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Abstract: If there are two dependent positive real variables x1 and x2, and only x1 is known, what
is the probability that x2 is larger versus smaller than x1? There is no uniquely correct answer
according to “frequentist” and “subjective Bayesian” definitions of probability. Here we derive
the answer given the “objective Bayesian” definition developed by Jeffreys, Cox, and Jaynes. We
declare the standard distance metric in one dimension, d(A, B) ≡ |A−B|, and the uniform prior
distribution, as axioms. If neither variable is known, P(x2 < x1) = P(x2 > x1). This appears
obvious, since the state spaces x2 < x1 and x2 > x1 have equal size. However, if x1 is known and
x2 unknown, there are infinitely more numbers in the space x2 > x1 than x2 < x1. Despite this
asymmetry, we prove P(x2 < x1 | x1) = P(x2 > x1 | x1), so that x1 is the median of p(x2|x1), and
x1 is statistically independent of ratio x2/x1. We present three proofs that apply to all members of
a set of distributions. Each member is distinguished by the form of dependence between variables
implicit within a statistical model (gamma, Gaussian, etc.), but all exhibit two symmetries in the
joint distribution p(x1, x2) that are required in the absence of prior information: exchangeability of
variables, and non-informative priors over the marginal distributions p(x1) and p(x2). We relate our
conclusion to physical models of prediction and intelligence, where the known ’sample’ could be the
present internal energy within a sensor, and the unknown the energy in its external sensory cause or
future motor effect.

Keywords: prediction; inference; Bayesian brain; non-informative prior; Jeffreys prior; minimal
information; invariance; transformation groups; median; principle of indifference

1. Introduction

We consider a problem of prediction (or inference or estimation). We seek to identify

P(x2 < x1 | x1) =
∫ x1

0
p(x2 | x1) dx2, (1)

where x1 and x2 are positive and finite real numbers that exhibit a statistical dependence
(xi ∈ xi ⊆ R+), and there is no additional information that is relevant to probability. These
variables could represent physical sizes or magnitudes, such as distances, volumes, or
energies. Given only one known size (a sample), what is the probability that an unknown
size is larger versus smaller? The answer is not obvious, since there are infinitely more
possible sizes corresponding to ‘larger’ than ‘smaller’ (Figure 1).

That such a basic question does not already have a recognized answer is explained
not by its mathematical difficulty, but by the remarkable controversy that has surrounded
the definition of probability over the last century. We cannot hope to overcome longstand-
ing disputes here, but we try to clarify issues essential to our conclusion (at the cost of
introducing substantial text to what would otherwise be concise and routine mathematics).

The question we pose does not involve any frequency; thus it is entirely nonsensical
if probability measures frequency. The “frequentist” definition of probability dominates
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conventional statistics. It was promoted by Fisher and others in an effort to associate
probability with objectivity and ontology, but it has severe faults and limitations [1]. We
follow instead the Bayesian definition, in which probability concerns prediction (inference)
and information (evidence) and epistemology.1

x2

x1
00 1x

x2 x1> x2 x1<

= a

2x = a

Figure 1. A portion of the state space of two positive real variables x1 ∈ x1 and x2 ∈ x2 (the space
has no upper bound). The sub-spaces highlighted correspond to the propositions x2 < x1 (light blue),
x2 > x1 (light red), x1 = a, and x2 = a. Exchangeability of x1 and x2 (Equation (14)) corresponds
to symmetry of probabilities around the identity line x1 = x2; thus P(x2 < x1) = P(x2 > x1), and
p(x1 = a) = p(x2 = a). If x1 = a is known, the subspace x2 > x1 | x1 = a is infinitely larger than
x2 < x1 | x1 = a. However, we prove that x2 ∈ x2 remains equally likely to be larger versus smaller
than x1 = a.

A precise definition of Bayesian probability requires one to specify the exact mathe-
matical relation used to derive probability from information (using criteria, such as indif-
ference, transformation invariance, and maximum entropy). This divides Bayesians into
two camps. The “objectivists” consider the relation between information and probability to
be deterministic [1–12], whereas the “subjectivists” consider it to be indeterminate [13–20]
(for discussion, see References [1,11,12,17]). We follow the objective Bayesian approach,
developed most notably by Jeffreys, Cox, and Jaynes [1–7].

All Bayesians agree that information is subjective, insofar as it varies across observers
(in our view, an observer is information, and information is matter, therefore being local
in space and time). The objectivists consider probability to be objective in the sense that
properly derived probabilities rationally and correctly quantify information and prediction,
just as numbers can objectively quantify distance and energy. Therefore, once the informa-
tion in our propositions (e.g., a < xi < b) is rigorously defined, and sufficient axioms are
established, there should exist a unique and objectively correct probability P(x2 > x1 | x1)
that is fully determined by the information. In contrast, subjective Bayesians do not accept
that there exists such a uniquely correct probability [13,14,16–18,20]; therefore they are
predisposed to reject our conclusion.2

Objectivity requires logical consistency. All rigorous Bayesians demand a mathe-
matical system in which an observer with fixed information is logically consistent (e.g.,
never assigns distinct probabilities to the same proposition). However, subjectivists do
not demand logical consistency across observers (Section 3.2). They accept that a Bayesian
probability could differ between two observers despite each having identical evidence

1 The relation of Bayesian probability to ontology is irrelevant to our proofs. However, our interest in probability stems from our belief that evidence
(information) exists, that it should therefore be intrinsic to ontological and physical models, and that it can be quantified using Bayesian probabilities.

2 The terms “objective” and “subjective” have had various uses in the Bayesian literature. In contrast to the distinction we make, some subjectivists
have used “objective” (or “non-subjective”) to refer to any number purported to be a probability if it is derived by any formal mathematical
criterion, regardless of whether that criterion is sensible let alone correct, and “subjective” for any other “probability” (such as a verbally expressed
opinion) [18,20].
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(see Reference [14], pp. 83–87). In that sense, they see probability as a local and personal
measure of evidence, with the relation of probability to evidence across observers being
indeterminate. In contrast, the objective Bayesian ideal is a universal mathematics of
probability in which the same rules apply to all observers,3 so that probability measures
evidence, and evidence uniquely determines probability.

The objective ideal can only be achieved by adopting a sufficient set of axioms
(Section 3). We see failure to do so as the critical factor explaining why subjectivists
believe the relation between information and probability to be indeterminate (Section 3.2).
A mathematical system must be defined by axioms that are neither proven nor provable
(they cannot be falsified). For example, there are axioms that define real numbers, and Kol-
mogorov’s axiom that a probability is a positive real number. These axioms are subjective
insofar as others could have been chosen, and there is not a uniquely correct set of axioms.4

There may be any number of axiomatic systems that are each internally consistent and able
to correctly (objectively) measure evidence across all observers. We believe the system of
Jeffreys, Cox, and Jaynes to be one of these. Thus, we deduce P(x2 > x1 | x1) = 1/2 from
our axioms, but we do not claim that our axioms are uniquely correct. We claim only that
they are commonly used and useful standards.

We are interested in knowledge of only a single ’sample’ because we believe it to
be a simple yet realistic model of prediction by a physical observer, such as a sensor in
a brain or robot (Section 10) [21,22]. Jaynes often used the example of an “ill informed
robot” to clarify the relation of probabilities to information [1]. Unlike a robot, a scientist
given only one sample can choose to collect more data before calculating probabilities and
communicating results to other scientists. In contrast, a robot must continually predict
and act upon its dynamically varying environment in “real time” given whatever internal
information it happens to have here and now within its sensors and actuators. If the only
information in a sensor at a single moment in time is a single energy x1, then the probability
that an external or future energy x2 is larger must be conditional on only x1, as expressed
by P(x2 > x1 | x1). At that moment, x1 is fixed, and it is not an option for the sensor
to gain more information or to remain agnostic. This example helps to clarify the role
of probability theory, for which the fundamental problem is not to determine what the
relevant information is, or should be, but rather to derive probabilities once the information
has been precisely and explicitly defined.

2. Notation

We use bold and stylized font for variables (samples) X1,X2, . . . ,Xn, and standard
font for their corresponding state spaces X1, X2, . . . , Xn (note that these are not technically
“random variables”; see Section 4.2). ThereforeXi is an element from the set of real numbers
Xi (Xi ∈ Xi ⊆ R). Whereas these represent dependent variables, Yi ∈ Yi ⊆ R are indepen-
dent of one another (Section 6.3). The subscripts are arbitrary and exchangeable labels;
therefore the implication of a sequence is an unintended consequence of this notation.

We denote arbitrary numbers A, B, C, D ∈ R. For each uppercase letter representing
real-numbered “location”, we have a corresponding lowercase letter representing a positive
real “scale”, xi = exp(Xi) (Section 4.2). Therefore lowercase letters symbolize positive real
numbers (except si ∈ s, which symbolizes a physical size and is not a number).

As described in Section 4, all probabilities are conditional on prior information I and J,
as well as K in cases involving both x1 and x2 (e.g., p(x1, x2) and p(x2|x1)). For simplicity,
this conditionality is not shown in notation.

3 That the same rules should apply to all observers is fundamental to physics. Likewise, the objective Bayesian view tends to be more prevalent
among physical scientists, and the subjective Bayesian view among social scientists.

4 That distance is uniform over the real number line is so familiar and natural that it may appear to be an essential property of numbers. However, the
real number line is a human invention, and uniformity is the intended result of axioms chosen for convenience. One could begin instead with an
axiom that the distance between 2 and 3 is 6.87 times greater than the distance between 3 and 4. This would introduce needless complexity, but it
is logically permissible and could be used to construct an internally consistent system. It would result in a non-informative prior density that is
not uniform.
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We use uppercase P for the probability of discrete propositions, with defined intervals,
a < xi < b, as in the case of a cumulative distribution function (CDF). We use the lowercase
p for a probability density function (PDF), which is the derivative of its corresponding CDF,
p(xi) = dP(xi)/dxi. Because our simplified notation omits the variable of interest and the
propositions, for clarity, we define it for CDF and PDF as

P(xi) ≡ P(xi < xi) = Fxi(xi), (2)

p(xi) ≡ p(xi = xi) = fxi(xi), (3)

where xi represents the set of possible values of the number xi; thus xi = xi represents an
infinite set of propositions, one for each real number. For example, if we had discrete units
of 0.1 rather than continuous real numbers, then [xi = xi] ≡ [xi = 0.1, xi = 0.2, xi = 0.3, . . . ].
Analogous notation applies to locations; thus, P(Xi) ≡ P(X1 < Xi) = FX1(Xi).

A joint distribution over two variables is a marginal distribution of the full joint
distribution (following the sum rule),

p(x1, x2) =
∫ ∞

0
dx3

∫ ∞

0
dx4 · · ·

∫ ∞

0
dxn p(x1, x2, x3, . . . , xn), (4)

where n approaches infinity. Likewise, p(x1) is a marginal distribution of p(x1, x2).

3. Axioms

Like other Bayesians, we take as axioms the product and sum rules of Cox (the product
rule being Bayes’s Theorem), and Kolmogorov’s first axiom that a probability is a positive
real number [1,4,5]. Kolmogorov’s second and third axioms together stipulate that a
mutually exclusive set of probabilities must sum to one. Like Cox and Jaynes, we apply
this normalization rule where convenient (including the conclusion in our title). However,
we do not elevate it to an axiom, since to do so would be unnecessarily restrictive and
inconvenient (see Reference [11]).

3.1. Axioms Determine the Non-Informative Prior Distribution

Since we choose to quantify a physical size using a real number Xi, we need axioms
that define real numbers. In particular, we need to measure the size of a subset of real
numbers A < Xi < B (a partition of the state space). For this, we would like to have a
volume or integral that is invariant (a Haar measure) under addition (translation invariance;
see Section 5). Since our particular interest concerns metric spaces, this Haar measure
is essentially the same as a distance metric. We, therefore, choose our measure in one
dimension to be the standard distance metric, which is almost universally assumed when
using real numbers.

d(A, B) ≡ |A− B|. (5)

Thus the (uncountable) “number” of values Xi could take between A and B is |A− B|.
We must also specify probability as a function of distance. Our probability measure need
not necessarily be the same as our distance measure, as a matter of logic. However, the
obvious choice is to equate them, so that the probability that Xi lies within a distance will
be that distance. For A < B,

P(A < Xi < B) = d(A, B) ≡ B− A. (6)

We declare Equations (5) and (6) to be axioms. These may be seen as innocuous
and trivial, but by explicitly asserting them to be axioms, we eliminate the appearance of
indeterminacy that underlies the subjectivist view.

The axiom in Equation (6) can be expressed as a cumulative distribution P(Xi < Xi) = Xi,
or in our more concise notation, P(Xi) = Xi (Equation (2)). Its derivative is the uniform
density, p(Xi) = 1 (Equation (3)) (Section 6.1). This is known as a “non-informative prior”
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(or “reference prior” or “null distribution”), a term for probabilities that are, or are intended
to be, conditional on a complete absence of information. Although the uniform prior has
long been used, it is the only portion of our proofs that has been a matter of controversy, as
we discuss next.

3.2. Controversies Concerning the Uniform Distribution

Whereas we have derived the uniform prior over real numbers, p(Xi) = 1, from
the standard distance metric, it has long been justified by “the principle of indifference”.
We state this principle as the choice to represent equal evidence with equal probabilities,
together with the rationale that a complete absence of evidence must correspond to equal
evidence for each proposition (we treat each possible number equally). Although this prin-
ciple has always been used, it has long been alleged to result in logical contradictions [23].
Whereas indifference only applies in the complete absence of evidence, alleged counterex-
amples invariably and unwittingly depend upon implicit evidence that discriminates
amongst propositions and results in non-uniformity once properly utilized [1,9,24]. An
example arises here because we consider two alternative numerical representations (pa-
rameterizations) of the same size, xi = exp(Xi) and Xi = log(xi) (Section 4.2). Assigning
uniformity over both Xi and xi would result in logical contradictions. Instead, we begin
with axioms that assign uniformity over Xi, and then introduce information xi = exp(Xi),
so that p(xi) is not uniform (Section 6.2).

Subjectivists have defended use of the uniform prior as a practical matter but have
argued or implied that uniquely correct non-informative priors do not exist [13,14,16–18].
Objectivists have argued that the uniform prior is uniquely correct in the absence of infor-
mation [1–3,9,11]. Here, we resolve this issue, at least as a practical matter, by declaring
the standard distance metric and the uniform density as axioms. These axioms may be
“uniquely correct” in the sense that they are the least complex and most convenient. How-
ever, we have no need to make that claim, and simplicity and convenience are not essential
to an objective and logically consistent mathematics of probability. (see footnote 4).

Specifically, subjectivists have criticized the uniform prior p(Xi) = 1 on the grounds
that it is not uniquely correct because, whether one derives uniformity from the principle
of indifference or location invariance (Equation (16)), it has the general form p(Xi) = c,
where c is any positive constant. Thus, the non-informative prior appears indeterminate,
and if different observers choose different values of c, there will appear to be logical
inconsistency across observers (see Reference [14], pp. 83–87). This trivial but undesirable
sort of subjectivity is analogous to one observer choosing the metric system and another
the English system of measurement. It is overcome by adopting an axiom that fixes c as
a universal constant to apply to all observers. We have achieved the same end merely
by declaring the standard distance metric an axiom, from which we deduce p(Xi) = 1
(Section 3.1). Our proofs would be unaltered were we to choose any specific constant c > 0.
However, c 6= 1 would be formerly equivalent to defining a non-standard distance metric,
d(A, B) ≡ c|A− B|.

The uniform density has also caused confusion because it is unnormalizable (“im-
proper”) and hence not a “probability” as defined by Kolmogorov’s axioms (Section 3).
The semantic issue of whether to denote the function p(Xi) = 1 a “probability” is not
critical (we do, but Norton does not [9]). The deeper issue concerns the rationale for, and
form of, normalization. In geometry, one can only assign a number to a single distance
between points in an arbitrary manner. The assignment of ‘1’ to ‘a meter’ is convenient but
is otherwise arbitrary and meaningless. Numbers acquire meaning in applied mathematics
only when there is a ratio of two sizes. Thus ‘8 m’ represents, by definition, the ratio 8/1.
The numerator and denominator are each arbitrary and meaningless in isolation, but the
ratio is not; therefore science measures relative size as ratio (or log ratio). The same applies
to probability, as in P(2 < Xi < 10)/P(1 < Xi < 2) = 8/1, which has a perfectly clear
meaning, even though both numerator and denominator are each “improper probabilities”
that mean nothing in isolation. Whereas this ratio compares the probability of one ‘part’
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to another, the standard ratio that has been chosen by convention to define a “proper
probability” is ‘part / whole’, P(X+

i )/(P(X+
i ) + P(X−i )), where ‘+’ and ‘−’ indicate true

and false propositions. Kolmogorov elevated this form of normalization to an axiom,
but, like Cox and other objective Bayesians, we do not [1,4,5]. However, the conditional
probabilities that are our ultimate interest, p(X2|X1) = p(X1, X2)/p(X1), do normalize
in the conventional manner, since although the numerator and denominator on the right
are each “improper” (unnormalizable), the conditional probability is their ratio and is a
properly normalized density.

4. Defining the Prior Information

We try to define the prior information as rigorously and explicitly as possible, since
failure to do so has been a major source of confusion and conflict regarding probabilities. We
distinguish information I about physical sizes, information J about our choice of numerical
representation of size (the variables), and information K about the statistical dependence
between variables. For clarity, we also distinguish the prior information from its absence
(ignorance). Although it is the information that we seek to quantify with probabilities, it is
its absence that leads directly to the mathematical expressions of symmetry that are the
antecedents of our proofs.

4.1. Information I about Size

Information I is prior knowledge of physical ‘size’. Our working definition of a
‘size’ si is a physical quantity that we postulate to exist, such as a distance, volume, or
energy, which is usually understood to be positive and continuous. A ‘size’ need not have
extension and is not distinguished from a ‘magnitude’. Critically, since a single size can be
quantified by various numerical representations, and size is a relative rather than absolute
quantity, a specific size si ∈ s is not uniquely associated with a specific number, and the
space of possible sizes s is not a unique set of numbers. Information I concerns only prior
knowledge of physical size si ∈ s, not its numerical representation (such as xi ∈ xi ⊆ R+).

We define I as the conjunction of three postulates.

1. There exist a finite and countable number of distinct sizes s1, s2, . . . sn.
2. Each existing size si is an element of a totally ordered space of possible sizes s.
3. For each existing size si, there are larger and smaller possible sizes within s.

I ≡ Postulates 1–3 are true. (7)

Information I is so minimal that it could reasonably be called “the complete absence
of information”. Being so minimal, I appears vague, but its consequence becomes more
apparent once we consider its many corollaries of ignorance. These constrain our choice of
numerical representation (Section 4.2) and provide the sufficient antecedents for our proofs
(Section 4.4).

4.2. Information J about Numerical Measures of Size

We should not confuse our information I about physical sizes with our information J
about our choice of numerical representation. J corresponds to our knowledge of numbers,
which includes our chosen axioms. We will therefore, use the term “size” for a physical
attribute, and “variable” for a number we use to quantify it (we quantify size si with
variables Xi and xi). Our choice of numerical representation J cannot have any influence on
the actual sizes, or our information I about them; thus probabilities P(xi) must be invariant
to our choice of numerical representation (parameterization) (Section 5.1) (although the
density p(xi) does depend on J).

Information I implies certain properties that are desirable if not necessary in our
choice of J. Postulate 1 indicates that there must be an integer number of sizes (samples)
that actually exist, n ∈ N. Since no number is postulated, n is unknown, and its state
space is countably infinite. For example, each size could be the distance between a pair
of particles, and the number of pairs n is unknown. For each of these n sizes, we define
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below two corresponding numerical quantities (variables). Postulate 2 specifies no minimal
distance between neighboring sizes in the ‘totally ordered space’ s; thus s is continuous.
Postulate 3 specifies that, for any given size si, larger and smaller sizes are possible. Thus,
no bound is known for space s, and the range of possibilities is infinite. We therefore choose
to represent a physical size si ∈ s with real numbered variables (xi ∈ xi and Xi ∈ Xi), with
more positive numbers representing larger sizes. We emphasize that, although the true
value of each variable is finite, that value is entirely unknown given prior information I
and J; therefore its state space is uncountably infinite.

We choose two numerical representations, one measuring relative size as difference,
and the other as ratio, related to one another by exponential and logarithmic functions.

y/x = exp(Y)/ exp(Xi) = exp(Y− X), (8)

Y−X = log(y)−log(x) = log(y/x). (9)

We define information J as the conjunction of these equations, together with the
standard distance metric in one dimension.

J ≡ Equations (5), (8), and (9). (10)

We therefore represent a single physical size si with two numbers (variables), “scale”
xi ∈ R+ and “location” Xi ∈ R, where xi = eXi . In common practice, a “scale” xi typically
corresponds to a ratio (e.g., x1 = 8 m is the ratio 8/1, by definition); therefore, a “location”
corresponds to a log ratio,Xi = log(xi). Because we are free to choose any parameterization,
and only one is necessary for a proof, it is not essential that we justify the relationship
between parameterizations. However, the exponential relationship arises naturally and is
at least a convenient choice.5

Since we follow the objective Bayesian definition of probability, our variables are not
“random variables” in the standard sense (see Reference [1], especially p. 500). This is in
part just semantic, since “random” is ill-defined in standard use and promotes misunder-
standing. The technical distinction is that the standard definition of a “random variable”
assumes there to be a function (known or unknown) that “randomly samples” xi from its
state space xi following some “true probability distribution” (which could be determined
by a physical process). We do not assume there to be any such function or true distribution.
Information I and J leaves us entirely agnostic about any potential process that might
have generated the physical size we quantify with xi. Such a process could just as well be
deterministic as random, and even if we knew it to be one or the other, this alone would
not alter the probabilities of concern here.

4.3. Information K about Dependence of Variables

Information K postulates that the variables are not independent but does not specify
the exact form of dependence. The dependence between variables is typically specified as
part of a statistical model. It relates to a measure of the state space in two or more dimen-
sions. For example, the Euclidean distance metric, which exhibits rotational invariance,
underlies what we call “Gaussian dependence”.

For independent variables Y1 = log(y1) and Y2 = log(y2), p(Y2 | Y1) = p(Y2);
therefore our conclusion that P(Y2 < Y1 | Y1) = P(Y2 > Y1 | Y1) is obvious (although
since p(Y2 | Y1) is not normalizable, Y1 is not a unique median). Given our measures of
distance (Equation (5)) and probability (Equation (6)) in one dimension, the measure in
this two-dimensional state space is simply the product

5 Whereas the standard distance metric measures size as a difference (Equation (5)), science and statistics measure it as ratio. To find the prior
over ratio from the prior over difference (Equation (6)) requires that we transform the standard metric (Equation (5)) to a multiplicative metric
(e.g., References [14,25]). The transformation should be invertible, and apply equally to each variable, so that y2/y1 = F(Y2 −Y1) and yi = F(Yi)
(Section 2). Therefore we have the functional equation F(Y2 −Y1) = F(Y2)/F(Y1), and the only solution is an exponential function, yi = bYi . The
base b > 1 does not matter for present purposes, so we choose the natural base b = e for convenience (Equation (8)).
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P(Y1, Y2) = P(Y1)P(Y2) = Y1Y2, (11)

where P(Y1, Y2) ≡ P(Y1 < Y1,Y2 < Y2) is the joint CDF in our simplified notation
(Equation (2)). Information K postulates a dependence, which we define by the negation of
Equation (11):

P(X1, X2) 6= p(X1)P(X2) = X1X2. (12)

We further define K to be any form of dependence (measure) consistent with the
two corollaries specified below that result from the conjunction of information I, J, and
K (Section 4.4). These corollaries mandate symmetries (Section 5) that defines a set S of
joint distributions p(X1, X2) and p(x1, x2). Our proofs apply to every member of this set.
They demonstrate that every member of the set has the form P(X1, X2) = h(X2 − X1) =
h(X1 − X2), where h is any function consistent with our corollaries. Figure 2 illustrates
three exemplary distributions in set S. In Section 7, we present in detail the special case of
an “exponential” dependence or model.

(C) (D)

(A) (B)

p(x2 | x1=1)

x2
0

0

Chi

Exponential
Gaussian

Independent

x1

x2

p(x1,x2)

Chi

Exponential
Gaussian

p(X2 | X1=0)

22 44 0

p(X1,X2)

X2

X1

X2
1 2 3

Figure 2. Exemplary distributions for exponential (red), Gaussian (blue), and chi (cyan) dependencies.
(A) Equiprobability contours of p(X1, X2), which we prove are parallel to the identity line for all dis-
tributions in set S (Equation (29)). (B) Contours of p(x1, x2). (C) Conditional distributions p(X2|X1).
This is uniform in the case of independence (black). The distributions given exponential and Gaussian
dependence are the standard logistic (Equation (25)) and Cauchy distributions, respectively, with
location parameter x1 and scale parameter 1. (D) p(x2|x1). This is 1/x2 in the case of independence
(black). The exponential dependence results in the log-logistic distribution with scale parameter x1

and shape parameter 1 (Equation (26)).

4.4. Corollaries of Ignorance Implied by I, J, and K

The conjunction of information I, J, and K is all prior knowledge, and its logical
corollary is ignorance of all else. The consequence of ignorance is symmetry, which
provides constraints that we use to derive probabilities.

Corollary. There is no information beyond that in I, J, and K.

1. There is no information discriminating the location or scale of one variable from another.
2. There is no information about the location or scale of any variable.
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Corollaries 1 and 2 make explicit two sorts of ignorance that are necessary and suffi-
cient for our proofs. Corollary 1 requires that we treat variables equally, meaning that they
are “exchangeable” (Equation (14)). Corollary 2 is sufficient to establish location and scale
invariance (Equations (15)–(18)) and to derive non-informative priors over single variables
(Equations (19)–(22)).

5. Invariance of Prior Probabilities

Given the minimal information defined above, prior probabilities must be invari-
ant to the choice of parameters, exchange of variables, and changes to location and
scale [1–3,8–11,13,14,16,26–29].

5.1. Invariance to Change of Parameters

Probability must not vary with our choice of parameters (Section 4.2). Therefore,

P(A < Xi < B) = P(a < xi < b), (13)

where the left and right sides represent size as locations and scales, respectively, related
by (eA, eB, eXi ) = (a, b, xi). These probabilities are equal because these are two distinct
formulations of the same proposition (this invariance does not extend to densities p(Xi)
and p(xi), which have different domains and, thus different forms).

5.2. Exchangeability of Variables

Corollary 1 requires that we treat all variables equally; Therefore, p(x1, x2) must
exhibit “exchangeability of variables,”

p(x1= a, x2=b) = p(x1=b, x2= a), (14)

for all positive numbers a and b. Exchangeability corresponds to symmetry of p(x1, x2)
around the identity line, x1 = x2 (Figures 1 and 2B), and likewise for p(X1, X2) (Figure 2A).
Here we show only two variables, but exchangeability applies to all n variables in the
joint distribution p(x1, . . . , xn). Although n will be finite, it is unknown and unbounded
(Section 4.1, postulate 1); we therefore consider the consequences of allowing n to approach
infinity. As a result, we have “infinite exchangeability” of variables and can use de Finetti’s
theorem, which ensures the existence of a set of parameters φ that, if known, cause the
variables to be independent and identically distributed (i.i.d.) (see Section 8.3) [13,16,26]
(see Chapter 4.3.3 in Reference [16]).

5.3. Location and Scale Invariance

Since corollary 2 stipulates no prior information about size, the prior probability that
Xi lies in an interval must be invariant to a change in the location of that interval (as in
choosing a different origin). Therefore, we have location (translation) invariance

P(A < Xi < B) = P(A+C < Xi < B+C), (15)

for any number C∈ R. We can express this instead as integrals over densities,
∫ B

A p(Xi)dXi =∫ B+C
A+C p(Xi)dXi, or

p(Xi) = p(Xi + C). (16)

Because we must have invariance to a change of parameters (Equation (13)), we can
rewrite Equation (15) given xi = eXi , so that location invariance becomes scale invariance

P(a < xi < b) = P(ca < xi < cb). (17)

Therefore
∫ b

a p(xi)dxi =
∫ cb

ca p(xi)dxi, and scale invariance with respect to densities is

p(xi) = cp(cxi). (18)
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Location and scale invariance (Equations (15)–(18)) are sufficient for deriving these
non-informative priors [1–3], although these priors and invariances can also be deduced
from our axioms (Equations (5) and (6)) and choice of parameters (Equations (8) and (9)).

6. Prior Probabilities over Single Variables
6.1. The Prior over Locations

We express the non-informative prior over location (Equation (6)) more concisely as a
CDF (following Equation (2)),

P(Xi) = Xi, (19)

and its derivative, the uniform PDF

p(Xi) = 1. (20)

The uniform density is unique in exhibiting location (translation) invariance
(Equation (16)), which provides an alternative derivation of it as the non-informative
prior over real numbers [1–3]. Note that, since we derived the uniform prior from the
standard distance metric (Equation (5)), it also applies to a positive variable, p(|Xi|) = 1.

6.2. The Prior over Scales

Because the non-informative prior over scale is less obvious than the uniform prior,
we provide three derivations of it. First, because probabilities must be invariant to a change
in parameters (Equation (13)), we can find the prior over scales simply by transforming
locations, xi = eX

i (Equation (8)) (see Reference [14], p. 82). Therefore, P(A < Xi < B) =
B− A (Equation (6)) becomes P(a < xi < b) = log b− log a, and the CDF is

P(xi) = log(xi), (21)

and the corresponding PDF is p(xi) = dP(xi)/dxi

p(xi) =
1
xi

. (22)

A second and more famous derivation is based on the fact that p(xi) = c/xi, where
c > 0 is a constant, is the unique distribution that exhibits the scale invariance defined by
Equation (18) [1–3]. The value of c is irrelevant to our proofs (Section 6.4), but c = 1 is
implied by Equations (19), (20), and Equation (8). Thus we have Equation (22), known as
“Jeffreys prior over scale” (which applies whether the unknown is called a “scale parameter”
or “variable”). A third derivation below considers a ratio of independent variables.

6.3. Independence and the Prior over Differences and Ratios

The priors over single variables derived above are sufficient for our proofs. How-
ever, we can gain additional insight by deriving the non-informative prior over differ-
ence and ratio. Complete absence of information requires that we do not have informa-
tion K (Section 4.3) specifying a dependence, and instead have independent variables
(Y1,Y2) ∈ (Y1, Y2).

Given the joint CDF (Equation (11)), the joint PDF is uniform, p(Y1, Y2) = p(Y1)p(Y2) = 1;
therefore uniformity applies to all sums and differences,

p(Y1) = p(Y2) = p(Y1 + Y2) = p(Y1 −Y2) = p(Y2 −Y1) = 1, (23)

which are also independent of one another. Transforming locations to scales (Equations (8)
and (13)), we have the analogous equation p(y1) = p(y2) = p(y1y2) = p(y1/y2) =
p(y2/y1) = 1, and the product y1y2 is independent of ratios y1/y2 and y2/y1. Thus non-
informative priors over products and ratios, and sums and differences, have the same form
as shown above for scales and locations, respectively. Indeed, we introduce no information



Philosophies 2021, 6, 24 11 of 19

about location or scale if we define Xi ≡ Yi−Yi+1 and xi ≡ yi/yi+1, and all numbered
equations remain valid if we do so.

6.4. The Uniform Prior over Positive Variables

Here, we derive Jeffreys non-informative prior over scale (Equations (21) and (22))
from the uniform prior over positive and independent real numbers. Although less formal
than the derivation above (Section 6.2), this derivation may be more appealing conceptually
to some since it does not rely on negative numbers and the exponential function.

We begin with uniformity and independence of positive variables, p(|Y1|, |Y2|) =
p(|Y1|)p(|Y2|) = 1. This gives p(|Y1|) = p(|Y2|) = 1 (Equation (23)), and exchangeability
(Equation (14)) requires p(|Y1|/|Y2|) = p(|Y2|/|Y1|). Combining these, we have for the
subset of propositions (|Y1|, |Y2|) ∈ (1, 2, 3), p(1/3) = p(1/2) = p(2/3) = p(1/1) =
p(3/2) = p(2/1) = p(3/1). This is easily seen to correspond to uniform density over
the logarithm, p(log(|Y1|/|Y2|) = 1 (‘1’ is required by Equation (5), but any constant is
sufficient for present purposes). By defining z ≡ |Y1|/|Y2| and Z ≡ log(z), this becomes
p(Z) = 1 (Equation (20)), which we have shown above to be sufficient to derive P(Z) = Z
(Equation (19)) and p(z) = 1/z (Equation (22)) (Section 6.2). Therefore Jeffreys’s prior over
scale (Equation (22)) is the distribution over a ratio of two independent and uniformly
distributed positive real numbers.

This derivation appears to have failed to account for the possible combinations of |Y1|
and |Y2|. For example, it would appear that a ratio ‘1’ could be achieved by any element
of the set ‘1/1’, ‘2/2’, ‘3/3’, . . . , whereas a more extreme ratio, such as ‘1/527’, can be
achieved only by a smaller set of combinations. However, the apparent multiplicity of
combinations (degeneracy) is illusory here, a counter-intuitive property of independence
and a complete absence of information. For example, rather that representing a distance
between two geometric points with single number |X1|, we could represent it by assigning
two arbitrary numbers Y1 and Y2 to the two points, so that |X1| = |Y1−Y2|. The question
then arises whether combinations of ‘Y1,Y2’, such as ‘1, 1’ and ‘2, 2’, are distinguishable
(degenerate) states, or indistinguishable states (Bose-Einstein statistics being a consequence
of the latter). If one postulates that a single distance is associated with a uniquely correct
number, but a single geometric point can only be assigned a number arbitrarily (as typically
implied in trigonometry, in which similar triangles of different scales are distinguished, but
identical triangles in different locations are not), then ‘1, 1’ and ‘2, 2’ are not distinguishable
states, and there is only one way to achieve one distance |X1| = |Y1−Y2|. Thus, the state
space ‘Y1, Y2’, like that of X1, is effectively one-dimensional. Choosing to parameterize
with ‘Y1, Y2’ creates what could be called “pseudodegeneracy”, since we cannot expand
the size or dimensionality of a state space by choosing to introduce a superfluous and
potentially misleading variable. This contrasts with our case of dependent variables x1 and
x2, for which we treat ‘1, 1’ and ‘2, 2’ as two distinct combinations.

7. Exemplary Case of an Exponential Dependence

Before general proofs, we present here examples of dependence, and we summarize
each of our three proofs for the special case of an “exponential” dependence or model.

7.1. Three Exemplary Forms of Dependence

Figure 2 shows distributions for three forms of dependence in set S (Section 4.3). The
joint distribution over two variables given an exponential dependence is

p(x1, x2) =
1

(x1 + x2)2 , (24)

whereas “Gaussian” and “chi” dependence yields p(x1, x2) = (x2
1 + x2

2)
−1 and p(x1, x2) =

(x1x2)(x2
1 + x2

2)
−2, respectively. Transformation of Equation (24) according to xi = eXi

(using Equation (13) after converting from PDF to CDF) gives
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p(X1, X2) =
eX1−X2

(1 + eX1−X2)2 . (25)

The sufficient statistic for the exponential model given samples x1 and x2 is (x1+x2)/2,
and the scale parameter given an infinite “population” of samples is λ = limn→∞
(x1+ . . .+xn)/n. If λ is known, the sampling distribution is “the exponential distribution”,
p(xi|λ) = (1/λ) exp(−xi/λ). Therefore, we refer to this dependence (or statistical model)
as ‘exponential’, even though λ is unknown in our case (we have a non-informative prior
over λ). We apply the same rationale in denoting our “Gaussian” and “chi” dependencies.

7.2. Proofs 1 and 2 Given Exponential Dependence

If x1 is known, Equation (24) becomes p(x2|x1) = x1/(x1 + x2)
2 (given the product rule

p(x2|x1) = p(x1, x2)/p(x1), and p(x1) = 1/x1). Its integral is the CDF P(x2|x1) = x2/(x1 +
x2) = 1/(1+x1/x2), proving that x1 is the median (Equation (1)). This distribution is
known as‘log-logistic’ with scale parameter x1 and shape parameter 1. However, proofs 1
and 2 take advantage of the greater symmetry present in P(X1, X2) compared to p(x1, x2)
(although proof 2 begins with the latter). Logarithmic transformation converts the log-
logistic distribution p(x2|x1) to the logistic distribution p(X2|X1) (Equation (25)), with
location parameter X1 = log(x1) and scale parameter 1. It can readily be shown that
p(X2−X1|X1) = p(X1−X2|X1) (Figure 2A,C), indicating that the logistic distribution is an
even function, f (−t) = f (t). Therefore, X1 is its median, as well as mean and mode. The
median is invariant to a change of parameters (Equation (13)); x1 = eX1 is the median of
the log-logistic distribution.

7.3. Proof 3 Given Exponential Dependence

Proof 3 uses the “population” scale parameter λ = limn→∞(x1+ . . .+xn)/n, for which
the sampling distribution is the exponential distribution, p(xi|λ) = (1/λ) exp(−xi|λ).
From this and the prior over a scale parameter p(λ) = 1/λ (Section 6.2), the posterior
predictive distribution is

p(x2 | x1) =
∫ ∞

0

p(x2 | λ) p(x1 | λ) p(λ)
p(x1)

dλ =
x1

(x1 + x2)2 , (26)

which is again the log-logistic distribution (Section 7.2) (Figure 2B,D). The median is
x1, since

∫ x1
0 x1/(x1 + x2)

2dx2 = 1/2. One can use the same approach to confirm that
this is also true given any particular statistical model of positive real variables that is
famous enough to have a name (e.g., gamma, chi, half-normal), so long as there is no prior
information about scale (as in the case that λ = 1).

8. General Proof

Proofs 1–3 all proceed from corollary 1, expressed in exchangeability (Equation (14)),
and corollary 2, expressed in location and scale invariance (Equations (15)–(18)), and prior
probabilities (Equations (6) and (19)–(22)). Proof 1 starts by observing that p(X2−X1)
must be an even function. Proof 2 applies scale invariance across all dimensions of
p(x1, x2, x3, . . . ). Proof 3 uses a scale parameter that renders the variables conditionally
independent and identically distributed (i.i.d.). Proof 1 is the simplest and proof 3 the most
complex. It is interesting to note that we derived them in the opposite order chronologi-
cally, which is explained primarily by the fact that proof 3 uses the most common Bayesian
methods.

We also note that proofs 2 and 3 begin with strictly positive numbers xi > 0, and
proof 3 never uses negative numbers. Furthermore, Whereas we chose to present our
axioms using the standard distance metric for all real numbers (locations), scale invariance
(Equation (18)) is an alternative antecedent for our proofs. It can be understood as the
consequence of beginning with a multiplicative metric, rather than the standard metric
based on difference.
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8.1. Proof 1 from the Joint Distribution p(X1, X2)

To characterize p(X1, X2), it is useful to consider sums and differences, X1+X2 = A
and X1−X2 = B (note that p(A, B) corresponds to rotating p(X1, X2) by 90 degrees). Given
exchangeability (Equation (14)) from corollary 1, p(X1, X2) must be evenly distributed
around the identity line for all forms of dependence (statistical models) in set S, so that it is
invariant to exchange of X1 and X2. Therefore,

p(X1−X2) = p(X2−X1), (27)

which must be an even function, f (−t) = f (t).
Given corollary 2, we know nothing about the location of either X1 or X2, and know-

ing that they exhibit a dependence contributes no information about their joint location
(Section 4.3). Therefore, we know nothing about their sum, resulting in uniformity,

p(X1+X2) = 1, (28)

so that all lines through p(X1, X2) perpendicular to the identity line X1 = X2 are equally
probable, p(X1+X2 = C) = p(X1+X2 = D). Uniformity over sums (Equation (28)) is
easily seen to be a consequence of location invariance (Equation (16)), since p(X1) = 1
(Equation (20)), and we must have invariance of the distribution whether we add to X1
either an arbitrary number C or location X2.

The combination of Equations (27) and (28) requires that p(X1, X2) must be a function
only of the difference between variables for every statistical dependence (model) in set S,

p(X1, X2) = f (X1−X2) = f (X2−X1), (29)

meaning that equiprobability contours must be parallel to the identity line, as shown in
Figure 2A.

Given a known sample X1 ∈ X1, the conditional distribution p(X2|X1) is a slice
through p(X1, X2) perpendicular to the X1 axis. It can be seen in Figure 2A that the
distribution over the difference is identical for all values of X1.

p(X2−X1 | X1) = p(X2−X1). (30)

This proves that X1 and X2−X1 have no information about one another and are
therefore independent. From this and Equation (27), p(X2|X1) must be an even function
p(X2−X1|X1) = p(X1−X2|X1) with median X1 (Figure 2C), proving our conclusion

P(X2 < X1 | X1) = P(X2 > X1 | X1). (31)

Converting to scales (Equations (8) and (13)) shows that x1 and x2/x1 must also be
independent, and proves our conclusion that a known positive variable is the median over
an unknown.

P(x2 < x1 | x1) = P(x2 > x1 | x1). (32)

The conclusion in our title, that these probabilities equal 1/2, will be true only if
p(x2/x1 | x1) has a finite integral (is normalizable). All forms of dependence of which we
are aware do result in normalizable conditional distributions, but we do not rule out the
possibility of a dependence in set S that is an exception. If there is such a case, equations
Equations (31) and (32) remain valid, but there will be no unique median.

8.2. Proof 2 from the Joint Distribution p(x1, x2, . . . , xn)

The prior over scales (Equation (22)) can be derived as the unique distribution
exhibiting invariance following scale transformation (Equation (18)), exemplifying the
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method of “transformation groups” [1,8–11,27–29]. Here we transform the scale of all
variables simultaneously

p(x1, . . . , xn) dx1, . . . , dxn = p(x′1, . . . , x′n) dx′1, . . . , dx′n, (33)

where x′i = cxi, 0 < c < ∞. This requires that the joint distribution exhibit a symmetry
that could be termed “multidimensional scale invariance”, so that p(x1) =

∫ ∞
0 dx2 . . .∫ ∞

0 dxn p(x1, . . . , xn) = 1/x1 (where subscript ‘1’ is exchangeable with any other subscript).
It is also sufficient to ensure that the joint distribution is a homogeneous function, so that
multiplying each variable by c is equivalent to dividing the joint distribution by cn,

p(x1, . . . , xn) = cn p(cx1, . . . , cxn). (34)

We define the set S of joint distributions to be those that satisfy both this multidi-
mensional scale invariance (Equation (34)) and exchangeability (Equation (14)). We can
find a general form for the set by first applying Euler’s homogeneous function theorem to
Equation (34). In the case of two variables, this gives

2 p(x1, x2) +
2

∑
i=1

xi
∂p(x1, x2)

∂xi
= 0, (35)

and the general solution is p(x1, x2) = (1/x 2
1 )h1(x2/x1) = (1/x 2

2 )h2(x1/x2), where h1
and h2 are two arbitrary functions. Whereas this equation was deduced solely from scale
invariance (Equation (34)) (required by corollary 2), we next apply exchangeability of
variables (Equation (14)) (required by corollary 1). This shows that (1/x 2

1 )h1(x2/x1) =
(1/x 2

2 )h1(x1/x2), and likewise for h2, so that h1(x) = h2(x). Thus there is only one arbi-
trary function, h(x) ≡ h1(x) = h2(x), and the general solution for two variables becomes

p(x1, x2) =
1
x2

1
h
(

x2

x1

)
=

1
x2

2
h
(

x1

x2

)
, (36)

where h(x) is any arbitrary function that satisfies this equation. We can find the general
form of p(x2|x1) by dividing Equation (36) by p(x1) = 1/x1 (Equation (22)), which yields

p(x2 | x1)dx2 =
1
x1

h
(

x2

x1

)
dx2 =

x1

x2
2

h
(x1

x2

)
dx2. (37)

Following logarithmic transformation Xi = log xi, this becomes

p(X2 | X1)dX2 =
eX2

eX1
h
(

eX2

eX1

)
dX2 =

eX1

eX2
h

(
eX1

eX2

)
dX2. (38)

Since eX1 /eX2 = eX2−X1 , we can substitute T = X2−X1 to give eTh(eT) = e−Th(e−T).
This satisfies the definition of an even function, proving that X1 is the median of p(X2|X1).
Since the median is invariant to the transformation xi = eXi , proof 2 is completed in the
same manner as proof 1 (Equations (31) and (32)).

8.3. Proof 3 from a Scale Parameter

Because of corollary 1, we have exchangeability (Equation (14)), and the theorem of de
Finetti ensures the existence of a set of parameters φ that, if known, renders the variables
independent and identically distributed (i.i.d.) (Section 5.2).

p(x1, x2) =
∫

Φ
p(x1|φ)p(x2|φ) p(φ) dφ. (39)
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This set will include a scale parameter6 λ, and the non-informative prior will be
p(λ) = 1/λ (Section 6.2). We denote other parameters in set φ as θ, so that φ = (θ, λ). The
posterior predictive distribution can be expressed as

p(x2 | x1) =
1

p(x1)

∫
Θ

dθ
∫ ∞

0
dλ p(x1 | θ, λ) p(x2 | θ, λ) p(θ | λ) p(λ). (40)

The general form of p(xi|θ, λ), which can be found using the method of transformation
groups [1], is

p(xi | θ, λ) =
1
λ

hθ

( xi
λ

)
, (41)

where hθ(x) is an arbitrary normalizable function, the specific form of which depends
on the types and values of parameters in θ (for example, the exponential distribution
hθ(t) = e−t or gamma distribution hθ(t) = tk−1e−t/Γ(k)).

The remaining terms in Equation (40) are p(θ|λ) and p(x1). As a scale parameter,
λ in Equation (41) determines only the width of the distribution, and is not informative
with respect to its shape, which is determined by θ. Thus λ and θ are independent such
that p(θ|λ) = p(θ). We need not assume anything about the form of p(θ), except that it
normalizes so that

∫
Θ dθ p(θ) = 1.7

All terms in Equation (40) are now determined. Using the fact that
∫ x1

0 dx2 p(x2 |
θ, λ) = Hθ(x1/λ), where Hθ(x) is the cumulative distribution of hθ(x), and by substituting
t = x1/λ, the median of the predictive distribution is∫ x1

0
dx2 p(x2 | x1) =

∫
Θ

dθ p(θ)
∫ ∞

0
dλ

x1

λ2 hθ

(x1

λ

)
Hθ

(x1

λ

)
, (42)

=
∫

Θ
dθ p(θ)

∫ ∞

0
dt hθ(t)Hθ(t). (43)

Since hθ(t)Hθ(t) = (d/dt)(Hθ(t)2/2), it can be shown that
∫ ∞

0 dt hθ(t)Hθ(t) = 1/2.
The same procedure can be used to demonstrate

∫ ∞
x1

dx2 p(x2|x1) = (1/2)
∫

Θ dθ p(θ). This
proves our conclusion ∫ x1

0
dx2 p(x2 | x1) =

∫ ∞

x1

dx2 p(x2 | x1) =
1
2

, (44)

where ‘1/2’ applies because we have assumed in proof 3 that p(x2|x1) is normalized (see
Section 8.1).

9. The Effect of Additional Information

A single known number is the median over an unknown only as a result of ignorance
(corollaries 1 and 2), and therefore additional information can result in loss of this symmetry.
For example, ω is not the median of p(xm+1 | ω) if ω = x1+x2+ . . .+xm and m > 1.
This is because ω and xm+1 are not exchangeable in the joint distribution p(ω, xm+1).
An interesting special case is that m variables are known and are equal to one another,
p(xm+1 | x1=x2= . . . xm). One might expect that the median will be the one known
number, but this is only true if m = 1, at least for our exemplary forms of dependence.
Scale information increases with m, causing the distribution to skew towards smaller
numbers (Figure 3A). If x1 = x2 = . . . xm = 1, the median converges to a number between
0 and 1 that is determined by the form of dependence (Figure 3B). Given the exponential

6 We assume that there will be one unknown scale parameter, since, although one could distinguish as many as n “scale parameters” for n variables,
these can be combined into one (for example, sample variances can be summed to give population variance).

7 This is sufficient to find the marginal distribution p(x1) = 1/x1 by integrating over λ and θ. Since this distribution is the prior over scale
(Equation (22)), but it was not explicitly assumed in proof 3, its derivation here demonstrates the consistency of our reasoning.
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dependence, the median is m(2−m−1), which is ≈0.828 for m = 2, and converges to
ln 2 ≈ 0.69 as m goes to infinity.

There are forms of additional information that allow a single known to remain the
median. For example, additional information could specify that x1 and x2 are each the
mean or sum of m variables.8 We still must treat x1 and x2 equally, and we still know
nothing about their scale; therefore, x1 is still the median of p(x2|x1). This remains true
whether the number of summed variables m is itself known or unknown.

p(Xm+1 |X1,...,X∞)

Median Scale

5 10 15 20
0.6

0.7

0.8

0.9

1.0

Chi

Exponential

Gaussian

m1

Locations(A) (B)

0 22 44
Xm+1

p(Xm+1|X1,X2)
p(Xm+1|X1)

Figure 3. A known number is not the median if there is additional information about location or
scale. We illustrate the special case that there are m knowns, all equal to one another. (A) The density
over locations p(Xm+1 | X1 = . . . ,Xm = 0) for m of 1, 2, and ∞, given the exponential dependence.
Vertical lines indicate medians. We show distributions over location rather than scale so that the
asymmetry is easily seen. (B) The median scale x1 = eX1 decreases as m increases, for exponential
(red), Gaussian (blue), and chi (cyan) dependencies.

10. Discussion

Our proof advances the objective Bayesian foundation of probability theory, which
seeks to quantify information (knowledge or evidence) with the same rigor that has been
attained in other branches of applied mathematics. The ideal is to start from axioms, derive
non-informative prior probabilities, and to then deduce probabilities conditional on any
additional evidence. A probability should measure evidence just as objectively as numbers
measure physical quantities (distance, energy, etc.).

The only aspect of our proofs that has been controversial is the issue of whether
absence of information uniquely determines a prior distribution over real numbers. Formal
criteria, including indifference, location invariance, and maximum entropy, have all been
used to derive the uniform density p(Xi) = c, where c > 0 (Section 6). Subjectivists view
c as indeterminate, thus being a source of subjectivity (see Reference [14], pp. 83–87),
whereas objectivists view it merely as a positive constant to be specified by convention
(our proofs hold for any choice of c). In contrast, we deduced p(Xi) = 1 from the standard
distance metric, which we declared an axiom (Equation (5)) (Section 3). In our opinion, the
indeterminacy of the subjectivist view is the logical result of insufficient axioms.

Our conclusion appears surprising, since for any known and finite positive number,
the space of larger numbers is infinitely larger than the space of smaller positive numbers
(Figure 1). However, probability measures evidence, not its absence, and the space of
possibilities only exists as the consequence of the absence of evidence (ignorance). A
physical ‘size’ is evidence about other physical sizes, and we postulate that physical
size and evidence exist (Section 4.1). This postulate implies that the absence of evidence
(ignorance), and the corresponding state space, does not exist (or at least has a secondary
and contingent status) and therefore carries no weight in reasoning. Reason requires that
two physical sizes be treated equally (Section 4.4), and there is no evidence that one is

8 Statistical mechanics provides a practical example of this sort of additional information, since macroscopic variables (e.g., temperature) are
understood to be sums or means of microscopic variables (e.g., the energies of particles).
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larger than the other, even if one is known. In this way our proof that a known number
x1 quantifying size is the median over an unknown x2 can be understood intuitively. Our
result can also be understood by considering that there is no meaningful (non-arbitrary)
number associated with a single “absolute” size (Section 3.2), but only with ratios of sizes,
and we must have p(x2/x1) = p(x1/x2) (Section 6.4), regardless of whether x1 is known.
Indeed, we have proven that x1 has no information about x2/x1 or x1/x2, and vice versa
(Section 8.1), even though x1 and x2 are dependent variables and thus have information
about one another.

Practical application of our result requires us to consider what information we actually
have. The probability that the unknown distance to star B is greater than the known
distance to star A is 1/2, and the probability is also 1/2 that the unknown energy of particle
B is greater than the known energy of particle A. However, this is only true in the absence
of additional information. We do realistically have additional information that is implicit in
the terms ‘star’ and ‘particle,’ since we know that the distance to a star is large, and the mass
of a particle is small, relative to the human scale. Before inquiring about stars or particles,
we already know the length and mass of a human, and that additional information changes
the problem. Furthermore, we know the human scale with more certainty than we can ever
know a much larger or smaller scale.

All scientific measurement and inference of size begins with knowledge of the human
scale that is formalized in our standard units (m, kg, s, etc.). These standard units are only
slightly arbitrary, since they were chosen from the infinite space of possible sizes to be
extremely close to the human scale. Therefore members of the set of distributions that we
have characterized here, each conditional on one known size, would be appropriate as
prior distributions given only knowledge of standard units. One meter would then be the
median over an unknown distance x2. If x2 is then observed, and we ask “what is another
distance x3?”, we already know two distances, and neither will be the median (our central
conclusion does not apply) (Figure 3) (Section 9).

A beautiful aspect of Bayesian probabilities is that they can objectively describe any
knowledge of any observer, at least in principle. Probabilities are typically used to describe
the knowledge of scientists, but they can also be used to describe the information in a
cognitive or physical model of an observer. This is the basis of Bayesian accounts of biology
and psychology that view an organism as a collection of observers that predict and cause
the future [21,30–40].

All brains must solve inference problems that are fundamentally the same as those
facing scientists. When humans must estimate the distance to a visual object in a minimally
informative sensory context, such as a light source in the night sky, they perceive the most
likely distance to be approximately one meter, and bias towards one meter also influences
perception in more complex and typical sensory environments [41,42]. This is elegantly
explained by the fact that the most frequently observed distance to visual objects in a
natural human environment is about a meter [31]. The brain is believed to have learned
the human scale from experience, and to integrate this prior information with incoming
sensory ‘data’ to infer distances, in accord with Bayesian principles [30–32]. Therefore
a simple cognitive model, in which the only prior information of a human observer is a
single distance of 1 m, or an energy of 1 joule (kg m2 s−2), might account reasonably well
for average psychophysical data under typical conditions.

Such a cognitive model is extremely simplified, since the knowledge in a brain is
diverse and changes dynamically over time. However, we do not think it is overly simplistic
for a model of a physical observer to be just a single quantity at a single moment in time.
The brain is a multitude of local physical observers, but our initial concern is just a single
observer at a single moment [21,22,33–35]. The problem is greatly simplified by the fact that
we equate an observer with information, and information with a physical quantity that is
local in space and time, and is described by a single number. For example, a single neuron
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at a single moment has a single energy in the electrical potential across its membrane.9

Given this known and present internal energy, what is the probability distribution over
the past external energy that caused it, or the future energy that will be its effect? Here
we have provided a partial answer by characterizing a set of candidate distributions, and
demonstrating that a known energy will be the median over an unknown energy.

Author Contributions: In chronological order, C.D.F. conceived the hypothesis, S.L.K. derived proof
3 and then proof 2, C.D.F. derived proof 1, C.D.F. wrote the original manuscript, and C.D.F. and S.L.K.
edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a grant to C.D.F. from the National Research Foundation of
the Republic of Korea (N01200562), and a KAIST Grand Challenge 30 grant (KC30, N11200122) to
C.D.F. from KAIST and the Ministry of Science and ICT, Republic of Korea.

Acknowledgments: We thank Jaime Gomez-Ramirez for helpful discussions and comments on an
early version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study, in either the collection or analyses or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

References
1. Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003.
2. Jeffreys, H. On the theory of errors and least squares. Proc. R. Soc. Lond. Ser. A 1932, 138, 48–55.
3. Jeffreys, H. The Theory of Probability; The Clarendon Press: Oxford, UK, 1939.
4. Cox, R. Probability, frequency and reasonable expectation. Am. J. Phys. 1946, 14, 1–13. [CrossRef]
5. Cox, R. The Algebra of Probable Inference; Johns Hopkins University Press: Baltimore, MD, USA, 1961.
6. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [CrossRef]
7. Jaynes, E.T. Some random observations. Synthese 1985, 63, 115–138. [CrossRef]
8. Goyal, P. Prior probabilities: An information-theoretic approach. AIP Conf. Proc. 2005, 803, 366–373.
9. Norton, J.D. Ignorance and indifference. Philos. Sci. 2008, 75, 45–68. [CrossRef]
10. Baker, R.; Christakos, G. Revisiting prior distributions, Part I: Priors based on a physical invariance principle. Stoch. Environ. Res.

Risk Assess. 2007, 21, 427–434. [CrossRef]
11. Stern, J.M. Symmetry, invariance and ontology in physics and statistics. Symmetry 2011, 3, 611–635. [CrossRef]
12. Williamson, J. Objective Bayesianism, Bayesian conditionalisation and voluntarism. Synthese 2011, 178, 67–85. [CrossRef]
13. de Finetti, B. Probability Theory: A Critical Introductory Treatment; John Wiley & Sons: Chichester, UK, 1975.
14. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985.
15. Howson, C.; Urbach, P. Bayesian reasoning in science. Nature 1991, 350, 371–374. [CrossRef]
16. Bernardo, J.M.; Smith, A.F. Bayesian Theory; John Wiley & Sons: Chichester, UK, 1994.
17. Kass, R.E.; Wasserman, L. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 1996, 91, 1343–1370. [CrossRef]
18. Irony, T.Z.; Singpurwalla, N.D. Non-informative priors do not exist: A dialogue with Jose M. Bernardo. J. Stat. Plan. Inference

1997, 65, 159–189. [CrossRef]
19. Howson, C. Probability and logic. J. Appl. Log. 2003, 1, 151–165. [CrossRef]
20. Berger, J.O.; Bernardo, J.M.; Sun, D. Overall Objective Priors. Bayesian Anal. 2015, 10, 189–221. [CrossRef]
21. Fiorillo, C.D. Beyond Bayes: On the need for a unified and Jaynesian definition of probability and information within neuroscience.

Information 2012, 3, 175–203. [CrossRef]
22. Kim, S.L.; Fiorillo, C.D. Describing realistic states of knowledge with exact probabilities. AIP Conf. Proc. 2016, 1757, 060008.
23. Keynes, J. A Treatise on Probability; Macmillan: London, UK, 1921.
24. Tschirk, W. The principle of indifference does not lead to contradictions. Int. J. Stat. Probab. 2016, 5, 79–85. [CrossRef]
25. Argarwal, R.P.; Karapınar, E.; Samet, B. An essential remark on fixed point results on multiplicative metric spaces. Fixed Point

Theory Appl. 2016, 21, 1–3.
26. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2003.
27. Arthern, R.J. Exploring the use of transformation group priors and the method of maximum relative entropy for Bayesian

glaciological inversions. J. Glaciol. 2015, 61, 947–962. [CrossRef]
28. Terenin, A.; Draper, D. A noninformative prior on a space of distribution functions. Entropy 2017, 19, 391. [CrossRef]

9 In a realistic and detailed model, a “single neuron” at a “single moment” means more precisely a space and time that is sufficiently small and
brief that electrical potential is nearly constant and homogeneous, and thus well represented by a single number. This would be a single electrical
compartment at a single time step in a model neuron, perhaps 10−5 m and 10−4 s, given the membrane length and time constants of a typical neuron.

http://doi.org/10.1119/1.1990764
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1007/BF00485957
http://dx.doi.org/10.1086/587822
http://dx.doi.org/10.1007/s00477-006-0075-0
http://dx.doi.org/10.3390/sym3030611
http://dx.doi.org/10.1007/s11229-009-9515-y
http://dx.doi.org/10.1038/350371a0
http://dx.doi.org/10.1080/01621459.1996.10477003
http://dx.doi.org/10.1016/S0378-3758(97)00074-8
http://dx.doi.org/10.1016/S1570-8683(03)00011-9
http://dx.doi.org/10.1214/14-BA915
http://dx.doi.org/10.3390/info3020175
http://dx.doi.org/10.5539/ijsp.v5n4p79
http://dx.doi.org/10.3189/2015JoG15J050
http://dx.doi.org/10.3390/e19080391


Philosophies 2021, 6, 24 19 of 19

29. Worthy, J.L.; Holzinger, M.J. Use of uninformative priors to initialize state estimation for dynamical systems. Adv. Space Res.
2017, 60, 1373–1388. [CrossRef]

30. Weiss, Y.; Simoncelli, E.P.; Adelson, E.H. Motion illusions as optimal percepts. Nat. Neurosci. 2002, 5, 598–604. [CrossRef]
31. Yang, Z.; Purves, D. A statistical explanation of visual space. Nat. Neurosci. 2003, 6, 632–640. [CrossRef] [PubMed]
32. Kording, K.P.; Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 2004, 427, 244–247. [CrossRef]
33. Fiorillo, C.D. Towards a general theory of neural computation based on prediction by single neurons. PLoS ONE 2008, 3, e3298.

[CrossRef]
34. Fiorillo, C.D.; Kim, J.K.; Hong, S.Z. The meaning of spikes from the neuron’s point of view: Predictive homeostasis generates the

appearance of randomness. Front. Comput. Neurosci. 2014, 8, 49. [CrossRef] [PubMed]
35. Kim, J.K.; Fiorillo, C.D. Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition.

Nat. Commun. 2017, 8, 14566. [CrossRef]
36. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [CrossRef] [PubMed]
37. Harris, A.J.; Osman, M. The illusion of control: A Bayesian perspective. Synthese 2012, 189, 29–38. [CrossRef]
38. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204.

[CrossRef] [PubMed]
39. Nakajima, T. Probability in biology: Overview of a comprehensive theory of probability in living systems. Prog. Biophys. Mol.

Biol. 2013, 113, 67–79. [CrossRef] [PubMed]
40. Kim, C.S. Recognition dynamics in the brain under the free energy principle. Neural Comput. 2018, 30, 2616–2659. [CrossRef]

[PubMed]
41. Gogel, W.C.; Tietz, J.D. Absolute motion parallax and the specific distance tendency. Percept. Psychophys. 1973, 13, 284–292.

[CrossRef]
42. Owens, D.A.; Leibowitz, H.W. Oculomotor adjustments in darkness and the specific distance tendency. Percept. Psychophys. 1976,

20, 2–9. [CrossRef]

http://dx.doi.org/10.1016/j.asr.2017.06.040
http://dx.doi.org/10.1038/nn0602-858
http://dx.doi.org/10.1038/nn1059
http://www.ncbi.nlm.nih.gov/pubmed/12754512
http://dx.doi.org/10.1038/nature02169
http://dx.doi.org/10.1371/journal.pone.0003298
http://dx.doi.org/10.3389/fncom.2014.00049
http://www.ncbi.nlm.nih.gov/pubmed/24808854
http://dx.doi.org/10.1038/ncomms14566
http://dx.doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583
http://dx.doi.org/10.1007/s11229-012-0090-2
http://dx.doi.org/10.1017/S0140525X12000477
http://www.ncbi.nlm.nih.gov/pubmed/23663408
http://dx.doi.org/10.1016/j.pbiomolbio.2013.03.007
http://www.ncbi.nlm.nih.gov/pubmed/23562914
http://dx.doi.org/10.1162/neco_a_01115
http://www.ncbi.nlm.nih.gov/pubmed/30021085
http://dx.doi.org/10.3758/BF03214141
http://dx.doi.org/10.3758/BF03198694

	Introduction
	Notation
	Axioms
	Axioms Determine the Non-Informative Prior Distribution
	Controversies Concerning the Uniform Distribution

	Defining the Prior Information
	Information I about Size
	Information J about Numerical Measures of Size
	Information K about Dependence of Variables
	Corollaries of Ignorance Implied by I, J, and K

	Invariance of Prior Probabilities
	Invariance to Change of Parameters
	Exchangeability of Variables
	Location and Scale Invariance

	Prior Probabilities over Single Variables
	The Prior over Locations
	The Prior over Scales
	Independence and the Prior over Differences and Ratios
	The Uniform Prior over Positive Variables

	Exemplary Case of an Exponential Dependence
	Three Exemplary Forms of Dependence
	Proofs 1 and 2 Given Exponential Dependence
	Proof 3 Given Exponential Dependence

	General Proof
	Proof 1 from the Joint Distribution p(X1,X2)
	Proof 2 from the Joint Distribution p(x1,x2,…, xn)
	Proof 3 from a Scale Parameter

	The Effect of Additional Information
	Discussion
	References

