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Abstract: Analogy belongs to the class of concepts notorious for a variety of definitions generating
continuing disputes about their preferred understanding. Analogy is typically defined by or at
least associated with similarity, but as long as similarity remains undefined this association does not
eliminate ambiguity. In this paper, analogy is considered synonymous with a slightly generalized
mathematical concept of similarity which under the name of tolerance relation has been the subject of
extensive studies over several decades. In this approach, analogy can be mathematically formalized
in terms of the sequence of binary relations of increased generality, from the identity, equivalence,
tolerance, to weak tolerance relations. Each of these relations has cryptomorphic presentations
relevant to the study of analogy. The formalism requires only two assumptions which are satisfied in
all of the earlier attempts to formulate adequate definitions which met expectations of the intuitive
use of the word analogy in general contexts. The mathematical formalism presented here permits
theoretical analysis of analogy in the contrasting comparison with abstraction, showing its higher
level of complexity, providing a precise methodology for its study and informing philosophical
reflection. Also, arguments are presented for the legitimate expectation that better understanding of
analogy can help mathematics in establishing a unified and universal concept of a structure.

Keywords: analogy; identity; equality; equivalence; similarity; resemblance; tolerance relation;
structure; cryptomorphism

1. Introduction

The concept of analogy belongs to the class of concepts which can be considered elusive, i.e.,
concepts which almost everyone claims to understand well, which are used in a majority of the domains
of inquiry from philosophy to computer science as well as in the everyday discourse, but which
under scrutiny escape any commonly accepted definition. The same applies to concepts signified
by expressions which include the adjective “analog”, such as analog information, analog computing,
analog model, etc. As in cases of other elusive concepts such as identity, structure, information,
computation, or mind, the omnipresence of the word “analogy” in everyday discourse where there is
no expectation for the semantic clarification makes it very difficult to establish a common foundation
for its analysis. Every attempt to establish a commonly accepted definition of this and other elusive
concepts evokes strong resistance as the precision or lack thereof is usually perceived as a limitation or
an incursion into someone’s freedom of thinking. However, when we see how much of intellectual effort
is put into fruitless discussions in which the only objective is to elevate one view of the meaning over
others without much care for establishing any common conceptual framework allowing comparisons,
then the need for setting a foundation for the study becomes clear. Of course, setting a foundation for
the study of the meaning of a concept does not have to be and should not have to be considered a
conclusion of its discussion, but rather an entry into another level of inquiry.
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My claim that analogy belongs to elusive concepts may be objected by someone who refers to
one of the many dictionary or encyclopedic definitions as a sufficient common ground. For instance,
we can find in the respected Stanford Encyclopedia of Philosophy that “An analogy is a comparison
between two objects, or systems of objects, that highlights respects in which they are thought to be
similar. Analogical reasoning is any type of thinking that relies upon an analogy. An analogical argument
is an explicit representation of a form of analogical reasoning that cites accepted similarities between
two systems to support the conclusion that some further similarity exists” [1]. This definition, as with
many other attempts, is guilty of the common sin of addressing the meaning of hard words which
consists of sweeping the dirt under the carpet of another hard but undefined word in the definiendum.
In this case, this word is “similarity”. Not only is similarity not defined in the proposed definitions,
but it is not clear whether the words “similar” and “analogous” are, or should be considered different
in their meaning.

The main objective of this paper is to search for the common ground and to establish a firm
foundation for the study of analogy in the experience of mathematics and in its conceptual framework.
It is a surprisingly well-kept secret, that there is a quite extensive mathematical theory of general
similarity relation initiated by Eric Christopher Zeeman more than fifty years ago, unfortunately
under the misleading term of tolerance relation [2,3]. Zeeman introduced this term because it
accurately represented the application of the concept of mathematical similarity to the context of
the article, i.e., the mathematical modeling of the brain mechanisms involved in visual perception.
For instance, his “[...] notion of ‘tolerance’ within which we allow an object to move before we notice
any difference” [2] (p. 241) was first formulated using the concepts of geometry with the intention
to provide a mathematical tool for the study of cognition, but with the following this specific case
the general definition as a binary, reflexive, and symmetric relation intended to build the bridge to
topological description. Zeeman probably did not expect that his tolerance relation would initiate
extensive research reported in hundreds of papers. In mathematics, the choice of terminology is
rarely a subject of deeper reflection. However, in this case, the decision to use the term “tolerance”
had significant negative consequences for the dissemination of the results in mathematical studies of
similarity outside of the relatively narrow group of experts. It is very unlikely that someone unfamiliar
with general algebra looking for a theory of similarity would guess its mathematical name in such
a disguise or realize its affinity to some fundamental mathematical theories. There are many other
commonly-known, and others confined to more specialized literature, pieces of mathematical theory
relevant to the study of analogy.

To avoid confusion, the present paper is not intended as a contribution to mathematics, but rather
a contribution to philosophy of analogy through the use of the familiar rudimentary mathematical
concept of similarity and its well-known and rich theory for the purpose of establishing the conceptual
framework defining analogy and for relating it to other fundamental philosophical concepts such as
identity, equality, equivalence or difference. Moreover, the objectives of this paper do not include
the resolution of any particular philosophical controversies over analogy. The main purpose is to
establish a common foundation and to present a tool-kit of mathematical methods to assist future
studies of analogy and its philosophical interpretation. If more specific issues in the study of analogy
are invoked here, it is only to show the effectiveness of these intellectual tools or to demonstrate the
need for their use.

While the paper has as its main objective to contribute a mathematical formalism to the
methodology for the study of analogy and similarity, it has an additional objective to present
the possibility of using analogy for the purpose of establishing a clear meaning for the general concept
of a structure.

2. Symmetry of Analogy

Another legitimate issue regarding the use of tolerance relation as a mathematical model for
similarity is whether the concept of tolerance relation is sufficiently general. At first, this may seem
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obvious since tolerance is a binary relation on a set with only two simple defining conditions: The
relation is reflexive (every element is similar to itself) and symmetric (if x is similar to y, then y is similar
to x). This paper goes in the direction of a slightly increased generality when similarity in the most
general sense does not have to be reflexive but has to satisfy the condition that whatever is not similar
to itself is not similar to anything else. This weaker than reflexivity condition introduced in the present
author’s earlier publications is dictated by the instances of similarity in mathematical theories, but it is
of some importance for the philosophical discourse on the relationship between identity, similarity,
and difference [4,5].

We do not have to go beyond the generality of reflexive tolerance relations to wonder whether it
is not excessive for the concept of similarity. However, the existence of the large variety of applications
of this concept in virtually all domains of inquiry makes this concern unjustified. On the other hand,
there is one domain, psychology where the symmetry of similarity was questioned and arguments
were presented calling for a more general definition.

Probably the most representative for this way of thinking is the article by Amos Tversky in which
he claims that symmetry is too much restrictive [6]. Tversky admits that “Similarity has been viewed
by both philosophers and psychologists as a prime example of a symmetric relation. Indeed, the
assumption of symmetry underlies essentially all theoretical treatments of similarity.” [6] (p. 328).
However, he claims that his paper provides “empirical evidence for asymmetric similarities”. Tversky’s
paper has some minor factual errors (e.g., his metric space is not metric, but pseudo-metric and
his metric introduced to measure similarity is not a distance or metric, but quasi-metric with little
affinity to geometric concepts), but more problematic is the logical error leading to his conclusion of
the asymmetry of similarity. He claims that “Similarity judgments can be regarded as extensions of
similarity statements, that is statements of the form ‘a is like b.’ Such a statement is directional; it has a
subject, a, and a referent, b, and it is not equivalent in general to the converse similarity statement ‘b is
like a.’ [...] We say ‘the son resembles the father’ rather than ‘the father resembles the son’.”

This and other examples in the paper do not provide any empirical proof that similarity is not
symmetric, but that the statements about similarity may be strongly context dependent. If you do not
know anything about the additional structure serving as a context (in this case family relationship)
there is no reason to claim any direction in similarity statements. “John is similar to Joe” carries exactly
the same meaning as “Joe is similar to John”, but when we learn that Joe is a son of John and that sons
inherit features of fathers, then we may consider the latter statement more appropriate. Even this
is not obvious, because we may talk to someone who knows Joe better than John. In this case, it
would be more appropriate to use the former statement. In each of Tversky’s examples, there is a
hidden ordering “directing” the similarity statement. Of course, there is nothing wrong in considering
relational structures consisting of tolerance relations and some other relational structures, for instance
of the type of order. However, a general theory has to present all component relations, and here is
Tversky’s error. He does not identify any additional relations that are “smuggled” into his examples.
Tolerance relations with additional structures have been studied from the very beginning of the theory,
even in the paper of Zeeman that initiated their study.

For this paper, it is important that the claim of Tversky’s paper that similarity requires more
general theory without the requirement of symmetry is clearly false. The same objection applies to
papers making similar claims of directionality. Probably the most relevant here is an example of the
paper “Structure Mapping: A Theoretical Framework for Analogy” by Dedre Gentner [7].

Here too we have the claim of asymmetry of analogy expressed by the statements of the form “A T
is (like) a B” and corresponding to this claim of directionality the formalization of analogy as a mapping
from the (relational) structure B (base) to (relational) structure T (target). Gentner’s article involves
several undefined terms (e.g., “object nodes”, “discarding of attributes”, “large number”, “few”, etc.),
some formally meaningless common sense “postulates” (e.g., the second postulate for mappings
formulated as “Try to preserve relations between objects”) and lastly, at least one fundamental logical
error (in the definition “An abstraction is a comparison in which the base domain is an abstract relational
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structure” which without an explanation of the meaning of “abstract relational structure” independent
from “abstraction” becomes circular). These defects make the text a caricature of mathematical
formalization worth mentioning only because it reveals the intuitive symmetric character of analogy.
Although Gentner explicitly writes about the directionality of analogy at the beginning, later analogy
becomes a symmetric domain comparison as for instance in “In the structure-mapping framework,
the interpretation rules for analogy can be distinguished from those for other kinds of domain
comparisons.” [7] (p. 159).

Thus, the only philosophical claim of the present paper is that analogy is a (weak) tolerance
relation and as such its study may benefit from the consideration of the results of mathematical analysis
of this concept. It is important to remember that the concept of tolerance relation belongs to the
sequence of philosophically fundamental concepts of increasing generality starting from identity and
going through equality, equivalence.

Thus, a brief review of concepts forming the context for analogy, such as identity, equality,
equivalence, similarity, etc. will be followed by the exposition of corresponding mathematical concepts.
All these concepts come from the same theoretical framework of general algebra, so mathematics gives
us not only a conceptual framework but also an insight into the interdependence of relevant concepts.
In this paper, all effort will be made to avoid technical detail and to make the presentation accessible
to everyone with or without a deeper mathematical background. However, this article is about the
contribution of mathematical theory to philosophy and the study of analogy, so the presentation of its
theses in the complete absence of some exposition of mathematical concepts and relevant mathematical
theory is impossible.

Contributions of mathematics to the study of analogy are not limited to the unification of concepts
present in the discourse on similarity, but they permit a critical analysis of some claims or ideas
within earlier studies. This paper is not intended as a comprehensive review of all applications of
mathematical knowledge of tolerance relations to the study of analogy. Such applications are just
examples supporting the view that we get a useful tool. For instance, in her classic work Models and
Analogies in Science Mary Hesse introduced the distinction between positive, negative and neutral
analogies [8]. The positive analogy between items consists of the properties or relations they share.
The negative analogy in the ones they do not share and the neutral analogy comprises the properties of
yet to be distinguished as positive or negative. This type of distinction, although justified in the restricted
meaning of the particular socio-scientific context considered by Hesse, becomes meaningless in the
general context-independent case where statements of the type “not known yet” (by whom? when?
etc.) cannot be considered legitimate. Better examples of the power of mathematical conceptualization
can be given in the critical analysis of Hesse’s claim that “similarity must resolve into identity and
difference” [8] (pp. 70–71). Using mathematical tools, this paper will demonstrate that this claim is
false and at most replaceable, since it can be substituted by the “resolution” of every similarity into
equivalence relation and a pure form of similarity (Wittgenstein’s family resemblance) in which all
objects, although similar, are distinctive.

Mathematical theory of similarity defined as a tolerance relation can be used to demonstrate the
fallacy of the idea to measure similarity by counting the number of all common properties or by using
for this purpose the proportion of common properties to all possessed by the objects, as for instance in
the mentioned before paper by Amos Tversky [6].

The first step in this direction, but without a mathematical theory of similarity, was done by
Nelson Goodman [9]. He objected the concept of similarity as an absolute relation independent from
any specifications of properties with respect to which it is considered. He correctly insisted that
similarity should always be considered with respect to some family of attributes. He overstated his
claim asserting that objects can be similar in an unlimited number of ways. It is true that in some
situations that they can be similar in the infinite number of ways, but strictly speaking the issue is not
in the “unlimited” number of ways but in the indefiniteness of this number. Later we will see that
the same tolerance relation can be defined by several different families of attributes and that the size



Philosophies 2019, 4, 32 5 of 18

of these families can be different. Thus, the strength of similarity of two objects with respect to one
family of attributes measured by common attributes can be different when we use a different family of
attributes. This contradicts the much later claim by Satosi Watanabe that “To persuade that two objects
are similar, it is natural to enumerate the properties that are commonly owned by the objects. The more
properties are shared, the more similar they are.” [10]. This error could be avoided, if Goodman’s
objections, formulated as philosophical arguments, opened the discussion supported by mathematical
proof from the theory of tolerance relations showing that there are no possible counterarguments.

There is another and, in some sense, independent and tangential theme of this paper. It is the
role of analogy as an intellectual instrument in the study of structures. This is not restricted to the
issue of the extension of analogy as similarity between objects understood as elements of some set S to
similarity between ordered pairs as elements of a binary relation on S, i.e., a subset of the direct square
of S. Relational structures, binary or of higher order, with one or with many relations are not the only
structures within mathematics and its applications to more specific domains of inquiry. Analogy is
sometimes understood as interdependence or similarity of structures (we could see an example of a
not very successful attempt of this way of thinking in Gentner’s paper criticized above), but this does
not eliminate problems in its understanding. After all, the general question “What is a structure?” is
not at all easier to answer than “What is analogy?” Both structure and analogy are elusive concepts.

Instead of providing the ultimate answers to both questions, this paper presents an outline of
the mutual dependence between these two concepts. We claim only that analogy can be defined as a
(weak) tolerance relation on some set, but this definition leaves open several questions regarding the
pragmatic aspects of this concept, for instance, its role in logic. On the other hand, the question about
the general concept of a structure is without any definite answer. We could already see in the examples
presented above that a typical interpretation of the word “structure” is a relational structure, i.e., a
set with some number of relations defined in it. However, we have many examples (for instance in
mathematics) of structures which are not relational. Also, some relational structures are considered
equivalent to structures which are not relational.

Questions about the general meaning of the concept of structure cannot be easily resolved by the
existing tools of mathematics, such as the concept of a morphism (structure preserving mapping) which
requires pre-existence of a conventional—and to some extent arbitrary—choice of implementation.
The same structure (for instance a topological space) can be implemented in several different, but
apparently equivalent ways (topological space is defined by the class of open subsets, closed subsets,
closure operator, or a long sequence of other equivalent operators, base for open subsets, base for
closed subsets, nets, filters, etc.) On the other hand, seemingly very different structures may be easily
associated as essentially identical. For instance, even mathematicians are sometimes surprised that
every topological space on a finite set corresponds in a unique way to a quasi-ordering and in the case
of a topological space at the lowest level of separability (i.e., satisfying axiom T0 which very rarely is
not required) this is simply a partial ordering [11].

The equivalence of definitions for many commonly equated structures may seem in some cases
obvious, but this impression may be deceptive because the transitions between defining concepts
require in some cases additional ad hoc assumptions and there is no uniform description of the way they
should be performed. Justification of the claim that the two conceptual frameworks produce essentially
the same structure is done in the case by case manner, not by following a universal rule. Different levels
of abstraction come with ramifications or mergers of the categories of implementation. Because of this
lack of a universal method for comparing and relating mathematical structures, despite having the
same conventional name they have quite frequently different and non-equivalent definitions.

Paradigmatic example can be found in the diverse menagerie of the high-level generalizations
of topology. Why dropping of one axiom defining a topological space keeps it in the category of
topological spaces, but dropping another does not? At which level (if any) of the axioms of separation
does topology begin? If the answer is that it is just an accidental matter, then the very concept of
mathematical structure becomes questionable.
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In everyday mathematical practice, in the absence of isomorphic mappings which by the definition
require presence of identical objects on both sides of the function so that their preservation can be
assessed, we are expressing the fact of similarity within the class of structural implementations by
referring to “cryptomorphic presentations of a structure” (or cryptomorphs). The term “cryptomorphism”
was introduced by Garett Birkhoff already in 1967 and defined in a quite narrow context, but it was
never clearly defined in full generality because in each instance this type of similarity relation requires
an ad hoc procedure. Thus, there are many unanswered questions regarding this thus far intuitive
concept. How is it possible to describe the identity of a cryptomorph or cryptomorphic class of the
structure independently from the particular choice of its defining concepts and corresponding to the
sets of axioms? What actually is “cryptomorphism”? How is the concept of cryptomorphism related to
the general concept of a structure? All we can say is that it is expressing our intuitive sense of similarity.
We are simply content to grasp analogy, or rather we are forced to be content.

3. Analogy as a Universal Intellectual Tool

Analogy, although understood in many different ways throughout the ages of its use in
philosophical and scientific inquiries was always a tool for eliminating, reducing or handling complexity.
For instance, Aristotle writing in Metaphysics (1048a25-b17) about the antithesis of potentiality and
actuality escaped the trouble to explain the complexity of the concepts involved in it by invoking
analogy “[...] we must not seek a definition of everything but be content to grasp the analogy” [12]
(p. 82). In this case, the escape from complexity was achieved by building analogy between the
relationship of metaphysical concepts at a very high level of abstraction (potential existence and actual
existence) and the relationship between particulars coming from our everyday experience.

However, if analogy was simply a replacement of the abstract, general by that which is particular
(as in the case of so-called ostensive definition), then it would have been just an illustration, possibly
confusing and misleading. So, what is analogy and why does it have such an important role as an
intellectual tool? The etymology of its name refers to the Greek word for proportion derived from
geometric analysis of figures and therefore apparently related to the quantitative, metrical analysis of
objects in human perception. But in fact, analogy belongs to fundamental concepts of the structural,
i.e., qualitative methodology. Even in this original, literal meaning of the Greek word “analogia” as a
proportion of geometric measures the equality of mutual relationships of the components within a
whole, not their numerical values is important. It is no wonder that already in the philosophy of Greek
antiquity analogy acquired much more general meaning of the equality or similarity in structural
relations expressed frequently in terms of non-numerical, qualitative, intuitive proportions.

At this point, it is worth to reflect on the abuse of numerical proportions which can be misleading
in the search for analogy. Not all magnitudes describing even most familiar systems of everyday
experience have meaningful proportions. This is why statistics makes the distinction between the
so-called interval and ratio levels of measurement to avoid the abuse of proportions. For instance,
data consisting of the measurements of temperature expressed in Celsius or Fahrenheit scales belong
to the former type. A twofold increase of temperature in either of the two scales is meaningless, as
it can be easily observed that the same increase will produce different ratio dependent on the scale.
Thus, saying that the twofold increase of the temperature measured in Celsius degrees indicates that
it is twice warmer, as the majority of people would be inclined to say, is meaningless. On the other
hand, the proportion of temperatures expressed in Kelvin scale is meaningful and reflects structural
characteristics of energetic processes.

The example of the common-sense abuse of proportions in the interpretation of temperature or
other quite frequent mistakes in interpretation of numerical values of other magnitudes should not be
considered evidence against the role of intuition in analogy judgment. They may serve as a warning
against fallacies in oversimplification of analogy. In fact, there is sufficient evidence for the surprisingly
high human perceptual skills in the detection of similarities between structural characteristics expressed
by proportions. For instance, from the observation of the interdependence between the proportions of
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the lengths of string in monochords and musical harmony, Pythagoreans derived their general concept
of harmony which guided scientific inquiry in the centuries to come. Obviously, musical harmony was
already a well-established concept when Pythagoreans associated it with proportions of numbers.

The ability to detect even small deviation from the musical harmony demonstrates the more
general capacity of human perception in the recognition of structural characteristics without any direct
analytical tools. We can associate it with the special role of analogy in the human capacity to identify
structural resemblances which cannot be easily described or formalized. However, this astonishing
capacity cannot be overextended to the domains of inquiry based on analytical methods. We should
not be “content to grasp analogy” as advised by Aristotle, if we leave the judgment of the validity of
the analogy in the analytical philosophical discourse exclusively to our intuition.

Thus, even if we fully appreciate the role of intuitive detection of analogy between structures, there
is a legitimate question about the function of analogy in the study of structural characteristics. It is quite
clear that analogy works through similarity or even equality (as in the case of proportions understood
literally). However, even if frequently, but mistakenly, analogy is reduced to a binary relation on some
set S of the type of identity (in logical sense), equivalence (binary relation which is reflexive, symmetric
and transitive) or its generalization similarity (in mathematics tolerance relation which is reflexive
and symmetric, but not necessarily transitive [13]), it actually can describe correspondence between
structures built over the set of all subsets of the set S (power set of S), or objects of even higher set
theoretical rank. Of course, there is nothing wrong in calling the similarity relation on a given set of
objects to be an analogy, but we should consider the special role of analogy in the study of structural
characteristics which may be lost in the reduction to tolerance relations at the lowest level of elements
devoid of their own internal structural characteristics.

If we have predefined structures of a particular type (e.g., algebraic structures, partially ordered
sets, topological spaces, etc.), then we could consider the description of analogy in terms of functions
(homomorphisms, isomorphisms, etc.) between structures which preserve structural characteristics
(algebraic operations, order, topology). In this approach structures are primary concepts and analogy
is introduced as a secondary concept defined by selected functions determined by the condition of
these structures’ preservation. However, this approach trivializes analogy.

First, we lose the role of analogy as a tool for the inquiry of the structure, or for the determination
of structural characteristics. If the structure is already defined and fully characterized, there is not
much use for analogy. Moreover, these specific types of mathematical structures mentioned above are
just examples of only apparently special importance. There are many other examples of at least equal
philosophical, theoretical and practical significance.

A much more fundamental problem is that even for specific types of structures (for instance
algebraic structures) for which the concept of morphism is well defined, it generates a relation which is
transitive (composition of morphisms is a morphism), while transitive relations of similarity between
structures (equivalence relations) form a very restricted sub-category.

4. Identity, Equality, and Equivalence Relation

It is surprising that in the literature on analogy there are a lot of references to the concept of
identity and similarity and their mutual relationship, but there is very little interest in relations of
equality and equivalence [8,14]. Identity was a subject of philosophical disputes since the earliest
time of European philosophical tradition. One of the sources of controversies arising in the study
of identity was in its role in both epistemological and ontological contexts. Since these issues are of
secondary importance for the subject of the present paper and the views of the present author were
presented elsewhere [15,16], identity will be considered here mainly in its relation to the other concepts
of equality, equivalence, and similarity. Therefore, there will be no much interest in the ontological
aspect of identity as a condition for existence.

The four concepts can be considered as expressions of relations of decreasing level of restriction
or alternatively of increasing generality in the order as listed above with identity preceding equality.
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Every two identical objects are equal, every two equal objects are equivalent, and so on. Neither of the
links can be reversed. For instance, the distinction between identity and equality becomes crucial for
the distinction between logical relationship and the relationship within theories with equality [17].
A simple example of the difference between logical identity and equality can be given by expressions
“1 + 1” and “2”. They are equal within arithmetic, but not identical in logic. Additionally, the first
three relations are transitive (e.g., if a is equal to b and b is equal to c, then a is equal to c). The last one,
similarity, obviously does not have to be transitive. For instance, when similarity in natural numbers is
defined by a selection of the properties of divisibility, then the pair 7 and 9 can be considered similar as
these numbers are odd (not divisible by 2) and the pair 2 and 7 similar, as they are prime (divisible only
by themselves and 1). However, 2 and 9 are not similar with respect to either of the two properties.

4.1. Identity and Equality

The classical criterion for identity formulated by Leibniz in his Discourse on Metaphysics, Section
9 [18] (p. 308), but already considered by Thomas Aquinas in Summa Theologiae (ST, I, Q40, A1, O3) [19],
and in some sense by Nicholas of Cusa in De Li Non Aliud (NA, 5, 18:9) [20], called principium identitatis
indiscernibilium, states that two individuals are identical, if for any intrinsic, non-relational property it
can be asserted that one has it if and only if the other has it. Today this principle is better known under
its English name “principle of the identity of indiscernibles”. It is hardly surprising that this criterion
was many times challenged by David Hume, Immanuel Kant, and others, for instance regarding the
meaning of intrinsic property or problematic reference to all properties.

The latter condition of identity with respect to all properties is in clear contradiction with the
long-standing Aristotelian tradition in which there is a fundamental distinction between essential
and accidental properties exactly for the reason of saving the concept of identity, in particular in the
diachronic perspective. Saying that a man who shaved his beard is not identical with himself before
shaving seems to be absurd. Thus, we should make a distinction between the essential properties
defining identity. However, all efforts to provide objective criteria for these properties failed.

As a concern about the requirement of intrinsic properties to be considered, Kant in the Critique of
Pure Reason restricts validity of Leibniz’s principle to the phenomenal level and provides an example of
two drops of water with all intrinsic quantitative and qualitative properties the same, but in different
locations to be two different entities with their own numerica identitas [21] (p. 192).

There are many ways to escape traps of the traditional concept of identity, but the logical distinction
between identity and equality has the most solid formal foundation and is consistent with our intuition.
The man, before shaving his beard and after, meets the criterion of equality, but not the criterion
of identity. After all, the former had a beard and the latter does not, so they are not identical but
only equal. The distinction may be considered a hidden import of essentiality. Why is the man after
shaving equal to the man before shaving, but his cut beard is not? The answer is that equality requires
consideration of the structural identity at the level where we consider objects as equipped with the
internal structure [16].

Since the issue is of special interest in this paper, it needs to be addressed in a more elaborate way.
In our current understanding of fundamental philosophical concepts, whether we are aware of this or
not, we carry a lot of luggage from the philosophical tradition. In the long run, there were two main
positions already established in Mediterranean Antiquity in the discussion of ontological status of
universals. “Universal” as a predicate of one variable referred to an actually existing object (universalist
position) or was just a generic name for the collection of actually existing objects possessing the
universal as an attribute of the secondary ontological status (nominalistic position). There was nothing
in between.

We could see the reflection of the dispute in the discussion of the problem of the identity of
indiscernibles. In the universalistic approach, universals were entities with their own structures
(for instance Platonic forms) expressed in essential properties. In the approach of moderate realism,
universals did not have an independent existence and they were comprehended as structures abstracted
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from the objects which they represented. However, without any developed tools for structural analysis
in both approaches, the universals were defined and analyzed in terms of external relations, such as
their genus, species, differentia.

The dispute of universals was revived by the philosophical issues arising from the development
of axiomatic set theory. One of the critical points was the problem of the (unrestricted) axiom schema
of comprehension (sometimes called axiom schema of specification) which states that the collection
determined by {x: ϕ (x)} with ϕ(x) standing for any predicate having x as the only free variable is a
set. Bertrand Russell’s Paradox in which ϕ (x) is chosen to be “x < x” shows that the schema has to be
revised, for instance by the relativization to the values of the variable x that are elements of some set S,
i.e., the schema changes to the following: {x: x ∈ S & ϕ(x)}.

This restriction seemed to provide an argument for the nominalistic position. Properties did
not have their own independent existence or even meaning without the reference to a set within
which variables of their predicates take value. The consequence of this priority was that properties
(universals) can be simply understood as subsets of some sets, which of course leads to the perversion
and trivialization of the very idea of property. Every set can be identified with a property expressed by
the predicate ϕ (x) = “x ∈ A”. We are not concerned here at all on how the property is generated in x
nor what type of structure is responsible. The structure imposed on all properties relativized to set S
becomes simply a Boolean algebra isomorphic to that of all subsets of a given set S.

The luggage which we inherited in our current view of these matters is that we have insight only
to the right side of the statement “x ∈ A”. The left side, set x, which is an element of set A (in usual
forms of set theory all objects of inquiry are sets, but some of these sets can be elements of others), is
opaque for our analysis. The object x has a property shared with all other elements of A, and only
with them, but its internal structure is invisible for us. This makes the distinction between “x = y”
understood as identity and “x = y” understood as equality difficult to comprehend. It is significant
that in mathematical symbolic convention these two different relations have the same symbol “=”.
Fortunately, in mathematical logic, there is a very clearly defined distinction of theories with and
without equality.

4.2. Equivalence

The equivalence relation is probably the most important tool of mathematics as it serves as a ladder
to the higher levels of abstraction. Its origins are in the very remote past and they are difficult to trace.
Some insight is possible through ethno-scientific research on folk categorization and folk taxonomies in
cultures not influenced by educational systems propagating cognitive methods developed in European
tradition and influenced by the Aristotelian analysis of abstraction.

Aristotelian logical genus-species relationship linking different levels of abstraction was abducted
and transformed by Tournefort, Linnaeus and other biologists into a more rigid taxonomic system in
which genus and species are only particular two lowest levels of taxonomic hierarchy of life. However,
biologists most likely just reclaimed that which originally belonged to the human exploration of the
diverse structure of living forms. The biological hierarchic structure of life may be associated with
folk taxonomic systems of a large variety of cultures, some completely detached from the influence
of Europe.

The early studies of cognition in pre-industrialized societies carried out by Alexander Luria in the
1930s in Uzbekistan suggested that the functions of objects are the most important factors organizing
perception of reality among people not influenced by modern education [22]. This is in clear contrast
with categorization based on inherent characteristics dominant in industrialized societies. However,
this conclusion was questioned later as being likely a result of a misunderstanding of the purpose of
tasks used in tests. Uzbeki peasants were asked to remove one of the four pictures which in the least
degree fits the other. If three pictures presented trees and one of them an axe, they never removed
the axe, and protested if it was suggested, as without axe you cannot do much with the trees. This
was interpreted that in their perception function of the axe was binding their perception stronger than
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the morphological similarities of trees. However, they had a general concept of a tree excluding any
relationship with tools, so this interpretation was not justified.

In the 1960s, the discipline of ethnoscience emerged initiated by the earlier works of J. H.
Greenberg [23], H. C. Conklin [24], W. H. Goodenough [25], and F. G. Lounsbury [26]. Its methodology
was based on linguistic analysis of the ways how concepts are structured in different cultures following
the following argument of Sturtevant: “The main evidence for the existence of a category is the fact
that it is named” [27]. The program’s goal was described as a study of “classifications as reflected by
native terminology; discerning how people construe their world of experience from the way they talk
about it” [27].

It turned out that categorization in non-European cultures may be finer than that of systematic
botany. C. O. Frake reports that the Hanoonoo tropical forest agriculturalists of the central Philippines
partition their plant world into more than 1600 categories, whereas systematic botanists classify the
same flora into less than 1200 species [28].

The lesson which can be learned from ethnoscience is that folk taxonomies are much closer to the
biological systematics than it was expected. In particular, there are close similarities in the general
patterns of using morphological regularities in constructing taxa, the formation of sequential forms in
naming, i.e., going to lower levels of taxa by adding words restricting the application of the name.
We can see that structural analysis of human experience is not conditioned by analytical methods
developed in particular cultural formation. Moreover, the foundation for this universal methodology
is in the partition of the objects into disjoint classes organized into a hierarchic system. Since these
classes acquired names, we can consider each level of this hierarchic structure an equivalence relation.

Another example of the fundamental role of equivalence relation across different cultural
formations and in the wide chronological span is the use of numbers. We can see here not only
an expression of the universal character of equivalence as a cognitive tool, but also the universal human
ability to reach the highest level of abstraction at which objects are considered devoid of any individual
properties. In this case, the equivalence is a relation not between objects, but between sets of objects
based on arbitrarily chosen one-to-one correspondence of their elements. The fact that in some modern
languages spoken in large, highly-industrialized language communities (for instance in Japanese) there
are exceptions in the form of partial level of abstraction employing so-called counters which pre-group
counted items according to some properties (e.g., counters representing flat objects, long objects, etc.)
shows that the attaining of the high level of abstraction required some form of cognitive evolution and
was not trivial.

There are too many instances of the use of equivalence relations in modern science to address all
of them. For instance, equivalence relation appears in a fundamental role associated with numbers in
modern quantitative methods of science, for instance in probability and statistics. Probability theory
can be formulated in terms of the set of outcomes Ω equipped with appropriately defined probability
measure P on events understood as subsets of Ω. There is an alternative approach in which emphasis
is not on the set of outcomes, but on random variables, functions defined on Ω with their values in
the set of real numbers. The axioms for the probability measure on Ω can be translated into axioms
for the probability distribution of the random variable and sometimes the set of outcomes does not
appear at all. This convenient procedure involves an equivalence relation and the transition from
the set Ω on which the random variable is defined to equivalence classes of this relation. When we
define a random variable X, we define partition of Ω into subsets with the same value of X. Thus, each
value of the random variable X represents an event, i.e., a subset of Ω. Different random variables
correspond to different partitions of Ω, i.e., different equivalence relations. In a similar way majority
of quantitative methods of science involve equivalence relations and their equivalence classes. The
only difference between the qualitative and quantitative methods is that the former use predicates
expressing properties, while the latter replace equivalence classes with numbers on which algebraic
operations are defined.
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Finally, we can observe that the difference between equality and equivalence relations is a matter
of the difference between the levels of abstraction. Since every equivalence relation on a given set S is
uniquely associated (through a cryptomorphism!) with a partition of the set S (a separation elements
of S into a covering of S by mutually disjoint subsets), each subset in this covering can be considered
an object or element of the higher rank set of all subsets of S (called a power set of S). In this transition,
that which was the equivalence relation on S becomes equality in the power set of S.

4.3. From Equivalence to Similarity

While the concept of equivalence relation belongs to the most elementary tools of mathematics
and appears in almost all of its applications, similarity, with its cryptic name of tolerance relation, may
be unfamiliar even for many mathematicians, unless in the finite case it is re-identified as the subject of
graph theory [13]. Of course, similarity was sporadically invoked in some mathematical texts of more
remote past, for instance by Henri Poincaré [29], but its more systematic theory started to develop
only in the 1960s. Most likely this delay was due to the lack of expectations for non-trivial results
with highly-restricted defining conditions. Also, the concept of similarity in geometry understood as
invariance with respect to a uniform re-scaling (e.g., similar triangles familiar from school geometry)
which actually is an equivalence relation, might have contributed to confusion and lack of interest.

Outside of mathematics, similarity was not faring better, at best as a poor cousin of equivalence
relegated to the range of informal, intuitive or artistic skills. It is possible that the early interest in
similarity in the time of Romanticism was stimulated by its appeal to those who avoided formality
and certainty. It took quite a long time before similarity acquired its recognition as a competitor of the
equivalence relation in its role in linguistics.

The most influential critique of the role of equivalence and support for replacing it by similarity
is in the work of Ludwig Wittgenstein, in particular in his 1953 Philosophical Investigations, where he
elaborated on the intellectual tool of the family resemblance (Familienähnlichkeit) for the analysis of
language, meaning, and comprehension [30].

Although the metaphor of family resemblance in the context of philosophical reflection on
classification and categorization currently firmly associated with Wittgenstein was traced back by
Rodney Needham [31] already in the 1860s in Grimm’s Dictionary and in the work of Friedrich
Nietzsche [32], there is no doubt that Philosophical Investigations started the new era in philosophy and
scientific methodology. To be sure, Wittgenstein was interested in the specific type of non-transitive
similarity (similarity which is not equivalence) for which he used the metaphor of family resemblance
(Familienähnlichkeit) and distinguished it from a more general similarity (Ähnlichkeit) which includes a
transitive case of equivalence, although how much he was aware of the role and meaning of transitivity
is not clear. For our purpose it is important to observe that in works analyzing family resemblance,
as well as the variety of taxonomic methodologies (e.g., polythetic classification), we can observe some
significant shift in thinking.

Wittgenstein and those interested in alternative forms of taxonomy (in biological sciences or
anthropology) returned to the view that there is no reason to the claim that any selection of objects
from a given set defines a property. Wittgenstein’s view of the role of family resemblance in our
comprehension was of course of the greatest importance, since it was going beyond just pragmatic
consideration for taxonomy.

In the models of family resemblance, the objects (typically called items) were entered independently
of properties (attributes) and the focus was on the construction of their interdependence. One model
of family resemblance was, for instance, described by listing selections of properties (indicated by
capital letters A-E) characterizing five items: {A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, C, D, E}, {B, C, D,
E} [31,33]. Of course, we could have described this family resemblance by merely listing selections of
objects (marked here by small letters a-e) with given five properties: A ~ {a, b, c, d}, B ~ {a, b, c, e},
C ~ {a, b, d, e}, D ~ {a, c, d, e}, E ~ {b, c, d, e}. Wittgenstein’s insistence on the specific form of the
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relationship between objects and properties (family resemblance) generated interest in the structural
analysis of the relationship.

We can observe that the family resemblance is not an equivalence relation, as the classes of objects
grouped according to the five properties cover the entire set of objects S = {a, b, c, d, e}, but they are not
disjoint, and they do not allow for finer, disjoint partition. The relation R defined by xRy if both x and
y have at least one common property is symmetric (If xRy, then yRx), reflexive (xRx), but not transitive
(it is not true that, if xRy and yRz, then xRz). Reflexivity and symmetry are conditions for a tolerance
relation which is identified in mathematics with similarity.

Someone can ask whether these two very simple conditions can produce a theory of any interest.
While this is a normative question addressing interests and preferences and it is difficult to answer it in
an objective way, we can respond to it with another rhetorical question: Is graph theory of any interest?
After all, tolerance relations on a finite set S and graphs on S are cryptoisomorphic implementations of
the same structure.

5. Mathematical Theory of Similarity

This section presents the mathematical expression of the issues addressed earlier. Mathematical
concepts give us tools for the analysis of analogy. In order to make this paper self-sufficient, the
exposition is elementary and includes all necessary definitions and a few relevant propositions in order
to provide a brief overview of the theory. However, all propositions will be presented without proofs
which can be found elsewhere, together with an elaborate exposition of technical aspects [11,13].

5.1. Binary Relations and Their Algebra as Tools

Similarity can be formalized within an algebra of binary relations. A binary relation on a set S is
a subset of the direct product S×S. If we have any predicate for two variables R(x,y) with variables
assuming values in the set S, we can associate it with the relation R = {(x,y): ((x,y) ∈ S × S & R(x,y)}.
As the set
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In the following part of the paper we will refer to relations not only on a given set S, but also to 
relations on its power set 2S = {A: A ⊆ S}. Since we consider both the sets of objects associated with 
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- R is reflexive if E ≤ R,
- R is transitive if R2 = RR ≤ R,
- R is antisymmetric if R∧R* ≤ E,
- R is weakly reflexive if ∀x∈S: (xRcx⇒ ∀y ∈ S: xRcy),
- R is a function if ∀x ∈ S ∃y∈S: xRy & ∀x ∈ S∀y1,y2 ∈ S: {y1, y2} ⊆ R(x)⇒ y1 = y2,
- R is a surjective function if it is a function and Re(S) = S,
- R is an injective function if it is a function and ∀y ∈ S∀x1,x2 ∈ S: {x1, x2} ⊆ R*(y)⇒ x1 = x2,
- R is a bijective function if it is a surjective and injective function.

In the following part of the paper we will refer to relations not only on a given set S, but also to
relations on its power set 2S = {A: A ⊆ S}. Since we consider both the sets of objects associated with
elements of S, as well as the sets of properties characterizing objects associated with subsets of S, this
interest in the interdependence of relations at the two levels of set-theoretical hierarchy is natural.

One of the types of structures defined on the power set 2S of S of special interest for us called
closure space is defined in one of the crypto-morphically equivalent ways by a family of subsets

Philosophies 2019, 4, x FOR PEER REVIEW 13 of 18 

 

elements of S, as well as the sets of properties characterizing objects associated with subsets of S, this 
interest in the interdependence of relations at the two levels of set-theoretical hierarchy is natural.  

One of the types of structures defined on the power set 2S of S of special interest for us called 
closure space is defined in one of the crypto-morphically equivalent ways by a family of subsets ℳ 
satisfying conditions: Entire S is in ℳ, and together with every subfamily of ℳ, its intersection 
belongs to ℳ, i.e., ℳ is a Moore family. It is easy to see that we can define this structure by a closure 
operator defined on S (i.e., a function f on the power set 2S of a set S such that:  

(1) For every subset A of S, A ⊆ f(A);  
(2) For all subsets A, B of S, A ⊆ B ⇒ f(A) ⊆ f(B);  
(3) For every subset A of S, f(f(A)) = f(A)). 
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The Moore family ℳ or alternatively corresponding closure operator f, with some additional 
axioms describing properties of closure operator f (or alternatively additional conditions for the 
family ℳ), can represent a very large variety of structures of a particular type (e.g., geometric, 
topological, algebraic, logical, etc.) defined on the subsets of S. Terminology of the theory of closure 
spaces was adopted from some of the paradigmatic instances of topological spaces and vector spaces 
in which closed subspaces are simply vector subspaces.  

In addition to the family of closed subsets f-Cl we can distinguish some other families of special 
importance: 

- f-Ind = {A ⊆ S: ∀x ∈ A: x ∉ f(A\{x})}—the family of independent subsets of S, 
- f-Gen = {A ⊆ S: f(A)=S}—the family of generating subsets of S, 
- f-Base = f-Ind ∩ f-Gen—the family of bases. 

Unlike what is well known in the special case of vector space closure space, the last family may 
be empty in general, i.e., some closure spaces do not have bases. The absence of bases may be a 
significant drawback, as bases are minimal generating subsets. 

The same way as we considered above a closure space structure on S as a relation on its power 
set 2S we can and we will consider a closure space on 2S as a relation on its own power set. 

5.2. Mathematical Formalism for Equality, Equivalence, and Similarity 

Now we can focus our attention on the relations that are subject of this study. We already have 
distinguished our equality relation E = {(x,y): x = y}. Equivalence relations are defined as those which 
are reflexive, symmetric and transitive, conditions which combined can be written: E ≤ R* = R = R2. 
Of course, E ≤ E* = E = E2, so equality is a special case of equivalence relation (the least equivalence 
relation on S). 

It is a very elementary fact that equivalence relations correspond in a bijective manner to 
partitions of the set S on which they are defined. Subsets belonging to such partition ℭ ⊆ 2S (i.e., 
family ℭ which satisfies the conditions ∪ℭ = S and ∀A,B ∈ ℭ: A∩B = Ø) are called classes of equivalence 
for the corresponding relation. If we start from a partition ℭ, its corresponding equivalence relation 
is defined by the condition that the elements x and y are related, i.e., xRy if they both belong to one 
of the subsets of the partition (xRy iff ƎA ∈ ℭ: {x,y} ⊆ A). If we start from the equivalence R, the 
partition is uniquely determined by the condition A ∈ ℭ iff A = Ra(A). 

Equivalence relations are very simple but of extremely high importance in mathematics, as they 
are involved in the process of abstraction understood as a transition from elements of a set S to the 
elements of the partition associated with this equivalence. 

As it was extensively discussed before, tolerance relations are more general, because they do not 
have to be transitive, i.e., they are defined by E ≤ T* = T. For the reason which soon will become clear 
it is worth considering one small step in generalization to weak tolerance relations which are simply 
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Equivalence relations are very simple but of extremely high importance in mathematics, as they 
are involved in the process of abstraction understood as a transition from elements of a set S to the 
elements of the partition associated with this equivalence. 

As it was extensively discussed before, tolerance relations are more general, because they do not 
have to be transitive, i.e., they are defined by E ≤ T* = T. For the reason which soon will become clear 
it is worth considering one small step in generalization to weak tolerance relations which are simply 
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Of course, E ≤ E* = E = E2, so equality is a special case of equivalence relation (the least equivalence
relation on S).

It is a very elementary fact that equivalence relations correspond in a bijective manner to partitions
of the set S on which they are defined. Subsets belonging to such partition
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are involved in the process of abstraction understood as a transition from elements of a set S to the
elements of the partition associated with this equivalence.

As it was extensively discussed before, tolerance relations are more general, because they do not
have to be transitive, i.e., they are defined by E ≤ T* = T. For the reason which soon will become clear
it is worth considering one small step in generalization to weak tolerance relations which are simply
symmetric (T* = T) and which are weakly reflexive (∀x ∈ S: (xTcx ⇒ ∀y ∈ S: xTcy)). Originally, the
latter condition of weak reflexivity appeared in this theory because it is important in the study of
more general mathematical structures which are not reflexive, but which satisfy this weaker form [13].
However, the consequences of the generalization have clear importance for our study, as will be
shown later.

It turns out that an arbitrary covering of the set S (family of subsets
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ℋT in addition to all members of the family of equivalence classes ℭ includes all their subsets. 
Therefore, we want to reduce ℋT as much as possible. Using Zorn’s lemma, we can infer that in ℋT 
every pre-class A can be extended to a maximal pre-class, which we will call a class of tolerance relation. 
The subfamily ℭT of all classes of tolerance is sufficient for the reconstruction of tolerance T: ∀x,y ∈ S: 
xTy iff ƎA ∈ ℭT: {x,y}⊆A. So, we have an efficient way to represent given tolerance relation by its 
family of tolerance classes.  

We still do not know how to recognize coverings which are families of pre-classes for some 
tolerance relation. For this purpose, we have to introduce the structure of closure space on 2S, i.e., a 
relation on the power set of 2S or on the power set of the power set. We define the following closure 
operator: ∀ℬ⊆2S: f(ℬ) = {A⊆S: ∀x,y ∈ AƎB ∈ ℬ: {x,y}⊆B}. Now we can characterize coverings which 
form the family of all pre-classes for some tolerance relation T, as coverings which are closed with 
respect to this closure operator (covering ℬ of S is a family ℋT of all pre-classes of tolerance T on S iff 
f(ℬ)= ℬ). Moreover, we have a bijective correspondence between tolerance relations and f-closed 
coverings. Since this is only an overview of the theory of tolerance relations, we will not enter the 
issue of optimization, i.e., finding minimal families of subsets of S uniquely representing tolerance 
relation T, which can be achieved using f-bases introduced in the preliminaries. However, such bases 
do not always exist, and only in the case of finite set S we can always minimize the family of subsets 
representing tolerance. Moreover, the minimal families may have different cardinality (size). 

This is the result anticipated in the introduction to this paper that the families of sets representing 
a tolerance relation (which of course correspond to predicates describing attributes) may be different 
and of different size. Any measure of similarity derived from the number of shared sets from the 
family or in other words shared attributes may depend on the arbitrary decision of the choice of 
family, and therefore it is meaningless. 

Another topic is the analysis of tolerance relation from the point of view of deviation from 
equivalence relation. For this purpose, we can consider the nucleus NT of T defined as an equivalence 
relation: ∀x,y ∈ S: x NT y iff T(x) = T(y). Of course, if T itself is an equivalence relation, then its nucleus 
is identical with itself, i.e., NT = T. Otherwise the nucleus partitions S into subsets in which all 
elements are in relation T with each other. If all equivalence classes of nucleus NT consist of only one 
element, i.e., NT = E (equality relation), the tolerance is non-nuclear. This type of tolerance corresponds 
to Wittgenstein’s concept of pure family resemblance. Every tolerance relation on set S can be mapped 
on the non-nuclear tolerance relation defined on the set of class of abstractions of nucleus NT. 
Moreover, every tolerance relation T can be constructed from some equivalence relation R (playing 
the role of the nucleus NT) and some non-nuclear tolerance relation T#. In this sense, we can say that 
similarity can be “resolved” into equivalence and family resemblance. This is the result which, as it 
was stated in the introduction, in clear contrast to the “resolution into identity and difference” 
proposed by Hesse.  

Now we can explain what compels us to consider yet another level of generalization to weak 
tolerance relations. It turns out that a very similar theory can be developed for weak tolerances, but 
in this generalization, we do not need to restrict the families of sets to coverings (their union can be a 
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relation: ∀x,y ∈ S: x NT y iff T(x) = T(y). Of course, if T itself is an equivalence relation, then its nucleus 
is identical with itself, i.e., NT = T. Otherwise the nucleus partitions S into subsets in which all 
elements are in relation T with each other. If all equivalence classes of nucleus NT consist of only one 
element, i.e., NT = E (equality relation), the tolerance is non-nuclear. This type of tolerance corresponds 
to Wittgenstein’s concept of pure family resemblance. Every tolerance relation on set S can be mapped 
on the non-nuclear tolerance relation defined on the set of class of abstractions of nucleus NT. 
Moreover, every tolerance relation T can be constructed from some equivalence relation R (playing 
the role of the nucleus NT) and some non-nuclear tolerance relation T#. In this sense, we can say that 
similarity can be “resolved” into equivalence and family resemblance. This is the result which, as it 
was stated in the introduction, in clear contrast to the “resolution into identity and difference” 
proposed by Hesse.  

Now we can explain what compels us to consider yet another level of generalization to weak 
tolerance relations. It turns out that a very similar theory can be developed for weak tolerances, but 
in this generalization, we do not need to restrict the families of sets to coverings (their union can be a 
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elements of S, as well as the sets of properties characterizing objects associated with subsets of S, this 
interest in the interdependence of relations at the two levels of set-theoretical hierarchy is natural.  

One of the types of structures defined on the power set 2S of S of special interest for us called 
closure space is defined in one of the crypto-morphically equivalent ways by a family of subsets ℳ 
satisfying conditions: Entire S is in ℳ, and together with every subfamily of ℳ, its intersection 
belongs to ℳ, i.e., ℳ is a Moore family. It is easy to see that we can define this structure by a closure 
operator defined on S (i.e., a function f on the power set 2S of a set S such that:  

(1) For every subset A of S, A ⊆ f(A);  
(2) For all subsets A, B of S, A ⊆ B ⇒ f(A) ⊆ f(B);  
(3) For every subset A of S, f(f(A)) = f(A)). 

The Moore family ℳ of subsets is simply the family f-Cl of all closed subsets, i.e., subsets A of S 
such that A= f(A). The family of closed subsets ℳ = f-Cl is equipped with the structure of a complete 
lattice Lf by the set-theoretical inclusion. The mutual relationship between the two cryptoisomorphic 
implementations of the closure space leads back from the Moore family to the closure operator f by 
the following: For every subset A of S: f(A)= ∩{B∈ℳ: A ⊆ B}. 

The Moore family ℳ or alternatively corresponding closure operator f, with some additional 
axioms describing properties of closure operator f (or alternatively additional conditions for the 
family ℳ), can represent a very large variety of structures of a particular type (e.g., geometric, 
topological, algebraic, logical, etc.) defined on the subsets of S. Terminology of the theory of closure 
spaces was adopted from some of the paradigmatic instances of topological spaces and vector spaces 
in which closed subspaces are simply vector subspaces.  

In addition to the family of closed subsets f-Cl we can distinguish some other families of special 
importance: 

- f-Ind = {A ⊆ S: ∀x ∈ A: x ∉ f(A\{x})}—the family of independent subsets of S, 
- f-Gen = {A ⊆ S: f(A)=S}—the family of generating subsets of S, 
- f-Base = f-Ind ∩ f-Gen—the family of bases. 

Unlike what is well known in the special case of vector space closure space, the last family may 
be empty in general, i.e., some closure spaces do not have bases. The absence of bases may be a 
significant drawback, as bases are minimal generating subsets. 

The same way as we considered above a closure space structure on S as a relation on its power 
set 2S we can and we will consider a closure space on 2S as a relation on its own power set. 

5.2. Mathematical Formalism for Equality, Equivalence, and Similarity 

Now we can focus our attention on the relations that are subject of this study. We already have 
distinguished our equality relation E = {(x,y): x = y}. Equivalence relations are defined as those which 
are reflexive, symmetric and transitive, conditions which combined can be written: E ≤ R* = R = R2. 
Of course, E ≤ E* = E = E2, so equality is a special case of equivalence relation (the least equivalence 
relation on S). 

It is a very elementary fact that equivalence relations correspond in a bijective manner to 
partitions of the set S on which they are defined. Subsets belonging to such partition ℭ ⊆ 2S (i.e., 
family ℭ which satisfies the conditions ∪ℭ = S and ∀A,B ∈ ℭ: A∩B = Ø) are called classes of equivalence 
for the corresponding relation. If we start from a partition ℭ, its corresponding equivalence relation 
is defined by the condition that the elements x and y are related, i.e., xRy if they both belong to one 
of the subsets of the partition (xRy iff ƎA ∈ ℭ: {x,y} ⊆ A). If we start from the equivalence R, the 
partition is uniquely determined by the condition A ∈ ℭ iff A = Ra(A). 

Equivalence relations are very simple but of extremely high importance in mathematics, as they 
are involved in the process of abstraction understood as a transition from elements of a set S to the 
elements of the partition associated with this equivalence. 

As it was extensively discussed before, tolerance relations are more general, because they do not 
have to be transitive, i.e., they are defined by E ≤ T* = T. For the reason which soon will become clear 
it is worth considering one small step in generalization to weak tolerance relations which are simply 
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symmetric (T* = T) and which are weakly reflexive (∀x ∈ S: (xTcx ⇒ ∀y ∈ S: xTcy)). Originally, the latter 
condition of weak reflexivity appeared in this theory because it is important in the study of more 
general mathematical structures which are not reflexive, but which satisfy this weaker form [13]. 
However, the consequences of the generalization have clear importance for our study, as will be 
shown later. 

It turns out that an arbitrary covering of the set S (family of subsets ℋ ⊆ 2S which satisfies the 
condition ∪ℋ = S) defines a tolerance relation on S the same way as partitions defined equivalence 
relations, i.e., by: xTy iff ƎA ∈ ℋ: {x,y} ⊆ A. However, we do not have bijective correspondence as 
before. Different coverings can define the same tolerance relation and the relation between coverings 
and tolerance relations is highly nontrivial in comparison to the special case of equivalence relations. 

Suppose we have a tolerance relation T on S. We can define a family of subsets ℋT = {A⊆ S: ∀x,y ∈ S: {x,y}⊆A ⇒ xTy}. This class will be called the family of all pre-classes of tolerance T. Of course, ∀x,y ∈ S: xTy iff ƎA ∈ ℋT: {x,y}⊆A, but it is clear that this family is redundant. If T is an equivalence, then 
ℋT in addition to all members of the family of equivalence classes ℭ includes all their subsets. 
Therefore, we want to reduce ℋT as much as possible. Using Zorn’s lemma, we can infer that in ℋT 
every pre-class A can be extended to a maximal pre-class, which we will call a class of tolerance relation. 
The subfamily ℭT of all classes of tolerance is sufficient for the reconstruction of tolerance T: ∀x,y ∈ S: 
xTy iff ƎA ∈ ℭT: {x,y}⊆A. So, we have an efficient way to represent given tolerance relation by its 
family of tolerance classes.  

We still do not know how to recognize coverings which are families of pre-classes for some 
tolerance relation. For this purpose, we have to introduce the structure of closure space on 2S, i.e., a 
relation on the power set of 2S or on the power set of the power set. We define the following closure 
operator: ∀ℬ⊆2S: f(ℬ) = {A⊆S: ∀x,y ∈ AƎB ∈ ℬ: {x,y}⊆B}. Now we can characterize coverings which 
form the family of all pre-classes for some tolerance relation T, as coverings which are closed with 
respect to this closure operator (covering ℬ of S is a family ℋT of all pre-classes of tolerance T on S iff 
f(ℬ)= ℬ). Moreover, we have a bijective correspondence between tolerance relations and f-closed 
coverings. Since this is only an overview of the theory of tolerance relations, we will not enter the 
issue of optimization, i.e., finding minimal families of subsets of S uniquely representing tolerance 
relation T, which can be achieved using f-bases introduced in the preliminaries. However, such bases 
do not always exist, and only in the case of finite set S we can always minimize the family of subsets 
representing tolerance. Moreover, the minimal families may have different cardinality (size). 

This is the result anticipated in the introduction to this paper that the families of sets representing 
a tolerance relation (which of course correspond to predicates describing attributes) may be different 
and of different size. Any measure of similarity derived from the number of shared sets from the 
family or in other words shared attributes may depend on the arbitrary decision of the choice of 
family, and therefore it is meaningless. 

Another topic is the analysis of tolerance relation from the point of view of deviation from 
equivalence relation. For this purpose, we can consider the nucleus NT of T defined as an equivalence 
relation: ∀x,y ∈ S: x NT y iff T(x) = T(y). Of course, if T itself is an equivalence relation, then its nucleus 
is identical with itself, i.e., NT = T. Otherwise the nucleus partitions S into subsets in which all 
elements are in relation T with each other. If all equivalence classes of nucleus NT consist of only one 
element, i.e., NT = E (equality relation), the tolerance is non-nuclear. This type of tolerance corresponds 
to Wittgenstein’s concept of pure family resemblance. Every tolerance relation on set S can be mapped 
on the non-nuclear tolerance relation defined on the set of class of abstractions of nucleus NT. 
Moreover, every tolerance relation T can be constructed from some equivalence relation R (playing 
the role of the nucleus NT) and some non-nuclear tolerance relation T#. In this sense, we can say that 
similarity can be “resolved” into equivalence and family resemblance. This is the result which, as it 
was stated in the introduction, in clear contrast to the “resolution into identity and difference” 
proposed by Hesse.  

Now we can explain what compels us to consider yet another level of generalization to weak 
tolerance relations. It turns out that a very similar theory can be developed for weak tolerances, but 
in this generalization, we do not need to restrict the families of sets to coverings (their union can be a 
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family ℭ which satisfies the conditions ∪ℭ = S and ∀A,B ∈ ℭ: A∩B = Ø) are called classes of equivalence 
for the corresponding relation. If we start from a partition ℭ, its corresponding equivalence relation 
is defined by the condition that the elements x and y are related, i.e., xRy if they both belong to one 
of the subsets of the partition (xRy iff ƎA ∈ ℭ: {x,y} ⊆ A). If we start from the equivalence R, the 
partition is uniquely determined by the condition A ∈ ℭ iff A = Ra(A). 

Equivalence relations are very simple but of extremely high importance in mathematics, as they 
are involved in the process of abstraction understood as a transition from elements of a set S to the 
elements of the partition associated with this equivalence. 

As it was extensively discussed before, tolerance relations are more general, because they do not 
have to be transitive, i.e., they are defined by E ≤ T* = T. For the reason which soon will become clear 
it is worth considering one small step in generalization to weak tolerance relations which are simply 
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T: {x,y}⊆A. So, we have an efficient way to represent given tolerance relation by its family of
tolerance classes.

We still do not know how to recognize coverings which are families of pre-classes for some
tolerance relation. For this purpose, we have to introduce the structure of closure space on 2S, i.e., a
relation on the power set of 2S or on the power set of the power set. We define the following closure
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Therefore, we want to reduce ℋT as much as possible. Using Zorn’s lemma, we can infer that in ℋT 
every pre-class A can be extended to a maximal pre-class, which we will call a class of tolerance relation. 
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f(ℬ)= ℬ). Moreover, we have a bijective correspondence between tolerance relations and f-closed 
coverings. Since this is only an overview of the theory of tolerance relations, we will not enter the 
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relation T, which can be achieved using f-bases introduced in the preliminaries. However, such bases 
do not always exist, and only in the case of finite set S we can always minimize the family of subsets 
representing tolerance. Moreover, the minimal families may have different cardinality (size). 

This is the result anticipated in the introduction to this paper that the families of sets representing 
a tolerance relation (which of course correspond to predicates describing attributes) may be different 
and of different size. Any measure of similarity derived from the number of shared sets from the 
family or in other words shared attributes may depend on the arbitrary decision of the choice of 
family, and therefore it is meaningless. 

Another topic is the analysis of tolerance relation from the point of view of deviation from 
equivalence relation. For this purpose, we can consider the nucleus NT of T defined as an equivalence 
relation: ∀x,y ∈ S: x NT y iff T(x) = T(y). Of course, if T itself is an equivalence relation, then its nucleus 
is identical with itself, i.e., NT = T. Otherwise the nucleus partitions S into subsets in which all 
elements are in relation T with each other. If all equivalence classes of nucleus NT consist of only one 
element, i.e., NT = E (equality relation), the tolerance is non-nuclear. This type of tolerance corresponds 
to Wittgenstein’s concept of pure family resemblance. Every tolerance relation on set S can be mapped 
on the non-nuclear tolerance relation defined on the set of class of abstractions of nucleus NT. 
Moreover, every tolerance relation T can be constructed from some equivalence relation R (playing 
the role of the nucleus NT) and some non-nuclear tolerance relation T#. In this sense, we can say that 
similarity can be “resolved” into equivalence and family resemblance. This is the result which, as it 
was stated in the introduction, in clear contrast to the “resolution into identity and difference” 
proposed by Hesse.  

Now we can explain what compels us to consider yet another level of generalization to weak 
tolerance relations. It turns out that a very similar theory can be developed for weak tolerances, but 
in this generalization, we do not need to restrict the families of sets to coverings (their union can be a 
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family or in other words shared attributes may depend on the arbitrary decision of the choice of family,
and therefore it is meaningless.

Another topic is the analysis of tolerance relation from the point of view of deviation from
equivalence relation. For this purpose, we can consider the nucleus NT of T defined as an equivalence
relation: ∀x,y ∈ S: x NT y iff T(x) = T(y). Of course, if T itself is an equivalence relation, then its nucleus
is identical with itself, i.e., NT = T. Otherwise the nucleus partitions S into subsets in which all elements
are in relation T with each other. If all equivalence classes of nucleus NT consist of only one element,
i.e., NT = E (equality relation), the tolerance is non-nuclear. This type of tolerance corresponds to
Wittgenstein’s concept of pure family resemblance. Every tolerance relation on set S can be mapped on
the non-nuclear tolerance relation defined on the set of class of abstractions of nucleus NT. Moreover,
every tolerance relation T can be constructed from some equivalence relation R (playing the role of the
nucleus NT) and some non-nuclear tolerance relation T#. In this sense, we can say that similarity can
be “resolved” into equivalence and family resemblance. This is the result which, as it was stated in the
introduction, in clear contrast to the “resolution into identity and difference” proposed by Hesse.

Now we can explain what compels us to consider yet another level of generalization to weak
tolerance relations. It turns out that a very similar theory can be developed for weak tolerances, but in
this generalization, we do not need to restrict the families of sets to coverings (their union can be a
proper subset of the set S). We get much simpler and clear correspondence between weak tolerances
on S and closed subfamilies of its power set with respect to the closure operator f defined before as
expressed by the proposition [13]:
There is a bijective correspondence between weak tolerance relations on set S which generalize
equivalence relations extending them to a general concept of similarity and closed subsets of the
closure operator f on the power set of S, i.e., closure space <2S,f> defined by:∀
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We can use the theory of tolerance and weak tolerance relations to relate more extensive class of

relations with those two by a process of “symmetrization”. For every binary relation R on a given set S,
we can define a relation TR as follows: TR = RR*. Then we have [13]:

(i) TR is a symmetric relation on S.
(ii) ∀x ∈ S∀y∈S: x TR y iff R(x)∩ R(y) , ∅.
(iii) TR is a tolerance iff R is defined everywhere (equivalent to E ≤ RR*).
(iv) TR is a weak tolerance iff R is weakly reflexive, i.e., ∀x ∈ S: (xRcx⇒ ∀y ∈ S: xRcy).
(v) R is a function⇒ TR is an equivalence relation, but the reverse implication is not necessarily true.
(vi) T is an equivalence relation iff there exists a relation R which is a function and T = TR.
(vii) Let E ≤ T. Then T is an equivalence relation iff T = TT.

This proposition links together the four types of relations: Equality, equivalence, tolerance, and
weak tolerance with each other and with the very general class of weakly reflexive relations. We can
observe that the class of equivalence relations is here associated with functions, which in turn are the
most typical instruments of the mathematical formalization of theories across all disciplines.

Thus far, we considered the process generating the relations describing different levels of similarity
from the weakly reflexive relations on a given set S. Now we will consider induction of these types of
relations on the power set 2S of S (the set of all subsets of S) by the relations on S introduced already
by Zeeman.

Let R be a relation on S. Then we define a relation RS on 2S as follows:

∀A ⊆ S∀B ⊆ S: A RS B iff B ⊆ Re(A) and A ⊆ Re(B).

Then, if T is a tolerance relation on S, then TS is a tolerance relation on 2S [2]. It is also easy to
show that a weak tolerance relation T induces a weak tolerance relation TS on 2S and an equivalence
induces equivalence. Thus, the similarity relation defined on a given set induces similarity of sets
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of objects. We can consider the reversed process of rather trivial “downward induction” from the
power set of a set S to S when we consider the definition of RS on 2S restricted to one-element sets.
Obviously, if we start from the induction and proceed to the downward induction, we return to the
original tolerance relation.

6. Interpretation and Consequences of the Mathematical Formalism

The short overview of the mathematical formalism for similarity demonstrates once more the
curious feature of mathematical theories whereby more general objects of study defined by simplified
or reduced conditions acquire more complex description. A relatively simple idea of the unique family
of equivalence classes ramifies into several different families with extreme instances of pre-classes and
classes of tolerance together with many intermediate types. In case of a similarity relation which is
not an equivalence relation (associated with equivalence classes of items which have them or in other
words which are described by them), we have many different complexes of properties defining them
instead of the unique system of properties.

Mathematical formalism gives us analytical tools to distinguish nontrivial types of similarity in
the strongest contrast to the familiar type of equivalence (described by non-nuclear tolerance relations).
More generally, we can assess the degree of separation of a given tolerance (similarity) relation from an
equivalence type through the examination of its nucleus.

Someone could object the identification of similarity understood as a tolerance relation with
analogy. After all, analogy is being understood in so many different ways. However, no matter
what additional conditions are imposed on analogy in the literature (with the few exceptions which
were critically reviewed in the introduction as having hidden additional assumptions interpreted as
asymmetry of similarity), it is always conceptualized as a symmetric relation between analogs and, at
least directly, this relation is rarely denied reflexivity outside of mathematics (each item is trivially
an analog of itself). To accommodate the mathematical understanding of similarity, we can slightly
generalize reflexivity to weak reflexivity and tolerance relations to weak tolerance relations. Thus, no
matter what the preferred definition may be, for instance, additional conditions supplementing those
which define weak tolerance, or tolerance relation, it can be described and analyzed within this type
of relations.

At this point, it is appropriate to explain the meaning and importance of further generalizations of
similarity to weak tolerance relation. At first sight, the condition of weak reflexivity may seem absurd.
How can something be not similar to itself? If we think about similarity described by properties, a
closer look shows that the case is not so strange. We have to consider the possibility that the ascription
of a property to some objects can be not true or not false, but meaningless. Does number 5 have a
smell? Does it make sense to say that number 5 smells like itself? Of course not! Whatever the other
elements of the set S whose element is number 5 may include, when we consider similarity with respect
to smell, we should exclude number 5 from pre-classes of the weak tolerance describing similarity. In
this way, there is nothing strange in this generalization, which offers us a wonderful completion of the
formalism in the proposition ending preceding section. We have a full description of all similarities as
closed subfamilies with respect to a well-defined closure operation.

An equivalence relation is the basic tool of abstraction; a transition from the objects of the lower
level of abstraction to the higher one implemented by the transition from the elements of set S to classes
of equivalence, sometimes called classes of abstraction. In a similar way, we can consider tolerance
relation (or relation of similarity) as the basic tool of analogy. Their common mathematical formalism
permits their mutual comparative analysis, which in turn gives us an insight into the comparison
between abstraction and analogy.

One of the most unexpected consequences of this comparison is that analogy is much more
complex than abstraction. Now we can fully appreciate and share Wittgenstein’s fascination with
family resemblances. But this complexity comes without the luggage of limited methods of analysis.
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Analogy does not belong anymore to vague concepts suitable for non-scientific or at most folk-scientific
discourse guided by common sense.

Tolerance relations and weak tolerance relations have extensive, but rather esoteric mathematical
literature with the possible exception of more accessible mathematical linguistics. However, in the
finite case (when the fundamental set S is finite) there is a well-established link between their theory
and graph theory [13]. This connection opens a vast resource to the study of analogy.

The study of tolerance (or weak tolerance) relations gives as tools to analyze similarity at two
levels. The process of induction and downward induction described in the preceding section shows
the close correspondence between the similarity of the objects and similarity of their sets. This shows
how we can make a transition between similarity of objects and similarity of predicates applied to
these objects. Typically, the similarity is defined and analyzed exclusively on one or the other level
of abstraction.

Finally, we can ask whether mathematics can benefit from the study of analogy. My own
expectation is that a better understanding of analogy can help us to overcome the impasse in the
study of the general concept of a structure, thereby going beyond familiar relational structures (sets
equipped with one or multiple relations of arbitrary finite n-arity). The Bourbaki-style approach is very
ineffective, being practically obsolete, and newer approaches do not resolve the issue which doomed the
original effort of the French group of mathematicians. We usually have many apparently “equivalent”
ways to define structures, which frequently turn out to be not entirely equivalent (especially if we do
not make some hidden assumptions). These different definitions provide cryptomorphic versions
of the structure, which have all features of analogy rather than equivalence. Resolving the problem
analogy would pay the debt to mathematics for its similarity formalism.
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