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Abstract: In the usual Su–Schrieffer–Heeger (SSH) model with an even number of lattice sites,
the topological pumping between left and right edge states cannot be easily realized since the edge
states occupy two-end sites simultaneously. Here we propose a scheme to investigate the topological
edge pumping in an even-sized periodically modulated SSH model mapped by a one dimensional
superconducting transmission line resonators array. We find that the photon initially prepared
in the first resonator can be finally observed at the two-end resonators with a certain proportion.
The final photon splitting at the two-end resonators indicates that the present superconducting
circuit is expected to realize the topological beam splitter. Further, we demonstrate that the splitting
proportion between the two-end resonators can be arbitrarily tuned from 1 to 0, implying the potential
feasibility of implementing the tunable topological beam splitter. Meanwhile, we also show that the
tunable topological beam splitter is immune to the mild disorder added into the system due to the
topology protection of the zero energy modes, and find that the tunable topological beam splitter
is much more robust to the global on-site disorder compared with the nearest neighbor disorder.
Our work greatly extends the practical application of topological matter in quantum information
processing and opens up a new way towards the engineering of topological quantum optical device.

Keywords: topological beam splitter; Su–Schrieffer–Heeger model; superconducting circuit lattice

0. Introduction

Topological insulator [1–4] opens up a new way of material classification in condensed
matter physics due to the distinct topological construction in geometric space. The inequiv-
alent topological construction leads the topological insulator to support the insulating bulk
states and conducting boundary states simultaneously [5–8]. These conducting boundary
states are naturally immune to the disorder and perturbation owing to the topological
protection caused by energy gap [1–4,9–12]. The special robustness of the boundary states
leads them to have various potential applications in quantum optics and quantum in-
formation processing [13–16]. For example, based on the topological boundary state,
the topological interface state laser can be constructed [17–23], in which the topological
laser is protected by the gap and hence immune to the lattice defect. Similarly, the topo-
logically protected boundary states also provide the topological channel to implement the
topological state transfer [24–29], which ensures the topological quantum transmission
between separated nodes. In addition to the topological boundary states, the topological su-
perconductor usually exhibits the non-localized topological excitation [30–35]. The global
fault-tolerant topological quantum computation [36–39] can be naturally constructed if we
encode information via these non-localized topological quasi-particles.

Recently, the topological Su–Schrieffer–Heeger (SSH) model [40–43], which can be
easily constructed by arranging the dimerized sublattice in one dimensional (1D) space,
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has attracted increasing attention due to the structural simplicity and the existence of zero
energy topological boundary states. Under the open boundary condition, the translation
symmetry of the sublattice is broken, leading to the existence of the boundary states at the
two-end sites [42–48]. For example, corresponding to an SSH model with an odd number of
lattice sites, the system has a zero energy mode being localized at the leftmost site when the
intra-cell coupling is weaker than the inter-cell coupling or being localized at the rightmost
site when the intra-cell coupling is larger than the inter-cell coupling. In this way, if we
modulate the intra-cell and inter-cell couplings periodically, the zero energy mode in the
odd-sized SSH model naturally provides the topological channel to realize the topological
edge pumping between topological left and right boundary states [25,49]. However, for the
SSH model with the even number of lattice sites, the different open boundary conditions
make the SSH model have two boundary states being localized at the both ends of the
system simultaneously when the intra-cell coupling is weaker than the inter-cell coupling,
resulting in that it seems difficult to realize the topological pumping between the two-end
sites because the two-end sites are occupied simultaneously. An effective way to handle the
above obstacle is that we introduce the staggered onsite potential, such as the Rice–Mele
(RM) pumping [50]. Note that, on the basis of RM pumping, we have realized a topological
beam splitter induced by the long-range hopping, in which the initial particle can be finally
observed at the first two sites with the approximately equal proportions [51]. The question
is that, when the staggered onsite potential and long-range hopping are vanishing, can
the similar topological beam splitter still be implemented?

To further explore the confusion mentioned above, in this paper, we propose a scheme
to investigate the topological edge state pumping in an SSH chain with the even number
of lattice sites, which is mapped by a 1D superconducting transmission line resonators
array. We demonstrate that the 1D superconducting transmission line resonators array
is equivalent to a periodically modulated SSH model via manipulating the external field.
We find that, after a certain time evolution, the photon initially prepared in the first
resonator appears in the two-end resonators with a certain proportion simultaneously.
We reveal that, if treating the first resonator as one input port and treating the two-end
resonators as two output ports, the present superconducting circuit can be mapped into
a topological beam splitter (TBS), in which the injected photon at the input port can be
finally observed at the two output ports with a certain proportion. Further, we demonstrate
that the output proportion between the two output ports can be tuned to an arbitrary
value, i.e., from 1 to 0. The tunable TBS has great significance in quantum optics and
quantum information processing, such as photon trapping, photon storage, and photon
distribution. Our scheme provides a promising and excellent platform to investigate
topological quantum information processing and topological quantum optical device.

The paper is organized as follows: In Section 1, we demonstrate the 1D superconduct-
ing transmission line resonators array can be mapped into a modulated SSH model with
an even number of lattice sites. In Sections 2 and 3, we reveal that the superconducting-
circuit-based SSH model is equivalent to a tunable TBS in detail. Finally, a conclusion is
given in Section 4.

1. Model and Hamiltonian

Consider a 1D transmission line resonators array, as depicted in Figure 1. In this
array, two adjacent resonators an (an+1) and bn are coupled to each other via the auxiliary
superconducting qubit Q1 (Q2) with the coupling strength g1 (g2). Note that the energy
level space ω1 (ω2) of the superconducting qubit Q1 (Q2) can be modulated via the magnetic
flux provided by a flux-bias line (FBL) [52–54]. Then, the system can be described by the
Hamiltonian H = H0 + Hhop (h̄ = 1), with

H0 = ∑
n

[
ωaa†

nan + ωbb†
nbn +

ω1

2
σz

1,n +
ω2

2
σz

2,n

]
,

Hhop = ∑
n

[
g1σ+

1,n(an + bn) + g2σ+
2,n(an+1 + bn) + H.c.

]
. (1)
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Figure 1. The diagrammatic sketch of the 1D transmission line resonators array. The resonators
array is composed by N unit cells (resonators an and bn are set as one unit cell), in which the two
resonators in a unit cell are coupled to each other via a mediated superconducting qubit Q1 while the
two resonators belonging to two adjacent unit cells are coupled to each other via another mediated
superconducting qubit Q2. The energy level space of each superconducting qubit can be tuned via
magnetic flux provided by a flux-bias line (FBL). The size of the resonators array is 2N.

Here H0 is the free energy of resonators and qubits with resonator frequency ωa (ωb)
and Pauli z operator σz

1,n = |e〉1,n〈e| − |g〉1,n〈g| (σz
2,n = |e〉2,n〈e| − |g〉2,n〈g|). Hhop denotes

the coupling between two adjacent resonators via qubit Q1 (Q2), in which σ+
1,n = |e〉1,n〈g|

(σ+
2,n = |e〉2,n〈g|) is the excitation of the superconducting qubit Q1 (Q2), with |g〉 and |e〉

being the ground and excited states.
In the rotating frame with respect to the external driving frequency ωd and the free

energy of qubits, the Hamiltonian in the dispersive regime can be written as H
′
= H

′
0 +

H
′
hop, with

H
′
0 = ∑

n
∆aa†

nan + ∆bb†
nbn,

H
′
hop = ∑

n

g2
1

∆1

[
(|e〉1,n〈e|ana†

n − |g〉1,n〈g|a†
nan) + (|e〉1,n〈e|bnb†

n − |g〉1,n〈g|b†
nbn)

]
+

g2
2

∆2

[
(|e〉2,n〈e|ana†

n − |g〉2,n〈g|a†
nan) + (|e〉2,n〈e|bnb†

n − |g〉2,n〈g|b†
nbn)

]
+

[
g2

1
∆1

(|e〉1,n〈e|bna†
n − |g〉1,n〈g|a†

nbn) +
g2

2
∆2

(|e〉2,n〈e|bna†
n+1 − |g〉2,n〈g|a†

n+1bn) + H.c.

]
, (2)

where ∆i=a,b,1,2 = ωi − ωd is the detuning of the resonators and qubits. Conveniently,
the couplings between resonators and qubits can be removed by preparing all the qubits
Q1,n (Q2,n) in their ground states, leading to that the total effective Hamiltonian of the
system can be expressed as

He f f = ∑
n
(∆a −

g2
1

∆1
−

g2
2

∆2
)a†

nan + (∆b −
g2

1
∆1
−

g2
2

∆2
)b†

nbn

−
g2

1
∆1

(a†
nbn + b†

nan)−
g2

2
∆2

(a†
n+1bn + b†

nan+1). (3)

The first two terms of the above effective Hamiltonian denote the on-site energy
assisted by superconducting qubits and the last two terms represent the coupling between
two adjacent resonators assisted by qubits. Obviously, the above effective Hamiltonian only
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possessing the on-site energy and the nearest neighbor (NN) hopping terms is equivalent to
the tight-binding Hamiltonian in form, which provides the basis of the photonic mapping
of the topological insulator, such as the photonic SSH model.

As revealed in Figure 1, the energy level space of the superconducting qubits can
be tuned via the magnetic flux provided by an external FBL. Thus, the qubits detuning
originating from the energy level space of qubits can also be modulated by the external
field, such as 1

∆1
= 1− cos θ and 1

∆2
= 1 + cos θ, with θ being the modulated parameter

in range of θ ∈ [0, 2π]. Note that, for simplicity, we set the resonator-qubit coupling
−g2

1 = −g2
2 = 1 as the energy unit. In this way, after neglecting some constant terms and

resetting the energy zero point about the resonator detuning, the final effective Hamiltonian
can be written as

He f f = ∑
n

t1a†
nbn + t2a†

n+1bn + H.c., (4)

where the parameters t1 = 1 − cos θ and t2 = 1 + cos θ represent the modulated NN
hopping strengths, showing that the present 1D transmission line resonators array can be
mapped into a modulated photonic SSH model.

For the modulated SSH model with an odd number of lattice sites, there is a zero
energy gap state locating in the whole gap, in which the gap state is mainly occupied
at the leftmost site when t1 < t2 (θ ∈ [0, 0.5π] ∪ [1.5π, 2π]) while it is mainly occupied
at the rightmost site when t1 > t2 (θ ∈ [0.5π, 1.5π]) [25,55]. However, the modulated
SSH model with an even number of lattice sites owns two topologically different phases,
i.e., the topologically nontrivial phase within θ ∈ [0, 0.5π]∪ [1.5π, 2π] and the topologically
trivial phase within θ ∈ [0.5π, 1.5π], and has two degenerate zero energy modes in the
nontrivial region, as shown in Figure 2a. The distribution of one selected zero energy
mode is depicted in Figure 2b–d. The numerical results reveal that the zero energy mode
is simultaneously localized at both the ends of the resonators array with the same half
of distributions in the most range of θ with θ ∈ [0.1π, 0.5π] ∪ [1.5π, 1.9π], as shown in
Figure 2b. However, the zero energy mode exhibits a completely different distribution
pattern at the two-end resonators when θ ∼ 0 (θ ∼ 2π) with θ ∈ [0, 0.1π] (θ ∈ [1.9π, 2π]),
in which the zero energy mode is simultaneously localized at the two both ends with
different distribution proportions, as shown in Figures 2c,d (The different distribution
proportions of the zero energy mode at two-end resonators can be seen from the different
color patterns in Figure 2c,d).

In the previous investigations about the topological edge pumping in the SSH model [25,49],
the topological transfer between the left and right edge states is mainly based on the topo-
logical zero energy channel in the SSH model with only the odd number of lattice sites
due to the fact that the zero energy mode of the odd-sized SSH model does not occupy
the two-end sites simultaneously [49]. Therefore, a question arises: can the topological
edge pumping still be realized via the topological zero energy mode in an even-sized SSH
chain? This is a natural problem because the distributions of zero energy modes at both
ends in the even-sized SSH chain seem to destroy the state transfer channel between the
left and right edge states. Especially, the effects of the special state distributions for zero
energy modes in θ ∈ [0, 0.1π] and θ ∈ [1.9, 2π] on the topological edge pumping in the
even-sized SSH chain are not yet clearly revealed.
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Figure 2. The energy spectrum and the distribution of the zero energy mode. (a) The energy spectrum
of the even-sized Su–Schrieffer–Heeger (SSH) model. The red line represents the (N + 1)th eigenvalue
versus the periodic parameter θ. (b) The eigenstate of the selected zero energy mode (red line in (a))
versus θ and lattice site. The detailed distributions of the selected zero energy mode at the two-end
resonators are shown in (c) with θ ∈ [0, 0.1π] and in (d) with θ ∈ [1.9π, 2π]. The size of the lattice is
2N with N = 10. In the unit of −g2

1 = −g2
2 = 1.

2. Tunable Topological Beam Splitter

Here, to clarify the above confusion clearly, we rewrite the periodic parameter θ as a
time-dependent version with θ = Ωt, in which Ω represents the varying rate and t is the time.
After that, the Hamiltonian becomes H(θt) = ∑n[1− cos(Ωt)]a†

nbn + [1 + cos(Ωt)]a†
n+1bn +

H.c.. In order to further explore the feasibility of the topological state transfer in the
even-sized SSH array, initially, we prepare the photon in the first resonator and use the
time-dependent Hamiltonian H(θt) to evolve it with i d

dt |Ψ〉initial = H(θt)|Ψ〉initial [25,49].
The final photon distributions at the two-end resonators versus the varying rate Ω are
shown in Figure 3a. The detailed patterns of the photon distribution corresponding to
different ranges of Ω are plotted in Figure 3b–d. The numerical results show that, when
Ω is quite small, the distributions of photon at two-end resonators exhibit a relatively
irregular pattern, as shown in Figure 3b. With Ω further increasing, the distributions of
photon at the two-end resonator exhibit a regularly periodic pattern, as shown in Figure 3c.
Especially, we find that, corresponding to a certain range of Ω with the appropriate value,
the distribution of the photon in the first resonator a1 can change from 1 to 0 while the
distribution of the photon in the last resonator bN changes from 0 to 1 simultaneously.
However, when Ω is large enough, the maximal distribution of the photon in the first
resonator a1 cannot reach 1, as shown in Figure 3d. These results indicate that, if we choose
the varying rate Ω appropriately, such as Ω ∈ [4.530× 10−3, 4.554× 10−3], the initial
photon will appear in the first resonator with the distribution from 1 to 0 accompanied
with the distribution in the last resonator from 0 to 1.
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Figure 3. (a) The distributions of photons at the two-end resonators for the evolved final state versus
the varying rate Ω. (b–d) The detailed pattern of the photon distributions at the two-end resonators.
The evolution time is 2π/Ω. Other parameter takes N = 10. In the unit of −g2

1 = −g2
2 = 1.

The above phenomenon illuminates us that, if we treat the first resonator a1 as one
input port and treat the resonators a1 and bN as two output ports, then the photon initially
injected into the input port will appear at the two output ports with the certain proportion.
We stress that it is feasible and reasonable to treat the resonators as input and output
ports since the input and output of each resonator can be individually controlled via
the coupled capacitances [52]. The relevant diagrammatic sketch is depicted in Figure 4.
Obviously, from the perspectives of photon split-flow device, the present topological SSH-
type resonators array can be naturally equivalent to a beam splitter [56–58]. Different from
the usual beam splitter, our proposed beam splitter device has two dominant advantages.
One is that the present topological SSH-type beam splitter is protected by the topology due
to the existence of the zero energy modes, implying that the present beam splitter is a TBS.
Thus, the present TBS is naturally immune to the disorder and perturbation added into the
system, which has great significance for the realization in experiment. Another advantage
is that the splitting proportion between the two output ports can be arbitrarily tuned from
1 to 0, which is different from the usual beam splitter with fixed splitting proportion.

To further verify the feasibility of the TBS, we first prepare the photon at the input
port (resonator a1) and numerically simulate the final distributions of photon at the two
output ports (resonators a1 and bN) after a certain time evolution, as shown in Figure 5.
The numerical results reveal that the TBS with different splitting proportion can indeed
be achieved via choosing different Ω appropriately. For example, when Ω = 0.004530,
we find that the photon initially injected into the input port can be completely exported
from the output port 1 after a certain time evolution, as shown in Figure 5a. However,
when Ω = 0.004538 and after a certain time evolution, we find that the photon initially
injected into the input port finally appears at the two output ports, as shown in Figure 5b.
Especially, the splitting proportion between the output port 1 and output port 2 is 75%:25%,
which is totally different from the case in Figure 5a. Similarly, we can also design the
TBS with the splitting proportions 50%:50% (Figure 5c), 40%:60% (Figure 5d), 20%:80%
(Figure 5e), and even 0%:100% (Figure 5f), via choosing the varying rate Ω appropriately.
These results indicate that the present SSH-type resonators array can be mapped into a TBS
with tunable splitting proportion via modulating the varying rate Ω.
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Figure 4. The sketch of the topological beam splitter. According to the property that the input and
output processes of each resonator can be individually manipulated, the resonators a1 and bN can
be regarded as one input port and two output ports. The topological beam splitter has three ports,
in which the photons coming from the port 1 and finally appear at port 2 and port 3 with a certain
proportion. From this perspective, the present system is equivalent to a beam splitter.

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(a)

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(b)

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(c)

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(d)

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(e)

0 1 2
1

10

20

L
a
tt

ic
e
 s

it
e

0

0.5

1
(f)

Figure 5. The topological beam splitter (TBS) with different splitting proportions when Ω takes
different values. (a) 100%:0% TBS with Ω = 0.004530. (b) 75%:25% TBS with Ω = 0.004538.
(c) 50%:50% TBS with Ω = 0.0045422. (d) 40%:60% TBS with Ω = 0.004544. (e) 20%:80% TBS with
Ω = 0.0045473. (f) 0%:100% TBS with Ω = 0.004554. Other parameter takes N = 10.

We have demonstrated that the tunable TBS can be realized via choosing the ap-
propriate Ω, such as the 100%:0% TBS with Ω = 0.004530 and the 75%:25% TBS with
Ω = 0.004538. Then a question arises naturally: does the 75%:25% TBS originate from the
insufficient evolution caused by the larger Ω = 0.004538 for a given time? To clarify it, we
re-simulate the evolution of different TBSs in Figure 5a–d under the long-time evolution
condition, as shown in Figure 6a–d. The numerical results exhibit that the TBS with dif-
ferent splitting proportions can still be achieved under the long-time evolution, implying
that the tunable TBS is not caused by the insufficient evolution under the same evolution
time. Actually, the TBS with different splitting proportions essentially originates from the
eigenstates of the zero energy modes. As revealed in Figure 2c,d, when θ ∼ 0 and θ ∼ 2π,
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the distribution of the zero energy mode exhibits abundant pattern, namely, the zero energy
mode has various localized eigenstates with different distributions at the two-ends. These
abundant edge eigenstates with different distributions at the two-ends essentially lead
to the achievement of the tunable TBS due to the evolution of the eigenstates of the zero
energy mode (see DISCUSSION for further discussion).
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Figure 6. The different TBSs in Figure 5a–d under the long time evolution. The TBS can still be
achieved under the long time evolution. The parameters are the same as in Figure 5a–d.

The above tunable TBS has numerous potential applications in quantum optics and
quantum information processing. For example, the TBS with the splitting proportions
100% : 0% and 0% : 100% can be effectively used to realize the optical trapping or photon
storage [59,60], which has great significance in the field of quantum information storage.
In addition, the tunable TBS can be readily used to achieve the photon distribution [61,62]
with arbitrary proportion for the injected photon source, which is the essential ingredient
for entanglement preparation and quantum key distribution in quantum information
processing [63,64]. In this way, we can achieve different quantum information processing
tasks only based on the tunable TBS device. Note that, depending on the scalability
of the transmission line resonators at the single site level, the present tunable TBS can
be easily extended to a large scale, which is expected to realize the large scale quantum
information processing, such as long-range photon transmission (0%:100% TBS) and photon
distributions between two distant nodes (TBS with arbitrary splitting proportion).

As mentioned above, the tunable TBS is assisted by the topological zero energy
channel, making that the present tunable TBS is naturally immune to the global disorder
Wδ (W is the disorder strength and δ is the random number in the range of [−0.5, 0.5])
added into the system. To further clarify it, under the large enough disorder samples [25],
we plot the fidelity of the TBS with different splitting proportions when the disorder is
added into the NN hopping and the on-site energy, respectively, as shown in Figure 7.
The numerical results reveal that, when the disorder is added into the NN hopping,
the fidelity of the TBS exhibits an approximate platform in a certain range of the disorder
strength, as shown in Figure 7a. The existence of these platforms indicates that the present
TBS is immune to the mild disorder added into the NN hopping. Differently, when the
mild disorder is added into the on-site energy, we find that the fidelity almost keeps
unchanged with the increasing of the disorder added into the on-site energy, as shown



Quantum Rep. 2021, 3 9

in Figure 7b. These phenomena imply that the present TBS is much more robust to the
on-site disorder compared with the NN disorder since the mild global on-site disorder only
makes the energy spectrum move up (down) slightly (cannot change the distributions of
the zero energy modes). The topology protection of the tunable TBS greatly facilitates the
experimental realization of TBS and provides the possibility for the potential application of
topological insulator in quantum optics and quantum information processing.

-2 -1 -0.5

0.5

1

F
id

el
it

y
(a)

-2 -1 -0.5
0.999

1

F
id

el
it

y

(b)

Figure 7. The fidelities of different TBSs when the random disorder is added into the system.
Note that we neglect the phase information of the evolved final state in the process of calculating
the fidelity. (a) The random disorder is added into the nearest neighbor hopping. (b) The random
disorder is added into the on-site energy. Other parameter takes N = 10.

3. Discussion

The abundant distribution pattern of the zero energy mode in the region of θ ∈ [0, 0.1π]
can be interpreted as the following. Note that the matrix of the Hamiltonian for the system
under open boundary condition can be expressed as

H =


0 t1 0 0 · · ·
t1 0 t2 0 · · ·
0 t2 0 t1 · · ·
0 0 t1 0 · · ·
...

...
...

...
. . .

. (5)

when θ = 0, the intra-cell hopping satisfies t1 = 0, making the above matrix of Hamiltonian
can be easily and analytically solved. Especially, the system has two strict zero energy
solutions E1,2 = 0 accompanied with two zero energy eigenstates |1, 0, 0, ..., 0, 0〉 and
|0, 0, 0, ..., 0, 1〉, implying the existence of the completely localized left and right edge
states. When a finite θ 6= 0 is added into the system, the intra-cell hopping satisfies
t1 6= 0, resulting in the two initial strict zero energy solutions not maintaining the strict
zero energy [65]. On the other hand, the two non-strict zero energy solutions weaken
the complete localizations of the two edge states. This phenomenon is actually caused
by the size effect of the SSH model. More specifically, when θ is extremely small, such as
θ ∈ (0, 0.08π], the extremely small θ corresponds to that t1 still satisfies t1 ≈ 0, implying
the existence of E1,2 ≈ 0, as shown in Figure 8a. The condition of E1,2 ≈ 0 ensures that the
two edge states are still better localized at the two-ends. However, with θ continuously
increasing, the two initial strict zero energy solutions deviate from the zero energy (see the
inset figure of Figure 8a), leading the localizations of the two edge states to be weakened.
For example, when θ = 0.089π, we find that the initial left (right) edge state is mainly
localized at the leftmost (rightmost) site accompanied with certain distribution at the
rightmost (leftmost) site, implying the destruction of the localization for the left (right) edge
state, as shown in Figure 8b. Similarly, with θ continuously increasing, the localizations of
the two edge states are further weakened and finally reach the same value at the two-end
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sites, as shown in Figure 8c,d. The above results reveal that we can always find a finite
θ in the region of [0.08π, 0.1π] to ensure the distributions of the two edge states at the
two-ends with the certain proportions. These states with different distribution proportions
at the two-ends are the basis to realize the tunable TBS.
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Figure 8. The two zero energy eigenvalues and their distributions. (a) The two zero energy eigenval-
ues versus the parameter θ. The inset figure illustrates the detailed pattern for the splitting of the
zero energy modes. (b–d) The distributions of two edge states when θ = 0.089π in (b), θ = 0.095π

in (c), and θ = 0.12π in (d). The red circle line represents the left edge state and the blue diamond
line represents the right edge state. Other parameter takes N = 10.

4. Conclusions

In conclusion, we have proposed a scheme to investigate the topological edge pumping
of the even-sized SSH model based on a 1D superconducting transmission line resonators
array. We reveal that the resonators array can be mapped into a topological tight-binding
SSH model, in which the NN hopping can be periodically modulated via the external field.
We find that, after a certain time evolution in the system, the photon initially prepared in the
first resonator appears in the two-end resonators with a certain proportion. We demonstrate
that the splitting proportion between the two-end resonators can be tuned to any value from
1 to 0. Depending on the performance that the input and output of the superconducting
resonator can be individually manipulated, the present superconducting resonators array is
naturally equivalent to a tunable TBS when we regard the first and the two-end resonators
as input port and output ports respectively. We further demonstrate that the tunable TBS is
immune to the mild disorder added into the system due to the topology protection, which
greatly reduces the difficulty of experimental realization. The tunable TBS has various
potential applications in quantum optics and quantum information processing. Our scheme
provides a new perspective for topological quantum information processing and opens up
a new path towards the engineering of topological quantum optical device.
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