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Abstract: In this contribution, we try to show that traditional Aristotelian logic can be useful (in
a non-trivial way) for computational thinking. To achieve this objective, we argue in favor of two
statements: (i) that traditional logic is not classical and (ii) that logic programming emanating from
traditional logic is not classical logic programming.
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1. Introduction

Computational thinking, like critical thinking [1], is a sort of general-purpose thinking
that includes a set of logical skills. Hence logic, as a scientific enterprise, is an integral
part of it. However, unlike critical thinking, when one checks what “logic” means in the
computational context, one cannot help but be surprised to find out that it refers primarily,
and sometimes even exclusively, to classical logic (cf. [2–7]).

Classical logic is the logic of Boolean operators, the logic of digital circuits, the logic
of Karnaugh maps, the logic of Prolog. It is the logic that results from discarding the
traditional, Aristotelian logic in order to favor the Fregean–Tarskian paradigm. Classical
logic is the logic that defines the standards we typically assume when we teach, research,
or apply logic: it is the received view of logic.

This state of affairs, of course, has an explanation: classical logic works wonders!
However, this is not, by any means, enough warrant to justify the absence or the abandon of
traditional logic within the computational thinking literature. And so, in this contribution,
we try to take advantage of this educational gap in order to show that traditional logic can
be useful (in a non-trivial way) for computational thinking.

To achieve this goal, we argue in favor of two claims: (i) that traditional logic is
not classical logic (and hence it will not suffice to claim that traditional logic is already
included in classical logic), and (ii) that logic programming emerging from traditional logic
is not classical logic programming (and thus it will not be enough to assume that the logic
programming paradigm already includes this sort of programming as is).

We have organized this paper in the following way. First, we make explicit the
received view of logic and logic programming; then, we argue that traditional logic is not
classical logic, and with this result, we show what traditional logic programming would
look like. At the end, we comment on how these claims help close said educational gap.
We hope to show yet another link between philosophy and computation.

2. The Received View of Logic (Programming)

Broadly speaking, the raison d’être of logic is the study of inference within natural
language [8,9], and in order to study inference in this sense it is customary to use classical
logic, a logic defined by first-order languages.

The origin of this habit has an interesting history [10] related to the representational
advantages first order languages offer over traditional systems—today, it is commonplace to
mention how [11–15] contributed to this custom; however, even if this syntactic standard—
that of using first order systems—is common to us when teaching, researching, or applying
logic—after all, this is the received view of logic—there is no need to be particularly acute
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in order to notice that this view of logic may indeed be familiar, but that does not make it
natural. Woods comments:

“It is no secret that classical logic and its mainstream variants are not much good for
human inference as it actually plays out in the conditions of real life—in life on the
ground, so to speak. It is not surprising. Human reasoning is not what the modern
orthodox logics were meant for. The logics of Frege and Whitehead & Russell were
purpose-built for the pacification of philosophical perturbation in the foundations of
mathematics, notably but not limited to the troubles occasioned by the paradox of sets in
their application to transfinite arithmetic.” ([16], p. 404)

It is almost a truism that classical logic has been instrumental for the study of inference
in general, but it does not cease to surprise us that, despite its original purpose in the
foundations of mathematics, it is constantly used as the bona fide tool for representing
inference in natural language, as Englebretsen might say [17].

Certainly, this should not be a revelation because we know classical logic “has been
developed primarily by mathematicians with mathematical applications in mind” ([18],
p. 4) but the issue is that, as Kreeft would put it, logic was made for us writ large, not
inversely ([19], p. 23). Of course, we are not claiming classical logic and its exploits are
in the path of doom. Quite the contrary. But in our view, if logic is about inference, logic
needs not abandon traditional systems.

And it has not. For one, and closer to Aristotle than to Frege, Fred Sommers champi-
oned a revision of traditional logic under the assumption that logic has to deal primarily
with natural language. Since the late 60’s, his project unfolded into three projects on ontol-
ogy, semantics, and logic (cf. [20]) that became, respectively, a theory of categories, a theory
of truth, and a theory of logic known as Term Functor Logic [17,21–25], a plus-minus alge-
bra that uses terms—in an Aristotelian fashion—rather than first-order language elements
such as variables or quantifiers.

We will return to this particular logic later, but what we want to stress is that there
has been a mismatch between logic and natural language that has led to an overestimation
of classical logic. And so, there is some evidence to the effect that the cultivation of
Aristotelian logic, in spite of certain current efforts [9,17,19,25–29], has been disparaged in
various ways, especially since the early 20th century.

However, this story does not end here. This received view of logic has a computational
counterpart because there is also a received view of logic programming. Indeed, when, for
example, ([30], p. 3) mention that “logic” has been used as a tool for designing computers
and for reasoning about programs and logic programming, they are talking about classical
logic again. And the same happens when one reviews the foundational or the usual
literature on logic programming [31–34]. However, as we shall see, traditional logic is not
classical and, therefore, the logic programming derived from it might not be classical or,
better yet, needs not be classical. But let us not get ahead of ourselves.

Arguably, the firsts attempts to relate (classical) logic and programming can be traced
back to Church [35–37] and Turing [38], although the patent results of these two projects can
be better appreciated in two main areas: knowledge representation and programming. And
so for McCarthy, one of the founding fathers of artificial intelligence, classical first-order
logic was his weapon of choice [39]; whereas Kowalski and Colmerauer developed Prolog,
the first logic programming language, out of first-order logic [31,32].

Of course, both areas soon discovered the need to include non-classical augmentations,
such as non-monotonicity or negation as failure, but the Fregean–Tarskian imprint has
been there by design. And hence in the famous Kolwalski’s equation [40], Algorithm =
logic + control, “logic” means, essentially, classical logic.

3. Classical vs. Traditional Logic

Now, there is the common assumption that traditional logic, namely syllogistic, is
classical logic. This is not a fringe belief: some popular handbooks, for example, make this
assumption explicit ([41], p. 168); while some authoritative scholars, for instance, make
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it implicit ([8], p. 5). However, we are afraid this presumption does not make justice to
neither party: it commits the traditional logicians to the claim that their logic is a sub-logic
of classical logic, and it commits the classical logicians to the claim that their logic is a
super-logic of traditional logic.

These commitments, however, imply a condition that does not seem to hold. Consider
that if these commitments were true, we would expect some sort of continuity from
traditional logic to classical logic, but as we will argue, this is not the case: there is a subtle
but crucial difference between being a sub-logic of classical logic and being a sub-classical
logic. It looks as if traditional logic is sub-classical, but not a sub-logic of classical logic.

Although there are several ways to characterize classical logic, for the purposes
of this paper, we consider a logic to be classical when it drops the traditional ternary
syntax (subject-copula-predicate) to promote the binary syntax (function-argument); when
it admits the explosion principle or ex falso (i.e., p ∧ ¬p ` q, for any q, that is to say,
everything follows from falsehood); when it admits the positive paradox of implication
or verum ad (i.e., q ` p ∨ ¬p, for any q, that is to say, a truth follows from everything); and
when it holds the reflexivity of the inference relation (i.e., p ` p) as if it were the same as
the identity principle (i.e., ` p⇒ p).

Clearly, the logic we have called “classical” is classical in this sense, but syllogistic, the
core of traditional logic is not. Formally, syllogistic is a term logic that deals with inference
between categorical statements (vide Appendix A), and from a larger point of view, it is
also an integral part of what we could call a basic corpus aristotelicum that, in turn, could be
defined by the tuple A = 〈BE, BC, BO, BP, BL〉 (cf. [42], p. 4ff) where BE is an epistemological
theory that includes the production of hypothesis and inferences under the Aristotelian
notions of epagogé (i.e., induction) and syllogismós (i.e., deduction), respectively; BC is a
theory of causality that distinguishes material, formal, efficient, and final causes; BO is an
ontological theory that assumes a systemic view of the world given the double claim that
there are no unhad properties (contra universals ante rem) nor objects without properties
(contra bare particulars); BP is a psychological theory that makes use of the concept of “habit”
in order to explain behavior (both epagogé and syllogismós, for example, would be habits
when performed by agents); and BL is a logical theory designed for dealing with categories,
statements, inferences, explanations, argumentation, and inferential mistakes, that includes
syllogistic as a theory of deductive inference particularly crafted to avoid irrelevance, as
explained by Thom’s display of Kilwardby’s first exposition of syllogistic—also called the
Boethian exposition (Figure 1).

Discourse

Simple
(v.gr. statements)

Complex

No figure
or no mood

(v.gr. examples)

Figure
& mood

Not necessitating
the conclusion

(v.gr. induction)

Necessitating
the conclusion

Premises=Conclusion
(petitio principii)

Premises 6=Conclusion

Conclusion not dependent
on the premises

(non causa ut causa)

Conclusion dependent
on the premises

(syllogismós)

Figure 1. The Boethian exposition (adapted from ([43], p. 44).
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According to the Boethian exposition, a syllogistic inference or syllogism—syllogismós—
is a piece of complex discourse (in so far as it includes at least two premises and one
conclusion) with mood and figure (because the order of statements and terms matters)
in which a conclusion that is different from the premises (thus avoiding petitio principii,
a fallacy also known as begging the question) necessarily (and hence deductively) follows
from and dependes on said premises (thus avoiding irrelevance, non causa ut causa).

This account, based upon a commentary to the Prior Analytics [44], is not outdated nor
marginal. A similar yet independent assessment has been given by [45], but based upon
Aristotle’s earlier logic, namely the Topics, On Sophistical Refutations and On Interpretation.
According to this other study, syllogistic inference complies, among others, with the
following properties:

• Minimality: Syllogistic inferences are minimal in so far as they contain the premises
needed for their validity and none other.

• Non-Circularity: Syllogistic inferences are elementarily non-circular, that is, their
conclusions repeat no premises.

• Premise multiplicity: Syllogistic inferences are multi-premised.
• Premise consistency: Syllogistic inferences admit only consistent premises.
• The because-of condition: Syllogistic inference is valid if it excludes terms from the

outside; only if, that is, each term in its conclusion has an occurrence in at least one
premise and every premise has a term occurring in the conclusion.

Thus, according to Woods’ exposition, a syllogism is a (finitely premised) argument
that satisfies minimality, non-circularity, premise multiplicity, premise consistency and the
because-of condition. And this assessment initially suggests—although such suggestion is
later discussed—that syllogistic inference is relevant, paraconsistent, and non-monotonic
in so far as it behaves as a linear logic, excludes explosion, and is minimal. And these
features, properly organized, avoid ex falso and verum ad.

We can try to accommodate both assessments, Boethius’ and Woods’, in order to
suggest that there is no continuity from traditional to classical logic, in spite of popular
opinion. Ponder, thus, Figure 2, and notice, hence, that it will not suffice to claim that
traditional logic is already included in classical logic. And recall, additionally, that tra-
ditional logic uses a term syntax, not a Fregean syntax; that the notion of inference in
classical logic requires reflexivity and monotonicity but does not make use of premise
multiplicity, whereas traditional logic requires premise multiplicity but avoids reflexivity or
monotonicity. And so, all things considered, these remarks should probably be enough to
distinguish traditional from classical logic, or at least enough to reject a smooth continuity
from traditional to classical logic.

Discourse

No premise multiplicity
(v.gr. ad verum)

Premise multiplicity

No minimality
(v.gr. contraction)

Minimality

No premise consistency
(v.gr. ex falso)

Premise consistency

Circularity
(petitio principii)

Non-circularity

Consequence from
(non causa ut causa)

Consequence because-of
(syllogismós)

Figure 2. Woods’ exposition.
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4. Traditional Logic Programming vs. Classical Logic Programming

Let us now return to programming. Consider that Mozes has already argued that
the abandon of traditional logic in the field of computer science is not justified [46]. In his
opinion, traditional logic was originally created in order to understand reasoning in natural
language, and so traditional logic not only has philosophical or cognitive import, but com-
putational relevance. Consequently, Mozes developed the concept of Aristotelian database.

A database is Aristotelian when it complies certain abilities and structures. So, among
others, a database is Aristotelian when it has the ability to provide explanations in natural
language; when it can offer information, in response to dichotomous questions (“yes/no”),
when a stronger or weaker versions of a “yes” can be tested; when it has the ability to
point out results that cannot be proven but are possible; when it can suggest implicit rules
that, if added to the database, could provide affirmative answers; and when it can indicate
instances in which non-deductive patterns, such as analogies, may be helpful.

Structurally, we can divide the representative and inferential aspects of an Aristotelian
database. From the standpoint of knowledge representation, it consists of a set of constants
that stands for objects and a set of relations—there are no functions—to stand for properties
of objects. So, for example, human(Socrates) (i.e., Socrates is a human being) is a fact,
whereas a rule, on the other hand, consists of a subject, which is the conjunction of one
or more relations applied to variables and constants, and a predicate, which is a unique
relation, plus a type of rule that indicates the connection between the subject and the
predicate. So, when one writes a rule the predicate goes first, then the type of the rule, and
finally the subject, for example, mortal(X) A human(X) means Every human being is mortal.

It is clear, then, these bases use a syntax similar to that of (pure) Prolog, and Prolog,
like classical logic, is the logic programming language par excellence. In Prolog, a program
is a set of statements defined by two kinds of (Horn) clauses: facts and rules. A rule has the
form Head : −Body where Head and Body are first-order statements (and a fact is a clause
with an empty body). But more importantly, from the standpoint of inference, Prolog uses
resolution over facts and rules; whereas Aristotelian databases, by contrast, use syllogistic
as their main inference model.

Now, by following Mozes’ proposal, but different from Massie’s patent [47], in other
place we have presented some sort of logic programming with terms [48], but unlike Mozes,
who still uses a Prolog-like syntax, we use the aforementioned term logic developed by
Sommers and Englebretsen (vide Appendix B) to obtain the following grammar:

‹program› ::= ‹statement›‹statement›|‹statement›‹program›
‹statement› ::= ‹term›‹term›
‹term› ::= ‹+T›|<-T>|‹+t›|<-t>

This syntax yields a programming language in which programs look like sets of multi-
premised categorical statements à la Sommers and Englebretsen, for example, as follows:

-s+H
-H+A
-H+O
-A+O

where s stands for “Socrates”, M for “human being”, A for “animal“, and O for “mortal”, so
that this program states Socrates is a human being, Human beings are animals, Human beings
are mortal, and Animals are mortal. And if we now perform the following query (“> s”
stands for “What about—in this case—Socrates?”), we will notice that the answers are
given syllogistically as follows (“–––––” separates premises from conclusions):

> s
-H+A
-s+H
-----
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-s+A

-H+O
-s+H
-----
-s+O

Given these developments, we can see some clear differences between this type
of programming and classical logic programming, as in Table 1. For a start, from the
knowledge representation standpoint, there is a clear syntactical difference. In traditional
logic programming the binary, Fregean syntax is abandoned in order to return to the
traditional term syntax: we do not use variables, constants, relations, or connectives, but
rather terms and functors (hence, in traditional logic programming the distinction between
facts and rules disappears).

Table 1. A short comparison.

English Classical Logic Prolog Term Logic Traditional
Notation Notation Notation Programming

Every logician is mad. ∀x(Lx ⇒ Mx) m(X) : −l(X). −L+M −L+ M

No logician is mad. ∀x(Lx ⇒ ¬Mx) m(X) : − \+l(X). −L−M −L− M

Some logician is mad. ∃x(Lx ∧Mx) l(a). +L+M +L+ M

m(a).
Some logician is not mad. ∃x(Lx ∧ ¬Mx) l(a). +L−M +L− M

And from the point of view of inference, traditional logic programming performs
inference by syllogistic, not exactly by resolution (cf. [49]), and so its inference engine is
related to natural language by design, rather than mathematical inference. This is a crucial
difference because it shows the logic behind logic programming need not be classical, and
so traditional logic programs, purposely, are complex, minimal, consistent, non-circular,
explanatory programs, just like syllogisms writ large. We can summarize this state of
affairs in Figure 3.

Program

Simple Complex

Non-minimal Minimal

Non-consistent Consistent

Circular Non-circular

Non-explanatory Explanatory
(traditional logic programming)

Figure 3. Traditional logic programming.

5. Conclusions

In this work, we have recovered some ideas of the traditional, Aristotelian logic in or-
der to observe some of its qualities in the context of computational thinking. More precisely,
we have tried to take advantage of an educational gap within the typical computational
thinking literature—namely, that traditional logic is missing—in order to suggest that good
old logic can be useful (in a non-trivial way) for computational thinking.

To achieve this goal, we have argued in favor of two claims: that traditional logic is not
classical and that the logic programming emanating from traditional logic is not classical
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logic programming. These claims support the notions that it will not suffice to claim that
traditional logic is already included in classical logic, and that it will not be enough to
assume that the logic programming paradigm already includes this sort of traditional
programming as is. And therefore, these notions are not trivial, and thus not talking about
them, in the computational thinking literature, does not seem justified.

With the consecution of this goal, we hope we have shown yet another link between
philosophy and computation. In short, we could say that, in the context of computa-
tional thinking, we do not pretend to go back to Aristotle full force, by any stretch of
the imagination, but we do not see genuine reasons to forget him, and we forget him at
our peril.
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Appendix A. Syllogistic

Syllogistic is a term logic that deals with inference between categorical statements. A
categorical statement is a statement composed by two terms, a quantity, and a quality. The
subject and the predicate of a statement are called terms: the term-schema S denotes the
subject term of the statement and the term-schema P denotes the predicate. The quantity
may be either universal (All) or particular (Some) and the quality may be either affirmative
(is) or negative (is not). These categorical statements have a type denoted by a label (either a
(universal affirmative, SaP), e (universal negative, SeP), i (particular affirmative, SiP), or o
(particular negative, SoP)) that allows us to determine a mood, that is, a sequence of three
categorical statements ordered in such a way that two statements are premises (major and
minor) and the last one is a conclusion. A categorical syllogism, then, is a mood with three
terms one of which appears in both premises but not in the conclusion. This particular
term, usually denoted with the term-schema M, works as a link between the remaining
terms and is known as the middle term. According to the position of this middle term, four
figures can be set up in order to encode the valid syllogistic moods. For the sake of brevity,
but without loss of generality, here we omit the syllogisms that require existential import.

Table A1. Valid syllogistic moods by figure.

First Second Third Fourth

aaa eae iai aee
eae aee aii iai
aii eio oao eio
eio aoo eio

Appendix B. Term Functor Logic

Term Functor Logic (TFL, for short) [17,22–25] is a plus-minus algebra that employs
terms and functors rather than first order language elements such as individual variables or
quantifiers (cf. [9,20,22,50–52]). According to this algebra, the four categorical statements
can be represented by the following syntax [17]:

a. SaP := −S+ P
b. SeP := −S− P
c. SiP := +S+ P
d. SoP := +S− P
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Given this representation, TFL provides a simple rule for syllogistic inference: a con-
clusion follows validly from a set of premises if, and only if , (i) the sum of the premises
is algebraically equal to the conclusion and (ii) the number of conclusions with particular
quantity (viz., zero or one) is the same as the number of premises with particular quan-
tity ([17], p. 167). Thus, for instance, if we consider a valid syllogism (say, a syllogism aaa
of the first figure, aaa-1), we can see how the application of this rule produces the right
conclusion (Table A2).

Table A2. A valid syllogism.

Statement TFL

1. All computer scientists are animals. −C+ A
2. All logicians are computer scientists. −L+ C
` All logicians are animals. −L+ A

In this example, we can clearly see how the rule works: i) if we add up the premises,
we obtain the algebraic expression (−C+ A) + (−L+ C) = −C+ A− L+ C = −L+ A, so
that the sum of the premises is algebraically equal to the conclusion and the conclusion is
−L+ A, rather than +A− L, because (ii) the number of conclusions with particular quantity
(zero in this case) is the same as the number of premises with particular quantity (zero in
this case). Although we are exemplifying this logic with syllogistic inferences, this system is
capable of representing relational, singular, and compound inferences with ease and clarity.
Furthermore, TFL is arguably more expressive than classical first-order logic ([24], p. 172).
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