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Abstract: A new process associated with the nonlinear optical properties of the electromagnetic
quantum vacuum is described. It corresponds to the superradiant emission of photons, resulting
from the interaction of an intense laser pulse with frequency ω0 with a counter-propagating high-
harmonic signal with a spectrum of frequencies nω1, for n integer, in the absence of matter. Under
certain conditions, photon emission from vacuum will be enhanced by the square of the number
of intense spikes associated with the high-harmonic pulse. This occurs when the field created by
the successive spikes is coherently emitted, as in typical superradiant processes involving atoms.
Subradiant conditions, where the nonlinearity of quantum vacuum is entirely suppressed, can equally
be defined.
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1. Introduction

Following a long historical tradition, which includes void, ether and quintessence,
vacuum became a central concept of modern physics. In particular, with the advent of
ultra-intense laser systems [1], the nonlinear properties of quantum vacuum have been
considered in recent years as nearly accessible to experimentation (see the reviews [2–5]).
Theory predicts a variety of different phenomena, which includes spontaneous pair produc-
tion [6–8], photon-photon scattering [9–11], photon splitting [12,13], photon reflection [14]
and photon acceleration [15].

All these processes, occurring in quantum vacuum in the presence of electromagnetic
fields, are associated with the existence vacuum fluctuations. They are due to the formation
and annihilation of virtual electron-positron pairs, thus creating a kind of virtual plasma
where a variety of nonlinear optical phenomena can take place. For moderately intense
fields, well below the Schwinger limit [6], these effects are accurately described by the so-
called Heisenberg-Euler effective action [16] (an interesting historical account is given in
Reference [17]).

But major obstacles remain, associated with the smallness of vacuum effects, and differ-
ent strategies to overcome these obstacles and become closer to experimental observation are
still being considered [18,19]. Here we propose another approach, which would eventually
lead to an improved efficiency. For that purpose, we study the possible existence of a new
process, the superradiant photon scattering in quantum vacuum. This can occur when two
intense laser pulses collide in the absence of matter, and one of these intense pulses is made
of a superposition of high-harmonics with comparable amplitudes. Such high-harmonics
pulses are produced regularly in the laboratory and can lead to the formation of attosecond
spikes [20–22]. What we consider here is the interaction of an intense and nearly monochro-
matic laser pulse with another intense pulse containing a large number of harmonics.

Superradiance is a well-known process associated with the collective emission of
radiation by an ensemble of identical atoms. It was first considered by Dicke in 1954 [23–25],
and has been expanded and generalised to the present day [26–29]. It was, in some sense,
a percursor of the laser concept. What is new here is the interaction of radiation fields in
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the absence of any matter, where the virtual electron-positron pairs of quantum vacuum
play the role of the atoms.

We assume a QED vacuum, as described by the Heisenberg-Euler Lagrangian, and study
the counter-propagation of two intense Gaussian laser pulses along a given axial direction.
We show that, when one of these colliding pulses has a high-harmonic content, superradiant
vacuum emission of photons can take place. The basic QED theory pertinent to our model is
summarised in Section 2. The incident laser fields and the associated expression for their
field invariants are described in Section 3. The wave equation for the scattered field, and its
appropriate solutions are discussed in Sections 4 and 5. Conditions for superradiant and
subradiant scattering are established, and order of magnitude estimates for superradiant
amplification of quantum vacuum effects are given. Finally, in Section 6, we state some
conclusions.

2. QED Vacuum

We consider scattering of an incident laser pulse, with frequency ω0 by a high-
harmonic laser generated pulse, with a spectrum of frequencies nω1, and n = 1, 2, ...Nh � 1
in vacuum. The interaction between the two pulses is mediated by vacuum nonlinearities
and can be associated to the disturbed background sea of virtual electron-positron pairs.
We assume that the two basic frequencies are of the same order ω0 ∼ ω1, but not necessarily
identical, and that the shortest wave period τh (that of the highest harmonic component)
stays much larger than the Compton time τC, or

τh ≡
2π

Nhω1
� τC ≡

h
mec2 ' 1.3× 10−21s . (1)

In this case, we can describe the behaviour of quantum vacuum with the Heisenberg–
Euler Lagrangian L, determined by the sum of the classical electromagnetic Lagrangian
density L0 plus a nonlinear quantum correction δL. In the weak field approximation, this
can be written as [30,31]

L = L0 + δL(F ,G) , (2)

with
L0 = −ε0F , δL(F ,G) = ζ(4F 2 + 7G2) . (3)

The invariant quantities F and G are determined by

F =
1
4

FµνFµν =
1
2
(c2B2 − E2) , G =

1
4

Fµν F̃µν = c(E · B) . (4)

here Fµν is the electromagnetic field tensor, and F̃µν its dual, and E and B are the electric
and magnetic fields, respectively. The nonlinear quantum parameter appearing in (3) is

ζ =
2

45
α2ε2

0 h̄3

m4
e c5 , α =

e2

2ε0hc
, (5)

where α ' 1/137 is the fine structure constant. The QED corrections in the above La-
grangian density are valid in the weak field limit and for nearly constant fields. That is,
we require that |E| � ES = m2

e c3/h̄e, where ES ' 1016 V/cm is the Schwinger critical
field, ant that the field frequency Nhω1 is much smaller that the Compton frequency, as
indicated in Equation (1). These approximations ensure that there is no appreciable pair
creation due to multi-photon effects (as it will be exponentially suppressed for low field
strengths) and that there are no single photons able to generate pairs from the vacuum.
However, it is worth pointing out that we do not require the fields to be constant in time,
only slowly varying with respect to the Compton frequency [6]. As this is the case for
almost all relevant laser fields, the applicability of the Lagrangian (2) is guaranteed for a
wide variety of field configurations, such as the one considered here.
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The resulting Maxwell’s equations in vacuum take the usual form, if we define the
displacement and magnetic fields using D = ε0E + P and B = µ0(H + M), where the
polarisation and magnetisation fields, P and M, are due to the nonlinear QED corrections
associated with the effective Lagrangian term δL(F ,G) appearing in Equations (2) and (3),
and are given by

P = −2ζ(4FE− 7cGB) , M = −2c2ζ(4FB + 7GE/c). (6)

Starting from Maxwell’s equations in vacuum, we can then establish the equation of
propagation for the electric field E in the form(

∇2 − 1
c2

∂2

∂t2

)
E = µ0

[
∂J
∂t

+ c2∇(∇ · P)
]

, (7)

and a similar equation for the magnetic field. The current in this equation is defined by

J =
∂P
∂t

+∇×M . (8)

It is well known that photon-photon scattering in vacuum described by this nonlinear
current satisfies phase-matching conditions, or energy and momentum conservation rela-
tions, given by ω = ω0 + ω1 + ω2 and k = k0 + k1 + k2. Here, ω and k are the frequency
and wavevector of the scattered photons, and the subscripts i = 0, 1, 2 identify the primary
photons. It has been argued that a three-dimensional (3D) geometry is the most adequate
for experiments [10], but 2D configurations have also been studied [32].

Here we assume a 2D geometry, as defined in Figure 1. In this geometry, two intense
laser pulses, pulse 0 and pulse 1, counter-propagate along the z-direction. Photon-photon
scattering will occur due to the nonlinear vacuum properties described by Equation (2).
Notice that the high-harmonic pulse with frequencies nω1 can be described by a sequence of
equidistant field spikes with amplitudes proportional to Nh. This can be called superradiant
scattering when the number of scattered photons is proportional to N2, where N is the
number of intense spikes inside the pulse 1, with N ∼ Nh � 1. This is a factor of N larger
than the usual scattered intensity. Conditions for subradiance will also be found.

(kn , wn ) (k0 , w0 )

(k , w )

O

x

y

z

|E0 |2|En |2

|Es |2

Figure 1. Geometry of the interaction: collision of an intense pulse with frequency ω0 with an intense
high-harmonic pulse with frequencies ωn = nω1. The intensity profiles of the two interacting pulses
are represented, as well as the direction of their respective wavevectors. Nonlinear vacuum leads to
the occurrence of a scattered signal with frequency ω.
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3. Incident Field

Let us first consider the primary field, associated with the two counter-propagating
intense laser pulses. The incident (or pump) laser pulse can be described by the following
electric field

E0(r, t) =
e0

2
E0F0(r)eiϕ0 + c.c. , (9)

where e0 is the unit polarisation vector, E0 the field amplitude, ϕ0 = (k0 · r−ω0t) the phase,
and F0(r) the envelope function describing the pulse shape. We can use

F0(r) = e−r2/2w2
0 e−z4

0/4ζ4
0 , (10)

for a Gaussian radial profile with beam waist w0, and a super-Gaussian axial profile with
pulse duration ∆t = ζ0/c. We assume propagation along z, as in Figure 1. On that figure,
the intense pulse is arriving from the left, propagating in the negative z-direction. We use
k0 = −(ω0/c)ez, and define the variable z0 = (z + ct). Similarly, the counter-propagating
high-harmonic pulse can be described by

Eh(r, t) =
e1

2
F1(r)

Nh

∑
n=n1

Eneinϕ1 + c.c. , (11)

with Nh � 1 and ϕ1 = (k1 · r−ω1t). Here, the integer n1 ≥ 1 is the lowest harmonic inside
the pulse. We also have

F1(r) = e−r2/2w2
1 e−z4

1/4ζ4
1 , (12)

with w1 ∼ w0, and z1 = (z− ct), for k1 = (ω1/c)ez. The high-harmonic pulse contains
several high intensity spikes and propagates in the forward z-direction. In order to proceed,
it is useful to consider nearly constant amplitudes for the different harmonics, En ' E1.
This simplifies the algebra and is also experimentally plausible. In reality, the amplitude
of the harmonics vary slowly over a large spectral range, sometimes called the plateau,
where a dependence of the form En ∝ n−4/3 has been observed, for harmonic generation
on a plasma mirror [22,33]. But this would change little to the present model, and will be
ignored. This simplifying assumption allows us to write the summation over the harmonic
spectrum as

N

∑
n=n1

einϕ1 = ein1 ϕ1
N′−1

∑
m=0

eimϕ1 , (13)

with N′ = Nh − n1. Using the geometric series identity

N′−1

∑
m=0

eimϕ1 =
sin(N′ϕ1/2)

sin(ϕ1/2)
ei(N′−1)ϕ1/2 , (14)

we can write the field of the high-harmonic pulse (11) as

Eh(r, t) =
e1

2
E1F1(r)e(iN

′′ϕ1)
sin(N′ϕ1/2)

sin(ϕ1/2)
+ c.c. , (15)

with N” = (N′ − 1)/2 + n1 = (Nh + n1 − 1)/2. For a large number of harmonics N′ � 1,
this represents a train of electric field spikes periodically located at ϕ1 = 2νπ, where ν is
an integer. Noting that near these spikes, we have sin(ϕ1/2) ' ϕ/2, we can rewrite this
equation in a nearly equivalent form, as

Eh(r, t) =
N′

2
e1E1F1(r)e(iN

′′ϕ1) Sinc(N′ϕ1/2) + c.c. , (16)

where Sinc(x) = sin(x)/x is the sine-cardinal function. See Figure 2 for an illustration.
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Figure 2. Electric field spikes due to a superposition of a large number of N′ harmonics, as determined
by Equation (16).

Note that, in the limit of an infinite number of harmonics, we could also use a Dirac
delta-function representation, due to the relation

lim
N′→∞

[
N′sinc(N′z)

]
= πδ(z) . (17)

In this limit, we could describe the field with the asymptotic expression

Eh(r, t) = πe1E1F1(r)e(iN
′′ϕ1)

N

∑
ν=0

δ(ϕ1 − 2νπ) + c.c. , (18)

where the number of spikes N 6= N′ is determined by N = ∆t/(2π/ω1) = ζ1/λ1. Neglect-
ing the non-contributing terms associated with E2

0 and E2
h, and using e1 = −e0 = ex, we

can define the quantity

E2 = 2(E0 · Eh) = −
1
2
Ē2(r)∑

n

(
eiϕ0+inϕ1 + eiϕ0−inϕ1 + c.c.

)
, (19)

with
Ē2(r) = E0E1e−r2/w2

e−z4/4ξ4
, (20)

where we have assumed that w1 = w2 = w and ζ1 = ζ2 = ξ to simplify. We have also
neglected the temporal dependence of the envelope functions, which is approximately
valid during the interaction time. On the other hand, the magnetic field Bh will be polarised
along ey, the same with B0. We can then calculate the field invariants F and G. Using
Equations (4), we obtain

F = 2Ē2(r) cos ϕ0 ∑
n

cos(nϕ1) , G = 0 . (21)

This would reduce, for a single harmonic n = 1, to expressions already found in the
literature [32].

Notice that, if we take the limit defined by Equation (17), we arrive at the expression

F =
1

2k1
Ē2(r)eiϕ̄

N

∑
ν=0

δ(z− ct− νλ1) + c.c. , (22)

where ϕ̄ = ϕ0 + N”ϕ1. A similar term could be written with N” replaced by −N”, but is
omitted for simplicity. We can now determine the frequency spectrum and amplitude
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of the secondary scattered fields Es, resulting from the interaction between the two laser
pulses in vacuum. This field satisfies the propagation Equations (6) and (7) with source
current (8). The fields appearing in the the nonlinear current are actually the total fields,
but we can neglect the scattered fields Es and Bs in the source terms, because they would
only introduce negligible corrections to the vacuum dispersion. They can however be
important if we want to describe other nonlinear vacuum effects, such as photon splitting
or photon acceleration.

4. Secondary Field

Let us now study the scattered secondary fields in detail. In oder to calculate the
source terms in Equation (7), we write

∂P
∂t

= −23ζ

[(
∂F
∂t

)
E +F

(
∂E
∂t

)]
, ∇×M = −23c2ζ[∇F × B +F (∇× B)] . (23)

Neglecting higher order nonlinear corrections, this leads to the current

J = −22ζ

[(
∂F
∂t

)
E + c2(∇F × B) + 2F

(
∂E
∂t

)]
. (24)

On the other hand, using zν = νλ1 and tν = (z− zν)/c, Equation (21) allows us to write

F =
1

2ck1
Ē2(r)

N

∑
ν=0

eiϕν(t) δ(t− tν) + c.c. , (25)

with ϕν(t) = −2ω0t + ν(N”k1 − k0)λ1. A detailed analysis allows us to show that(
∂F
∂t

)
E = −c2(∇F × B) (26)

It means that we are left with the last term in the current (24). From this, we then get

J = −i24ω0ζ A(r)S(t) . (27)

with

A(r) =
E2

0E1

2ω1
e−3r2/2w2

e−3z4/4ξ4
, (28)

and

S(t) =
N

∑
ν=0

eiϕν(t)+iϕ0 δ(t− tν) + c.c. . (29)

On the other hand, it is also possible to show that [34]∣∣∣∣ ∂J
∂t

∣∣∣∣ ∼ (w0k0)|∇(∇ · P)| , (30)

where we usually have a laser beam waist much larger than the wavelength, (w0k0)� 1. This
means that, in the wave Equation (7) we can neglect the contribution from (∇ · P). If retained,
this small contribution would lead to a scattered field in the perpendicular direction. We are
then reduced to the following wave equation for the secondary scattered field(

∇2 − 1
c2

∂2

∂2
t

)
Es = i24ω0ζA(r)

∂S
∂t

, (31)

where S is defined in Equation (29).
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5. Superradiant Scattering

Let us now consider the temporal Fourier spectrum of the scattered field, as defined by

Es(r, t) =
∫

Eω(r)e−iωt dω

2π
, (32)

Each Fourier component Eω(r) will therefore satisfy the wave equation(
∇2 +

ω2

c2

)
Eω(r) = −iωµ0Jω(r) , (33)

where
Jω(r) = iπ24ω0ζ A(r)

∫ ∞

−∞
S(t)eiωtdt . (34)

Using Equation (29) we can then write this Fourier component of the current as

Jω(r) = −24ωω0ζ A(r)
N

∑
ν=0

eiνθ−i(4k0−ω/c)z . (35)

with
θ = (2ω0 + N”ω1 −ω)

λ1

c
. (36)

This allows us to write the equation for the scattered field, Equation (33), as(
∇2 +

ω2

c2

)
Eω(r) = iA′(r)

N

∑
ν=0

eiνθ−i(4k0−ω/c)z . (37)

where the new amplitude for the source term is A′(r) = 24ωω0ζA(r). We can also write
this amplitude more explicitly as

A′(r) =
4ω2

πc2
ω0

ω1
E1 a2

0 R e−3r2/2w2
e−3z4/4ξ4

, (38)

where we have introduced the normalised QED vacuum factor R, as defined by Refer-
ence [34], and the normalised amplitude of the incident laser pulse a0, such that

R = 2πζω2
0µ0

(
m2

e c4

e2

)
=

α

45

(
h̄ω0

mec2

)2
, a0 =

eE0

mecω0
. (39)

For an estimate of the spectral intensity of the scattered radiation, we neglect the
transverse dimensions, which are only relevant to define the slight deviations of the
scattered radiation with respect to the z-axis. Contribution of transverse dimensions can
easily be included, and will be briefly discussed later. Integration of Equation (37) for fields
scattered in the backward direction, with k = −(ω/c), we get

Eω(z) = −
i

2k
eikz

∫ z

∞
e−i(4k0+2k)z′A′(z′)dz′

N

∑
ν=0

eiνθ . (40)

Noting that the amplitude A′(z), as defined by Equation (38) but where the depen-
dence on the radial direction r⊥ was forgotten, is only nonzero in the interaction region,
from minus to plus z = ξ/2, we can then write, for the field at large distances |z| � ξ/2,

Eω(z) = −
2ik
π

ω0

ω1
a2

0E1RI(z)
N

∑
ν=0

eiνθ , (41)
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with

I(z) =
∫ +ξ/2

−ξ/2
e−i(4k0+k)z A′(z)dz . (42)

This integral is maximum for k = −2k0ez, which corresponds to forward scattering of
the second harmonic of the incident field E0. This is experimentally relevant, because the
frequency ω = 2ω0 is not represented in the assumed incident fields, unless we exactly
have ω1 = ω0.

In general, for a large interaction region such that (2k0 + k)ξ � 1, this integral is
nearly zero I(z) ' 0, and no scattered field is expected. In the opposite case of a very short
region, (2k0 + k)ξ � 1, the integral reduces to I(z) ' ζ̄. Replacing this in Equation (41)
we notice that this expression is dimensionally correct, as it should, because the quantities
(kξ), a0 and R are dimensionless, and Eω has the same dimensions as the electric field E1.
Furthermore, radiation will take place in a small range of values around 2k0. Equation (41)
also shows that superradiant scattering occurs when the phases exp(iνθ) are all nearly
equal. This occurs for θ = 2nπ, or (2ω0 + N”ω1 −ω) = nω1, where n is an integer. This
situation therefore corresponds to scattered frequencies equal to ω = 2ω0 + (N”− n)ω1.
In this case, the asymptotic value of the amplitude of the scattered field becomes

Eω = −4i(kζ̄)
ω0

ω1
a2

0E1RN . (43)

We therefore conclude that the scattered energy is proportional to the square of the
number of spikes inside the high-harmonic pulse, Wω ∝ N2, which is a characteristic
signature of superradiance. This effect occurs when all the fields scattered by each spike
are in phase, and constructively built the maximum possible value for the total field. The
opposite case of subradiance could also occur, when θ = π and all the phase coherence
is destroyed. In this extreme case, we will have a complete suppression of the vacuum
nonlinearities. This is illustrated in Figure 3.

(a)
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Figure 3. Scattered intensity as a function of the number of high harmonic field spikes N are
represented, in arbitrary units, for different conditions of the inter-spike phase difference θ: (a)
Intensity as a function of θ, for three different numbers of field spikes; (b) Intensity as a function of N
for three different phase differences. Superradiance occurs for θ = 2π, and subradiance for θ = π.



Quantum Rep. 2021, 3 50

It is now appropriate to discuss the phase-matching conditions involved in superra-
diant scattering. For each harmonic nω1, phase matching conditions stated in Section 2
would imply that ω = 2ω0 + nω1, and k = −2k0 + nk1. However, these two equali-
ties cannot be satisfied simultaneously, because ω 6= c|k|, except for the irrelevant case
of n = 0. In our case, where n takes many different values, superradiant scattering is
made of a superposition of several non-propagating fields, with phases determined by
ω = (2ω0 + nω1), and k = (−2k0 + nk1)ez. Field superposition and phase-mixing then
creates a single propagating field with ω = 2ω0, and k = −2k0ez, as shown in the above
calculations. This means that the high-harmonic pulse acts as a kind of catalyser, building
up an effective three-photon process which results from the superposition of forbidden
four-photon mixing processes, such that two incident photons coalesce into a single su-
perradiant photon. In this way, total energy and momentum conservation of quantum
vacuum is automatically satisfied.

In the above description we have neglected the influence of the radial dimensions
of the interaction pulses. This can easily be recovered, if we replace the amplitude A′(z)
appearing in Equation (42) by the transverse Fourier transform of the function A′(r), as
defined in (38). This leads to the inclusion of a perpendicular vector potential k⊥ in the
scattered field Eω, where k⊥ ∼ 1/w. This will be negligible under plausible experimental
conditions, when the transverse dimensions of the interaction region are much larger than
the incident wavelength, k1w� 1.

Using Equation (43) and the plausible numbers of (kζ̄) ∼ 102, (ω0/ω1) ∼ 1, and a0 ∼ 10,
we can see that, for a sufficiently large number of spikes, N ∼ 100, the ratio between scattered
and high-harmonic field E1 is of order 106R. Noting that, for a near-infrared laser pulse we
have R ∼ 10−14, this field ratio will approach 10−8. It means that, for E0 ∼ E1, we need 1016

incident photons to generate a single scattered photon. This gives typically one scattered
photon per milliJoule of incident laser energy.

A more detailed analysis should take into account the finite spectral width of the inter-
acting fields, which can be large for very short pulses. For Gaussian pulses, the amplitudes
E0 and En should be replaced in Equations (9) and (11) by E0G(ω, ω0) and EnG(ω, nω1),
such that

G(ω, ωg) =
1

(2πσ2
p)

1/4 exp

{
−
(ω−ωg)2

4σ2
p

}
, (44)

and integration over ω should be added. The spectral width is limited by the pulse
duration, as σp ≥ 1/∆t. This would lead to a small spectral width on the superradiant
signal, not significantly changing the final result.

As a final comment, we note that the scattered field is independent of the number
of harmonics N′. This counter-intuitive result is due to the fact that the amplitude of the
electric field spikes is proportional to N′, but the interaction time associated with each spike
decreases with N′, and the two effects exactly cancel. The same result is retrieved if, instead
of delta-functions, we use sine-cardinal functions to describe the electric field spikes.

6. Conclusions

We have studied a new process associated with the nonlinear optical properties of the
electromagnetic quantum vacuum, as predicted by QED in the weak field approximation.
This corresponds to superradiant scattering of an intense laser pulse by a periodic array
of intense electric field spikes which are associated with a counter-propagating pulse
with a very large harmonic content. The spectral intensity of the scattered radiation was
characterised, and conditions for the occurrence of superradiant scattering were defined.

We have shown that, under superradiant conditions, the number of scattered photons
Nω will be proportional to the square of the number of electric field spikes associated
with the high-harmonic pulse, or Nω = Wω/h̄ω ∝ N2. On the other hand, a subradiant
suppression of QED effects, where vacuum nonlinearities seem to vanish, Nω → 0, could
also take place. The number of spikes N can be very large, eventually of order 102. This
would lead to an amplification of the number of photons emitted from vacuum of order
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N2 ∼ 104. Given the recognised difficulty of detecting QED vacuum effects, which is due to
the smallness of the vacuum factor R, this superradiant amplification could be significant
in future experiments using ultra-intense lasers.
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