Basic Training in Chemistry

Basic Training in Chemistry

Steven L. Hoenig

Ridgewood, New York

Kluwer Academic Publishers New York

Boston

Dordrecht

London

Moscow eBook ISBN: 0-306-46926-X Print ISBN: 0-306-46546-9

©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: and Kluwer's eBookstore at: http://www.kluweronline.com http://www.ebooks.kluweronline.com To Lena and Alan

Preface

This book was written as a quick reference to the many different concepts and ideas encountered in chemistry. Most books these days go into a detailed explanation of one subject and go no further. This is simply an attempt to present briefly some of the various subjects that make up the whole of chemistry. The different subjects covered include general chemistry, inorganic chemistry, organic chemistry, and spectral analysis. The material is brief, but hopefully detailed enough to be of use. Keep in mind that the material is written for a reader who is familiar with the subject of chemistry. It has been the author's intention to present in one ready source several disciplines that are used and referred to often.

This book was written not to be a chemistry text unto itself, but rather as a supplement that can be used repeatedly throughout a course of study and thereafter. This does not preclude it from being used by others that would find it useful as a reference source as well.

Having kept this in mind during its preparation, the material is presented in a manner in which the reader should have some knowledge of the material. Only the basics are stated because a detailed explanation was not the goal but rather to present a number of chemical concepts in one source.

The first chapter deals with material that is commonly covered in almost every first year general chemistry course. The concepts are presented in, I hope, a clear and concise manner. No detailed explanation of the origin of the material or problems are presented. Only that which is needed to understand the concept is stated. If more detailed explanation is needed any general chemistry text would suffice. And if examples are of use, any review book could be used. The second chapter covers inorganic chemistry. Those most commonly encountered concepts are presented, such as, coordination numbers, crystal systems, and ionic crystals. More detailed explanation of the coordination encountered in bonding of inorganic compounds requires a deeper explanation then this book was intended for.

Chapter three consists mostly of organic reactions listed according to their preparation and reactions. The mechanisms of the various reactions are not discussed since there are numerous texts which are devoted to the subject. A section is devoted to the concept of isomers since any treatment of organic chemistry must include an understanding it. A section on polymer structures is also presented since it is impossible these days not to come across some discussion of it.

The fourth chapter covers instrumental analysis. No attempt is made to explain the inner workings of the different instruments or the mechanisms by which various spectra is produced. The material listed is for the use by those that are familiar with the different type of spectra encountered in the instrumental analysis of chemical compounds. The tables and charts would be useful for the interpretation of various spectra generated in the course of analyzing a chemical substance. Listed are tables that would be useful as for the interpretation of ultra-violet (uv), infra-red (ir), nuclear magnetic resonance (nmr) and mass spectroscopy (ms) spectra.

Chapter five consists of physical constants and unit measurements that are commonly encountered throughout the application of chemistry.

Chapter six contains certain mathematical concepts that are useful to have when reviewing or working with certain concepts encountered in chemistry.

Steven L. Hoenig

Acknowledgements

I wish to express my deepest gratitude to Richard Leff, without whose faith and belief in me this book would not have been possible. And I wish to express my thanks to the following Richard Kolodkin, Robert Glatt, Cindy and Harriet Cuccias, and Anthony Woll, who know what the meaning of friendship is.

Contents

Ac	cknowledgements	ix
Pre	eface	vii
1.	General Chemistry	1
	1.1 Atomic Structure and the Periodic Table 1.2 Chemical Bonding	1 18
	1.3 Gases	21
	1.4 Solutions	23
	1.5 Acids and Bases	24
	1.6 Thermodynamics	25
	1.7 Equilibra	28
	1.8 Kinetics	36
2.	Inorganic Chemistry	41
	2.1 Group IA Elements	42
	2.2 Group IIA Elements	43
	2.3 Group IIIA Elements	44
	2.4 Group IVA Elements	45
	2.5 Group VA Elements	45
	2.6 Group VIA Elements	46
	2.7 Group VIIA Elements	46
	2.8 Group VIIIA Elements	47
	2.9 Transition Elements	48

2.10 Ionic Solids	49
2.11 Coordination Numbers	49
2.12 Ionic Crystal Systems	50
2.13 Crystal Lattice Packing	51
2.14 Crystal Lattice Types	52
2.15 Crystal Lattice Energy	53
2.16 Complexes	56
3. Organic Chemistry	59
3.1 Classification of Organic Compounds	60
3.2 Alkanes	62
3.3 Alkenes	63
3.4 Dienes	66
3.5 Alkynes	68
3.6 Benzene	69
3.7 Alkylbenzenes	71
3.8 Alkenylbenzenes	74
3.9 Alkyl Halides	75
3.10 Aryl Halides	79
3.1 1 Alcohols	81
3.12 Phenois	84
3.13 Ethers	89
3.14 Epoxides	91
3.15 Aldenydes and Ketones	92
3.16 Carboxylic Acids	96
3.17 Acid Chiofides	98
3.18 Actu Annyanaes 2.10 Esters	100
3.19 Esters	102
3.20 Annues 3.21 Aminos	104
3.22 Aliavalia Compounds	107
3.22 Antyche Compounds	110
3.24 Isomers	111
3.25 Polymer Structures	113
4 Instrumental Analysis	133
4.1 The Electromagnetic Spectrum	133
4.2 Ultraviolet-Visible Spectroscony	135
4.3 Infrared Spectroscopy	133
4.4 Nuclear Magnetic Resonance	150
4.5 Mass Spectroscopy	163
	105

5. Units and Measurements	169
5.1 Fundamental Physical Constants	169
5.2 Units	170
5.3 Prefixes	171
5.4 Converison Factors	172
6. Mathematical Concepts	173
6.1 Algebraic Formulas	173
6.2 Plane Figure Formulas	175
6.3 Solid Figure Formulas	177
Index	179

Chapter 1

General Chemistry

- 1.1 Atomic Structure and the Periodic Table
- 1.2 Chemical Bonding
- 1.3 Gases
- 1.4 Solutions
- 1.5 Acids and Bases
- 1.6 Thermodynamics
- 1.7 Equilibra
- 1.8 Kinetics

1.1 Atomic Structure and the Periodic Table

1.1.1 Constituents of the Atom

The atom of any element consists of three basic types of particles... the electron (a negatively charged particle), the proton (a positively charged particle), and the neutron (a neutrally charged particle). The protons and neutrons occupy the nucleus while the electrons are outside of the nucleus. The protons and neutrons contribute very little to the total volume but account for the majority of the atom's mass. However, the atoms volume is determined the electrons, which contribute very little to the mass. Table 1.1 summarizes the properties of these three particles.

Particle	Mass	Electric Charge	Unit Charge		
Proton	1.672 x 10 ⁻²⁴ g	+1.602 x 10-19 coulomb	+1		
Electron	9.108 x 10 ⁻²⁸ g	-1.602 x 10-19 coulomb	-1		
Neutron	1.675 x 10-24 g	0	0		

Table 1.1. Properties of the Proton, Electron, and Neutron

The **atomic number** (Z) of an element is the number of protons within the nucleus of an atom of that element. In a neutral atom, the number of protons and electrons are equal and the atomic number also indicates the number of electrons.

The **mass number** (A) is the sum of the protons and neutrons present in the atom. The number of neutrons can be determined by (A - Z). The symbol for denoting the atomic number and mass number for an element X is as follows:

AX

Atoms that have the same atomic number (equal number of protons) but different atomic masses (unequal number of neutrons) are referred to as isotopes. For example, carbon consists of two isotopes, carbon-12 and carbon-13:

${}^{12}_{6}C {}^{13}_{6}C$

The **atomic mass unit** (amu) is defined as 1/12 the mass of a carbon-12 isotope. The relative **atomic mass** of an element is the weighted average of the isotopes relative to 1/12 of the carbon-12 isotope. For example, the atomic mass of neon is 20.17 amu and is calculated from the following data: neon-19 (amu of 19.99245, natural abundance of 90.92%), neon-20 (amu of 20.99396, natural abundance of 0.260%) and neon-21 (amu of 21.99139, natural abundance of 8.82%):

a.m. neon=(19.99245*0.9092)+(20.99396*0.00260)+(21.99139*0.0882)= 20.17 amu

The relative **molecular mass** is the sum of the atomic masses for each atom in the molecule. For $H_2SO_4 = (1 * 2) + 32 + (16 * 4) = 98$.

The **mole** (mol) is simply a unit of quantity, it represents a certain amount of material, i.e. atoms or molecules. The numerical value of one mole is 6.023×10^{23} and is referred to as **Avogadro's number**. The mole is defined as the mass, in grams, equal to the atomic mass of an element or molecule. Therefore, 1 mole of carbon weighs 12 grams and contains 6.023×10^{23} carbon atoms. The following formula can be used to find the number of moles:

 $moles = \frac{mass in grams}{atomic (or molecular) mass}$

1.1.2 Quantum Numbers

From quantum mechanics a set of equations called wave equations are obtained. A series of solutions to these equations, called wave functions, gives the four quantum numbers required to describe the placement of the electrons in the hydrogen atom or in other atoms.

The principal quantum number, n, determines the energy of an orbital and has a value of n = 1, 2, 3, 4, ...

The angular momentum quantum number, λ , determines the "shape" of the orbital and has a value of 0 to (n - 1) for every value of n.

The magnetic quantum number, m_i , determines the orientation of the orbital in space and has a value of $-\lambda$ to $+\lambda$.

The electron spin quantum number, \mathbf{m}_{s} , determines the magnetic field generated by the electron and has a value of $-\frac{1}{2}$ or $+\frac{1}{2}$.

Shell	Principal quantum number n	Angular momentum quantum number λ	Orbital designation*	Magnetic quantum number m _λ	Spin quantum number m _s	Total number of electrons per orbital
K	1	0	S	0	-1/2, +1/2	2
		0	S	0	-1/2, +1/2	2
L	2	1	px	-1	-1/2, +1/2	
2			Py	0	-1/2, +1/2	6
		5 1	pz	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		0	S	0	-1/2, +1/2	2
			px	-1	-1/2, +1/2	
м		1	py	0	-1/2, +1/2	6
			P ₂	+1	-1/2, +1/2	
Μ	3		d _{xy}	-2	-1/2, +1/2	r
		8	d _{xz}	-1	-1/2, +1/2	
М		2	dyz	0	-1/2, +1/2	10
			d _{z2}	+1	- ¹ /2, + ¹ /2	
			d _{x2-y2}	+2	- ¹ / ₂ , + ¹ / ₂	

Table 1.2. Quantum Numbers and Electron Distribution

The following is a summary in which the quantum numbers are used to fill the atomic orbitals:

- 1. No two electrons can have the same four quantum numbers. This is the Pauli exclusion principle.
- 2. Orbitals are filled in the order of increasing energy.
- 3. Each orbital can only be occupied by a maximum of two electrons and must have different spin quantum numbers (opposite spins).
- 4. The most stable arrangement of electrons in orbitals is the one that has the greatest number of equal spin quantum numbers (parallel spins). This is Hund's rule.

Also note that the energy of an electron also depends on the angular momentum quantum number as well as the principal quantum number. Therefore the order that the orbitals get filled does not strictly follow the principal quantum number. The order in which orbitals are filled is given in figure 1.1.

Figure 1.1 Filling Order and Relative Energy Levels of Orbitals

1.1.3 Atomic Orbitals

The quantum numbers mentioned earlier were obtained as solutions to a set of wave equations. These wave equations cannot tell precisely where an electron is at any given moment or how fast it is moving. But rather it states the probability of finding the electron at a particular place. An orbital is a region of space where the electron is most likely to be found. An orbital has no definite boundary to it, but can be thought of as a cloud with a specific shape. Also, the orbital is not uniform throughout, but rather densest in the region where the probability of finding the electron is highest.

The shape of an orbital represents 90% of the probability of finding the electron within that space. As the quantum numbers change so do the shapes

and direction of the orbitals. Figure 1.2 show the shapes for principal quantum number n = 1, 2, and 3.

Figure 1.2 Representation of Atomic Orbitals

Another type of orbital is one that originates from the mixing of the different atomic orbitals and is called a hybrid orbital. Hybridization (mixing) of atomic orbitals results in a new set of orbitals with different

shapes and orientations. The orbitals are designated according to which of the separate atomic orbitals have been mixed. For instance, an s orbital mixing with a single p orbital is designated sp. An s orbital mixing with two separate p orbitals $(\mathbf{p}_x + \mathbf{p}_y \text{ or } \mathbf{p}_x + \mathbf{p}_z \text{ or } \mathbf{p}_y + \mathbf{p}_z)$ is designated \mathbf{sp}^2 and a s orbital mixing with three separate p orbitals is designated \mathbf{sp}^3 . Combinations of other orbitals can occur as well. Table 1.3 lists some of the possible hybrid orbitals.

Table 1.3.	Hybrid	Orbitals
------------	--------	----------

Hybrid orbital	Atomic orbitals hybridized	Number of hybrid orbitals	Angle of hybrid orbital	Geometry	Example
sp dp	s + p d + p	22	180° 180°		CO ₂ HgCl ₂
sp ²	s+ p _x +p _y	3	120°	\downarrow	PCl ₃ SO ₃ H ₂ CO
sp ³	$s + p_x + p_y + p_z$	4	109°28'	+	CH4 AICI4
dsp ² d ² p ²	$ \begin{array}{c} 1 + px + py + \\ d_x 2 - y 2 \\ d_x 2 - y 2 + d_z 2 + \\ p_x + p_y \end{array} $	4 4	90° 90°		XeF4
dsp3	$s + p_x + p_y + p_z + d_x 2 - y 2$	5	90° 120° 180°	+	PCI5 PF5
d ² sp ³	$ \frac{s+}{p_x+p_y+p_z+} \\ \frac{d_x 2-y 2+d_z 2}{d_x 2-y 2+d_z 2} $	6	90° 180°		SF ₆ XeF ₆ MoF ₆

1.1.4 Electronic Configuration of the Elements

	Shells	K		L		М		N	0	P	Q
	Sub-Levels	1s	2s	2p	3s	3p	3d	4s 4p 4d 4	f 5s 5p 5d 5f	6s 6p 6d 6f	7s
		1000									
1	Hydrogen	1	4								
2	Helium	2	4						1		
3	Lithium	2	11								
1	Beryllium	2	2								
5	Boron	2	2	1						1 1	
•	Carbon	2	2	2					8 8		
	Nitrogen	2	2	3						1	
	Oxygen	2	2	4						1 1	
1	Fluorine	2	2	5							
0	Neon	2	2	6						1 1	
1	Sodium	2	2	6	1						
2	Magnesium	2	2	6	2						
3	Aluminum	2	2	6	2	1			1		
4	Silicon	2	2	6	2	2					
5	Phosphorus	2	2	6	2	3					
6	Sulfur	2	2	6	2	4		6			
7	Chlorine	2	2	6	2	5		2		9	
8	Argon	2	2	6	2	6					
9	Potassium	2	2	6	2	6	- -	1			
0	Calcium	2	2	6	2	6		2			
1	Scandium	2	2	6	2	6	1	2			
2	Titanium	2	2	6	2	6	2	2			
3	Vanadium	2	2	6	2	6	3	2			
4	Chromium	2	2	6	2	6	5	1			
5	Manganese	2	2	6	2	6	5	2			
6	Iron	2	2	6	2	6	6	2			
7	Cobalt	2	2	6	2	6	7	2			
8	Nickel	2	2	6	2	6	8	2			
9	Copper	2	2	6	2	6	10	1			
0	Zinc	2	2	6	2	6	10	2			
1	Gallium	2	2	6	2	6	10	2 1			
2	Germanium	2	2	6	2	6	10	2 2		85	
3	Arsenic	2	2	6	2	6	10	2 3			
4	Selenium	2	2	6	2	6	10	2 4			
5	Bromine	2	2	6	2	6	10	2 5			
6	Krypton	2	2	6	2	6	10	2 6			
7	Rubidium	2	2	6	2	6	10	26	1		
8	Strontium	2	2	6	2	6	10	2 6	2		
9	Yttrium	2	2	6	2	6	10	26 1	2		
0	Zirconium	2	2	6	2	6	10	26 2	2		
1	Niobium	2	2	6	2	6	10	26 4	1 ī		
2	Molybdenum	2	2	6	2	6	10	26 5	li		

Table 1.4. Electronic Configuration of the Elements

Table 1.4. (Continued).

	Shells	К		L	1000	М) Anna (1	N	()	P	Q
	Sub-Levels	1s	28	2p	38	3p	3d	4s 4p	4d 4f	5s 5p	5d 5f	6s 6p 6d 6f	7s
	5. 352 355 1	15 25		M 83	1928	1423							
43	Technetium	2	2	6	2	6	10	26	6	1		1	48 16
44	Ruthenium	2	2	6	2	6	10	26	7	1			
45	Rhodium	2	2	6	2	6	10	26	8	1			19
46	Palladium	2	2	6	2	6	10	2 6	10			1 1	508
47	Silver	2	2	6	2	6	10	26	10	1			0
48	Cadmium	2	2	6	2	6	10	2 6	10	2			í
49	Indium	2	2	6	2	6	10	26	10	12		1	
50	Tin	2	2	6	2	6	10	2 6	10	2 2			
51	Antimony	2	2	6	2	6	10	26	10	23			
52	Tellurium	2	2	6	2	6	10	26	10	24			
53	Iodine	2	2	6	2	6	10	26	10	2 5		1 1	j. j
54	Xenon	2	2	6	2	6	10	26	10	26			
55	Cesium	2	2	6	2	6	10	26	10	26		1	
56	Barium	2	2	6	2	6	10	26	10	26		2	
57	Lanthanum	2	2	6	2	6	10	26	10	26	1	2	
58	Cerium	2	2	6	2	6	10	26	10 2	26		2	19
59	Praseodymium	2	2	6	2	6	10	26	10 3	26		2	10
60	Neodymium	2	2	6	2	6	10	26	10 4	26		2	8
61	Promethium	2	2	6	2	6	10	26	10 5	26		2	
62	Samarium	2	2	6	2	6	10	26	10 6	26		2	
63	Europium	2	2	6	2	6	10	2 6	10 7	26		2	10
64	Gadolinium	2	2	6	2	6	10	2 6	10 7	26	1	2	3
65	Terbium	2	2	6	2	6	10	26	10 9	26		2	
66	Dysprosium	2	2	6	2	6	10	26	10 10	26		2	
67	Holium	2	2	6	2	6	10	26	10 11	26		2	1
68	Erbium	2	2	6	2	6	10	26	10 12	26		2	
69	Thulium	2	2	6	2	6	10	26	10 13	26		2	
70	Ytterbium	2	2	6	2	6	10	26	10 14	26		2	8
71	Lutetium	2	2	6	2	6	10	26	10 14	26	1	2	
72	Hafnium	2	2	6	2	6	10	26	10 14	26	2	2	19
73	Tantalium	2	2	6	2	6	10	26	10 14	26	3	2	
74	Tungsten	2	2	6	2	6	10	26	10 14	26	4	2	
75	Rhenium	2	2	6	2	6	10	26	10 14	26	5	2	
76	Osmium	2	2	6	2	6	10	26	10 14	26	6	2	
77	Iridium	2	2	6	2	6	10	26	10 14	26	9		
78	Platinum	2	2	6	2	6	10	26	10 14	26	9	1	
79	Gold	2	2	6	2	6	10	26	10 14	26	10	1	
80	Mercury	2	2	6	2	6	10	26	10 14	26	10	2	
81	Thallium	2	2	6	2	6	10	26	10 14	26	10	2 1	
82	Lead	2	2	6	2	6	10	26	10 14	26	10	2 2	
83	Bismuth	2	2	6	2	6	10	26	10 14	26	10	2 3	
84	Polonium	2	2	6	2	6	10	26	10 14	26	10	2 4	
85	Astatine	2	2	6	2	6	10	26	10 14	26	10	2 5	
86	Radon	2	2	6	2	6	10	26	10 14	26	10	2 6	

General Chemistry

T-11-14	(Continue 1)
1 anie 1.4.	
	(

9 <u>8 - 90</u> 888	Shells	ĸ]	L		Μ	14		1	N	1000		0		F	>	Q
	Sub-Levels	ls	2s	2p	38	3p	3d	4s	4p	4d 4f	5	5 5 F	5d 5f	6s	6р	6d 6f	7s
87	Francium	2	2	6	2	6	10	2	6	10 14	2	6	10	2	6	68	1
88	Radium	2	2	6	2	6	10	2	6	10 14	2	6	10	2	6		2
89	Actinium	2	2	6	2	6	10	2	6	10 14	2	6	10	2	6	1	2
90	Thorium	2	2	6	2	6	10	2	6	10 14	2	6	10	2	6	2	2
91	Protactinium	2	2	6	2	6	10	2	6	10 14	2	6	10 2	2	6	1	2
92	Uranium	2	2	6	2	6	10	2	6	10 14	2	6	10 3	2	6	1	2
93	Neptunium	2	2	6	2	6	10	2	6	10 14	2	6	10 4	2	6	1	2
94	Plutonium	2	2	6	2	6	10	2	6	10 14	2	6	10 6	2	6		2
95	Americium	2	2	6	2	6	10	2	6	10 14	2	6	10 7	2	6		2
96	Curium	2	2	6	2	6	10	2	6	10 14	2	6	10 7	2	6	1	2
97	Berkelium	2	2	6	2	6	10	2	6	10 14	2	6	10 9	2	6		2
98	Californium	2	2	6	2	6	10	2	6	10 14	2	6	10 10	2	6	ŝ	2
99	Einsteinium	2	2	6	2	6	10	2	6	10 14	2	6	10 11	2	6	1	2
100	Fermium	2	2	6	2	6	10	2	6	10 14	2	6	10 12	2	6	1	2
101	Mendelevium	2	2	6	2	6	10	2	6	10 14	2	6	10 13	2	6	1	2
102	Nobelium	2	2	6	2	6	10	2	6	10 14	2	6	10 14	2	6	1	2
103	Lawrencium	2	2	6	2	6	10	2	6	10 14	2	6	10 14	2	6	1	2
104	Unnilquadium	2	2	6	2	6	10	2	6	10 14	2	6	10 14	2	6	2	2
105	Unnilpentium	2	2	6	2	6	10	2.	.6	10 14	2	6	10 14	2	6	3	2
106	Unnilhexium	2	2	6	2	6	10	2	6	10 14	2	6	10 14	2	6	4	2
107 108	Unnilseptium	2	2	6	2	6	10	2	6	10 14	2	6	10 14	2	6	5	2

ements vuia	IIIA IVA VA VIA VIIA 4.0026	${}^{5}\mathbf{B}$ ${}^{6}\mathbf{C}$ ${}^{7}\mathbf{N}$ ${}^{8}\mathbf{O}$ ${}^{9}\mathbf{F}$ ${}^{10}\mathbf{Ne}$	13 1 14 15 16 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	26.982 28.086 30.974 78.96 35.453 39.948	³¹ Ga ³² Ge ³³ As ³⁴ Se ³⁵ Br ³⁶ Kr	69.72 72.59 74.922 78.96 79.909 83.80	$ \frac{49}{\mathbf{In}} \frac{50}{\mathbf{Sn}} \frac{51}{\mathbf{Sb}} \frac{52}{\mathbf{Te}} \frac{53}{\mathbf{I}} \frac{54}{\mathbf{Xe}} $	114.82 118.69 121.75 127.60 126.904 131.30	⁸¹ Ti ⁸² Pb ⁸³ Bi ⁸⁴ Po ⁸⁵ At ⁸⁶ Rn	204.37 207.19 208.980 (209) (210) (222)
of El				IIB	u ³⁰ Zn	6 65.37	g 48 Cd	68 112.40	u ⁸⁰ Hg	67 200.59
Table				B	⁸ Ni ²⁹ C	8.71 63.54	6 Pd 47 A	06.4 107.8	⁸ Pt ⁷⁹	95.09 196.9
odic 1				VIIIB -	27 Co 2	58.933 5	45 Rh 4	102.905	77 17 17	192.2 1
Peri					²⁶ Fe	55.847	44 Ru	101.07	76 Os	190.2
1.5.				VIIB	25 Mn	54.938	43 Tc	98.906	75 Re	186.2
ble				VIB	²⁴ Cr	51.996	37 38 39 40 41 Mode 43 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 46 47 50 51 52 53 53 54 54 54 56 54 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 56 54 57 57 56 56 57 5	183.85		
Tal				VB	23 V	50.942	41 Nb	92.906	73 T3	180 948
				IVB	22 Ti	47.90	40 Zr	91.22	72 _{Hf}	178.49
				IIIB	²¹ Sc	44.956	³⁹ Y	88.905	57 La	138 91
	Ч	Be	12 Mg	24.312	²⁰ Ca	40.08	38 Sr	87.62	56 Ba	137 34
	H 80	:=	20	160	×	102	æ	47	S	905

Periodic Table of Elements

Pr	PN 09	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
06.0	144.24	(145)	150.35	151.96	157.25	158.924	162.50	164.930	167.26	168.934	173.04	174.97
Pa	92 U	93 Np	94 Pu	95 Am	% Cm	97 Bk	%C	99 ES	100 Fm	101 Md	102 No	103 Lr

> 138.91 5

Su 186.2

(261)

(263)

262

(261)

(227) 68

226.02 Ra S 88

(223)

87 Fr

1.1.5

1.1.6 Ionization Energy

Ionization energy is the minimum amount of energy needed to remove an electron from a gasous atom or ion, and is expressed in electron volts (eV).

Going across the periodic table the I.E. increases due to the fact that the principal energy level (principal quantum number) remains the same while the number of electrons increase, thereby enhancing the electrostatic attraction between the protons in the nulceus and the electrons. Going down the table the I.E. decreases because the outer electrons are now further from the nucleus and the protons.

Table 1.6 shows the first ionization energy for the elements.

$$M(gas) \rightarrow M^+(gas) + e^-$$

Table 16	First	Ionization	Enerov	(in eV	١
14010 1.0.	T TT Dr	ronneauton	Lungy	(mvv)	,

Z	Element	I.E.	Z	Element	I.E.	Z	Element	I.E.
1	Hydrogen	13 59	30	Zinc	9 39	59	Praseodymium	5 40
2	Helium	24 58	31	Gallium	6.00	60	Neodymium	5 49
3	Lithium	5 30	32	Germanium	7 88	61	Promethium	5 55
4	Bendlium	9.32	33	Arsenic	9.81	62	Samarium	5.61
5	Boron	8 30	34	Selenium	9.75	63	Furonium	5 64
6	Carbon	11.26	35	Bromine	11 84	64	Gadolinium	6.26
7	Nitrogen	14.53	36	Krypton	14.00	65	Terbium	5 89
8	Ovagen	13.61	37	Rubidium	4 18	66	Dysprosium	5.82
9	Fluorine	17.42	38	Strontium	5.69	67	Holium	5 89
10	Neon	21.56	30	Vttrium	6 38	68	Frhium	5.95
11	Sodium	5 14	40	Zirconium	6.84	60	Tholium	6.03
12	Magnesium	7.64	41	Niohium	6.88	70	Ytterhium	6.04
13	Aluminum	5 98	42	Molybdenum	7 10	71	Lutetium	5 32
14	Silicon	815	43	Technetium	7.28	72	Hafnium	7.00
15	Phosphorus	10.48	44	Ruthenium	7.36	73	Tantalium	7.88
16	Sulfur	10.36	45	Rhodium	7.46	74	Tunosten	7 98
17	Chlorine	12.97	46	Palladium	8 33	75	Rhenium	7 87
18	Argon	15 76	47	Silver	7 57	76	Osmium	8 73
19	Potassium	4 34	48	Cadmium	8 99	77	Iridium	91
20	Calcium	611	49	Indium	5 79	78	Platinum	8 96
21	Scandium	6 54	50	Tin	7 34	79	Gold	9.22
22	Titanium	6.82	51	Antimony	8 64	80	Mercury	10.43
23	Vanadium	674	52	Tellurium	9.01	81	Thallium	611
24	Chromium	6.87	53	Iodine	10.45	82	Lead	7 42
25	Manganese	7 43	54	Xenon	12 13	83	Bismuth	7 29
26	Iron	7 87	55	Cesium	3.89	84	Polonium	8 43
27	Cobalt	7.86	56	Barium	5 21	85	Astatine	95
28	Nickel	7.63	57	Lanthanum	5.61	86	Radon	10.75
29	Conner	7 72	58	Cerium	6 54	50		10.75

1.1.7 Electronegativity

Electronegativity (X) is the relative attraction of an atom for an electron in a covalent bond. But due to the complexity of a covalent bond it is not possible to define precise electronegativity values. Originally the element fluorine, whose atoms have the greatest attraction for an electron, was given an arbitrary value of 4.0. All other electronegativity values are based on this.

Note that the greater the difference in electronegativities the more ionic in nature is the bond, and the smaller the difference the more covalent is the bond.

Going across the periodic table the electronegativity increases because the principal energy level remain the same and the electrostatic attraction increases. The atoms also have a desire to have the most stable configuration which is that of the noble gas configuration. Going down the table the electronegativity decreases due to the increased distance from the nucleus.

Table 1.7 lists relative electronegativities for the elements.

Z	Element	X	Z	Element	X	Z	Element	X
I	Hydrogen	22	27 0	Cobalt	19	53	Iodine	25
2	Helium		28 1	Nickel	19	54	Xenon	
3	Lithium	1.0	29 0	Conner	19	55	Cesium	07
4	Beryllium	1.5	30	Zinc	16	56	Rarium	0.9
5	Boron	20	31 0	Gallium	16	100	Lyunun	0.0
6	Carbon	2.5	32 (Germanium	1.8	72	Hafnium	13
7	Nitrogen	3.0	33	Arsenic	2.0	73	Tantalium	15
8	Orven	3.5	34	Selenium	24	74	Tunesten	17
9	Fluorine	40	35 1	Bromine	2.8	75	Rhenium	19
10	Neon		36 1	Krypton		76	Osmium	2.2
11	Sodium	09	37	Rubidium	0.8	77	Iridium	2.2
12	Magnesium	12	38	Strontium	1.0	78	Platinum	2.2
13	Aluminum	15	39	Vttrium	12	79	Gold	24
14	Silicon	2.8	40	Zirconium	1.4	80	Mercury	1.9
15	Phosphorus	2.1	41 1	Niobium	1.6	81	Thallium	1.8
16	Sulfur	2.5	42	Molybdenum	1.8	82	Lead	19
17	Chlorine	3.0	43	Technetium	1.9	83	Bismuth	19
18	Argon		44 1	Ruthenium	2.2	84	Polonium	2.0
19	Potassium	0.8	45	Rhodium	22	85	Astatine	2.2
20	Calcium	1.0	46	Palladium	2.2	86	Radon	
21	Scandium	13	47	Silver	19	87	Francium	07
22	Titanium	1.5	48 (Cadmium	17	88	Radium	0.9
23	Vanadium	16	49	Indium	17	89	Actinium	11
24	Chromium	16	50	Tin	1.8	90	Thorium	13
25	Manganese	1.5	51	Antimony	19	91	Protactinium	14
26	Iron	1.8	52	Tellurium	2.1	92	Uranium	1.4

Table 1.7. Relative Electronegativities

1.1.8 Radius of Atoms

The radius of an atom can be estimated by taking half the distance between the nucleus of two of the same atoms. For example, the distance between the nuclei of I_2 is 2.66 Å, half that distance would be the radius of atomic iodine or 1.33 Å. Using this method the atomic radius of nearly all the elements can be estimated.

Note that going across the periodic table, the atomic radius decreases. This is due to the fact that the principal energy level (principal quantum number) remains the same, but the number of electrons increase. The increase in the number of electrons causes an increase in the electrostatic attraction which causes the radius to decrease. However, going down the periodic table the principal energy level increases and hence the atomic radius increases.

Table 1.8 lists the atomic radii of some of the elements.

Ζ	Element	X	Z	Element	X	Z	Element	X
1	Hydrogen	0.37	25	Manganese	1.29	49	Indium	1.62
2	Helium		26	Iron	1.26	50	Tin	1.40
3	Lithium	1.52	27	Cobalt	1.26	51	Antimony	1.41
4	Beryllium	1.12	28	Nickel	1.24	52	Tellurium	1.37
5	Boron	0.88	29	Copper	1.28	53	Iodine	1.33
6	Carbon	0.77	30	Zinc	1.33	54	Xenon	
7	Nitrogen	0.70	31	Gallium	1.22	55	Cesium	2.62
8	Oxygen	0.66	32	Germanium	1.22	56	Barium	2.17
9	Fluorine	0.64	33	Arsenic	1.21			
10	Neon		34	Selenium	1.17	72	Hafnium	1.57
11	Sodium	1.86	35	Bromine	1.14	73	Tantalium	1.43
12	Magnesium	1.60	36	Krypton		74	Tungsten	1.37
13	Aluminum	1.43	37	Rubidium	2.41	75	Rhenium	1.37
14	Silicon	1.17	38	Strontium	2.15	76	Osmium	1.34
15	Phosphorus	1.10	39	Yttrium	1.80	77	Iridium	1.35
16	Sulfur	1.04	40	Zirconium	1.57	78	Platinum	1.38
17	Chlorine	0.99	41	Niobium	1.43	79	Gold	1.44
18	Argon		42	Molybdenum	1.36	80	Mercury	1.50
19	Potassium	2.31	43	Technetium	1.30	81	Thallium	1.71
20	Calcium	1.97	44	Ruthenium	1.33	82	Lead	1.75
21	Scandium	1.60	45	Rhodium	1.34	83	Bismuth	1.46
22	Titanium	1.46	46	Palladium	1.38	84	Polonium	1.40
23	Vanadium	1.31	47	Silver	1.44	85	Astatine	1.40
24	Chromium	1.25	48	Cadmium	1.49	86	Radon	

Table 1.8. Atomic Radii (in Å)

1.1.9 Atomic Weights

Name	Symbol	Atomic Wt	Name	Symbol	Atomic Wt
Actinium	Ac	227 0278	Neodomium	Nd	144 24
Aluminum		26 0815	Neon	Ne	20 183
Americium	Am	(243 0614)	Nentunium	Nn	20.105
Antimony	Sh	121 75	Nickel	Ni	58 71
Argon	År.	30 048	Nichium	Nh	97 906
Argonic	Ac	74 0216	Nitrogen	N	14 0067
Arsting	A5	(200 0971)	Nabalium	No	(250 1000)
Dorium	Pa	(209.9671)	Ocraine	On INO	(239.1009)
Darluin	Da	(247 0702)	Osniuli	0s	150004
Derkenum	DK	(247.0703)	Dalladium	D.J	1064
Disput	DC	9.0122	Panadium	Pa	100.4
Bismuin	BI	208.980	Phosphorus	P	30.9738
Boron	В	10.811	Platinum	Pt	195.09
Bromine	в	79.909	Plutonium	Pu	(244.0642)
Cadium	Ca	12.401	Polonium	Po	(208.9824)
Calcium	Ca	40.08	Potassium	ĸ	39.102
Californium	Cf	(251.0796)	Praseodymium	Pr	140,907
Carbon	C	12.01115	Promethium	Pm	(144.9127)
Cerium	Ce	140.12	Protactinium	Pa	231.0359
Cesium	Cs	132.905	Radium	Ra	226.0254
Chlorine	Cl	35.453	Radon	Rn	(222.0176)
Chromium	Cr	51.996	Rhenium	Re	186.2
Cobalt	Co	58.9332	Rhodium	Rh	102.905
Copper	Cu	3.546	Rubidium	Rb	85.47
Curium	Cm	(247.0703)	Ruthenium	Ru	101.07
Dysprosium	Dy	162.50	Samarium	Sm	150.35
Einsteinium	Es	(252.083)	Scandium	Sc	44.956
Erbium	Er	167.26	Selenium	Se	78.96
Europium	Eu	151.96	Silicon	Si	28.086
Fermium	Fm	(257.0951)	Silver	Ag	107.870
Fluorine	F	18.9984	Sodium	Na	22.9898
Francium	Fr	(223.0197)	Strontium	Sr	87.62
Gadolinium	Gđ	157.25	Sulfur	S	32.064
Gallium	Ga	69.72	Tantalum	Та	180.948
Germanium	Ge	72.59	Technetium	Tc	98.906
Gold	Au	196.967	Tellurium	Te	127.60
Hafnium	Hf	178.49	Terbium	ТЪ	158.924
Helium	He	4.0026	Thallium	TI	204.37
Holmium	Но	164 930	Thorium	Th	232.038
Hydrogen	н	1.00797	Thulium	Tm	168.934
Indium	In	114.82	Tin	Sn	118.69
Iodine	ĩ	126 9044	Titanium	Ti	47.90
Iridium	Ir	192.2	Tungsten	w	183 85
Iron	Fe	55.847	Unnilguadium	Ung	(261.11)

Table 1.9. Atomic Weights

14010 1.7. (Com	mucuj				
Krypton	Kr	83.80	Unnilpentium	Unp	(62.114)
Lanthanum	La	183.91	Unnilhexium	Unh	(263.118)
Lawrencium	Lr	(262.11)	Unnilseptium	Uns	(262.12)
Lead	Pb	207.19	Uranium	U	238.03
Lithium	Li	6.939	Vanadium	v	50.942
Lutetium	Lu	174.97	Xenon	Xe	131.30
Magnesium	Mg	24.312	Ytterbium	Yb	173.04
Manganese	Mn	54.9380	Yttrium	Y	88.905
Mendelevium	Md	(258.10)	Zinc	Zn	65.37
Mercury	Hg	200.59	Zirconium	Zr	91.22
Molvbdenum	Mo	95.94			

Table 1.9. (Continued)

1.2 Chemical Bonding

1.2.1 Covalent Bonding

A **covalent bond** is a bond in which a pair of electrons is shared between two atoms. Depending on the atoms electronegativity the bond is either polar or non-polar.

A pair of atoms with the same electronegativity would form a **non-polar** covalent bond, such as:

H· + · H → H: H

A **polar covalent bond** is one in which the atoms have different electronegativities, such as:

1.2.2 Coordinate Covalent Bond (Dative Bond)

A **coordinate covalent bond** is a bond in which both pairs of electrons are donated by one atom and are shared between the two, for example:

1.2.3 Ionic Bonding

An **ionic bond** is one in which one or more electrons are transferred from one atom's valence shell (becoming a positively charged ion, called a **cation**) to the others valence shell (becoming a negatively charged ion, called a **anion**). The resulting electrostatic attraction between oppositely charged ions results in the formation of the ionic bond.

$$Li \cdot + \cdot F: \longrightarrow Li^+ + F:$$

Not all compounds will be either purely covalent or purely ionic, most are somewhere in between. As a rule of thumb, if a compound has less than 50% ionic character it is considered covalent and more than 50%, ionic. The **ionic character** can be related to the difference in electronegativities of the bonded atoms. If the electronegativity difference is 1.7, the bond is about 50% ionic.

1.2.4 Dipole-Dipole Bonding

A **dipole-dipole bond** occurs between polar molecules and is a weak electrostatic attraction.

Figure 1.6. Dipole-dipole attraction

1.2.5 Ion-Dipole Bonding (Solvation)

An **ion-dipole bond** is another electrostatic attraction between an ion and several polar molecules. When an ionic substance is dissolved in a polar solvent, it is this kind of interaction that takes place. The negative ends of the solvent aligned themselves to the positive charge, and the positive ends aligned with the negative charge. This process is **solvation**. When the solvent is water the process is the same but called **hydration**.

Figure 1.7. Ion-dipole attraction

1.2.6 Hydrogen Bonding

When hydrogen is bonded covalently to a small electronegative atom the electron cloud around the hydrogen is drawn to the electronegative atom and a strong dipole is created. The positive end of the dipole approaches close to the negative end of the neighboring dipole and a uniquely strong dipole-dipole bond forms, this is referred to as a hydrogen bond.

Figure 1.8. Hydrogen bonding

1.2.7 van der Waals

When the electron cloud around an atom or molecule shifts (for whatever reason), a temporary dipole is created, this in turns creates an induced dipole in the next molecule. This induced dipole (**van der Waals**) induces another and so on. The induced dipoles now are electrostaticly attracted to each other and a weak induced dipole attraction occurs.

non-polar molecules

Induced dipole

Induced dipole

Figure 1.9. van der Waals attraction

1.3 Gases

The following laws and equations are for ideal gases. An **ideal gas** is considered to be composed of small particles whose volume is negligible when compared to the whole volume, and the gas particles do not exert any force on one another. Unless otherwise noted:

- P pressure
- V volume
- T absolute temperature (Kelvin)
- n number of moles
- R- gas constant 8.314 J / mole K

1.3.1 Boyle's Law

For a fixed amount of gas, held at constant temperature, the volume is inversely proportional to the applied pressure.

PV = constant

1.3.2 Charles' Law

For a fixed amount of gas, held at constant pressure, the volume is directly proportional to the temperature.

$$V/T = constant$$

1.3.3 Gay-Lussac's Law

For a fixed amount of gas, held at constant volume, the pressure is directly proportional to the absolute temperature.

P/T = constant

1.3.4 Avogadro's Law

At constant temperature and pressure, equal volumes of gas contain equal amounts of molecules.

V/n = constant

1.3.5 Dalton's Law of Partial Pressures

The total pressure exerted by a mixture of several gases is equal to the sum of the gases individual pressure (partial pressure).

$$P_{T} = p_{a} + p_{b} + p_{c} + \dots$$

 $\mathbf{P}_{\mathbf{T}}$ pressure of gas $\mathbf{a} + \mathbf{b} + \mathbf{c}$

p_a pressure of gas a

P_b pressure of gas b

 $\mathbf{p}_{\mathbf{c}}$ pressure of gas c

1.3.6 Ideal Gas Law

Combining the above relationships and Avogadro's principle (under constant pressure and temperature, equal volumes of gas contain the equal numbers of molecules) into one equation we obtain the Ideal Gas Law:

PV = nRT

1.3.7 Equation of State of Real Gases

An ideal gas has negligible volume and exerts no force. However, real gases do have volumes and do exert forces upon one another. When these factors are taken into consideration, the following equation can be obtained:

$$(\mathbf{P} + \mathbf{n}^2 \mathbf{a} / \mathbf{V}^2) - (\mathbf{V} - \mathbf{n} \mathbf{b}) = \mathbf{n} \mathbf{R} \mathbf{T}$$

a - proportionality constant

b - covolume

Note that a and b are dependent on the individual gas, since molecular volumes and molecular attractions vary from gas to gas.

Gas	a (atm liter ² / mole ²)	b (liter / mole)
He	0.034	0.0237
O ₂	1.36	0.0318
NH ₃	4.17	0.0371
H ₂ O	5.46	0.0305
CH ₄	2.25	0.0428

Table 1.10. van der Waals constants for real gases.

1.3.8 Changes of Pressure, Volume, or Temperature

By combining the equations for Boyle's law, Charles' law, and Gay-Lussac's law, a single equation can be obtained that is useful for many computations:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

1.4 Solutions

1.4.1 Mass Percent

The **mass percent** of a solution is the mass of the solute divided by the total mass (solute + solvent) multiplied by 100.

percent by mass of solute =
$$\frac{\text{mass of solute}}{\text{mass of solute} + \text{mass of solvent}} \times 100$$

1.4.2 Mole Fraction (X)

The mole fraction (X) is the number of moles of component A divided by the total number of moles of all components.

mole fraction of A =
$$\frac{\text{moles of A}}{\text{moles of all components}}$$

1.4.3 Molarity (M)

The molarity (M) of a solution is the number of moles of solute dissolved in 1 liter of solvent.

1.4.4 Molality (m)

Molality (m) is the number of moles of solute dissolved in 1000 g (1 kg) of solvent.

molality =
$$\frac{\text{moles of solute}}{\text{mass of solvent}}$$

1.4.5 Dilutions

A handy and useful formula when calculating dilutions is:

$$M_{initial} V_{initial} = M_{final} V_{final}$$

1.5 Acids and Bases

1.5.1 Arrhenius Concept

An acid is any species that increases the concentration of hydronium ions (H_30^+) , in aqueous solution.

A base is any species that increases the concentration of **hydroxide ion**, (OH), in aqueous solution.

For an acid:

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

For a base:

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

However, the drawback with the Arrhenius concept is that it only applies to aqueous solutions.

1.5.2 Bronsted-Lowery Concept

An acid is a species which can donate a proton (i.e., a hydrogen ion, \mathbf{H}^{+}) to a proton acceptor.

A base is a species which can accept a proton from a proton donor.

Along with the Bronsted-Lowery concept of a proton donor (acid) and a proton acceptor (base), arises the concept of conjugate acid-base pairs. For

example, when the acid HCl reacts, it donates a proton thereby leaving Cl (which is now a proton acceptor, or the conjugate base of HCl). Using NH_3 as the base and H_2O as the acid:

1.5.3 Lewis Concept

An acid is a species that can accept a pair of electrons. A base is a species that can donate a pair of electrons.

1.6 Thermodynamics

1.6.1 First Law of Thermodynamics

The energy change of a system is equal to the heat absorbed by the system plus the work done by the system. The reason for the minus sign for work, w, is that any work done by the system results in a loss of energy for the system as a whole.

 $\Delta E = q - w$

- E = internal energy of the system
- q = heat absorbed by the system

w = work done by the system

Table 1.11. Thermodynamic Processes

Process	Sign
work done by system	-
work done on system	+
heat absorbed by system (endothermic)	+
heat absorbed by surroundings (exothermic)	(1)

Making a substitution for work, the equation can be expressed as:

$$\Delta E = q - P\Delta V$$

For constant volume, the equation becomes:

$$\Delta \mathbf{E} = \mathbf{q}_{\mathbf{v}}$$

1.6.2 Enthalpy

Enthalpy, H, is the heat content of the system at constant pressure.

$$\Delta E = q_p - P\Delta V$$

$$q_p = \Delta E + P\Delta V$$

$$q_p = (E_2 - E_1) + P(V_2 - V_1)$$

$$= (E_2 + PV_2) - (E_1 + PV_1)$$

$$\mathbf{q}_{\mathbf{p}} = \mathbf{H}_{\mathbf{2}} - \mathbf{H}_{1} = \Delta \mathbf{H}$$

1.6.3 Entropy

Entropy, S, is the measure of the degree of randomness of a system.

$$\Delta S = \frac{q_{rev}}{T}$$

T = temperature in °K

1.6.4 Gibbs Free Energy

Gibbs free energy, G, is the amount of energy available to the system to do useful work.

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$
$\begin{array}{ll} \Delta G < 0 & \text{spontaneous process from } 1 \rightarrow 2 \\ \Delta G > 0 & \text{spontaneous process from } 2 \rightarrow 1 \\ \Delta G = 0 & \text{equilibrium} \end{array}$

1.6.5 Standard States

The standard state is the standard or normal condition of a species.

State of Matter	Standard State
Gas	1 atm pressure
Liquid	Pure liquid
Solid	Pure solid
Element	Free energy of formation $= 0$
Solution	1 molar concentration

Note also that ΔH°_{f} for an element in its natural state at 25°C and 1 atm is taken to be equal to zero.

1.6.6 Hess' Law of Heat Summation

The final value of ΔH for the overall process is the sum of all the enthalpy changes.

 $\Delta H^{\circ} = \Sigma \Delta H^{\circ}_{f}$ (products) - $\Sigma \Delta H^{\circ}_{f}$ (reactants)

For example, to vaporize 1 mole of H_2O at 100°C and 1 atm, the process absorbs 41 kJ of heat, $\Delta H = +41$ kJ.

$$H_2O(l) \rightarrow H_2O(g) \qquad \Delta H = +41 \text{ kJ}$$

If a different path to the formation of 1 mole of gasous H_2O is taken, the same amount of net heat will still be absorbed.

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l) \Delta H_f = -283 \text{ kJ mol}^{-1}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) \Delta H_f = -242 \text{ kJ mol}^{-1}$$

Reversing the first reaction, then adding the two reactions together and cancelling common terms, results in the original reaction, and the amount of heat absorbed by the system

Using the Hess' Law of Summation:

Figure 1.10. Enthalpy Diagram for $H_2O(l) \rightarrow H_2O(g)$

1.7 Equilibria

Figure 1.11. Concentrations of reactants and products approaching equilibrium.

General Chemistry

When equilibrium is reached in a chemical reaction the rate of the forward reaction is equal to the rate of the reverse reaction, and the concentrations of the reactants and products do not change over time.

1.7.1 Homogeneous Equilibrium

Homogeneous equilibrium occurs when all reacting species are in the same phase. For the general reaction,

$$aA + bB \leftrightarrows cC + dD$$

the equation expressing the law of mass action, at equilibrium, is:

$$\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = K_{c}$$

The quantity, K_c , is a constant, called the **equilibrium constant** (in this case it denotes the equilibrium constant for species in solution, expressed as moles per liter). The magnitude of K_c tells us to what extent the reaction proceeds. A large K_c indicates that the reactions proceeds to the right of the reaction. A low value indicates that the reaction proceeds to the right of the reaction.

For gas-phase equilibrium the expression becomes

$$K_p = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

where P is the partial pressures of the species in the reaction. K_p can be related to K_c by the following equation,

$$K_p = K_c (0.08206T)^{\Delta n}$$

T = the absolute temperature

 $\Delta n =$ moles of product - moles of reactants.

1.7.2 Heterogeneous Equilibrium

Heterogeneous equilibrium involves reactants and products in different phases. For example, when calcium carbonate is heated in a closed vessel, the following equilibrium reaction occurs:

$$CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g)$$

The reactant is a solid, while the products are in the solid and gas phase. The equilibrium expression is written as the following:

$$K_{c}' = \frac{[CaO][CO_{2}]}{[Ca CO_{3}]}$$

In any reaction that includes a solid, the solid concentration will remain constant and therefore is not included in the equilibrium expression. The equilibrium expression now becomes:

$$K_{c}^{"}\frac{[CaCO_{3}]}{CaO} = [CO_{2}] = K_{c}$$

1.7.3 Le Chatelier's Principle

Le Chatelier's Principle states that when a system is in equilibrium and there is a change in one of the factors which affect the equilibrium, the system reacts in such a way as to cancel out the change and restore equilibrium.

An increase in temperature will shift the reaction in the direction of heat absorption.

An increase in the pressure will shift the reaction in the direction in which the number of moles is decreased.

An increase or decrease in pressure does not affect a reaction in which there is no variation in the number of moles.

An increase in the concentration of one of the components will cause the reaction to shift so as to decrease the added component.

1.7.4 Equilibrium of Water

The reaction for autoionization of water is:

$$H_2O + H_2O \leftrightarrows H_3O^+ + OH^-$$

The equilibrium expression is:

$$K = \frac{[H_3O^+][OH^-]}{[H_2O][H_2O]}$$

Since the concentration of water is a constant (≈ 55.55 M), $[H_2O]^2$ can be included in the equilibrium constant, K. this new constant is now called K,.

$$K_w = K[H_2O]^2 = [H_3O^+] [OH^-]$$

 K_w is the ion product constant for water, also called the ionization constant or dissociation constant for water. The ionization constant for water at 25 °C has a value of 1.0 x 10⁻¹⁴. The equilibrium expression now becomes:

$$K_w = 1.0 \times 10^{-14} = [H_3O^+] [OH^-]$$

Since $[H_3O^+] = [OH^-]$

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}$$

When the concentration of hydrogen ions equals the concentration of hydroxide ions the solution is said to be neutral.

1.7.5 pH

pH is the measure of how strong or weak an acid is, and is defined as the negative of the log of the hydrogen ion concentration, or

$$pH = -\log[H_3O^+]$$

Water has a pH of 7, this is calculated from the dissociation constant for water:

$$[H_3O^+] = 1.0 \times 10^{-7}$$

pH = -log[H₃O⁺] = -log (1.0 x 10⁻⁷)
pH = 7

The concept of pH can be applied to any system in which hydrogen ions are produced. An acidic solution would have an excess of hydrogen ions, a basic solution would have an excess of hydroxide ions, and a neutral solution the hydrogen ions would equal the hydroxide ions. Since pH is a measure of the hydrogen ion concentration, acidic and basic solutions can be distinguished on the basis of their pH.

acidic solutions:
$$[H_3O^+] > 10^{-7}$$
 M, pH < 7

basic solutions:
 $[H_3O^+] < 10^{-7}$ M, pH > 7

neutral solutions:
 $[H_3O^+] = 10^{-7}$ M, pH = 7

1.7.6 Ionic Equilibrium

For a monoprotic acid HA, the equilibrium reaction is:

$$HA(aq) + H_2O \leftrightarrows H_3O^*(aq) + A^*(aq)$$

and the equilibrium expression is:

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

The equilibrium constant, K_{e} , is called the acid dissociation constant.

Similarly for a polyprotic acid (i.e. phosphoric acid), the equilibrium reactions are:

$$H_3PO_4 \leftrightarrows H^+ + H_2PO_3$$

 $K'_a = \frac{[H^+][H_3PO_4^-]}{H_3PO_4} = 7.5 \times 10^{-3}$

$$H_2PO_4^- \leftrightarrows H^+ + HPO_4^{2-}$$

 $K_a^{"} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^{2-}]} = 6.2 \times 10^{-8}$

$$HPO_4^{2-} \leftrightarrows H^+ + PO_4^{3-}$$

 $K_a^{"''} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 4.8 \times 10^{-13}$

For a base the equilibrium reaction is:

$$B + H_2O \leftrightarrows BH^+ + OH^-$$

and the equilibrium expression is:

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

The equilibrium constant, K_b, is called the base dissociation constant.

1.7.7 Relationship between K, and K, Conjugate Pair

$$\begin{array}{ccc} HA + H_2O \leftrightarrows H_3O^+ + A^-\\ acid & base\\ L & conjugates & J \end{array}$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

 $A^{-} + H_2O \leftrightarrows HA + OH^{-}$ L conjugates J

$$K_{b} = \frac{[HA][OH^{-}]}{[A^{-}]}$$

$$K_a K_b = [H_3O^+] [OH^-] = 10^{-14}$$

$$pK_a + pK_b = 14$$

1.7.8 Hydrolysis

Hydrolysis is the between water and the ions of a salt.

1.7.8.1 Salt of a strong acid - strong base.

Consider NaCl, the salt of a strong acid and a strong base. The hydrolysis of this salt would yield NaOH and HCl. Since both species would completely dissociate into their respective ions yielding equivalent amounts of H_3O^+ and OK, the overall net effect would be that no hydrolysis takes place. Since $[H_3O^+] = [OH^-]$, the pH would be 7, a neutral solution.

1.7.8.2 Salt of a strong acid - weak base.

Consider the hydrolysis of NH₄Cl:

$$NH_4^+ + H_2O \leftrightarrows H_3O^+ + NH_3$$

$$K_{\rm h} = \frac{[{\rm H}_3{\rm O}^+][{\rm N}{\rm H}_3]}{[{\rm N}{\rm H}_4^+]}$$

$$K_{h} = \frac{K_{w}}{K_{b}} = \frac{[H_{3}O^{+}][OH^{-}]}{[NH_{4}^{+}][OH^{-}]/[NH_{3}]} = \frac{[H_{3}O^{+}][NH_{3}]}{[NH_{4}^{+}]}$$

1.7.8.3 Salt of a weak acid - strong base.

Consider the hydrolysis of NaC₂H₃O₂:

$$C_2H_3O_2 + H_2O \Rightarrow HC_2H_3O_2 + OH$$

 $K_{h} = \frac{[HC_{2}H_{3}O_{2}][OH^{-}]}{[C_{2}H_{3}O_{2}^{-}]}$

$$K_{h} = \frac{K_{w}}{K_{a}} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{3}O^{+}][C_{2}H_{3}O_{2}^{-}]/[HC_{2}H_{3}O_{2}]} = \frac{[HC_{2}H_{3}O_{2}][OH^{-}]}{[C_{2}H_{3}O_{2}^{-}]}$$

1.7.9 Solubility Product

In the case for which a solid is being dissolved, the general chemical reaction becomes:

$$A_aB_b \leftrightarrows aA + bB$$

and the equilibrium expression is:

$$\mathbf{K} = \frac{[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^{\mathbf{b}}}{[\mathbf{A}_{\mathbf{a}}\mathbf{B}_{\mathbf{b}}]}$$

÷.

the denominator in the expression $[A_aB_b]$ represents the concentration of the pure solid and is constant, therefore it can be incorporated into the equilibrium constant, K. The expression now becomes:

$$\mathbf{K}_{sp} = [\mathbf{A}]^{a} [\mathbf{B}]^{b}$$

For example, a saturated solution of AgCl, woulld have the following equilibrium:

$$AgCl(s) \leftrightarrows Ag^+ + Cl^-$$

$$K_{sp} = [Ag^{\dagger}] [Cl^{\dagger}]$$

The value of the K_{sp} for AgCl is 1.7 x 10⁻¹⁰

$$1.7 \times 10^{-10} = [Ag^+] [CI^-]$$

If the ion product is equal to or less that the K_{sp} no precipitate will form. If the ion product is greater than the K_{sp} value, the material will precipitate out of solution so that the ion product will be equal to the K_{sp} .

Compound	Ksp
AgCl	1.7 x 10 ⁻¹⁰
AgBr	5.0×10^{-13}
BaSO ₄	1.5 x 10 ⁻⁹
CuS	8.5 x 10 ⁻³⁶
PbCl ₂	1.6 x 10 ⁻⁵
HgS	1.6 x 10 ⁻⁵⁴

1.7.10 Common Ion Effect

The common ion is when an ion common to one of the salt ions is introduced to the solution. The introduction of a common ion produces an effect on the equilibrium of the solution and according to Le Chatelier's principle, i.e. the equilibrium is shifted so as to reduce the effect of the added ion. This is referred to as the **common ion effect**.

In the case of a solution of AgCl, if NaCl is added, the common ion being **Cl**, the equilibrium would be shifted to the left so that the ion product will preserve the value of the K_{sp} .

1.8 Kinetics

Kinetics deals with the rate (how fast) that a chemical reaction proceeds with. The reaction rate can be determined by following the concentration of either the reactants or products. The rate is also dependent on the concentrations, temperature, catalysts, and nature of reactants and products.

1.8.1 Zero-Order Reactions

Zero-order reactions are independent of the concentrations of reactants.

 $A \rightarrow B$

rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^0 = k$$

1.8.2 First-Order Reactions

First-order reactions are dependent on the concentration of the reactant.

 $A \rightarrow B$

rate =
$$k[A]^{l} = k[A]$$

1.8.3 Second-Order Reactions

There are two type of second-order reactions. The first kind involves a single kind of reactant.

 $2A \rightarrow B$ rate = $k[A]^2$

The second kind of reaction involves two different kind of reactants.

$$A + B \rightarrow C$$

rate =
$$k[A][B]$$

1.8.4 Collision Theory

Consider the decomposition of HI.

$$2\mathrm{HI}\,(\mathrm{g}) \twoheadrightarrow \mathrm{H}_{2}\,(\mathrm{g}) + \mathrm{I}_{2}\,(\mathrm{g})$$

General Chemistry

In order for the decomposition of HI to take place, two molecules of HI must collide with each other with the proper orientation as shown in Figure 1.12. If the molecules collide without the proper orientation then no decomposition takes place.

Figure 1.12. Effective and Ineffective collisions

Not all collisions with the proper orientation will react. Only those collisions with the proper orientation and sufficient energy to allow for the breaking and forming of bonds will react. The minimum energy available in a collision which will allow a reaction to occur is called the **activation energy**.

1.8.5 Transition State Theory

When a collision with the proper orientation and sufficient activation energy occurs, an intermediate state exists before the products are formed. This intermediate state, also called an **activated complex** or **transition state**, is neither the reactant or product, but rather a highly unstable combination of both, as represented in Figure 1.13 for the decomposition of HI.

Figure 1.13. Transition state or activated complex

Figure 1.14. Potential energy diagram for the decomposition of HI.

Figure 1.14 shows the potential energy diagram for the decomposition of HI. As can be seen, in order to reach the activated complex or transition state the proper orientaion and sufficient collision energy must be achieved. Once these requirements are achieved the reaction continues on to completion and the products are formed.

1.8.6 Catalysts

A **catalyst** is a substance that affects the rate of a chemical reaction without itself being consumed or chemically altered. The catalyst takes part in the reaction by providing an alternative route to the production of products. The catalyzed reaction has a lower activation energy than that of the uncatalyzed reaction, as shown in Figure 1.15. By lowering the activation energy there are more molecules with sufficent energy that can react and thus the rate of the reaction is affected.

A **homogeneous catalyst** is in the same phase as the reactants. The catalyst and the reactants form a reactive intermediate.

A heterogeneous catalyst is not in the same phase as the reactants. The reactants are absorbed on the surface of the heterogeneous catalyst and the reaction then takes place.

Figure 1.15. Energy diagram for a reaction with and without a catalysts

Chapter 2

Inorganic Chemistry

- 2.1 Group IA Elements
- 2.2 Group IIA Elements
- 2.3 Group IIIA Elements
- 2.4 Group IVA Elements
- 2.5 Group VA Elements
- 2.6 Group VIA Elements
- 2.7 Group VIIA Elements
- 2.8 Group VIIIA Elements
- 2.9 Transition Elements
- 2.10 Ionic Solids
- 2.11 Coordination Numbers
- 2.12 Ionic Crystal Systems
- 2.13 Crystal Lattice Packing
- 2.14 Crystal Lattice Types
- 2.15 Crystal Lattice Energy
- 2.16 Complexes

2.1 Group IA Elements

Alkali Metals -Li, Na, K, Rb, Cs, Fr

Element	Li	Na	K	Rb	Cs	Fr
Electronic configuration	[He]2s	[Ne]3s	[Ar]4s	[Kr]5s	[Xe]6s	[Rn]7s
M.P. (°K)	453.7	371.0	336.35	312.64	301.55	300
B.P. (°K)	1615	1156	1032	961	944	950
Pauling's Electronegativity	0.98	0.93	0.82	0.82	0.79	0.7
Atomic radius (Å)	2.05	2.23	2.77	2.98	3.34	
Covalent radius (Å)	1.23	1,54	2.03	2.16	2.35	-
Ionic radius (Å)(+1)	0.68	0.98	1.33	1.48	1.67	1.8
Ionization enthalpy (eV)	5.392	5.139	4.341	4.177	3.894	-
Crystal Structure	bcc	bcc	bcc	bcc	bcc	bcc

Table 2.1. Group IA Properties

Tuble 2.2. Oloup In Compounds	T	able	2.2.	Group	IA	Com	pounds	
-------------------------------	---	------	------	-------	----	-----	--------	--

	Li	Na	K	Rb	Cs	Fr
H.	x	x	x	x	x	
X ⁻	x	x	x	x	x	
CH ₃ COO ⁻	x	x	x	x	x	
HCO3	х	x	x	x	x	
CIO.		x	x	-	(12)	. e
C103	x	x	x	x	x	
CIO4	x	x	х	x	x	
OH-	x	x	x	x	x	÷.
NO ₃	x	x	x	x	x	
NO ₂	x	x	x		x	-
H ₂ PO ₄	x	x	x	-		-
HSO₄ ⁻	x	x	x	x	х	2
HSO3 ⁻		x	x	-		
CO3 ⁻²	x	x	x	x	x	
$C_2O_4^{-2}$	x	x	x		x	
HPO4-2	-	x	x	-	1993 1993	
SO4-2	x	x	х	x	x	
SO3-2	x	x	x	-		
PO3-3	x	x	x	-		-
PO4-3	x	x	x			
N ⁻³	x	x	x			

2.2 Group IIA Elements

Alkaline Earth Metals -Be, Mg, Ca, Sr, Ba, Ra

Element	Be	Mg	Ca	Sr	Ba	Ra
Electronic configuration	[He]2s ²	[Ne]3s ²	$[Ar]4s^2$	[Kr]5s ²	[Xe]6s ²	[Rn]7s ²
M.P. (°K)	1560	922	1112	1041	1002	973
B.P. (°K)	2745	1363	1757	1650	2171	1809
Pauling's Electronegativity	1.57	1.31	1.00	0.95	0.89	0.9
Atomic radius (Å)	1.40	1.72	2.223	2.45	2.78	121
Covalent radius (Å)	0,90	1.36	1.74	1.91	1.98	12
Ionic radius (Å)(+2)	0.35	0.66	1.18	1.112	1.34	1.43
Ionization enthalpy (eV)	9.322	7.646	6.113	5.695	5.212	5.279
Crystal Structure	hex	hex	fcc	fcc	bcc	bcc

Table 2.3. Group IIA Properties

Table 2.4.	Group	ILA	Com	pound	5

en in de ateroir aller h	Be	Mg	Ca	Sr	Ba	Ra
H.	x	x	x	x	x	-
X ⁻	x	x	x	x	x	
CH ₃ COO ⁻	x	х	x	x	x	122
HCO3 ⁻				-		1940
CIO ⁻			x		x	
ClO ₃		x	x	x	x	100
C104	-	x	x	x	x	375
OH.	x	x	x	x	x	
NO3	x	x	x	x	x	120
NO ₂		x	x	x	x	141
H ₂ PO ₄ ⁻	-	-	x	-	x	-
HSO4			-	X	-	
HSO3 ⁻		-	x	-	-	
CO3-2	x	X	x	X	x	
$C_2O_4^{-2}$	x	x	x	x	x	
HPO4-2	(B)	x	x	x	x	
SO4-2	x	x	x	x	x	1.1
SO3-2	· · · · · · · · · · · · · · · · · · ·	x	x	x	x	-
PO3-3) (12 2)	-	x	5 S # 1	x	3 4 0
PO4-3	x	x	x	-	x	-
N ⁻³	x	x	x	x	x	

2.3 Group IIIA Elements

Boron group - B, Al, Ga, In, Tl

Element	B	Al	Ga	In	TI
Electronic configuration	[He]2s ² 2p	[Ne]3s ² 3p	[Ar]3d ¹⁰ 4s ² 4p	[Kr]4d ¹⁰ 5s ² 5p	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p
M.P. (°K)	2300	933.25	301.90	429.76	577
B.P. (°K)	4275	2793	2478	2346	1746
Pauling's Electronegativity	2.04	1.61	1,81	1.78	2.04
Atomic radius (Å)	1.17	1.82	1.81	2.00	2.08
Covalent radius (Å)	0.82	1.18	1.26	1.44	1.48
lonic radius (Å)(+3)	0.23	0.51	0.81	0.81	0.95
lonization enthalpy (eV)	8.298	5.986	5.999	5.786	6.108
Crystal Structure	rhom	fcc	orthorho	tetrag	hex

Table 2.5. Group IIIA Properties

Table 2.6. Group IIIA Compounds

	B	Al	Ga	In	TI
Н	x	S. :	x		-1
X	x	x	x	x	x
CH ₃ COO ⁻		x	x		x
HCO3 ⁻		(-	-		•
CIO-	-	-		-	-
CIO3	1.040	e en 19	-	9 - 9 - 9	x
CIO4		l	x	x	x
OH-		x	x	x	x
NO3		x	x	x	x
NO ₂ ⁻	-		-		x
H ₂ PO ₄ ⁻	-	(-	-	-	x
HSO4 ⁻	140		1 33	-	x
HSO3 ⁻	- 1 -	-	-	1	x
CO3 ⁻²	-0	29 4 5	1		x
$C_2O_4^{-2}$	-	x	x		x
HPO4 ⁻²	-		- 1	-	-
SO4-2	- 1	x	x	x	x
SO3-2	-	-	-	-	x
PO3-3		x			
PO4-3	-	x	-		x
N ⁻³	x	x	x		14

2.4 Group IVA Elements

Carbon group - C, Si, Ge, Sn, Pb

Element	C	Si	Ge	Sn	Pb
Electronic configuration	[He]2s ² 2p ²	[Ne]3s ² 3p ²	[Ar]3d ¹⁰ 4s ² 4p ²	[Kr]4d ¹⁰ 5s ² 5p ²	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ²
M.P. (°K)	4100	1685	1210.4	505.06	600.6
B.P. (°K)	4470	3540	3107	2876	2023
Pauling's Electronegativity	2.55	1.90	2.01	1.96	2.33
Atomic radius (Å)	0.91	1.46	1.52	1.72	1.81
Covalent radius (Å)	0.77	1.11	1.22	1.41	1.47
Ionic radius (Å)(xx)					
Ionization enthalpy (eV)	11.260	8.151	7.899	7.344	7.416
Crystal Structure	hex	fcc	orthorho	tetrag	fcc

Table 2.7. Group IVA Properties

2.5 Group VA Elements

Nitrogen group - N, P, As, Sb, Bi

Element	N	P	As	Sb	Bi
Electronic configuration	[He]2s ² 2p ³	[Ne]3s ² 3p ³	[Ar] 3d ¹⁰ 4s ² 4p ³	[Kr]4d ¹⁰ 5s ² 5p ³	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ³
M.P. (°K)	63.14	317.3	1081	904	544.52
B.P. (°K)	77.35	550	876 (sub)	1860	1837
Pauling's Electronegativity	3.04	2.19	2.18	2.05	2.02
Atomic radius (Å)	0.75	1.23	1.33	1.53	1.63
Covalent radius (Å)	0.75	1.06	1.20	1.40	1.46
Ionic radius (Å)(xx)	l.				
Ionization enthalpy (eV)	14.534	10.486	9.81	8.641	7,289
Crystal Structure	hex	monoclini	rhom	rhom	rhom

Table 2.8. Group VA Properties

2.6 Group VIA Elements

Oxygen group - O, S, Se, Te, Po

Element	0	S	Se	Te	Po
Electronic configuration	[He]2s ² 2p ⁴	[Ne]3s ² 3p ⁴	[Ar] 3d ¹⁰ 4s ² 4p ⁴	[Kr]4d ¹⁰ 5s ² 5p ⁴	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴
M.P. (°K)	50.35	388.36	494	722.65	527
B.P. (°K)	90.18	717.75	958	1261	1235
Pauling's Electronegativity	3.44	2.58	2.55	2.1	2.0
Atomic radius (Å)	0.65	1.09	1.22	1.42	1.53
Covalent radius (Å)	0.73	1.02	1.16	1.36	1.46
Ionic radius (Å)(-2)	1.32	1.84	1.91	2.11	-
Ionization enthalpy (eV)	13.618	10.360	9.752	9.009	8.42
Crystal Structure	cubic	orthorho	hex	hex	monoclin

Table 2.9. Group VIA Properties

2.7 Group VIIA Elements

Halogens - F, Cl, Br, I, At

Table 2.10. Group VIIA Prope	ertics
------------------------------	--------

Element	F	Cl	Br	I	At
Electronic configuration	[He]2s ² 2p ⁵	[Ne]3s ² 3p ⁵	[Ar] 3d ¹⁰ 4s ² 4p ⁵	[Kr]4d ¹⁰ 5s ² 5p ⁵	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁵
M.P. (°K)	53.48	172.16	265.90	386.7	575
B.P. (°K)	84.95	239.1	332.25	458.4	610
Pauling's Electronegativity	3.98	3.16	2.96	2.66	2.2
Atomic radius (Å)	0.57	0.97	1.12	1.32	1.43
Covalent radius (Å)	0.72	0.99	1.14	1.33	1.45
Ionic radius (Å)(-1)	1.33	1.81	1.96	2.20	100
Ionization enthalpy (eV)	17.411	112.967	11.814	10.451	-
Crystal Structure	cubic	orthorho	orthorho	orthorho	-

.

2.8 Group VIIIA Elements

Noble (Inert) Gases - He, Ne, Ar, Kr, Xe, Rn

Element	He	Ne	Ar	Kr	Xe	Rn
Electronic configuration	ls ²	[He] 2s ² 2p ⁶	[Ne] 3s ² 3p ⁶	[Ar] 3d ¹⁰ 4s ² 4p ⁶	[Kr] 4d ¹⁰ 5s ² 5p ⁶	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁶
M.P. (°K)	0.95	24.553	83.81	115.78	165.03	202
B.P. (°K)	4.215	27.096	87.30	119.80	161.36	211
Pauling's Electronegativity	0	0	0	0	0	0
Atomic radius (Å)	0.49	0,51	0.88	1.03	1.24	1.34
Covalent radius (Å)	0.93	0.71	0.98	1.12	1.31	¥
Ionic radius (Å)	-	-	-	-	-	2
Ionization enthalpy (eV)	24.58	21.56	15.75	13.99	12.13	10.74
Crystal Structure	hex	fcc	fcc	fcc	fcc	fcc

Table 2.11. Group VIIIA Properties

Table 2.12. Some Group VIIIA Compounds

Oxidation State	Compound	Form	Mp (°C)	Structure
п	XeF ₂	Crystal	129	Linear
IV	XeF4	Crystal	117	Square
VI	XeF ₆	Crystal	49.6	
	Cs ₂ XeF ₈	Solid		
	XeOF ₄	Liquid	-46	Sq. Pyramid
	XeO ₃	Crystal		Pyramidal
VIII	XeO ₄	Gas		Tetrahedral
	XeO ₆ 4-	Salts		Octahedral
			PREAM TENNES THE AND A REPORT	for any second second second

2.9 Transition Metal Elements

Element	Elec.	M.P.	B.P.	Density	Atomic		Ionic Ra	dius (Å)
	conf.	(°C)	(°C)	(g/cm^3)	Radius	+2	+3	+4	+X
6	21/42	1540	2720	20	1.0		0.01		
SC	30-45- Aale -2	1540	2/30	3.0	1.61		0.81		
Ŷ	40'55"	1500	2927	4.4/2	1.8		0.92		
La	50.68	920	3470	6.162	1.86		1.14		
Ti	$3d^24s^2$	1670	3260	4.5	1.45	0.90	0.87	0.68	
Zr	$4d^25s^2$	1850	3580	6.4	1.60			0.79	
Hf	5d ² 6s ²	2000	5400	13.2	-			0.78	
				0					X=5
v	$3d^34s^2$	1900	3450	5.8	1.32	0.88	0.74		0.59
Nb	$4d^45s^1$	2420	4930	8.57	1.45				0.69
Ta	5d ³ 6s ²	3000	-	19 10	1.45				0.68
								8	X=6
Cr	3d ⁵ 4s ¹	1900	2640	7.2	1.37	0.88	0.63	1	0.52
Мо	4d ⁵ 5s ¹	2610	5560	10.2	1.36	1.00000000		윗	0.62
W	5d ⁴ 6s ²	3410	5930	19.3	1.37		5		0.62
									X=7
Mn	3d ⁵ 4s ²	1250	2100	7.4	1.37	0.80	0.66		0.46
Tc	$4d^55s^2$	2140	-	147	1.36	000000000000			
Re	5d ⁵ 6s ²	3180	-	21	1.37				0.56
Fe	3d ⁶ 4s ²	1540	3000	7.9	1.24	0.76	0.64		
Ru	$4d^75s^1$	2300	3900	12.2	1.33			0.67	
Os	5d ⁶ 6s ²	3000	5500	22.4	1.34			0.69	
Co	3d ⁷ 4s ²	1490	2900	8.9	1.25	0.74	0.63	5	
Rh	$4d^85s^1$	1970	3730	12.4	1.34	0.86	0.68		
Ir	5d ⁷ 6s ²	2450	4500	22.5	1.36			0.68	
Ni	3d ⁸ 4s ²	1450	2730	8.9	1.25	0.72	0.62		
Pd	4d ¹⁰	1550	3125	12.0	1.38	0.80		0.65	
Pt	5d ⁹ 6s ¹	1770	3825	21.4	1.39	0.80		0.65	
									X=1
Cu	3d ¹⁰ 4s ¹	1083	2600	8.9	1.28	0.69			0.96
Ag	$4d^{10}5s^{1}$	961	2210	10.5	1.44	0.89			1.26
Au	5d ¹⁰ 6s ¹	1063	2970	19.3	1.44		0.85		1.37
Zn	$3d^{10}4s^2$	419	906	7.3	1.33	0.74			
Cd	4d ¹⁰ 5s ²	321	765	8.64	1.49	0.97			
Hg	5d ¹⁰ 6s ²	-39	357	13.54	1.52	1.10			

Table 2.13. Transition Elements Properties

Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
+III	+III	+II	+II	+II	+[[+11	+]]	+I	+II
	+IV	+III	+III	+III	+III	+111	+111	+11	
		+IV	+VI	+IV	+IV				
		+V		+VI	+VI				
			+VII						
	Ce	0.4Kette0.65	Mo		Ru	Rh	Pd	Ag	Cd
	+[]]		+III		+II	+III	+II	+I	+11
	+IV		+IV		+111	+IV	+IV	+II	
			+V		+IV				
			+Vl		+VI				
1973 - S	- Mariana Ang sa ka		W		Os	lr	Pt	Au	Hg
250			+IV		+IV	+III	+II	+[+I
			+V		+VI	+IV	+IV	+III	+II
			+VI		+VIII	+VI			

Table 2.14. Oxidation States of Transition Elements

2.10 Ionic Solids

Ionic solids are mostly inorganic compounds, which are held together by ionic bonds (Chapter 1.2.3). The ions are treated as thought they were hard spheres with either positive (cations) or negative (anions) charges. Using this model the ionic solids or **crystals**, are found to be arranged in a very specific order called a **crystal lattice**. The crystal lattice consists of repeating units called unit cells (see below).

2.11 Coordination Number

For ionic compounds the **coordination number** is the number of anions that are arranged about the cation in a organized structure. For example, NaCl has a coordination number of 6. In otherwords, 6 **Cl** atoms surround 1 Na^{+} atom. The number of anions that can surround a cation is dependent (but not entirely) on the relative sizes of the ions involved. Table 2.15 illustrates the ratios of the radii of the ions and their coordination number.

Coordination Number	Geometry	Ratio (+/-)
2	Linear	0.000 - 0.155
3	Trigonal	0.155 - 0.225
4	Tetrahedral	0.225 - 0.414
4/6	Sq. Planar/Octahedral	0.414 - 0.732
8	Cubic	0.732 - 1.000
12	Dodecahedral	1.000 -

Table 2.15. Radius Ratios and Coordination Number

Taking NaCl, the radii of \mathbf{Na}^+ ion is 0.95Å and **Cl** is 1.81Å. Their ratio would be as follows:

$$\frac{r_{cation}}{r_{anion}} = \frac{r_{NA}}{r_{Cl}} = \frac{0.95}{1.81} = 0.52$$

forming the sodium chloride lattice with coordination number 6.

2.12 Ionic Crystal Systems

50

A crystal lattice can be broken down to a small repeating unit called a unit cell. There are only seven distinct unit cells possible, and are shown in Figure 2.1.

2.13 Crystal Lattice Packing

When a crystal lattice forms the ions are arranged in the most efficient way of packing spheres into the smallest possible space. Starting with a single layer as in figure 2.2a, a second layer can be placed on top of it in the hollows of the first Figure 2.2b. At this point a third layer can be placed. If the third layer is placed directly over the first, Figure 2.2c, the structure is **hexagonal close-packed (hcp).** The layering in hexagonal close-packed is ABABAB. If the third layer is placed so it is not directly over the first a different arrangement is obtained. This structure is **cubic close-packed (ccp)**. The layering in cubic close-packed is ABCABC.

Figure 2.2. Close Packing of Atoms

Figure 2.2. Close Packing of Atoms

2.14 Crystal Lattice Types

Shown below are commonly encountered crystal lattice structures. The lattice type depends on the radius ratio favoring a particular coordination number for the structure type.

Figure 2.3. Common Lattice Types

2.15 Crystal Lattice Energy

2.15.1 Born-Haber Cycle

An important property of an ionic crystal is the energy required to break the crystal apart into individual ions, this is the **crystal lattice energy.** It can be measured by a thermodynamic cycle, called the **Born-Haber** cycle.

Figure 2.4. Born-Haber Cycle

The Born-Haber cycle follows the Law of Conservation of Energy, that is when a system goes through a series of changes and is returned to its initial state the sum of the energy changes is equal to zero. Thus the equation:

$$0 = \Delta h_{\rm f} + \Delta h_{\rm vap} + \frac{1}{2} \Delta h_{\rm diss} + \Delta H_{\rm ion} + \Delta H_{\rm EA} + U$$

From this the crystal lattice energy, U, can be calculated from the following enthalpies:

enthalpy of formation	(Δh_f)	-411
vaporization of sodium	(Δh_{vap})	-108
dissociation of Cl ₂ (g) into gaseous atoms	$(\frac{1}{2} \Delta h_{diss})$	-121
ionization of Na(g) to Na ⁺ (g)	(Δh_{ion})	-502
electron attachment to Cl(g) to give Cl(g)	(∆Hea)	354
crystal lattice energy	U	-788kJ/mol

2.15.2 Madelung Constant

The crystal lattice energy can be estimated from a simple electrostatic model When this model is applied to an ionic crystal only the electrostatic charges and the shortest anion-cation internuclear distance need be considered. The summation of all the geometrical interactions between the ions is called the **Madelung constant.** From this model an equation for the crystal lattice energy is derived:

$$U = -1389 \frac{M}{r} \left(1 - \frac{1}{n} \right)$$

U = crystal lattice energy M = Madelung constant r = shortest internuclear distance n = Born exponent

The Madelung constant is unique for each crystal structure and is defined only for those whose interatomic vectors are fixed by symmetry. The **Born exponent**, n, can be estimated for alkali halides by the noble-gas-like electron configuration of the ion. It can also be estimated from the compressibility of the crystal system. For NaCl, n equals 9.1.

Table 2.16. Madelung Con	nstants	Table 2.17. Born Exponents		
Structure Type M		Configuration	n	
NaCl	1.74756	He	5	
CsCl	1.76267	Ne	7	
CaF ₂	5.03878	Ar	9	
Zinc Blende	1.63805	Kr	10	
Wurtzite	1.64132	Xe	12	

For NaCl, substituting in the appropriate values into the equation we obtain:

$$U = -1389 \frac{1.747}{2.82} \left(1 - \frac{1}{9.1} \right)$$

$$U = -860 + 95 = -765 \text{ kJ mol}^{-1}$$

As can be, seen the result is close (within 3%) of the value of U obtained from using the Born-Haber cycle. More accurate calculations can be obtained

if other factors are taken into account, such as, van der Waals repulsion, zeropoint energy, etc....

2.16 Complexes

Transition and non-transition metal ions form a great many complex ions and molecules. Bonding is achieved by an ion or molecule donating a pair of electrons to the metal ion. This type of bond is an coordinate covalent bond (section 1.2.2), the resulting complexes are called **coordination complexes**. The species donating the electron pair is called a **ligand**. More than one type of ligand can bond to the same metal ion, i.e. K_2PtCl_6 . In addition a ligand can bond to more than one site on the metal ion, a phenomenon called **chelation**.

The bonding involved in the formation of coordination complexes involve the d orbitals (section 1.1.3) of the metal ion. The electron pair being donated occupies the empty d orbitals and accounts for the geometry of the complex.

2.16.1 Unidentate Ligands

CO, CN', NO2', NH3, SCN', H2O, F' RCO2', OH' CI', Br', I'

2.16.2 Bidentate Ligands

NH2CH2CH2NH2

Oxalate Ion

Ethylenediamine

Diacetyldioxime

Acetylacetonate

2.16.3 Tridentate Ligands

Diethylenetriamine

2.16.4 Quadridentate Ligands

2.16.5 Pentadentate Ligands

Ethylenediaminetriacetic acid

2.16.6 Hexadentate Ligands

Diaminocyclohexanetetraacetic acid - CDTA

Diethylenetriaminepentaacetic acid - DTPA

Dioxaoctamethylenedinitriolo tetraacetic acid - PGTA Chapter 3

Organic Chemistry

- 3.1 Classification of Organic Compounds
- 3.2 Alkanes
- 3.3 Alkenes
- 3.4 Dienes
- 3.5 Alkynes
- 3.6 Benzene
- 3.7 Alkylbenzenes
- 3.8 Alkenylbenzenes
- 3.9 Alkyl Halides
- 3.10 Aryl Halides
- 3.11 Alcohols
- 3.12 Phenols
- 3.13 Ethers
- 3.14 Epoxides
- 3.15 Aldehydes and Ketones
- 3.16 Carboxylic Acids
- 3.17 Acid Chlorides
- 3.18 Esters
- 3.19 Acid Anhydrides
- 3.20 Amides
- 3.21 Amines
- 3.22 Alicyclic Compounds
- 3.23 Heterocyclic Compounds
- 3.24 Isomers
- 3.25 Polymer Structures

3.1 Classification Of Organic Compounds

3.1.1 General Classification

General Classification - Organic Compounds

Figure 3.1. General Classification of Organic Compounds

3.1.2 Classification by Functional Group

Туре	Functional Group	Example	Name
Alkane	R-H	CH ₃ CH ₂ CH ₃	propane
Alkene	R=R	CH ₂ =CHCH ₃	propene
Diene	R=R-R=R	CH2=CH-CH=CH2	1,4-butene
Alkyne	R ≡ R	CH ≡CH	ethyne
Halide	R-X	CH ₃ CH ₂ -Br	bromoethane
Alcohol	R-OH	CH ₃ CH ₂ -OH	ethanol
Ether	R-O-R	CH ₃ CH ₂ -O-CH ₂ CH ₃	ethoxyether

Table 3.1. Organic	Functional	Groups
--------------------	------------	--------

Table 3.1. (Continued)

Epoxide	c <u>∽</u> c	CH ₂ CH ₂ CH ₂	ethylene oxide
Aldehyde	R-CHO	О СН3-С-Н	ethanal
Ketone	R-CO-R	СН3-С-СН3	2-propanone
Carboxylic Acid	R-CO2H	Сн3-С-ОН	ethanoic acid
Acid Chloride	R-CO-CI	CH3-C-CI	acetyl chloride
Acid Anhydride	(RCO) ₂ O	О Ш СН ₃ -С-О-С-СН ₃	acetic anhydride
Ester	R-CO ₂ R	CH ₃ -C-O-CH ₃	methyl ethanoate
Amide	R-CONH ₂	CH3-C-NH2	ethanamide
Amine 1°	R-NH ₂	CH ₃ CH ₂ -NH ₂	ethaneamine
Amine 2°	R-NH-R	CH ₃ CH ₂ -NH-CH ₂ CH ₃	diethaneamine
Amine 3°	R ₃ -N	(CH ₃ CH ₂) ₃ -N	triethaneamine
Nitro Compound	R-NO2	СH ₃ —N	nitromethane
Nitrile	R-C≡N	CH₃C≡N	ethanenitrile
Thiol	R-SH	CH ₃ CH ₂ -SH	ethanethiol

- 3.2 Alkanes
- 3.2.1 Preparation of Alkanes
- 3.2.1.1 Wurtz Reaction

2 R−X ^{Na} R−R

3.2.1.2 Grignard Reduction

 $RX + Mg \longrightarrow RMgX \longrightarrow RH$

- 3.2.1.3 Reduction
 - $\mathbf{RX} + \mathbf{Zn} + \mathbf{H}^+ \longrightarrow \mathbf{RH} + \mathbf{Zn}\mathbf{X}_2$

$$RX + LiAlH_4 \xrightarrow{dry ether} RH + LiX + AlX_3$$

3.2.1.4 Kolbe Reaction

$$R - COO^{\Theta} - e^{\Theta} R - R$$

3.2.1.5 Hydrogenation

 $R - C = C - R' \xrightarrow{H_2} RCH_2CH_2R'$

- 3.2.2 Reactions of Alkanes
- 3.2.2.1 Combustion

 $R + O_2 \longrightarrow CO_2 + H_2O$

62

3.2.2.2 Halogenation

 $R + X_2 \xrightarrow{heat or} RX + HCl$

Reactivity X: $Cl_2 > Br_2$ H: 3°>2°>1°> CH_3 -H

3.2.2.3 Free Radical Substitution

$$X_2 \xrightarrow{\text{heat or light}} 2 X$$

$$R - H + X \cdot - R \cdot + HX$$

$$\mathbf{R} \cdot + \mathbf{X}_2 \longrightarrow \mathbf{R} - \mathbf{X} + \mathbf{X} \cdot$$

3.3 AIkenes

- 3.3.1 Preparation of Alkenes
- 3.3.1.1 Dehydrohalogenation of Alkyl Halides

Ease of dehydrohalogenation 3°>2°>1°>

3.3.1.2 Dehalogenation of Vicinal Dihalides

3.3.1.3 Dehydration of Alcohols

3.3.1.4 Reduction of Alkynes

- 3.3.2 Reactions of Alkenes
- 3.3.2.1 Hydrogenation

3.3.2.2 Halogenation

 $X_2 = Cl_2, Br_2$

3.3.2.3 Addition of Hydrogen Halide

HX = HCI, HBr, HI

Markovnikov's rule: The hydrogen of the acid attaches itself to the carbon atom which already has the greatest number of hydrogens. In the presence of peroxide, HBr will undergo anti-Markovnikov addition.

3.3.2.4 Addition of Sulfuric Acid

3.3.2.5 Addition of Water

3.3.2.6 Halohydrin Formation

 $X_2 = Cl_2, Br_2$

3.3.2.7 Oxymercuration-Demercuration

3.3.2.8 Hydroboration-Oxidation

3.3.2.9 Polymerization

$$nCH_2 = CH_2 \xrightarrow{heat} (CH_2 - CH_2)_n$$

3.3.2.10 Hydroxylation

3.3.2.11 Halogenation - Allylic Substitution

 $X_2 = Cl_2, Br_2$

3.4 Dienes

Isolated dienes can be prepared following the methods for alkanes using difunctional starting materials.

66

3.4.1 Preparation of Conjugated Dienes

3.4.1.1 Dehydration of 1,3-Diol

$$\begin{array}{c} CH_3-CH-CH_2-CH_2 & \xrightarrow{heat} & CH_2=CH-CH=CH_2\\ | & | \\ OH & OH \end{array}$$

3.4.1.2 Dehydrogenation

$$CH_{3}-CH_{2}-CH_{2}-CH_{3} \xrightarrow{heat} CH_{3}-CH_{2}=CH--CH_{2}$$

$$+ CH_{3}-CH=-CH--CH_{3}$$

$$+ CH_{3}-CH=-CH=-CH_{3}$$

$$+ CH_{2}=CH--CH==CH_{2}$$

3.4.2 Reactions of Dienes

3.4.2.1 1,4-Addition

$$CH_2 = CH - CH = CH_2 + X_2 \longrightarrow CH_2 - CH = CH - CH_2$$

 $X_2 = Cl_2, Br_2$

3.4.2.2 Polymerization

n
$$CH_2 = C - CH = CH_2$$
 $\xrightarrow{catalyst}$ CH_3
 $CH_2 = C - CH = CH_2$ $\xrightarrow{catalyst}$ $CH_2 - C = CH - CH_2$

3.5 Alkynes

- 3.5.1 Preparation of Alkynes
- 3.5.1.1 Dehydrohalogenation of Alkyl Dihalides

3.5.1.2 Dehalogenation of Tetrahalides

3.5.1.3 Reaction of Water and Calcium Carbide

$$CaC_2 + H_2O \longrightarrow CH = CH + Ca(OH)_2$$

- 3.5.2 Reactions of Alkynes
- 3.5.2.1 Hydrogenation

 $-C = C + 2H_2 - CH_2 - CH_2$

68

3.5.2.2 Halogenation

 $X_2 = Cl_2, Br_2$

3.5.2.3 Addition of Hydrogen Halide

$$X = Cl, Br, l$$

3.5.2.4 Addition of Water (Hydration)

- 3.6 Benzene
- 3.6.1 Preparation of Benzene
- 3.6.1.1 Ring Formation

3.6.1.2 Cyclization

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \xrightarrow{} O$$

3.6.1.3 Elimination

3.6.2 Reactions of Benzenes

3.6.2.1 Nitration

3.6.2.2 Sulfonation

$$\bigcirc$$
 + HOSO₃H $\xrightarrow{SO_3}$ \bigcirc SO₃H + H₂O

3.6.2.3 Halogenation

X = Cl, Br

3.6.2.4 Friedel-Crafts Alkylation

3.6.2.5 Friedel-Crafts Acylation

3.6.2.6 Hydrogenation

3.6.2.8 Combustion

3.7 Alkylbenzenes

- 3.7.1 Preparation of Alkylbenzenes
- 3.7.1.1 Freidel-Crafts Alkylation

Lewis acid: AlCl₃, BF₃, HF

Ar-H cannot be used in place of R-X

3.7.1.2 Side Chain Conversion

3.7.1.3 Electrophilic Aromatic Substitution

3.7.1.4 Hydrogenation

$$\bigcirc$$
 -CH=CH₂ + H₂ $\xrightarrow{Pt. heat}$ \bigcirc -CH₂CH₃

- 3.7.2 Reactions of Alkylbenzenes
- 3.7.2.1 Hydrogenation

3.7.2.2 Oxidation

3.7.2.3 Substitution in ring - electrophilic aromatic substitution

3.7.2.4 Substitution in the side chain

- 3.8 Alkenylbenzenes
- 3.8.1 Preparation of Alkenylbenzenes
- 3.8.1.1 Dehydrogenation

3.8.1.2 Dehydrohalogenation

3.8.1.3 Dehydration

- 3.8.2 Reactions of Alkenylbenzenes
- 3.8.2.1 Cataylic Hydrogenation

74

3.8.2.2 Oxidation

3.8.2.3 Ring Halogenation

- 3.9 Alkyl Halides
- 3.9.1 Preparation of Alkyl Halides
- 3.9.1.1 From Alcohols

 $R - OH + HX - R - X + H_2O$

3.9.1.2 Addition of Hydrogen Halide to Alkenes

3.9.1.3 Halogenation of Alkanes

 $R - H + X_2 - R - X + HX$

3.9.1.4 Halide Exchange

 $R - X + NaI \xrightarrow{acetone} R - I + NaX$

3.9.1.5 Halogenation of Alkenes and Alkynes

 $X_2 = Cl_2, Br_2$

 $X_2 = Cl_2, Br_2$

3.9.2 Reactions of Alkyl Halides

3.9.2.1 Addition of Hydroxide

R—X + OH → R—OH

3.9.2.2 Addition of Water

 $R - X + H_2O - R - OH$

3.9.2.3 Addition of Alkoxide

R - X + OR - R - OR

76

3.9.2.4 Addition of Carboxylate

 $R - X + OOCR' \rightarrow R - OOCR'$

3.9.2.5 Addition of Hydrosulfide

R - X + SH - R - SH

3.9.2.6 Addition of Thioalkoxide

R-X + SR' → R-SR'

3.9.2.7 Addition of Sulfide

 $R \rightarrow X + SR'_2 \rightarrow R \rightarrow SR'_2 X$

3.9.2.8 Addition of Thiocyanide

R - X + SCN - R - SCN

3.9.2.9 Addition of Iodide

R - X + I - R - I

3.9.2.10 Addition of Amide

 $R - X + NH_2$ \rightarrow $R - NH_2$

3.9.2.11 Addition of Ammonia

 $R - X + NH_3 - R - NH_2$

3.9.2.12 Addition of 1° Amine

 $R - X + NH_2R' \rightarrow R - NHR'$

3.9.2.13 Addition of 2° Amine

$$R - X + NHR'_2 \rightarrow R - NR'_2$$

3.9.2.14 Addition of 3° Amine

$$R - X + NR'_2 \longrightarrow R - NR'_3 X$$

3.9.2.15 Addition of Azide

$$R - X + N_3 \rightarrow R - N_3$$

3.9.2.16 Addition of Nitrite

$$R - X + NO_2 \rightarrow R - NO_2$$

3.9.2.17 Addition of Phosphine

$$R - X + P(C_6H_5)_3 - R - ^+P(C_6H_5)_3 X$$

3.9.2.18 Addition of Cyanide

 $R - X + C = N \longrightarrow R - CN$

3.9.2.19 Addition of Alkynyl Anion

 $R - X + C - C - R' \rightarrow R - C - C - R'$

3.9.2.20 Addition of Carbanion

R—X + R' → R—R'

$$R - X + CH(COOR')_2 \rightarrow RCH(COOR')_2$$

$$R - X + CH(COCH_3)(COOR) \rightarrow R - CH(COCH_3)(COOR)$$

$$R - X + Ar - H \xrightarrow{AlCl_3} R - Ar$$

3.10 Aryl Halides

3.10.1 Preparation of Aryl Halides

3.10.1.1 Halogenation by Substitution

 $X_2 = Cl_2, Br_2$

3.10.1.2 From Arylthallium Compounds

ArH + Tl(OOCCF₃)₃ \longrightarrow ArTl(OOCCF₃)₂ \xrightarrow{KL} ArI

3.10.1.3 From Diazonium Salt

3.10.1.4 Halogenation by Addition

- 3.10.2 Reactions of Aryl Halides
- 3.10.2.1 Grignard Reagent Formation

3.10.2.2 Nucleophilic Aromatic Substitution

Z = strong base

3.10.2.3 Electrophilic Aromatic Substitution

X deactivates and directs ortho, para in electrophilic aromatic substitution.

3.11 Alcohols

- 3.11.1 Preparation of Alcohols
- 3.11.1.1 Addition of Hydroxide

R - X + NaOH - R - OH + NaX

3.11.1.2 Grignard Synthesis

 $H - CHO + R - Mg - X \rightarrow R - CH_2 - O - Mg - X$

 $R - CH_2 - O - Mg - X + HX - R - CH_2 - OH + MgX_2$

primary alcohol

R—CHO + R'—Mg—X — R—CHOH—R' + MgX₂

secondary alcohol

 $R_2C = O + R' - Mg - X + 2 HX \longrightarrow R_2R'C - OH + MgX_2$

tertiary alcohol

3.11.1.3 Reduction of Carbonyl Compounds

$$R - CHO + Zn + 2H_2O - R - CH_2 - OH + Zn^{++} + 2OH$$

primary alcohol

$$R_2C = O + Zn + 2H_2O \longrightarrow R_2CHOH + Zn^{++} + 2OH$$

secondary alcohol

3.11.1.4 Hydration of Alkenes

 $R'-CH_2-CH_2-CH_2-R \xrightarrow{} CH_2-CH_2 + CH_3R$

R > R'

$$R'-CH=CH_2 \xrightarrow{H_2SO_4} O \xrightarrow{H_2O} R'-CH-CH_3$$

$$R'-CH=CH_2 \xrightarrow{H_2SO_4} O \xrightarrow{H_2O} O \xrightarrow{R'-CH-CH_3} O \xrightarrow{H_2O} O \xrightarrow{R'-CH-CH_3} O \xrightarrow{H_2O} O \xrightarrow{H$$

3.11.1.5 Reacton of Amines with Nitrous Acid

$$R - NH_2 + HO - NO \xrightarrow{NaNO_2} ROH + N_2 + H_2O$$

3.11.1.6 Oxymercuration-Demercuration

Markovnikov addition

3.11.1.7 Hydroboration-Oxidation

Anti-Markovnikov addition

- 3.11.2 Reactions of Alcohols
- 3.11.2.1 Reaction with Hydrogen Halides

 $R \longrightarrow RX + H_2O$

Reactivity of HX: HI > HBr > HCl Reactivity of ROH: allyl, benzyl >3° >2° >1°

3.11.2.2 Reaction with Phosphorus Trihalide

 $R \rightarrow OH + PX_3 \rightarrow RX + H_3PO_3$

3.11.2.3 Dehydration

3.11.2.4 Ester Formation

R - OH + R'COX - ROOCR' + HX

$$R \rightarrow OH + R'COOH \rightarrow ROOCR' + H_2O$$

3.11.2.5 Reaction with Active Metals

 $R \rightarrow OH + M \rightarrow RO'M^+ + \frac{1}{2}H_2$

3.11.2.6 Oxidation

$$R - CH_2OH \xrightarrow{K_2Cr_2O_2} R - CHO \xrightarrow{K_2Cr_2O_2} RCOOH$$

$$R_2$$
 — CHOH $\frac{K_2Cr_2O_7}{R_2}$ R_2 — CHO

- 3.12 Phenols
- 3.12.1 Preparation of Phenols
- 3.12.1.1 Nucleophilic Displacement of Halides

$$\bigcirc -Cl \xrightarrow{\text{NaOH}, 360^{\circ}} \bigcirc -O'Na^{+} \xrightarrow{HCl} \bigcirc -OH + NaCl$$

3.12.1.2 Oxidation of Cumene

3.12.1.3 Hydrolysis of Diazonium Salts

$$\bigcirc N = N^{+} + H_2 O \longrightarrow \bigcirc OH + H^{+} + N_2$$

3.12.1.4 Oxidation of Arylthallium Compounds

- 3.12.2 Reactions of Phenols
- 3.12.2.1 Salt Formation

3.12.2.2 Ether Formation - Williamson Synthesis

3.12.2.3 Ester Formation

3.12.2.4 Ring Substution - Nitration

3.12.2.5 Ring Substitution - Sulfonation

3.12.2.6 Ring Substitution - Nitrosation

3.12.2.7 Ring Substitution - Halogenation

3.12.2.8 Ring Substitution - Friedel-Crafts Alkylation

3.12.2.9 Ring Substitution - Friedel-Crafts Acylation

3.12.2.10 Coupling with Diazonium Salts

3.12.2.11 Carbonation. Kolbe Reaction

3.12.2.12 Carboxylation. Kolbe Reaction

3.12.2.13 Aldehyde Formation. Reimer-Tiemann Reaction

3.12.2.14 Carboxylic Acid Formation. Reimer-Tiemann Reaction

3.12.2.15 Reaction with Formaldehyde

3.13 Ethers

- 3.13.1 Preparation of Ethers
- 3.13.1.1 Williamson Synthesis
 - RX + NaOR' ----- ROR' + NaX

R' = alkyl or aryl

3.13.1.2 Oxymercuration-Demercuration

3.13.1.3 Dehydration of Alcohols

$$ROH + HOSO_2OH \longrightarrow ROSO_2OH + H_2O$$

$$2 \text{ ROH} \xrightarrow{Al_2O_3} \text{ ROR} + H_2O$$

240-260 C

- 3.13.2 Reactions of Ethers
- 3.13.2.1 Single Cleavage by Acids

 $\begin{array}{c} \text{ROR'} \\ \text{or} \\ \text{ArOR} \end{array} + HX \longrightarrow \begin{array}{c} \text{R'OH} \\ \text{or} \\ \text{ArOH} \end{array} + RX \\ \text{ArOH} \end{array}$

ROR + HOH steam 2 ROH

3.13.2.2 Double Cleavage by Acids

ROR + PCl₅ heat > 2RCl + POCl₃

$$ROR + 2 HI \longrightarrow 2RI + H_2O$$

$$ROR + 2HOSO_2OH - heat > 2ROSO_2OH + H_2O$$

3.13.2.3 Substitution on the Hydrocarbon Chain

HX = Cl, Br

- 3.14 Epoxides
- 3.14.1 Preparation of Epoxides
- 3.14.1.1 Halohydrin Reaction

3.14.1.2 Peroxidation

- 3.14.2 Reactions of Epoxides
- 3.14.2.1 Acid-Catalyzed Cleavage

3.14.2.2 Base-Catalyzed Cleavage

3.14.2.3 Grignard Reaction

- 3.15 Aldehydes And Ketones
- 3.15.1 Preparation of Aldehydes
- 3.1 5.1.1 Oxidation

RCH₂OH
$$\xrightarrow{K_2Cr_2O_7}$$
 R \xrightarrow{H}

ArCH₃
$$\xrightarrow{Cl_2, heat}$$
 ArCHCl₂
ArCH₃ $\xrightarrow{CrO_3}$ ArCH(OOCCH₃)₂ ArCHO

3.15.1.2 Reduction

RCOCI or ArCOCI LiAlH(OBu-t) RCHO or ArCHO

3.15.1.3 Reduction

$$R - C = N \xrightarrow{\text{LiAlH}_4} R - C = 0$$

3.15.2 Reactions Specific to Aldehydes

3.15.2.1 Oxidation

RCHO	KMnO ₄	RCOOH
or	K2Cr2O7	or
ArCHO	$Ag(NH_3)_2$	ArCOOH

3.15.2.2 Cannizzaro Reaction

- 3.15.3 Preparation of Ketones
- 3.15.3.1 Oxidation

3.15.3.2 Friedel-Crafts Acylation

$$R'COCI + ArH \xrightarrow{AlCl_3} R' \xrightarrow{O} C \xrightarrow{O} AR + HCl_3$$

R' = aryl or alkyl

3.15.3.3 Grignard Reaction

3.15.4 Reactions Specific to Ketones

3.15.4.1 Halogenation

3.15.4.2 Oxidation

3.15.5 Reactions Common to Aldehydes And Ketones

3.15.5.1 Reduction to Alcohol

3.15.5.2 Reduction to Hydrocarbon

3.15.5.3 Grignard Reaction

3.15.5.4 Cyanohydrin Formation

3.15.5.5 Addition of Bisulfite

3.15.5.6 Addition of Ammonia Derivatives

3.15.5.7 Aldol Condensation

3.15.5.8 Wittig Reaction

3.15.5.9 Acetal Formation

- 3.16 Carboxylic Acids
- 3.16.1 Preparation of Carboxylic Acids
- 3.16.1.1 Oxidation of Primary Alcohols

3.16.1.2 Oxidation of Alkylbenzenes

Ar—R
$$\frac{KMnO_4}{K_2Cr_2O_7}$$
 Ar—COOH

3.16.1.3 Carbonation of Grignard Reagents

$$\begin{array}{ccc} RX & \underline{Mg} & RMgX & \underline{CO_2} & RCOMgX & \underline{H^{T}} & RCOOH \\ (or ArX) & & & (or ArCOOH) \end{array}$$

3.16.1.4 Hydrolysis of Nitriles

$$\begin{array}{c} R - C = N \\ or + H_2 O \xrightarrow{acid or} base \\ Ar - C = N \end{array} \qquad \begin{array}{c} R - COOH \\ or \\ Ar - COOH \end{array}$$

Organic Chemistry

- 3.16.2 Reactions of Carboxylic Acids
- 3.16.2.1 Acidity Salt Formation

$$RCOOH \longrightarrow RCOO^{-} + H^{+}$$

ArCOOH ArCOO + H⁺

3.16.2.2 Conversion to Acid Chloride

R' = alkyl or aryl

3.16.2.3 Conversion to Esters

R = alkyl or aryl

3.16.2.4 Conversion to Amides

R' = alkyl or aryl

3.16.2.5 Reduction

R'COOH LIAIH R'CH2OH

R' = alkyl or aryl

3.16.2.6 Alpha-Halogenation of Aliphatic Acids

$$\begin{array}{c} \text{RCH}_2\text{COOH} + X_2 & \longrightarrow & \text{RCHCOOH} + \text{HX} \\ & \downarrow \\ X \end{array}$$

3.16.2.7 Ring Substitution in Aromatic Acids

3.17 Acid Chlorides

3.17.1 Preparation of Acid Chlorides

R' = alkyl or aryl

3.17.2 Reactions of Acid Chlorides

3.17.2.1 Hydroysis (Acid Formation)

R' = alkyl or aryl

3.17.2.2 Ammonolysis (Amide Formation)

R' = alkyl or aryl

3.17.2.3 Alcoholysis (Ester Formation)

R' = alkyl or aryl

3.17.2.4 Friedel-Crafts Acylation (Ketone Formation)

$$R'COCI + ArH \xrightarrow{AlCl_3} R'COAr + HCl$$

R' = alkyl or aryl
3.17.2.5 Ketone Formation by Reaction with Organocadium Compounds

R' must be an acyl or primary alkyl alcohol

3.17.2.6 Aldehyde Formation by Reduction

RCOCI	LiAIH(OBust)	RCHO
or		or
ArCOCI		ArCHO

3.17.2.7 Rosenmund Reduction

$$R - C - Cl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HCl$$

3.17.2.8 Reduction to Alcohols

$$2 CH_3 COCI + LiAlH_4 \longrightarrow LiAlCl_2 (COCH_2CH_3)_2 \xrightarrow{H^+} 2 CH_3CH_2OH$$

3.18 Acid Anhydrides

- 3.18.1 Preparation of Acid Anhydrides
- 3.18.1.1 Ketene Reaction

$$CH_2=C=0 + CH_3COOH \longrightarrow CH_3C - 0 - CCH_3$$

3.18.1.2 Dehydration of Dicarboxylic Acids

n = 2, 3, 4

3.18.2 Reactions of Acid Anhydrides

3.18.2.1 Hydroylsis (Acid Formation)

$$\begin{array}{c} O & O \\ \parallel & \parallel \\ R'C - O - CR' + H_2O \end{array} > 2 R'COOH$$

R' = alkyl or aryl

3.18.2.2 Ammonolysis (Amide Formation)

 $(R'CO)_2O + 2 NH_3 \longrightarrow R'CONH_2 + R'COO'NH_4^+$

R' = alkyl or aryl

3.18.2.3 Alcoholysis (Ester Formation)

R' = alkyl or aryl

3.18.2.4 Friedel-Crafts Acylation (Ketone Formation)

$$(RCO)_2O + ArH \xrightarrow{Lewis} RCOAr + RCOOH$$

- 3.19 Esters
- 3.19.1 Preparation of Esters
- 3.19.1.1 From Acids

R'COOH + R"OH ----- R'COOR" + H₂O

R' = alkyl or aryl

3.19.1.2 From Acid Chlorides

R' = alkyl or aryl

3.19.1.3 From Acid Anhydrides

3.19.1.4 Transesterification

3.19.1.5 From Ketene and Alcohols

 $CH_2 = C = 0 + ROH \longrightarrow CH_3 COOR$

3.19.2 Reactions of Esters

3.19.2.1 Hydrolysis

$$R' - C - OR'' + H_2O - H^+ R' - C - OH + R''OH$$

R' = alkyl or aryl

3.19.2.2 Saponification

$$R' = C = OR'' + H_2O = OH' \Rightarrow R' = C = O' + R'OH = H' \Rightarrow R'COOH$$

R' = alkyl or aryl

3.19.2.3 Ammonolysis

$$\begin{array}{c} O \\ \parallel \\ R - C - OR' + NH_3 \end{array} \xrightarrow{O} R - C - NH_2 + R'OH$$

3.19.2.4 Transesterification

3.19.2.5 Grignard Reaction

3.19.2.6 Hydrogenolysis

$$R - C - OR' + 2H_2 - \frac{CuO, CuCr_2O_4}{250, 3300 \text{ lb/in}^2} RCH_2OH + R'OH$$

3.19.2.7 Bouvaeult - Blanc Method

$$\begin{array}{c} O \\ \parallel \\ R - C - OR' \xrightarrow{alcohol} RCH_2OH + R'OH \end{array}$$

3.19.2.8 Chemical Reduction

3.19.2.9 Claisen Condensation

3.20 Amides

3.20.1 Preparation of Amides

3.20.1.1 From Acid Chlorides

R'COCI + 2 NH₃ ---- R'CONH₂ + NH₄CI

R'COCI + R"NH2 - R'CONHR" + HCl

$$R'COCI + 2 NHR_2" \longrightarrow R'CONR_2" + R''_2 NH_2CI^-$$

R' = alkyl or aryl

3.20.1.2 From Acid Anhydrides

 $(RCO)_2O + 2 NH_3 \longrightarrow RCONH_2 + RCOONH_4$

 $(\text{RCO})_2\text{O} + 2\text{R'NH}_2 \longrightarrow \text{RCONHR'} + \text{R'NH}_3^+\text{RCO}_2^-$

 $(RCO)_2O + NHR_2' \longrightarrow RCONR_2' + RCOOH$

3.20.1.3 From Esters by Ammonolysis

 $RCOOR' + NH_3 \longrightarrow RCONH_2 + R'OH$

3.20.1.4 From Carboxylic Acids

 $RCOOH + NH_3 \longrightarrow RCOO'NH_4^+ \longrightarrow RCONH_2 + H_2O$

3.20.1.5 From Nitriles

 $RC = N + H_2O \xrightarrow{heat} RCONH_2$

3.20.1.6 From Ketenes and Amines

 $RNH_2 + CH_2 = C = O - CH_3CONHR$

3.20.2 Reactions of Amides

3.20.2.1 Hydroylsis

$$R'CONH_2 + H_2O \xrightarrow{H^+} R'COOH + NH_4^+$$

R' = alkyl or aryl

3.20.2.2 Conversion to Imides

3.20.2.3 Reaction with Nitrous Acid

 $RCONH_2 + ONOH \longrightarrow RCOOH + N_2 + H_2O$

3.20.2.4 Dehydration

 $RCONH_2 + P_2O_5 \longrightarrow RC N + 2 HPO_3$

3.20.2.5 Reduction

 $RCONH_2 \xrightarrow{LIAIH_4} \xrightarrow{H_2O} RCH_2 - NH_2$

3.20.2.6 Hoffman Degradation

 $RCONH_2 + NaOBr + 2 NaOH \longrightarrow RNH_2 + Na_2CO_3 + NaBr + H_2O$

3.21 Amines

- 3.21.1 Preparation of Amines
- 3.21.1.1 Reduction of Nitro Compounds

$$RNO_2 \xrightarrow{metal, H^+}_{H_2, cat} RNH_2$$

$$NO_2 \xrightarrow{\text{metal.}H^+} NH_2$$

3.21.1.2 Reaction of Ammonia with Halides

 $NH_3 \xrightarrow{RX} RNH_2 \xrightarrow{RX} R_2NH \xrightarrow{RX} R_3N$

3.21.1.3 Reductive Amination

$$C = 0 + NH_3 \xrightarrow{H_2, Ni} CH - NH_2$$

$$C = 0 + RNH_2 \xrightarrow{H_2, Ni} CH - NHR$$

$$C = 0 + R_2 NH - H_2 Ni$$

3.21.1.4 Reduction of Nitriles

$$R'C = N \xrightarrow{H_2} R'CH_2NH_2$$

R' = alkyl or aryl

3.21.1.5 Hofmann Degradation

$$RCONH_2 \longrightarrow RNH_2$$

$$R' = alkyl \text{ or } aryl$$

- 3.21.2 Reactions of Amines
- 3.21.2.1 Alkylation

$$RNH_2 \xrightarrow{RX} R_2NH \xrightarrow{RX} R_3N \xrightarrow{RX} R_4N^{+}X$$

$$ArNH_2 \longrightarrow ArNHR \longrightarrow RX \rightarrow ArNR_2 \longrightarrow ArNR_3^+X$$

3.21.2.2 Salt Formation

$$R'NH_3^+X \longrightarrow R'_2NH_2^+X \longrightarrow R'_3NH^+X$$

R' = alkyl or aryl

3.21.2.3 Amide Formation

$$R_2NH \xrightarrow{R'COCl} R'CONR_2$$

$$ArSO_2Cl ArSO_2NR_2$$

3.21.2.4 Reaction of Amines with Nitrous Acid

$$RNH_2 \xrightarrow{HONO} [R - N = N^+] \xrightarrow{H_2O} N_2$$

$$ArNH_2 \xrightarrow{HONO} Ar - N = N^+$$

$$Ar - NR_2 - HONO = O = N - Ar - NR_2$$

- 3.22 Alicyclic Compounds
- 3.22.1 Preparation of Alicyclic Compounds
- 3.22.1.1 Cyclization

When n = 1 cyclopropane n = 2 cyclobutane n = 3 cyclopentane

3.22.1.2 Hydrogenation

3.22.1.3 Cycloaddition

X= H, Cl, Br

3.22.2 Reactions of Alicyclic Compounds

3.22.2.1 Free Radical Addition

$$\rightarrow$$
 + $C_2 \longrightarrow CHCI + HCI$

3.22.2.2 Addition Reaction

3.23 Heterocyclic Compounds

3.23.1 Preparation of Pyrrole, Furan, and Thiophene

3.23.1.1 Pyrrole

HC=CH + 2 HCHO
$$\xrightarrow{\text{Cu}_2\text{C}_2}$$
 HOCH₂C=CCH₂OH $\xrightarrow{\text{NH}_3}$ $\xrightarrow{\text{NH}_3}$

3.23.1.2 Furan

3.23.1.3 Thiophene

$$CH_3CH_2CH_2CH_3 + S \xrightarrow{560^\circ} \sqrt{S} + H_2S$$

3.23.2 Reactions of Pyrrole, Furan, and Thiophene

3.23.2.1 Pyrrole

3.23.2.2 Furan

3.23.2.3 Thiophene

$$\bigcup_{S} + C_6H_5COCI + SnCl_4 \longrightarrow \bigcup_{S} COC_6H_5$$

3.23.3 Preparation of Pyridine, Quinoline, and Isoquinoline3.23.3.1 Pyridine

3.23.3.2 Quinoline

3.23.4.1 Pyridine

3.23.4.2 Quinoline

3.23.4.3 Isoquinoline

3.24 Isomers

3.24.1 Isomers and Stereoisomers

Organic compounds that have the same chemical formula but are attached to one another in different ways are called **isomers.** Isomers that have the same chemical formula and are attached to one another in same way but whose orientation to one another differ are called **Stereoisomers.** There are several different types of isomers that are encountered in organic chemistry.

To represent three dimensional structures on paper the chiral center of a molecule is taken at the cross point of a cross and the groups are attached at

the ends. The horizontal line represents the bonds projecting out of the plane of the paper. The vertical line represents the bonds projecting into the plane of the paper.

Figure 3.2. Three Dimensional Representations

3.24.2 Optical Activity

In addition to having different arrangements of atoms, certain organic compounds exhibit a unique property of rotating **plane-polarized light** (light that has its amplitude in one plane). Compounds that rotate light are said to be **optically active**. Optically active compounds that rotate light to the right are called dextrorotatory and are symbolized by D or +. Compounds that rotate light to the left are called levorotatory and are symbolized by L or -.

3.24.3 Enantiomers

Enantiomers are stereoisomers that are non-superimposable mirror images of each other. Enantiomers have identical physical and chemical (except towards optically active reagents) properties except for the direction in which plane-polarized light is rotated. Enantiomers account for a compound's optical activity.

Figure 3.3. Enantiomers

3.24.4 Chirality

Molecules that are not superimposable on their mirror images are **chiral**. Chiral molecules exists as enantiomers but achiral molecules cannot exist as enantiomers. A carbon atom to which four different groups are attached is a **chiral center**. Not all molecules that contain a chiral center are chiral. Not all chiral molecules contain a chiral center.

3.24.5 Racemic Mixture

A mixture of equal parts of enantiomers is called a **racemic mixture**. A racemic mixture contains equal parts of D and L componets and therefore, the mixture is optically inactive.

3.24.6 Diastereomers

Diastereomers are stereoisomers that are not mirror images of each other. Diastereomers have different physical properties. And they maybe dextrorotatory, levorotatory or inactive.

Figure 3.4 Enantiomers and Diastereomers

Structures 1 and 2 are enantiomers, structure 3 is a diastereomer of structures 1 and 2.

3.24.7 Meso Compounds

Meso compounds are superimposable mirror images of each other, even though they contain a chiral center.

Figure 3.5. Meso Compound

Meso compounds can be recognized by the fact that half the molecule is a mirror image of the other half.

Figure 3.6. Plane of symmetry of a meso compound

The upper half of the molecule is a non-superimposable mirror image of the lower half, making the top half an enantiomer of the lower half However, since the two halfs are in the same molecule the rotation of planepolarized light by the upper half is cancelled by the lower half and the compound is optically inactive.

3.24.8 Positional Isomers

Positional isomers are compounds that have the same number and kind of atoms but are arranged (or bonded) in a different order. They also have different physical and chemical properties. Butane (figure 3.1) can have two different structures, n-butane and 2-methylpropane:

Figure 3.7. n-butane and 2-methylpropane

3.24.9 Geometric Isomers

Geometric isomers or cis-trans isomerism can exist in compounds that contain a double bond or a ring structure. In order for this type of isomerism to exist the groups coming off the same end of the double bond must be different. For example bromoethene does not have cis-trans isomerism.

> H C = C H identical to H C = C HBr H H H

Figure 3.8. Bromoethene structure

However, 1,2-dibromoethene can exists as cis-1,2-dibromoethene and trans-1,2-dibromoethene

Figure 3.9. Trans and cis butene

Ring structures confer restricted rotation around the bonds and thereby give rise to geometric isomer. In trans-1,3-dichlorocyclopentane one chlorine is above the plane of the ring and on is below. In cis-1,3 dichlorocyclopentane both chlorines are above the plane of the ring.

Figure 3.10. Trans and cis- 1,3-cyclopropane

3.24.10 Conformational Isomers

Conformational isomers deal with the orientations within a molecule. The free rotation around a single bond accounts for the different conformations that can exist within a molecule. For example, n-butane can have the following conformations:

Figure 3.11. Conformational isomers of butane

Figure 1 has a *staggered* or *anti* conformation. Since in figure 1, the two methyl groups are farthest apart, this form is referred to as *anti*. Figures 3 and 5 have *staggered* or *gauche* conformations. Figures 2, 4, and 6 have an *eclipsed* conformation.

A different type of projection used to view isomers, called Newman projections, is sometimes used. The following figures are the same as above:

Figure 3.12. Newman projections

Figure 3.12. Newman projections

Although cyclohexane is a ring structure it does have free rotation around single bonds. Cyclohexane has two main conformations. The most stable form is called the chair form, the les stable is called the boat form:

Figure 3.13. Chair and boat conformations of cyclohexane

The bonds in cyclohexane occupy two kinds of position, six hydrogens lie in the plane and six hydrogens lie either above or below the plane. Those that are in the plane of the ring lie in the "equator" of it, and are called the **equatorial bonds.** Those bonds that are above or below are pointed along the axis perpendicular to the plane and are called **axial bonds.**

Figure 3.14. Equatorial and axial bonds of cyclohexane

3.24.11 Configurational Isomers

The arrangement of atoms that characterizes a certain stereoisomer is called its configuration. In general, optically active compounds can have more than one configuration. Determination of the Configuration can be determined by the following two steps:

Step 1. Following a set of sequence rule we assign a sequence of priority to the four atoms attached to the chiral center.

Step 2. The molecule is oriented so that the group of lowest priority is directed away from us. The arrangement of the remaining groups is then observed. If the sequence of highest priority to lowest priority is clockwise, the configuration is designated R. If the sequence is counterclockwise, the configuration is designated S.

From these steps a set of sequence rules can be formulated that will allow a configuration to be designated as either R or S.

Sequence 1. If the four atoms attached to the chiral center are all different, priority depends on the atomic number, with the atom of higher atomic number getting higher priority.

Sequence 2. If the relative priority of two groups cannot be decided by Sequence 1, it shall be determined by a similar comparison of the atoms attached to it.

For example, bromochloroiodomethane, CHClBrI, has two possible configurations as shown in figure 3.8. Using the sequence rules, the order of the atoms for the configuration is I, Br, Cl, H. However, the figure on the left has a different sequence than the one on the right. Hence, (R)-bromochloroiodomethane and (S)-bromochloroiodomethane

Figure 3.15. R and S configuration

3.25 Polymer Structures

The following listing of common polymers provides respective structure. The reader should note that the name of the polymer often provides the key to its representative structure. There are, however, names such as polycarbonate that can represent a variety of polymeric materials.

Acrylonitrile-butadiene-styrene terpolymer (ABS):

Buna-N:

Elastomeric copolymer of butadiene and acrylonitrile.

Buna-S:

Elastomeric copolymer of butadiene and styrene.

Butyl rubber:

Cellulose:

Epoxy resins:

Ethylene-methacrylic acid copolymers (ionomers):

Ethylene-propylene elastomers:

Formaldehyde resins: Phenol-formaldehyde (PF):

Urea-formaldehyde (UF):

Melamine-formaldehyde (MF):

Nitrile rubber (NBR):

Polyacrylamide:

CONH

Polyacrylonitrile:

Polyamides (nylons): Nylon 6,6 and nylon 6:

Kevlar

Polyamide imides and polyimides:

Polybutadiene (butadiene rubber, BR):

Polycarbonate (PC):

Polychloroprene:

Polyesters:

Poly(ethylene terephthalate) (PET):

Poly(butylene terephthalate) (PBT):

Aromatic polyesters:

Polyether (polyoxymethylene; polyacetal):

Polyethylene (PE):

-+ CH2 CH2-

Low-density polyetylene (LDPE). High-density polyethylene (HDPE). Linear low-density polyethylene (LLDPE). Ultrahigh molecular weight polyethylene (UMWPE).

Poly(ethylene glycol) (PEG):

HOCH2CH2 OCH2CH2 OH

Polyisobutylene (PIB):

Polyisoprene:

Poly(methyl methacrylate) (PMMA):

Poly(phenylene oxide) (PPO):

poly(2,6-dimethyl-p-phenylene ether)

Poly(phenylene sulfide) (PPS):

Polyphosphazenes:

Polypropylene (PP):

Polystyrene (PS):

Poly sulfone:

Polytetrafluoroethylene (PTFE):

Polyurethane:

Poly(vinyl acetate) (PVA):

Poly(vinyl alcohol) (PVAL):

Poly(vinyl butyral) (PVB):

Poly(vinyl carbazole):

Poly(vinyl chloride) (PVC):

Poly(vinyl formal) (PVF):

Poly(vinylidene chloride):

Poly(vinyl pyridine):

Poly(vinyl pyrrolidone):

Silicones (siloxanes):

Starch:

linear amylose

Styrene-acrylonitrile copolymer (SAN):

Styrene-butadiene rubber (SBR):

Chapter 4

Instrumental Analysis

4.1 The Electromagnetic Spectrum

4.2 Ultraviolet-Visible Spectrum

4.3 Infrared Spectrum

4.4 Nuclear Magnetic Resonance

4.5 Mass Spectroscopy

4.1 The Electromagnetic Sprectrum

4.1.1 The Electromagnetic Spectrum

The various regions of the electromagnetic spectrum are somewhat arbitrary and not very sharply defined. Each region overlaps at both ends the adjacent regions. The units defining the different regions can be in frequency (Hz, cm⁻¹), energy (kcal/mole, eV) and wavelengths (m and λ , "official" or most common unit used for a given region). Some useful relationships and constants are the following: 1 nanometer (nm) = 1 millimicron (mµ),=10⁻⁹ m; 1 µm (formerly micron) = 10⁻⁶ m = 10 mm; 1 angstrom (Å) = 0.1 nm = 10⁻⁸ cm; 1 eV = 23.06 kcal/mole = 8063 cm⁻¹. Energy, E = hv [h = Planck's constant = 9.534 x 10⁻¹⁴ kcal-sec/mole = 1.583 x 10⁻³⁴ cal-sec/molecule; v in Hz (cycles/sec)]. E in kcal/mole = 2.8635/ λ (λ in µm);E in eV = 12,3451 (λ in Å).

Region	Spectral Use	Hz	cm-l	kcal/mole	eV	E	۲
Cosmic rays		1022	3x1011	9.5x10 ⁸	4.1×10 ⁷	3x10-14	3x10-4 Å
Gamma rays	Nuclear transitions	1019	3x107	9.5x10 ⁵	4.1x10 ⁴	3x10-10	3Å
Soft X-rays	Inner electron transitions	1017	1x105	9.5×10 ³	4.1x10 ²	3x10-8	300 Å
Vacuum uv	Valance electron transitions	1.5x1015	5x104	143	6.2	2x10 ⁻⁷	200 nm
Quartz uv	(electronic	7.5x10 ¹⁴	2.5x104	71.5	3.1	4x10-7	400 nm
Visible	spectra)	3.8x1014	1.2x10 ⁴	36.2	1.6	8x10-7	800 nm
Near ir	Vibrational ir overtone and combination region	1.2x10 ¹⁴	4x10 ³	12	0.52	2.5x10-6	2.5 µm
Vibrational ir	Fundamental region	2.5x10 ¹³	8x102	2.4	0.10	1.2x10-5	12.5 µm
Far ir	Sketal, ring torsional, solid state (lattice) deformations	1012	33	9.5×10-2	4.1x10 ⁻³	3x10-4	300 µm
Microwave	Molecular rotations; bond torsions	109	3.3x10-2	9.5×10-5	4.1x10-6	3x10-1	300 mm
Short Radio	Spin orientations	1.5x106	5x10-5	1.4×10-7	6.1x10 ⁻⁹	2x102	200 m
Broadcast	Radio, tv, etc.	5.5x10 ⁵	1.8x10-5	5.2x10-8	2.2x10-9	5.6x102	550 m
Long Radio	Induction heating; longwave communication	3x10 ³	10-7	2.9×10-10	1.3x10-11	105	105 m
Electric Power	Commercial power and light	3x10-1	11-01	2.9×10-14	1.3x10-14	109	10 ⁹ m

E	
2	
큯	
8	1
0	
S	
<u>.</u> 2	1
to	
Ē	
2	
Ē	
ö	
5	
8	
	1
щ	
2	
F	
~	
4	
0	1
~	1

Ultraviolet-Visible Spectroscopy 4.2

4.2.1 Solvents

		1	Cut-of	t (nm)
Substance	Formula	BP (°C)	1 mm	10 mm
2-Methylbutane	C ₄ H ₉ CH ₃	28		210
Pentane	C ₅ H ₁₂	36		200
Hexane	C ₆ H ₁₄	69	190	200
Heptane	C7H16	96		195
-Octane	C8H18	98	190	205
Cyclopentane	C5H10	49		210
Methylcyclopentane	C5H9CH3	72		200
Cyclohexane	C ₆ H ₁₂	81	190	195
Methylcyclohexane	C ₆ H ₁₁ CH ₃	101		205
Benzene	C ₆ H ₆	80	275	280
Foluene	C ₆ H ₅ CH ₃	110	280	285
<i>m</i> -Xylene	$C_6H_4(CH_3)_2$	139	285	290
Decalin	C ₁₀ H ₁₈	190		200
Water	нон	100	187	191
Methanol	CH ₃ OH	65	200	205
Ethanol	CH ₃ CH ₂ OH	78	200	205
2-Propanol	CH ₃ CH(OH)CH ₃	81	200	210
Glycerol	(HOCH ₂) ₂ CH(OH)	290d	200	205
Sulfuric acid	96% H ₂ SO ₄	300		210
Diethyl ether	Et ₂ O	35	205	215
THE	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ O	67		220
1.4-Dioxan	(OCH2CH2)2	102	210	220
Dibutyl ether	(C4H9)2O	142		210
Carbon disulfide	CS ₂	46		380
Chloroform	CHCla	60	230	245
Carbon tetrachloride	CCla	76	245	260
Methylene chloride	CH ₂ Cl ₂	40	220	230
1.1-Dichloroethane	CICH2CH2CI	84	220	230
1.1.2.2-Dichloroethene	$Cl_2C=CCl_2$	120	280	290
Tribromomethane	CHBr ₃	150	315	330
Bromotrichloromethane	BrCCl ₃	105	320	340
Acetonitrile	CH ₃ CN	81	190	195
Methylnitrite	CH ₃ NO ₂	100	360	380
Pyridine	C5H5N	112	300	305
N.N-DMF	HCON(CH ₃) ₂	152		270
DMSO	(CH ₃) ₂ SO	189d	250	265
Acetone	CH ₂ COCH ₂	56	320	330

	Table	4.2.	UV-Vis	Solvents
--	-------	------	--------	----------
4.2.2 Woodward's Rules for Diene Absorption

Parent heteroannular diene	214
Parent homoannular diene	253
Add for each substituent:	
Double bond extending conjugation	30
Alkyl substituent, ring residue, etc.	5
Exocyclic double bond	5
N(alkyl) ₂	60
S(alkyl)	30
O(alkyl)	6
OAc	0
$\lambda_{calc m}$	ax =TOTAL, nm

4.2.3 Selected UV-Vis Tables

Chromophore	Example	$\lambda_{max}, m\mu$	Emax	Solvent
C=C	Ethylene	171	15,530	Vapor
	1-Octene	177	12,600	Heptane
C=C	2-Octyne	178	10,000	Heptane
		196	2,100	Heptane
		223	160	Heptane
C=0	Acetaldehyde	160	20,000	Vapor
	1	180	10,000	Vapor
	1	290	17	Hexane
	Acetone	166	16,000	Vapor
	001123250-500.0xg	189	900	Hexane
		279	15	Hexane
-CO ₂ H	Acetic acid	208	32	Ethanol
-COCI	Acetyl chloride	220	100	Hexane
-CONH ₂	Acetamide	178	9,500	Hexane
		220	63	Water
-CO ₂ R	Ethyl acetate	211	57	Ethanol
-NO ₂	Nitromethane	201	5,000	Methano
177.13		274	17	Methano
-ONO ₂	Butyl nitrate	270	17	Ethanol
-ONO	Butyl nitrite	220	14,500	Hexane
		356	87	Hexane
-NO	Nitrosobutane	300	100	Ether
		665	20	Ether
C=N	neo-Pentylidene n-butylamine	235	100	Ethanol
-C≡N	Acetonitrile	167	weak	Vapor
-N3	Azidoacetic ester	285	20	Ethanol
$=N_2$	Diazomethane	410	3	Vapor
-N=N-	Azomethane	338	4	Ethanol

Table 4.3. Characteristics of Simple Chromophoric Groups

Chromophore	Example	λ _{max} , mμ	ε _{max}	Solvent
C=C-C=C	Butadiene	217	20,900	Hexane
C=C-C≡C	Vinylacetylene	219	7,600	Hexane
		228	7,800	Hexane
C=C-C=O	Crotonaldehyde	218	18,000	Ethanol
		320	30	Ethanol
	3-Penten-2-one	224	9,750	Ethanol
		314	38	Ethanol
-C≡C-C=O	1-Hexyn-3-one	214	4,500	Ethanol
		308	20	Ethanol
C=C-CO ₂ H	cis-Crotonic acid	206	13,500	Ethanol
		242	250	Ethanol
-C≡C-CO ₂ H	n-Butylpropiolic acid	210	6,000	Ethanol
C=C-C=N-	N-n-Butylcrotonaldimine	219	25,000	Hexane
C=C=C≡N	Methacrylonitrile	215	680	Ethanol
$C=C=NO_2$	1-Nitro-1-propene	229	9,400	Ethanol
		235	9,800	Ethanol
HO ₂ C-CO ₂ H	Oxalic acid	185	4,000	Water

Table 4.4. Characteristics of Simple Conjugated Chromophoric Groups

Table 4.5.	Ultraviolet	Absorption of	f Some Mone	substituted E	Benzenes (in	n Water)	011J

C ₆ H ₅ X	Primary	Band	Secondar	y Band
X=	λ _{max} , mμ	ê _{max}	λ _{max} , mμ	٤ _{max}
-H	203.5	7,400	254	204
-NH3	203	7,500	254	169
-CH ₃	206.5	7,000	261	225
-I	207	7,000	257	700
-Cl	209.5	7,400	263.5	190
-Br	210	7,900	261	192
-OH	210.5	6,200	270	1,450
-OCH3	217	6,400	269	1,480
-SO ₂ NH ₂	217.5	9,700	264.5	740
-CN	224	13,000	271	1,000
-CO2 ⁻	224	8,700	268	560
-CO ₂ H	230	11,600	273	970
-NH ₂	230	8,600	280	1,430
-0-	235	9,400	287	2,600
-NHCOCH3	238	10,500]	1. .
-COCH3	245.5	9,800]]	2.
-CHO	249.5	11,400		(). ()
-NO ₂	268.5	7,800		3

4.3 Infrared Spectroscopy

4.3.1 Infrared Media

Table	4.6.	IR	media
		_	

	Usable I	Regions of the Spectrum:cn	n ⁻¹ (μm)
Substance	Near IR ¹	Mid IR	Far IR
KBr	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 250 (12.5-40)
KCl	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 526 (12.5-19)
CsBr	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 250 (12.5-40)
CsI	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 130 (12.5-77)
AgCl	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 530 (12.5-19)
TICI	10000 - 3333 (1-3)	5000 - 667 (2-15)	800 - 530 (12.5-19)
Polvethylene	$10000 - 3333 (1-3)^2$	2500 - 1540 (4-6.5)	625 - 278 (16-36)
		1250 - 741 (8-13.5)	
Polystyrene			400 - 278 (25-36) ³
Teflon		5000 - 1333 (2-7.5) ⁴	
		1111 - 690 (9-14.5)	
Kel-F		5000 - 1333 (2-7.5)	
		870 - 690 (11.5-14.5)	
Nuiol ⁵		5000 - 3333 (2-3)	667 - 286 (15-35)
rujor		2500 - 1540 (4-6.5)	,
		1250 - 667 (8-15)	
Fluorolube ⁶		5000 - 1430 (2-7)	
C ₄ Cl ₆ ⁷		5000 - 1667 (2-6)	
		1430 - 1250 (7-8)	

(From The Chemist's Companion, Gordon & Ford, Copyright © 1972 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.)

- 1. Very little work has been reported for near ir spectra of pellets or mulls; most measurements are made in solution.
- 2. For a 0.1 mm sheet when compensated; otherwise, interfering bands occur at 1.9, 2.3, and 2.6 2.8 $\mu m.$
- 3. For 0.025 mm sheet.
- 4. For 0.01 mm thick specimen; Teflon and Kel-F powders are very good for observing details in the OH stretch region.
- 5. Common brand of heavy mineral oil.
- 6. A saturated chlorofluorocarbon oil.
- 7. Hexachloro-1,3-butadiene.

32

Functional Group	Absorption Range (cm ⁻¹)	Example (cm ⁻¹)	Example Compound
SATURATED COMPOUNDS			
Linear			
CH ₃ asymmetric	2970-2950	2967	n-Octane
CH ₃ symmetric	2885-2865	2868	
CH ₃ asymmetric	1465-1440	1466	
CH ₃ symmetric	1380-1370	1380	
CH ₂ asymmetric	2930-2915	2920	n-Octane
CH ₂ symmetric	2860-2840	2854	
CH ₂	1480-1450	1470	
$(CH_2)n, n > 4$	723-720	723	n-Octane
na mananan an	735-725	733	n-Pentane
	755-735	741	2-Methylpentane
	800-770	781	n-Propane
Branched			
СН	2890	2890	Triphenylmethane
SPRIME 1	1340	1341	
(CH ₃) ₂ -CH-	1385-1380	1384	2-Methylheptane
an a	1372-1366	1366	
	1175-1165		
	1160-1140		
	922-917		
(CH ₃) ₃ -C-	1395-1380	1393	2,2-Dimethylhexane
	1375-1365	1366	
	1252-1245		
	1225-1195		
	930-925		
-C(CH ₃)-C(CH ₃)-	1165-1150	1160	3,4-Dimethylhexane
	1130-1120	1122	
	1080-1065	1071	
(CH ₃) ₂ -C-R ₂	1391-1381	1389	3,3-Dimethylhexane
	1220-1190	1192	8
	1195-1185	1189	
(C ₂ H ₅) ₂ -CH-R	1250	1250	3-Ethylhexane
	1150	1155	
	1130	1131	
С-С(СН3)-С	1160-1150		

4.3.2 Infrared Absorption Frequencies of Functional Groups

T-blad	
Table 4.1	(Continuea)
C I'	a

Cyclic Compounds			
Cyclopropane derivatives	3100-3072	3075	Cyclopropane
11	3033-2995	3028	
	1030-1000	1024	
Cyclobutane derivatives	3000-2975	2974	Cyclobutane
-	2924-2874	2896	1
	1000-960 or	5	
	930-890	901	
Cyclopentane derivatives	2959-2952	2951	Cyclopentane
- Realized Reconstructions (Alberta)	2870-2853	2871	
	1000-960	968	1
	930-890	894	
Cyclohexane derivatives	1055-1000	1038	Cyclohexane
	1015-950	1014	

Table 4.8. Unsaturated Compounds

Functional Group	Absorption Range (cm ⁻¹)	Example (cm ⁻¹)	Example Compound
UNSATURATED COMPOUNDS Isolated -C=C- bonds			
CH2=CH-	3095-3075	3096	1-Butene
	3030-2990	2994	
	1648-1638	1645	
	1420-1410	1420	
	1000-980	994	
	915-905	912	
CH ₂ =C	3095-3075	3096	Methylpropene
	1660-1640	1661	
	1420-1410	1420	
	895-885	887	
-CH=C	3040-3010	3037	3-Methyl-2-pentene
	1680-1665	1675	104 0
	1350-1340	1351	
	840-805	812	
-CH=CH- (cis)	3040-3010	3030	cis-2-Butene
	1660-1640	1661	smany soviality (56/20152/12)
	1420-1395	1406	
	730-675	675	

Table 4.8.	(Continued)
Contraction of the second second	and the second second second

-CH=CH-(trans)	3040-3010	3021	trans-2-Butene
	1700-1670	1701	
	1310-1295	1302	
	980-960	964	
Conjugated -C=C- bonds			
-C=C-C=C-	1629-1590	1592	1,3-Butadiene
	1820-1790	1821	
Allenic -C=C- bonds		Constanting of the	
-C=C=C-	1960-1940		
	1070-1060		
-C≡C- bonds			
-C≡C-	2270-2250	2268	2-Pentyne
-C=CH groups			
CH (stretch)	3320-3300*	3320	1-Butyne
-C=C-	2140-2100	2122	
CH (bend)	700-600		

N N

Table 4.9. Aromatic Compounds

Functional Group	Absorption Range (cm ⁻¹)	Example (cm ⁻¹)	Example Compound
AROMATIC COMPOUNDS			
General			
СН	3060-3010		
CH substitution bands			
overtones	2000-1650 (w)		
C=C	1620-1590 sp		
	1590-1560 sp		
СН	1510-1480 sp		
	1450 sp		
Mono-substitution	0. 2019200 10 1 2		
	1175-1125	1170	Toluene
	1110-1070	1088	
	1070-1000	1032	
	765-725	728 (s)	
	720-690	693 (s)	
Di-substitution			
ortho	1225-1175	1185	o-Xylene
	1125-1090	1121	
	1070-1000	1053	
	765-735	741 (s)	
meta	1175-1125	1171	<i>m</i> -Xylene
	1110-1070	1095	200
	1070-1000	1039	
	900-770	769 (s)	
	710-690	690 (s)	