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Abstract: Solution searching that accompanies combinatorial explosion is one of the most important
issues in the age of artificial intelligence. Natural intelligence, which exploits natural processes
for intelligent functions, is expected to help resolve or alleviate the difficulties of conventional
computing paradigms and technologies. In fact, we have shown that a single-celled organism
such as an amoeba can solve constraint satisfaction problems and related optimization problems
as well as demonstrate experimental systems based on non-organic systems such as optical energy
transfer involving near-field interactions. However, the fundamental mechanisms and limitations
behind solution searching based on natural processes have not yet been understood. Herein,
we present a theoretical background of solution searching based on optical excitation transfer
from a category-theoretic standpoint. One important indication inspired by the category theory
is that the satisfaction of short exact sequences is critical for an adequate computational operation
that determines the flow of time for the system and is termed as “short-exact-sequence-based time.”
In addition, the octahedral and braid structures known in triangulated categories provide a clear
understanding of the underlying mechanisms, including a quantitative indication of the difficulties of
obtaining solutions based on homology dimension. This study contributes to providing a fundamental
background of natural intelligence.

Keywords: natural intelligence; solution searching; category theory

1. Introduction

Solution searching that accompanies combinatorial explosion, such as non-deterministic
polynomial time (NP)-complete problems, is one of the most important challenges in the age of
artificial intelligence [1,2]. While massive digital computing power nowadays can overcome even
the conventional difficulties of von Neumann computing architecture, including those in the game of
Go [3], natural computing or natural intelligence is an important and exciting branch of research that
seeks deeper understandings of computing abilities in nature and exploits them for intelligent functions.
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The insights into intelligence stemming from nature that have been investigated in the literature range
from amoebas [4] to the human brain [5], DNA [6], and even an iron bar [7]; in addition, general
frameworks such as noise-based logic [8] and spatiotemporal dynamics [9,10] have been investigated.

Among such research, a plasmodium of the true slime mold Physarum polycephalum, a single-celled
amoeba-like organism, is known to exhibit sophisticated information-processing abilities. An early
work includes the demonstration of obtaining the shortest-distance solutions between two food
sources [11]. Furthermore, Aono et al. demonstrated solution searching of a logical constraint
satisfaction problem (CSP) [4] and the traveling salesman problem [12] by utilizing the spatiotemporal
oscillatory dynamics of the photoavoidance behavior of the amoeboid organism combined with
an external optical stimulus. Moreover, Kim et al. formulated an algorithm that abstracted
the photoavoidance dynamics of the organism to solve the multi-armed bandit problem (MAB), which
underlay important decision-making problems in dynamically changing uncertain environments
in the real world [13].

Moreover, architecture that combines Physarum with an external optical stimulus system implies
non-organic realizations of the principles reported in the literature on amoeba-based computing. In fact,
Naruse et al. theoretically and experimentally demonstrated that the versatile spatiotemporal dynamics
induced in multiple-quantum-dot systems by optical near-field interactions can be used to solve
CSP [9,14] and MAB [15,16]. Furthermore, Aono et al. showed that the satisfiability problem (SAT),
which is known to be one of the most important NP-complete problems, can be solved [14]. Naruse
et al. also demonstrated solving MAB by using single photons emitted from a nanodiamond [17].
Meanwhile, Kasai et al. succeeded experimentally in solving CSP based on solid-state electrical circuits
on the basis of spatiotemporal dynamics involving noise sources [18]. Recently, Aono et al. examined
nanoarchitecture for an SAT solver based on Gallium arsenide (GaAs) nanowires [19].

However, the fundamental mechanisms of amoeba-based solution searching and its artificial
equivalents are not yet completely understood. Furthermore, certain physical and logical constraints
and limitations should exist for properly solving given problems, whereas successful demonstrations
to date have been based mainly on empirically designed architecture and parameter choices. This study
aims to provide a solid foundation for amoeba-inspired solution searching inspired by the category theory.

Category theory is an abstract branch of mathematics that formulates given problems with
the notions of objects and arrows [20,21]. By applying category theoretic notions to solution searching
problems, we can obtain insights into the underlying mechanisms and operating conditions of
the solution searching in a precise manner. In addition to providing qualitative understanding,
which we discussed in our previous study on single-photon-based decision making [22], the category
theoretic representation in the present study also demonstrates novel quantitative perspectives, such as
in the discussion of the operating speed or definition of time, and the perception of obtaining correct
solutions as the homology dimension decreases.

This paper is organized as follows. Section 2 reviews solution-searching principles based on
optical energy transfer mediated by near-field interactions. As a particular problem, we define
a CSP and demonstrate the solution searching behavior to be examined in detail. In Section 3,
we present a category theoretic picture of solution searching in a stepwise manner. Beginning with
adapting the notions of product, coproduct, complex, and short exact sequence into the solution searching
problem, we end by showing that the octahedral and braid structures known in triangulated categories
reveal the underlying architecture of solution searching based on stochastic spatiotemporal dynamics.
We also propose the notion of short-exact-sequence-based time implied by category theory to describe
a properly operating system. Regarding the braid architecture, we demonstrate theoretically and
numerically that solution searching can be viewed as unfolding the knots of braids or decreasing
the homology dimensions inherent in the system. As described above, the principal aim of this study
is not to conduct exact discussions about mathematics itself but to obtain deeper insight into stochastic
spatiotemporal solution searching from original perspectives inspired by the category theory, including
the development of numerically quantifiable metrics. Section 4 concludes the paper.
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2. Solution Searching Based on Bounceback Principles

2.1. Spatiotemporal Amoeba Dynamics

Preserving essential and general properties of the solution searching principle while providing easy
comprehension and quantitative discussions, we consider the following CSP, referred to as the NOR
problem hereinafter, regarding an array of N binary-valued variables xi ∈ {0, 1} (i = 1, . . . , N) [4,9].
The constraint is that each variable should be the logical NOR of its neighbors, that is, xi = NOR(xi−1, xi+1)

should be satisfied for all i; the constraints regarding i = 1 and N are given by x1 = NOR(xN, x2)

and xN = NOR(xN−1, x1), respectively. When N = 6, which is the case, we numerically investigate
in detail below, the correct solutions are the following five combinations: (x1, . . . , x6) = (0, 0, 1, 0, 0, 1),
(0, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 0), and (1, 0, 1, 0, 1, 0).

The architecture of solution searching based on the amoeba-plus-optical-stimulus system is shown
schematically in Figure 1a, in which multiple branches (branches 1 to 6 in the case of Figure 1a)
are formed in the substrate. An amoeba, located initially in the center of the substrate, tries to elongate
its body into the branches. Because of the photoavoidance nature of the amoeba, it does not like to
elongate its body into branches upon which external light shines. Note, however, that body elongation
into light-irradiated branches does occur occasionally, which is an important property in exploring
correct solutions, as discussed later.
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Figure 1. Solution searching based on stochastic spatiotemporal dynamics.
(a) amoeba-plus-optical-stimulus system; (b) optical excitation transfer dynamics in a multiple
quantum-dot system.

Here, we define the relation between the shape of the amoeba and the binary variables such
that the existence of the amoeba’s body in branch i corresponds to xi = 1, whereas non-existence
corresponds to xi = 0. Considering the logical NOR operation, if xi = 1, then both of its neighbors
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should be zero: xi−1 = xi+1 = 0. Therefore, the feedback mechanism for deriving correct solutions
is given by Equation (1):

if xi = 1 in a given cycle, then inhibit the elongation of the amoeba′s body into
branches i− 1 and i + 1 in the next cycle by shining control light on branches
i− 1 and i + 1.

(1)

Aono et al., called this mechanism the bounceback principle rather than a conventional feedback
rule to emphasize that the rule is given in the form of inhibiting certain conditions [10]. Although
the particular bounceback rule in the case of the NOR problem (Equation (1)) looks extremely simple,
the following important remark should be made.

Suppose that the amoeba were to elongate its body into all branches simultaneously (hence,
∀xi = 1). Consequently, all branches would suffer from external light irradiation based on Equation (1).
If elongation inhibition were to be applied perfectly, the amoeba would shrink its body out from all
branches simultaneously (hence, ∀xi = 0). In this manner, the system would fall into a deadlock and
never reach a solution, which is analogous to Dijkstra’s dining philosophers problem as pointed out by
Aono et al. [4]. Namely, in addition to bounceback rules, fluctuations of oscillatory behavior involving
spontaneous symmetry breaking in the amoeboid organism play a vital role in preventing the system
from entering a deadlock [9].

2.2. Photoexcitation Transfer Modeling

The amoeba-based solution searching described above utilizes spatiotemporal and probabilistic
dynamics, indicating the possibility of realizing equivalent dynamics in solid-state materials [9,18].
In this study, we deal with optical energy transfer among multiple quantum dots as a concrete,
quantitatively describable platform [9,10,16,23–25]. In accordance with the six-branch amoeba system,
Figure 1b represents a quantum-dot system composed of one smaller quantum dot denoted by
QDS, located in the center, surrounded by six larger quantum dots denoted by QDLi (i = 1, . . . , 6).
The optical excitation generated at QDS, or more precisely the energy level (denoted by S) of QDS

in Figure 1b, is transferred to the energy level marked L(U) in QDLi via optical near-field interaction
USL. The subsequent energy dissipation Γ induced in QDL transfers the excitation to lower energy
level L(L), prohibiting the excitation from being transferred back to the original QDS. The dynamics
are described by a density matrix formalism in the Lindbrad form, given by

.
ρ(t) =

1
itsh

[H, ρ(t)]− NΓ]ρ(t)− ρ(t)NΓ, (2)

where H represents the Hamiltonian involving the inter-dot near-field interaction network,
NΓ is concerned with energy dissipation including sublevel relaxation in the quantum dots and
radiation, and ρ(t) denotes the density matrix of the system. A detailed treatment of the modeling can
be found in [14]. Essentially, the same formulation is found in the research on environment-assisted
quantum walks [26,27].

The energy flow from QDS to each QDLi differs depending on the state filling effects induced
in the destination QDLi [9]. Figure 2a(0–3) shows evolutions of populations with respect to the lower
energy levels of the six larger dots (QDL1, . . . ,QDL6), where zero, one, two, or three QDLi quantum
dots experience state fillings. In the numerical calculations, we assume inter-dot near-field interactions
U−1

SLi = 100 ps, sublevel energy dissipation Γ−1
i = 10 ps, optical radiation from a larger dot γ−1

Li = 1 ns,
and that from a smaller dot γ−1

S = 2.92 ns as a typical parameter set. When there is no state filling,
an optical excitation sitting initially at QDS can be transferred to any one of QDL1 to QDL6 with
the same probability (Figure 2a(0)). If one of the QDLi quantum dots, for example QDL1, suffers from
state filling, the initial exciton in QDS is more likely to be transferred to the non-state-filled QDLi
quantum dots (QDL2 QDL6), as shown in Figure 2a(1). Likewise, the energy transfer probability differs
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depending on the occupation of the destination QDLi quantum dots, as shown in Figure 2a(2,3), where
two and three QDLi quantum dots, respectively, are subjected to state filling. The insets of Figure 2a
show the energy transfer probabilities to QDLi (i = 1, . . . , 6) derived on the basis of the numerical
integral of the calculated populations. There are 26 inherently different energy transfer patterns in total.
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differ from each other depending on state fillings induced in the larger quantum dots; (b) example
of evolution of the excitation transfer based on the given bounceback rule; (c) correct-solution rate
increases with time.

It has been demonstrated that, by applying the bounceback rule given in Equation (1) and using
the energy transfer dynamics depicted in Figure 2a, CSP and SAT can be solved successively [9,10].
As an example, Figure 2b shows an example evolution of energy transfer patterns with initial
(t = 0) values of (xi, . . . , x6) = (0, 0, 0, 0, 0, 0). In this initial state, no state filling is induced
in the system. Based on the energy transfer dynamics shown in Figure 1a(0), the system evolves
to (xi, . . . , x6) = (1, 1, 0, 0, 0, 1) at t = 1. Based on the bounceback rules, QDL1, QDL2, QDL3,
QDL5, and QDL6 experience state fillings because x1 = x2 = x6 = 1. The system is transferred
to (xi, . . . , x6) = (0, 0, 0, 1, 0, 1) at t = 2. Based on the updated state fillings, the system evolves to
(xi, . . . , x6) = (0, 1, 0, 1, 0, 1), which is one of the correct solutions of the given CSP. Figure 2c shows
the evolution of the correct-selection rate from the initial state of (xi, . . . , x6) = (0, 0, 0, 0, 0, 0) for
10,000 trials, in which the correct selection rate stabilized at approximately 0.65 after the t = 50 cycle.

3. Category Theoretic Picture and Analysis

The bounceback rule, which is determined by the given problem, nicely marries with the
spatiotemporal and probabilistic attributes of optical excitation transfer and leads to the solution
searching as reviewed in the previous section. In this section, we analyze the fundamental mechanism
through the notions of category theory.

Category theory is a branch of mathematics that formalizes mathematical structure into
collections of objects (denoted by A, B, C, . . .) and morphisms or arrows ( f , g, h, . . .). Category
theory extracts the essence of all mathematical subjects to reveal and formalize extremely
simple and yet extremely powerful patterns of thinking, which has revolutionized the field of
mathematics [28]. For each morphism f, there are given objects dom( f ) and cod( f ) called
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the domain and codomain of f, respectively. We write f : A→ B to show that A = dom( f )
and B = cod( f ). The complete definition of a category involves the existence of a composition
of, for example, morphisms, identity morphisms, and associativities [20,21]. In this study, we
apply basic notions in category theory to the solution-searching problem in a stepwise manner.
In Section 3.1, we introduce basic notions of the product, coproduct, and short exact sequence.
In Section 3.2, followed by the introduction of complex and homology (cohomology), we propose
a notion of short-exact-sequence-based time as an important figure for proper operation of systems for
intended functionality. Indeed, incorrect operations are demonstrated in the solution searching system
in Section 2 when the short-exact-sequence-based time is not stalled properly. Finally, in Section 3.3,
the braid structure known in triangulated categories is introduced by which we can grasp an in-depth
understanding of the solution searching demonstrated in Section 2.

3.1. Product, Coproduct, and Short Exact Sequence

Let the light emission from the surrounding larger dots be denoted by an object P. In other
words, the combination of the variables xi is represented by P. Based on P, corresponding bounceback
rules are activated, which is denoted by another object Q. We can have a rudimentary picture of
a feedback-type diagram, as shown in Figure 3a, where P affects Q (P→ Q) , that is, the combination
of the variables xi determines the bounceback rule, while Q affects P (Q→ P) , meaning that
the bounceback rule changes the variables xi. This picture, however, does not imply any notions
associated with energy transfer dynamics, including the fluctuation that is necessary to avoid deadlock.

To give a generic understanding from a concrete example, we consider an NOR problem of
the case N = 6 introduced in Section 2. This NOR problem is equivalent to solving the following
satisfiability problem instance given in a conjunctive normal form:

f (x1, x2, x3, x4, x5, x6) = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x6) ∧ (¬x2 ∨ ¬x3)

∧(¬x3 ∨ ¬x4) ∧ (¬x4 ∨ ¬x5) ∧ (¬x5 ∨ ¬x6)

∧(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x6) ∧ (x1 ∨ x5 ∨ x6)

∧(x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x6).

(3)

From this Equation, the given problem is to satisfy all clauses of the right side of Equation (3), each
of which behaves as a constraint of the given problem and spans a high-dimensional space. The given
problem as a whole is a cross-sectional profile of this higher-dimensional space, and the solutions
are marked by the intersections of constraints, as shown schematically in Figure 3b. In order to
formalize such a hyper-dimensional space behind the system, we first introduce the notions of product
and coproduct in category theory.

Definition (product and coproduct) In any category, a product diagram for the objects A and B consists of an
object S and morphisms A

p1← S
p2→ B satisfying the following. Given any diagram of the form A

z1← Z
z2→ B,

there exists a unique u : Z → S , making the diagram
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A diagram A
p1→ T

p2← B is a coproduct of A and B, represented by T = A ⊕ B, if for any Z and
A

z1→ Z
z2← B, there is a unique u : T → Z with u ◦ q1 = z1 and u ◦ q2 = z2 as indicated in
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Figure 3. Category theoretic picture of solution searching. (a) rudimentary picture of solution searching;
(b) hyper-dimensional view of constraint satisfaction problem; (c) introducing product and coproduct
for the light emission (P) and bounceback rule (Q); (d) introducing bounceback controller (C) and
optical environment (D) as the kernel and cokernel of the morphisms X → Q and Q→ Y , respectively;
(e) schematic diagram of chain-wise short exact sequences and exact long sequences of homology;
and (f) derivation of four triangulated sequences known in triangulated categories.
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We employ the notions of product and coproduct in the original diagram shown in Figure 3a
and obtain the diagram shown in Figure 3c. Here, X = P× Q represents the state of the problem,
which is decomposed into the optical emission from the system (P) and the bounceback rule (Q) to be
applied to the system, where all the environmental processes are taken into account. In other words,
the total system (X) is a composite system comprising P and Q. Therefore, we assume that the total
system that is under study forms a monoidal category. Hence, the theorems, lemmas, and axioms of
the Abelian category apply to the system.

The morphism from the state of the problem (X) to the selected bounceback rule (Q)
indicates that some of the rules may not be concerned, depending on the state of the problem.
In other words, all the unnecessary rules are injected into “0” in Q, i.e., the equivalence class
in X. Therefore, all conditions with respect to the bounceback rules are included in the kernel of
the morphism. u : X → Q . According to the category theory, the kernel can be regarded as a set
comprising the preceding object of the morphism u: C = Ker(u) [29]. Hence, an object denoted by C
is placed as shown in Figure 3d, which corresponds physically to the bounceback controller. Here,
the sequence C → X → Q is a short exact sequence.

Definition (short exact sequence) A sequence in the form of

0→ A i→ B
j→ C → 0 (6)

is called a short exact sequence if Im(i) = Ker(j) (image of i corresponds to the kernel of j). In other words,
i is a monomorphism and j is an epimorphism, that is, C = B/A. The zero objects at the left and the right of
Equation (6) indicate the reference.

Indeed, diverse possible states of the problem (X) are transferred to certain equivalent rules
of the bounceback rule (Q): Q = X/C. For example, although (x1, . . . , x6) = (0, 1, 1, 0, 1, 0) and
(x1, . . . , x6) = (1, 1, 1, 0, 0, 0) are different states, they lead to the same bounceback control rules that try
to inhibit energy transfer to QDi (where i = 1, 2, 3, 4, 6) according to Equation (1).

The coproduct Y = P ⊕ Q, denoted by Y in Figure 3c, is introduced on the basis of
the representative descriptions combined with the light emission of the system (P) and the bounceback
rule (Q) to extract the knowledge for better solutions in subsequent sequences. In other words,
the coproduct Y is the object with respect to the state of energy transfer. Here, we pay attention to
the morphism v : Q→ Y . We can naturally introduce the cokernel of v, which is defined as the quotient
Y/Im(v). According to category theory, the cokernel can also be regarded as a set comprising
the subsequent object and morphism [29]. Thus, an object D is placed after Q→ Y as shown
in Figure 3d. Physically, the object D corresponds to an optical environmental condition in which all
the unobservable environmental conditions for the light emission are included implicitly. For example,
suppose that no bounceback rules are active in Q. Hence, no control lights are supplied to inhibit
energy transfer. Therefore, the optical environmental conditions allow a variety of energy transfer
patterns that could potentially be induced in the QD system. In this manner, we can comprehend
the cokernel as implying the potential for growth.

The category theoretic picture shown in Figure 3c indicates that the solution-searching process is to
transfer the state of the problem (X = P×Q) to the state of energy transfer (Y = P⊕Q). As introduced
earlier, we assume a monoidal category; hence, P×Q and P⊕Q are isomorphic.

3.2. Short-Exact-Sequence-Based Time

We can naturally assume that the category theoretic diagram shown in Figure 3c indicates
the relationships between objects when they have established certain stationary states, i.e., a single
process of solution searching is completed. We can then proceed to the next step of solution searching
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based on the prepared state-filling environment. In order to construct the category theoretic picture,
we need to introduce the notion of complex in category theory.

Definition (complex): A complex A• is a sequence of objects A• : . . .→ Aj−1 dj−1
A→ Aj dj

A→ Aj+1 → . . . and
morphisms dj

A : Aj → Aj+1 such that dj
A ◦ dj−1

A = 0 for all j, i.e., the nature of the boundary operator or
differential operator.

Because of this nature, the object Aj−1 in the complex is injected as the image of the morphism
dj−1

A into the kernel of the morphism dj
A. Note that the quotient of the kernel of dj

A divided by

the equivalent class of the image of dj−1
A is referred to as the j-th order homology (or cohomology)

H j(A•) of the complex A•. Namely, Hn(A•) = Ker(dj)/Im(dj−1).
The remarkable feature is that the homology is irrelevant to the preceding object and

is transferred to the subsequent object as the equivalent class of 0 object; that is, the homology
H j(A•) represents the local feature added only to the object Aj in the complex A•. Therefore,
a complex describes a sequential evolution of objects with a history of sequential addition
of homology. It is useful to introduce the shift or translation of a complex: C• = A•[1]
consisting of {Cj}j∈Z = Aj+1 with dj

C = −1dj
A [29]. A physical correspondence of the complex

in the quantum-dot-based solution searching is, for example, the evolution of light emission of
the system (P): P• : . . .→ Pj−1 → Pj → Pj+1 → . . . .

A morphism of a complex, f : A• → B• , is a set of morphisms f j : Aj → Bj that satisfies
f j+1 ◦ dj

A = dj
B ◦ f j for all j.

Here, one of the most remarkable features known in category theory concerns the chain-wise exact
sequence of a complex given by 0→ A• → B• → C• → 0 , which comprises short exact sequences,
namely, the following sequence holds for all j:

0→ Aj → Bj → Cj → 0. (7)

Lemma (long exact sequence of cohomology: snake lemma)
The chain-wise exact sequence of complexes induces the long exact sequence of cohomology [29,30]:

. . .→ • → • → H(Cj−1)→ H(Aj)→ H(Bj)→ H(Cj)→ H(Aj+1)→ • → • → . . . . (8)

Figure 4a schematically describes the notion of a long exact sequence of cohomology. Moreover,
the existence of the morphism from H(Cj) to H(Aj+1) is emphasized.

Furthermore, category theory tells us that, within a certain equivalence class of homotopy, one can
find a characteristic arrow, also called the translation morphism and lift, C• → A•[1] , which maintains
the long exact sequence of cohomology. That is, the evolution of a chain-wise exact sequence of
complexes is described by a triangular structure, A• → B• → C• → A•[1] [29], as shown schematically
in Figure 3e. In other words, we can equate Cj with the history of Cj containing the cohomology of
the past. The detailed mathematics behind this can be consulted elsewhere [29,30].

Using the notion of the complex discussed above, we can naturally transform the diagram
described in Figure 3d into the diagram of complexes evolving under the bounceback rule updating
strategy, as shown in Figure 3f. In this diagram, the updating processes of the bounceback rule
controller C and the optical energy transfer environment D have been introduced with the characteristic
arrows indicated by wiggly lines. The positions of C, D, and the characteristic arrows are determined
on the basis of the commutative relation between X• → P• → Y• and X• → Q• → Y• .
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Since the step-wise short exact sequences 0→ C → X → Q→ 0 and 0→ Q→ Y → D → 0
fulfill certain equilibrium conditions for each solution-searching process, we can derive the
composite morphisms C• → Q• and Q• → D• . Accordingly, the category theoretic picture in
Figure 3f includes triangular structures given by C• → Q• → Y• → C•[1] (marked by T1) and
X• → Q• → D• → X•[1] (T2). This diagram coincides naturally with a physical interpretation of the
subsequent solution-searching process that is fabricated on the basis of the revised bounceback rule and
optical energy transfer status. In addition, by adding composite morphisms D• → P• and P• → C• as
characteristic arrows, we can find another two triangular structures given by P• → Y• → D• → P•[1]
(denoted by T3) and C• → X• → P• → C•[1] (T4).

The diagrams in Figure 3f give a compact picture of octahedral structure by directly connecting
the same complexes at the top and bottom of the diagram with each other, leading to the
three-dimensional diagram shown in Figure 5a. This structure corresponds to one of the most important
consequences of triangulated category or derived category, called the octahedron axiom [29]. The octahedron
consists of four short exact sequences corresponding to the triangulated category and four triangular
diagrams as indicated in Figure 3f.

It should be emphasized that all of these triangulated structures require the satisfaction of
the chain-wise exact sequence of complexes, as described earlier in Equations (6) and (7). This fact
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implies that solution searching does not work if the objects are not short exact sequences. In other
words, the time for solution searching is defined by way of short exact sequences; here, we would like to
propose a new philosophical perception of time, referred to as short-exact-sequence-based time. In the diagram
in Figure 4a, the short-exact-sequence-based time is shown by the unit to satisfy a short exact sequence.
In other words, it corresponds to the period in which the sequence of a short exact sequence is shifted
to the next sequence in the triangular structure.

In fact, the spatiotemporal probability used in the earlier demonstration of CSP uses the time
integral of the populations during 20 ns, which is sufficiently long to ensure evident differences
depending on induced state-filling effects. Figure 4b represents the correct-solution rate as a function
of the integration time of the populations; the system exhibits poor performances if the integration time
is smaller than approximately 3000 ps, that is, the short exact sequence does not hold if the operating
speed is too high. In other words, the short-exact-sequence-based time should be larger than
approximately 3000 ps for this particular problem.

In the case of experimental demonstrations using amoebas conducted by Aono et al. [4], a single
step of solution searching was on the scale of minutes, which was sufficiently long to ensure that
the amoeba under study responded to the light stimulations. Further discussion on the applications
and implications of short-exact-sequence-based time would be an interesting future study.

3.3. Braid Structure of Solution Searching

Here, an important remark concerns the interpretation of the induced long exact sequence of
cohomology or the triangular structure of the complex in solution searching. First, it is natural to
associate the homology induced in each complex with the local environment. For example, the light
emission from each of the quantum dots is determined on the basis of a spontaneous symmetry
breaking occurring in each of the quantum dots, which is included in the homology of the optical
excitation transfer environment (D•). In general, descriptions of the intention or preference of the solution
searching are represented in homology. This is one of the most important starting points for avoiding
deadlocks. In contrast, the short exact sequences, which involve no homology, tightly restrict
the evolution of complexes in the triangulated category. Hence, the sequence of cohomology indicates
the history of evolution experienced by each object via the triangulated structure; this is one of the most
important starting points for the system to arrive at a correct solution.

In the category theoretical context, the octahedral structure is known to be resolvable into two
Mayer–Vietoris sequences [29]:

X• → Q• ⊕ P• → Y• → X•[1], (9)

X• → Y• → M•[1]⊕ F• → X•[1]. (10)

These sequences imply that the structure of the given problem (X•) is decomposed into the light
emission (P•) and the bounceback rule (Q•) and then transferred to the state of the optical excitation
(Y•); namely, solution searching is realized. In terms of the long exact sequence of cohomology,
the Mayer–Vietoris sequences decrease the cohomology dimension as the sequence elapses, which will
be demonstrated numerically in the solution searching below.

In order to deepen the understanding of the physical and mathematical implications of the solution
searching, we have simulated the evolution processes based on the braid structure of the octahedron
shown in Figure 5b,c. As a series of solution searching processes, the diagram shown in Figure 5a
can be extended by appending shifted diagrams of the octahedral structure as shown in Figure 5b.
In particular, the extended diagram in Figure 5b is derived by repeating the diagram in Figure 3f
while swapping the positions of P• and Q•; consequently, the four short exact sequences are arranged
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sequentially. Following the category theoretic context, this diagram produces a braid structure [29,31]
of the octahedron shown in Figure 5c, which consists of the following four exact sequences as braids:

Braid 1 : 0→ C• → Q• → Y• → 0

Braid 2 : 0→ X• → Q• → D• → 0

Braid 3 : 0→ P• → Y• → D• → 0

Braid 4 : 0→ C• → X• → P• → 0

. (11)

This braid structure reveals the geometrical structure or interdependence underlying the solution
searching based on stochastic spatiotemporal dynamics in a totally simplified manner. The solution
searching is regarded as unfolding these braids at the complex P• by repeating the spatiotemporal
dynamic updating processes. Braids 3 and 4 intersect at P•. To demonstrate this picture numerically,
we suppose that these braids have a knot at Pj if the light transmission pattern (Pj) is not a correct
solution at the cycle j, whereas these braids are unfolded or have no knot if the light transmission pattern
is a correct solution at cycle j. As the time elapses, consecutive Pjs are likely to be in the correct solutions,
namely the knots are unfolded.
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We quantify the length of consecutive unfolded knots (CUKs), which is shown schematically
in Figure 6a. Figure 6b summarizes the histogram of the CUKs at the cycles from t = 0 to t = 200 every
25 cycles. By definition, the maximum number of CUK cannot be greater than the number of elapsed
cycles. Beyond t = 150, the histogram characteristics become almost the same, where the maximum
CUK is approximately 150. What is particularly noteworthy is the increased occurrence of CUKs near
CUK = T when the cycle is in T, which is marked by red rings in Figure 6b. For example, when t = 75,
the CUK value around 75 occurs more frequently than the shorter CUK value of 64. Similar behavior
is observed in t = 25, 50, 100, and 125. In other words, the system autonomously seeks longer CUKs
as the time elapses. Figure 6c characterizes this tendency from another angle as the time evolutions
of the occurrence of some specified length of CUK (25, 50, 75, 100, and 125) are evaluated, where
the decrease of shorter CUKs could be viewed as coinciding with the appearance of longer CUKs.
This is the verification of the decreasing cohomology dimension in the chain of long exact sequence
of cohomology (Equation (8)) owing to Mayer–Vietoris sequences (Equations (9) and (10)) known
in category theory.
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4. Conclusions

In conclusion, we presented a category theoretic picture of solution searching based on
the stochastic spatiotemporal dynamics of optical excitation transfer, which was originally inspired by
amoeba-based computing principles. By introducing category theoretic notions, the underlying
mechanism of the solution searching was exactly understood, in which conventional empirical
entities were clearly resolved. The short exact sequence gave a solid foundation for the proper
operational condition of the solution searching, whereby we introduced a new concept of time called
short-exact-sequence-based time. By introducing environmental entities behind the system, we derived
octahedral structures known in triangulated categories, in which the four braids interacting with each
other. The solution-searching process was viewed as the unfolding of knots of the braids or the decrease
of homology dimension. By numerically evaluating the consecutive unfolded knots, the emergence of
autonomous solution searching behavior was clearly observed. As described in Section 3.1, the total
system has been assumed to form a monoidal category. Owing to this postulate, the category theoretic
approach as summarized above is seen to provide significant benefits and critical insights for solution
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searching based on natural processes or natural intelligence. In our future study, we will try to prove
that the entities of the system are indeed monoidal categories.
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