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Abstract: A definition of three-variable cumulative residual entropy is introduced, and then used to
obtain expressions for higher order or triple-wise correlation measures, that are based on cumulative
residual densities. These information measures are calculated in continuous variable quantum
systems comprised of three oscillators, and their behaviour compared to the analogous measures from
Shannon information theory. There is an overall consistency in the behaviour of the newly introduced
measures as compared to the Shannon ones. There are, however, differences in interpretation,
in the case of three uncoupled oscillators, where the correlation is due to wave function symmetry.
In interacting systems, the cumulative based measures are shown in order to detect salient features,
which are also present in the Shannon based ones.

Keywords: higher order correlation; mutual information; cumulative densities; shannon entropy;
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1. Introduction

One interpretation of quantum mechanics is that of a statistical theory, thus analysis of the
information obtained from the underlying densities of quantum systems is essential in understanding
quantum phenomena. Important tools for interpreting this behaviour have evolved from consideration
of position and momentum densities. A key theme in this regard is the measure of the uncertainty
that is inherent in any probability distribution. A related concept for distributions with two or more
variables is the quantification of the statistical correlation that exists between variables. One way
to achieve these goals is with Shannon information theory [1,2], where the central quantity is an
information entropy.

The original definition of Shannon entropy is in terms of N discrete random variables

S = −
N

∑
i=1

pi ln pi, (1)

where
N
∑

i=1
pi = 1 and pi is the probability of the ith event. This entropy has properties, such as being

bounded and positive-definite (S ≥ 0), since 0 ≤ pi ≤ 1. The interpretation of the entropy is that
of a measure of uncertainty in a random variable. When these variables represent particles, as in
quantum mechanics, the entropy can be interpreted as a measure that is related to the localization or
(de)localization of particles. Smaller entropic values are indicative of a more localized distribution,
while larger values imply a more delocalized one.
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The differential Shannon entropy

Sx = −
∫ ∞

−∞
ρ(x) ln ρ(x)dx, (2)

should be used when examining the probability densities with continuous variables. The density, ρ(x),

is normalized,
∞∫
−∞

ρ(x)dx = 1, over the region [−∞, ∞]. However, ρ(x) is not necessarily bounded as

in the discrete case, which can lead to negative values of the entropy. Furthermore, there has been
discussion as to the dimensional consistency, in particular when the density inside the logarithmic
argument contains units [3–6]. Nevertheless, the use of Shannon and related entropies has seen
widespread application in the study of a variety of different quantum systems [5,7–43]. This popularity
is perhaps due to the formulation of the Heisenberg uncertainty principle in terms of D-dimensional
entropic uncertainty relationships [44,45]

SD
T = SD

x + SD
p ≥ D(1 + ln π). (3)

S1
x is given in Equation (2) by taking ρ(x) as the position space density of quantum systems, while S1

p
is obtained by substituting ρ(x) with the corresponding momentum space density. This uncertainty
relation has provided the motivation for the examination and discussion of Shannon entropies in both
position and momentum representations.

One approach to overcome the difficulties that are presented by differential entropy is to examine
cumulative probability densities, instead of the parent density, ρ(x). These densities are bounded by
unity, are positive-definite, and are dimensionless. The survival (cumulative residual), sux(a) and
cumulative cux(a) densities, are defined in terms of the parent density as

sux(a) = P(x > a) =
∫ ∞

a
ρ(x)dx = 1− cux(a) with cux(a) = P(x ≤ a) =

∫ a

−∞
ρ(x)dx. (4)

In particular, one can define an entropy for the sux(a) density by

εa = −
∫ ∞

−∞
sux(a) ln sux(a)da. (5)

This definition is referred to as the cumulative residual entropy (CRE) [46]. Entropic definitions
for the cux(a) density have also been considered [46]. The question to be asked is, if the interpretations
obtained from εa and Sx are consistent in nature, when applied to continuous variable quantum
systems. The behaviours of Sx and εa have been compared and contrasted in some representative
continuous variable quantum systems, where differences have been observed [47].

2. Two-Variable Information Measures

2.1. Entropies from Two-Variable Distributions

The definitions that were encountered in the previous section can also be applied to two-variable
distributions. Such distributions are encountered when one considers two-particle (variable) quantum
systems. The pair differential Shannon entropy is defined in terms of the joint or two-variable
probability distribution Γ(x1, x2), as

SΓ = −
∫ ∞

−∞

∫ ∞

−∞
Γ(x1, x2) ln Γ(x1, x2)dx1dx2. (6)

The pair and one-variable Shannon entropies are related through

SΓ = Sx + S(x2|x1), (7)
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where the second term is a conditional entropy or conditional expected value

E[S(x2|x1)] = S(x2|x1) = −
∫ ∞

−∞

∫ ∞

−∞
Γ(x1, x2) ln

[
Γ(x1, x2)

ρ(x1)

]
dx1dx2, (8)

and ρ(x1) =
∫ ∞
−∞ Γ(x1, x2)dx2. Note that, for indistinguishable quantum systems, ρ(x1) = ρ(x2) =

ρ(x), in the notation used.
A joint cumulative probability distribution can be defined in terms of the parent two-variable

distribution as

cux(a, b) = P(x1 ≤ a, x2 ≤ b) =
∫ a

−∞

∫ b

−∞
Γ(x1, x2)dx1dx2, (9)

while the joint survival (cumulative residual) density is

sux(a, b) = P(x1 > a, x2 > b) =
∫ ∞

a

∫ ∞

b
Γ(x1, x2)dx1dx2. (10)

It is possible to use the cumulative residual density to establish a pair cumulative residual entropy,
analogous to the pair entropy, as

εab = −
∫ ∞

−∞

∫ ∞

−∞
sux(a, b) ln sux(a, b)dadb. (11)

However, there is difficulty in applying this definition, since the preceding integral diverges in
the case of infinite support. On the other hand, it is convergent in the case of finite support.

To obtain a suitable definition of the pair cumulative residual entropy, one can consider the joint
cumulative residual entropy (JCRE) [46], which is expressed in an analogous manner to Equation (7), as

JCRE = εa + E[ε(b|x1)]. (12)

The last term,

E[ε(b|x1)] = −
∫ ∞

−∞

∫ ∞

−∞
P(x1, x2 > b) ln

[
P(x1, x2 > b)

ρ(x1)

]
dbdx1, (13)

is the expected value of

ε(b|x1) = −
∫ ∞

−∞

P(x1, x2 > b)
ρ(x1)

ln
[

P(x1, x2 > b)
ρ(x1)

]
db, (14)

where

P(x1, x2 > b) =
∫ ∞

b
Γ(x1, x2)dx2. (15)

In the above, note that E[ε(b|x1)] = E[ε(a|x2)], in quantum systems with indistinguishable
particles. The behaviours of SΓ and JCRE have been compared and contrasted in two-particle quantum
systems [47].

2.2. Pairwise Statistical Correlation Measures

Another fundamental quantity in information theory is the Mutual Information (MI). It quantifies
the pairwise correlation between two variables [2], and it is defined as
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Ix =
∫ ∞

−∞

∫ ∞

−∞
Γ(x1, x2) ln

[
Γ(x1, x2)

ρ(x1)ρ(x2)

]
dx1dx2 ≥ 0,

= Sx − S(x1|x2), (16)

where the last term is the expectation, E[S(x1|x2)] = S(x1|x2). Measures of pairwise statistical
correlation have been used in order to interpret the types and strength of interparticle correlations
present in quantum systems [48] . The idea here is that the statistical correlation measures can be used to
examine how particle interaction is encoded into the densities and wave functions of quantum systems.

Measures, such as the correlation energy [49], are employed in quantum chemistry to gauge the
correlation effects in approximate wave functions. The correlation coefficient has also been used to
quantify and examine correlation in quantum systems [50,51]. It is defined in terms of the covariance as

τx =
Cov(x1, x2)

σx1 σx2

=
〈x1x2〉 − 〈x1〉〈x2〉√

〈x2
1〉 − 〈x1〉2

√
〈x2

2〉 − 〈x2〉2
. (17)

The expectation values are

〈x1x2〉 =
∫ ∞

−∞

∫ ∞

−∞
x1x2Γ(x1, x2)dx1dx2, (18)

〈x1〉 = 〈x2〉 = 〈x〉 =
∫ ∞

−∞
xρ(x)dx, (19)

〈x2
1〉 = 〈x2

2〉 = 〈x2〉 =
∫ ∞

−∞
x2ρ(x)dx, (20)

for indistinguishable quantum systems. τx is known to be sensitive to linear correlations. MI, on the
other hand, is a more general measure of correlation, which is capable of detecting non-linear
dependencies. However, the correlation coefficient is bounded by −1 < τx < 1; thus, it is able
to detect differences between positive and negative correlations. That is, when the variables move in
the same or opposite directions. The behaviours and properties of MI and the correlation coefficient
have been examined in two-particle quantum systems [48].

The second expression that is given in Equation (16) can be used to establish an analogous
definition of MI in terms of cumulative entropies, which is called the cross cumulative residual entropy
(CCRE) [46,52,53],

CCRE = εa − E[ε(b|x1)]. (21)

CCRE and MI have been compared in two-particle quantum systems [47]. The questions
to be addressed are the following: are the behaviours and interpretations obtained from the
cumulative-based measures, consistent with the Shannon-based ones, when addressing continuous
variable systems? Are there systems that present inconsistencies in the interpretations that arise from
the two sets of measures? These two-variable cumulative measures, along with three-variable ones that
will be presented in subsequent sections, have not been examined in three-particle (variable) quantum
systems. Two-variable measures in this case depend on the properties of the reduced two-variable
(particle) densities.

3. Three-Variable Information Measures

3.1. Entropies from Three-Variable Distributions

The focus of this work is the study of the information quantities in three-variable (particle)
quantum systems. The Shannon differential entropy for the three-variable case is defined in terms of
the wave function, as
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SΨ = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ(x1, x2, x3)|2 ln

[
|Ψ(x1, x2, x3)|2

]
dx1dx2dx3. (22)

In such systems, the two-variable density is a reduced one and it is defined as

Γ(x1, x2) =
∫ ∞

−∞
|Ψ(x1, x2, x3)|2dx3, (23)

where the integration can be carried out over any of the three variables due to indistinguishability.
A chain relation similar to Equation (7) exists for the three-variable entropy [2] as

SΨ = Sx + S(x2|x1) + S(x3|x1x2) = SΓ + S(x3|x1x2), (24)

where the last term is a conditional expected value

E[S(x3|x1x2)] = S(x3|x1x2) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ(x1, x2, x3)|2 ln

[
|Ψ(x1, x2, x3)|2

Γ(x1, x2)

]
dx1dx2dx3. (25)

Equation (24) above can be used in order to obtain an analogous expression for the three-variable
cumulative residual entropy TCRE

TCRE = εa + E[ε(b|x1)] + E[ε(c|x1x2)] = JCRE + E[ε(c|x1x2)], (26)

where

ε(c|x1x2) = −
∫ ∞

−∞

P(x1, x2, x3 > c)
Γ(x1, x2)

ln
[

P(x1, x2, x3 > c)
Γ(x1, x2)

]
dc, (27)

and

E[ε(c|x1x2)] = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
P(x1, x2, x3 > c) ln

[
P(x1, x2, x3 > c)

Γ(x1, x2)

]
dx1dx2dc, (28)

with
P(x1, x2, x3 > c) =

∫ ∞

c
|Ψ(x1, x2, x3)|2dx3. (29)

We emphasise that this definition of TCRE has not, to our knowledge, been presented before,
nor has it been studied in continuous variable quantum systems.

3.2. Triple-Wise Statistical Correlation Measures

The concept of pairwise statistical correlation is a standard one, which has been applied in many
fields of science. On the other hand, the quantification and examination of triple-wise correlations
are not nearly so well-established. These higher-order correlations represent the interactions among
the three particles (variables) as a group, and go beyond the pairwise interactions. There is current
interest in quantifying higher-order or triple-wise correlations in various disciplines, which range from
the neurosciences [54–56], to applications in big data analysis [57]. One of the goals of this work is to
examine these higher-order correlations in continuous variable systems, and to extend the definitions
of higher-order correlations to the consideration of cumulative densities. Higher-order measures have
been examined in systems with discrete distributions [58,59], but little has been done to extend these
studies to continuous variable systems [60,61].

The interaction information [2,58–63] takes into account the correlation or interaction among the
three variables and it is expressed as

I3
x =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ(x1, x2, x3)|2 ln

[
|Ψ(x1, x2, x3)|2ρ(x1)ρ(x2)ρ(x3)

Γ(x1, x2)Γ(x1, x3)Γ(x2, x3)

]
dx1dx2dx3,

= 3SΓ − 3Sx − SΨ = (SΓ + Sx − SΨ)− 2Ix. (30)



Quantum Rep. 2020, 2 565

The last equality or grouping is meant to express I3
x as a difference between two positive terms.

The second one is referred to as the redundancy because it contains information about the pairwise
correlation (2Ix). The first term has the information regarding how the three variables are correlated as
a group. This term is called the synergy. I3

x is positive when the synergic first term dominates, while it
is negative when the redundancy, or twice the pair correlation, is larger than the synergic term.

One can obtain an expression for higher-order or triple-wise correlation, based on cumulative
densities (TCCRE), by substituting the expressions for SΨ and SΓ from Equations (7) and (24),
into Equation (30), to yield

TCCRE = 2E[ε(b|x1)]− εa − E[ε(c|x1x2)],

= (JCRE + CRE− TCRE)− 2CCRE. (31)

Another triple-wise information measure that can be formulated is the total correlation [64,65]

Ix
3 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ(x1, x2, x3)|2 ln

[
|Ψ(x1, x2, x3)|2

ρ(x1)ρ(x2)ρ(x3)

]
dx1dx2dx3,

= 3Sx − SΨ. (32)

Taking the difference, (Ix
3 − I3

x), yields 3Ix, which shows that the correlations that are included in
Ix
3 , which are not present in I3

x , are pairwise ones.
Thus, the corresponding total cumulative correlation TcCCRE in terms of cumulative densities is

defined as
TcCCRE = 3CRE− TCRE. (33)

TCCRE and TcCCRE have not been previously discussed in the literature.
It is also possible to extend the concept of the correlation coefficient in order to consider triple-wise

correlations, by using moments of the distribution to define the correlation in terms of joint cumulants.
The second joint cumulant is the covariance or numerator of the correlation coefficient. The third joint
cumulant of interest here is

κ(x1x2x3) = 〈x1x2x3〉 − 〈x1x2〉〈x3〉 − 〈x1x3〉〈x2〉 − 〈x2x3〉〈x1〉+ 2〈x1〉〈x2〉〈x3〉,
=
[
〈x1x2x3〉 − 〈x2x3〉〈x1〉

]
− Cov(x1, x2)〈x3〉 − Cov(x1, x3)〈x2〉, (34)

where
〈x1x2x3〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x1x2x3|Ψ(x1, x2, x3)|2dx1dx2dx3. (35)

One can highlight the similarities between the cumulant and higher-order Shannon measures by
considering the indistinguishable case,

κ(x1x2x3) = 〈x1x2x3〉 − 3〈x1x2〉〈x〉+ 2〈x〉3,

=
[
〈x1x2x3〉 − 〈x1x2〉〈x〉

]
− 2Cov(x1, x2)〈x〉. (36)

This last expression is similar in nature to the last equality for I3
x in Equation (30), where there is a

subtraction of the pair correlation, through the 2Ix term. Taking the difference between 〈x1x2x3〉 − 〈x〉3,
and κ(x1, x2, x3) from the previous equation yields 3Cov(x1, x2)〈x〉. This expression, which quantifies
the pair correlation, resembles the 3Ix term, is obtained from the (Ix

3 − I3
x) difference.

The goal of this work is to compare and contrast the behaviour of the measures thta are based on
the cumulative densities, with their counterpart measures from Shannon theory. Special emphasis is
placed on the higher-order measures, since the definitions for TCRE, TcCCRE, and TCCRE introduced
here are new ones. Furthermore, the one- and two-variable cumulative measures have not been
examined in three-particle systems. That is, when the parent densities are ones that have been
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reduced by integration. Pertinent results from both position and momentum space are presented.
The cumulative based measures have not been previously studied in momentum space. All of the
measures in momentum space are easily obtained by replacing Ψ(x1, x2, x3) with Φ(p1, p2, p3), Γ(x1, x2)

with Π(p1, p2), and ρ(x) with π(p), in the corresponding position space expressions. These measures
are not explicitly given for the sake of brevity.

Three-particle uncoupled and coupled oscillator systems, whose wave functions are analytically
representable, are used in this study. In the coupled scenario, we examine the effects of the presence
of an attractive or repulsive pair potential on the information measures. In the uncoupled case,
the effects of indistinguishability on the information measures are explored. The next section presents
the uncoupled and coupled wave functions.

4. Three Uncoupled and Coupled Oscillators

Non-interacting oscillator wave functions are orbital products of the harmonic oscillator
wave function

φn(x) =

√
ω1/2

2nn!π1/2 e−ωx2/2Hn(
√

ωx), (37)

where we consider (anti)symmetrized determinantal products to build symmetric and antisymmetric
wave functions

Ψ(x1, x2, x3) =
1√
6
|φn1(x1)φn2(x2)φn3(x3)|. (38)

The momentum space representation of the orbitals is

φ̃n(p) =

√
1

2nn!(ωπ)1/2 e−p2/2ω Hn

(
p√
ω

)
, (39)

with wave functions
Φ(p1, p2, p3) =

1√
6
|φ̃n1(p1)φ̃n2(p2)φ̃n3(p3)|. (40)

The Hamiltonian for the three interacting oscillators is

H = −1
2

(
∂2

∂x2
1
+

∂2

∂x2
2
+

∂2

∂x2
3

)
+

1
2

ω2(x2
1 + x2

2 + x2
3) +

1
2

λ2[(x1− x2)
2 + (x1− x3)

2 + (x2− x3)
2]. (41)

We use units of h̄ = m = 1. ω can be identified with the natural frequency of the oscillators,
while λ controls the strength of the two-particle interactions. The positive sign corresponds to attractive
potentials while the negative sign to repulsive ones.

The eigenfunctions for three interacting harmonic oscillators are written as a product of three
harmonic oscillator eigenfunctions in Jacobi coordinates [66,67]

ΨnRnr1 nr2
(R, r1, r2) = ψnR(R)ψnr1

(r1)ψnr2
(r2) = |nRnr1 nr2〉 , (42)

where

ψnR(R) =
(

α1
1
4

2nR nR!π
1
2

) 1
2

e−
1
2
√

α1R2
HnR

(
α

1
4
1 R
)

, (43)

ψnr1
(r1) =

(
α2

1
4

2nr1 nr1 !π
1
2

) 1
2

e−
1
2
√

α2r2
1 Hnr1

(
α

1
4
2 r1

)
, (44)

ψnr2
(r2) =

(
α3

1
4

2nr2 nr2 !π
1
2

) 1
2

e−
1
2
√

α3r2
2 Hnr2

(
α

1
4
3 r2

)
. (45)
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The cyclic permutation of Jacobi coordinates (R, r1, r2)

R = R′ = R′′ =
1√
3
(x1 + x2 + x3), (46)

r1 =
1√
6
(−2x1 + x2 + x3), r′1 =

1√
6
(x1 − 2x2 + x3), r′′1 =

1√
6
(x1 + x2 − 2x3), (47)

r2 =
1√
2
(x2 − x3), r′2 =

1√
2
(x3 − x1), r′′2 =

1√
2
(x1 − x2), (48)

allows for quantum numbers to be defined as nR = nR′ = nR′′ for the center-of-mass coordinates R,
and nr1 = nr′1

= nr′′1
and nr2 = nr′2

= nr′′2
, for the relative coordinates r1 and r2.

The wave function in momentum space can be obtained by either applying the Fourier transform
or solving the Hamiltonian in the momentum representation. These procedures lead to wave functions
that are analogous to Equations (42)–(45), by making the substitutions R→ Q, r1 → q1 and r2 → q2.
Q, q1 and q2 are defined similarly to Equations (46)–(48), by substituting xi → pi and αj → 1/αj.

On the other hand, antisymmetric wave functions for interacting harmonic oscillators with spin
included are obtained [67]

N
[(
|nR′′nr′′1

nr′′2
〉 |++−〉+ |nR′nr′1

nr′2
〉 |+−+〉+ |nRnr1 nr2〉 |−++〉

)]
, (49)

for odd values of nr2 . Through this procedure we obtain the spin-traced density function in position
space as

N2
[
|nRnr1 nr2〉 〈nRnr1 nr2 |+ |nR′nr′1

nr′2
〉 〈nR′nr′1

nr′2
|+ |nR′′nr′′1

nr′′2
〉 〈nR′′nr′′1

nr′′2
|
]
. (50)

5. Results

The presentation of the results is divided into subsections for the uncoupled and coupled
oscillators. The behaviours of the information measures in the uncoupled oscillators are examined
as a function of the ω frequency. We then turn our attention to the coupled oscillators, and how
the measures vary with the coupling strength λ, in the presence of an attractive or repulsive pair
potential. The principal goal of this discussion is the comparison of the Shannon and cumulative
density measures in different environments. Appendix A presents a discussion of the entropic sums
for these systems.

5.1. Uncoupled Oscillators

Figure 1 presents the behaviour of the Shannon and cumulative entropies as a function of ω.
All of the entropies decrease with ω, thus the cumulative and Shannon entropies are consistent in
their interpretation. That is, the underlying densities localize with increasing ω. Note that SΨ and SΓ

become negative-valued at larger values of ω. However, TCRE and JCRE remain positive, illustrating
the property of the cumulative survival densities to be bounded between zero and one, which provides
positive-valued entropies.

The second row of Figure 1 shows the Shannon and cumulative correlation measures. The two
sets of measures exhibit a major difference in their behaviours. The Shannon measures are constant
with ω. The interpretations from these measures are that both the pair and higher-order statistical
correlations, due to the symmetry of the wave function, are constant with ω. On the other hand,
the cumulative based measures all decay with ω. Thus, the magnitude of the correlations decrease
with ω. The interpretations that were obtained from the two distinct viewpoints are not consistent.
The correlation coefficient is constant with ω and negative-valued. Hence, the behaviours of Ix and τx

are consistent.
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Figure 1. First row: Plots of three-, two-, and one-variable Shannon entropies (solid lines) and TCRE,
JCRE y CRE (dashed lines) in position space vs ω. Second row: Plots of Ix

3 , Ix and I3
x (solid lines)

and TcCCRE, CCRE y TCCRE (dashed lines) in position space vs ω. The green dashed lines are
0.2 ∗ TcCCRE/CCRE, CCRE/CRE and 0.3 ∗ TCCRE/CCRE, respectively. All of the plots correspond
to the antisymmetric wave function of the |012〉 state.

A constant behaviour as a function of ω can be recovered from the cumulative measures,
if one rescales the quantities. These curves are presented in Figure 1. CCRE/CRE, TcCCRE/CCRE
and TCCRE/CCRE, are constant for all values of ω. This result illustrates that the one- , two-,
and three-variable cumulative entropies possess the same ω-dependence. Rescaling thus allows one to
recapture an interpretation which is consistent with the Shannon measures. That is, the pairwise and
higher-order correlations are constant in these uncoupled systems.

Figure 2 presents the measures in momentum space. The Shannon and cumulative entropies
now all increase with ω, and are consistent in their behaviour. That is, the momentum space densities
delocalize with increasing ω. The Shannon based correlation measures are all constant, as in position
space, while the cumulative based measures now increase with ω. Thus, the inconsistencies in
the interpretations that were obtained from the Shannon and cumulative based measures are also
present in momentum space. Furthermore, the interpretation from the cumulative measures is that the
magnitude of the correlation increases with ω, in momentum space, while it decreases in position space.
The correlation coefficient here is constant with ω and positive-valued. Hence, Ix and τp are consistent
in their behaviour. As in position space, rescaling the cumulative measures yields a constant behaviour,
which is consistent with the Shannon measures. The same types of results were also observed for the
corresponding symmetric state wave function and are not presented.
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Figure 2. First row: plots of three-, two-, and one-variable Shannon entropies (solid lines) and TCRE,
JCRE y CRE (dashed lines) in momentum space vs ω. Second row: plots of Ip

3 , Ip and I3
p (solid lines)

and TcCCRE, CCRE y TCCRE (dashed lines) in momentum space vs ω. The green dashed lines are
0.2 ∗ TcCCRE/CCRE, CCRE/CRE and 0.3 ∗ TCCRE/CCRE, respectively. All of the plots correspond
to the antisymmetric wave function of the |012〉 state.

5.2. Interacting Oscillators: Symmetric Wave Function

We now turn our attention to the interacting system |000〉with attractive pair potential, in position
space and ω = 1.0. Figure 3 shows the behaviours of the entropic measures as a function of coupling
strength λ.
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Figure 3. Plots of three-, two-, and one-variable Shannon entropies (solid lines) and TCRE, JCRE,
and CRE (dashed lines) vs the coupling strength λ, in position space, for the |000〉 state with attractive
potential and ω = 1.0.

The Shannon and cumulative entropies decrease with increasing λ and are consistent in their
behaviour, although the exhibited functional forms are different. TCRE retains its positivity at larger
λ, while SΨ is negative-valued.

The left column of Figure 4 presents plots of the one-variable reduced parent and survival densities
in position space. One can appreciate the differences between the two forms of densities. One can
also observe how the increase in intensity of the attractive pair potential leads to a localization of
both densities around the origin. This localization is captured by decreasing entropies in Figure 3.
There is another difference between the parent and survival densities. While the parent densities are
analytically representable, there are no closed form expressions for the survival densities in these
systems. These survival densities are calculated by the numerical integration of the parent densities.
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Figure 4. Plots of one-variable reduced parent and cumulative survival densities in position space
(left column) and in momentum space (right column) for attractive potentials λ = 0.1 (blue), λ = 2
(red) and λ = 5 (green) in the |000〉 state with ω = 1.0.

The magnitudes of the Shannon and cumulative correlation measures in Figure 5, increase with
λ, and are consistent in their behaviour. Thus, pairwise and higher-order statistical correlations
increase with the strength of the pair potential. This consistency among the behaviours of the
Shannon and cumulative measures is distinct from the non-interacting case presented in Figure 1.
Hence, the interpretation that was obtained from the two sets of measures is now consistent,
when interaction is included. Rescaling the cumulant measures results in curves that have a similar
behaviour to the unscaled curves. Thus we do not pursue this further in these cases. Note also that both
I3
x and TCCRE are increasingly negative-valued with λ. The interpretation here from both measures is

that the dominant higher-order interactions are redundant in nature. All of the correlation measures
go to zero as the coupling is turned off (λ→ 0).
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Figure 5. Plots of Ix
3 , Ix and I3

x (solid lines) and TcCCRE, CCRE and TCCRE (dashed lines) vs. the
coupling strength λ, in position space, for the |000〉 state with attractive potential and ω = 1.0.

The top row of Figure 6 shows the behaviour of the Shannon and cumulative measures for the
|000〉 state in momentum space. One can observe that the Shannon and cumulative entropies increase
with λ. Both sets of measures are consistent in their interpretations. That is, the underlying densities
delocalize with an increasing intensity of the attractive potential. The delocalization of the one-variable
densities in momentum space, as λ increases, can be seen from the group of plots in the right hand
column of Figure 4.
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Figure 6. First row: plots of three-, two- and one-variable Shannon entropies (solid lines) and TCRE,
JCRE and CRE (dashed lines) vs the coupling strength λ, in momentum space. Second row: Plots of
Ip
3 , Ip and I3

p (solid lines) and TcCCRE, CCRE, and TCCRE (dashed lines) vs. the coupling strength λ,
in momentum space. All of the plots correspond to the |000〉 state with attractive potential and ω = 1.0.

The bottom row of Figure 6 illustrates that the respective Shannon and cumulative correlation
measures have a consistent behaviour in momentum space, since all measures increase with λ. All of
the measures are zero with no coupling. This consistency in behaviour is different from the previously
examined case of non-interacting oscillators, as presented in Figure 2. The results for the state with a
repulsive potential are not presented. All Shannon and cumulative measures in these systems were
observed to display consistent behaviour.

5.3. Interacting Oscillators: Antisymmetric Wave Function

The results for the interacting |001〉 state with attractive potential in position space, and repulsive
one in momentum space, are presented in this section. These examples were chosen since the
Shannon measures present interesting behaviour [60]. We will focus our attention here on the statistical
correlation measures. All Shannon and cumulative entropies for this state, with attractive and repulsive
potentials and, in position and momentum space, exhibit a consistent behaviour as in the previous
figures. These plots are not presented.

Figure 7 gives the behaviour of the correlation measures for the attractive potential in position
space. There are minima present that are features of this state [60]. The minima indicate that correlation
actually decreases with increasing λ, before it begins to increase at larger coupling strength. It is
significant that the minimum in Ix

3 at smaller λ, is also captured by TcCCRE. The corresponding
minimum in Ix also appears in CCRE. However, note that the locations of the minima in the Shannon
measures are slightly different from the cumulative-based ones. This is especially true for the Ix,
CCRE pair.
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Figure 7. Plots of Ix
3 , Ix and I3

x (solid line) and TcCCRE, CCRE and TCCRE (dashed line) vs. the
coupling strength λ, in position space for the |001〉 state with attractive potential and ω = 1.0.
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The synergic behaviour, when the dominant interactions occur as a group, is picked up by both
I3
x and TCCRE (positive valued), at smaller values of λ. The transition from synergic to redundant

dominance (positive to negative) in I3
x is also caught by TCCRE. Thus, the interpretations that were

obtained from the Shannon and cumulative-based measures are consistent. The correlation measures
here do not go to zero as the interaction is turned off. This is due to the wave function symmetry.
That is, the wave function when λ is zero, is not a separable one.

The presence of the minima in Ix and CCRE can be investigated by examining τx. This is presented
in Figure 8. The location of the minima in Ix and CCRE, correspond to the regions of λ where τx

changes sign. This value of λ is where the reduced pair density transitions from being negatively
correlated to positively correlated. τx is zero-valued at this point since 〈x1x2〉 is also zero-valued.
This point is also characterised by the transition of 〈x1x2〉 from negative to positive values. On the
other hand, Ix and CCRE cannot be negative, by construction. Thus, these measures detect this
transition with the presence of a minimum.
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Figure 8. Plots of correlation coefficient τ vs the coupling strength λ for the |001〉 state, with attractive
potential in position space (left), and repulsive potential in momentum space (right), with ω = 1.0.
The dashed vertical line bounds the range in which the repulsive potential is real-valued.

One could also consider comparing the behaviour of I3
x and TCCRE with κ(x1x2x3). However,

κ(x1, x2, x3) is zero for all values of λ in these systems and, thus, is unable to capture the effects
of higher-order or triple-wise correlation. This value of zero does not result from a cancellation of
the terms in Equation (36), but rather that both the one- and three-variable expectation values are
zero-valued. This occurs in both position and momentum space.

The corresponding plot for the |001〉 state, with a repulsive potential, in momentum space,
is presented in Figure 9. As in position space, all of the measures have non zero values with no coupling.
There are also minima in Ip

3 and TcCCRE, and in Ip and CCRE, but now at larger values of λ. Both I3
p

and TCCRE exhibit a transition from positive to negative values, at larger λ. Thus, the behaviours of
the Shannon and cumulative measures are similar, and consistent, in momentum space. The point here
is that TcCCRE and CCRE are able to detect the minima that are present in Ip

3 and Ip. The higher-order
measure, TCCRE, detects the positive to negative transition, which is present in I3

p at larger λ.
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Figure 9. Plots of Ip
3 , Ip and I3

p (solid lines) and TcCCRE, CCRE and TCCRE (dashed lines) vs. the
coupling strength λ, in momentum space, for the |001〉 state with repulsive potential and ω = 1.0.
The dashed vertical line bounds the range in which the potential is real-valued.
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Figure 8 shows the behaviour of τp, which can be compared to Ip and CCRE in Figure 9. τp transits
from negative to positive values, in the region of λ, where Ip and CCRE exhibit minima. Both τx and
τp approach unity (perfect correlation), in the limit of large λ.

6. Conclusions

An expression for three-variable entropy, which is based on cumulative residual densities,
is introduced, and it is used to construct higher-order (triple-wise) correlation measures.
The cumulative based measures are compared to the corresponding Shannon ones in continuous
variable quantum systems. These systems consist of three coupled and uncoupled oscillators,
with attractive and repulsive pair potentials, in position and in momentum space. The results show
that the behaviours of the one-, two-, and the newly introduced three-variable cumulative entropies,
are consistent with those obtained from the Shannon entropies, in all studied systems. However,
the Shannon correlation (mutual information) measures are constant as a function of oscillator
frequency in the uncoupled systems, while the cumulative based measures decrease in position
space, and increase in momentum space, as a function of the frequency. Rescaling the cumulative
based measures leads to a constant behaviour, which is consistent with the interpretation that was
obtained from the Shannon ones. On the other hand, the presence of an attractive or repulsive pair
potential in the coupled systems yields that both the Shannon and cumulative correlation measures
are consistent in their interpretations, when examined as a function of coupling strength. This is
particularly relevant in the discussion of the newly introduced higher-order cumulative measures.
The results also give credence to the interpretations that were obtained from the Shannon ones.
The cumulative-based measures detect the presence of minima, which are also present in the Shannon
measures. These minima occur in the regions of coupling strength where the correlation coefficient
changes its sign.
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Appendix A. Entropic Sums

The entropy sums at the one (S1
T), two (S2

T) and three (S3
T) variable levels, as defined in Equation (3),

have been the object of increasing attention and study, due to their connection with the uncertainty
principle. Thus, we will compare and contrast their behaviour to the sums of the position and
momentum space cumulative measures (CRET , JCRET and TCRET).

Figure A1 compares the behaviours for the |012〉 antisymmetric non-interacting state. One can
appreciate differences between the two sets of measures. All Shannon entropy sums are constant
with ω while the cumulative measures all increase with ω. The constant behaviour observed in the
Shannon entropy sums is a result of symmetry. That is, the localization of the position space density
with increasing ω, which results in a smaller position space Shannon entropy, is exactly matched by an
increase in the momentum space Shannon entropy, due to the delocalization of the momentum density
with larger ω. The net effect in the Shannon sum is the observed constant behaviour. The cumulative
measures do not preserve this symmetry. The increase in the momentum space measure, due to
delocalization of the density with increasing ω, is not matched by an equivalent decrease in the
position space measure, due to localization. These same types of behaviour were also observed for the
|012〉 symmetric non-interacting state.
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Figure A1. Position and momentum space Shannon entropy sums (solid lines) for one (S1
T), two (S2

T)
and three (S3

T) variables, along with the corresponding cumulative entropy sums (dashed lines),
(CRET , JCRET , TCRET), as a function of the strength of the harmonic potential ω, for three
non-interacting oscillators in the antisymmetric |012〉 state.

The entropy sums in interacting systems are presented in Figure A2 for the |001〉 antisymmetric
state in the presence of attractive and repulsive potentials. S3

T is constant with the interaction strength
(λ), for both attractive and repulsive potentials, similar to the non-interacting case, and the symmetry
is preserved. However, S2

T and S1
T , obtained from reduced densities, are increasing functions of λ.

Thus, the symmetry is broken in these cases. The increasing behaviour of S2
T and S1

T with λ is matched
by the JCRET and CRET measures. On the other hand, the constant behaviour displayed by S3

T is not
matched by the TCRET measure, which increases with λ. For the repulsive potential, all measures
display a roughly constant behaviour for smaller values of λ. Similar behaviours were also observed
for the |000〉 symmetric state. All bounds for the Shannon entropy sums in Equation (3) are obeyed in
the plots of Figures A1 and A2.

Bounds for the cumulative measures, such as those presented in Equation (3) for the Shannon
sums, have not been reported to date. The ground state harmonic oscillator represents the lower bound
for S1

T in Equation (3). S1
T along with CRET , is presented in Figure A3 for a single oscillator, in order

to contrast the behaviours. The Shannon entropy sum is invariant to the strength of the ω potential
and forms the lower bound of Equation (3), while CRET is an increasing function of the ω potential.
This behaviour is similar to the case of the three non-interacting and interacting oscillators presented
in Figures A1 and A2.
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Figure A2. Position and momentum space Shannon entropy sums (solid lines) for one (S1
T), two (S2

T)
and three (S3

T) variables, along with the corresponding cumulative entropy sums (dashed lines),
(CRET , JCRET , TCRET), as a function of the interaction strength λ, for three interacting oscillators in
the antisymmetric |001〉 state. The top row presents the measures in the presence of attractive potentials
while the bottom row corresponds to repulsive ones.
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ground state harmonic oscillator, as a function of potential strength ω.
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