµ} revealing the quantum entanglement and the violation of
Bell-CHSH inequality.

In Equation (45), the spectra {λµ} depend on the components of the X state and their dominant
terms are |ρ23| and |ρ14|. To show the violation of the Bell-CHSH inequality, one of these terms, and
the associated coherence that it represents, need to dominate the other.

5. Violation of Bell-CHSH Inequality by Using Optimal Local Filtering

In this section, we examine the quantum entanglement and the violation of Bell-CHSH inequality
for the model of two-qubit detectors with the initial conditions | ↓A↓B〉, | ↑A↑B〉 and | ↓A↑B〉. For the
detection of the violation of Bell-CHSH inequality, we apply the local filter to the qubit detectors’ state
given in Section 4.

5.1. The Initial Condition | ↓A↓B〉

We consider the initial condition of the detectors (a, b) = (−1,−1) corresponding to the state
| ↓A↓B〉. From Equations (15)–(18), we derive

EA(−1) =
g2

0
4π

(
e−(Ωσ)2 − 2Ωσ Erfc[Ωσ]

)
, (50)

EAB(−1,−1) =
g2

0σ

4πir
e−(r/2σ)2

(
e−iΩr Erfc

[
Ωσ− i

r
2σ

]
− eiΩr Erfc

[
Ωσ + i

r
2σ

])
, (51)

X(−1,−1) =
g2

0σ

2πir
e−2iΩt0−(Ωσ)2−(r/2σ)2

Erfc
[
−i

r
2σ

]
, (52)

and EB(−1) = EA(−1). Figure 4 shows the contour plot of the negativity for the filtered X state with
the initial condition | ↓A↓B〉. The coupling g0 is fixed to 10−2.
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Figure 4. The contour plot of the negativity with the initial condition | ↓A↓B〉. The green dashed line
denotes β = 1, and the above this line β > 1.

The green dashed line denotes β = 1, and the region above this line represents β > 1 where
the Bell-CHSH inequality is violated. In addition, we observe the existence of the region where the
violation of Bell-CHSH inequality is not found even if the optimal filtering is acted on each detector.

We analyze how the quantum correlation of the scalar field is detected through the detectors.
In Section IV, we give the simple form (45) of the spectrum {λµ} obtained from the components of
the X state. Figure 5 shows the behavior of those spectra with Ωσ = 2.5 and we observe that λ0 is
dominant compared to the others.
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Figure 5. The behavior of the spectrum {λµ} of the Bell diagonal state with fixed Ωσ = 2.5 and
g0 = 10−2. The initial condition of the detectors’ state is |↓A↓B〉. λ0 is larger than the other eigenvalues,
that is, the coherence |X| is dominant.

From Equation (45) we note that the eigenvalue λ0 for a small coupling is evaluated as

λ0 ≈
1
2
+

|X| −
√

EAEB

2(
√

EAEB + |EAB|2 + X2 +
√

EAEB)
. (53)

Hence the condition λ0 > 1/2 is equivalent to |X| >
√

EAEB, and Figure 5 means that the
coherence |X| of the superposition in the basis {|↑A↑B〉, | ↓A↓B〉} is larger than

√
EAEB. To understand

why the coherence |X| dominates, we remind that the state of the detectors depends on the two-point
function of the scalar field. The quantum superposition in the basis {|↑A↑B〉, |↓A↓B〉} is realized by
the exchange of the real or virtual scalar field. Figure 6 corresponds to the diagrammatic picture to
generate the coherence |X| in the second order dynamics.



Quantum Rep. 2020, 2 552

Figure 6. The diagrammatic picture of the coherence generation by the exchange of the scalar field.

5.2. The Initial Condition | ↑A↑B〉

We consider the detection of the quantum correlation for the initial state | ↑A↑B〉. The components
EA, EB, EAB and X of the reduced density matrix are

EA(+1) =
g2

0
4π

(
e−(Ωσ)2

+ 2Ωσ Erfc[−Ωσ]
)
, (54)

EAB(+1,+1) =
g2

0σ

4πir
e−(r/2σ)2

(
eiΩr Erfc

[
−Ωσ− i

r
2σ

]
− e−iΩr Erfc

[
−Ωσ + i

r
2σ

])
, (55)

X(+1,+1) =
g2

0σ

2πir
e2iΩt0−(Ωσ)2−(r/2σ)2

Erfc
[
−i

r
2σ

]
, (56)

and EB(+1) = EA(+1). We find that |X(+1,+1)| = |X(−1,−1)|, that is, those coherences with the
two different initial conditions are equivalent. Due to the facts that the vacuum is invariant under
time translation and time reversal and that the switching function g(t) has the symmetric property
g(t + t0) = g(−t + t0), we can derive that the transition probability |X(−1,−1)|2 of | ↓A↓B〉 → |↑A↑B〉
is the same as |X(+1,+1)|2 of | ↑A↑B〉 → |↓A↓B〉. The detail calculation is presented in the Appendix B.

The left panel of Figure 7 presents the contour plot of the negativity with the initial state | ↑A↑B〉.
The region with the nonzero negativity is much smaller compared to the result obtained with the initial
state | ↓A↓B〉 (similar to the case for (a, b) = (−1,−1), in the right panel of Figure 7, we can confirm
that the quantum correlation of the X state is generated by the exchange of the scalar particle because
λ0 dominates). To understand the different feature of quantum correlations from that for the case
| ↓A↓B〉, we focus on the diagonal components EA(a) and EB(b), which are the transition probabilities
of |a, b〉| → |−a, b〉 and |a, b〉 → |a,−b〉, respectively. Evaluating the difference EA(+1)− EA(−1),
we obtain

EA(+1)− EA(−1) =
g2

0Ωσ

2π

∫ Ωσ

−Ωσ
dt e−t2 ≥ 0. (57)

The inequality EB(+1) ≥ EB(−1) also holds. EA(+1) and EB(+1) correspond to the probabilities
of spontaneous emissions, which are determined by the local dynamics and prevent the detection of
nonlocal correlations (indeed, the equality |X(−1,−1)| = |X(+1,+1)| and the inequalities EA(+1) ≥
EA(−1) and EB(+1) ≥ EB(−1) imply that the spectrum λ0 given by (53) is reduced) . Therefore, it is
difficult to reveal the entanglement and the violation of Bell-CHSH violation with the initial excited
state | ↑A↑B〉.
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Figure 7. (left): The contour plot of the negativity with the initial condition | ↑A↑B〉. The inset is the
enlarged version of the contour plot. The green dotted line represents β = 1. N 6= 0 region does not
extend to the region r > σ. (right): The behavior of the spectrum {λµ} of the Bell diagonal state with
fixed Ωσ = 0.5 and g0 = 10−2. The eigenvalue λ0 is dominant due to the exchange of the scalar particle.

5.3. The Initial Condition | ↓A↑B〉

We consider the detectors’ initial condition | ↓A↑B〉. The components EA, EB, EAB and X of the
reduced density matrix are given as

EA(−1) =
g2

0
4π

(
e−(Ωσ)2 − 2Ωσ Erfc[Ωσ]

)
, (58)

EB(+1) =
g2

0
4π

(
e−(Ωσ)2

+ 2Ωσ Erfc[−Ωσ]
)
, (59)

EAB(−1,+1) =
g2

0σ

4πir
e−2iΩt0−(r/2σ)2

(
Erfc

[
−i

r
2σ

]
− Erfc

[
i

r
2σ

])
, (60)

X(−1,+1) =
g2

0σ

4πir
e−(r/2σ)2

(
Erfc

[
−Ωσ− i

r
2σ

]
+ Erfc

[
Ωσ− i

r
2σ

])
. (61)

The left panel of Figure 8 shows the contour plot of the negativity with the green dotted line
β = 1. Further, we add the orange line which denotes N = 0 for the initial state | ↓A↓B〉.
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Figure 8. (left): The contour plot of the negativity with the initial condition | ↓A↑B〉. The orange dashed
line denotes the boundary of the nonzero negativity with the initial state | ↓A↓B〉. In this case, the size
of the parameter region which shows the quantum correlations is smaller compared to the case | ↓A↓B〉.
(right): The behavior of the spectrum {λµ} as a function of Ωr with fixed Ωσ = 0.5 and g0 = 10−2.

We observe that the region with the nonzero negativity is smaller compared to that for the
initial state | ↓A↓B〉 but larger than that for the initial state | ↑A↑B〉. This is because the probability of
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spontaneous emission is large (EB(+1) ≥ EB(−1)) and the generation of quantum correlations are
suppressed compared to the case with the initial condition | ↓A↓B〉

6. Effect of Local Emissions for the Detection Region of Bell Nolocality and Its
Success Probability

In this section, we focus on the success probability of the optimal filtering for the initial conditions
| ↓A↓B〉 and | ↓A↑B〉. In the left panel of Figure 9, we present the contour plot of the success probability
with the violation of the Bell-CHSH inequality (that is, β > 1) in common logarithms scale for the
initial condition | ↓A↓B〉 and observe that the probability decreases as the distance between the two
detectors or the interaction time increase.

The right panel of Figure 9 is the contour plot of p in common logarithms scale for the initial
condition | ↓A↑B〉. Comparing to the case | ↓A↓B〉, the behavior of the probability for the interaction
time is different. To understand the behavior of p for Ωσ � 1, we should note that the success
probability in the leading order of the coupling is

p ≈ 2
√

EAEB + |EAB|2 + |X|2(
√

EAEB + |EAB|2 + |X|2 +
√

EAEB), (62)

where we substituted Equations (10)–(13) into the formula of the probability (46). Here let us denote
p(−1,−1) and p(−1,+1) as the success probability for each initial condition | ↓A↓B〉 and | ↓A↑B

〉. For Ωσ � 1 the switching function g(t) is effectively regarded as the constant g0. Hence the
total system is invariant under a time translation and the total energy is conserved. By the energy
conservation for Ωσ� 1, each component EA, EB, EAB and X is

EA(a) =
∫

d3k|〈−a, b, kφ|Ψ̃out〉|2 ≈
∫

d3kM2
A(a, k)δ(ωk − aΩ), (63)

EB(b) =
∫

d3k|〈a,−b, kφ|Ψ̃out〉|2 ≈
∫

d3kM2
B(b, k)δ(ωk − bΩ), (64)

EAB(a, b) =
∫

d3k〈−a, b, kφ|Ψ̃out〉〈Ψ̃out|a,−b, kφ〉

≈
∫

d3kMA(a, k)MB(b, k)δ(ωk − aΩ)δ(ωk − bΩ), (65)

X(a, b) = 〈−a,−b, 0φ|Ψ̃out〉 ≈ MX(a, b)δ(−aΩ− bΩ), (66)

where ωk = |k| and MA, MB, MX correspond to the amplitudes of each transition process. According to
the behaviors of EA, EB, EAB and X, we find that the probabilities p(−1,−1) and p(−1,+1) approach
zero and 2|X|2 for a large Ωσ, respectively. In Figure 9, this different feature appears as the shape of
the contour of p for each initial condition.

In the right panel of Figure 9, we also observe that the success probability is improved compared
to the initial condition | ↓A↓B〉 while the detection region of the violation of the Bell-CHSH inequality
in the parameter space is reduced. This trade-off relation is explained by the formulas of the eigenvalue
λ0 (53) and the success probability p (62). The eigenvalue λ0 is given by the difference |X| −

√
EAEB,

and the success probability depends on the sum |X|2 + EAEB. As the transition probability EA or EB of
the spontaneous emission grows, the eigenvalue λ0 decreases and the success probability p increases.
This means that the process of the local emission has two effects: one is the reduction of the detection
region of the violation of the Bell-CHSH inequality, and the other is the increase of the efficiency for the
detection of that violation. The local dynamics of each detector plays an important role in the reliable
detection of the Bell-CHSH inequality.
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Figure 9. (left): The contour plot of the success probability p in common logarithms scale for the
initial condition | ↓A↓B〉. The colored region denotes that β is larger than unity in the parameter
space (Ωr, Ωσ). As the distance or the interaction time increase, the probability becomes small.
(right): The contour plot of the success probability p in common logarithms scale with β > 1 for the
initial condition | ↓A↑B〉. The blue dotted curve represents the curve β = 1 for the initial condition
| ↓A↓B〉 equals to unity. The detection region of the violation of the Bell-CHSH inequality is reduced,
but its probability increases from the case for the initial condition | ↓A↓B〉.

7. Summary and Conclusions

We investigated the detection of quantum correlations of a massless scalar field for the model of
two-qubit detectors. We considered the two-qubit detectors coupled to the scalar field in a Minkowski
vacuum. Under the second-order perturbation of the total dynamics, we examined the negativity and
the violation of the Bell-CHSH inequality for the detectors’ state. It is demonstrated that the state of the
detectors can be entangled but satisfies the Bell-CHSH inequality within our perturbative treatment.
To reveal the violation of the Bell-CHSH inequality, we used the optimal filtering operations acting on
each detector. In general, it is complicated to construct these operations. It is simpler to obtain the
optimal filtering for the out-state of the detectors described by an X state. Such a filtering is given
by the two steps; passing through an amplitude damping channel and choosing a specific outcome
after the channel. The success probability to perform the filtering characterizes the efficiency of the
detection of the violation of Bell-CHSH inequality.

By examining the negativity and the violation of the Bell-CHSH inequality under the optimal
filter, we found that the detection of the quantum correlations strongly depends on the initial state of
the detectors. When the detectors are initially in the ground state, the detection region in the parameter
space showing the quantum correlation is larger than that obtained for the case of initially excited
states. This is because the excited detectors spontaneously emit the scalar particles and such local
dynamics prevent the detection of quantum correlations by the detectors.

Further we focused on the success probability of the optimal filtering for the violation of
Bell-CHSH inequality for the initial condition | ↓A↓B〉 and | ↓A↑B〉. Then we demonstrated the
trade-off relation between the parameter region of the violation of Bell-CHSH inequality and the
success probability. Due to this trade-off relation, the reliable detection of the violation of Bell-CHSH
inequality becomes non-trivial, and we found that the setting with the initial state | ↓A↑B〉 of the
detectors leads to the violation of the Bell-CHSH inequality with a high efficiency and large parameter
regions. This result gives a suitable model for the detection of the violation of Bell-CHSH inequality
through the two-qubit detectors.
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Appendix A. Components of Reduced Density Matrix

The diagonal components EA and EB are obtained from EAB. According to Equation (8), the
non-diagonal component EAB are represented by

EAB =
∫

d3k 〈0φ|ΦA
a |kφ〉〈kφ|ΦB

−b|0φ〉, (A1)

where note that the inner product of ΦA
a |0φ〉 and n-particle state for n ≥ 2 or n = 0 is zero. We

introduce the regularized mode function of the Minkowski vacuum

uε
k(x, t) =

e−iωk(t−iε/2)+ik·x

(2π)3/2
√

2ωk
, (A2)

where ωk = |k|. The inner product 〈0φ|ΦA
a |kφ〉 are calculated as

〈0φ|ΦA
a |kφ〉 =

∫ ∞

−∞
dt g(t) e−iΩat uε

k(xA, t) = g0
√

2πσ2 e−
σ2
2 (ωk−Ωa)2−iΩat0 uε

k(xA, t0). (A3)

The component EAB is computed as

EAB =
∫

d3k 〈0φ|ΦA
a |kφ〉〈kφ|ΦB

−b|0φ〉

= 2πg2
0σ2eiΩ(a−b)t0

∫
d3k e−

σ2
2 (ωk−Ωa)2− σ2

2 (ωk−Ωb)2
uε

k(xA, t0) uε∗
k (xB, t0)

=
g2

0σ

4iπr
eiΩ(a−b)t0

∫ ∞

0
du e−

1
2 (u−Ωσa)2− 1

2 (u−Ωσb)2
(eiur/σ − e−iur/σ)e−εu/σ

=
g2

0σ

4iπr
eiΩ(a−b)t0−(Ωσ)2

(
exp

[(
−Ωσ

2
(a + b)− i

r
2σ

+
ε

2σ

)2
]
Erfc

[
−Ωσ

2
(a + b)− i

r
2σ

+
ε

2σ

]
− exp

[(
−Ωσ

2
(a + b) + i

r
2σ

+
ε

2σ

)2
]
Erfc

[
−Ωσ

2
(a + b) + i

r
2σ

+
ε

2σ

])
. (A4)

We get Equation (17) by taking the limit ε → 0. Next we derive the formula of X. Using
the Wightman function D+(x − x′, t − t′) = 〈0φ|φ(x, t)φ(x′, t′)|0φ〉 given by Equation (14), the
non-diagonal component X∗ is

X∗ = −〈0φ|T[ΦA
−aΦB

−b]|0
φ〉

= −
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1 g(t2)g(t1) eiΩ(−at2−bt1)(θ(t2 − t1)D+(r, t2 − t1) + θ(t1 − t2)D+(r, t1 − t2))

= −2
√

πg2
0σ2(Ωσ)e−iΩ(a+b)t0−(Ωσ)2

×
∫ ∞

−∞
dy e−(Ωσ)2(y+i(a−b)/2)2

(θ(−y)D+(r,−2Ωσ2y) + θ(y)D+(r, 2Ωσ2y)), (A5)

where the integral variables t1 and t2 are changed as

Ωσ2x =
(t1 − t0) + (t2 − t0)

2
, Ωσ2y =

(t1 − t0)− (t2 − t0)

2
(A6)

and we carried out the x integration. By using the identity

e−y2
=

1√
π

∫ ∞

−∞
dη e−η2+2iηy, (A7)
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the above Equation (A5) can be rewritten as

X∗ = −2g2
0σ2(Ωσ)e−iΩ(a+b)t0−(Ωσ)2

×
∫ ∞

−∞
dη e−η2

(
e−(a−b)(Ωσ)η + e(a−b)(Ωσ)η

) ∫ ∞

0
dy e2i(Ωσ)ηyD+(r, 2Ωσ2y)

=
g2

0
4π2 e−iΩ(a+b)t0−(Ωσ)2

∫ ∞

−∞
dη e−η2

(
e−(a−b)(Ωσ)η + e(a−b)(Ωσ)η

) ∫ ∞

0
dy

eiηy

(y− iε/σ)2 − (r/σ)2 . (A8)

The y integration is equivalent to the complex integration given in Figure A1. Hence,

∫ ∞

0
dy

eiηy

(y− iε/σ)2 − (r/σ)2 =
[ iπσ

r
eiη(r/σ+iε/σ) − i

∫ ∞

0

e−ηy

(y− ε/σ)2 + (r/σ)2

]
θ(η)

+ i
∫ 0

−∞

e−ηy

(y− ε/σ)2 + (r/σ)2

]
θ(−η), (A9)

where the second and third terms are the integration along the imaginary axis. For ε → 0 the sum
of those terms is an odd function, and then it does not contribute to the η integration (note that the
function of η in front of Equation (A9) is an even function).

Figure A1. The contour of the complex integration to compute the non-diagonal component X∗.

Thus we get the following formula

X∗ =
g2

0
4π2 e−iΩ(a+b)t0−(Ωσ)2

∫ ∞

0
dη e−η2

(
e−(a−b)(Ωσ)η + e(a−b)(Ωσ)η

) iπσ

r
eiηr/σ

=
ig2

0σ

4πr
e−iΩ(a+b)t0−(Ωσ)2

(
exp

[(Ωσ

2
(a− b) + i

r
2σ

)2]
Erfc

[
−Ωσ

2
(a− b)− i

r
2σ

]
+ exp

[(
−Ωσ

2
(a− b) + i

r
2σ

)2]
Erfc

[Ωσ

2
(a− b)− i

r
2σ

])
. (A10)

Appendix B. Equality of |X(−1,−1)| and |X(+1,+1)|

Let us show the equality of |X(−1,−1)| and |X(+1,+1)|. Under the second order of the coupling,
the non-diagonal components X(−1,−1) and X(+1,+1) is
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X(−1,−1) = 〈↑A↑B, 0φ|Ψ̃out〉∗

= −
∫ ∞

−∞
dt1

∫ t1

−∞
dt2〈↓A↓B |〈0φ|Ṽ(t2)Ṽ(t1)|0φ〉| ↑A↑B〉

= −2
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 g(t1 + t0)g(t2 + t0)e−iΩ(t1+t2)〈0φ|φ(xB − xA, t2 − t1)φ(0)|0φ〉, (A11)

X(+1,+1) = 〈↓A↓B, 0φ|Ψ̃out〉∗

= −
∫ ∞

−∞
dt1

∫ t1

−∞
dt2〈↑A↑B |〈0φ|Ṽ(t2)Ṽ(t1)|0φ〉| ↓A↓B〉

= −2
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 eiΩ(t1+t2)g(t1)g(t2)〈0φ|φ(xB − xA, t2 − t1)φ(0)|0φ〉, (A12)

where we used the translation invariant of the vacuum state for Equation (A11). Due to the time
reversal invariance of the Minkowski vacuum, X(−1,−1) is rewritten as

X(−1,−1) = −2
∫ ∞

−∞
dt1

∫ ∞

t1

dt2 g(−t1 + t0)g(−t2 + t0) eiΩ(t1+t2)−2iΩt0 〈0φ|φ(xB − xA, t2 − t1)φ(0)|0φ〉. (A13)

The switching function g(t) is a Gaussian function, and g(t + t0) = g(−t + t0) holds. Thus,

X(−1,−1) = −2
∫ ∞

−∞
dt1

∫ ∞

t1

dt2 g(t1 + t0)g(t2 + t0) eiΩ(t1+t2)−2iΩt0 〈0φ|φ(xB − xA, t2 − t1)φ(0)|0φ〉

= −2
∫ ∞

−∞
dt1

∫ ∞

t1

dt2 g(t1)g(t2) eiΩ(t1+t2)−4iΩt0 〈0φ|φ(xB − xA, t2 − t1)φ(0)|0φ〉

= e−4iΩt0 X(+1,+1), (A14)

and we get the equality |X(−1,−1)| = |X(+1,+1)|.
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