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Abstract: In this paper, we will present some ideas to use 3D topology for quantum computing.
Topological quantum computing in the usual sense works with an encoding of information as knotted
quantum states of topological phases of matter, thus being locked into topology to prevent decay.
Today, the basic structure is a 2D system to realize anyons with braiding operations. From the
topological point of view, we have to deal with surface topology. However, usual materials are 3D
objects. Possible topologies for these objects can be more complex than surfaces. From the topological
point of view, Thurston’s geometrization theorem gives the main description of 3-dimensional
manifolds. Here, complements of knots do play a prominent role and are in principle the main
parts to understand 3-manifold topology. For that purpose, we will construct a quantum system
on the complements of a knot in the 3-sphere. The whole system depends strongly on the topology
of this complement, which is determined by non-contractible, closed curves. Every curve gives a
contribution to the quantum states by a phase (Berry phase). Therefore, the quantum states can be
manipulated by using the knot group (fundamental group of the knot complement). The universality
of these operations was already showed by M. Planat et al.
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1. Introduction

Quantum computing exploits quantum-mechanical phenomena such as superposition
and entanglement to perform operations on data, which in many cases, are infeasible to do
efficiently on classical computers. The basis of this data is the qubit, which is the quantum
analog of the classical bit. Many of the current implementations of qubits, such as trapped
ions and superconductors, are highly susceptible to noise and decoherence because they
encode information in the particles themselves. Topological quantum computing seeks to
implement a more resilient qubit by utilizing non-Abelian forms of matter to store quantum
information. In such a scheme, information is encoded not in the quasiparticles themselves,
but in the manner in which they interact and are braided. In topological quantum com-
puting, qubits are initialized as non-abelian anyons, which exist as their own antiparticles.
Then, operations (what we may think of as quantum gates) are performed upon these qubits
through braiding the worldlines of the anyons. Because of the non-Abelian nature of these
particles, the manner in which they are exchanged matters (similar to non-commutativity).
Another important property of these braids to note is that local perturbations and noise
will not impact the state of the system unless these perturbations are large enough to create
new braids. Finally, a measurement is taken by fusing the particles. Because anyons are
their own antiparticles, the fusion will result in the annihilation of some of the particles,
which can be used as a measurement. We refer to the book in [1] for an introduction of
these ideas.

However, a limiting factor to use topological quantum computing is the usage of
non-abelian anyons. The reason for this is the abelian fundamental group of a surface.
Quantum operations are non-commutative operators leading to Heisenberg’s uncertainty
relation, for instance. Non-abelian groups are at the root of these operators. Therefore, if
we use non-abelian fundamental groups instead of abelian groups, then (maybe) we do not

Quantum Rep. 2021, 3, 153–165. https://doi.org/10.3390/quantum3010009 https://www.mdpi.com/journal/quantumrep

https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0003-4813-1010
https://doi.org/10.3390/quantum3010009
https://doi.org/10.3390/quantum3010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/quantum3010009
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/2624-960X/3/1/9?type=check_update&version=1


Quantum Rep. 2021, 3 154

need non-abelian states to realize quantum computing. In this paper, we discuss the usage
of (non-abelian) fundamental groups of 3-manifolds for topological quantum computing.
At first, quantum gates are elements of the fundamental group represented as SU(2)
matrices. The set of possible operations depends strongly on the knot, i.e., the topology. The
fundamental group is a topological invariant, thus making this representation of quantum
gates part of topological quantum computing. In principle, we have two topological
ingredients: the knot and the fundamental group of the knot complement. The main
problem now is how these two ingredients can be realized in a quantum system. In contrast
to topological quantum computing with anyons, we cannot directly use 3-manifolds (as
submanifolds) like surfaces in the fractional Quantum Hall effect. Surfaces (or 2-manifolds)
embed into a 3-dimensional space like R3 but 3-manifolds require a 5-dimensional space
like R5 as an embedding space. Therefore, we cannot directly use 3-manifolds. However,
as we will argue in the next section, there is a group-theoretical substitute for a 3-manifolds,
the fundamental group of a knot complement also known as knot group. Then, we will
discuss the knot group of the simplest knot, the trefoil. The knot group is the braid group
of three strands used for anyons too. The 1-qubit gates are given by the representation
of the knot group into the group SU(2). Here, one can get all 1-qubit operations by this
method. For an application of these fundamental group representations to topological
quantum computing, we need a realization of the fundamental group in a quantum systems.
Here, we will refer to the one-to-one connection between the holonomy of a flat SU(2)
connection (i.e., vanishing curvature) and the representation of fundamental group into
SU(2). Here, we will use the Berry phase but the corresponding Berry connection admits
a non-vanishing curvature. However, we will show that one can rearrange the Berry
connection for two-level systems to get a flat SU(2) connection. Then, the holonomy
along this connection only depends on the topology of the knot complement so that the
manipulation of states are topologically induced. All SU(2)-representation of the knot
group form the so-called character variety which contains important information about
the knot complement (see in [2] for instance). However, the non-triviality of the character
variety can be interpreted that knot groups give the 1-qubit operations. In Section 6, we
will discuss the 2-qubit operations by linking two knots. Here, every link component
carries a representation into SU(2). The relation in the fundamental group induces the
interaction term. The interaction terms are known from the Ising model. Therefore, finally
we get a complete set of operations to realize any quantum circuit: a 1-qubit operation by
the knot group of the trefoil knot and a 2-qubit operation by the complement of the link
(Hopf link for instance). For the universality of these operations we refer to the work of
M. Planat et al. [3,4], which was the main inspiration of this work. This paper followed the
idea to use knots directly for quantum computing. In the focus is the knot complement
which is the space outside of a knot. Then, the knot is one system and the space outside
is a second system. Currently, the author is working on the concrete realization of this
idea. In this paper, I will present the idea in an abstract manner to clarify whether knot
complements are suitable for quantum computing from informational point of view.

The usage of knots in physics but also biology is not new. One of the pioneers is Louis
H. Kauffman, and we refer to his book [5] for many relations between knot theory and
natural science. Furthermore, note his ideas about topological information [6] (see also
in [7,8]). Knots are also important models in quantum gravity, see, for instance, in [9], and
in particle physics [10–12].

2. Some Preliminaries and Motivation: 3-Manifolds and Knot Complements

The central concept for the following paper is the concept of a smooth manifold.
To present this work as self-contained as possible, we will discuss some results in the
theory of 2- and 3-dimensional manifolds which is the main motivation for this paper. At
first we will give the formal definition of a manifold:

• Let M be a Hausdorff topological space covered by a (countable) family of open sets,
U , together with homeomorphisms, φU : U ∈ U → UR, where UR is an open set of
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Rn. This defines M as a topological manifold. For smoothness we require that, where
defined, φU · φ−1

V is smooth in Rn, in the standard multivariable calculus sense. The
family A = {U , φU} is called an atlas or a differentiable structure. Obviously, A is
not unique. Two atlases are said to be compatible if their union is also an atlas. From
this comes the notion of a maximal atlas. Finally, the pair (M,A), with A maximal,
defines a smooth manifold of dimension n.

• An important extension of this construction yields the notion of smooth manifold
with boundary, M, defined as above, but with the atlas such that the range of the
coordinate maps, UR, may be open in the half space, Rn

+, that is, the subspace of Rn for
which one of the coordinates is non-positive, say xn ≤ 0. As a subspace of Rn, Rn

+ has
a topologically defined boundary, namely, the set of points for which xn = 0. Use this
to define the (smooth) boundary of M, ∂M, as the inverse image of these coordinate
boundary points.

In the following, we will concentrate on the special theory of 2- and 3-manifolds (i.e.,
manifolds of dimension 2, surfaces, or 3). The classification of 2-manifolds has been known
since the 19th century. In contrast, the corresponding theory for 3-manifolds based on
ideas of Thurston around 1980 but was completed 10 years ago. In both cases—2- and
3-manifolds—the manifold is decomposed by the operation M#N, the connected sum.

Let M, N be two n-manifolds with boundaries ∂M, ∂N. The connected sum M#N is
the procedure of cutting out a disk Dn from the interior int(M) \ Dn and int(N) \ Dn with
the boundaries Sn−1 t ∂M and Sn−1 t ∂N, respectively, and gluing them together along
the common boundary component Sn−1.

For 2-manifolds, the basic elements are the 2-sphere S2, the torus T2 or the Klein bottle
RP2. Then, one gets for the classification of 2-manifolds:

• Every compact, closed, oriented 2-manifold is homeomorphic to either S2 or the
connected sum

T2#T2# . . . #T2︸ ︷︷ ︸
g

of T2 for a fixed genus g. Every compact, closed, non-oriented 2-manifold is homeo-
morphic to the connected sum

RP2#RP2# . . . #RP2︸ ︷︷ ︸
g

of RP2 for a fixed genus g.
• Every compact 2-manifold with boundary can be obtained from one of these cases by

cutting out the specific number of disks D2 from one of the connected sums.

A connected 3-manifold N is prime if it cannot be obtained as a connected sum of
two manifolds N1#N2 neither of which is the 3-sphere S3 (or, equivalently, neither of
which is the homeomorphic to N). Examples are the 3-torus T3 and S1 × S2, but also the
Poincare sphere. According to the work in [13], any compact, oriented 3-manifold is the
connected sum of an unique (up to homeomorphism) collection of prime 3-manifolds
(prime decomposition). A subset of prime manifolds are the irreducible 3-manifolds. A
connected 3-manifold is irreducible if every differentiable submanifold S homeomorphic
to a sphere S2 bounds a subset D (i.e., ∂D = S) which is homeomorphic to the closed ball
D3. The only prime but reducible 3-manifold is S1 × S2.

For the geometric properties (to meet Thurston’s geometrization theorem) we need
a finer decomposition induced by incompressible tori. A properly embedded connected
surface S ⊂ N is called 2-sided (The “sides” of S then correspond to the components of
the complement of S in a tubular neighborhood S× [0, 1] ⊂ N.) if its normal bundle is
trivial, and 1-sided if its normal bundle is nontrivial. A 2-sided connected surface S other
than S2 or D2 is called incompressible if for each disk D ⊂ N with D ∩ S = ∂D there is a
disk D′ ⊂ S with ∂D′ = ∂D. The boundary of a 3-manifold is an incompressible surface.
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Most importantly, the 3-sphere S3, S2 × S1 and the 3-manifolds S3/Γ with Γ ⊂ SO(4) a
finite subgroup do not contain incompressible surfaces. The class of 3-manifolds S3/Γ
(the spherical 3-manifolds) include cases like the Poincare sphere (Γ = I∗ the binary
icosaeder group) or lens spaces (Γ = Zp the cyclic group). Let Ki be irreducible 3-manifolds
containing incompressible surfaces then we can N split into pieces (along embedded S2)

N = K1# · · · #Kn1#n2 S1 × S2#n3 S3/Γ , (1)

where #n denotes the n-fold connected sum and Γ ⊂ SO(4) is a finite subgroup. The
decomposition of N is unique up to the order of the factors. The irreducible 3-manifolds
K1, . . . , Kn1 are able to contain incompressible tori and one can split Ki along the tori into
simpler pieces K = H ∪T2 G [14] (called the JSJ decomposition). The two classes G and H
are the graph manifold G and hyperbolic 3-manifold H.

In 1982, W.P. Thurston presented a program intended to classify smooth 3-manifolds
and solve the Poincare conjecture by investigating the possible geometries on such 3-
manifolds. For a survey of this topic see in [15]. The key ingredient of this classification
ansatz is the concept of a model geometry. Again, in this section, all manifolds are assumed
to be smooth.

A model geometry (G, X) consists of a simply connected manifold X together with a
Lie group G of diffeomorphisms acting transitively on X fulfilling certain set of conditions.
One of these is that there is a G-invariant Riemannian metric. For example, reducing the
dimension, we can consider 2-dimensional model geometries of a 2-manifold X. From
Riemannian geometry, we know that any G-invariant Riemannian metric on X has constant
Gaussian curvature (recall that G must be transitive). A constant scaling of the metric
allows us to normalize the curvature to be 0, 1, or −1 corresponding to the Euclidean
(E2), spherical (S2) and hyperbolic (H2) space, respectively. Thus, there are precisely three
two-dimensional model geometries: spherical, Euclidean, and hyperbolic.

It is a surprising fact that there are also a finite number of three-dimensional model
geometries. It turns out that there are eight geometries: spherical, Euclidean, hyperbolic,
mixed spherical-Euclidian, mixed hyperbolic-Euclidian, and three exceptional cases. A
geometric structure on a more general manifold M (not necessarily simply connected) is
defined by a model geometry (G, X) where X is the universal covering space to M, i.e.,
M = X/π1(M). This is equivalent to a representation π1(M) → G of the fundamental
group into G. Of course a geometric structure on a 3-manifold may not be unique but
Thurston explored decompositions into pieces each of which admit a unique geometric
structure. This decomposition proceeds by splitting M into essentially unique pieces using
embedded 2-spheres and 2-tori in such a way that a model geometry can be defined on
each piece. Thus,

• Thurston’s Geometrization conjecture can be stated:
The interior of every compact 3-manifold has a canonical decomposition into pieces
(described above), which have one of the eight geometric structures.
In short, every 3-manifold can be uniquely decomposed (long 2-spheres) into prime
manifolds where some of these prime manifolds can be further split (along 2-tori) into
graph G and hyperbolic manifolds H. Then, G, H have a disjoint union of 2-tori as
boundary; but how can we construct these manifolds having a geometric structure? A
knot in mathematics is the embedding of a circle into the 3-sphere S3 (or in R3), i.e., a
closed knotted curve. Let K be a prime knot (a knot not decomposable by a sum of two
knots). With K× D2 we denote a thicken knot, i.e., a closed knotted solid torus. The
knot complement C(K) = S3 \

(
K× D2) is a 3-manifold with boundary ∂C(K) = T2.

It was shown that prime knots are divided into two classes: hyperbolic knots (C(K)
admits a hyperbolic structure) and non-hyperbolic knots (C(K) admits one of the other
seven geometric structures). An embedding of disjoints circles into S3 is called a link
L. Then, C(L) is the link complement. Here, the situation is more complicated: C(L)
can admit a geometric structure or it can be decomposed into pieces with a geometric
structure. C(L), C(K) are one of the main models for G or H for suitable knots and
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links. If we speak about 3-manifolds then we have to consider C(K) as one of the basic
pieces. Furthermore, there is the Gordon–Luecke theorem: if two knot complements
are homeomorphic, then the knots are equivalent (see in [16] for the statement of the
exact theorem). Interestingly, knot complements of prime knots are determined by its
fundamental group. For the fundamental group, one considers closed curves which
are not contractible. Furthermore, two curves are equivalent if one can deform them
into each other (homotopy relation). The concatenation of curves can be made into
a group operation up to deformation equivalence (i.e., homotopy). Formally, it is
the set of homotopy classes [S1, X] of maps S1 → X (the closed curves) into a space
X up to homopy, denoted by π1(X). The fundamental group π1(C(K)) of the knot
complement is also known as knot group. Here, we refer to the books in [5,17,18] for a
good introduction into this theory. The main idea of this paper is the usage of the knot
group as substitute for a 3-manifold and try to use this group for quantum computing.

3. Knot Complement of the Trefoil Knot and the Braid Group B3

Any knot can be represented by a projection on the plane with no multiple points
which are more than double. As an example let us consider the simplest knot, the trefoil
knot 31 (knot with three crossings).

The plane projection of the trefoil is shown in Figure 1. This projection can be divided
into three arcs, around each arc we have a closed curve as generator of π1(C(31)) denoted
by a, b, c (see also Figure 2 for the definition of the generators a, b). Now each crossing gives
a relation between the corresponding generators: c = a−1ba, b = c−1ac, a = b−1cb, i.e., we
get the knot group

π1(C(31)) = 〈a, b, c| c = a−1ba, b = c−1ac, a = b−1cb〉

Then, we substitute the expression c = a−1ba into the other relations to get a represen-
tation of the knot with two generators and one relation. From relation a = b−1cb we will
obtain a = b−1(a−1ba)b or bab = aba and the other relation b = c−1ac gives nothing new.
Finally, we will get the well-known result

π1(C(31)) = 〈a, b| bab = aba〉

However, this group is also well known; it is the braid group B3 of three strands. In
general, the braid group Bn is generated by {1, σ1, . . . , σn−1} subject to the relations (see
in [18])

σiσi+1σi = σi+1σiσi+1 σiσj = σjσi |i− j| > 1

For B3 we have two generators σ1, σ2 with one relation σ1σ2σ1 = σ2σ1σ2 agreeing with
π1(C(31)). The braid group B3 has connections to different areas. Notable is the relation to
the modular group SL(2,Z) (the group of integer 2× 2 matrices with unit determinant)
generated by

S =

(
0 1
−1 0

)
U =

(
1 1
−1 0

)
It is well-known that B3 maps surjectively onto SL(2,Z) via the map

σ1 7→
(

1 1
0 1

)
σ2 7→

(
1 0
−1 1

)
However, then σ1σ2σ1 = σ2σ1σ2 maps to S and σ1σ2 maps to U. It is interesting to note

that (σ1σ2)
3 is in the center Z of B3 (i.e., this elements commutes with all other elements)

and B3/Z = SL(2,Z)/{±1}, or B3 is the central extension of PSL(2,Z) = SL(2,Z)/{±1}
(the (2, 3, ∞) triangle group) by the integers Z (see [12] for an application of this relation
in physics).
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Figure 1. The simplest knot, trefoil knot 31.

Figure 2. Generators (red circle) a, b of knot group for trefoil 31.

4. Using the Trefoil Knot Complement for Quantum Computing

In this section, we will get in touch with quantum computing. The main idea is
the interpretation of the braid group B3 as operations (gates) on qubits. From the math-
ematical point of view, we have to consider the representation of B3 into SU(2), i.e., a
homomorphism

φ : B3 → SU(2)

mapping sequences of generators (called words) into matrices as elements of SU(2). For
completeness we will study some representations. Here, we follow the work in [19] to
illustrate the general theory. At first, we note that a matrix in SU(2) has the form

M =

(
z w
−w̄ z̄

)
|z|2 + |w|2 = 1

where z and w are complex numbers. Now we choose a well-known basis of SU(2):

1 =

(
1 0
0 1

)
i =

(
i 0
0 −i

)
j =

(
0 1
−1 0

)
k =

(
0 i
i 0

)
(2)

so that
M = a1 + bi + cj + dk

with a2 + b2 + c2 + d2 = 1 (and z = a + bi, w = c + di). The algebra of 1, i, j, k are known
as quaternions (with relations ij = k, I2 = j2 = k2 = −1). In the following, we will switch
between the usual basis 1, i, j, k of the quaternions and the matrix representation with basis
1, i, j, k, see (2). Then, the unit quaternions (of length 1) can be identified with the elements
of SU(2). Pure quaternions are defined by all expressions bi + cj + dk (i.e., a = 0). Now,
the homomorphism φ above is the mapping

g = φ(σ1), h = φ(σ2)
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so that ghg = hgh. Let u, v be pure quaternions of length 1 (unit, pure quaternions). Now,
for g = a + bu and h = c + dv we have to choose

g = a + bu, h = a + bv, bu · bv = a2 − 1
2

(see in [19] for the proof) for the image of the homomorphism φ then the relation of the B3
is fulfilled, or we have a representation of B3 into SU(2).

For more practical scenarios this general representation is the following construction.
Let us choose

g = eiθ = a + bi

where a = cos(θ) and b = sin(θ). Let

h = a + b
[
(c2 − s2)i + 2cs · k

]
where c2 + s2 = 1 and c2 − s2 = a2−b2

2b2 . Then we are able to rewrite g, h as matrices G, H. In
principle, the matrices G, H can be obtained from the expressions above by a switch of the
basis, i.e.,

G = exp(θi) H = a1 + b
[
(c2 − s2)i + 2csk

]
Here, we choose H = FGF+ and

G =

(
eiθ 0
0 e−iθ

)
F =

(
ic is
is −ic

)
Among this class of representations, there is the simplest example

g = e7πi/10, f = iτ + k
√

τ, h = f g f−1

where τ2 + τ = 1. Then, g, h satisfy ghg = hgh the relation of B3. This representation
is known as the Fibonacci representation of B3 to SU(2). The Fibonacci representation
is dense in SU(2), see [1]. This representation is generated by the 20th root of unity.
Other dense representations are given by 4rth roots of unity via recoupling theory, see
Sections 1.3 and 1.4 in [1].

5. Knot Group Representations via Berry Phases

In the previous section we discussed, the representations of the knot group into SU(2)
to realize the 1-qubit operations. Central point in this paper is the representation

φ : π1(C(K))→ SU(2)

of the knot group. The fundamental group is a topological invariant and we have to realize
this group in a quantum system. In this section, we will realize these 1-qubit gates, the
2-qubit gate will be described in the next section. Here, we will discuss the direct realization
of the knot group, i.e., the fundamental group of the knot complement. We will not discuss
the abstract representation of the group π1(C(K)) by quantum gates which is also possible.
For that purpose we have to define the fundamental group more carefully. Let X be a
topological space or a manifold. A map γ : [0, 1]→ X with γ(0) = γ(1) is a closed curve.
Two curves γ1, γ2 are homotopic γ1 ' γ2 if there is a one-parameter family of continuous
maps which deform γ1 to γ2. The concatenation γ1#γ2 of curves (up to homotopy) is
the group operation making the set of homotopy classes of closed curves to a group, the
fundamental group π1(X). Now, we will discuss the representation of the fundamental
group by the holonomy along a closed curve, i.e., by an integral of a gauge connection



Quantum Rep. 2021, 3 160

or potential along a closed curve. As shown by Milnor [20], there is one-to-one relation
between a homomorphism π1(X)→ G into the Lie group G and the integral∮

γ

A with dA + A ∧ A = 0

of a flat G-connection A, i.e., this integral depends only on the homotopy class of the closed
curve γ. In our case, we will interpret the representation

φ : π1(C(K))→ SU(2)

up to conjugation as a flat connection of a SU(2) principal bundle over the knot comple-
ment C(K). Let P be a SU(2) principal fiber bundle over C(K) with connection A locally
represented by a 1-form with values in the adjoint representation of the Lie algebra su(2),
i.e., A ∈ Λ1(C(K))⊗ ad(su(2)). The connection is flat if the curvature

F = dA + A ∧ A = 0

vanishes. In this case (see Milnor [20]) the integral∮
γ

A

along a closed curve γ : S1 → C(K) depends only on the homotopy class [γ] ∈ π1(C(K))
and the exponential

π1(C(K)) 3 γ→ φ(γ) = P exp

∮
γ

A

 ∈ SU(2)

for varying closed curves (P path ordering operator) gives a representation π1(C(K))→
SU(2). However, which quantum system realized this representation? Let us consider
the Hamiltonian

H = H0 + h

with a non-adiabatic and adiabatic part. The whole Hamiltonian has to fulfill the usual
Schrödinger equation

ih̄
∂

∂t
|ψ〉 = H|ψ〉

and we have to demand that each eigenstate |kn〉 of the Hamiltonian h with discrete
spectrum

h|kn〉 = En|kn〉

develops independently in time. Then, we have the decomposition

|ψ〉 = ∑
n

an|kn〉

leading to the solution

an = exp
(
− i

h̄

∫
En(τ)dτ

)
exp

(∫
〈kn|

∂

∂τ
|kn〉dτ

)
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where the second expression is known as geometric phase or Berry phase. Usually the
states are parameterized by some manifold M with coordinates x = x(t) and we consider
a cyclic evolution x(0) = x(T), i.e., closed curves in M. Then, the Berry phase is given by

θtop =
∮
γ

〈kn|d|kn〉

and the expression ABerry = 〈kn|d|kn〉 as Berry connection. This solution is well known and
for completeness we described it here again. At first, the Berry connection is the connection
of U(1) principal bundle. Second, the curvature Ω = dABerry is non-zero. Therefore,
at the first view we cannot use this connection to represent the knot group. We need a
connection with values in SU(2) to get a representation for φ via exp(θtop). Our idea is now
to rearrange the components of the Berry connection (including the off-diagonal terms)
to produce a SU(2) connection. For that purpose, we will restrict the system to a 2-level
system, |k0〉, |k1〉. Then, we remark that the Lie algebra su(2) is generated by the three Pauli
matrices σx, σy, σz so that every element is given by a linear combination a · σx + b · σy + c · σz.
Now we arrange the possible connection components ωnm = 〈kn|d|km〉 into one matrix

ω =

(
〈k0|d|k0〉 〈k0|d|k1〉
〈k1|d|k0〉 〈k1|d|k1〉

)
with the decomposition

ω = 〈k0|d|k0〉
1 + σz

2
+ 〈k1|d|k1〉

1− σz

2
+<(〈k0|d|k1〉)σx +=〈k0|d|k1〉σy

By using the normalization 〈kn|km〉 = δnm one gets

0 = d(〈kn|km〉) = ω∗nm + ωnm

and
dωnm = ∑

k
ω∗nk ∧ωkm = −∑

k
ωnk ∧ωkm

so that we obtain for the curvature Ω

Ω = dω + ω ∧ω = 0

Obviously ω is a connection of a flat SU(2) bundle and the integral∮
γ

ω

depends only on the homotopy class of the closed curve γ, as we want. The off-diagonal
terms like 〈k0|d|k1〉 of the connection ω can be calculated with respect to the expectation
values of dh. Together with the eigenvalues E0, E1 of h for |k0〉, |k1〉, respectively, we obtain,
for instance,

〈k0|d|k1〉 =
〈k0|dh|k1〉

E0 − E1

Then, the exponential of this integral gives a representation φ of the fundamental
group into SU(2). Now we go back to the trefoil knot complement C(31) with fundamental
group π1(C(31)) = B3. Then, the Berry phases along the two generators a, b (i.e., two
closed curves) of the fundamental group π1(C(31)) = B3 generate the 1-Qubit operations.
Via the Berry phases, these operations act on the quantum system to influence its state.
Keeping this idea in mind, we have the following scheme: consider a qubit on the trefoil
knot and consider the two generators a, b of the knot group (see Figure 2).



Quantum Rep. 2021, 3 162

If we do manipulations along these two closed curves we are able to influence the
qubit by using the Berry phase. Here, we refer to the work [21] for ideas to use the Berry
phase for quantum computing.

6. Linking and 2-Qubit Operations

In the previous section, we described the appearance of the braid group B3 as fun-
damental group of the trefoil knot complement. Above we described the situation that
the knot complement of the trefoil knot determines the operations or quantum gates. In
this case, the quantum gates are braiding operations (used for anyons) for three-strand
braids. Unfortunately, the SU(2)−representations of the braid group B3 are only 1-qubit
gates but one needs at least a 2-qubit gate like CNOT to represent any quantum circuit. It
is known that for 2-qubit operations, one needs elements of the braid group B6. Is there
other knot complements having braid groups as fundamental groups? Unfortunately, the
answer is no. Here, is the line of arguments: every knot complement is determined by
the fundamental group (aspherical space), then the cohomology of knot complements is
determined by the first two groups (0th and 1th), all other groups are given by duality. But
the braid groups Bn for n > 3 have non-trivial cohomology groups in degree 3 or higher
which is impossible for knot complements.

In the previous sections, we describe the knot complement of the simplest knot, the
trefoil. However, there are more complicated knots. The complexity of knots is measured
by the number of crossings. There is only one knot with three crossings (trefoil) and with
four crossings (figure-8). For the figure-8 knot 41 (see Figure 3), the knot group is given by

π1(C(41)) = 〈a, b | bab−1ab = aba−1ba〉

admitting a representation φ into SU(2), see [2].

Figure 3. figure-8 knot 41.

Here, we remark that the figure-8 knot is part of a large class, the so-called hyperbolic
knots. Hyperbolic knots are characterized by the property that the knot complement admits
a hyperbolic geometry. Hyperbolic knot complements have special properties, in particular
topology and geometry are connected in a special way. We will come back to these ideas in
our forthcoming work. As explained above, knot groups admit representations into SU(2)
leading to 1-qubit operations. Therefore, we have to change the complexity in another
direction by adding more components, i.e., we have to go from knots to links. The simplest
link is the Hopf link (denoted as L2a1, see Figure 4), the linking of two unknotted curves.
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Figure 4. Hopf link L2a1.

The knot group is simply

π1(C(L2a1)) = 〈a, b | aba−1b−1 = [a, b] = e〉 = Z⊕Z

Here, we will discuss a toy model, every component is related to a SU(2) represen-
tation, i.e., the knot group π1(C(L2a1)) is represented as SU(2) ⊗ SU(2) via the Berry
connection. Now we associate to each component of the link a representation and a genera-
tor of SU(2) (i.e., σx, σy or σz), say σx to one component (the generator a ∈ π1(C(L2a1)))
and σz to the other component (the generator b ∈ π1(C(L2a1))). By using the relation
between the group commutator and the Lie algebra commutator of the enveloped Lie
algebra U(SU(2)), we want to express the relation [a, b] = e via the exponential of the
commutator σx ⊗ σz − σz ⊗ σx via the usual relation between the Lie algebra commutator
and this commutator. It induces a representation

π1(C(L2a1))→ SU(2)⊗ SU(2)

by using the exponential map exp(su(2) ⊗ su(2)). The relation in π1(C(L2a1)) can be
expressed as Lagrangian multiplier (in the usual way) so that we get the Hamiltonian

H = σx ⊗ σz − σz ⊗ σx

and we get the qubit operation by the exponential

U = exp(it(σx ⊗ σz − σz ⊗ σx))

for a suitable time t. Now we see the principle: we associate a term σx ⊗ σz to an over-
crossing between the two components and a term σz ⊗ σx for the under-crossing. In the
last example, we will consider the famous Whitehead link (see Figure 5).

Figure 5. Whitehead link Wh.

The knot group is given by

π1(C(Wh)) = 〈x, y | [x, y][x, y−1][x−1, y−1][x−1, y] = e〉
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and as described above we will associate the tensor products of the generators to the
over-crossings or under-crossings between the components. Then, we will get

H = 2σx ⊗ σz − 2σz ⊗ σx

with the operation
U = exp(i2t(σx ⊗ σz − σz ⊗ σx))

with another choice of the time variable.

7. Discussion

In this paper, we presented some ideas to use 3-manifolds for quantum computing. A
direct usage for surfaces (related to anyons) is not possible, but we explained above that
the best representative is the fundamental group of a manifold. The fundamental group
is the set of closed curves up to deformation with concatenation as group operation (also
up to deformation). Every 3-manifold can be decomposed into simple pieces so that every
piece carries a geometric structure (out of eight classes). In principle, the pieces consist of
complements of knots and links. Then, the fundamental group of the knot complement,
known as knot group, is an important invariant of the knot or link. Why not use this knot
group for quantum computing? In [3,4,22,23], M. Planat et al. studied the representation of
knot groups and the usage for quantum computing. Here, we discussed a direct relation
between the knot complement and quantum computing via the Berry phase. The knot
group determines the operations where we fix a suitable SU(2) representation. As a result,
we get all 1-qubit operations for a knot. Then, we discussed the construction of 2-qubit
operations by the linking of two knots. The concrete realization of these ideas by a device
will be shifted to our forthcoming work.
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