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Preface

This is a book about surveys. It describes the whole survey process, from design to
publication. It not only presents an overview of the theory from a statistical
perspective, but also pays attention to practical problems. Therefore, it can be seen
as a handbook for those involved in practical survey research. This includes survey
researchers working in official statistics (e.g., in national statistical institutes),
academics, and commercial market research.

The book is the result of many years of research in official statistics at Statistics
Netherlands. Since the 1980s there have been important developments in computer
technology that have had a substantial impact on the way in which surveys are
carried out. These developments have reduced costs of surveys and improved the
quality of survey data. However, there are also new challenges, such as increasing
nonresponse rates.

The book starts by explaining what a survey is, and why it is useful. There is a
historic overview describing how the first ideas have developed since 1895. Basic
concepts such as target population, population parameters, variables, and samples
are defined, leading to the Horvitz—Thompson estimator as the basis for estimation
procedures.

The questionnaire is the measuring instrument used in a survey. Unfortunately, it
is not a perfect instrument. A lot can go wrong in the process of asking and
answering questions. Therefore, it is important to pay careful attention to the design
of the questionnaire. The book describes rules of thumb and stresses the importance
of questionnaire testing.

Taking the Horvitz—Thompson estimator as a starting point, a number of
sampling designs are discussed. It begins with simple sampling designs such as
simple random sampling, systematic sampling, sampling with unequal probabilities,
and systematic sampling with unequal probabilities. This is followed by some more
complex sampling designs that use simple designs as ingredients: stratified
sampling, cluster sampling, two-stage sampling, and two-dimensional sampling
(including sampling in space and time).

Several estimation procedures are described that use more information than the
Horvitz—Thompson estimator. They are all based on a general descriptive model

ix
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using auxiliary information to estimate population characteristics. Estimators
discussed include the direct estimator, the ratio estimator, the regression estimator,
and the poststratification estimator.

The book pays attention to various ways of data collection. It shows how
traditional data collection using paper forms (PAPI) evolved into computer-assisted
data collection (CAPI, CATI, etc.). Also, online surveys are introduced. Owing to its
special nature and problems, and large popularity, online surveys are discussed
separately and more extensively. Particularly, attention is paid to undercoverage and
self-selection problems. It is explored whether adjustment weighting may help
reduce problems. A short overview is given of the Blaise system. It is the de facto
software standard (in official statistics) for computer-assisted interviewing.

A researcher carrying out a survey can be confronted with many practical
problems. A taxonomy of possible errors is described. Various data editing
techniques are discussed to correct detected errors. Focus is on data editing in large
statistical institutes. Aspects discussed include the Felligi-Holt methodology,
selective editing, automated editing, and macroediting. Also, a number of
imputation techniques are described (including the effect they may have on the
properties of estimators).

Nonresponse is one of the most important problems in survey research. The book
pays a lot of attention to this problem. Two theoretical models are introduced to
analyze the effects of nonresponse: the fixed response model and the random
response model. To obtain insight into the possible effects of nonresponse, analysis
of nonresponse is important. An example of such an analysis is given. Two
approaches are discussed to reduce the negative effects of nonresponse: a follow-up
survey among nonrespondents and the Basic Question Approach.

Weighting adjustment is the most important technique to correct a possible
nonresponse bias. Several adjustment techniques are described: simple poststrati-
fication, linear weighting (as a form of generalized regression estimation), and
multiplicative weighting (raking ratio estimation, iterative proportional fitting). A
short overview of calibration estimation is included. It provides a general theoretical
framework for adjustment weighting. Also, some attention is paid to propensity
weighting.

The book shows what can go wrong if in the analysis of survey data not all aspects
of the survey design and survey process are taken into account (e.g., unequal
probability sampling, imputation, weighting). The survey results will be published
in some kind of survey report. Checklists are provided of what should be included in
such a report. The book also discusses the use of graphs in publications and how to
prevent misuse.

The final chapter of the book is devoted to disclosure control. It describes the
problem of prevention of disclosing sensitive information in survey data files. It
shows how simple disclosure can be accomplished. It gives some theory to estimate
disclosure risks. And it discusses some techniques to prevent disclosure.

The fictitious country of Samplonia is introduced in the book. Data from this
country are used in many examples throughout the book. There is a small computer
program SimSam that can be downloaded from the book website (www.applied-
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survey-methods.com). With this program, one can simulate samples from finite
populations and show the effects of sample size, use of different estimation
procedures, and nonresponse.

A demo version of the Blaise system can also be downloaded from the website.
Small and simple surveys can be carried out with this is demo version.

The website www.applied-survey-methods.com gives an overview of some basic
concepts of survey sampling. It includes some dynamic demonstrations and has
some helpful tools, for example, to determine the sample size.

JELKE BETHLEHEM



CHAPTER1

The Survey Process

1.1 ABOUT SURVEYS

We live in an information society. There is an ever-growing demand for statistical
information about the economic, social, political, and cultural shape of countries. Such
information will enable policy makers and others to make informed decisions for a
better future. Sometimes, such statistical information can be retrieved from existing
sources, for example, administrative records. More often, there is a lack of such
sources. Then, a survey is a powerful instrument to collect new statistical information.

A survey collects information about a well-defined population. This population
need not necessarily consist of persons. For example, the elements of the population
can be households, farms, companies, or schools. Typically, information is collected
by asking questions to the representatives of the elements in the population. To do this
in a uniform and consistent way, a questionnaire is used.

One way to obtain information about a population is to collect data about all its
elements. Such an investigation is called a census or complete enumeration. This
approach has a number of disadvantages:

e It is very expensive. Investigating a large population involves a lot of people
(e.g., interviewers) and other resources.

e It is very time-consuming. Collecting and processing a large amount of data
takes time. This affects the timeliness of the results. Less timely information is
less useful.

e Largeinvestigations increase the response burden on people. As many people are
more frequently asked to participate, they will experience it more and more as a
burden. Therefore, people will be less and less inclined to cooperate.

A survey is a solution to many of the problems of a census. Surveys collect
information on only a small part of the population. This small part is called the sample.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.



2 THE SURVEY PROCESS

In principle, the sample provides information only on the sampled elements of the
population. No information will be obtained on the nonsampled elements. Still, if
the sample is selected in a “clever” way, it is possible to make inference about the
population as a whole. In this context, “clever” means that the sample is selected using
probability sampling. A random selection procedure uses an element of chance to
determine which elements are selected, and which are not. If it is clear how this
selection mechanism works and it is possible to compute the probabilities of being
selected in the sample, survey results allow making reliable and precise statements
about the population as a whole.

At first sight, the idea of introducing an element of uncertainty in an investigation
seems odd. It looks like magic that it is possible to say something about a complete
population by investigating only a small randomly selected part of it. However, there
is no magic about sample surveys. There is a well-founded theoretical framework
underlying survey research. This framework will be described in this book.

1.2 A SURVEY, STEP-BY-STEP

Carrying out a survey is often a complex process that requires careful consideration
and decision making. This section gives a global overview of the various steps in the
process, the problems that may be encountered, and the decisions that have to be made.
The rest of the book describes these steps in much more detail. Figure 1.1 shows the
steps in the survey process.

The first step in the survey process is survey design. Before data collection can start,
a number of important decisions have to be made. First, it has to become clear which
population will be investigated (the target population). Consequently, this is the
population to which the conclusions apply. Next, the general research questions must

| Survey design ‘

!

| Data collection ‘

|

| Data editing ‘

|

| Nonresponse correction ‘

|

| Analysis ‘

|

| Publication ‘

Figure 1.1 The survey process.



A SURVEY, STEP-BY-STEP 3

be translated into specification of population characteristics to be estimated. This
specification determines the contents of the questionnaire. Furthermore, to select a
proper sample, a sampling design must be defined, and the sample size must be
determined such that the required accuracy of the results can be obtained.

The second step in the process is data collection. Traditionally, in many surveys
paper questionnaires were used. They could be completed in face-to-face interviews:
interviewers visited respondents, asked questions, and recorded the answers on
(paper) forms. The quality of the collected data tended to be good. However, since
face-to-face interviewing typically requires a large number of interviewers, who all
may have to do much traveling, it was expensive and time-consuming. Therefore,
telephone interviewing was often used as an alternative. The interviewers called the
respondents from the survey agency, and thus no more traveling was necessary.
However, telephone interviewing is not always feasible: only connected (or listed)
people can be contacted, and the questionnaire should not be too long or too
complicated. A mail survey was cheaper still: no interviewers at all were needed.
Questionnaires were mailed to potential respondents with the request to return the
completed forms to the survey agency. Although reminders could be sent, the
persuasive power of the interviewers was lacking, and therefore response tended
to be lower in this type of survey, and so was the quality of the collected data.

Nowadays paper questionnaires are often replaced with electronic ones. Computer-
assisted interviewing (CAI) allows to speed up the survey process, improve the quality
of the collected data, and simplify the work of the interviewers. In addition, computer-
assisted interviewing comes in three forms: computer-assisted personal interviewing
(CAPY), computer-assisted telephone interviewing (CATI), and computer-assisted
self-interviewing (CASI). More and more, the Internet is used for completing survey
questionnaires. This is called computer-assisted web interviewing (CAWI). It can be
seen as a special case of CASI.

Particularly if the data are collected by means of paper questionnaire forms, the
completed questionnaires have to undergo extensive treatment. To produce high-
quality statistics, itis vital to remove any error. This step of the survey process is called
data editing. Three types of errors can be distinguished: A range error occursifa given
answer is outside the valid domain of answers; for example, a person with an age of
348 years. A consistency error indicates an inconsistency in the answers to a set of
questions. An age of 8 years may be valid, a marital status “married” is not uncommon,
but if both answers are given by the same person, there is something definitely wrong.
The third type of error is a routing error. This type of error occurs if interviewers
or respondents fail to follow the specified branch or skip instructions; that is, the route
through the questionnaire is incorrect: irrelevant questions are answered, or relevant
questions are left unanswered.

Detected errors have to be corrected, but this can be very difficult if it has to be done
afterward, at the survey agency. In many cases, particularly for household surveys,
respondents cannot be contacted again, so other ways have to be found out to solve
the problem. Sometimes, it is possible to determine a reasonable approximation of
a correct value by means of an imputation procedure, but in other cases an incorrect
value is replaced with the special code indicating the value is “unknown.”
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After data editing, the result is a “clean” data file, that is, a data file in which no
errors can be detected any more. However, this file is not yet ready for analysis. The
collected data may not be representative of the population because the sample is
affected by nonresponse; that is, for some elements in the sample, the required
information is not obtained. If nonrespondents behave differently with respect to the
population characteristics to be investigated, the results will be biased. To correct for
unequal selection probabilities and nonresponse, a weighting adjustment procedure is
often carried out. Every record is assigned some weight. These weights are computed
in such a way that the weighted sample distribution of characteristics such as gender,
age, marital status, and region reflects the known distribution of these characteristics
in the population.

In the case of item nonresponse, that is, answers are missing on some questions,
not all questions, an imputation procedure can also be carried out. Using some kind of
model, an estimate for a missing value is computed and substituted in the record.

Finally, a data file is obtained that is ready for analysis. The first step in the analysis
will probably nearly always be tabulation of the basic characteristics. Next, a more
extensive analysis will be carried out. Depending on the nature of the study, this will
take the form of an exploratory analysis or an inductive analysis. An exploratory
analysis will be carried out if there are no preset ideas, and the aim is to detect possibly
existing patterns, structures, and relationships in the collected data. To make inference
on the population as a whole, an inductive analysis can be carried out. This can take
the form of estimation of population characteristics or the testing of hypotheses that
have been formulated about the population.

The survey results will be published in some kind of report. On the one hand, this
report must present the results of the study in a form that makes them readable for
nonexperts in the field of survey research. On the other hand, the report must contain
a sufficient amount of information for experts to establish whether the study was
carried out properly and to assess the validity of the conclusions.

Carrying out a survey is a time-consuming and expensive way of collecting
information. If done well, the reward is a data file full of valuable information. It
is not unlikely that other researchers may want to use these data in additional analysis.
This brings up the question of protecting the privacy of the participants in the survey.
Is it possible to disseminate survey data sets without revealing sensitive information
of individuals? Disclosure control techniques help establish disclosure risks and
protect data sets against disclosing such sensitive information.

1.3 SOME HISTORY OF SURVEY RESEARCH

The idea of compiling statistical overviews of the state of affairs in a country is already
very old. As far back as Babylonian times, censuses of agriculture were taken. This
happened fairly shortly after the art of writing was invented. Ancient China counted its
people to determine the revenues and the military strength of its provinces. There are
also accounts of statistical overviews compiled by Egyptian rulers long before Christ.
Rome regularly took a census of people and of property. The data were used to establish
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the political status of citizens and to assess their military and tax obligations to the
state. And of course, there was numbering of the people of Israel, leading to the birth of
Jesus in the small town of Bethlehem.

In the Middle Ages, censuses were rare. The most famous one was the census
of England taken by the order of William the Conqueror, King of England. The
compilation of this Domesday Book started in the year 1086 AD. The book records a
wealth of information about each manor and each village in the country. There is
information about more than 13,000 places, and on each county there are more than
10,000 facts. To collect all these data, the country was divided into anumber of regions,
and in each region, a group of commissioners was appointed from among the greater
lords. Each county within a region was dealt with separately. Sessions were held
in each county town. The commissioners summoned all those required to appear
before them. They had prepared a standard list of questions. For example, there were
questions about the owner of the manor, the number of free men and slaves, the area of
woodland, pasture, and meadow, the number of mills and fishponds, to the total value,
and the prospects of getting more profit. The Domesday Book still exists, and county
data files are available on CD-ROM or the Internet.

Another interesting example can be found in the Inca Empire that existed between
1000 and 1500 AD in South America. Each Inca tribe had its own statistician, called
Quipucamayoc (Fig. 1.2). This man kept records of, for example, the number of
people, the number of houses, the number of llamas, the number of marriages, and
the number of young men who could be recruited to the army. All these facts were
recorded on a quipu, a system of knots in colored ropes. A decimal system was used
for this.
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Figure 1.2 The Quipucamayoc, the Inca statistician. Reprinted by permission of ThiemeMeulenhoff.
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At regular intervals, couriers brought the quipus to Cusco, the capital of the
kingdom, where all regional statistics were compiled into national statistics. The
system of Quipucamayocs and quipus worked remarkably well. Unfortunately,
the system vanished with the fall of the empire.

An early census also took place in Canada in 1666. Jean Talon, the intendant of
New France, ordered an official census of the colony to measure the increase in
population since the founding of Quebec in 1608. The enumeration, which recorded
atotal of 3215 people, included the name, age, gender, marital status, and occupation
of every person. The first censuses in Europe were undertaken by the Nordic countries:
The first census in Sweden—Finland took place in 1746. It had already been suggested
earlier, but the initiative was rejected because “it corresponded to the attempt of King
David who wanted to count his people.”

The first known attempt to make statements about a population using only
information about part of it was made by the English merchant John Graunt
(1620-1674). In his famous tract, Graunt describes a method to estimate the popula-
tion of London on the basis of partial information (Graunt, 1662). Graunt surveyed
families in a sample of parishes where the registers were well kept. He found that on
average there were 3 burials per year in 11 families. Assuming this ratio to be more
or less constant for all parishes, and knowing the total number of burials per year in
London to be about 13,000, he concluded that the total number of families was
approximately 48,000. Putting the average family size at 8, he estimated the popula-
tion of London to be 384,000. Although Graunt was aware of the fact that averages
such as the number of burials per family varied in space and time, he did not make
any provisions for this phenomenon. Lacking a proper scientific foundation for his
method, John Graunt could not make any statement about the accuracy of his method.

Another survey-like method was applied more than a century later. Pierre Simon
Laplace (1749-1827) realized that it was important to have some indication of the
accuracy of the estimate of the French population. Laplace (1812) implemented
an approach that was more or less similar to that of John Graunt. He selected
30 departments distributed over the area of France. Two criteria controlled the
selection process. First, he saw to it that all types of climate were represented.
In this way, he could compensate for climate effects. Second, he selected departments
for which the mayors of the communes could provide accurate information. By using
the central limit theorem, he proved that his estimator had a normal distribution.
Unfortunately, he overlooked the fact that he used a cluster sample instead of a simple
random sample, and moreover communes were selected within departments purpo-
sively, and not at random. These problems made the application of the central limit
theorem at least doubtful. The work of Laplace was buried in oblivion in the course
of the nineteenth century.

In the period until the late 1880s, there were many partial investigations. These
were statistical inquiries in which only a part of human population was investigated.
The selection from the population came to hand incidentally, or was made specifically
for the investigation. In general, the selection mechanism was unclear and undocu-
mented. While by that time considerable progress had already been made in the areas
of probability theory and mathematical statistics, little attention was paid to applying
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these theoretical developments to survey sampling. Nevertheless, gradually proba-
bility theory found its way in official statistics. An important role was played by the
Dutch/Belgian scientist, Lambert Adolphe Jacques Quetelet (1796—1874). He was
involved in the first attempt in 1826 to establish The Netherlands Central Bureau of
Statistics. In 1830, Belgium separated from The Netherlands, and Quetelet continued
his work in Belgium.

Quetelet was the supervisor of statistics for Belgium (from 1830), and in this
position, he developed many of the rules governing modern census taking. He also
stimulated statistical activities in other countries. The Belgian census of 1846, directed
by him, has been claimed to be the most influential in its time because it introduced
careful analysis and critical evaluation of the data compiled. Quetelet dealt only with
censuses and did not carry out any partial investigations.

According to Quetelet, many physical and moral data have a natural variability.
This variability can be described by a normal distribution around a fixed, true value.
He assumed the existence of something called the true value. He proved that this true
value could be estimated by taking the mean of a number of observations. Quetelet
introduced the concept of average man (“’homme moyenne”) as a person of which
all characteristics were equal to the true value. For more information, see Quetelet
(1835, 1846).

In the second half of the nineteenth century, so-called monograph studies or
surveys became popular. They were based on Quetelet’s idea of the average man
(see Desrosieres, 1998). According to this idea, it suffices to collect information only
on typical people. Investigation of extreme people was avoided. This type of inquiry
was still applied widely at the beginning of the twentieth century. It was an “officially”
accepted method.

Industrial revolution was also an important era in the history of statistics. It brought
about drastic and extensive changes in society, as well as in science and technology.
Among many other things, urbanization started from industrialization, and also
democratization and the emerging social movements at the end of the industrial
revolution created new statistical demands. The rise of statistical thinking originated
partly from the demands of society and partly from work and innovations of men
such as Quetelet. In this period, the foundations for many principles of modern social
statistics were laid. Several central statistical bureaus, statistical societies, confer-
ences, and journals were established soon after this period.

The development of modern sampling theory started around the year 1895. In that
year, Anders Kiaer (1895, 1997), the founder and first director of Statistics Norway,
published his Representative Method. It was a partial inquiry in which a large number
of persons were questioned. This selection should form a “miniature” of the popula-
tion. Persons were selected arbitrarily but according to some rational scheme based on
general results of previous investigations. Kiaer stressed the importance of represen-
tativeness. His argument was that if a sample was representative with respect to
variables for which the population distribution was known, it would also be represen-
tative with respect to the other survey variables.

Kiaer was way ahead of his time with ideas about survey sampling. This becomes
clear in the reactions on the paper he presented at a meeting of the International
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Statistical Institute in Bern in 1895. The last sentence of a lengthy comment by the
influential Bavarian statistician von Mayr almost became a catch phrase: “Il faut rester
ferme et dire: pas de calcul 1a ou 1’obervation peut étre faite.” The Italian statistician
Bodio supported von Mayr’s views. The Austrian statistician Rauchberg said
that further discussion of the matter was unnecessary. And the Swiss statistician
Milliet demanded that such incomplete surveys should not be granted a status equal
to “la statistique serieuse.”

A basic problem of the representative method was that there was no way of
establishing the accuracy of estimates. The method lacked a formal theory of inference.
It was Bowley (1906) who made the first steps in this direction. He showed that for
large samples, selected at random from the population, the estimate had an approxi-
mately normal distribution.

From this moment on, there were two methods of sample selection. The first one
was Kiaer’s representative method, based on purposive selection, in which represen-
tativeness played a crucial role, and for which no measure of the accuracy of the
estimates could be obtained. The second was Bowley’s approach, based on simple
random sampling, for which an indication of the accuracy of estimates could be
computed. Both methods existed side by side for a number of years. This situation
lasted until 1934, when the Polish scientist Jerzy Neyman published his now famous
paper (see Neyman, 1934). Neyman developed a new theory based on the concept of
the confidence interval. By using random selection instead of purposive selection,
there was no need any more to make prior assumptions about the population.

Neyman’s contribution was not restricted to the confidence interval that he
invented. By making an empirical evaluation of Italian census data, he could prove
that the representative method based on purposive sampling failed to provide
satisfactory estimates of population characteristics. The result of Neyman’s evaluation
of purposive sampling was that the method fell into disrepute in official statistics.

Random selection became an essential element of survey sampling. Although
theoretically very attractive, it was not very simple to realize this in practical
situations. How to randomly select a sample of thousands of persons from a population
of several millions? How to generate thousands of random numbers? To avoid this
problem, often systematic samples were selected. Using a list of elements in the
population, a starting point and a step size were specified. By stepping through this
list from the starting point, elements were selected. Provided the order of the elements
is more or less arbitrary, this systematic selection resembles random selection.
W.G. and L.H. Madow made the first theoretical study of the precision of systematic
sampling only in 1944 (see Madow and Madow, 1944). The use of the first tables of
random numbers published by Tippet (1927) also made it easier to select real random
samples.

In 1943, Hansen and Hurvitz published their theory of multistage samples.
According to their theory, in the first stage, primary sampling units are selected
with probabilities proportional to their size. Within selected primary units, a fixed
number of secondary units are selected. This proved to be a useful extension of the
survey sampling theory. On the one hand, this approach guaranteed every secondary
unit to have the same probability of selection in the sample, and on the other, the
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sampled units were distributed over the population in such a way that the fieldwork
could be carried out efficiently.

The classical theory of survey sampling was more or less completed in 1952.
Horvitz and Thompson (1952) developed a general theory for constructing unbiased
estimates. Whatever the selection probabilities are, as long as they are known and
positive, it is always possible to construct a reliable estimate. Horvitz and Thompson
completed the classical theory, and the random sampling approach was almost
unanimously accepted. Most of the classical books about sampling were also published
by then: Cochran (1953), Deming (1950), Hansen et al. (1953), and Yates (1949).

Official statistics was not the only area where sampling was introduced. Opinion
polls can be seen as a special type of sample surveys, in which attitudes or opinions
of a group of people are measured on political, economic, or social topics. The history
of opinion polls in the United States goes back to 1824, when two newspapers, the
Harrisburg Pennsylvanian and the Raleigh Star, attempted to determine political
preferences of voters before the presidential election. The early polls did not pay much
attention to sampling. Therefore, it was difficult to establish the accuracy of results.
Such opinion polls were often called straw polls. This expression goes back to rural
America. Farmers would throw a handful of straws into the air to see which way the
wind was blowing. In the 1820s, newspapers began doing straw polls in the streets to
see how political winds blew.

It took until the 1920s before more attention was paid to sampling aspects. At that
time, Archibald Crossley developed new techniques for measuring American public’s
radio listening habits. And George Gallup worked out new ways to assess reader
interest in newspaper articles (see, for example, Linehard, 2003). The sampling
technique used by Gallup was quota sampling. The idea was to investigate groups
of people who were representative for the population. Gallup sent out hundreds of
interviewers across the country. Each interviewer was given quota for different types
of respondents: so many middle-class urban women, so many lower class rural men,
and so on. In total, approximately 3000 interviews were carried out for a survey.

Gallup’s approach was in great contrast with that of the Literary Digest magazine,
which was at that time the leading polling organization. This magazine conducted
regular “America Speaks” polls. It based its predictions on returned ballot forms that
were sent to addresses obtained from telephone directories and automobile registra-
tion lists. The sample size for these polls was very large, something like 2 million
people.

The presidential election of 1936 turned out to be decisive for both approaches
(see Utts, 1999). Gallup correctly predicted Franklin Roosevelt to be the new
President, whereas Literary Digest predicted that Alf Landon would beat Franklin
Roosevelt. How could a prediction based on such a large sample be so wrong?
The explanation was a fatal flaw in the Literary Digest’s sampling mechanism. The
automobile registration lists and telephone directories were not representative
samples. In the 1930s, cars and telephones were typically owned by the middle
and upper classes. More well-to-do Americans tended to vote Republican and the less
well-to-do were inclined to vote Democrat. Therefore, Republicans were overrepre-
sented in the Literary Digest sample.
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Asaresult of this historic mistake, the Literary Digest magazine ceased publication
in 1937. And opinion researchers learned that they should rely on more scientific ways
of sample selection. They also learned that the way a sample is selected is more
important than the size of the sample.

1.4 THIS BOOK

This book deals with the theoretical and practical aspects of sample survey sampling.
It follows the steps in the survey process described in Section 1.1.

Chapter 2 deals with various aspects related to the design of a survey. Basic
concepts are introduced, such as population, population parameters, sampling,
sampling frame, and estimation. It introduces the Horvitz—Thompson estimator as
the basis for estimation under different sampling designs.

Chapter 3 is devoted to questionnaire designing. It shows the vital importance of
properly defined questions. Its also discusses various question types, routing (branch-
ing and skipping) in the questionnaire, and testing of questionnaires.

Chapters 4 and 5 describe a number of sampling designs in more detail. Chapter 3
starts with some simple sampling designs: simple random sampling, systematic
sampling, unequal probability sampling, and systematic sampling with unequal
probabilities. Chapter 4 continues with composite sampling designs: stratified sam-
pling, cluster sampling, two-stage sampling, and sampling in space and time.

Chapter 6 presents a general framework for estimation. Starting point is a linear
model that explains the target variable of a survey from one or more auxiliary
variables. Some well-known estimators, such as the ratio estimator, the regression
estimator, and the poststratification estimator, emerge as special cases of this
model.

Chapter 7 is about data collection. It compares traditional data collection with paper
questionnaire forms with computer-assisted data collection. Advantages and disad-
vantages of various modes of data collection are discussed. To give some insight into
the attractive properties of computer-assisted interviewing, a software package is
described that can be seen as the de facto standard for CAl in official statistics. It is the
Blaise system.

Chapter 8 is devoted to the quality aspects. Collected survey data always contain
errors. This chapter presents a classification of things that can go wrong. Errors can
have a serious impact on the reliability of survey results. Therefore, extensive error
checking must be carried out. It is also shown that correction of errors is not always
simple. Imputation is discussed as one of the error correction techniques.

Nonresponse is one of the mostimportant problems in survey research. Nonresponse
can cause survey estimates to be seriously biased. Chapter 9 describes the causes of
nonresponse. It also incorporates this phenomenon in sampling theory, thereby
showing what the effects of nonresponse can be. Usually, it is not possible to avoid
nonresponse in surveys. This calls for techniques that attempt to correct the negative
effect of nonresponse. Two approaches are discussed in this chapter: the follow-up
survey and the Basic Question Approach.
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Adjustment weighting is one of the most important nonresponse correction tech-
niques. This technique assigns weights to responding elements. Overrepresented
groups get a small weight and underrepresented groups get a large weight.
Therefore, the weighted sample becomes more representative for the population,
and the estimates based on weighted data have a smaller bias than estimates based
on unweighted data. Several adjustment weighting techniques are discussed in
Chapter 10. The simplest one is poststratification. Linear weighting and multiplicative
weighting are techniques that can be applied when poststratification is not possible.

Chapter 11 is devoted to online surveys. They become more and more popular,
because such surveys are relatively cheap and fast. Also, itis relatively simple to obtain
cooperation from large groups of people. However, there are also serious methodo-
logical problems. These are discussed in this chapter.

Chapter 12 is about the analysis of survey data. Due to their special nature
(unequal selection probabilities, error correction with imputation, and nonresponse
correction by adjustment weighting), analysis of such data is not straightforward.
Standard software for statistical analysis may not interpret these data correctly.
Therefore, analysis techniques may produce wrong results. Some issues are
discussed in this chapter. Also, attention is paid to the publication of survey results.
In particular, the advantages and disadvantages of the use of graphs in publications are
described.

The final chapter is devoted to statistical disclosure control. It is shown how large
the risks of disclosing sensitive information can be. Some techniques are presented
to estimate these risks. It becomes clear that it is not easy to reduce the risks without
affecting the amount of information in the survey data.

1.5 SAMPLONIA

Examples will be used extensively in this book to illustrate concepts from survey
theory. To keep these examples simple and clear, they are all taken from an artificial
data set. The small country of Samplonia has been created, and a file with data for all
inhabitants has been generated (see Fig. 1.3). Almost all examples of sampling designs
and estimation procedures are based on data taken from this population file.

Samplonia is a small, independent island with a population of 1000 souls.
A mountain range splits the country into the northern province of Agria and the
southern province of Induston. Agria is rural province with mainly agricultural
activities. The province has three districts. Wheaton is the major supplier of vege-
tables, potatoes, and fruits. Greenham is known for growing cattle. Newbay is a fairly
new area that is still under development. Particularly, young farmers from Wheaton
and Greenham attempt to start a new life here.

The other province, Induston, is for a large part an industrial area. There are four
districts. Smokeley and Mudwater have a lot of industrial activity. Crowdon is a
commuter district. Many of its inhabitants work in Smokeley and Mudwater. The small
district of Oakdale is situated in the woods near the mountains. This is where the rich
and retired live.
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Figure 1.3 The country of Samplonia. Reprinted by permission of Imre Kortbeek.

Samplonia has a central population register. This register contains information
such as district of residence, age, and gender for each inhabitant. Other variables
that will be used are employment status (has or does not have a job) and income (in
Samplonian dollars). Table 1.1 contains the population distribution. Using an

Table 1.1 The Population of Samplonia by Province and District

Province/District Inhabitants
Agria 293
Wheaton 144
Greenham 94
Newbay 55
Induston 707
Oakdale 61
Smokeley 244
Crowdon 147
Mudwater 255
Total 1000
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Table 1.2 Milk Production by Dairy Farms in Samplonia

Mean  Standard Deviation  Minimum  Maximum

Milk production (liters per day)  723.5 251.9 10.0 1875.0
Area of grassland (hectares) 114 2.8 4.0 22.0
Number of cows 28.9 9.0 8.0 67.0

artificial data file has the advantage that all population data are exactly known.
Therefore, it is possible to compare computed estimates with true population
figures. The result of such a comparison will make clear how well an estimation
procedure performs.

Some survey techniques are illustrated by using another artificial example. There
are 200 dairy farms in the rural part of Samplonia. Surveys are regularly conducted
with as objective estimation of the average daily milk production per farm. There is a
register containing the number of cows and the total area of grassland for each farm.
Table 1.2 summarizes these variables.

Included in the book is the software package SimSam. This is a program for
simulating samples from finite populations. By repeating the selection of a sample
and the computation of an estimate a large number of times, the distribution of
the estimates can be characterized in both graphical and numerical ways. SimSam
can be used to simulate samples from the population of Samplonia. It supports several
of the sampling designs and estimation procedures used in this book. It is a useful tool
to illustrate the behavior of various sampling strategies. Moreover, it is also possible
to generate nonresponse in the samples. Thus, the effect of nonresponse on estimation
procedures can be studied.

EXERCISES

1.1 Thelastcensus in The Netherlands took place in 1971. One of the reasons to stop
it was the concern about a possible refusal of a substantial group of people to
participate. Another was that a large amount of information could be obtained
from other sources, such as population registers. Which of statements below
about a census is correct?

a. In fact, a census is a sample survey, because there are always people who
refuse to cooperate.

b. A census is not a form of statistical research because the collected data are
used only for administrative purposes.

c. A census is a complete enumeration of the population because, in principle,
every member of the population is asked to provide information.

d. The first census was carried out by John Graunt in England around
1662.



14

1.2

1.3

14

1.5

THE SURVEY PROCESS

The authorities in the district of Oakdale want to know how satisfied the citizens
are with the new public swimming pool. It is decided to carry out a survey. What
would be the group of people to be sampled?

a.
b.
c.

d.

All inhabitants of Oakdale.
All adult inhabitants of Oakdale.

All inhabitants of Oakdale who have visited the swimming pool in a specific
week.

All inhabitants of Oakdale who have an annual season ticket.

No samples were selected by national statistical offices until the year 1895.
Before that data collection was mainly based on complete enumeration. Why
did they not use sampling techniques?

a.
b.

c.
d.

The idea of investigating just a part of the population had not yet emerged.

They considered it improper to replace real data by mathematical
manipulations.

Probability theory had not been invented yet.
National statistical offices did not yet exist.

Arthur Bowley suggested in 1906 to use random sampling to select a sample
from a population. Why was this idea so important?

a.

b.

It made it possible to introduce the “average man” (“I’homme moyenne”) in
statistics.

It was not important because it is too difficult to select probability samples in
practice.

It made it possible to carry out partial investigations.

. It made it possible to apply probability theory to determine characteristics of

estimates.

Why could Gallup provide a better prediction of the outcome of the 1936
Presidential election than the poll of the Literary Digest magazine?

a.
b.
c.
d.

Gallup used automobile registration lists and telephone directories.
Gallup used a much larger sample than Literary Digest magazine.

Gallup used quota sampling, which resulted in a more representative sample.
Gallup interviewed people only by telephone.



CHAPTER?2

Basic Concepts

2.1 THE SURVEY OBJECTIVES

The survey design starts by specifying the survey objectives. These objectives may
initially be vague and formulated in terms of abstract concepts. They often take the
form of obtaining the answer to a general question. Examples are

e Do people feel safe on the streets?
e Has the employment situation changed in the country?
e Make people more and different use of the Internet?

Such general questions have to be translated into a more concrete survey instru-
ment. Several aspects have to be addressed. A number of them will be discussed in this
chapter:

e The exact definition of the population that has to be investigated (the target
population).

e The specification of what has to be measured (the variables) and what has to be
estimated (the population characteristics).

e Where the sample is selected from (the sampling frame).

e How the sample is selected (the sampling design and the sample size).

It is important to pay careful attention to these initial steps. Wrong decisions have
their impact on all subsequent phases of the survey process. In the end, it may turn out
that the general survey questions have not been answered.

Surveys can serve several purposes. One purpose is to explore and describe a
specific population. The information obtained must provide more insight into the
behavior or attitudes of the population. Such a survey should produce estimates of

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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all kinds of population characteristics. Another purpose could be to test a
hypothesis about a population. Such a survey results in a statement that the
hypothesis is rejected or not. Due to conditions that have to be satisfied, hypothesis
testing may require a different survey design. This book focuses on descriptive
surveys.

2.2 THE TARGET POPULATION

Defining the target population of the survey is one of the first steps in the survey design
phase. The target population is the population that should be investigated. It is also the
population to which the outcomes of the survey refer. The elements of the target
population are often people, households, or companies. So, the population does not
necessarily consist of persons.

Definition 2.1 The target population U is a finite set
U={1,2,...,N} (2.1)

of N elements. The quantity N is the size of the population. The numbers 1,2,...,N
denote the sequence numbers of the elements in the target population. When the text
refers to “element k,” this should be understood as the element with sequence number
k, where k can assume a value in the range from 1 to N.

It is important to define the target population properly. Mistakes made during this
phase will affect the outcomes of the survey. Therefore, the definition of the target
population requires careful consideration. It must be determined without error
whether an element encountered “in the field” does or does not belong to the target
population.

Take, for example, alabor force survey. What is the target population of this survey?
Every inhabitant of the country above or below a certain age? What about foreigners
temporarily working in the country? What about natives temporarily working abroad?
What aboutillegal immigrants? If these questions cannot be answered unambiguously,
errors can and will be made in the field. People are incorrectly excluded from or
included in the survey. Conclusions drawn from the survey results may apply to a
different population.

A next step in the survey design phase is to specify the variables to be measured.
These variables measure characteristics of the elements in the target population. Two
types of variables are distinguished: target variables and auxiliary variables.

The objective of a survey usually is to provide information about certain aspects
of the population. How is the employment situation? How do people spend their
holidays? What about Internet penetration? Target variables measure characteristics
of the elements that contribute to answering these general survey questions. Also,
these variables provide the building blocks to get insight into the behavior or
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attitudes of the population. For example, the target variables of a holiday survey
could be the destination of a holiday trip, the length of the holiday, and the amount of
money spent.

Definition 2.2 A target variable will be denoted by the letter Y, and its values for the
elements in the target population by

Y1, Y5, ..., Yy. (2.2)

So Yy is the value of Y for element k, where k = 1,2, . . ., N. Forexample, if Y represents
the income of a person, Y; is the income of person 1, ¥, is the income of person 2,
and so on.

For reasons of simplicity, it is assumed that there is only one target variable Y in the
survey. Of course, many surveys will have more than just one.

Other variables than just the target variables will usually be measured in a survey.
At first sight, they may seem unrelated to the objectives of the survey. These variables
are called auxiliary variables. They often measure background characteristics of the
elements. Examples for a survey among persons could be gender, age, marital status,
and region. Such auxiliary variables can be useful for improving the precision of
estimates (see Chapter 6). They also play a role in correcting the negative effects of
nonresponse (see Chapter 10). Furthermore, they offer possibilities for a more detailed
analysis of the survey results.

Definition 2.3  An auxiliary variable is denoted by the letter X, and its values in the
target population by

X1, X, ..., Xy (2.3)

So X}, is the value of variable X for element k, where k=1, 2, ..., N.

Data that have been collected in the survey must be used to obtain more insight into
the behavior of the target population. This comes down to summarizing its behavior in
a number of indicators. Such indicators are called population parameters.

Definition 2.4 A population parameter is numerical indicator, the value of which
depends only on the values Yy, Ys, ..., Yy of a target variable Y.

Examples of population parameters are the mean income, the percentage of
unemployed, and the yearly consumption of beer. Population parameters can also
be defined for auxiliary variables. Typically, the values of population parameters for
target variables are unknown. It is the objective of the survey to estimate them.
Population parameters for auxiliary variables are often known. Examples of such
parameters are the mean age in the population and the percentages of males and
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females. Therefore, these variables can be used to improve the accuracy of estimates
for other variables.

Some types of population parameters often appear in surveys. They are the
population total, the population mean, the population percentage, and the (adjusted)
population variance.

Definition 2.5 The population total of target variable Y is equal to

N
Yr=) Yi=Yi+Yo+ - +¥y. (2.4)
k=1

So the population total is simply obtained by adding up all values of the variable in
the population. Suppose, the target population consists of all households in a country,
and Yis the number of computers in the household, then the population total is the total
number of computers in all households in the country.

Definition 2.6 The population mean of target variable Y is equal to

1ZN:Yk:Y1+Y2+ o +Yy  Yp

Y=~ - = (2.5)

The population mean is obtained by dividing the population total by the size of the
population. Suppose the target population consists of all employees of a company.
Then the population mean is the mean age of the employees of the company.

A target variable Y can also be used to record whether an element has a specific
property or not. Such a variables can only assume two possible values: Y, =1 if
element k has the property, and Y, = Oif it does not have the property. Such a variable is
called dichotomous variable or a dummy variable. It can be used to determine the
percentage of elements in the population having a specific property.

Definition 2.7 If the target variable ¥ measures whether or not elements in the target
population have a specific property, where Y, = 1 if element k has the property and
otherwise Y, =0, then the population percentage is equal to

100 & Vi+Y+ - +Yy Yr
P = 100Y = Yr = 100 =100—. 2.6
N Y= N N (2:6)

Since Y can only assume the values 1 and 0, its mean is equal to the fraction of 1sin
the population, and therefore the percentage of 1s is obtained by multiplying the mean
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by 100. Examples of this type of variable are an indicator whether or not some element
is employed and an indicator for having Internet access at home.

This book focuses on estimating the population mean and to a lesser extent on
population percentages. It should be realized that population total and population
mean differ only by a factor N. Therefore, it is easy to adapt the theory for estimating
totals. Most of the time, it is just a matter of multiplying by N.

Another important population parameter is introduced here, and that is the popula-
tion variance. This parameter is an indicator of the amount of variation of the values of a
target variable.

Definition 2.8 The population variance of a target variable Y is equal to
| &
o ==Y (V-Y). (2.7)

This quantity can be seen as a kind of mean distance between the individual values
and their mean. This distance is the squared difference. Without taking squares,
all differences would cancel out, resulting always in a mean equal to 0.

The theory of sampling from a finite population that is described in this book uses
a slightly adjusted version of the population variance. It is the adjusted population
variance.

Definition 2.9 The adjusted population variance of a target variable Y is equal to

1 N

The difference with the population variance is that the sum of squares is not divided
by Nbutby N — 1. Use of the adjusted variance is somewhat more convenient. It makes
many formulas of estimators simpler. Note that for large value of N, there is hardly any
difference between both variances.

The (adjusted) variance can be interpreted as an indicator for the homogeneity
of the population. The variance is equal to O if all values of Y are equal. The variance
will increase as the values of Y differ more. For example, if in a country the variance
of the incomes is small, then all inhabitants will approximately have the same income.
A large variance is an indicator of substantial income inequality.

Estimation of the (adjusted) population variance will often not be a goal in itself.
However, this parameter is important, because the precision of other estimators
depends on it.
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2.3 THE SAMPLING FRAME

How to draw a sample from a population? How to select a number of people that can be
considered representative? There are many examples of doing this wrongly:

e Inasurvey on local radio listening behavior among inhabitants of a town, people
were approached in the local shopping center at Saturday afternoon. There were
many people there at that time, so a lot of questionnaire forms were filled.
It turned out that no one listened to the sports program broadcasted on Saturday
afternoon.

e To carry out a survey on reading a free distributed magazine, a questionnaire was
included in the magazine. It turned out that all respondents at least browsed
through the magazine.

e If Dutch TV news programs want to know how the Dutch think about political
issues, they often interview people at one particular market in the old part of
Amsterdam. They go there because people often respond in an attractive, funny,
and sometimes unexpected way. Unwanted responses are ignored and the
remaining part is edited such that a specific impression is created.

It is clear that this is not the proper way to select a sample that correctly represents
the population. The survey results would be severely biased in all examples mentioned
above. To select a sample in a scientifically justified way, two ingredients are required:
a sampling design based on probability sampling and a sampling frame. Several
sampling designs are described in detail in Chapters 4 and 5. This section will discuss
sampling frames.

A sampling frame s a list of all elements in the target population. For every element
in the list, there must be information on how to contact that element. Such contact
information can comprise of, for example, name and address, telephone number, or e-
mail address. Such lists can exist on paper (a card index box for the members of a club, a
telephone directory) or in a computer (a database containing a register of all compa-
nies). If such lists are not available, detailed geographical maps are sometimes used.

For selecting a sample from the total population of The Netherlands, a population
register is available. In principle, it contains all permanent residents in the country. Itis
a decentralized system. Each municipality maintains its own register. Demographic
changes related to their inhabitants are recorded. It contains information on gender,
date of birth, marital status, and nationality. Periodically, all municipal information is
combined into one large register, which is used by Statistics Netherlands as a sampling
frame for its surveys.

Another frequently used sampling frame in The Netherlands is the Postal Delivery
Points file of TNT Post, the postal service company. This is a computer file containing
all addresses (of both private houses and companies) where post can be delivered.
Typically, this file can be used to draw a sample of households.

The sampling frame should be an accurate representation of the population. There is
arisk of drawing wrong conclusion from the survey if the sample has been selected from
asampling frame that differs from the population. Figure 2.1 shows what can go wrong.
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Figure 2.1 Target population and sampling frame.

The first problem is undercoverage. This occurs if the target population contains
elements that do nothave a counterpart in the sampling frame. Such elements can never
be selected in the sample. An example of undercoverage is the survey where the sample
is selected from a population register. Illegal immigrants are part of the population, but
they are never encountered in the sampling frame. Another example is an online
survey, where respondents are selected via the Internet. In this case, there will be
undercoverage due to people having no Internet access. Undercoverage can have
serious consequences. If the elements outside the sampling frame systematically differ
from the elements in the sampling frame, estimates of population parameters may be
seriously biased. A complicating factor is that it is often not very easy to detect the
existence of undercoverage.

The second sampling frame problem is overcoverage. This refers to the situation
where the sampling frame contains elements that do not belong to the target population.
If such elements end up in the sample and their data are used in the analysis, estimates
of population parameters may be affected. It should be rather simple to detect
overcoverage in the field. This should become clear from the answers to the questions.

Another example is given to describe coverage problems. Suppose a survey is
carried out among the inhabitants of a town. It is decided to collect data by means of
telephone interviewing. At first sight, it might be a good idea to use the telephone
directory of the town as the sampling frame. But this sampling frame can have serious
coverage problems. Undercoverage occurs because many people have unlisted
numbers, and some will have no phone at all. Moreover, there is a rapid increase
in the use of mobile phones. In many countries, mobile phone numbers are not listed
in directories. In a country like The Netherlands, only two out of three people can be
found in the telephone directory. A telephone directory also suffers from overcoverage,
because it contains the telephone numbers of shops, companies, and so on. Hence, it
may happen that persons are contacted who do not belong to the target population.
Moreover, some people may have a higher than assumed contact probability, because
they can be contacted both at home and in the office.

A survey is often supposed to measure the status of a population at a specific
moment of time. This is called reference date. The sampling frame should reflect the
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status at this reference date. Since the sample will be selected from the sampling
frame before the reference date, this might not be the case. The sampling frame may
contain elements that do not exist anymore at the reference date. People may have died
or companies may have ceased to exist. These are the cases of overcoverage. It may
also happen that new elements come into existence after the sample selection and
before the reference date; for example, a person moves into the town or a new company
is created. These are cases of undercoverage.

Suppose a survey is carried out in a town among the people of age 18 and older.
The objective is to describe the situation at the reference date of May 1. The sample is
selected in the design phase of the survey, say on April 1. It is a large survey, so data
collection cannot be completed in 1 day. Therefore, interviews are conducted in a
period of 2 weeks, starting 1 week before the reference date and ending 1 week after the
reference date. Now suppose an interviewer contacts a selected person on April 29.
Thereafter, it turns out that the person has moved to another town. It becomes a case of
overcoverage. What counts is the difference in the situation on May 1, as the person
does not belong anymore to the target population at the reference date. So, there is
no problem. Since this is a case of overcoverage, it can be ignored. The situation
is different if an interviewer attempts to contact a person on May 5, and this person
turns out to have moved on May 2. This person belonged to the target population
at the reference date, and therefore should have been interviewed. This is no
coverage problem, but a case of nonresponse. The person should be tracked down
and interviewed.

Problems can also occur if the units in the sampling frame are different from those
inthe target population. Typical is the case where one consists of addresses and the other
of persons. First, the case is considered where the target population consists of persons
and the sampling frame of addresses. This may happenif a telephone directory is used as
a sampling frame. Suppose persons are to be selected with equal probabilities. A naive
way to do this would be to randomly select a sample of addresses and to draw one person
from each selected address. At first sight, this is reasonable, but it ignores the fact that
now not every person has the same selection probability: members in large families
have a smaller probability of being selected than members of small families.

A second case is a survey in which households have to be selected with equal
probabilities, and the sampling frame consists of persons. This can happen if the
sample is selected from a population register. Now large families have a larger
selection probability than smaller families, because larger families have more people
in the sampling frame. In fact, the selection probability of a family is proportional to
the size of the family.

2.4 SAMPLING

The basic idea of a survey is to measure the characteristics of only a sample of elements
from the target population. This sample must be selected in such a way that it allows
drawing conclusions that are valid for the population as a whole. Of course, aresearcher
could just take some elements from the population randomly. Unfortunately, people do
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not do very well in selecting samples that reflect the population. Conscious or
unconscious preferences always seem to play a role. The result is a selective sample,
a sample that cannot be seen as representative of the population. Consequently, the
conclusions drawn from the survey data do not apply to the target population.

2.4.1 Representative Samples

To select a sample, two elements are required: a sampling frame and a selection
procedure. The sampling frame is an administrative copy of the target population. This
is the file used to select the sample from. Sampling frames have already been described
in Section 2.3. Once a sampling frame has been found, the next step is to select a
sample. Now the question is: How to select a sample? What is the good way to select a
sample and what is the bad way to do it? It is often said that a sample must be
representative, but what does it mean?

Kruskal and Mosteller, (1979a, 1979b, 1979c) present an extensive overview of
what representative is supposed to mean in nonscientific literature, scientific literature
excluding statistics, and in the current statistical literature. They found the following
meanings for “representative sampling”:

(1) General acclaim for data. It means not much more than a general assurance,
without evidence, that the data are OK. This meaning of “representative” is
typically used by the media, without explaining what it exactly means.

(2) Absence of selective forces. No elements or groups of elements were favored in
the selection process, either consciously or unconsciously.

(3) Miniature of the population. The sample can be seen as a scale model of the
population. The sample has the same characteristics as the population. The
sample proportions are in all respects similar to population proportions.

(4) Typical or ideal case(s). The sample consists of elements that are “typical” of
the population. These are “representative elements.” This meaning probably
goes back to the idea of 'homme moyenne (average man) that was introduced
by the Dutch/Belgian statistician Quetelet, (1835, 1846).

(5) Coverage of the population’s heterogeneity. Variation that exists in the
population must also be encountered in the sample. So, the sample should
also contain atypical elements.

(6) A vague term, to be made precise. Initially the term is simply used without
describing what it is. Later it is explained what is meant by it.

(7) A specific sampling method has been applied. A form of probability sampling
must have been used giving equal selection probabilities to each element in the
population.

(8) As permitting good estimation. All characteristics of the population and the
variability must be found back in the sample, so that it is possible to compute
reliable estimates of population parameters.

(9) Good enough for a particular purpose. Any sample that shows that a phenom-
enon thought to be very rare or absent occurs with some frequency will do.
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Due to the many different meanings the term “representative” can have, it is
recommended not to use it in practice unless it is made clear what is meant by it. In this
book, the term “representative” is used only in one way: a sample is said to be
representative withrespectto a variable ifits relative distribution in the sample is equal
to its relative distribution in the population. For example, a sample is representative
with respect to the variable gender, if the percentages of males and females in the
sample are equal to the percentages of males and females in the population.

The foundations of survey sampling learn that samples have to be selected with
some kind of probability mechanism. Intuitively, it seems a good idea to select a
probability sample in which each element has the same probability of being selected.
It produces samples that are “on average” representative with respect to all variables.
Indeed, this is a scientifically sound way of sample selection, and probably also the one
that is most frequently applied in practice.

In subsequent chapters, it will be shown that selecting samples with unequal
probabilities can also be meaningful. Under specific conditions, this type of sampling
can lead to even more accurate estimates of population characteristics. The remainder
of this chapter limits itself to sampling with equal probabilities.

2.4.2 Randomizers

Drawing an equal probability sample requires a selection procedure that indeed gives
each element in the population the same probability of selection. Elements must be
selected without prejudice. Human beings, however, are not able to select such a
sample. They just cannot pick a number of elements giving each element the same
probability of selection. Conscious or unconscious preferences always seem to play a
role. An illustration of this phenomenon is an experiment in which a sample of 413
persons were asked to pick an arbitrary number in the range from 1 up to and including
9. The results are summarized in Fig. 2.2.

Number picked

Nine
Eight
Seven
Six
Five
Four
Three
Two
One

0 10 20 30 40 50
Percentage

Figure 2.2 Picking a random number.
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If people can behave as a random number generator, each number should be
mentioned with approximately the same frequency of 11%. This is definitely not the
case. People seem to have a high preference for the number “seven.” More than 40%
mentioned it. Apparently, “seven” is more random than any other number. The
numbers “one” and “two” are almost never mentioned. The conclusion is clear
that people should not select a random sample. If they did, they would behave
as train travelers who conclude that railroad crossings are always closed for road
traffic.

Samples have to be drawn by means of an objective probability mechanism
that guarantees that every element in the population has exactly the same
probability of being selected. Such a mechanism will be called a randomizer
(see Hemelrijk, 1968).

Definition 2.10 A randomizer is a machine (electronic or mechanical) with the
following properties:

e It can be used repeatedly.

e It has N possible outcomes that are numbered 1, 2, ..., N, where N is known.
e It produces one of the N possible outcomes every time it is activated.

e Each time it is activated, all possible outcomes are equally probable.

The main property of arandomizer is that its outcome is unpredictable in the highest
possible degree. All methods of prediction, with or without knowledge or use of past
results, are equivalent.

A randomizer is a theoretical concept. The perfect randomizer does not exist in
practice. There are, however, devices that come close to a randomizer. They serve the
purpose of a randomizer. The proof of the pudding is in the eating: the people living in
the princedom of Monaco do not pay taxes as the randomizers in the casino of Monaco
provide sufficient income for the princedom.

A simple example of a randomizer is a coin. The two outcomes “heads” and “tails”
are equally probable. Another example of a randomizer is a dice. Each of the numbers
1-6 has the same probability, provided the dice is “fair” (Fig. 2.3).

A coin can be used to draw a sample only if the population consists of two elements.
A dice can be used only for a population of six elements. This is not very realistic.
Target populations are usually much larger than that. Suppose a sample of size 50 is to

Figure 2.3 Example of a randomizer: dice. Reprinted by permission of Imre Kortbeek.
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Figure 2.4 A 20-sided dice.

be selected from a population of size 750. In this case, a coin and a dice cannot be used.
What can be used is a 20-sided dice; see Fig. 2.4.

Such adice contains the numbers from 1 to 20. If 10 is subtracted from the outcomes
of 10 and higher, and 10 is interpreted as 0, then the dice contains twice the numbers
from 0to 9. Three throws of such a dice produce a three-digit number in the range from
00 999. If the outcome 0 and all outcomes over 750 are ignored, a sequence number of
an element is obtained. This element is selected in the sample. By repeating this
procedure 50 times, a sample of size 50 is obtained.

The use of a 20-sided dice guarantees that all elements in the population have the
same probability of being selected. Unfortunately, selecting a sample in this manner is
alengthy process. One way to reduce the work of selecting a sample to some extent is to
use a table of random numbers. The first table of random numbers was published by
Tippet (1927). Such a table contains numbers that have been obtained with a
randomizer. To select a sample, an arbitrary starting point must be chosen in the
table. Starting from that point, as many numbers as needed are taken. Figure 2.5
contains a fragment of such a table.

Suppose a sample is to be drawn from the numbers from 1 to 750. To that end,
groups of three digits are taken from the table. This produces three-digit numbers.
Values 000 and over 750 are ignored. For example, the table is processed row-wise.

06966 75356 46464 15180 23367 31416 36083 38160 44008 26146
62536 89638 84821 38178 50736 43399 83761 76306 73190 70916
65271 44898 09655 67118 28879 96698 82099 03184 76955 40133
07572 02571 94154 81909 58844 64524 32589 87196 02715 56356
30320 70670 75538 94204 57243 26340 15414 52496 01390 78802

94830 56343 45319 85736 71418 47124 11027 15995 68274 45056
17838 77075 43361 69690 40430 74734 66769 26999 58469 75469
82789 17393 52499 87798 09954 02758 41015 87161 52600 94263
64429 42371 14248 93327 86923 12453 46224 85187 66357 14125
76370 72909 63535 42073 26337 96565 38496 28701 52074 21346

Figure 2.5 A table with random numbers.
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Of each group of five digits, only the first three are used. This produces the following
sequence of numbers:

‘069 753 464 151 233 314 360 381 440 261 625 896 848 381 .. ‘

If irrelevant numbers (753, 896, 848) are removed, the series reduces to

‘069 464 151 233 314 360 381 440 261 625 381 ... ‘

These are the sequence numbers of the elements that have been selected in the
sample. For larger samples from much larger populations, this manual process of
sample selection remains cumbersome and time-consuming. It seems obvious to let a
computer draw a sample. However, it should be realized that a computer is determin-
istic machine, and therefore is not able to generate random numbers. The way out is to
use a pseudorandomizer. Most computers or computer programming languages have
algorithms that produce pseudorandom numbers. Such an algorithm generates a
deterministic sequence of numbers. For all practical purposes, these numbers cannot
be distinguished from real random numbers. Most implementations of pseudorandom
number generators use an algorithm like

) (2.9)

The next pseudorandom number u; , | is computed by using the previous number u;
as the argument in some function f. When the pseudorandomizer is used for the first
time, it must be given some initial value . This initial value is sometimes also called a
seed value. The initial value is used to compute the first random number u;. This first
value is used to compute the second value u,, and so on. So, if the same seed value is
used, the same sequence of random numbers will be generated.

Many pseudorandomizers in computers generate values u; in the interval [0, 1).
Possibly, the value 0 may be produced, but never the value 1. The values of this basic
randomizer can easily be transformed into other random numbers. To draw a random
sample from a population of size N, integer random numbers from the range 1-N are
needed. A value u; from the interval [0, 1) can be transformed in such an integer by
applying the formula

1+ [w; x N], (2.10)

where the square brackets denote rounding downward (truncation) to the nearest integer.
Multiplying u; by N produces a value in the interval [0, N). Truncation gives an integer in
the range from 0O to N-1. Finally, adding 1 results in an integer in the range from 1 to N.

An example illustrates this approach. The district of Mudwater in Samplonia has
255 inhabitants. Random integers in the range from 1 to 255 are needed to select a
sample of persons from this district. A hand calculator is used to generate a value from
[0, 1). Let the result be 0.638. Multiplication by 255 gives 162.69 and truncation results
in 162. Adding 1 gives the random integer 163.
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2.4.3 Samples With and Without Replacement

Carrying out a survey means that a sample is selected from some population U
(asdescribed in Section 2.2). Information is obtained only about the sampled elements.
This information must be used to say something about the population as whole.
Reliable conclusions can only be drawn if the sample is selected by means of a
probability sample, where every element in the population has a nonzero probability of
being selected. Researchers can control the characteristics of the sampling mechanism
(sample size, selection probabilities), but they have no control over which elements are
ultimately selected.

Samples that have been selected by means of a probability mechanism are called
probability samples. Such samples allow not only good estimates of population
parameters but also quantification of the precision of the estimates. Usually, indicators
such as the variance, the standard error, or the confidence interval are used for this
purpose. Only probability samples are considered in this book. For convenience,
they will just be called samples here.

Definition 2.11 A sample a from a target population U= {1, 2, ..., N} is a sequence
of indicators,

a=(ay,a,...,ay). (2.11)
The value of the indicator @, (for k=1, 2, ..., N) is equal to the number of times
element k is selected in the sample.

Definition 2.12 The sample size n of the sample a from the population U is equal to

N
n=> a. (2.12)
k=1

Here only sample selection mechanisms will be considered where each possible
sample has the same size. Note, however, that there are probability mechanisms
where not every sample has the same size. Each possible sample may have a
different size.

The sample selection mechanism is formally defined in the sampling design.

Definition 2.13 A sampling design p assigns to every possible sample a from the
population U a probability p(a) of being selected, where 0 < p(a) <1 and

> pla)=1. (2.13)

a
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Summation is over every possible sample a from U. The set of all samples a from U
that have a nonzero probability p(a) of being selected under the sampling design p is
defined by

A = {a|p(a)>0}. (2.14)

Every sampling design can be characterized by a set of first-order, second-order,
and higher order inclusion expectations. The first-order inclusion expectations are
needed to construct estimators of population parameters. The second-order inclusion
expectations are needed to compute the precision of estimators.

Definition 2.14  The first-order inclusion expectation w;. of element k is defined by

m = E(ar) = > ap(a), (2.15)

acA,

fork=1,2,...,N. E denotes the expected value of the random variable ;. So the
first-order inclusion expectation 7, of element k is equal to its expected frequency
of appearance in one sample.

For example, a sample of size 2 is selected from a population of size 6. A six-sided
dice is thrown for both the first and the second sample element. In total, 36 different
outcomes are possible: (1, 1), (1, 2), .. ., (6, 6). Each sample has a probability 1/36 of
being selected. There is only one sample possible in which 5 appears twice: (5, 5).
There are 10 samples in which 5 appears once: (1, 5), (2, 5), ..., (5, 1). All other
samples do not contain 5. Therefore, the first-order inclusion expectation of element 5
isequal to ms=(1 x2 + 10 x 1 4+ 25 x 0)/36 =0.333.

Definition 2.15 The second-order inclusion expectation m;; of two elements k and /
is defined by

i = E(axa) =Y araip(a), (2.16)
acA
fork=1,2,...,Nand /=1, 2, ..., N. So the second-order inclusion expectation 7,

of the two elements k and /is equal to the expected value of the product of the sample
frequencies of the these two elements.

Coming back to the example of the sample of size 2 from a population of size 6,
there are only two samples containing both elements 3 and 5: (3, 5) and (5, 3). For all
other samples, either a3 =0 or a5 =0. Therefore, the second-order inclusion proba-
bility 7735 of elements 3 and 5 is equal to 2/36.

If a dice is thrown a number of times, it is quite possible that a certain number
appears more than once. The same applies to any other randomizer. If a sequence of
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Figure 2.6 A lotto machine: a sample without replacement. Reprinted by permission of Imre Kortbeek.

random numbers is generated, numbers may occur more than once. The consequence
would be that an element is selected more than once in the sample. This is not very
meaningful. It would mean repeating the measurements for this element. If the
questions are answered a second time, the answers will not be different. Therefore,
sampling without replacement is preferred. This is a way of sampling in which each
element can appear at most only once in a sample.

A lotto machine is a good example of sampling without replacement. A selected
ballis not replaced in the population. Therefore, it cannot be selected for a second time
(Fig. 2.6).

The procedure for selecting a sample without replacement is straightforward.
A sequence of random numbers in the range from 1 to N is selected using some
randomizer. If a number is generated that has already been selected previously,
it is simply ignored. The process is continued until the sample size has been
reached.

If asample is selected without replacement, there are only two possibilities for each
element & in the population: the element is selected or the element is not selected.
Consequently, the indicator ;. in the sample a can assume only the two possible values
1 and 0. The inclusion expectation 7, of element k is now equal to the probability that
element k is selected in the sample. Therefore, the first-order inclusion expectation is
called the first-order inclusion probability in this situation. Likewise, 77, is called the
second-order inclusion probability of elements k and /.

Suppose a population consists of four elements: U= {1, 2, 3, 4}. The possible
samples of size 2 without replacement are as follows:

(1,2) (1,3 (1,4
@21 @3 (@4
8,1 (32 (3,4
4,1 @42 4,93
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Figure 2.7 A roulette: a sample with replacement. Reprinted by permission of Imre Kortbeek.

There are some situations in practice where sampling with replacement is preferred.
This is the case for samples selected with unequal probabilities. This sampling design
is described in Section 4.3. A sample with replacement can also be represented by a
sequence of indicators a = (ay, ay, . . ., ay). But now every indicator @, can assume the
values 0, 1, 2, ..., n.

A roulette wheel is a good example of sampling with replacement. At every turn,
each of the possible numbers can again be produced with the same probability. It is
possible (butnot very likely) that in a sequence of 10 turns, the number 7 is produced 10
times (Fig. 2.7).

A simple example illustrates sampling with replacement. Suppose, the population
consists of four elements: U= {1, 2, 3, 4}. Then the possible samples of size 2 are as
follows:

) (1,2 (1,3) (1,4
) (22 (2,3 (2,4
3,1 (3,2 (33 (34
) 42 43 44

So a sampling design describes which samples a from U are possible. The set of
all possible samples is denoted by A. The sampling design also fixes the probability
p(a) of realization of each possible sample a in A. A number of different sampling
designs will be treated in Chapters 4 and 5.

The sampling design described which samples are possible and what their pro-
babilities are. The sampling design does not describe how it must be implemented in
practice. The practical implementation is described in the sample selection scheme.

Definition 2.16 The sample selection scheme describes a practical algorithm for
selecting elements from the population with some randomizer. This algorithm may
produce samples only in the set A. The probability of a sample being selected must be

equal to the probability p(a) as specified in the sampling design.

Definition 2.17 The first-order selection probability

% (2.17)
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is equal to the probability that ith draw of the sample selection scheme results in
element k, where k=1,2,...,Nandi=1, 2, ....

Suppose a sample of size 2 is to be selected from a population of size 6.
Furthermore, the following sample selection scheme is used:

e Make six lottery tickets, numbered 1-6.
o Arbitrarily select one ticket and write down the number.

o Arbitrarily select one more ticket from the remaining five tickets and write down
the number.

According to this selection scheme, the first-order selection probability pgl) to select
element in the first draw is equal to 1/6. The first-order selection probability p42> to
select element 4 in the second draw is less simple to compute. Element 4 can only be
selected in the second draw if it has not been selected in the first draw. Therefore,

o 1 501
= — O — —_ =
Pam =g x Ut x5

1
6

Definition 2.18 The second-order selection probability

P’ (2.18)

is equal to the probability that in the ith draw element k is selected and in the jth draw
element /, fork, [=1,2,...,Nand i,j=1,2,....

Going back to the example of selection of a sample of size 2 from a population of
size 6, the probability of selecting element 3 in the first draw, and element 5 in the
second draw, is equal to

(]"2>:1><l_
P Tg 5730

If a sample is selected with replacement, then the selection mechanism is the same
for each consecutive draw. Therefore,
pipi, it i,
P =20,  ifk#landi=, (2.19)

Pk, ifk=Ilandi=j.
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For sampling designs with a fixed sample size #, the following relations hold:

=Y p, (2.20)
i=1

T = Z Z . (2.21)

i=1 j=1

For sampling designs without replacement and with a fixed sample size n, the
following relations hold:

N
> me=n, (2.22)
k=1

N
Z T = NIy, (2.23)

S = n(n-1). (2.24)

2.5 ESTIMATION

Estimation of population parameters has to be based on the information that is
collected in the sample. Values of variables can be measured only for those elements
k in the population for which the indicator @; has a nonzero value.

Definition 2.19  Suppose a sample of size  has been selected with a sampling design.
The sample values of the target variable Y are denoted by

Y1 Y2s - Ve (2.25)

Each y; represents one of the values Y, Y5, ..., Yy of the target variable. If a
sample is selected without replacement, all y; will be obtained from different
elements in the population. If the sample is selected with replacement, some y; may
be equal because they are obtained from the same population element that has been
selected more than once.
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A similar notation is used if auxiliary variables have also been measured in the
sample. So the measured values of the auxiliary variable X are denoted by

X1y X2, 0oy Xpe (2.26)

The sample values are to be used to say something about the values of population
parameters. Such statements take the form of estimates of the population parameters.
The recipe (algorithm) to compute such an estimate is called an estimator.

2.5.1 Estimators

The values of the target variable Y can only be measured for the sampled elements.
Furthermore, if an auxiliary variable X is included in the survey, its sample values also
become available. This auxiliary information can be used to improve estimates. This
only works if more information about the auxiliary variables is available than just the
sample values. Typically, it turns out to be very useful to have the population distribution
auxiliary variables. Such improved estimators are treated in detail in Chapter 6.

The first step in defining estimators is the definition of a statistic. Estimators are
statistics with special properties.

Definition 2.20 A statistic is a real-valued function ¢ that with respect to the target
variable Y only depends on its sample values yy, y», . . ., y,,. Possibly,  may depend on
the sample values xy, x5, ..., x,, of an auxiliary variable X and of some population
parameter for X.

The sample mean and the sample variance are introduced as examples of statistics.

Definition 2.21 The sample mean of a target variable Y is equal to
1 n
=13 (2.27)
i=1

The sample mean is simply obtained by summing the sample values and dividing the
result by the sample size.

Definition 2.22 The sample variance of a target variable Y is equal to

1 n
2 _ 2
5= iy)" (2.28)
i=1
This statistic is obtained by subtracting the sample mean from each sample value,
by summing the squared differences, and by dividing the result by n — 1.
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Note that the definitions of the sample mean and sample variance are similar to
those of the population mean and (adjusted) population variance. The only difference
is that for the population quantities all values in the population are used whereas for the
sample quantities only the sample values are used.

Definition 2.23  Anestimator t for a population parameter 6 is a statistic ¢ that is used
for estimating the population parameter 6. Given the population U and the sampling
design p, the value of the statistic ¢ only depends on the sample a. Therefore, the
notation ¢t = #(a) is sometimes used.

The performance of an estimator is determined to a large extent by the sampling
design. The combination of a sampling design p and an estimator ¢ is called the
sampling strategy (p, 1).

2.5.2 Properties of Estimators

Application of an estimator to the sample data provides a value. This value is an
estimate for a population value 6. An estimator performs well if it produces estimates
that are close to the true value of the population parameter. Four quantities play an
important role in judging the performance of estimators: expected value, bias,
variance, and mean square error.

Definition 2.24 The expected value of an estimator ¢ for a population parameter 0 is
under the sampling strategy (p, f) equal to

E(1) =" i(a)p(a). (2.29)

acA

So the expected value of an estimator is obtained by multiplying its value for each
possible sample a by the probability p(a) of its selection and summing the results.
The expected value can be seen as a weighted average of its possible values, where
the weights are the selection probabilities. The expected value is a kind of center
value around which its possible values vary.

The first condition that an estimator must satisfy is that its expected value is
equal to the value of the population parameter to be estimated.

Definition 2.25 An estimator ¢ for a population parameter 6 under the sampling
strategy (p, t) is called an unbiased estimator if E(t) = 0.

Repeated use of an unbiased estimator results in estimates that are on average
equal to the value of the population parameter. There will be no systematic under- or
overestimation.
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Definition 2.26 The bias of an estimator ¢ for a population parameter 6 under the
sampling strategy (p, ) is equal to

B(t) = E(t)—6. (2.30)
The bias of an unbiased estimator is equal to 0.

Definition 2.27 The variance of an estimator ¢ for a population parameter 0 under the
sampling strategy (p, ) is equal to

V(1) = EG=E(1))* =) (t(a)=E(1))*p(a). (2.31)

acA

The variance is equal to the expected value of the squared difference between the
estimators and the expected value of the estimator. The variance is an indicator of the
amount of variation in the possible outcomes of the estimator. The variance is small if
all possible values are close to each other. The variance is large if there are large
differences in the possible outcomes.

The unit of measurement of the variance is the square of the unit of measurement of
the target variable itself. For example, if ¥ measures income in euros, the variance is
measured in squared euros. This makes interpretation of the value of the variance
somewhat cumbersome. Moreover, its values tend to be large numbers. To simplify
things, a different quantity is often used: the standard error.

Definition 2.28 The standard error of an estimator ¢ for a population parameter 0
under the sampling strategy (p, ?) is equal to

(1) = /V(0). (2.32)

So the standard error is simply equal to the square root of the variance. An estimator
is called precise of its variance (or standard error is small). An estimator is said to
perform well if it is unbiased and precise. If these conditions are satisfied, the possible
values of the estimator will always be close to the true, but unknown, value of the
population parameter. There is a theoretical quantity that measures both aspects of an
estimator simultaneously, and that is the mean square error.

Definition 2.29 The mean square error of an estimator ¢ for a population parameter 0
under the sampling strategy (p, ?) is equal to

M(1) = E(1—)*. (2.33)

So the mean square error is equal to the expected value of the squared difference
between the estimator and the value of the population parameter. A small mean square
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error indicates that all possible values of the estimator will be close to the value to be
estimated. By working out expression 2.33, it can be shown that it can be written as

M(t) = V(t) + B*(t) = S*(¢) + B*(1). (2.34)

It can be concluded from this expression that a small mean square implies both a
small bias and a small variance. So, an estimator with a small mean square error is a
good estimator. Note that for unbiased estimators, the bias component in (2.34)
vanishes. Consequently, the mean square error is then equal to the variance.

2.5.3 The Confidence Interval

The value of the variance of standard is not easy to interpret in practical situation. What
does a specific value mean? When is it large and when is it small? The Polish
statistician Jerzy Neyman (1934) invented a more meaningful indicator, the confi-
dence interval, for the precision of estimators.

Definition 2.30 The 100 x (1 — )% confidence interval is determined by a lower
bound and an upper bound that have been computed by using the available sample
information such that the probability that the interval covers the unknown population
value is at least equal to predetermined large probability 1 — «. The quantity 1 — o is
called the confidence level.

The use of the confidence interval is based on the central limit theorem. According
to this theorem, many (unbiased) estimators have approximately a normal distribution
with as expected value the population parameter 6 to be estimated and as variance the
variance V(1) of the estimator. The approximation works better as the sample size
increases.

Often, the value of a is set to 0.05. This implies the confidence level is equal to 0.95.
This can be interpreted as follows: if the sample selection and the subsequent
computation of the estimator are repeated a large number of times, on average
in 95 out of the 100 cases the confidence interval will contain the true population
value. To say it differently: in 5% of the cases, the statement that the confidence
interval contains the true population parameter is wrong. So in 1 out of 20 cases,
the researcher will draw the wrong conclusion.

If the estimator has an approximate normal distribution, the 95% confidence
interval is equal to

(1—1.96 x S(1),t 4+ 1.96 x S(1)). (2.35)

Researchers are free in their choice of the confidence level. If they want to draw a
more reliable conclusion, they can choose a smaller value of a. For example, a value
of & =0.01 could be considered. The corresponding 99% confidence interval is then
equal to

(1—2.58 x S(1), 1 +2.58 x S(1)). (2.36)
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A price has to be paid for a more reliable conclusion. This price is that the
confidence interval is wider. In fact, there is always a compromise between reliability
and precision. Either a more reliable conclusion can be drawn about a less precise
estimate, or a less reliable conclusion is drawn about a more precise estimate.

The confidence interval can only be computed if the value S(7) of the standard error
is known. This is generally not the case, because it requires knowledge of all possible
values of the estimator. The distribution of the estimator can only be computed if all
values of Y in the population are known. If all these values were known, there was
no need to carry out the survey. However, the confidence interval can be estimated.
First, the variance V(¢) is estimated using the available data. This estimator is indicated
by v(7). Next, an estimator s(¢) for S(7) is obtained by taking the square root of v().
This estimator s(#) is used to compute an estimated confidence interval:

(t—1.96 x 5(1), 1+ 1.96 x 5(1)). (2.37)

2.5.4 The Horvitz-Thompson Estimator

The accuracy of the conclusions of a survey is to a large extent based on the choice
of the sampling design and the estimator. All kinds of combinations are possible,
but one combination may lead to more precise estimates than another combination.
On the one hand, the advantages of a well-chosen sampling design can be undone by
a badly chosen estimator. On the other hand, a badly chosen sampling design can be
compensated for by using an effective estimator.

The properties of a sampling design can only be investigated in combination with
an estimator. Such an estimator must be unbiased, or approximately unbiased.
Furthermore, often the additional condition must be satisfied that the estimator
must be simple to compute, for example, as a linear combination of the sample
values of the target variable. Fortunately, it is always possible to construct an estimator
with these properties. This estimator was first developed by Horvitz and Thompson
(1952) in their seminal paper. Therefore, it is called the Horvitz—Thompson estimator.
This estimator can be used for all sampling designs that will be discussed in Chapters 4
and 5. Note that the Horvitz—-Thompson estimator does not use any auxiliary
information. Chapter 6 describes a number of estimators that do use auxiliary
variables.

Definition 2.31 Leta=(ay, a, . . ., ay) be a sample from a population U. Suppose a
sampling design p has been used with first-order inclusion expectations 7z (k =1, 2,
..., N) and second-order inclusion expectations m;; (k, /=1, 2, ..., N). The
Horvitz—Thompson estimator for the population mean of the target variable Y is
now defined by

1 & Y
Yur = — —. 2.38
YHT N 2= dg T ( )
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The Horvitz—Thompson estimator is an unbiased estimator provided that 7. > 0 for
all k. Since by definition 7y, = E(ay), the expected value of this estimator is equal to

EG )—1ZN:E(a)Yk—1NTtYk—I7 (2.39)
YHT —Nk:] k nk_Nk:l kTCk_ . .

If all ;> are positive, the variance of the Horvitz—Thompson estimator is equal to

1

N
V(Sur) N2 (T —m0my) ——. (2.40)
k=

N YkY[
= T T

1 1

For samples without replacement, a; can only assume two values: a; =0 ora; = 1.
Therefore, a; = a;>, and consequently 7 = E(aray) = E(a;) = 7. The variance can
now be written as

V(ur) = lXN:(I n)Yl%+ IXN:ZN:(R nn)Yle (2.41)
YHT) = 3 - k - 2k:1 - ki — T4 e .
I#k

Expression (2.41) was derived by Horvitz and Thompson (1952). For sampling
designs producing samples of a fixed size n, the variance in (2.40) can be rewritten as

N N 2
V(¥ur) = % Z Z (Tt — T ) C:/Z - Zj) : (2.42)

From expression (2.42), it becomes clear that the variance of the Horvitz—Thompson
estimator is smaller if the values Y, of the target variable and the inclusion
expectations 7, are more proportional. If this is the case, the ratios Y,/ are almost
constant, and therefore the quadratic term in (2.42) will be small. In the ideal case
of exact proportionality, the variance will even be equal to zero. This will not happen
in practice. Taking the inclusion probabilities exactly proportional to the values of the
target variables would mean that these values are known. The survey was carried out
because these values were unknown.

The important message conveyed by the Horvitz—Thompson estimator is that it is
not self-evident to draw elements in the sample with equal probabilities. Equal
probability sampling may be simple to implement, but other sampling designs may
result in more precise estimators.

Section 2.4 introduced the concept of selection probabilities for samples with
replacement. The Horvitz—-Thompson estimator can be adapted for this type of
sampling. To keep things simple, it is assumed that selection probabilities remain
the same for each consecutive draw. This implies that the probability of selecting
element k in the ith draw of the sample selection scheme is equal to

2V =pi. (2.43)
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The probability to select element & in the ith draw and element / in the jth draw
(where i #)) is equal to
pi’,’") = PP (2.44)

So, subsequent draws are independent. It follows from expressions 2.22 and 2.24
that

T = NPy (2.45)
and

T = n(n—1)pip; (2.46)

for k#1

Substitution of (2.45) in expression (2.38) of the Horvitz—Thompson estimator
leads to the following expression for the estimator in case of with replacement
sampling:

1SN % 1R v
Vur = — e —_ 2.47
YHT =y £ Ak T Nn kz::lak I’ (2.47)

Substitution of (2.45) and (2.46) in expression (2.42) gives the following expression
for the variance of estimator (2.47):

) | NN Yo ¥\
VOur) =552 > b ———) - (2.48)
2nN
Taking into account that subsequent draws are independent, the expression for the
variance can be written in a much simpler form:
N

2
V(ur) = lzpk (ka —Y) . (2.49)

n

The above theory introduced the Horvitz—Thompson estimator for estimating the
population mean of a quantitative variable. This estimator can also be used to estimate
population totals. The estimator for the population total Y of Y is equal to

YHT = NyHT' (2.50)
The variance of this estimator is equal to

V(yur) = N*V (¥ur)- (2.51)

If the target variable measures whether or not elements have a specific property
(with values 1 and 0), then

PHT = IOOyHT (252)
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is an unbiased estimator for the population percentage P of elements with that
property. The variance of this estimator is equal to

V(pur) = 10,000V (Fyr). (2.53)

The theory of the Horvitz—Thompson estimator will be applied to a number of
different sampling designs in Chapters 4 and 5.

EXERCISES

2.1

2.2

2.3

24

The population variance o and the adjusted population variance S° are related.
The adjusted population variance can be computed by multiplying population
variance by

a. NI(N—1);
b. (N— 1)/N;
¢. (N—n)/(N—1);
d. (N—n)/N.

Undercoverage occurs in a sampling frame if it contains elements that

a. do not belong to the target population and do not appear in the sampling
frame;

b. do belong to the target population and do not appear in the sampling frame;

c¢. do not belong to the target population and do appear in the sampling frame;

d. do belong to the target population and do appear in the sampling frame.

The local authorities of a town want to know more about the living conditions of
single households. To that end, a sample frame is constructed from an address
register. Due to a programming error, the sampling frame consists only of
households with at least two persons. What is wrong with this sampling frame?
a. There is both undercoverage and overcoverage.

b. There is only undercoverage.

c. There is only overcoverage.

d. There is no coverage problem.

A large company regularly distributes newsletters among its employees. The
management wants to know whether the employees really read the newsletter.
Therefore, a questionnaire form is included in the next release of the newsletter.
Questions included in the questionnaire are whether people are aware of the
newsletter, and whether they read the newsletter. Employees are invited to
complete the questionnaire and to send it back to the management. Explain why
this is, or is not, a good way to obtain an estimate of the readership of the
newsletter.
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2.5

2.6

2.7

2.8
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The second-order inclusion probability is equal to

a.

b.

The unconditional probability that both the elements are selected in the
sample.

The conditional probability that an element is selected in the sample, given
that another element is selected in the sample.

The unconditional probability that an element is selected in the sample
twice.

. The conditional probability that an element is selected in the sample a

second time, given that it has already been selected in the sample.

Prove that the following relationship holds for sampling designs for samples of a
fixed size n:

T +Ty -+ +Ty = H.

The Horvitz—Thompson estimator is a random variable because

a.
b.

C.

d.

The inclusion expectations 7y, 7>, ..., 7y are random variables.

Both the inclusion expectations 7y, 775, . . ., wy and the values Yy, Y5, .. ., Y
of the target variable are random variables.

Both the selection indicators ay, a», . . ., ayand the values Y1, Vs, . . ., Yyof the

target variable are random variables.
The selection indicators a,, d, ..., ay are random variables.

The Horvitz—Thompson estimator is an unbiased estimator provided

a.
b.

C.

d.

The underlying distribution is the normal distribution.

The standard deviation of the values of the target variable is known.
All first-order inclusion expectations are positive.

All second-order inclusion expectations are positive.



CHAPTER3

Questionnaire Design

3.1 THE QUESTIONNAIRE

The survey process starts with the formulation of the general research question. The
objective of the survey is to answer this question. To that end, the research question
must be translated into a set of variables (both target and auxiliary variables) that are to
be measured in the survey. The values of these variables will be used to estimate a set of
relevant population parameters. Together, the values of these parameters should pro-
vide sufficient insight. Questions must be defined to obtain the values of the variables.
Together, these questions make up the questionnaire.

So, the questionnaire is a measuring instrument. However, it is not a perfect
measuring instrument. A measuring scale can be used for determining someone’s
length, and the weight of a person can be determined by a weighing scale. These
physical measuring devices are generally very accurate. The situation is different for a
questionnaire. It only indirectly measures someone’s behavior or attitude. Schwarz
et al. (2008) describe the tasks involved in answering a survey question. First,
respondents need to understand the question. They have to determine the information
they are asked to provide. Next, they need to retrieve the relevant information from
their memory. In the case of a nonfactual question (e.g., an opinion question), they will
nothave this information readily available. Instead, they have to form an opinion on the
spot with whatever information comes to mind. In the case of a factual question (e.g., a
question about behavior), they have to retrieve from their memory information about
events in the proper time period. Then they have to translate the relevant information in
a format fit for answering the questions. Finally, respondents may hesitate to give this
answer. If the question is about a sensitive topic, they may refuse to give an answer, and
if an answer is socially undesirable, they may change their answer. All this complicates
the use of a questionnaire as a measuring instrument.

A lot can go wrong in the process of asking and answering questions. Problems in
the survey questionnaires will affect the collected data, and consequently, also the

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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survey results. It is of utmost importance to carefully design and test the survey
questionnaire. It is sometimes said that questionnaire design is an art and not a skill.
Nevertheless, long years of experience have led to a number of useful rules. A number
of these rules are described in this chapter. They deal with question texts, question
types, and the structure of the questionnaire. Also, some attention is paid to testing a
questionnaire.

3.2 FACTUAL AND NONFACTUAL QUESTIONS

Kalton and Schuman (1982) distinguish factual and nonfactual questions. Factual
questions are asked to obtain information about facts and behavior. There is always
an individual true value. This true value could also be determined, at least in theory,
by some other means than asking a question to the respondent. Examples of factual
questions are “What is your regular hourly rate of pay on this job,” “Do you own or
rent your place of residence,” and “Do you have an Internet connection in your
home?”

The fact to be measured by a factual question must be precisely defined. It has been
shown that even a small difference in the question text may lead to a substantially
different answer. As an example, a question about the number of rooms in the house-
hold can cause substantial problems if it is not clear what constitutes a room and what
not. Should a kitchen, a bathroom, a hall, and a landing be included?

Nonfactual questions ask about attitudes and opinions. An opinion usually reflects
views on a specific topic, such as voting behavior in the next elections. An attitude is a
more general concept, reflecting views about a wider, often more complex issue. With
opinions and attitudes, there is no such thing as a true value. They measure a subjective
state of the respondent that cannot be observed by another means. The attitude only
exists in the mind of the respondent.

There are various theories explaining how respondents determine their answer to
an opinion question. One such theory is the online processing model described by
Lodge et al. (1995). According to this theory, people maintain an overall impression
of ideas, events, and persons. Every time they are confronted with new information,
this summary view is updated spontaneously. When they have to answer an opinion
question, their response is determined by this overall impression. The online proces-
sing model should typically be applicable to opinions about politicians and political
parties.

There are situations in which people do not have formed an opinion about a specific
issue. They only start to think about it when confronted with the question. According to
the memory-basedmodel of Zaller (1992), people collect all kinds of information from
the media and their contacts with other people. Much of this information is stored in
memory without paying attention to it. When respondents have to answer an opinion
question, they may recall some of the relevant information stored in memory. Owing
to the limitations of the human memory, only part of the information is used. This is
the information that immediately comes to mind when the question is asked. This
is often information that has been stored only recently in memory. Therefore, the
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memory-based model is able to explain why people seem to be unstable in their
opinions. Their answer may easily be determined by the way the issue was recently
covered in the media.

3.3 THE QUESTION TEXT

The question text is the most important part of the question. This is what the
respondents respond to. If they do not understand the question, they will not give
the right answer, or they will give no answer at all. Some rules of thumb are presented
here that may help avoid the most obvious mistakes. Examples are given of question
texts not following these rules.

e Use Familiar Wording. The question text must use words that are familiar to
those who have to answer them. Particularly, questionnaire designers must be
careful not to use jargon that is familiar to themselves but not to the respondents.
Economists may understand a question such as

Do you think that food prices are increasing at the same rate as
a yvear ago, at a faster rate, or at a slower rate?

This question asks about the rate at which prices rise, but a less knowledgeable
person may easily interpret the question as asking whether prices decreased,
have stayed the same, or increased. Unnecessary and possibly unfamiliar
abbreviation must be avoided. Do not expect respondents to be able to answer
questions about, for example, caloric content of food, disk capacity (in
megabytes) of their computer, or the bandwidth (in Mbps) of their Internet
connection.

Indefinite words like “usually,” “regularly,” “frequently,” “often,” “recently,”
and “rarely” must be avoided if there is no additional text explaining what they
mean. How regular is regularly? How frequent is frequently? These words do not
have the same meaning for every respondent. One respondent may interpret
“regularly” as every day, while it could mean once a month to another respondent.
Here is an example of such a question:

99 <. 99 ¢¢ LLNT3

Have you been to the cinema recently?

What does “recently” mean? It could mean the last week or the last month. The
question can be improved by specifying the time period:

Have you been to the cinema in the last week?
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Even this question text could cause some confusion. Does “last week”” mean the
past 7 days or maybe the period since last Sunday?

e Avoid Ambiguous Questions. If the question text is such that different respon-
dents may interpret the question differently, their answers will not be compara-
ble. For example, if a question asks about income, it must be clear whether it is
about weekly, monthly, or annual income. It must also be clear whether the
respondents should specify their income before or after tax has been deducted.
Vague wording may also lead to interpretation problems. A respondent con-
fronted with the question

Are vyou satisfied with the recreational facilities in your
neighborhood?

may wonder about what recreational facilities exactly are. Is this a question
about parks and swimming pools? Do recreational facilities also include
libraries, theaters, cinemas, playgrounds, dance studios, and community
centers? What will respondents have in their mind when they answer this
question? It is better to describe in the question text what is meant by
recreational facilities.

o Avoid Long Question Texts. The question text should be as short as possible. A
respondent attempting to comprehend a long question may leave out part of the
text and thus change the meaning of the question. Long texts may also cause
respondent fatigue, resulting in a decreased motivation to continue. Of course,
the question text should not be so short that it becomes ambiguous. Here is an
example of a question that may be too long:

During the past 7 days, were you employed for wages or other
remuneration, were you self-employed in a household enterprise,
were you engaged in both types of activities simultaneously, or
were you engaged in neither activity?

Some indication of the length and difficulty of a question text can be
obtained by counting the total number of syllables and the average number of
syllables per word. Table 3.1 gives examples of indicators for three questions.
The first question is simple and short. The second one is also short, but it is
much more complex. The third question is very long and has an intermediate
complexity.

If a question text appears to be too long, it might be considered to split
into two or more shorter questions. It should be noted that some research
shows that longer question text sometimes lead to better answers. According
to Kalton and Schuman (1982), longer text may work better for open
questions about threatening topics.

e Avoid Recall Questions as much as Possible. Questions requiring recall of events
that have happened in the past are a source of errors. The reason is that people
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Table 3.1 Indicators for the Length and Complexity of a Question

Syllables
Questions Words  Syllables Per Word
Have you been to the cinema in the last week? 9 12 1.3
Are you satisfied with the recreational facilities 10 21 2.1
in your neighborhood?
During the past 7 days, were you employed for wages 38 66 1.7

or other remuneration, were you self-employed in

a household enterprise, were you engaged in both
types of activities simultaneously, or were you engaged
in neither activity?

make memory errors. They tend to forget events, particularly when they
happened a long time ago. Recall errors are more severe as the length of the
reference period is longer. Important events, more interesting events, and more
frequently happening events will be remembered better than other events. For
example, the question

How many times did you contact your family doctor in the past 2 years?

is a simple question to ask but difficult to answer for many people. Recall
errors may even occur for shorter periods. In the 1981 Health Survey of
Statistics Netherlands, respondents had to report contacts with their family
doctor over the past 3 months. Memory effects were investigated by Sikkel
(1983). It turned out that the percentage of not-reported contacts increased
linearly with time. The longer ago an event took place, the more likely it is that
it would be forgotten. The percentage of unreported events for this question
increased on average by almost 4% per week. Over the total period of
3 months, about one quarter of the contacts with the family doctor were
not reported.

Recall questions may also suffer from telescoping. This occurs if respon-
dents report events as having occurred either earlier or later than they actually
did. As aresult, an event is incorrectly reported within the reference period, or
incorrectly excluded from the reference period. Bradburn et al. (2004) note
that telescoping more often leads to overstating than to understating a number
of events. Particularly, for short reference periods, telescoping may lead to
substantial errors in estimates.

e Avoid Leading Questions. A leading question is a question that is not asked in a
neutral way but leads the respondents in the direction of a specific answer. For
example, the question

Do you agree with the majority of people that the quality of the
health care in the country is falling?
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contains a reference to the “majority of people.” It suggests that it is socially
undesirable to not agree. A question can also become leading by including the
opinion of experts in questions text, such as

Most doctors say that cigarette smoking cause lung cancer. Do you
agree?

Questionnaire designers should watch out for loaded words that have a tendency
of being attached to extreme situations:

What should be done about murderous terrorists who threaten the
freedom of good citizens and the safety of our children?

Particularly, adjectives such as “murderous” and “good” increase a specific
loading of the question.

Opinion questions may address topics about which respondents may not
have yet made up their mind. They may even lack sufficient information for a
balanced judgment. Questionnaire designers may sometime provide additional
information in the question text. Such information should be objective and
neutral and should not influence respondents in a specific direction. Saris
(1997) performed an experiment to show the dangers of making changes in the
question text. He measured the opinion of the Dutch about increasing the
power of the European Parliament. Respondents were randomly assigned one
of these two questions:

Question 1 Question 2

An increase of the powers of Many problems cross national

the European Parliament borders. For example, 50% of the
will be at the expense of acid rain in The Netherlands comes
the national parliament. from other countries.

Do you think the powers of the Do you think the powers of the
European Parliament should European Parliament should be

be increased? increased?

In case respondents were offered the question on the left, 33% answered “yes”
and 42% answered “no.” In case respondents were offered the question on the
right, 53% answered “yes” and only 23% answered “no.” These substantial
differences are not surprising, as the explanatory text on the left stresses a
negative aspect and the text on the right stresses a positive aspect.
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o Avoid Asking Things Respondents Don’t Know. A question text can be very
simple, and completely unambiguous, but still it can be impossible to answer it.
This may happen if the respondents are asked for facts that they do not know. The
following is an example:

How many hours did you listen to your local radio station in the
past 6 months?

Respondents do not keep record of all kinds of simple things happening in their
lives. So, they can only make a guess. This guess need not necessarily be an
accurate one. Answering this question is even more complicated by using a
relatively long reference period.

e Avoid Sensitive Questions. Sensitive questions should be avoided as much as
possible. Sensitive questions address topics that respondents may see as embar-
rassing. Such questions may result in inaccurate answers. Respondents may refuse
to provide information on topics such as income or health. Respondents may also
avoid giving an answer that is socially undesirable. Instead, they may provide a
response that is socially more acceptable.

Sensitive questions can be asked in such a way that the likelihood of response
isincreased and a more honestresponse is facilitated. The first option is to include
the question in a series of less sensitive questions about the same topic. Another
option is to make it clear in the question text that the behavior or attitude is not so
unusual. Bradburn et al. (2004) give the following example:

Even the calmest parents sometimes get angry at their children. Did
your children do anything in the past 7 days to make you angry?

A similar effect can be obtained by referring in question text to experts that
may find the behavior not so unusual:

Many doctors now believe that moderate drinking of liquor helps
reduce the likelihood of heart attacks and strokes. Have you drunk
any liquor in the past month?

A question asking about numerical quantities (such as income) can be
experienced as threatening if an exact value must be supplied. This can be
avoided by letting the respondent select a range of values.

¢ Avoid Double Questions (or Double-Barreled Questions). A question must ask
one thing at a time. If more than one thing is asked in a question, it is unclear what
the answer means. For example, the question

Do you think that people should eat less and exercise more?
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actually consists of two questions: “Do you think that people should eat less?”
and “Do you think that people should exercise more?”” Suppose, someone thinks
that people should not eat less but should exercise more, what answer must be
given: yes orno? The solution to this problem is simple: the question must be split
into two questions, each asking one thing at a time.

 Avoid Negative Questions. Questions must not be asked in the negative, as this is
more difficult to understand for respondents. Respondents may be confused by a
question such as

Are you against a ban on smoking?

Even more problematic are double-negative questions. They are a source of
serious problems.

Would you rather not use a nonmedicated shampoo?

Negative questions can usually be rephrased such that negative effect is
removed. For example, “are you against ...” can be replaced by “are you
in favor ....”

e Avoid Hypothetical Questions. Itis difficult for people to answer questions about
imaginary situations, as they relate to circumstances they have never experi-
enced. At best, the answer is guesswork and a total lie at worst. Here is an
example of a hypothetical question:

If you were the president of the country, how would you stop crime?

Hypothetical questions are often asked to get more insight into attitudes and
opinions about certain issues. However, little is known about processes in the
respondent’s mind that lead to an answer to such a question. So, one may wonder
whether hypothetical questions really measure what a researcher wants to
measure.

3.4 ANSWER TYPES

Only the text of the question has been discussed until now. Another import aspect of a
survey question is the way in which the question must be answered. Several answer
types are possible. Advantages and disadvantages of anumber of such answer types are
discussed.

An open question is a simple question to ask. It allows respondents to answer the
question completely in their own words. An open question is typically used in
situations where respondents should be able to express themselves freely. Open
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questions often invoke spontaneous answers. Open questions also have disadvantages.
The possibility always exists that a respondent overlooks a certain answer. Consider
the following question from a readership survey:

Which weekly magazines have you read in the past 2 weeks ?

Research in The Netherlands has shown that if this question is offered to
respondents as an open question, typically television guides are overlooked. If a
list is presented containing all weekly magazines, including television guides, much
more people answer that they have read TV guides.

Asking an open question may also lead to vague answers. Consider the following
question:

What do vou consider the most important aspect of your job?

To many respondents it will be unclear what kind of answer is expected. They will
probably answer something like “salary.” What do they mean if they say this? It is
important to get a high salary, or a regular salary, or maybe both?

Processing the answers to open questions is cumbersome, particularly if the
answer is written down on a paper form. Entering such answers in the computer
takes effort, and even more if the written text is not very well readable. Answers to
open questions also take more disk space than answers to other types of questions.
Furthermore, analyzing answers to open questions is not very straightforward. It is
often done manually because there is no intelligent software that can do this
automatically.

Considering the potential problems mentioned above, open questions should be
avoided wherever possible. However, there are situations where there is no alternative.
An example is a question asking for the occupation of the respondent. A list containing
all possible occupations would be very long. It could easily have thousands of entries.
Moreover, respondents with the same occupation may give very different descriptions.
All this makes it impossible to let respondents locate their occupation in the list. The
only way out is to ask for occupation by means of an open question. Extensive, time-
consuming automatic and/or manual coding procedures must be implemented to find
the proper classification code matching the description.

A closed question is used to measure qualitative variables. There is a list of
possible answers corresponding to the categories of the variable. Respondents have
to pick one possibility from the list. Of course, this requires the list to contain all
possible answers:
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What is your present martial status?

Never Wmarried i e i e e s s S e e e e 1
= a1 = 2
DILTOECIBEL i o omwes e w6001 5000 i o 0 T 3
Separated .. . iiiiiedeisiiddisaseaw i disdns e b i sy i 4
Widowed ... veiinnnsnnsonsssssssnnssssssssssssssssnssssssnssns 5

There will be problem if respondents cannot find their answer. One way to avoid
such a problem is to add a category “other,” possibly also offering the option to enter
the answer. An example is the question below for listeners to a local radio station:

Which type of programs do you listen the most on your
local radio station??

6= < 1

If other, please SpPeCiiy: i e e e

If the list with answer options is long, it will be difficult for the respondent to find the
proper answer, particularly in telephone surveys, where the interviewer has to read out
all options. By the time the interviewer has reached the end of the list, the respondent
has already forgotten the first options in the list. Use of show cards may help in face-to-
face interviews. A show card contains the complete list of possible answers to a
question. Such a card can be handed over to respondents who then can pick their
answer from the list.

Only one answer is allowed for a closed question. Therefore, radio buttons are used
to implement such a question in an electronic questionnaire. Indeed, only one option
can be selected by clicking on it. Clicking on another option would deselect the current
selected option. See Fig. 3.1 for an example.

If the list of options is long, the order of the options in the list matters. If the
interviewer reads out the options, the first options in the list tend to be forgotten. In case

heath

Do you r ber for sure
June 10, 20047

or not you voted in the last elections to the European Parliament of

5] ves, I voted
(O No, 1 didn’t vote
(O Don't know

Next

Figure 3.1 The implementation of a closed question.
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In the last seven days, what type of music did you listen to most?

Next

Figure 3.2 The implementation of a closed question with many possible answers.

of a self-completion questionnaire, the respondents have to read the list themselves.
This leads to preference for the first options in the list.

Figure 3.2 show how a long list of possible answers could be implemented in an
electronic questionnaire. Only five items in this list are visible. To see other options,
respondents have to scroll through the list. Experiments have shown that the options
initially visible tend to be selected more than the other options in the list.

Sometimes a question cannot be answered because respondents simply do not know
the answer. Such respondents should have the possibility to indicate this on the
questionnaire form. Forcing them to make up an answer will reduce the reliability of
the data. It has always been a matter of debate how to deal with the don’t-know option.
One way to deal with don’t know is to offer it as one of the options in a closed question:

Do you remember for sure whether or not you voted in the last
elections to the European Parliament of June 10, 200472

XS, I VOLEA ittt i e e e e e e e e 1
NO, I Aidn £ VOt & ittt e e e e e e 2
J L3 o TR A 1< o L) PP 3

Particularly for self-completion questionnaire, this tends to lead to satisficing (see
Krosnick, 1991). Respondents seek the easiest way to answer a question by simply
selecting the don’t-know option. Such behavior can be avoided in CAPI or CATI
surveys. Interviewers are trained to assist respondents to give a real answer and to
avoid don’t know as much as possible. The option is not explicitly offered but is
implicitly available. Only if respondents indicate that they really do not know the
answer, the interviewer records this response as don’t know.

Another way to avoid satisficing is to introduce a filter question. This question asks
whether respondents have an opinion about a certain issue. And only if they say they
have an opinion, they are asked to specify their opinion in a subsequent question.

The closed questions discussed until now allowed for exactly only one answer to be
given. All answer options have to be mutually exclusive and exhaustive. So respon-
dents can always find one and only one option referring to their situation. Sometimes,
however, there are closed questions in which respondents must have the possibility to
select more than one option. Figure 3.3 gives an example.

The question asks for modes of transport to work. Respondents may use more than
one means of transport for their journey to work, so more answers must be possible.
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What are your normal modes of transport to work?

[ car

[] Motorcycle

Train

[J Bus, tram

[] Bicycle

[ walk

[] other mode of transport

Next

Figure 3.3 A check-all-that-apply question.

Therefore, they can check every option applying to them. Figure 3.3 shows the answer
of a respondent who first takes his bicycle to go to the railway station, where he takes
the train.

A closed question with more than one answer is sometimes called a check-all-that-
apply question. Often square check boxes are used to indicate that more than one
answer can be given (see Fig. 3.3). Dillman et al. (1998) have shown that such a
question may lead to problems if the list of options is very long. Respondents tend to
stop after they have checked a few answers and do not look at the rest of the list
anymore. Too few options are checked. Figure 3.4 shows a different format for a check-
all-that-apply question. Each check box has been replaced by two radio buttons, one
for “yes” and the other for “no.” This approach forces respondents to do something for
each option. They have to check either “yes” or “no.” So, they have to go down the list
option by option and give an explicit answer for each option. This approach leads to
more options that apply. This approach has the disadvantage that it takes more time to
answer the question.

Another frequently occurring type of question is a numerical question. The answer
to such a question is simply a number. Examples are questions about age, income, or
prices. In most household survey questionnaires, there is a question about the number
of members in the household:

How many people are there in your household?

What are your normal modes of transport to work?

Yes
Car

Motorcycle

Train

Bus, tram

Bicycle

Walk

Other mode of transport

00®O®O0
lofoYelolelolok

Next

Figure 3.4 A check-all-that-apply question with radio buttons.
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The two separate dashes give a visual clue to the respondent as to how many digits
are (at most) expected. Numerical questions in electronic questionnaires may have a
lower and an upper bound built in for the answer. This ensures that entered numbers are
always within a valid range.

It should be noted that respondents in many situations are not able to give exact
answers to numerical questions because they simply do not know the answer. An
example is the following question:

How many hours did you listen to your local radio station in the
past 7 days?

An alternative may be to ask a closed question with anumber of intervals as options:

How many hours did you listen to your local radio station in the
past 7 days?

L0 R o o =
B T o =
B2 T 4 T ) b ot

5 = 10 NOUE S ittt ittt e s
More than 10 NOUTS ...ttt e e et

g w N

A special type of question is a date question. Many surveys ask respondents to
specify dates, for example, date of birth, date of purchase of a product, or date of
retirement:

What is your date of birth?

day month vyear

Of course, a date can be asked by means of an open question, but if used in
interviewing software, dedicated date questions offer much more control, and thus few
errors will be made in entering a date.

3.5 QUESTION ORDER

Once all questions have been defined, they have to be included in the questionnaire in
the proper order. The first aspect is grouping of questions. It is advised to keep
questions about the same topic close together. This will make answering question
easier for respondents and therefore will improve the quality of the collected data.
The second aspect is the potential learning effect. An issue addressed early in the
questionnaire may make respondents think about it. This may affect answers to later
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questions. This phenomenon played a role in a Dutch housing demand survey. People
turned out to be much more satisfied with their housing conditions if this question was
asked early in the questionnaire. The questionnaire contained a number of questions
about the presence of all kind of facilities in and around the house (Do you have a bath?
Do you have a garden? Do you have a central heating system?). As a consequence,
several people realized that they lacked these facilities and therefore became less and
less satisfied about their housing conditions.

Question order can affect the results in two ways. One is that mentioning
something (an idea, an issue, a brand) in one question can make people think of
it while they answer a later question, when they might not have thought of it if it had
not been previously mentioned. In some cases, this problem may be reduced by
randomizing the order of related questions. Separating related questions by unre-
lated ones might also reduce this problem, though neither technique will completely
eliminate it.

Tiemeijer (2008) also mentions an example where the answers to specific questions
were affected by a previous question. The Eurobarometer (www.europa.eu/public_
opinion) is an opinion survey in all member states of the European Union held since
1973. The European Commission uses this survey to monitor the evolution of public
opinion in the member states. This may help in making policy decision. The following
question was asked in 2007:

Taking everything into consideration, would you say that the coun-
try has on balance benefited or not from being a member of the
European Union?

It turned out that 69% of the respondents were of the opinion that the country
had benefited from the EU. A similar question was included at the same time in a
Dutch opinion poll (Peil.nl). However, the question was preceded by another
question that asked respondents to select the most important disadvantages of
being a member of the EU. Among the items in the list were the fast extension of
the EU, the possibility of Turkey becoming a member state, the introduction of the
Euro, the waste of money by the European Commission, the loss of identity of the
member states, the lack of democratic rights of citizens, the veto rights of member
states, and the possible interference of the European Commission with national
issues. As a result, only 43% of the respondents considered membership of the EU
beneficial.

The third aspect of the order of the questions is that a specific question order can
encourage people to complete the survey questionnaire. Ideally, the early questions in
asurvey should be easy and pleasant to answer. Such questions encourage respondents
to continue the survey. Whenever possible, difficult or sensitive questions should be
asked near the end of the questionnaire. If these questions cause respondents to quit, at
least many other questions have been answered.

Another aspect of the order of questions is routing. Usually, not every question is
relevant for every respondent. For example, a labor force survey questionnaires will
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1. What is your gender?
Ml e e 1
2. What is your age (in years)?

Interviewer: Ask questions below only of persons of
age 15 and older.

3. Do you have a paid job?
4= PPN 1 -4

5. What is the distance from your home to your work?

Lees than 5 Km ... ... e 1
Between 5 and 10 Km . ... ... e 2
Between 10 and 20 Km ... ... e e 3
More than 20 KM .. ...ttt e e e e 4

6. What is your mode of transport to work?
(more than one answer allowed))

LS < U 1
Bilay Ol e i e 2
MO OTCYCLer &t e e e 3
L 4
2 = i oy 1 5
T 1 o 6
Other mode of transport .......... .. .. ... 7

Figure 3.5 A simple questionnaire with route instructions.

contain questions for both employed and unemployed people. For the employed, there
may be questions about working conditions, and for unemployed there may be
questions about looking for work. Irrelevant questions may irritate people, possibly
resulting in refusal to continue. Moreover, they may not be able to answer questions not
relating to their situation. Finally, it takes more time to complete a questionnaire if
irrelevant questions also have to be answered. To avoid all these problems, route
instruction should be included in the questionnaire. Figure 3.5 contains an example of
a simple questionnaire with route instructions.

There are two types of route instructions. The first type is that of a branch instruction
attached to an answer option of a closed question. Question 3 has such instructions. If
respondents answer “yes,” they are instructed to jump to question 4 and continue from
there. If the answer to question 3 is “no,” they are finished with the questionnaire.
Sometimes a route instruction does not depend on just an answer to a closed question.
It may happen that the decision to jump to another question depends on the answer to
several other questions, or on the answer to another type of question. In this case, aroute
instruction may take the form of an instruction to the interviewer. This is a text placed
between questions. Figure 3.5 contains such an instruction between questions 2 and 3.

It was already mentioned that route instructions not only see to it that only relevant
questions are asked, but also reduce the number of questions asked, so that the
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interview takes less time. However, it should be remarked that many and complex
route instructions increase the burden for the interviewer. There may be an extra source
of possible errors.

3.6 QUESTIONNAIRE TESTING

Before a questionnaire can be used to collect data, it must be tested. Errors in the
questionnaire may cause wrong questions to be asked and right questions to be
skipped. Also, errors in the questions themselves may lead to errors in answers. Every
researcher will agree that testing is important, but this does not always happen in
practice. Often there is no time to carry out a proper testing procedure. An overview of
some aspects of questionnaire testing is given here. More information can be found, for
example, in Converse and Presser (1986).

Questionnaire testing usually comes down to trying it out in practice. There are
two approaches to do this. One is to imitate a normal interview situation. Interviewers
make contact with respondents and interview them, as in a real survey situation. The
respondents do not know that it is just a test, and therefore they behave like they are
appearing in a normal interview. If they know it were just a test, they could very well
behave differently. Another way to test a questionnaire is to inform respondents that
they are part of a test. This has the advantage that the interviewers can ask the
respondents whether they have understood the questions, whether things were unclear
to them, and why they gave specific answers.

A number of aspects of a questionnaire should be tested. Maybe the most important
aspect is the validity of the question. Does the question measure what the researcher
wants to measure? It is not simple to establish question validity in practice. A first step
may be to determine the meaning of the question. It is important that the researcher and
the respondent interpret the question exactly in the same way. There are ample examples
inthe questionnaire design literature about small and large misunderstandings. Converse
and Presser (1986) mention a question about “heavy traffic in the neighborhood,” where
the researcher meant “trucks” and respondents thought that the question was about
“drugs.” Another question asks about “family planning,” where the researcher meant
“birth control” and respondents did interpret this as “saving money for vacations.”

The above examples make it clear how important validity testing is. Research has
shown that often respondents interpret questions differently from what the researcher
intended. Also, if respondents do not understand the question, they change the
meaning of the question in such a way that they can answer it.

Another aspect of questionnaire testing is to check whether questions offer
sufficient variation in answer possibilities. A survey question is not very interesting
for analysis purposes if all respondents give the same answer. It must be possible to
explore and compare the distribution of the answers to a question for several subgroups
of the population.

It should be noted that there are situations where a very skew answer distribution
may be interesting. For example, DeFuentes-Merillas et al. (1998) investigate
addiction to scratch cards in The Netherlands. It turned out that only 0.24% of the
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adult population was addicted. Although this was a small percentage, it was important
to have more information about the size of the group.

The meaning of a question may be clear, and it may also allow sufficient variation in
answers, but this still does not mean that it can always be answered. Some questions are
easy to ask but difficult to answer. A question such as

How many kilograms of coffee did you consume in the last year in
your household?

isclear, but very hard to answer, because respondents simply do not know the answer or
can only determine the answer with great effort. Likewise, asking for the net yearly
income is not as simple as it looks. Researchers should realize they may get only an
approximate answer.

Many people are reluctant to participate in surveys. Even if they cooperate, they
may not be very enthusiastic or motivated to answer the questions. Researchers should
realize this may have an effect on the quality of the answers given. The more interested
respondents are, the better their answers will be. One aspect of questionnaire testing is
to determine how interesting questions are for respondents. The number of uninter-
esting questions should be as small as possible.

Another important aspect is the length of the questionnaire. The longer the
questionnaire, the larger the risk of problems. Questionnaire fatigue may cause
respondents to stop answering questions before the end of the questionnaire is reached.
A rule sometimes suggested in The Netherlands is that an interview should not last
longer than a class in school (50 min). However, it should be noted that this also partly
depends on the mode of interviewing. For example, telephone interviews should take
less time than face-to-face interviews.

Up until now, testing was aimed at individual questions. However, the structure of
the questionnaire as a whole also has to be tested. Each respondent follows a specific
route through the questionnaire. The topics encountered en route must have a
meaningful order for all respondents. One way the researcher can check this is by
reading aloud the questions (instead of silent reading). While listening to this story,
unnatural turns will become apparent.

To keep the respondent interested, and to avoid questionnaire fatigue, it is
recommended to start the questionnaire with interesting questions. Uninteresting
and sensitive questions (gender, age, income) should come at the end of the ques-
tionnaire. This way potential problems can be postponed until the end.

It should be noted that sometimes the structure of the questionnaire requires
uninteresting questions, such as gender to be asked early in the questionnaire. This
may happen when they are used as filter questions. The answer of such a question
determines the route through the rest of the questionnaire. For example, if a
questionnaire contains separate parts for male and female respondents, first gender
of the respondent must be determined.

The growing potential of computer hardware and software has made it possible
to develop very large and complex electronic questionnaires. It is not uncommon
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for electronic questionnaires to have thousands of questions. To help respondents
avoid answering all these questions, routing structures and filter questions see to it
that only relevant questions are asked and irrelevant questions are skipped. Owing
to the increasing size and complexity of electronic questionnaires, it has become
increasingly difficult for developers, users, and managers to keep control of the
content and structure of questionnaires. It takes a substantial amount of knowl-
edge and experience to understand such questionnaires. It has become difficult to
comprehend electronic questionnaires in their entirety and to understand the
process that leads to responses for each of the questions as they ultimately appear
in data files.

A number of concrete problems have arisen in survey agencies due to the lack of
insight into complex electronic questionnaires:

¢ Ithasbecome very hard to test electronic questionnaires. It is no simple matter to
test whether every possible person one might encounter in the field will answer
the questions correctly in the correct order.

¢ Creating textual documentation of an electronic questionnaire has become an
enormous task. It is usually a manual task and is therefore error-prone. There is
no guarantee that handmade documentation exactly describes the real ques-
tionnaire. Making documentation by hand is, of course, also very time-
consuming.

e There are always managers in survey organizations who have to approve
questionnaires going into the field. In the earlier days of paper questionnaires,
they could base their judgment on the paper questionnaire. However, for modern
electronic questionnaire instruments, they have nothing to put their signature on.
The printout of the questionnaire specification in the authoring language of the
CALI system is usually not very readable for the nonexpert.

e Interviewers carrying out a survey with a paper questionnaires could use the
paper questionnaire to get some idea of where they are in the questionnaire,
of what the next question is about, and of how close they are to the end. If they
have an electronic questionnaire, they lack such an overview. Therefore, they
often ask for a paper document describing the global content and structure of
the questionnaire, which they can use as a tool together with the electronic
questionnaire.

All these problems raise the question of the feasibility of a flexible tool capable of
representing content and logic of an electronic questionnaire in ahuman-readable way.
Such a tool should not only provide a useful documentation but also help analyze the
questionnaire and report possible sources of problems. Bethlehem and Hundepool
(2004) have shown that there is a need of software capable of displaying the various
routes through the questionnaire in the form of a flow chart. Figure 3.6 shows an
example of such a flowchart.

Jabine (1985) describes flowcharts as a tool to design survey questionnaires.
Particularly, flowcharts seem to be useful in the early stages of questionnaire
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Questions about listening
to the radio

Listens to

the radio?

Questions about
reasons for not listening

Questions about the type
of radio station

Local radio

No
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station?

Questions about
listening to a local radio
station

Questions about listening
to a regional or national
radio station

L
Questions about where
and when one listens to
the radio

Questions about
demographics

Age > 207

Yes

Questions about
employment

End of questionnaire

Figure 3.6 Flowchart of the global route structure of a questionnaire.

development. Sirken (1972) used flowcharts to effectively explore alternative struc-
tures and sequences for subquestionnaires. He also found that more detailed flow-
charts, for example, of the structure of subquestionnaires, can be equally effective.
Another example is the QD system developed by Katz et al. (1999).
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Flowcharts can also be a useful tool in the documentation of electronic ques-
tionnaires. Their strong point is that they can give a clear idea of the routing structure.
However, they also have the weak point that the amount of textual information that can
be displayed about the questionnaire object is limited. Therefore, a flowchart can be a
very important component of questionnaire documentation, but it will not be the only
component.

There have been a number of initiatives for automatically producing survey
documentation, but they pay little or no attention to documentation of survey data
collection instruments. They focus on postsurvey data documentation and not
on providing tools to assist in the development and analysis of the operation of
the collection instrument. The TADEQ project was set up to develop a tool doc-
umenting these instruments. See Bethlehem and Hundepool (2004) for more
information.

The last aspect that can be taken into account when developing a questionnaire is
the general well-being of the respondents. Nowadays surveys are conducted over a
wide range of topics, including sensitive topics such as use of alcohol and drugs,
homosexual relationships, marriage and divorce, maltreatment of children, mental
problems, depression, suicide, physical and mental handicaps, and religious ex-
periences. Although the principle of informed consent should be applied to
respondents, one may wonder whether respondents feel as happy after the survey
interview as before the interview if sensitive issues such as the ones mentioned are
addressed in the survey.

Testing a survey questionnaire may proceed in two phases. Converse and Presser
(1986) suggest that the first phase should consist of 25-75 interviews. Focus is
on testing closed questions. The answer options must be clear and meaningful.
All respondents must be able to find the proper answer. If the answer options do
not cover all possibilities, there must be a way out by having the special option “other,
please specify ....”

To collect the experiences of the interviewers in the first phase, Converse and Presser
(1986) suggest letting them complete a small survey with the following questions:

e Did any of the questions seem to make the respondents uncomfortable?
¢ Did you have to repeat any questions?
 Did the respondents misinterpret any questions?

e Which questions were the most difficult or awkward for you to ask? Have you
come to dislike any questions? Why?

e Did any of the sections in the questionnaire seem to drag?

e Were there any sections in the questionnaire in which you felt that the
respondents would have liked the opportunity to say more?

The first phase of questionnaire testing is a thorough search for essential errors. The
second phase should be seen as a final rehearsal. The focus is not anymore on repairing
substantial errors or on trying out a completely different approach. This is just the
finishing touch. The questionnaire is tested in a real interview situation with real
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respondents. The respondents do not know that they are participating in a test. The
number of respondents in the second phase is also 25-75. This is the phase to consult
external experts about the questionnaires.

EXERCISES

31

3.2

3.3

34

3.5

Indicate what is wrong with the following question texts:

e In the past 2 years, how often did you go the cinema?
¢ Are you against a ban on smoking in restaurants?

¢ Did you ever visit a coffee shop in Amsterdam and did you buy soft drugs
there?

e Should the mayor spend even more tax money trying to keep the streets in
town in shape?

A survey intends to explore how frequently households are bothered by
companies trying to sell products or services by telephone. One of the questions
is “How often have you been called lately by insurance companies attempting to
sell you a private pension insurance?” Give at least three reasons why this is not a
good question.

A researcher wants to get more insight into the statistical software packages that
are used for data analysis by commercial and noncommercial statistical research
agencies. He considers two types of questions for this: an open question and a
check-all-that-apply question. Give advantages and disadvantages of both types
of questions.

The question “Do you regularly download music from the Internet” may cause
problems because it contains the word “regularly.” Describe what can go
wrong.

An opinion poll is designed to measure the opinion of the people in The
Netherlands about building new nuclear power stations. The table below
contains two ways to ask this question. Explain which question would you
prefer?

To be able to satisfy the future need
for energy in The Netherlands, some
politicians think it is necessary to build
a new nuclear power station within the
next 10 years. What is your opinion?

To be able to satisfy the future need for
energy in The Netherlands, some
politicians think it is necessary to build
a new nuclear power station within the
next 10 years. What is your opinion?

O Agree
O Do not agree

O Agree
O Do not agree
O Don’t know
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3.6

3.7

3.8

QUESTIONNAIRE DESIGN

Improve the questionnaire below by including route instructions.

10. Have you drunk any alcoholic beverages in the last week? O Yes
O No

11. Have you drunk any wine in the last week? O Yes
O No

12. How many glasses of wine did you drink last week? .

13. Have you smoked any cigarettes last week? O Yes
O No

A researcher wants to include a question in a readership survey questionnaire
about weekly magazines. He wants to know which weekly magazines are read in
the sampled households. He has the choice to format this question as an open
question or as a closed question (with a list of magazines). Give at least two
reasons why he should prefer a closed question.

Kalton et al. (1978) describe an experiment with wording of a question in a
survey on public views on transport in a town. The question is: “Do you think
that giving buses priority at traffic signals would increase or decrease traffic
congestion?” Half the sample was also offered the neutral middle option “or
would it make no difference.” The results are summarized in the table below.

Without Neutral Option With Neutral Option
Increases congestion 33% 25%
Decreases congestion 20% 12%
Makes no difference 47% 63%

Note that even if the neutral option was not offered, still 47% gave that
answer. Explain the differences in the answers for the two approaches.
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Single Sampling Designs

4.1 SIMPLE RANDOM SAMPLING

A simple random sample is closest to what comes into the mind of many people when
they think about random sampling. It is similar to a lottery. It is also one of the simplest
ways to select a random sample. The basic property is that each element in the target
has the same probability of being selected in the sample (Fig. 4.1).

A simple random sample can be selected with and without replacement. Only
sampling without replacement is considered in this section. This is more efficient than
sampling with replacement. Sampling without replacement guarantees that elements
cannot be selected more than once in the same sample. All sample elements will be
different.

4.1.1 Sample Selection Schemes

There are several techniques to implement selection of a simple random sample
without replacement. For small samples, the following manual sample selection
schemes can be used:

e Use a 20-sided dice to create numbers in the range from 1 to at least the
population size N. If, for example, the population consists of 341 elements, throw
the dice three times for each number. The three dice throws produce three digits
that together form a number in the range from 0 to 999. If such a number is in the
range from 1 to 341, and this number has not already been drawn, it denotes
the sequence number of the next element in the sample. This process is repeated
until the sample size has been reached.

¢ Use a table with random numbers and use the same procedure as for the 20-sided
dice. Take sufficient digits to form a number in the proper range. For a population
of size N =341, this would mean three digits. Numbers outside the valid range
and already generated numbers are ignored.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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Figure 4.1 A simple random sample. Reprinted by permission of Imre Kortbeek.

e Use a hand calculator with a random number generator. These random number
generators often produce values u in the interval [0, 1). Such values can be
transformed into numbers in the range from 1 to N with the formula 1 + [u X N].
The square brackets indicate that the value is rounded downward to the nearest
integer. If a number reappears, it is ignored.

e The dice and the random number table can also be used to construct values
between 0 and 1. Simply take a number of digits and see it is a fraction by putting
“0.” in front of it. For example, 169971 becomes 0.169971. Then the hand
calculator can be applied to form numbers between 1 and N.

Note that in fact all sample selection schemes described above select samples with
replacement. By ignoring multiple numbers, the sample becomes a sample without
replacement.

A more efficient way to select a simple random sample is to implement a computer
algorithm for it. Recipe 4.1 describes such an algorithm.

Recipe 4.1 Selecting a Simple Random Sample Without Replacement

Ingredients Population size N
Sample size n
Random values u from the interval [0, 1)

Step 1 Fill a vector v of length N with the numbers from 1 to N: v[1] =1,
v[2]=2, ..., V[N]=N
Step 2 Set the counter i to 1
Step 3 Draw a random value u from [0, 1)
Step 4 Compute the sequence number k=[i + (N —i + 1) x u].
The square brackets denote rounding down to the nearest integer
Step 5 Exchange the values of elements v[7] and v[k]
Step 6 If i is smaller than n, increase the value of i with 1 and go back to step 3
Step 7 If the value of i is equal to n, sample selection is ready.
The first n elements v[1], v[2], ..., v[n] of the vector v contain the

sequence numbers of the sampled elements
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The algorithm in Recipe 4.1 has the advantage that it never produces numbers
outside the valid range and also it never produces double numbers. Sample selection is
ready after n draws.

4.1.2 Estimation of a Population Mean

A simple random sample without replacement of size n from a population of size N
assigns the same first-order inclusion probability to each element, so 7, = 7r; for each
k and [ (with k#1). According to expression (2.22), the sum of all N inclusion
probabilities is equal to n. Consequently, the first-order inclusion probability of
element k is equal to

n
=— 4.1
=y (4.1)
for k=1, 2, ..., N. Application of the same theorem to the second-order inclusion
probabilities leads to
n(n—1)
= 4.2
= N(N=T) (4.2)
Note that the quantity
n
=— 4.3
f=x. (43)

obtained by dividing the sample size n by the population N size, is also called the
sampling fraction f.

An unbiased estimator for the population mean can be found by substituting the
first-order inclusion probabilities (4.1) in definition (2.38) of the Horvitz—Thompson
estimator. Then the estimator turns out to be equal to

R R Yi+ya+ o+
=- ;= . 4.4
y=p2 p (44)

i=1

For a simple random sample, the sample mean is an unbiased estimator of the
population mean. This is an example of what is sometimes called the analogy
principle: an estimator for a population characteristic is obtained by computing
the same quantity for just the sample data. The analogy principle often (butnot always)
leads to unbiased estimators.

The variance of this estimator can be determined by substituting the inclusion
probabilities (4.1) and (4.2) in formula (2.41) for the wvariance of the
Horvitz—Thompson estimator. This leads to the expression

e 1L

oY)
— Yi—Y)". 4.
n n N—lk:l( =) (43)

V()
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The quantity f is the sampling fraction n/N. The factor 1 — f is also sometimes called
the finite population correction. S* is the (adjusted) population variance. See also
definition (2.9). Two interesting conclusions can be drawn from formula (4.5).

e Since (1 — f)/n can be rewritten as (1/n — 1/N), the variance becomes smaller as
the sample size increases. This means selecting a larger sample increases the
precision of estimators.

e Since the population size N is usually much larger than the sample size n, the
quantity (1 — f)/nis approximately equal to 1/n. It implies that the variance of the
estimator does not depend on the size of population. As long as the population
variance remains the same, it does not matter for the precision whether a sample
is selected from the Dutch population (16 million people) or the Chinese
population (1300 million people). This may sound counterintuitive to some
people. Maybe the metaphor of tasting soup helps: just tasting one spoonful of
soup is sufficient to judge its quality. It does not matter whether this spoonful
came from a small pan of soup or a large bathtub full of soup as long as the soup
was properly stirred.

To be able to compute the precision of an estimate, the value of the variance (4.5)
is required. Unfortunately, this value depends on the unknown population variance
S2. Estimating the population variance using the sample data solves this problem.
Also, here the analogy principle applies. It can be shown that sample variance s>,
defined by

1 n
st = (i), (4.6)

n—1 i=1

is an unbiased estimator of the population variance S. Therefore,

v(y) = us2 (4.7)
n

is an unbiased estimator of the variance of the sample mean. An (estimated) confidence
interval can be computed using this estimated variance. See also Section 2.5.

Another way to investigate the precision of an estimator is to simulate the process of
sample selection a large number of times. The working population of Samplonia is
used as an example. This population consists of 341 persons. The target variable is the
monthly net income. The objective is to estimate the mean income in the population.
Then seeing what range of values the mean income in the sample can assume, the
sample selection process has been repeated 1000 times. For each sample, the mean
income has been computed. All values have been summarized in a histogram. The
result is shown in Fig. 4.2. The graph on the left is based on samples of size 20, and
the graph on the right is for samples of size 40. The true population value to be
estimated (1234) is indicated by means of a vertical line.

In both simulations, the estimates are symmetrically distributed around the
population value. This indicates that both estimators are unbiased. Outcomes closer
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Samples of size 20 Samples of size 40

Figure 4.2 Distribution of the mean income in samples from the working population of Samplonia.

to the population value have a higher frequency than values further away. The spread of
the values is larger for samples of size 20, which means that estimator has a larger
variance in this case.

Simulation experiments can also illustrate how confidence intervals work.
Figure 4.3 contains a graphical presentation of confidence intervals. The graph on
the left shows 30 confidence intervals, constructed using samples of size 20. A 95%
confidence interval has been estimated for each sample. Each confidence interval is
represented by a horizontal line. The vertical line indicates the population value to be
estimated. Almost all intervals contain the population value. Only in one case this
value is outside the interval. Hence, in 1 out of 30 cases, the statement that confidence
interval contains the population is wrong. This is 3%, which is very close to the
theoretical value of 5%, corresponding to a confidence level of 95%.

The graph on the right in Fig. 4.3 contains 95% confidence intervals for samples of
size 40. The horizontal lines are shorter than those for samples of size 20, implying the
width of the intervals is smaller and thus that estimators are more precise. Note that
also here only 1 out of 30 intervals does not contain the population value. The sample
size does not affect the confidence level, but it does affect the precision.

Table 4.1 presents a practical example of the computations that have to be carried
out to compute a confidence interval. A sample of 20 persons has been selected from
the working population of Samplonia. Income has been recorded for each selected
person.

The second column (“element”) contains the sequence numbers of the selected
elements. All numbers are in the range 1-341, and they are all different. The column

500 1250 2000 500 1250 2000
Samples of size 20 Samples of size 40

Figure 4.3 Simulation of confidence intervals.
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Table 4.1 Computations for a 95% Confidence Interval

Number Element Value (Value — Mean) (Value — Mean)?
1 73 2439 1061 1125721
2 103 2956 1578 2490084
3 296 944 —433 187489
4 44 515 —862 743044
5 303 4464 3086 9523396
6 256 531 —846 715716
7 214 951 —426 181476
8 74 627 —750 562500
9 62 158 —1219 1485961
10 166 2289 911 829921
11 169 481 —896 802816
12 210 3493 2115 4473225
13 164 193 —1184 1401856
14 115 1588 210 44100
15 289 1002 -375 140625
16 118 961 —416 173056
17 85 1873 495 245025
18 96 527 -850 722500
19 188 619 —758 574564
20 104 955 —422 178084
Total 27566 26601160
Mean 1378 1400061

Estimate: 27566/20 = 1378, sample variance: 26601160/19 = 1400061, estimated variance of the
estimator: (1 —20/341) x 1400061/20 = 65897, estimated standard error of the estimator: /65897 = 257,
lower bound of the confidence interval: 1379 — 1.96 x 257 =875, and upper bound of the confidence
interval: 1379 + 1.96 x 257 = 1883.

“value” contains the incomes of the sampled elements. The sum of these incomes is
equal to 27,566. The mean income in the sample (1378) is obtained by dividing the
sample sum (27,566) by the sample size (20). To compute the sample variance, the
mean income is subtracted from each sample income and the results are squared.
Summation of all these results produces a value 26,601,160. The sample variance
1,400,061 is obtained dividing by 19 (the sample size minus 1). Application of formula
(4.7) gives 65,897 as the value of estimated variance of the estimator. The estimated
standard error is obtained by taking the square root. This results in a value of 257. Now
the 95% confidence interval can be computed by applying formula (2.37). The
resulting interval has a lower bound of 875 and an upper bound of 1883. So,
one can conclude that (with 95% confidence) the population mean of the income
in the working population of Samplonia will be between 875 and 1883.

If a statement is required with a higher level of confidence level, value of & must be
changed. For example, a =0.01 results in a confidence level of 99%. In this case,
the value of 1.96 in expression (2.37) and in Table 4.1 must be replaced by 2.58.
The 99% confidence interval becomes (716, 2042). This is a wider interval than
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the 95% confidence interval. This is the price that has to be paid for a higher
confidence level.

Note that the population mean of the incomes is equal to 1234. Both confidence
intervals indeed contain this value. So these intervals lead to correct statements about
the population value.

4.1.3 Estimation of a Population Percentage

Population percentages are probably estimated more often than population means.
Typical examples are the percentage of people voting for a presidential candidate, the
percentage of households having an Internet connection, and the unemployment
percentage.

The theory for estimating percentages does not essentially differ from the theory of
estimating means. In fact, percentages are just population means multiplied by 100
where the target variable Y assumes only the value 1 (if the element has the specific
property) or O (if the element does not have the property). Because of this restriction,
formulas become even much simpler.

If Y only assumes the values 1 and 0, the population mean Y is equal to the
proportion of elements having a specific property. The population percentage P is
therefore equal to

P = 100Y. (4.8)

Estimation of a population percentage comes down to first estimate the population
mean. The sample mean is an unbiased estimator for this quantity. Multiplication of the
sample mean by 100 produces the sample percentage. This estimator is denoted by

p = 100y. (4.9)

Since the sample mean is an unbiased estimator for the population mean, the sample
percentage is an unbiased estimator of population percentage.

The variance of this estimator can be found by working out the term $?in variance
formula (4.5) for a population in which a percentage P of the elements has a specific
property and a percentage 100 — P does not have this property. This results in the
simple formula

1-f N
1% =———P(100—P). 4.10
() ==L P(100-P) (4.10)
This variance can be estimated using the sample data. Again, the analogy principle
applies. If p denotes the sample percentage, then
1-f
v(p) = —=p(100—p) (4.11)
n—1
is an unbiased estimator of the variance (4.10). The estimated variance is used
in practical situations to obtain an (estimated) confidence interval. See also
Section 2.5.
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The computations to be carried out for obtaining a confidence interval are
illustrated in a numerical example. Suppose the objective of the survey is to estimate
the percentage of employed people in the total population of Samplonia. From
the population (of size N=1000), a simple of size n =100 is drawn. It turns out
that 30 people in the sample are employed. So, the estimate of the employment
percentage in the total population is 30%.

The sampling fraction is f= 100/1000 = 0.1. Substitution of n =100, p = 30, and
f=0.1 in formula (4.11) produces a variance of the sample percentage v(p) = 19.09.
The estimated standard error s(p) is obtained by taking the square root. The result is
s(p) =4.37.

The margin M of the 95% confidence interval is estimated by m1 = 1.96 x s(p) =
1.96 x 4.37 =8.6. To obtain the lower bound of the interval, the margin is subtracted
from the estimate, resulting in 21.4%. Likewise, the upper bound is obtained by
adding the margin to the estimate, and this gives 38.6%. So, the 95% confidence
interval is equal to (21.4, 36.6). Note that since the population percentage is equal to
P =34.1%, this statement is correct.

4.14 Determining the Sample Size

A decision to be made in the survey design phase is the size of the sample to be selected.
This is an important decision. If, on the one hand, the sample is larger than what is
really necessary, a lot of time and money may be wasted. And if, on the other hand, the
sample is too small, the required precision will not be achieved, making the survey
results less useful.

It is not so simple to determine the sample size, since it depends on a number of
different factors. It has already been shown that there is a relationship between
precision of estimators and the sample size: the larger the sample is, the more precise
the estimators will be. Therefore, the question about the sample size can only be
answered if it is clear how precise the estimators must be. Once the precision has been
specified, the sample size can be computed. A very high precision nearly always
requires a large sample. However, a large survey will also be costly and time-
consuming. Therefore, the sample size will in practical situations always be a
compromise between costs and precision.

Some formulas will be given here for the size of a simple random without
replacement. The first situation to be considered is that for estimating population
percentages. Then the case of estimating population means will be described.

Starting point is that the researcher gives some indication of how large the margin
of error at most may be. The margin is defined as distance between the estimate and the
lower or upper bound of the confidence interval. Formulas are given for the sample
size that is at least required to achieve this margin of error. In the case of a 95%
confidence interval, the margin of error is equal to

1.96 x S(p). (4.12)

For a 99% confidence interval, the value of 1.96 must be replaced by 2.58.
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Suppose M is the maximum value of the margin of error the survey researcher wants
to accept. This mean that the actual margin of error must not exceed M. Rewriting this
condition leads to

M
S < —.
(P) =136
The variance of the estimator for a population percentage can be found in
expression (4.10). Substituting in inequality (4.13) leads to the condition

\/1 fip 100—P) <

The lower bound for the sample size can now be computed by solving n from
this equality. However, there is a problem because expression contains an
unknown quantity, and that is population percentage P. There are two ways to solve
this problem:

(4.13)

<196 (4.14)

e There is a rough indication of the value of P. Maybe there was a previous survey
in which this quantity was estimated or maybe a subject matter expert provided
an educated guess. Such an indication can be substituted in expression (4.14),
after which it can be solved.

e Nothing at all is known about the value of P. Now P(100 — P) is a quadratic
function that assumes its minimum value O in the interval [0, 100] for P =0 and
P =100. Exactly in the middle, for P =50, the function assumes its maximum
value. This implies that the upper bound for the variance can be computed by
filling in the value P = 50. So the worst case for the variance is obtained for this
value of P. For any other value of P, the variance is smaller. If the value is
determined so that the worst-case variance is not exceeded, then the true variance
will certainly be smaller. It should be noted that for values of P between, say, 30%
and 70%, the true variance will not differ much from the maximum variance.

Solving n from inequality (4.14) leads to a lower bound of #n equal to

1
= (N—1/N)(M/1.96)*(1/P(100—P)) +1/N

(4.15)

A simple approximation can be obtained if the population size Nis very large. Then
(N — 1)/N can be approximated by 1 and 1/N can be ignored, reducing (4.15) to

n> (%) 213(100-1»). (4.16)

An example illustrates the use of this expression. Suppose an opinion poll has
predicted that 38% of the voters will support a certain party. A new survey will be
conducted to measure the current support for that party. No dramatic changes are
expected. Therefore, it is not unreasonable to fill in a value of 38 for P in



74 SINGLE SAMPLING DESIGNS

expression (4.16). Furthermore, the margin of error should not exceed M =3%.
Substitution in expression (4.16) results in

1.96\ 2
n> (Tg> 38 x 62 = 1005.6.

So, the sample size must be at least equal to 1006. The confidence level is 95%. Fora
confidence level of 99%, the value of 1.96 must be replaced by 2.58, leading to a
minimum sample size of 1689.

Expression (4.13) is also the starting point for the computation of the sample size if
the objective of the survey is to estimate the mean of a quantitative variable. However,
there is no simple expression for the standard error available. Expression (4.13) can be

rewritten as
1 1 M
——)sr<c )
(n N)S ~1.96’ (4.17)

in which §” is the adjusted population variance. The problem is that usually this
variance is unknown. Sometimes a rough estimated can be made using data from a
previous survey, or may be some indication can be obtained from a test survey. In these
situations, the approximate value can be substituted in expression (4.17). Rewriting the

inequality leads to
1

n> .
= (M/1.965)* +1/N

(4.18)

The quantity 1/N can be ignored for large values of N. This produces the somewhat

simpler expression
1.968\*
>1—) . 4.19
(59 o

If no information at all is available about the value of S, the following rules of
thumb may help to determine the sample size for estimating the mean of the target
variable Y:

e The values of Y have a more or less normal distribution over an interval of known
length L. This implies that L will be approximately equal to 6 x S. Hence, a value
of L/6 can be substituted for S.

e The values of Y have a more or less homogeneous distribution over an interval of
length L. Then S will be roughly equal to 0.3 x L.

e The values of Y have a more or less exponential distribution over an interval of
length L. There are many small values and only a few large values. Then S will be
roughly equal to 0.4 x L.

e The values of Y are distributed over an interval of known length, but nothing at
all is known about the form of the distribution. In the worst case, half of the mass
of the distribution concentrates at the lower bound of the interval and the other
half at the upper bound. Then S will be roughly equal to 0.5 x L.
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4.2 SYSTEMATIC SAMPLING

A systematic sample is also an equal probability sample, and it is also selected without
replacement. However, a different sample selection procedure is followed, and
therefore the statistical properties of the estimator differ from those for simple random
sampling.

Systematic sampling is typically convenient if samples have to be selected by
hand. One could think of a sampling frame consisting of a file of cards with names
and addresses or telephone numbers. Systematic sampling is also useful if a
sample (of phone numbers) has to be selected from a telephone directory in book
format.

Systematic sampling was used in The Netherlands in the previous century to select
samples of people from a population register. Each municipality had its own register.
There was a card with personal data for each inhabitant. All these cards were storedin a
large number of drawers. There were no sequence numbers on the cards. To select, say,
person 3163, one had to count 3163 cards from the start to reach the specific card. This
makes selecting a simple random sample a cuambersome and time-consuming affair.
The process was simplified by drawing systematic samples (Fig. 4.4).

The basic principle of systematic sampling is that arandom starting point is selected
in the sampling frame. This is the first element in the sample. From there, subsequent
elements are selected by repeatedly jumping forward a fixed number of elements. The
process continues until the end of the sampling frame is reached.

4.2.1 Sample Selection Schemes

Systematic sampling is often used as a kind of approximation of simple random
sampling, but in fact it is a totally different sampling design. The random number
generator is only used to select the first element in the sample. This first element
immediately determines the rest of the sample.

A first, simple sample selection schema assumes the population size N to be a
multiple of the sample size n. The step length F is now defined by

N
F==. (4.20)

Figure 4.4 A systematic sample. Reprinted by permission of Imre Kortbeek.
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This is an integer number. Next, the starting point b is determined by drawing a
random number in the range from 1 to F. This can be done by hand with a 20-sided dice,
a table of random numbers, or a calculator with a random number generator. This
starting point is the sequence number of the first element in the sample. The rest of the
sample is obtained by selecting each next Fth element. In other words, the sample
consists of the elements with sequence numbers

b,b+F,b+2F,b+3F,... b+ (n—1)F. (4.21)

The starting point b can only assume F different values (1, 2, . . ., F). Therefore,
only F different samples are possible. This is far less than in the case of simple
random sampling. For example, a systematic sample will never contain two
elements that are adjacent in the sampling frame. Systematic sampling excluded
many samples that are possible for simple random sampling. This affects the
properties of estimators.

Suppose a systematic sample of size 1000 has to be drawn from a population of size
19,000. The step length is equal to F=19,000/1000 = 19. The starting point is a
random number from the integers 1 up to and including 19. Suppose the number 5 is
produced. Then the elements with sequence numbers 5, 24,43, . .. will be selected in
the sample. Note that only 19 different samples are possible.

This sample selection scheme assumes the population size to be a multiple of the
sample size. If this is not the case, a different sampling scheme must be used. For
example, the above sampling scheme could be adapted by rounding down N/n to the
nearest integer. It turns out that then sample size depends on the value of the starting
point b. An example illustrates this phenomenon. Suppose, a systematic sample of size
n =23 must be selected from the population of N =7 districts in Samplonia. The step
length is F = [N/n] =[7/2] =2. So, there are two possible starting points: »=1 and
b=2.1f b= 1, the sample consists of elements 1, 3, 5, and 7 and for b = 2, the sample is
equal to elements 2,4, and 6. In the first case, the sample size is 4, and in the second case
it is 3. It can be shown that the sample sizes differ by at most 1.

The problem of variable sample size can be avoided by using a different, more
general, sample selection scheme. Application requires a random number generator
that produces values in the interval [0, 1). Such generators are often available on
computers and hand calculators. Even a 20-sided dice or a table of random number can
be used by generating a series of digits and putting “0.” in front of it. A random value
from the interval [0, 1) will be denoted by w.

To select asystematic sample of size n from a population of size N, the interval (0, N]
is divided into N intervals of length 1:

(0,1],(1,2],...,(N—1,N].

The step length F is now equal to the real-valued number F = N/n. A starting point b
isdefined by selecting a random value from the interval (0, F]. This value is obtained by
selecting a random value u from [0, 1), subtracting this value from 1 (producing a
value in the interval (0, 1]), and multiplying the result by F' (producing a value in the
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Figure 4.5 A systematic sample of size 3 from a population of size 7.

interval (0, F1). In short, b = (1 — u) x F. Next, the values
b,b+F b+2F,....b+ (n—1)F

are determined. Each of these values will be part of one of the intervals (0, 1], (1,2], . . .,
(N —1, N1]. Is a value contained in the interval (k — 1, k], for a certain value k, then
element k is selected in the sample.

Selecting a systematic sample is illustrated in a graphical way in Fig. 4.5. For a
sample of size 3 from a population of size 7, the step length is F'=7/3 =2.333. The
starting point is a random value from the interval (0, 2.333]. Say, the value 0.800 is
produced. This leads to the values 0.800, 0.800 + 2.333=3.133, and
0.800 4 4.667 =5.467. Therefore, the selected sequence numbers are 1, 4, and 6.

The procedure for selecting a systematic sample is summarized in Recipe 4.2.

4.2.2 Inclusion Probabilities

In case of the first sample selection scheme (N is a multiple of #), there are F possible
samples. Only one such sample will select a specific element k. Therefore, the first-
order inclusion probability of element k is equal to

1 n

=F=x (4.22)

Tk

In case of the second sampling scheme, all possible values in the interval (0, F] are
possible, but only the values in a subinterval of length 1 will cause a specific element &
to be selected in the sample. Therefore, the first-order inclusion is also equal to #/N.
The first-order inclusion probabilities for systematic sampling are identical to those
for simple random sampling. However, there are differences for the second-order

Recipe 4.2  Selecting a Systematic Sample

Ingredients Population size N
Sample size n
Generator of random values u from [0, 1)

Step 1 Compute the step length F'=N/n

Step 2 Select a random value u from [0, 1)

Step 3 Compute the starting point: b= (1 —u) X F

Step 4 Compute sequence number k by rounding b upward to the nearest integer
Step 5 Select element k in the sample

Step 6 If the sample size has not been reached yet, add an amount F to b

and go back to step 4
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Figure 4.6 Showing the second-order inclusion probabilities.

inclusion probabilities. These probabilities are the same for each pair of elements if
simple random sampling is applied. They are not the same for each pair in systematic
sampling. For example, it is possible to select the pair of elements 1 and 4 in Fig. 4.5.
This implies that 74 > 0. It is not possible to select a sample that contains the pair of
elements 1 and 2. So 7, =0.

There are no simple formulas for the second-order inclusion probabilities. They
depend on the “distance” between elements in the sampling frame and the value of the
step length. Figure 4.6 shows this graphically. The line segment of Fig. 4.6 has been
splitinto n = 3 subsegments of length F'=2.333. These subsegments have been drawn
below each other. The starting point of the sample is arandom point in the first segment.
The sample is selected by drawing a vertical (dashed) line through the starting point.
The second-order inclusion probability of two elements is determined by the amount
of overlap of their corresponding intervals. For example, the overlap for elements 2 and
5 is equal to 0.333, which means that 7,5 =0.333/F =0.333/2.333 =0.143.

4.2.3 Estimation

The first-order inclusion probabilities of a systematic sample are identical to those of a
simple random sample. Consequently, the Horvitz—Thompson estimator for the
population mean of Y'is also the same. So, if a systematic sample of size n is selected
from a population of size N, then the sample mean

B 1 n
Vs == i (4.23)
i=1

is an unbiased estimator of the population mean of Y. The variance of estimator (4.23)
is determined to a high degree by the order of the elements in the sampling frame.
There is no simple expression for the second-order inclusion probabilities, and
therefore the variance expression of the Horvitz—Thompson estimator cannot be
used. To get some more insight into the properties of the estimator (4.23), its variance
can be written in a different form

V(ys) = 0*—E(0}), (4.24)
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in which o is the unadjusted population variance (with denominator N), and

1< -
ol = ;Z (Yoi—Y)?, (4.25)
i=1
where Y, Yo, . . ., ¥}, denote the values of Y in the sample with starting point b. So,

the variance of the estimator is obtained by subtracting the mean sample variance from
the population variance.

Expression (4.24) shows that the variance can be reduced by ordering the elements
in the sampling frame in such a way that all possible sample variances are as large as
possible. In other words, the possible samples must be as heterogeneous as possible
with respect to the values of the target variable. The smallest variance is obtained if
each sample variance is equal to the population variance 0. Then the variance of the
estimator is 0. The variance of the estimator obtains its maximum value if all samples
are so homogeneous that each sample variance is 0. Then the variance of the estimator
is equal to the population variance. Note that the variance of the estimator does not
depend on the sample size. A larger sample will not necessarily lead to a more precise
estimator.

4.2.4 Estimation of the Variance

Itis not possible to estimate the variance of the estimator with the Horvitz—Thompson
approach. The reason is that this approach requires estimation of quantities Y — Y} or
Y, x Y;. All these quantities can never be estimated because the sampling design
excludes these quantities for a large number of combinations of Y and Y. It is, of
course, possible to compute to sample variance, but this variance need not necessarily
be a good indicator of the variance of the estimator. If it is not unreasonable to assume
that the order of the elements in the sampling frame is completely arbitrary, the theory
for simple random sampling can be applied. This implies that

v(ys) = %sz (4.26)

will be a reasonably good estimator for the variance of estimator (4.23).

There is an approach that can produce an unbiased estimator for the variance. This
requires more than one sample to be selected. Suppose the planned sample size is n.
Instead of selecting one sample of size n, r independent samples of size m are selected,
where n=r x m. Let

) (4.27)

be the sample mean of the jth sample. This is an unbiased estimator for the population
mean. The r estimators are combined into one new estimator

1<~
g == 30 4.28
W= jEZl y (4.28)
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This is also an unbiased estimator of the population mean. The variance of this
estimator is equal to

vit) = %Z V). (4.29)

This variance can be estimated unbiasedly by

r

V() r(rl_l) > (=31 (4:30)

This estimator is in fact based on only r observations and therefore will not be very
precise.

In many practical situations, systematic samples will be treated as if they were
simple random samples. One should realize that variance estimator (4.26) will be only
meaningful if the order of the elements in the sampling frame is arbitrary with respect
to the values of the target variable. If one suspects that this may not be the case, this
estimator should not be used. For example, if each sample is much more homogeneous
than the population as a whole, a optimistic impression of the precision of the estimates
is obtained.

It will have by now become clear that much depends on the structure of the sampling
frame. If the order of elements is random, then a systematic sample can be treated as a
simple random sample. Much more precise estimators can be obtained with a specific
order of the elements. For example, if the values of the target variable in the sampling
frame show a linear trend (i.e., there is linear relationship between value and sequence
number), the true variance of the estimator will be much smaller than its estimate based
on the particular sample. Serious problems occur if there is a cyclic pattern in the
values of ¥, and the step length is equal to the length of the cycle. The true variance of
the estimator will be much larger than its estimate based on one sample. Such a
problem can be avoided if the length of the cyclic pattern is known, and the step length
is taken to be half of this periodicity.

4.2.5 An Example

Some aspects of systematic sampling are now illustrated in a somewhat pronounced
example. Objective is to estimate the mean number of passengers in a public transport
bus between the two Samplonian towns of Crowdon and Mudwater. A sample of hours
is drawn from a period of eight working days. The numbers of passengers in the bus is
counted in each selected hour. The population data (which, of course, are unknown) are
reproduced in Table 4.2.

Each day is divided into eight 2 hour periods. This 2 hour period is the sampling
unit. There are in total 8 x 8 = 64 such periods. The mean number of passengers (27.6)
must be estimated on the basis of a sample of eight periods.

Samples can be selected in various ways. Three different ways are shown here. The
first one is to select a simple random sample of size n =8 periods. This gives an
unbiased estimator with a variance equal to 21.9.
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Table 4.2 Numbers of Passengers in the Bus Between Crowdon and Mudwater

Day1l Day2 Day3 Day4 Day5 Day6 Day7 Day8 Mean

7-9h 48 51 50 49 52 51 49 50 56.6
9-11h 31 30 29 31 29 29 30 31 304
11-13h 20 22 19 19 20 18 21 21 20.5
13-15h 10 9 11 10 10 10 11 9 10.6
15-17h 39 41 40 41 41 39 40 39 39.5
17-19h 42 38 39 39 38 42 39 43 40.0
19-21h 20 19 21 20 21 21 20 18 19.8
21-23h 10 10 11 11 9 10 10 9 9.4

Mean 28.6 28.0 26.9 26.3 27.1 28.4 28.3 273 27.6

A second way is to select a systematic sample. One way to do this is to combine all
rows into one large row consisting of 64 elements. A systematic sample is drawn from
this row. The step length is equal to F' = 64/8 = 8. Hence, the start point will always be
in the firstrow, and F' = 8 implies that all selected elements will be in the same column.
Eight different samples are only possible, corresponding to the eight columns in the
table. The characteristics of each sample are summarized in Table 4.3.

Confidence intervals have been computed under the assumption of a simple random
sample, so using the sample variance s°. All confidence intervals contain the
population value to be estimated (27.6). The widths of all these intervals are
surprisingly wide considering how close the sample means are to the true value.
This is caused by the inappropriate assumption of simple random sampling.
The true variance of the estimator for a systematic sample is 0.616. So the true
margin of the confidence is obtained by taking the square root and multiplying the
result by 1.96. This gives a margin of 1.5. Unfortunately, it is not possible to compute
this margin with the data from a sample.

Ordering of elements row-by-row allows for systematic samples, leading to very
precise estimators. If simple random sampling is assumed, computed confidence
intervals are much wider than they should be. The wrong impression is created that
estimators are not so precise.

Table 4.3 Systematic Samples (Row-Wise)

Starting Point b Mean a'% 5 Confidence Interval
1 28.6 185.2 211.7 (19.2, 38.1)
2 28.0 190.0 217.1 (18.4, 37.6)
3 26.9 194.1 221.8 (17.2, 36.5)
4 26.3 195.2 223.1 (16.6, 35.9)
5 271 196.1 224.1 (17.4, 36.8)
6 28.4 207.0 236.6 (18.4, 38.3)
7 28.3 200.9 229.6 (18.4, 38.1)
8 27.3 203.4 232.5 (17.4, 37.1)
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Table 4.4 Systematic Samples (Column-Wise)

Starting Point b Mean o'i 5 Confidence Interval
1 50.6 1.2 14 (49.9, 51.4)
2 30.4 1.5 1.7 (29.5, 31.2)
3 20.5 1.3 1.4 (19.7, 21.3)
4 10.6 1.5 1.7 (9.8, 11.5)
5 39.5 1.5 1.7 (38.7, 40.3)
6 40.0 2.5 29 (38.9, 40.1)
7 19.8 1.2 14 (19.0, 20.5)
8 9.4 0.7 0.8 (8.8, 10.0)

Another way to draw a random sample is to combine the columns (instead of rows)
into one large column of 64 elements and to draw a systematic sample from this
column. Again, the step length is F' = 64/8 = 8. A starting point is randomly chosen in
the first column. A step length of 8 now means that a complete row will be selected in
the sample. Eight different samples are possible corresponding to the eight different
rows. The characteristics of the samples are summarized in Table 4.4.

Again, confidence intervals have been computed under the assumption of simple
random sampling and using the sample variance s*. All confidence intervals are very
small and not any of them contains the population value to be estimated (27.6). Again,
the assumption leads to misleading results. The true variance of the estimator based on
systematic sampling is 195.7. The true margin of the confidence interval is obtained by
taking the square root and multiplying the result by 1.96, which gives 27.4. So the true
marginis much larger. As mentioned before, the true margin cannot be computed using
the sample data.

The ordering of the elements is now such that systematic sampling leads to
estimators that are not very precise. Assuming simple random sampling produces
estimates that create a wrong impression of very high precision.

4.3 UNEQUAL PROBABILITY SAMPLING

Up until now, sampling designs have been discussed in which all elements have the
same probability of being selected. In the first years of the development of survey
sampling methodology, one assumed that this was only meaningful way to draw
samples. A fundamental change took place in the early 1950s when Horvitz and
Thompson (1952) showed in their seminal paper that samples can be selected with
unequal probabilities as long as these selection probabilities are known and estimation
procedures correct for these unequal probabilities (Fig. 4.7).

4.3.1 Drawing Samples with Unequal Probabilities

Selecting elements with unequal probabilities is more cumbersome, but there are also
advantages. With the proper choice of selection probabilities, estimators are much
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Figure 4.7 Sample selection with unequal selection probabilities. Reprinted by permission of Imre
Kortbeek.

more precise. Horvitz and Thompson (1952) have shown that the variance is smaller as
the selection probabilities of the elements are more proportional to values of the target
variable. The variance is even 0 if the probabilities are exactly proportional to the
values of the target variable. This ideal situation will never occur in practice. It would
mean the values of the target variable could be computed from the selection
probabilities, making a survey superfluous.

Drawing a sample with unequal probabilities is realized in practice by looking for
an auxiliary variable that has a strong correlation with the target variable. All values
of the auxiliary variable must be positive. A concrete example is a survey about
shoplifting. The target population consists of shops, and the target variables are the
number of thefts and the total value of thefts in a certain period. Shops are drawn in the
sample with probabilities proportional to their floor size. The underlying assumption is
that there will be more shoplifting in large shops than in small shops. Large shops have
larger selection probabilities than small shops. So, there will be a lot of information
about shoplifting in the sample. Of course, this is not a representative sample. Large
shops are overrepresented, and small shops are underrepresented. So a correction is
necessary. Horvitz—Thompson estimator just does that. Values for large shops are
divided by larger selection probabilities, so their influence is reduced. The opposite
effect is obtained for values of small shops.

It turns out to be not so simple to make a sample selection scheme for a without
replacement unequal probability sample. A way out is to draw a with replacement
sample. Let py, ps, ..., py be the selection probabilities. It has been described in
Section 2.5 that the variance of Horvitz—Thompson estimator for the population mean
is equal to

1 Y; 2
V(yr) = — pk( - —Y> . 4.31
o) =3 > (5 (@31)

This variance is small if all quadratic terms in this formula are small. And the
quadratic term is small if

pr~ Yy, (4.32)
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where

= (4.33)
NY

The selection probabilities cannot, in practice, be chosen such that condition (4.32)
is exactly satisfied, as this implies that the values of target variable are known. If these
values are known, no survey is necessary. Still, attempts can be made to define the
selection probabilities such that condition (4.32) is satisfied to some degree. To that
end, one tries to find an auxiliary variable X that is more or less proportional to target
variable Y. The values of X in the population must be known, and all these values must
be strictly positive. This implies that

Xk Xk

= =—. 4.34
V45 X;  NX ( )

If X, and Y, are approximately proportional, then X; ~ cY} for a certain constant c.
Consequently,
- X k c Yk - Yk
" NX  NeY  NY'

So the more the X;. and Y}, are proportional, the smaller the variance of the estimator
for the population will be.

Pk (4.35)

4.3.2 Sample Selection Schemes

It is not easy to make a sample selection scheme to select an unequal probability
sample without replacement. There is such a sampling scheme for systematic unequal
probability sampling. This is described in Section 4.4.

Some without replacement unequal probability sampling schemes have been
proposed in the literature. An overview is given by Chaudhuri and en Vos (1988).
All these sampling schemes have their problems: they are so complex that they can
only be used for small samples, or they lead to negative estimates of variances. To keep
things simple, only with replacement sampling schemes are discussed here. Of course,
with replacement sampling is less efficient compared to without replacement sam-
pling. If the sample is selected with replacement, elements can be drawn more than
once in the same sample. This reduces the amount of information that becomes
available. However, if the population is much larger than the sample, differences are
ignorable.

Two sample selection schemes are discussed here for selecting a sample with
replacement and with unequal probabilities. There are called the cumulative scheme
and the Lahiri scheme.

The cumulative scheme is summarized in Recipe 4.3. First, the subtotals Ty, 7>, . . .,
T have to be computed, where

Te =) X (4.36)
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Recipe 4.3 Selecting an Unequal Probability Sample with the Cumulative Scheme

Ingredients Population size N,
Population values X, X5, ..., X of an auxiliary variable X
(all values must be positive)
Sample size n
Generator of random values u from [0, 1)

Step 1 Compute subtotals 7, =X +Xo+ -+ + X fork=1,2,... N.T,=0
Step 2 Draw a random value u from [0, 1)

Step 3 Compute t=(1 —u) x Ty

Step 4 Determine the sequence number k for which 7). <t < T}

Step 5 Select the element with sequence number k in the sample

Step 6 If the sample size has not been reached yet, go back to step 2

It follows that Ty = Xt. By definition T = 0. To select an element, a random value 7 is
drawn from the interval (0, Ty]. This is done by drawing a random value u from the
interval [0, 1) and computing ¢ = (1 —u) X Ty. This value ¢ will lie between two
subtotals. If 7 lies in the interval (T}_;, Tx] for a certain value k, then element k is
selected in the sample.

The probability py, of selecting element k is the probability that the value ¢ turns out
to lie in the interval (T _y, Ty]. This probability is equal to the length of this interval
(X) divided by the length of the interval (0, Ty], and this is equal to p; = X;/Xt.

The cumulative scheme has the disadvantage that first all subtotals 7y, T, . .., Ty
must be computed. The Lahiri scheme avoids this. This scheme was developed by
Lahiri (1951). It requires the knowledge of an upper bound X,,,.x of the values of the
auxiliary variable in the population. So, the condition X < X, must be satisfied for
k=1,2,...,N.

Selection of an element starts by drawing a candidate. This candidate is random
number k selected with equal probabilities from the range 1-N. Then a random value x
is drawn from the interval (0, X,,<]. Candidate k is selected in the sample if x < Xj.
Otherwise, candidate k is not selected, and a fresh attempt is made by selecting a new
candidate k and value x. This process is continued until the sample size has been
reached (Recipe 4.4).

At first sight, it is not obvious that the Lahiri scheme uses probabilities that are
proportional to the values of the auxiliary variable. To show this, first the probability
P.j is computed that an attempt (k,x) results in the rejection of a candidate k. This
probability is equal to

N
P(k =iandx > X;) = > P(x > Xilk = i)P(k = i)

1 i=1

(1 X; ) L, X
1 Xmax N Xmax'

M=

Prej =

(4.37)

I
M=
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Recipe 4.4  Selecting an Unequal Probability Sample with the Lahiri Scheme

Ingredients Population size N
Population values X, X», ..., Xy of an auxiliary variable X
(only for candidate elements)
An upper bound X, with X <X ...
Sample size n
Generator of random values u from [0, 1)

Step 1 Draw a random value u; from [0, 1)

Step 2 Compute sequence number k=1 + [N X u;]. Square brackets indicate
rounding downward to the nearest integer

Step 3 Draw a random value u, from [0, 1)

Step 4 Compute x = (1 — 1) X Xjax

Step 5 If x <X, select element k in the sample

Step 6 If the sample size has not been reached yet, go back to step 1

The probability P; that attempt (k,x) results in accepting element i is equal to

1 X

PiZP(kziandng,-):NX ,

(4.38)

The probability that for a next sample element ultimately element 7 is selected is
equal to

Pi+PujPi+PLPi+ -+ = Pi(1+Pej+Poi+ )=

rej rej

- () /)
NXmax Xmax XT.

Indeed, the selection probability of element i is proportional to X;. Note that it is not
required that the value X, be assumed by one or more elements. For example, if
people are selected proportional to their age, and the maximum age in the population is
not known, a value of X,,,,x = 200 is safe upper bound. However, the closer the X, is
to the true maximum of X, X5, . . ., Xy, the smaller the number of rejected elements will
be. Avalue of X, far way from the real maximum will require more attempts until an
element is selected.

4.3.3 Estimation

For a sample selected with replacement and with selection probabilities py, the
Horvitz—Thompson estimator takes the form
1 & Y

Yup =72

. 4.40
Nn 2= O (4.40)

The subscript UP indicates unequal probability sampling. If the selection proba-
bilities p;, must be proportional to the values X, of the auxiliary variable X, and at the
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same time the condition must be satisfied that the selection probabilities must add up
to 1, it follows that

Xy
= —=. 4.41
Pk NX ( )
Substituting (4.41) in (4.40) leads to
_ X Y
yUP = — A —. (4.42)
ni= X

Estimator (4.42) can be written in a different way. Suppose a new variable Z= Y/X
is defined. The values of Z in the population are denoted by Z,, Z,, ..., Zy, where
Zi =YX, fork=1,2, ..., N.Note that it is assumed that X; > O for all k£, and hence
the value of Z; is always defined.

The sample provided values yy, y,, . . ., y,, of Y and values xy, X, . . ., x,, of X. These
values can be used to compute the sample values zy, z,, . . ., z,, of Z, where z; = y/x;, for
i=1,2, ..., n. Estimator (4.42) can now be written as

yup = XZ, (4.43)
in which

1 n
==Y =z 4.44
i n i=1 K ( )

This estimator is equal to the product of two means: population mean of the
auxiliary variable X and the sample mean of the Z.

Suppose X is a variable assuming the value 1 for each element in the population. So,
X is a constant. Then, expression (4.42) reduces to the simple sample mean. This is
correct because it comes down to simple random sampling with replacement and with
equal probabilities.

Expression (2.49) contains the variance of the Horvitz—Thompson estimator in case
of sampling with replacement. Substitution of (4.41) leads to

v N o\ 2
V(up) =]%ZX;(<E—£) : (4.45)

k=1 X X

Suppose, the values Y and X, are proportional, so Y, = ¢Xj. Hence, Y;/X;. = ¢, and
also the ratio of the mean of Y and the mean of X is equal to ¢, resulting in a variance
equal to 0. This ideal situation will not happen in practice. However, evenif Y and X are
only approximately proportional, this will reduce the variance.

In practice, variance (4.45) must be estimated using the sample data. The unbiased
estimator for the variance is equal to

X <

vup) = e > (@2 (4.46)

i=1

This estimator can be used to construct a confidence interval.
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434 An Example

The effects of unequal probability sampling are shown in a simulation experiment.
This time, the target population consists of 200 dairy farms in the rural part of
Samplonia. Objective of the survey is to estimate the average daily milk production per
farm. Several different sampling designs can be considered. Of course, the most
straightforward way is a simple random sample. Unequal probability sampling is also
possible because two auxiliary variables are available: the number of cows per farm
and the area of grassland per farm.

It is not unreasonable to assume a relationship between milk production and the
number of cows (more cows will produce more milk), or between milk production and
the area of grassland (more grass means more cows and thus more milk). Therefore,
one could consider drawing farms with probabilities proportional to the number of
cows or the area of grass.

The upper left graph in Fig. 4.8 shows the distribution of the estimator based on 600
simple random samples of size 50 (without replacement and with equal probabilities).
The standard error of the estimator is 30.9.

The upper right graph contains the distribution of the estimator in case of sampling
farms with probabilities proportional to the area of grassland. The variation of the
possible outcomes is less than in the case of simple random sampling. The standard
error is reduced from 30.0 to 25.8. Apparently, there is a certain relationship between
the target variable and the auxiliary variable.

The lower left graph in Fig. 4.8 contains the distribution of the estimator in case of
sampling farms with probabilities proportional to the number of cows per farm. The
variation of the possible outcomes is even much less. The standard error is reduced to

600 750 900 600 750 900

Sampling with equal probabilities Sampling with probabilities equal to area

600 750 900

Sampling with probabilities equal to cows

Figure 4.8 Simulation of unequal probability sampling.
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13.8. This is caused by a strong relationship between the milk production per farm and
the number of cows per farm, which is, of course, not surprising.

44 SYSTEMATIC SAMPLING WITH UNEQUAL PROBABILITIES

Manually drawing an unequal probability sample from a large sampling frame can be
cumbersome and time-consuming. To avoid these problems, a systematic sampling
can be selected with unequal probabilities. In fact, the same arguments apply to this
sampling design as were discussed for systematic sampling with equal probabilities
(see Section 4.2).

It should also be noted that it is problematic to draw an unequal probability sample
without replacement. Chaudhuri and en Vos (1988) present an overview of various
sample selection schemes. They all seem to have some kind of disadvantage of
preventing application in a real survey. Some are so complex that they can only be
applied for very small surveys, and others may produce negative variance estimates.

Systematic sampling with unequal probabilities does implement a form of without
replacement sampling. This type of sampling design can be seen as a kind of crossing
between systematic sampling (Section 4.2) and unequal probability sampling
(Section 4.3). It combines the advantages of both types of sampling designs. By
systematically working through the sampling frame an unequal probability sample
without replacement is obtained (Fig. 4.9).

Systematic sampling with unequal probabilities has the potential of producing very
precise estimates. This depends on the availability of an auxiliary variable that has a
strong correlation with the target variable. Taking the inclusion probabilities (approx-
imately) proportional to the values of this auxiliary variable will result in a consider-
able variance reduction.

Of course, the disadvantages of systematic sampling should be also taken into
account. A special structure in the order of elements in the sampling frame may
produce wrong estimates of variances and therefore wrong statements about the
population characteristics.

Because elements are drawn without replacement, the theory can be described in
terms of inclusion probabilities (instead of selection probabilities). Horvitz and
Thompson (1952) have shown that precise estimators can be obtained by taking
the inclusion probabilities approximately equal to the values of the target variable.
This is accomplished in practice by taking the inclusion probabilities proportional to

Figure4.9 Systematic sample selection with unequal probabilities. Reprinted by permission of Imre Kortbeek.
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the values of an auxiliary variable having a strong relationship with the target variable.
Suppose such a variable X is available, with values X, X, . .., Xy. It was shown in
chapter 2 that the sum of the inclusion probabilities is always equal to the sample size n.
Therefore, the inclusion probability of element k must be equal to

T =N—0 =N—z (4.47)

fork=1,2,..., N.

4.4.1 A Sample Selection Scheme

The sample selection scheme for a systematic unequal probability sample is a
generalized version of the scheme for a simple systematic sample (with equal
probabilities) that was described in Section 4.2. First, the subtotals Ty, 15, ..., Ty
have to be computed, where

Te=> X (4.48)

Consequently, Ty = Xt. Furthermore, by definition 7y =0.

To draw a sample of size n from a population of size N, the line segment (0, Ty] is
divided into Nintervals. Each interval corresponds to an element in the population. The
first interval corresponds to element 1 and has length X, the second interval
corresponds to element 2 and has length X,, and so on. So there are N intervals

(To, Th], (T1, T2, - - -, (Tn—1, T (4.49)

The step length is defined by F = T/n = Xt/n. This is a real-valued quantity. The
starting point b is defined by drawing a random value from the interval (0, F]. This
value is obtained by taking a random value u from the interval [0, 1), subtracting it
from 1 and multiplying the resultby F. So bis equal to b = (1 — u) x F. Next, the values

th=bty=b+F,t3=b+2F,...,t,=b+ (n—1)F (4.50)

are computed. Each value ¢, will belong to one of the intervals (7. _, Tx]. So, for each ¢;
the sequence number k is determined for which

T < t; < T, (4.51)

and the corresponding element k is selected in the sample. (Recipe 4.5)

An example of systematic unequal probability sampling illustrates the above
theory. A sample of size n =3 is selected from the population of N =7 districts in
Samplonia. Inclusion probabilities are taken proportional to the number of inhabitants.
The required data are shown in Table 4.5.

The step length is equal to Th/n=1000/3 =333.333. So, the starting point is
drawn from the interval (0, 333.333]. Suppose, this results in the value b = 112.234.
The ¢-values are now equal to ¢ = 112.234, t, =112.234 4 333.333 =445.567 and
t;=112.234 4+ 2 x 333.333 =778.901. The first value lies between T, and T;, so
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Recipe 4.5 Selecting a Systematic Sample with Unequal Probabilities

Ingredients  Population size N
Population values X, X», ..., Xy of an auxiliary variable X (X;. > 0 for all k)
Sample size n
Generator of random values u from [0, 1)

Step 1 Compute the subtotals Ty = X; +X,+ -+ +Xifork=1,2,... ,N. Tp=0
Step 2 Compute the step length F'=Ty/n
Step 3 Check for each element k& whether X, > F. If this is the case, select

element k in the sample, reduce the sample size n by 1, remove
element k from the population, and return to step 1

Step 4 Draw a random value u from [0, 1)

Step 5 Compute the starting point b= (1 —u) X F

Step 6 Determine the sequence number k from which 7). <b < T}
Step 7 Select the element with sequence number k in the sample

Step 8 If the sample size has not been reached yet, add an amount F to b

and go back to step 6

district Wheaton is selected in the sample. The second value lies between T, and Ts.
This means district Smokeley is added to the sample. Finally, the third value lies
between Ty and T, which means that Mudwater is included in the sample. See also
Fig. 4.10.

To obtain more insight into the second-order inclusion probabilities, the selection
process can be displayed in a different way. The line segment (0, T] as shown in
Fig. 4.10 is divided into n subsegments of length F. These subsegments are
drawn below each other (Fig. 4.11). The starting point is a random value in the
first subsegment. The sample is obtained by drawing a vertical line through

Table 4.5 Numbers of Inhabitants in the Districts of Samplonia

k District Population X, Subtotal T}
1 Wheaton 144 144
2 Greenham 94 238
3 Newbay 55 293
4 Oakdale 61 354
5 Smokeley 244 598
6 Crowdon 147 745
7 Mudwater 255 1000

.
i
—@

6

Figure 4.10 A systematic unequal probability sample of size 3 from a population of size 7.
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Figure 4.11 A systematic unequal probability sample of size 3.

the starting point. If the line transects interval (Ty_, T;], element k is selected in the
sample.

The first-order inclusion probability of an element is equal to the probability
of transecting its interval. This probability is equal to X, /F=nX, /Xy for
element k. Indeed, its inclusion probability is proportional to its value of the auxiliary
variable.

The second-order inclusion probabilities depend on the order of the elements and
also on the values of the auxiliary variables. For example, it is clear from Fig. 4.11 that
elements 5 and 7 have a high probability of being together in the sample. Moreover, it
will not be possible to have the elements 2 and 6 together in the sample.

Depending on the sample size and the values of the auxiliary variable, a problem
may occur with “big elements.” Big elements are defined as those elements k for which
the value X is larger than the step length F. Such elements are always selected in
the sample whatever be the value of the starting point b. The length of the interval
(Ty._1, Ty] is so large that it is impossible to jump over it. Their inclusion probability is
equal to 77, = 1. Itis not proportional to X. If ' is much smaller than X, element k£ can
even be selected more than once in the same sample. This situation is illustrated in
Fig. 4.12.

Suppose four districts are selected with probabilities proportional to the population
size. The step lengthis equal to 7/n = 1000/4 = 250. The district of Mudwater has 255
inhabitants. This is more than the step length. So, Mudwater is a “big element.” If the
starting value turns out to be b =248, the f-values are equal to ¢t; =248, t, =498,
t3 =748, and t, = 998. Both the values 75 and 74 are between T and 75, so element 7
(Mudwater) is even selected twice.

-

Figure 4.12 A systematic unequal probability sample with “big elements.”
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Note that the fourth subsegment in Fig. 4.12 completely belongs to element 7.
Whatever vertical line is drawn, it will always transect the interval of element 7. So,
element 7 will always be selected. Also, the last (small) part of the third segment
belongs to element 7. Every vertical line transecting this part will result in a sample
containing element 7 twice.

The problem of the “big elements” is solved in practice by first removing
these elements from the population and including them in the sample. A somewhat
smaller population will remain, and the rest of the sample is selected from this
population.

Returning to the example of a sample of size n = 4 from a population of size N =17, it
turned out that element 7 (Mudwater) was a big element. Since the number of
inhabitants of all other districts is smaller than the step length F' =250, Mudwater
is the only big element. Therefore, this district is removed from the population and
included in the sample. The remaining population consists of six districts, with a total
population size of 745. A sample of size 3 must be selected from this reduced
population. This means a step length of F'=745/3 = 248.3. Again, the situation must
be checked for big elements. The largest remaining district is Smokeley with 245
inhabitants. This value is smaller than the step length, and therefore there are no big
elements any more.

4.4.2 Estimation

If the inclusion probabilities 77, must be proportional to the values X, of the auxiliary
variable X, and at the same time the condition must be satisfied that the inclusion
probabilities must add up to n, it follows that

Ty =N— =N—2 (4.52)

fork=1,2,...,N.Substituting (4.52) in expression (2.38) for the Horvitz—Thompson
estimator leads to the estimator

_ X Y
=— ap—.
Ysup n = X,

(4.53)

Estimator (4.53) can also be written in a different way. Suppose, anew variable Z = Y/X
is defined. The values of Z in the population are denoted by Z,, Z,, ..., Zy, where
Zi =YX, fork=1,2,..., N.Note that it is assumed that X; > O for all k£, and hence
the value of Z; is always defined.

The sample provided values yy, y,, . . ., y,, of Y and values x, X, . . ., x,, of X. These
values can be used to compute the sample values z1, z5, . . ., z,, of Z, where z; = y;/x;, for
i=1,2, ..., n. Estimator (4.42) can now be written as

Ysup = XZ, (4.54)
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with

S| =

zZ =

i=1

This estimator is equal to the product of two means: population mean of the
auxiliary variable X and the sample mean of the Z. Note that the formula for the
estimator is exactly equal to that of the estimator for unequal probability sampling (see
Section 4.3).

Suppose X is a variable assuming the value 1 for each element in the population. So,
X is a constant. Then, expression (4.53) reduces to the simple sample mean. This is
correct because it comes down to systematic sampling with equal probabilities.

There is no simple expression for the variance of estimator (4.53). This is caused by
the complex nature of the second-order inclusion probabilities. They depend on the
both order of the elements in the sampling frame and magnitude of the values of the
auxiliary variable. For example, Fig. 4.11 shows that on the one hand elements 2 and 4
will never end up together in the sample, so that their second-order inclusion
probability is 0. On the other hand, elements 5 and 7 have a high probability of being
selected together in the sample.

In principle, it is possible to process all elements in the sampling frame and to
compute all second-order inclusion probabilities, but this can mean a lot of work.
Suppose, a survey has to be carried out in a town with a population of 600,000 people.
Then even for this relatively small population, the number of second-order inclusion
probabilities is equal to 600,000 x (600,000 — 1)/2 = 179,999,700,000.

The magnitude of the variance is determined by several factors. The variance will be
small if the inclusion probabilities are approximately proportional to the values of
target variable. This property is inherited from unequal probability sampling.
Furthermore, the variance will be small if the homogeneity of each sample is similar
to that of the population. This property is inherited from systematic sampling.

It is difficult to estimate the variance of the estimator properly. This is caused by
problems similar to that of systematic sampling. If there is a specific cyclic structure in
the order of the elements in the sampling frame, and the step length is equal to the
length of this cycle, the variance in the sample will not be indicative of the true variance
of the estimator. This may cause variance estimates to be too small, creating a wrong
impression of precise estimators.

In the case of systematic sampling with equal probabilities, the variance expres-
sions of simple random sampling can be used as an approximation if the order of the
elements in the sampling frame is completely random. A similar approach can also be
used for systematic sampling with unequal probabilities. However, one should be
careful because the expression for unequal probability sampling in Section 4.3 applies
to with replacement sampling, whereas systematic sampling with unequal probabili-
ties is a form of without replacement sampling. Nevertheless, the approximations may
work if the population size is much larger than the sample size.

Ifitis important to have a good estimate of the variance, an approach similar to that
described in Section 4.2 can be applied. Instead of selecting one sample, a number of
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Table 4.6 Precision of Estimators for Various Sampling Designs Resulting in a
Sample of 10 from the Working Men in Agria

Sampling Design Variance
Simple random 1178
Systematic 541
Systematic (ordered by income) 201
Probabilities proportional to age 544
Systematic, probabilities proportional to age 292
Systematic, probabilities proportional to age (ordered by income) 155

independent small subsamples are selected. An estimate is computed for each
subsample. Application of expressions (4.29) and (4.30) produces a combined
estimate and an estimate of the variance of this combined estimate.

It will be assumed in many practical situations that the properties of a systematic
sample with unequal probabilities will not differ much from those of an unequal
probability sample as described in Section 4.3 and that therefore expression (4.46) can
be used. However, one should always be careful.

4.4.3 An Example

The properties of systematic sampling with unequal probabilities are illustrated using
a small example. The target population consists of all working men in the Samplonian
province of Agria. This population consists of only 58 people. The small population
size simplifies the work of computing the second-order inclusion probabilities.

A sample of 10 persons is selected from this population. The objective is to estimate
to mean income. Age can be used as an auxiliary variable.

Table 4.6 contains the variance of the estimator of the mean for various sampling
designs. For the nonsystematic samples, the formula for the Horvitz—Thompson
estimator was used. For the systematic samples, second-order inclusion probabilities
were computed for the original order of the elements and also for a sampling frame in
which the elements were ordered by increasing income.

The table shows that simple random sampling is not the best way to get a precise
estimate of the mean income. Apparently, the structure of the sampling frame is such
that systematic sampling reduces the variance by approximately a factor 2. The
relationship between income and age is not very strong, but still unequal probability
sampling also reduces the variance by a factor 2. The result is even better (reduction by
a factor 4) for systematic sampling with probabilities proportional to age. The best
results for systematic sampling are achieved by ordering the sampling frame by
increasing income. Of course, this is not feasible in practice.

The variance of the estimator based on systematic sampling with unequal proba-
bilities is equal to 292. This means that in terms of a 95% confidence interval in 95 out
of 100 cases the estimate will not differ more than 1.96 x /292 = 33 from the true
value. So even for a small sample of size 10, the mean income can be estimated with a
reasonably high precision.
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EXERCISES

4.1

Use the table with random numbers given below to draw a sample of size n =20
from a population of size N = 80. Work row-wise and use the first two digits of
each group of five digits. Write down the sequence number of the selected
elements.

06966 75356 46464 15180 23367 31416 36083 38160 44008 26146
62536 89638 84821 38178 50736 43399 83761 76306 73190 70916
65271 44898 09655 67118 28879 96698 82099 03184 76955 40133
07572 02571 94154 81909 58844 64524 32589 87196 02715 56356
30320 70670 75538 94204 57243 26340 15414 52496 01390 78802
94830 56343 45319 85736 71418 47124 11027 15995 68274 45056
17838 77075 43361 69690 40430 74734 66769 26999 58469 75469
82789 17393 52499 87798 09954 02758 41015 87161 52600 94263
64429 42371 14248 93327 86923 12453 46224 85187 66357 14125
76370 72909 63535 42073 26337 96565 38496 28701 52074 21346
4.2 Atarget population consists of 1000 companies. A researcher wants to estimate the

4.3

percentage of companies exporting their products to other countries. Therefore, he
selects a simple random sample of 50 companies without replacement.

a. Compute the variance of the sample percentage of exporting companies,
assuming that 360 out of 1000 companies indeed do so.

b. Estimate the variance of the sample percentage, assuming the population
percentage is unknown and there are 18 exporting companies in the sample.

c. Estimate the variance of the sample percentage, assuming the population
percentage is unknown and there are 14 exporting companies in the sample.

d. Estimate the variance of the sample percentage, assuming the population
percentage is unknown and there are 22 exporting companies in the sample.

A company wants to carry out a customer satisfaction survey among its 10,000
customers. The questionnaire contains a number of questions that are used to
compute a satisfaction index. This is value in the interval from 0 to 100, where 0
means extremely unsatisfied and 100 means extremely satisfied. Before really
carrying out the survey, a test is conducted. A simple random sample of 20
customers is selected without replacement. The satisfaction scores turn out to be

100 88 72 81 80 69 84 83 65 69 90 65 70 80 90 74 70 96 62 67

a. Compute the sample mean. Compute also an estimate of the standard error of
the sample mean.

b. Compute the 95% confidence interval for the mean satisfaction index of all
10,000 customers. The company has a quality management policy aiming at
a mean satisfaction index of 80. What conclusion can be drawn from the
sample with respect to this target?
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44

4.5

4.6

c¢. The company decides to really carry out the customer satisfaction survey.
The requirement is that the margin of error of the 95% confidence interval
must not exceed a value of 2. Compute the corresponding sample size, using
the information obtained in the test survey.

A camera shop in a town considers including an advertisement for digital
cameras in the newsletter of the local tennis club. This club has 1000 members.
Before deciding to do so, the shop owner wants to have an estimate of the
percentage of tennis club members having a digital camera. To this end, he
carries out a survey. He assumes that the percentage of club members with a
digital camera does not exceed 30%. Compute the required sample size if the
width of the 95% confidence interval may not exceed 3 percent points.

If a sample has been selected with unequal probabilities, the estimates must be
corrected by weighting the observed values of the target variable using

a. the values of the auxiliary variable;

b. the selection probabilities;

c. the square roots of the values of the auxiliary variable;
d. a combination of the quantities mention in a, b, and c.

A forestry company experiments with the rate of growth of different types of trees.
Ithas planted 48 trees in one long line alongside aroad. The trees are alternately of
types A and B. After 2 years, the company wants to know the average height of all
trees. The length of all 48 trees can be found in the table below:

629 353 664 351 633 314 660 381 640 366 696 348 681 307 633 337 663 331 609 338
675 361 696 304 647 366 669 384 669 389 693 324 698 309 602 341 671 352 663 344
671 342 627 323 612 376 629 363

a. Compute the mean length and the standard deviation of all 48 trees.

b. Draw a simple random sample without replacement of size n = 8. Use the
table with random numbers below. Work row-wise and use only the first two
digits of each group of five digits. Compute the sample mean and the sample
standard deviation.

94830
17838
82789
64429
76370

56343 45319 85736 71418 47124 11027 15995 68274 45056
77075 43361 69690 40430 74734 66769 26999 58469 75469
17393 52499 87798 09954 02758 41015 87161 52600 94263
42371 14248 93327 86923 12453 46224 85187 66357 14125
72909 63535 42073 26337 96565 38496 28701 52074 21346

c. Draw a systematic sample of size 8. Use the value b =3 as starting point.
Compute the sample mean and the sample standard deviation.

d. Compare the results of exercises (b) and (c) with those of exercise. Explain
observed differences and/or similarities.
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4.7 The table below contains an imaginary population of 20 transport companies. It
contains for every company the number of trucks it owns and the amount of
goods that have been transported in a specific week. A sample of eight
companies is selected. The objective is to estimate the mean of transported
goods per company.

C.

Company Number of trucks (X) Transported goods (Y)

1 3 35
2 4 37
3 5 48
4 6 64
5 7 75
6 6 62
7 4 39
8 5 46
9 3 29
10 9 93
11 12 124
12 20 195
13 4 42
14 3 28
15 5 46
16 8 83
17 7 71
18 3 25
19 4 41
20 3 27

. Suppose the sample is selected with equal probabilities and without re-

placement. Compute the variance and the standard error of the sample mean.
Also, compute the margin of error of the 95% confidence interval.

. Select a sample of eight companies with unequal probabilities. Use the

number of trucks per company as auxiliary variable. Select the sample with
the cumulative scheme. Use the following values of the randomizer for
values in the interval [0, 1): 0.314, 0.658, 0.296, 0.761, 0.553, 0.058, 0.128,
and 0.163.

Compute the value of the estimator for this sampling design. Make clear how
this value is obtained.

. Estimate the variance and the standard error of the estimator. Also, deter-

mine the 95% confidence interval. Compare the margin of error of this
estimated interval with the margin of the confidence interval as computed in
(a) and draw conclusions with respect to the precision of estimator.
Determine whether the estimated confidence interval indeed contains the
value of the population parameter.



EXERCISES 99

4.8 A population consists of N =9 elements. There are three elements for which the
value of the target variable Y is equal to 1. For another three elements, the value
is equal to 2. The value of Y is equal to 3 for the three remaining elements.
Suppose a systematic sample with equal probabilities of size n =3 is selected
from this population.

a. The elements are ordered in the sampling frame such that their values are
equal to 1,2,3,1,2,3,1,2,3. Compute the variance of the sample mean for this
situation.

b. Determine the sequence of elements that results in the smallest variance of
the sample mean. What is the value of this variance?

c. Suppose a naive researcher uses the variance formula for a simple random
sample without replacement. In which of the situations described under (a)
and (b) would this result in the largest mistake? Explain why this is so.



CHAPTERS

Composite Sampling Designs

5.1 STRATIFIED SAMPLING

Stratified sampling is based on the idea of dividing the population into a number
of subpopulations (strata) and to draw a sample from each stratum separately. Thisidea
is as old as sampling theory itself. Sampling theory emerged at the end of the
nineteenth century. At that time, researchers were still reluctant to draw samples.
It was argued that there was no need to use samples if every element in the population
could be observed. Moreover, it was considered improper to replace observations by
mathematical calculations. The general idea at that time was that it was impossible to
draw reliable conclusions about a population using data that were collected for just a
small part of the population.

5.1.1 Representative Samples

The first ideas about sampling were discussed at the meeting of the International
Statistical Institute (ISI) in Bern in 1895. It was Anders Kiaer, director of
the Norwegian statistical institute, who proposed using sampling instead of complete
enumeration. He argued that good results could be obtained with his Representative
Method. This was a type of investigation where data on a large selection from
the population were collected. This selection should reflect all aspects of the
population as much as possible. One way to realize such a sample was the “balanced
sample.” The population was divided into subpopulations by using variables such as
gender, age, and region. These subpopulations were called strata. The sizes of the
strata were supposed to be known. A percentage of persons was taken from each
stratum. This percentage was the same for each stratum. Selection of samples took
place in some haphazard way (probability sampling had not yet been invented). As a
result, the sample distribution of variables such as gender, age, and region was similar

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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100



STRATIFIED SAMPLING 101

Figure 5.1 Stratified sampling. Reprinted by permission of Imre Kortbeek.

to the distribution in the population. The sample was representative with respect to
these variables.

Probability sampling was introduced in later years, but stratification remained a
useful technique to improve the “representativity” of the sample. Stratification also
turned out to have the potential to improve the precision of estimates. This particularly
works well if strata are chosen such that they are homogeneous with respect to the
target variables of the survey (Fig. 5.1).

5.1.2 Sample Selection Schemes

To select a stratified sample, the population is first divided into strata (subpopulations).
Next, a sample is selected in each stratum. Researchers are free to choose the sampling
design for each stratum, as long as it provides an unbiased estimate of the value of the
population parameter in each stratum. Finally, the estimates for all strata are combined
into an estimate for whole population.

Stratified sampling has some flexibility. For example, it offers the possibility to say
something about each stratum separately. Hence, a national survey could provide
information about each province of the country and a business survey could produce
statistics for each separate branch. By choosing the proper sample size in each stratum,
sufficient precise estimates can be computed.

Stratification can be carried out only if it is known in advance to which stratum each
populationelementbelongs. Since a separate sample is selected from each stratum, there
must be a sampling frame for each stratum. For example, if a stratified sample must be
selected from a large town, where stratification is by neighborhood, a separate sample
must be drawn from each neighborhood, requiring a sampling frame for each neighbor-
hood. Lack of availability of sampling frames per strata may prevent stratified sampling.

First, the situation is discussed where samples are selected from all strata using
arbitrary sampling designs. Next, the theory will be worked out for the case in which a
simple random sample (with equal probabilities and without replacement) is selected
from each stratum. Stratification offers not much news from a theoretical point of view.
Instead of drawing just one sample, a number of samples are drawn. The only
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difference is the manner in which stratum estimates are combined into an estimate for
the whole population.

5.1.3 Estimation

To be able to write down the formulas for estimators and variances, notations
are slightly adapted. Several quantities get an extra index denoting the stratum to
which they apply. Suppose the population U is divided into L strata. These strata are
denoted by

U, Us,..., Uy (5.1)

The strata do not overlap and together cover the complete population U. The
number of elements in stratum /2 is indicated by N, (for k=1, 2, . . ., L). Consequently,

L
> Ny=Ni+Ny+ -« +N . =N. (5.2)
h=1

The Ny, values of the target variable Y in stratum / are denoted by
h) h
AER L 443 (5.3)

The mean of the target variable in stratum / is denoted by
Ni

1
" — 2N y?, (5.4)

Y
Nh ot k

The mean in the whole population can be written as
Y= IZL:N 7 (5.5)
- N h=1 ! . .

So the population mean is equal to the weighted average of the stratum means. The
(adjusted) variance in stratum / is equal to

2o 1 i (Y(h)_y(h))z (5.6)
h Nh_l kil k . .

A sample of size n is drawn from this stratified population. This sample is realized
by selecting L subsamples, with respective sample sizes n;, ny, ..., n;, where
ny+ny,+ --- +ny =n. Whatever sampling design is used for stratum /A, with
the theory of Horvitz and Thompson (1952), it is always possible to construct an
estimator

_(h
it (5.7)
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allowing unbiased estimation of the stratum mean (5.4). The variance of this estimator
is denoted by

V(). (5.8)

Since estimator (5.7) is an unbiased estimator for the mean of stratum / (for
h=1,2, ..., L), expression

ZN;I () (5.9)

is an unbiased estimator of the mean of target variable Y in the whole population.
Because the subsamples are selected independently, the variance of estimator (5.9)
is equal to

V(ys) - N2 ZNh ( ) (5.10)

This expression shows that the variance of the estimator will be small if the
variances of the estimators within the strata are small. This offers interesting
possibilities for constructing precise estimators.

The theory will now be applied to the case of a stratified sample where a simple
random sample without replacement is selected in each stratum. Let the sample size in
stratum /1 be equal to n;,. The n;, observations that become available in stratum / are
denoted by

h h
Wy, (5.11)

The sample mean in stratum / is equal to

— 1 & h
3= =30, (5.12)

M=

The sample mean in stratum /2 is an unbiased estimator of the population mean in
stratum /. The variance of the estimator is equal to

1
V(y“')) f” s, (5.13)
where fj, = n;,/N;,. This variance can be estimated in an unbiased manner by
1
v(j)(h>) _ nfh @ (5.14)

where

IR Y AR
= Z(y,» —y ) . (5.15)
i=1
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Now the estimators for the stratum means can be combined into an estimator for the
population mean. This estimator is equal to

ZNhy ) (5.16)

hl

This is an unbiased estimator for the population mean. So this estimator is equal to
the weighted average of the sample means in the strata. The variance of estimator (5.16)
is equal to

V(y )—iiwl_f”sz (5.17)
s _Nzh h n, he .
=1

This variance can be estimated in an unbiased manner by

L
§ 21 /i 57 (5.18)
yS N2 .

np

A closer look at expression (5.17) shows that the variance of the stratification
estimator is small if the stratum variances S% are small. This will be the case if the strata
are homogeneous with respect to the target variable, which means there is not much
variation in the values of the target variable within strata. The variation in this
case is mainly due to the differences in stratum means. So, there is a lot of variation
between strata, and not within strata. The conclusion can be drawn that the stratified
estimator will be precise if it is possible to construct a stratification with homogeneous
strata.

5.1.4 Stratification Variables

The sampling design for a stratified sample is flexible. There are many different ways
to construct strata. The only condition is that the stratum sizes must be known and that
it must be possible to select a sample in each stratum separately.

Analysis of the variance expression (5.17) has shown that strata should be
constructed such that within strata variances are small. This will result in precise
estimators. Therefore, the search for proper stratification variables (i.e., variables
used for the construction of strata) should be aimed at finding variables that have a
strong relationship with the target variable. Such a relationship implies that the value
of the target variable can be predicted from the value of stratification variables. This
comes down to a situation where there is little variation in the values of the target
variables, given the values of the stratification variables.

Sometimes, a candidate stratification variable is quantitative. It assumes many
different values. An example is the variable age. To be useful as a stratification
variable, it has to be transformed into a qualitative variable. For variables such as age,
this would mean categorizing age into different groups, for example, 20-29 years,
30-39 years, and so on. The question that remains is “Which grouping is most effective
in the sense that the resulting stratified estimator has the smallest variance?”
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Table 5.1 Construction of Age Strata Using the Cumulative-Square-Root-f Rule

Age Frequency f Width w Vw V/fw Cumulated Strata
04 90 5 21 21 0-14
5-9 86 5 21 42
10-14 79 5 20 62
15-19 88 5 21 83 15-29
20-29 149 10 39 122
30-39 110 10 33 155 3049
40-49 119 10 34 189
50-59 101 10 32 221 50-69
60-69 74 10 27 248
70-79 59 10 24 272 70-99
80-99 45 20 30 302

Dalenius and Hodges (1959) have proposed a rule for this. It is called the cumulative-
square-root-f rule. First, the frequency distribution of the original variable is deter-
mined. The square root of the product of the frequency (f ) and the interval width (w)
is computed for each value of the variable. Next, values are grouped in such a way that
the sum of the computed quantities is approximately the same in each group.
Table 5.1 contains an example of this procedure. It starts from an age distribution
in 11 small groups. These 11 groups have to be combined into a smaller number
of groups. Five strata have been formed, each containing about one-fifth of the total

of all values /f x w.

5.1.5 Sample Allocation

An important aspect of a stratified sample is the allocation of the sample. This is the
distribution of the total sample size n over the L strata. Conditions on the precision of
the estimators in each stratum would determine the sample size in each stratum
and therefore the total sample size. However, usually the total sample size n is
determined beforehand. This leads to the question how to divide this sample size over
the strata.

Ifthe objective is to estimate the population as precise as possible, the best estimator
is obtained by means of the so-called optimal allocation. This allocation is sometimes
also called the Neyman allocation. According to this allocation, the sample size
in stratum / must be taken equal to

NhSh

- .
>N
j=1

ny=n (5.19)

If nj, turns out not to be an integer number, it should be rounded to the nearest integer.
The sample size in a stratum will be larger if the variance in a stratum is larger. Not
surprisingly, more elements must be observed in less homogeneous strata.
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It may happen that the computed value 7, is larger than the total size N;, of the
stratum /. In this case, all elements in strata should simply be observed. The remaining
sample size can be divided over all other strata by using the optimal allocation rule.

If n;, elements are selected from stratum / of size Ny, the inclusion probabilities of
these elements are all equal to n,/N;. As a result, the inclusion probabilities are
proportional to the stratum standard deviations S;,. Not every element has the same
inclusion probability. This is no problem as estimator (5.16) corrects for this. This
formulais obtained if the inclusion probabilities 1,/N;, are substituted in the expression
for the Horvitz—Thompson estimator.

It is only possible to compute the optimum allocation if the values of the stratum
standard deviations S, are known. Often this is not the case. If estimates from a
previous survey are available, they can be used. Sometimes, stratification is applied not
only for increasing precision but also for administrative purposes (there is no sampling
frame for whole population, but there are sampling frames for each stratum separately)
or for obtaining estimates within strata. In this case, it may not be unreasonable to
assume that the stratum standard deviations do not differ too much. If all standard
deviations are equal, the allocation expression (5.19) reduces to

np =N (5.20)

Allocation according to this formulais called proportional allocation. Proportional
allocation means that every element in the population has the same inclusion
probability n/N. This is why this type of sample is sometimes called a self-weighting
sample. This is what early survey researchers had in mind when they talked about
representative samples.

It has already been said that the choice of the sampling design and the sample size
is often a compromise between precision and costs. The costs of data collection can
also play a role in determining the allocation of the sample to the strata. There can
be situations where interviewing in one stratum is more costly than in another stratum.
As a result, the optimal allocation may not be the cheapest allocation.

Suppose that the total costs of the fieldwork may not exceed a specified amount C.
Let ¢;, denote the cost of interviewing one element in stratum /4. Then the allocation
must be such that

L
C=>_ cm. (5.21)
h=1

This condition replaces the condition that the total sample size must be equal to n.
Note that the condition n; +n,+ --- +n, = n is obtained as a special case of
condition (5.21) if the costs of interviewing are the same in all strata.

It can be shown that under condition (5.21), the most precise estimator is obtained
if the sample size in stratum / is equal to

N;Sp
Ve

n, =K

(5.22)
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where the constant K is equal to

Kk—— ¢ (5.23)

L
> NiSuy/Ch
h=1

The obvious conclusion can be drawn from this expression that fewer elements are
selected in more expensive strata.

5.1.6 An Example of Allocation

The effect of allocation on the precision of the estimator is illustrated using an
example. The target population is the working population of Samplonia. The
objective is to estimate the mean income. A stratified sample of size 20 is selected.
There are two strata: the provinces of Agria and Induston. Table 5.2 summarizes
the data.

Note that both stratum variances are smaller than the population variance.
Apparently, the strata are more homogeneous than the population as a whole.
Therefore, it is worthwhile to consider a stratified sample. Size and variance in the
stratum of Agria are small. This will result in only a small sample in this stratum. This
can be observed in both the optimal (only two sample elements) and the proportional
allocation (seven sample elements). The result for the optimal allocation is different
from that of the proportional allocation. This is caused by the fact that the stratum
variances are not the same.

Table 5.3 contains the variance of the estimator of the mean income of the
working population of Samplonia for each possible allocation of a sample of
size 20.

The smallest variance is obtained if 2 persons are selected in Agria and 18
in Induston. This results in a variance equal to 18,595. This is the optimal
allocation. The variance is somewhat larger for proportional allocation (7 from
Agria and 13 from Induston). Note that a simple random sample of size 20 would
result in a variance of 43,757. Many allocations in the table produce a smaller
variance. So, even a nonoptimal allocation may help improving precision. However,
one should always be careful, as a bad allocation can lead to much less precise
estimators.

Table 5.2 Stratification by Province in Samplonia

Allocation
Stratum Size Variance in Incomes Optimal Proportional
Agria 121 47,110 2 7
Induston 220 738,676 18 13

Samplonia 341 929,676 20 20
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Table 5.3 The Variance of the Estimator for Each Possible Allocation

Allocation Allocation

Agria Induston Variance Agria Induston Variance
1 19 20,662 11 9 33,244
2 18 18,595 12 8 37,468
3 17 18,611 13 7 42918
4 16 19,247 14 6 50,204
5 15 20,231 15 5 60,421
6 14 21,497 16 4 75,764
7 13 23,044 17 3 101,356
8 12 24,909 18 2 152,563
9 11 27,155 19 1 306,224
10 10 29,883

5.2 CLUSTER SAMPLING

The sampling designs discussed until now always assumed a sampling frame for the
whole population to be available. This is, unfortunately, not always the case. Away out
could be to construct a sampling frame specifically for the survey, but this is very costly
and time-consuming. A typical example of such a situation is a survey of individuals
where there is no sampling frame containing all individuals in the population.

Sometimes, a sampling frame is available at an aggregate level. The population
elements can be grouped into clusters and there is a sampling frame containing all
clusters. The idea behind cluster sampling is to draw a number of clusters and to
include all elements in the selected clusters in the sample.

One example of cluster sampling is to select a number of addresses from an address
list and to include all people at the selected addresses (as far as they belong to the target
population) in the sample.

Another reason to apply cluster sampling can be to reduce fieldwork costs.
Interviewers in a face-to-face survey have to travel less if the people to be interviewed
are clustered in regional areas (addresses, neighborhoods).

5.2.1 Selecting Clusters

Cluster sampling assumes that the population can be divided into a number of
nonoverlapping subpopulations. These subpopulations are called clusters. A number
of clusters are selected by using some sampling design. All elements in each selected
cluster are included in the sample (Fig. 5.2).

Note that cluster sampling is not the same as stratified sampling. Drawing a
stratified sample means that in every stratum a sample of elements is selected, whereas
drawing a cluster sample means that in a sample of strata all elements are selected.
A cluster sample can be seen as a simple random sample at an aggregate level.
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Figure 5.2 Cluster sampling. Reprinted by permission of Imre Kortbeek.

The selected elements are clusters and the values associated with these elements are
the totals of the variables for all individual elements in the clusters.

It should be stressed that the choice for cluster sampling is often based on practical
arguments. Estimates based on this type of sample design need not necessarily be more
precise than estimates based on simple random sampling. On the contrary, including
all members of a cluster in the sample may mean that a number of more or less similar
elements are observed. This implies that less information is available than if elements
would have been selected completely independent of each other. As a result, variances
of cluster sample estimators will usually be larger. This phenomenon is called the
cluster effect.

Clusters can be selected by using all kinds of sampling designs, including the
sampling designs that have already been discussed. This chapter describes two such
designs. One is to select clusters by means of a simple random sample, with equal
probabilities and without replacement. The other is to select clusters with probabilities
equal to their size (with replacement).

5.2.2 Selecting Clusters with Equal Probabilities

The notations used for cluster sampling are similar to those used for stratified
sampling. It is assumed that the population U can be divided into M clusters

Uy, Us, ..., Uy. (5.24)

The clusters do not overlap and together cover the complete population U. Let N;, be
the size of cluster Uy, (h=1, 2, ..., M). Consequently,

> Ni=N. (5.25)
h=1

The Nj, values of the target variable Y cluster /4 are denoted by

YOy, y, (5.26)
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If the mean of the target variable in cluster / is denoted by

(0 L
W =—5"y" (5.27)

v =3 "r =Ny, (5.28)
then the population mean of Y can be written as

S A
v==> Ny, (5.29)
h=1

=]

Another population parameter that will be used is the mean cluster total

N7 (5.30)

=
I
|-
™
a5
I
N
NE

h=1 h=1

A simple random sample of m clusters is selected without replacement and with
equal probabilities from this population. All elements in the selected clusters are
included in the survey. The totals of the target variables in the selected clusters are
indicated by

1 2 m

Assuming the clusters are the elements to be surveyed and the cluster totals are the
values of these elements, the Horvitz—Thompson can be used at this aggregated level.
By applying the theory provided in Section 4.1, the sample mean

B 1 m .
yr=—3 (5.32)

m
of the cluster totals is an unbiased estimator of the mean cluster total (5.30).
Consequently,

M

Yo = — 5.33
YcL NyT ( )

is an unbiased estimator of the population mean of the elements in the target
population. The variance of this estimator is, similar to expression (4.5), equal to

V() = (%)%S (5.34)
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where f=m/M and

o _ L SNy Y
h=1

This variance can be estimated in an unbiased manner by

N 1 m (h) 2
=— —yr) - 5.36
Sc 145 ()’T yT) (5.36)

Note that the variance of the values of the target variable within the clusters does not
play arole in this formula. The variance is determined by the variation between clusters
and not within clusters.

5.2.3 Selecting Cluster Probabilities Proportional to Size

Expressions (5.34) and (5.35) show that the variance of the estimator is determined by
the variation in the cluster totals of the target variable. The more they differ, the larger
the variance will be. In populations where the values of the target variable show little
variation, the cluster totals are largely determined by the numbers of elements in the
clusters. The total of alarge cluster will be large and that of a small cluster will be small.
Consequently, the estimator will have a large variance in such situation.

The effect of the cluster sizes on the variance of the estimator can be reduced by
drawing an unequal probability sample. Instead of drawing the clusters with equal
probabilities, they can be drawn with probabilities proportional to their size. To be able
to apply the theory provided in Section 4.3, the clusters have to be selected with
replacement. Again, the clusters are seen as the elements to be surveyed, and the
cluster totals are the values of the elements. The selection probability g, of cluster A is
taken equal to

Ny

(111 = ﬁa (5.37)
for h=1, 2, ..., M. By substituting X,=N, in expression (4.43) the
Horvitz—Thompson estimator for the mean of the cluster totals becomes

N _
My 5.38
1 (5.38)
where
-_150
y==> (5.39)
m“
Jj=1
is the mean of the observed cluster means. Hence,
MN_ _
Vo =——Yy =Y 5.40
Yoo =0 =Y (5.40)
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is an unbiased estimator for the population mean of the target variable Y. By applying
formula (4.45), the variance of estimator (5.40) can be written as

LSy (70 7).
Vie) = N(FP-7) 5.41
(Yer) Nim ; h ( )
This variance can be estimated in an unbiased manner by

1 i N2\ 2
v(¥eL) = mz (y(])—f’> : (5.42)

J=1

Expression (5.41) shows that the variance of the estimator is determined by
the variation in the cluster means of the target variable and not by the cluster totals.
The variance will be small if there is little variation in the cluster means. The more the
cluster means differ, the larger the variance will be.

5.2.4 An Example

The use of cluster sampling is shown using data from Samplonia. A sample of persons
istobe selected. The seven districts are used as clusters. A sample is drawn by selecting
two districts and by including all their inhabitants in the sample. The relevant data are
listed in Table 5.4. The sample size depends on the clusters selected. For example, if the
two smallest clusters (Newbay and Oakdale) are selected, the sample size is equal to
49, whereas the sample size would be 145 if the two largest clusters (Smokeley and
Mudwater) were selected.

If two clusters are selected with equal probabilities and without replacement, the
standard error of the estimator for the mean income is equal to 565. If two clusters are
selected with probabilities equal to their size (and with replacement), the standard
error of the estimator turns out to be equal to 602. So, this variance is even larger.
Apparently, the cluster size is not (approximately) proportional to the cluster total.

The standard error of the equal probability cluster sample is so large because there
is a substantial amount of variation in the cluster totals. This can be seen in Table 5.4.

Table 5.4 Income by District in Samplonia

District Size Total Income Mean Income
Wheaton 60 21,371 356
Greenham 38 12,326 324
Newbay 23 7,910 344
Oakdale 26 91,872 3534
Smokeley 73 117,310 1607
Crowdon 49 66,425 1356
Mudwater 72 103,698 1440

Samplonia 341 420,913 1234
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The standard error of the unequal probability cluster sample is so large because there is
a substantial amount of variation in the cluster means. It makes a lot of difference
whether two clusters are selected from the province of Agria or Induston. Incomes in
Agria are on average much lower than in Induston.

Note that a standard error in the order of magnitude of 600 would also have been
obtained with a simple random sample of three elements. Although many more
elements are observed in the cluster sample (it varies between 49 and 145), the
precision of the estimator is equal to only that of a simple random sample of size 3.
This is a disappointing result. Apparently, it does not matter so much whether two
elements are observed or two clusters of elements are observed. This is caused by the
phenomenon that elements within clusters are very similar. Observing more elements
in a cluster does not provide much more information. This phenomenon is called the
cluster effect.

The effectiveness of a sampling design is indicated sometimes also by means of the
effective sample size. This is the sample size of a simple random sample of elements
that would produce an estimator with the same precision. For both cluster sampling
designs, the effective sample size is 3.

5.3 TWO-STAGE SAMPLING

Ithas been shown in the previous section that the cluster samples may not perform very
well from the point of view of precision. Due to the cluster effect, the variances of
estimators may be much larger than those based on simple random samples of the same
size. One could say that more elements are observed than are really necessary for such
a precision. The performance can be improved by not including all elements in the
selected clusters in the sample, but just a sample of elements. This is the principle
underlying the two-stage sample design.

5.3.1 Selection in Stages

To select a two-stage sample, first a sample of clusters is drawn. Next, a sample of
elements is drawn from each selected cluster. The clusters are called primary units in
the terminology of two-stage sampling and the elements in the clusters are called
secondary units.

Sampling need not be restricted to two stages. It is very well possible to draw a
three-stage sample. For example, the first stage may consist of drawing municipalities
(the primary units), followed in the second stage by drawing addresses (the secondary
units) in the selected municipalities, and finally persons (the tertiary units) are drawn
at the selected addresses. Two-stage samples occur much more than three-stage
samples and samples with even more stages. Only two-stage samples are described
here (Fig. 5.3).

A number of choices have to be made to define a two-stage sampling design. First, a
sampling design must be chosen for selecting primary units. Second, a sampling
design must be defined to draw secondary units from the selected primary units.
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Figure 5.3 Two-stage sampling. Reprinted by permission of Imre Kortbeek.

Finally, a sample allocation decision must be made. On the one hand, small samples of
elements could be drawn from a large sample of clusters, and on the other hand, large
samples of elements could be drawn from a small sample of clusters. Generally, the
former will increase the precision of estimators, but it will also increase the cost of the
fieldwork.

5.3.2 Notations

Notations for two-stage sampling are similar to those of cluster sampling. It is assumed
the population U can be divided into M clusters (primary units)

Ui, Us,...,Uny. (5.43)

The clusters do not overlap and together cover the complete population U. Let N, be
the size of cluster U, (h=1, 2, ..., M). Consequently,

M
> N, =N. (5.44)
h=

The Ny, values of the target variable Y in cluster /2 are denoted by
vy, (5.45)

If the mean of the target variable in cluster / is denoted by

Ny,
o 1 (k)
v =—3%"y 5.46
Nh o k ( )

and the total of this target variable in cluster /z by

Np
v =3y =Ny, (5.47)
k=1
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then the population mean of Y can be written as

I SO
v==3"N7". (5.48)
Nh:l

Another population parameter that will be used is the mean cluster total
S B GV R I S s
Yr==> "1 ==—> N¥". (5.49)
M h=1 M h=1

A sampling design and a sample size have been determined in advance for each
possible primary unit, in case it is selected. The sample sizes in the M primary units are
denoted by

ny,ny,...,Ny. (550)

The values of the n;, sampled elements in primary unit / are denoted by
B (h
WPy, (5.51)

Not only the sampling design and the sample size are determined in advance for each
primary unit but also the estimator to be used for estimating the total of the target
variable Y. These estimators are denoted by
) (2 M
W, . (5.52)
A sample of m primary units is selected from this population. The sample is denoted
by the vector

b= (b1.bs,. .. by) (5.53)

of indicators. If this sample is drawn without replacement, the indicators can only
assume the value 1 (selected) or O (not selected). If the sample is selected with
replacement, the value of the indicator by, is equal to the frequency of element /2 in the
sample (for h=1,2, ..., M).

5.3.3 Selection of Primary Sampling Units Without Replacement

First, the caseis described in which primary units are selected withoutreplacement. The
first-order inclusion probability of primary unit /2 is denoted by ), forh=1,2,..., M.
The second-order inclusion probability of primary units g and / is denoted by 7, for
g h=12,...,M.

The estimator defined by

Vs = — b, — (5.54)
N h=1 Th
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is an unbiased estimator for the population mean of the target variable. The subscript
TS denotes two-stage sampling. The variance of this estimator is equal to

© 2 " V( <”>)
1 v v 1 yr
yTS N2 Z Z TeTh—Tgh < T ) + WZT . (555)

g=1 h=1 h=1

The variance consists of two components. The first component covers the variation
in clusters totals. It measures the variation between clusters. The second component
covers the variation of the values of the elements in the clusters. So, it measures
variation within clusters.

The cluster effect occurs if elements within a cluster are similar to one another.
In that case, the variance (5.55) reduces to that of the estimator for the cluster sample.
Apparently, it does not matter very much whether all elements in a cluster are observed
or just a sample of elements is observed. The precision of the estimator is mainly
determined by the number of the primary units in the sample.

The simplest two-stage sampling design is that of simple random sampling in both
stages: primary and secondary units are selected with equal probabilities and without
replacements. If n, secondary units are drawn from primary units (h =1, 2, ..., M), the
first-order inclusion probability of all secondary units is equal to #,/N,,. Therefore, the
Horvitz—Thompson estimator for the total of primary unit / is equal to

h — Nh - h
A =Ny =S . (5.56)
i=1

This is the sample mean multiplied by the size of the primary unit.

If m primary units are selected with equal probabilities and without replacement,
the first-order inclusion probability of primary unit /2 is equal to t;, = m/M. Substitution
in expression (5.54) results in the unbiased estimator for the population mean

Nm =

So, the estimator is equal to the mean of the estimators for the population totals in
the selected primary units.

Substitution of the first- and second-order inclusion probabilities in expres-
sion (5.55) produces the variance of estimator (5.57). This variance is equal to

V()_)TS):<A]\/;>2<1_M) mNzZ h( )Sn%hh (5.58)

where

%1 ZM: (Y§’1> —?T)z (5.59)
h=1
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is the variance of the totals of the primary units and

2, =1 §Nh (Y“” 1?“”)2 (5.60)
2.h Nh—l £ k .
is the variance within primary unit &, for k=1, 2, ..., M. The variance (5.58) can be
estimated in an unbiased manner by
M 2 m\ s? M M ny, S%/
R 1——)—1 Y N (1) 2 561
Y0s) (N) ( M) m e T, ) (561)
where
1 ZM ") 2
2 =s(h) N+
S| = m 2 bh (Nhy NyTS) (562)

is the sample variance of the estimated totals of the primary units and

Np

1 h) — 2
=T 2 (31" =5 (5.63)

k=1

is the sample variance within primary unit /.

The two-stage sample design can be chosen such that the sample becomes
self-weighting. This means that all elements in the population have the same
probability of being selected in the sample. The inclusion probability of an element
in a two-stage sample (with simple random sampling in both stages) is equal to the
product of the inclusion probability of the cluster it is part of and the inclusion
probability of the element within the cluster. So the inclusion probability of element

k in cluster /4 is equal to
m ny
— 5.64
MN, (5.64)

To obtain a self-weighting sample, the same proportion of elements must be drawn in
all clusters. This means that n;/N;, must be constant over all clusters. Assuming the
total sample size to be equal to n, the sample size ny, in cluster 4 must be equal to

nM
ny :NZN}, (565)

Substitution of expression (5.65) in estimator (5.57) leads to

N

- 1 h
Y15 = ;th Z)’E g (5.66)
h=1 i=1
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It is clear from expression (5.66) that all selected elements are assigned the same
weight. The estimator is simply computed by adding all sample values and dividing
this sum by the total sample size 7.

5.3.4 Selection of Primary Sampling Units with Replacement

Expressions (5.59) and (5.60) show that the variance of the estimator is determined to a
large extent by the differences in the totals of the target variable of the primary units.
Particularly if the means of the primary units are more or less the same, differences in
sizes of the primary units may lead to a large variance. This effect was already
described for cluster sampling. Here also, its impact can be reduced by drawing
primary units with probabilities proportional to their size. To implement this, the
sample has to be selected with replacement. Let

q1,92,---s4m (567)

be the selection probabilities of the primary units. If a sample of 7 primary units is
drawn, the inclusion expectations are 1, = E(b;,) = mgq,. This notation is similar to that
for selecting primary units without replacement.

In a two-stage sample, where primary units are drawn with replacement, the
estimator defined by

A 5.68
Y1s = MNZ; h—— a ( )

is an unbiased estimator for the population mean of the target variable. According to
a theorem by Raj (1968), the variance of this estimator is equal to

V(yrs) [VZZE: ( (h) ) szjf:Iigff_)n (5.69)

This variance can be estimated in an unbiased manner by

- 1 M )
v(¥s) = m ; b(zn —2)2, (5.70)
where
(h)
Jr
Zp = 5.71
h n ( )
and

1 M
z:-}Zm@. (5.72)
mi3
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This theorem is applied to the situation in which primary units are drawn with
probabilities proportional to their size. Furthermore, it is assumed that secondary
units are drawn with equal probabilities and without replacement. Consequently,

Nj,
qn = ﬁ, (573)
for h=1, 2, ..., M. The Horvitz-Thompson estimator for the populations is now
equal to
N R T
Vg = %Z byy™. (5.74)
h=1

So, the estimator is simply equal to the mean of the sample means in the clusters.
The variance of this estimator is equal to

V(irs) ZN( —1?) +—2Nh( ) 2 (5.75)

The first component in this variance is the variance of the Horvitz—Thompson for a
cluster sample where clusters are drawn proportional to their size (see expres-
sion (5.41)). The second component is contributed by the within-cluster sampling
variation. Variance (5.75) can be estimated in an unbiased manner by

v(yrs) = Z by, ( ) ) (5.76)

where

1 M
= Z by (5.77)

<l

is the mean of the sample means of the observed elements in the clusters.

The two-stage sampling design can be tuned such that samples are self-weighting.
The inclusion probabilities of all elements can be made equal if the inclusion
probability of secondary element k in primary unit / is taken equal to

N
= man (5.78)
"N Nj N

To obtain a self-weighting sample, the same number of elements must be drawn in
each selected cluster. If 1 is the sample size in each cluster, the estimator (5.72) turns
into

no

yrr = . th Zy,h (5.79)

Expressions for the variance and for the estimator of the variance can be obtained by
substituting 7, = ng in expressions (5.75) and (5.74).
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Selecting the primary units with probabilities proportional to their size has some
advantages over selecting primary units with equal probabilities. It has already
been shown that this type of sampling may lead to estimators with a higher
precision. This is the case when there is not much variation in the means of the
primary units. An additional advantage is that the workload is more evenly spread,
as the same number of elements are observed in each primary unit. The last
advantage is that the sample size in each cluster is the same. Sample sizes do not
depend anymore on the primary units selected. So, the total sample size in known
in advance.

5.3.5 An Example

The properties of a two-stage sample are illustrated in an example where the mean
income of the working population of Samplonia is estimated. The seven districts are
primary units (M = 7). A sample of districts is drawn with probabilities proportional to
size. The individual persons are the secondary units. Samples of persons are selected
with equal probabilities and without replacement. The same number of persons is
drawn in each selected sample, thereby making the sample self-weighting. The
variance of the estimator is equal to expression (5.75).

Table 5.5 contains the variance of the estimator for all kinds of combinations of
sample sizes for primary and secondary units, all resulting in a total sample size of
approximately 20. Note that districts have been selected with replacement. Therefore,
it may happen that a district is selected more than once in the sample. In this case, a
new sample of secondary units is drawn for each occurrence in the sample.

It should be kept in mind that the variance of the estimator in a simple
random sample of size 20 is equal to 43,757. All two-stage samples provided in
Table 5.5 have a larger variance. Only if 20 districts are selected, and one person per
district, the variance is of the same order of magnitude. This will not come as a surprise
as the two-stage sample resembles the simple random sample very much in this
situation.

Table 5.5 The Variance of the Estimator of the Mean Income in a Self-Weighting
Two-Stage Sample

Number of Number of Selected Variance in
Selected District Persons per District Sample Size the Estimator
1 20 20 731,697

2 10 20 370,987

3 7 21 250,261

4 5 20 190,632

5 4 20 154,561

7 3 21 112,847

10 2 20 82,418
20 1 20 46,347
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5.3.6 Systematic Selection of Primary Units

There is one type of two-stage sampling that is sometimes used by national statistical
institutes and thatis a design in which both primary and secondary units are selected by
means of systematic sampling. It is described how this was done at Statistics
Netherlands. This sampling design was developed at a time when there was no
sampling frame available for the total population of The Netherlands. However, The
Netherlands was divided into municipalities and each municipality separately had its
own population register. Therefore, it was decided to select a two-stage sample where
the municipalities were the primary units. The first stage of the sample selection
process consisted of selecting a systematic sample of municipalities with probabilities
proportional to the population size of the municipalities. The second stage of the
process consisted of selecting a systematic sample of persons (with equal probabili-
ties) from each selected municipality.

To reduce travel costs, there was the additional condition that in each selected
municipality a minimum number of persons must be selected. This minimum number
is indicated by ng. If n is the total sample size, the number of municipalities to
be selected must be equal to m = n/n,. Recipe 4.5 can be used to draw a systematic
sample of size m with unequal probabilities. The step length is equal to F = N/m, where
N is the total population of The Netherlands.

Municipalities /1 for which N, > F are “big” elements. They are always selected in
the sample. Not n, persons but n, =nN,/N persons are to be selected from “big”
elements. This change is required to keep inclusion probabilities the same for all
persons in the population. The inclusion probability 7 of a person k in a “big”
municipality /4 is now equal to

Ny,/N
my NN 1 (5.80)

Tk = 1 x =
Ny, N, N

The total size of all “big” municipalities together is denoted by Ng. If the number of
persons to be selected from these municipalities is denoted by ng, then
Ng
g =n-oc (5.81)
The remaining municipalities together have a total size of N — Ng. A sample of size
n — ng persons must be selected from these municipalities. Since ny persons have to be
observed in each selected municipality, the number of still-to-be-selected municipal-
ities must be equal to (n — ng)/ng. The inclusion probability of such a municipality / is
equal to

n—ng N,
no N—NB

(5.82)

and the inclusion probability 7 of a person in such a municipality is equal to

n—ng N, ng n
= —=—. 5.83
no N—NB Nh N ( )

Tk
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It turns out that all persons, in whatever municipality they live, have the same
inclusion probability. So, this produces a self-weighting sample.

Note that it is assumed that several computations above produce integer results.
This does not always have to be the case in practical situations. Some rounding will be
required, and this may result in slight deviations.

Since this sampling design produces self-weighting samples, the estimator for the
population mean of the target variable is simply obtained by computing the mean of all
observed elements in the sample.

Sample selection is systematic in both stages. This makes it difficult to properly
estimate the variance of the estimator. At least, two strata have to be distinguished, a
stratum of “big” municipalities that are selected with certainty and a stratum containing
all other municipalities. Assuming the order of elements in the sampling frames of the
municipalities is unrelated to the target variables of the survey, sampling within
municipalities can be assumed to be simple random. If not too many municipalities are
selected, and the order of the municipalities in the sampling frame is arbitrary, sampling
of municipalities can be seen as with unequal probabilities and with replacement.
Expressions (5.75) and (5.76) can then be used for approximate variance computations.

54 TWO-DIMENSIONAL SAMPLING

Thus far, the elements in the population can be identified by a single unique sequence
number. Consequently, elements could be represented as points on a straight line. Such
a population is called one-dimensional population. There are, however, situations in
which it is meaningful to see a target population as two-dimensional. Suppose, the
objective of aresearch project is to investigate how many plants of a specific type grow
in the field. Counting all plants in the field is a time-consuming job. Therefore, the map
of the area is divided into squares of 1 m x 1 m by means of a rectangular grid. A
sample of squares is selected and the plants are counted in the selected grid. The
squares are the units of measurement. Each square is now identified by two sequence
numbers: a row number and a column number. Therefore, the population of squares
could be called a two-dimensional population.

5.4.1 Two-Dimensional Populations

An element of a two-dimensional population is identified by two sequence numbers,
one for each dimension. The sequence numbers in the first dimension run from 1 to N
and the sequence numbers in the second dimension run from 1 to M. A two-
dimensional population can be represented by Table 5.6.

Element (k, 1) denotes the element with row number k and column number / in the
table. The value of the target variable for this elementis denoted by Yy, (k=1,2,...,N
and h=1, 2, ..., M). Furthermore, the notation

M
Yii = Z Yin (5.84)
h=1
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Table 5.6 A Two-Dimensional Population

Dimension 2

Dimension 1 1 2 - M

1 (1, 1) (1,2) (1, M)
2 (2,. 1) (2,’2) ... 2, .M)
N (N,. 1) (N; 2) - (N,’M)

is introduced for the kth row total and

N
Y. = Z Yin (5.85)
k=1

for the Ath column total. Therefore, the population total Y is equal to

N M
Yr= ; Yip = /; Yo (5.86)

All information with respect to the target variable is summarized in Table 5.7.

5.4.2 Sampling in Space and Time

Two-dimensional sampling may be an option if a phenomenon to be investigated has a
geographical spread, such as the occurrence of plants or animals in an area. Maybe
more often, two-dimensional sampling is used in survey where time is one of the
dimensions. An example is a budget survey. The objective of such a survey is to
estimate yearly expenditures of households. At first sight, the way to do this may be
selecting a sample of households and asking them to keep track of all their expen-
ditures for a year. This requires a very large (if not impossible) effort for households.
Therefore, a two-dimensional population is constructed where the first dimension

Table 5.7 The Target Variable in a Two-Dimensional Population

Dimension 2

Dimension 1 1 2 . M Total
1 Y1 Y, e Yim Yy
N Y Yo cee Ynm Yy

Total Y+1 Y+2 . Y+M YT
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Table 5.8 Two-Dimensional Sampling for a Budget Survey

Month
Household 1 2 - 12
1 1,1 1, 2) 1, 12)
2 (2,'1) (2,'2) .. 2, .12)
N (N; 1) (N; 2) (N,.12)

consists of households and the second dimension divides the year into a number of time
periods, for example, months. The elements to be investigated are households in
specific months (see Table 5.8). Consequently, a selected household needs to keep
track of its expenditures in 1 month only.

Sampling from two-dimensional populations where time is one dimension is
usually called sampling in space and time (Fig. 5.4).

There are many ways to select a sample from a two-dimensional population.
Assuming the sample size to be equal to r, here is a list of some possible sampling
designs.

Method A. Transform the two-dimensional population into a one-dimensional
population by ordering all elements in some way. This could, for example, be
done row-wise or column-wise. The two-dimensional nature of the population
is ignored, and one of the sampling designs of Chapter 4 can be applied.
Method B1. First, draw a simple random sample of n rows from the N rows. Next,
draw a simple random sample of 7/n elements (assuming r is divisible by ) from
each selected row. This comes down to selecting a two-stage sample where the
rows are the primary units and the elements in the rows are the secondary
elements.

Method B2. First, draw a simple random sample of m columns from the M
columns. Next, draw a simple random sample of r/m elements (assuming r is
divisible by m) from each selected column. This comes down to selecting a two-
stage sample where the columns are the primary units and the elements in the
columns are the secondary elements.

Method C. First, draw a simple random sample of n rows from the N rows. Next,
draw a simple random sample of m columns from the M columns. Finally, draw a
simple random sample (ignoring the two-dimensional character) of size r from
the resulting n x m elements. This guarantees that not too many elements are
selected from one row or one column.

Method D. First, draw a simple random sample of # rows from the N rows. Next,
draw a simple random sample of m columns from the M columns. Finally, apply a
fixed filter that selects r elements from a matrix of 7 X m elements. This filter can
be designed such that the sample is spread over a fixed number of rows and
columns.
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Figure 5.4 Sampling in space and time. Reprinted by permission of Imre Kortbeek.

Method A offers no guarantees for a balanced spread of the sample observations
over rows and columns. It may very well happen that one element has to report about
more periods than another element. Also, the amount of fieldwork in one period may be
much more than in another period.

Methods B1 and B2 are both two-stage samples. This makes it possible to control
the distribution of the sample in one dimension. Method B1 allows controlling the
number of elements in the sample. Since periods are selected at random for elements,
it may happen that in certain periods of the year much more data are collected than in
another period of the year. Method B2 allows controlling the number of periods in
which data collection takes place, but it may happen that one element has to report on
more periods than another element.

Methods C and D give more control over the distribution of the sample over both
dimensions. The first step is to select # rows and 7 columns. This results in a subtable
consisting of n rows and m columns. The elements in this subtable together form the
donor table.

The next step for method C is to select a simple random sample of size r from the
donor table. The next step for method D is to apply the so-called filter table. See
Table 5.9 for an example. A filter table consists, like the donor table, of #n rows and m
columns. The value r;;in cell (7, j) can either by O or 1. The corresponding element in
the donor table is selected in the sample if r;;= 1 and it is not selected if r;= 0.

The filter table must be composed such that its total is equal to 7. Furthermore, each
row total must be equal to s and each column total must be equal to z.

Table 5.9 A Filter Table

Dimension 2

Dimension 1 1 2 m Total

1 ri1 ri2 im ry 4
21 22 Tom 2y

n T T2 Tum T4

Total riq o ... T m r
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Table 5.10 Transported Passengers on Bus Lines in Induston

Time Period

Bus Line 7-9 9-11 11-13 13-15 15-17 17-19
Oakdale-Smokeley 3 8 2 4 4 5
Oakdale—Crowdon 4 5 4 3 3 4
Oakdale-Mudwater 2 9 1 5 3 6
Smokeley—Crowdon 22 6 11 5 3 23
Smokeley—Mudwater 12 8 2 8 4 14
Crowdon-Mudwater 19 4 7 2 1 21

Method D is illustrated by means of an example. Suppose a survey is carried out to
estimate the number of passengers on a specific day in the buses of the public transport
system of the province of Induston in Samplonia. Starting point is a two-dimensional
population where the six rows represent the six bus lines and the six columns represent
2-h time periods. The population data can be found in Table 5.10.

A sample of size r =5 must be selected from this population. First, a donor table
consisting of three rows and three columns is selected. So, the donor table contains
nine elements. To select a sample of five elements from this donor table, the following
filter table could be applied:

Suppose, rows 4, 1, and 2 and columns 1, 5, and 3 are selected. Then, the donor table
will contain the following elements:

(4,1) | (45) | (43)

(1,1) | (1,5 | (1,3)

@21 | @25) | 23)

Application of the filter table produces a sample consisting of the elements (4, 1),
4,5), (1,5), (1, 3), and (2, 3).

5.4.3 Estimation of the Population Mean

The first-order inclusion probability of an element does not depend on the composition
of the filter table. It can be shown that the first-order inclusion probability of every
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element (k, h) is equal to

P
my = ’7T(k’/1) = W (587)
The second-order inclusion probabilities do depend on the composition of the filter
table. This will not come as a surprise as a filter may exclude specific combinations of
elements. For example, if the filter table only has Is at the diagonal, elements in the
same row or in the same column can never be selected together.
The second-order inclusion probability of two elements (k, &) and (k', #') with k # k'

and 1=/’ is denoted by 7r,. This inclusion probability is equal to

1 m
m = W(ksh)(k'vh) = ]\](]VTW ( V2+j—l’> . (588)
Jj=1

The second-order inclusion probability of two elements (k, /) and (k’, /') with
k=K' and h#/ is denoted by ,. This inclusion probability is equal to

1 n
Ty = 7T(k_’/l>(k_h/) = m < r?+ —r> . (589)
i=1

Finally, the second-order inclusion probability of two elements (k, /) and (k', /')
with k#k’ and h= /' is denoted by 3. This inclusion probability is equal to

1 n m
T3 = Tk h) (k' W) = M- TN(N=1) (;’2 +r— Z r?+ — Z r2+j> . (5.90)
=1 =1

The values of the target variable Y in the donor table are denoted by z;; (for i =1,
2,...,nand j=1, 2,..., m). Furthermore, the notation

Yij = TijZij (5.91)

is introduced. So, the value y; is equal to the value of the target variable if the
corresponding element in the donor table is selected in the sample. And y; =0, if
the element is not selected in the sample. The Horvitz—Thompson estimator for the
population mean of Y can now be written as

n
Y = MNZ Zyl, (5.92)

i=1 j=

This is an unbiased estimator. To be able to write down the variance of this
estimator, three quantities Dy, D,, and D5 are introduced:

M M
ZY/ch ZY—O—}N (593)

1 h=1 h=1

M=

1 =N

=~
Il
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N M N
Dy=MY > "Y5=-> Y., (5.94)

k=1 h=1 k=1
and
N M
Ds=NM» > Y}~Y*~Dy-D;. (5.95)

The variance of estimator (5.92) is now equal to

2 2 2
_ TE—TT TE—TT) Ty—1T3
V() =~ 5D+ 252Dy + 22 Dy, (5.96)
5 un ™5

To be able to write down the variance of this estimator by using the sample data, the
sample analogues of Dy, D,, and D5 are introduced:

dy = ZVHZ)’?]'—ZY%W (5.97)
=S =

dy=> rie Y V= Vi, (5.98)
i=1 j=1 i=1

and
n m
d3 = VZ Zy;-—yiJr —dl—dg, (599)
i=1 j=1
where
Yir =Y Yip (5.100)
=1
y+j:Z)’z/, (5.101)
i=1
and

Vit =Y v (5.102)

i=1 j=1
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Table 5.11 Possible Samples of Size 3 from the Two-Dimensional Population of Bus

Lines in Induston

Filter Table Variance of
the Estimator
12,153
1(0(0
o|1]0
0|01
14,922
110
110
01
1 20,459
1
1
14,035
1(1/0
0|01
16,804
101
110
17,800
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The estimator of variance (5.96) is now equal to

2_md 2 md 2oy d
v(¥mp) = oo ;Tl e R I I 2773—3. (5.103)

2
Ty T ) ) T T3

5.4.4 An Example

The effect of the composition of the filter table on the variance of the estimator
is illustrated using the example of the bus lines in Induston. All population data
are provided in Table 5.10. The objective is to estimate the number of passengers on a
specific day in the buses of the province of Induston. Suppose, sample of size r =3
must be selected. Table 5.11 contains a number of different filter tables that
result in such a sample. For each filter table, the variance of the estimator has been
computed.

Note that all other possible filter tables can be obtained from the filter tables in
Table 5.11 by permuting either the rows or the columns. The value of the variance does
not change under such permutations.

The smallest value of the variance is obtained if the sample is distributed over as
many rows and columns as possible. This can be explained by the lack of a cluster
effect. If several elements are selected within a row or within a column, there will be a
cluster effect resulting in larger variances.

Drawing a simple random sample of size 3 from the filter table (method C) would
resultin an estimator with a variance equal to 14,146. Comparison with the variances in
Table 5.11 leads to the conclusion that the precision can only be improved if the sample
is forced over as many rows and columns as possible.

Most standard works about sampling theory do not discuss two-dimensional
sample. A source of more information on this type of sampling is De Ree (1978).

EXERCISES

5.1 Anders Kiaer, the director of the Norwegian national statistical office, proposed
a sampling technique in 1895 that

a. was similar to a simple random sample;

b. resulted in a sample that resembled the population as much as possible;
c. was similar to a two-stage sampling design;

d. was similar to a stratified sample with simple random sampling within strata.

5.2 Ifitis assumed that the costs of interviewing are the same for every person in the
population, the optimal allocation in a stratified sample is determined

a. with the cumulative-square-root-f rule;

b. by taking the sample sizes in the strata proportional to the standard
deviations of the target variable in the strata;



EXERCISES 131

5.3

54

5.5

c¢. by taking the sample sizes in the strata proportional to the product of the size
and the standard deviation of the target variable in the strata;

d. by taking the sample sizes in the strata proportional to the product of the size
and the variances of the target variable in the strata.

A stratified sample is obtained by

a. randomly drawing strata and randomly drawing elements from the selected
strata;

b. randomly drawing strata and selecting all elements in the selected strata;

e

randomly drawing elements from all strata;

d. randomly selecting elements from the population and afterward establishing
from which strata the selected elements came.

A sampling design must be defined for an income survey in the town of
Rhinewood. The town consists of two neighborhoods Blockmore and
Glenbrook. The table below contains some available information that can be used.

Town Variance of the Variable Income Number of Inhabitants
Blockmore 40,000 15,000
Glenbrook 640,000 10,000
Rhinewood 960,000 25,000

The variance estimates have been obtained in an earlier survey. They can be
used as indicators of the actual (adjusted) population variances.

a. Suppose a simple random sample without replacement of size 400 is
selected. Compute the variance and the standard error of the sample
mean of the income variable. Also, compute the margin of the 95%
confidence interval.

b. The researcher decides to draw a stratified sample (with simple random
sampling without replacement within strata). The sample sizes are allocated
by means of proportional allocation. Compute the variance and the standard
error of the estimator of the mean income for this sampling design. Also
compute the margin of the 95% confidence interval.

c¢. Since indications of stratum variances are available, it is possible to apply
optimal allocation. Compute the variance and the standard error of the
estimator of the mean income for this sampling design. Also, compute the
margin of the 95% confidence interval.

d. Compare the results of exercises (a), (b), and (c). Explain the observed
differences and/or similarities.

The town of Ballycastle has been struck by a flood. The town is divided into three
neighborhoods Balinabay, Oldbridge, and Roswall with 10,000, 5000, and
20,000 houses, respectively. To establish the value of the damage, a stratified
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5.6

5.7
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sample of 140 houses is selected. One estimates the ratios of the standard
deviations of damage in the three neighborhoods as 10: 7:3.

a. Compute the proportional allocation.
b. Compute the optimal allocation assuming equal costs.

A population consisting of 30 elements can be divided into six subpopulations
labeled A, B, . . ., F. The table below contains the values of the target variable for
each subpopulation, the sum of these values, the mean of these values, and the
adjusted population variance of these values. The population mean is equal to
4.5 and the adjusted population variance is equal to 6.258621.

Subpopulation Values Sum Mean Population Variance

123 6 2 1.0
135 9 4.0
111333555 27 3.0
778899 48 0.8
445566 30 0.8
258 15 9.0

Tmg QW >
D oo W W

a. Compute the variance of the estimator of the population mean if a simple
random sample of size 6 is selected without replacement.

b. Compute the variance of the estimator if a stratified sample is selected (with
simple random sampling within strata) where one element is drawn from
each subgroup.

c. Explain why it is impossible to compute an estimate for the variance of the
estimator for the sampling design in exercise (b).

d. Suppose a cluster sample is selected for two subpopulations. Selection of
cluster is with equal probabilities and without replacement. Compute the
variance of the estimator for this sampling design.

Peaches are grown for commercial purposes in one part of Samplonia. The area
consists of 10 small villages. There are a number of peach growers in each
village. There are in total 60 peach growers. A sample survey is carried out to
obtain insight into the yearly production of peaches. The table below contains all
population data. The mean production per grower is measured in bushels
(approximately 35L).

Village Number of Growers Mean Production Total Production ~Variance S*

~N N R WD

3 158 474 25
4 149 596 17
137 685 35
130 780 24
112 1120 18
162 486 33
151 604 25

—_
B WO W
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8
9
10

5 143 715 26
8 119 952 34
12 101 1208 26

Total area 60 127 7620 424

5.8

5.9

. Suppose a simple random sample of 12 growers is selected without

replacement. Compute the variance of the population mean (mean produc-
tion per grower).

. A cluster sample could be selected to reduce travel costs. Since the average

cluster size is equal to 60/10 =6, a sample of 12 growers requires two
clusters to be drawn with equal probabilities and without replacement.
Compute the variance of the estimator for the mean production per grower
for this sampling design.

. To reduce the effect of the cluster sizes on the variance, it is also possible to

draw the two clusters with replacement and with probabilities equal to their
size. Compute the variance of the estimator for the mean production per
grower for this sampling design.

A two-stage sample is selected from a population. A number of m primary units
are selected with equal probabilities and without replacement. A number of 7y,
secondary units are selected from each selected primary unit /# with equal
probabilities and without replacement.

a.

Suppose all values of the target variable are the same within each primary
unit. Write down the variance of the estimator of the population for this
sampling design in this situation.

. What can be learnt from this formula with respect to the sample size and the

distribution of the sample size over primary and secondary units?

A two-stage sample is selected from a population. A number of m primary units
are selected with replacement and with probabilities equal to their size. A
number of 1, secondary units are selected from each selected primary unit / with
equal probabilities and without replacement.

a.

Suppose the mean of the target variable is the same in each primary unit.
Write down the variance of the estimator of the population for this sampling
design in this situation.

. What can be learnt from this formula with respect to the sample size and the

distribution of the sample size over primary and secondary units?



CHAPTER®G6

Estimators

6.1 USE OF AUXILIARY INFORMATION

Some sampling designs were described in Chapters 4 and 5 that improved the precision
of the Horvitz—Thompson estimator by using an auxiliary variable. For example, if
a quantitative auxiliary variable has a strong correlation with the target variable,
sampling with probabilities proportional to the values of the auxiliary variable will
lead to a precise estimator. This will also be the case, if there is a qualitative auxiliary
variable that is highly correlated with the target variable. Such an auxiliary variable
can be used in a stratified sampling design.

Auxiliary information can also be used in a different way. Instead of taking
advantage of auxiliary information in the sampling design, it is possible to improve
the estimation procedure. This will be the topic of this chapter. To keep things simple,
it is assumed that the sample is selected by means of simple random sampling (with
equal probabilities and without replacement).

The theory is also restricted to estimators that incorporate information of one
auxiliary variable only (Fig. 6.1). It is possible to use more auxiliary variables. An
example can be found in Chapter 10, where the generalized regression estimator is
described.

Two estimators will be discussed that use a quantitative auxiliary variable: the ratio
estimator and the regression estimator. One estimator will be described that uses a
qualitative auxiliary variable: the poststratification estimator. Similar to sampling
designs, estimators will perform better as the relationship between target variable and
auxiliary variable is stronger.

6.2 A DESCRIPTIVE MODEL

All estimators described in this section are special cases of a model describing the
relationship between the target variable and the auxiliary variable.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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Figure 6.1 Estimation using auxiliary information. Reprinted by permission of Imre Kortbeek.

Definition 6.1 A descriptive model F assumes that the value Y, of the target variable
for element k can be written as

Y ZF(X/C;O)-l-Rk, (6.1)

where F'is a function that depends only on the value X, of the auxiliary variable and the
values of a limited number of model parameters denoted by the vector 6. The function
F musthave been chosen such that the mean of the residuals R, R,, . . ., Ryisequal to O:

R:lZRk =0. (6.2)
k

The objective is to estimate the population mean of the target variable Y. By
applying expressions (6.1) and (6.2) this mean can be written as
1 &

Y =— F(X Ry) F(X 6.3
Nk:l((k, + Ry) Z k> 0 (6.3)

Hence, it is possible to compute the population mean if the exact form of the
function F and the values X, X5, ..., Xy of the auxiliary variable are known. The
form of the function F is often known but not the values of the model parameters. An
example of a descriptive model is the linear model

Yy = A+ BX; + Ry, (64)

in which A and B are the model parameters, so 6 = (A, B).

A perfect descriptive model would be able to predict the values of Y without error.
All residuals R, would be equal to 0. Unfortunately, such models are seldom encoun-
tered in practice. Most models are only partly able to explain the behavior of the target
variable. Nevertheless, they can be useful. To measure the predictive power of a
descriptive model, the residual sum of squares SSy is used. This quantity is defined as

N

SSg = (Yk — F(X;0) ZR,C (6.5)

k=1
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The predictive power of a model is better as the residual sum of squares is smaller.
The model parameters of some models are already fixed by condition (6.2). If this is not
the case, the additional condition is imposed that the values of the model parameters
must minimize the residual sum of squares SSg. However, these values can only be
computed if all values of X;. and Y in the population are known. This is not the case.
The solution is to estimate the model parameters by using the sample data. First, the
condition is imposed that the mean of the sample residuals must be equal to O:

1 1<
VZ;ZViZZZ()’i_F(xiQQ)) =0. (6.6)
i—1 i—1
If this is not sufficient to obtain estimates of the model parameters, the residual sum
of squares

SSk= "7 = > (i Flx:0)) (67)

i=1

in the sample is minimized. Let ¢ be the vector of estimators of the model parameters
0 that has been obtained in this way. If the value X}, of the auxiliary variable is known
for every element in the population, the population mean of Y can be estimated by
substituting the function values F(Xy; ) with the estimated function values F(Xy; 1)
in expression (6.3). This leads to the estimator

1 N
= 3 ) (63)

The subscript F indicates that the estimator is based on a descriptive model with
function F. It turns out that estimator (6.8) is unbiased, or approximately unbiased for
large samples, for all specific models described in the next sections:

E(yy) ~ Y. (6.9)

The variance of the model-based estimator is equal to, or approximately equal to,

V() ~ (% - %) ;’i“l . (6.10)

This variance can be estimated (approximately) unbiased by

n

060 = (5~ §) g 2 0 PO (6.11)

It will be clear from expression (6.10) that there is a close relationship between the
variance of the estimator the predictive power of the descriptive model. A model that is
able to predict the values of the target variable without much error will result in a
precise estimator.

Use of a model-based estimator will only be effective if it results in a smaller
variance than that of the Horvitz—Thompson estimator. Since simple random sampling
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Figure 6.2 The relationship between income and age for the working males in Agria.

is assumed in this chapter, the Horvitz—Thompson estimator is equal to the sample
mean. To measure of the improvement in precision of the model-based estimator,
the efficiency of the estimator, is introduced. It is defined by

480
V(r)

Avalue of the efficiency larger than 1 indicates that model-based estimator is better
than the sample mean. A value smaller than 1 means the simple sample mean is
superior to the model-based estimator.

A number of specific estimators will be described in the next sections. They are all
based on some descriptive model. In fact, they are all based on the assumption of some
kind of linear relationship between the target variable and the auxiliary variable.

All these estimators will be illustrated using a small example. The objective is to
estimate the mean income of working males in the province of Agria. The population
consists of 58 persons only. The variable age will be used as auxiliary variable.
Figure 6.2 shows a scatter plot of the relation between income and age in this
population. It will be clear that it is not unreasonable to assume some kind of linear
relationship.

Eff(5,) = (6.12)

6.3 THE DIRECT ESTIMATOR

The simplest estimator that can be based on a descriptive model is the one that uses
no auxiliary variable at all. This comes down to a model that always predicts the same
value for the target variable. This model can be written as

F(X;A) = A, (6.13)
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in which A is the only model parameter. Imposing the condition that the average of
all residuals R, must be equal to O results in

A=7Y. (6.14)

This is exactly the population mean to be estimated. The value of A can be estimated
by the sample mean

a=7y. (6.15)

The sample-based estimator of the descriptive model can now be written as
F(Xk;a) =Jy. (616)

Substitution of (6.16) in expression (6.8) results in an estimator that could be called
the direct estimator:

Yo =1)- (6.17)

It can be concluded that application of a descriptive model without an auxiliary
variable produces nothing new. It is the Horvitz—Thompson estimator for the case of
simple random sampling without replacement. This is an unbiased estimator for the
population mean of Y. The variance of this estimator is equal to

_ 1—f
V(yD) = TS%N

where

1 N

§2 =8 = (Y —Y)?

N—-1l&

(6.18)

(6.19)

is the (adjusted) population variance as defined in Chapter 2. Since the residual sum of

squares is equal to

N N
SSk =Y (Ve —F(Xi;A))’ =Y (Y —Y)°, (6.20)
k=1 k=1
it is clear that for the direct estimator the expression
- 1 —f SSg
Vv =— 6.21
(p) 7 N—1 ( )
holds exactly. The sample-based estimator for the variance is
- 1—f
v(¥p) = —=5%, (6.22)
where
G=r =13 (i3 (623)
4 n—1 ! ’

is the sample variance.
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Figure 6.3 The direct estimator.

Itis possible to show the variance of the direct estimator graphically. The data about
the incomes of working males in Agria are used for this. The value of the population
mean of the target variable Y is equal to 551. The descriptive model for the direct
estimator is, in fact, the line Y = F(X; A) = A. In this case, it is the line Y = F(X) = 551.
It is the horizontal line in the scatter plot in Fig. 6.3.

The residuals can be interpreted as the distances of the points (representing the
values of the elements) to the line. These distances have been drawn in Fig. 6.3 as
vertical line segments. The variance of the estimator can be seen (apart from a
constant) as the average of the squared distances. So the estimator is more precise
as the points are closer to the line. The variance of the estimator in the example of
Fig. 6.3 is equal to 1178. It is clear from the plot that direct estimator is not the best
estimator here. One can think of lines that are much closer to the points.

6.4 THE RATIO ESTIMATOR

Traditionally, the ratio estimator is probably the most used model-based estimator.
Its popularity may be due to the simplicity of computation, while at the same time it
takes advantage of auxiliary information. The ratio estimator is effective in situations
where the ratios Y;/X}. of the values of the target variable and the auxiliary variable vary
less than the values Y, of the target variable themselves. If this situation occurs, it is
better to first estimate the population ratio

R= (6.24)

>~

after which multiplication with the (known) population mean of the auxiliary variable
results in an estimator for the population mean of the target variable. The assumption
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that the ratios Y;/X;. show little variation can be translated into a descriptive model.
This assumption implies that the points with coordinates (Xy, Y;) lie approximately
in a straight line that goes through the origin of the scatter plot. The corresponding
descriptive model can be written as

F(Xk;B) = BXk. (625)

This model contains only one parameter B. Therefore, the condition that the
population mean of residuals must be equal to O fixes the value of the model parameter:

B= (6.26)

><:w_\~<l

In line with the analogy principle, an estimator b for B is obtained by replacing the
population quantities by the corresponding sample quantities:

y
b==. 6.27
: (627)
The estimator of the descriptive model becomes
F(Xi;b) = bXy = %Xk (6.28)
Substitution of (6.28) in (6.8) produces the ratio estimator:
- X
=y=. 6.29
YR =Y 5 ( )

So, the ratio estimator is equal to the sample mean multiplied by a correction factor.
This correction factor adjusts the estimator for a difference between the sample mean
and the population mean of the auxiliary variable. For example, if the sample values
of X are relatively small, the sample values of Y are probably also relatively small. The
correction factor will be larger than 1. In this case, the sample mean will be corrected
in the proper direction; that is, its value will be increased.

The ratio estimator is not an unbiased estimator, but it can be shown (see, for
example, Cochran, 1977) that it is approximately unbiased. There is a small bias
caused by the fact that the expected value of the ratio of two random variables is not
equal to the ratio of the expected values of the random variables. This implies that b is
not an unbiased estimator of B. However, the ratio estimator is asymptotically design
unbiased (ADU), which means that for large sample sizes the bias is so small that it can
be ignored.

There is no exact expression for the variance of the estimator. By using expres-
sion (6.10), an approximation is obtained that works well for large sample sizes.
Working out this expression for model (6.25) leads to

o 1—fSSg 1-f 1 & v\’
V(g) ~ - Ye— =X ) . 6.30
(yR> n N-—1 n N—l; k X k ( )



THE RATIO ESTIMATOR 141

This variance expression can be rewritten as

N Y r\’
V(r) = — (Sé - ZRXYSXSY§ +5% (;) ) ; (6.31)
where
2 R 2
Sy =— X —X 6.32
XTN1 ]; (X = X) (6.32)
is the adjusted population variance of auxiliary variable X, where
Sxy
Ryy = 6.33
=5 (6.33)
is the population correlation between the two variables X and Y, and
1 &
Syy =——> Xk —X)(Y—Y 6.34
XY =N kz:;( k ) (Y ) ( )

is the adjusted population covariance.

The variance (6.30) is smaller if the values Y and X are better proportional. The
variance can be estimated (approximately unbiased) by using the sample data with the
expression

0= LS (- 2) -

In addition, this estimator is ADU. So, the bias vanishes for large sample sizes.

Suppose variance (6.31) is a good approximation of the true variance of the ratio
estimator. By comparing expressions (6.18) and (6.31), a condition can be determined
under which the ratio estimator is more precise than the direct estimator. This is the
case if

(6.36)

So, the ratio estimator has a smaller variance than the direct estimator if the
correlation between the target variable Y and the auxiliary variable X is sufficiently
large. The quantity

Sx

= (6.37)

is called the coefficient of variation. It is an indicator of the relative precision of the
variable. Suppose the auxiliary variable is taken to be the target variable, but measured
in a previous survey. Then it is not unlikely to assume the coefficients of variation of
X and Y are approximately equal. Consequently, the ratio estimator is better than the
direct estimator if the value of the correlation coefficient is larger than 0.5. The ratio
estimator only performs worse than the direct estimator if the coefficient of variation
of the auxiliary variable is at least twice as large as that of the target variable.
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Figure 6.4 The ratio estimator.

The properties of the ratio estimator are shown graphically using the sample of
working males in the Samplonian province of Agria (see Fig. 6.4). The descriptive
model corresponds to a straight line in the scatter plot, where the incomes of the
persons are plotted against their ages. The line goes through the origin and the center of
gravity (the point with the mean of the auxiliary variable X and the mean of the target
variable Y as coordinates). The slope of the line is equal to B. Again, the variance of the
estimator is determined by the sum of squares of the distances of the point from the line.
By comparing Fig. 6.4 with Fig. 6.3, it will become clear that the ratio estimator is
a better estimator than the direct estimator. The distances to the line are much smaller.
Indeed, the variance of this estimator turns out to be 482. Note that the variance of the
direct estimator is equal to 1178.

The effect of using the ratio estimator is also shown in a simulation experiment.
The target population consists of 200 dairy farms in the rural part of Samplonia. The
objective of the survey is to estimate the average daily milk production per farm.
Two estimators are compared: the direct estimator and the ratio estimator. The ratio
estimator uses the number of cows per farm as the auxiliary variable. This seems
not unreasonable as one may expect milk production per farm to be more or less
proportional to the number of cows per farm.

Selection of a sample of size 40 and computation of the estimator has been repeated
500 times for both estimators. This gives 500 values of each estimator. The distribution
of these values has been plotted in a histogram in Fig. 6.5. The histogram on the left
shows the distribution of the direct estimator. The distribution of the ratio estimator is
shown on the right.

The ratio estimator performs much better than the direct estimator. The distribution
of its values concentrates much more around the true value. The standard error of
the direct estimator here is equal to 35.6, whereas it is 12.5 for the ratio estimator.
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Figure 6.5 Simulating the sample distribution of the direct and the ratio estimator.

So, a much more precise estimator can be obtained with the same sample size if proper
auxiliary information is available.

6.5 THE REGRESSION ESTIMATOR

The regression estimator is based on a linear descriptive model in its most general
form. It assumes the points in the scatter plot of the target variable against the auxiliary
variable to approximately lie on a straight line. This corresponds to the model

F(Xy;A,B) = A+ BX. (638)

It is assumed that the values of both model parameters A and B are unknown. The
condition that the population mean of the residuals must be 0 does not yet fix the values
of the model parameters. So, the second condition comes into play, and that is the
sum of squares of residuals must be minimized. Application of least squares theory
results in

N — —
> (X = X) (Y —Y)

S S —
B= RXYS—Y = % ==l (6.39)
X X Z (Xk _ X)Z
k=1
and
A=Y —BX. (6.40)

The quantity Ryy is the population correlation coefficient between X and Y (as
defined in (6.33)), and Sy is the population covariance between X and Y (as defined
in (6.34)).

Of course, these optimal values of A and B cannot be computed in practice. So, they
have to be estimated using the sample data. The model parameter B is estimated by

n

> (xi=x)(vi—Y)
h=" (6.41)
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and the model parameter A is estimated by
a=7y—bx. (6.42)
The estimator for the descriptive model becomes
F(Xi;a,b) =y —b(X — Xi). (6.43)

Substitution of (6.43) in (6.8) produces the regression estimator

Yir =V —b(Xx —X). (6.44)

Like the ratio estimator, the regression estimator can be seen as a correction of the
simple sample mean (the direct estimator). The regression estimator corrects the
difference between sample mean and population mean of the auxiliary variable.

The regression estimator is not an unbiased estimator. The reason is that b is not
an unbiased estimator of B and therefore Xb is not an unbiased estimator of XB.
However, all these estimators are ADU. So, the bias vanishes for a large sample size.

The variance of the regression estimator can be determined by using expres-
sion (6.10). This results in

N A S e A S _ Y
Vi) —= o= — Nflk;(Yk—Y—B(Xk—X))- (6.45)

The variance (6.45) can be rewritten as

1 —
Vi) LS~ Ry, (6.46)

This expression makes clear that a high correlation between target variable and
auxiliary results in a small variance. The stronger the relationship between X and Y,
the closer the correlation will be to + 1 or —1, and the smaller the factor 1 — R%,
in (6.46) will be.

As the variance cannot be computed in practice, it is estimated using the sample
data by

W) = LS (v~ by~ ) (647)

Cochran (1977) suggests replacing the denominator » — 1 in (6.47) by n — 2. This
suggestion comes from the theory of linear regression estimation. Assuming the
sample is selected from an infinite population, the quantity

1
n—2

zn: (yi = —b(x; —x))* (6.48)
i=1

is an unbiased estimator of

S3(1—R3y). (6.49)
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Both expression (6.47) and the adjustment suggested by Cochran lead to asymp-
totically unbiased estimator of the variance. Similar to (6.46), variance estimator (6.47)
can be rewritten as

1—
o)~ L (- ), (6.50)

where

ryy = —— = ' (6.51)

is the correlation coefficient in the sample.

Assuming that (6.46) is a good approximation of the true variance, it can be
concluded that the variance of the regression estimator is never larger than the variance
of the direct estimator. This becomes clear by rewriting the variance of the regression
estimator as

V(ir) = V(p)(1 — Ryy). (6.52)
Therefore, the efficiency of the regression estimator is equal to
_ V(y 1
Eff(5) = o) (6.53)

V(yLR) 1 7R)2(Y .

As soon as there is some linear relationship between X and Y, the correlation
coefficient will differ from 0, resulting in a regression estimator that is more efficient
than the direct estimator. The regression estimator will only be as precise as the direct
estimator if there is no linear relationship at all; that is, the correlation coefficient is 0.

If the variance of the regression estimator is compared with that of the ratio
estimator, it turns out that the regression estimator is more precise if

Sy 1?) ’
Ryy——=] >0. 6.54
(Rog - (6:54)
This condition is not satisfied only if
Sy Y
Ryy—==. 6.55
g =% (6.55)

This is the case if the linear descriptive model for the estimator coincides with the
model for the ratio estimator. To say it differently, the regression estimator and the ratio
estimator have the same precision of the regression line that goes through the origin.

The result of comparing the various estimators is that the use of the regression
estimator should always be preferred, as the variance of the regression estimator is
never larger than the variance of the other estimators. However, the ratio estimator is
still often used. The reason is that the computations for the regression estimator are
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Figure 6.6 The regression estimator.

much more cumbersome. A ratio estimator can be computed by hand or with a simple
hand calculator.

The properties of the regression estimator can be shown graphically using the sample
of working males in the Samplonian province of Agria (see Fig. 6.6). The descriptive
model corresponds to the regression line in the scatter plot, where the incomes of the
persons are plotted against their ages. The slope of the line is equal to B and its intercept
is equal to A.

Again, the distances from the point to the line represent the residuals. By comparing
Figs 6.4 and 6.6, it will become clear that the regression line is the “best” line. The
residuals are very small and there do not seem to be other lines that come “closer” to
the points. The (approximate) variance of the regression estimator is equal to 85. This is
much smaller than the variance of ratio estimator (482) or of the direct estimator (1178).

Section 6.4 contains a second example. It is a description of a simulation experi-
ment in which the performance of the estimator is explored for estimating the mean
milk production of 200 dairy farms. This experiment can be repeated for the regression
estimator. The results would turn out to be comparable to that of the ratio estimator.
The variance of the ratio estimator is 12.5 and the variance of the regression estimator
is 12.4. The reason is that the regression line almost goes through the origin. Hence, the
descriptive models of the ratio estimator and the regression estimator are almost
the same.

6.6 THE POSTSTRATIFICATION ESTIMATOR

The ratio estimator and the regression estimator both use a quantitative auxiliary
variable. Quantitative variables measure a phenomenon at a numerical scale.
Examples are age and income. It is meaningful to carry out computations with its
values, such as calculating totals and means. There are also qualitative variables. They
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just label elements so that they can be divided into groups. Examples of such variables
are gender, marital status, and province of residence. Computations are not meaning-
ful. Therefore, they cannot be used in the regression or ratio estimator.

The poststratification estimator is an estimator making use of a qualitative
auxiliary variable. A special trick is used to be able to incorporate such a variable
in a descriptive model. The quantitative variable is replaced by a set of dummy
variables. A dummy variable is a variable that can only assume the values 0 and 1.
Suppose, this qualitative variable has L categories; that is, it divides the population into
L groups (here called strata). The qualitative variable is now replaced by L dummy
variables. The values of the L dummy variables for element k are denoted by

x\ x® o x®) (6.56)
for k=1, 2,...,N. The value of the s#th dummy variable is equal to

) 1, if element k is in stratum /,
X, = (6.57)

0, if element k is not in stratum /.

So, always one dummy variable has the value 1 for an element, while all other
dummy variables are 0. The total number of elements in a stratum can now be written as

N
Ny =Y x. (6.58)

k=1
It is assumed that stratum sizes Ny, N, . . ., N of all L strata are known. To predict

the values of the target variables using the L dummy variables, the following
descriptive model is used:

L
F(Xi:0) = Fx, X, ... X" B, By, ... BL) = Bix” (6.59)

h=1
in which By, B,, ..., B, are the model parameters, the values of which have to be

determined. If an element k is a member of stratum /, the predicted value of the target
variable is equal to B, (for =1, 2, ..., L). In fact, this model assumes that the target
variable shows no or little variation within strata; that is, the strata are homogeneous
with respect to the target variable. To say it otherwise, elements within a stratum are
similar.

Minimizing the residual sum of squares results in

N
g _ 1 ()

B,=Y" =— x"y,. 6.60

: B (6.60)

forh=1,2,...,L.So,the optimal value of model parameter B, is equal to the mean of

the target variable in corresponding stratum /.
Application of the optimal model requires knowledge of the stratum means of the
target variable. This will not be the case in practice, as this would enable computation
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of the population mean using the relation

—XL: (6.61)
h=1

As usual, the solution is the estimate of the parameters By, B,, . . . , By using the sample
data. Minimizing the residual sum of squares for the sample results in an estimator

2

by =37, (6.62)

for By, This is the sample mean of the target variable in the corresponding stratum. Note

that the sampling design does not fix the number of sample elements in each stratum.

So, the sample mean is based on a random number of observations. It is theoretically

possible that no observations at all become available in a stratum. In practical

situations, the probability of empty strata is usually so small that it can be ignored.
By using expression (6.62), the descriptive model can be estimated by

L
F(X X2, Xk b, b)) = S 50X, (6.63)

Substitution of (6.63) in (6.8) results in the poststratification estimator for the
population mean

1 L
Yos = > _ Ny, 6.64
Yps Nh:l hy ( )

So, the estimator is equal to the weighted mean of the estimators for the stratum
means. This estimator is unbiased provided there is at least one observation in each
stratum. There is no simple, exact analytical expression for the variance of post-
stratification estimator. However, there is a large sample approximation:

V(Vps) _—ZWhSh Z — W,)S3, (6.65)

where W), = N,/N is the relative size of stratum /4 and Sﬁ is the (adjusted) population
variance of the target variable in stratum /. Variance (6.65) can be estimated by
replacing the population variances in (6.65) with their sample estimates. This results in

| L
v(Yps) = — Z thh _22 (1—Wy)s (6.66)
h=1

The poststratification estimator is precise if the strata are homogeneous with
respect to the target variable. This implies that variation in the values of the target
variable is typically caused by differences in means between strata and not by variation
within strata (Fig. 6.7).

The use of the poststratification estimator is illustrated by using an example based
on Samplonian data. The objective is to estimate the mean income of the working
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Figure 6.7 The poststratification estimator. Reprinted by permission of Imre Kortbeek.
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Figure 6.8 Simulating the sample distribution of the direct estimator and the poststratification estimator.

population of Samplonia (N=341). A large number of samples of size 40 are
simulated. Figure 6.8 contains the results. The histogram on the left contains the
(simulated) distribution of the direct estimator. The histogram on the right contains
the distribution for the poststratification estimator. Province of residence is used
as auxiliary variable. Since Samplonia consists of the two provinces of Agria and
Induston, there are two strata.

The poststratification estimator seems to perform better, although the differences
with the direct estimator are not very spectacular. This is confirmed by comparing the
standard errors, which are 143 for the direct estimator and 105 for the poststratification
estimator. Apparently, the strata are not so homogeneous with respect to income.

EXERCISES

6.1 To be useful as an auxiliary variable in a model-based estimator, at least the
following information must be available for a variable X:

a. The distribution of the variable X in the target population.

b. The regression coefficients of the regression model predicting the target
variable Y from the variable X.
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6.2

6.3

6.4

ESTIMATORS

c. The value of correlation between target variable Y and the variable X.
d. Both the regression coefficients and the correlation coefficient.

The efficiency of an estimator ¥ based on a descriptive function F is defined as

a. Eff(y,) = VV(@F)).
b. Eff(y,) — VV((ny))
e. Eff(y;) = SS((ny))
d. Eff(y,) = S;(ny))

A retail organization wants insight into the amount of shoplifting in the 5000
shops of its members. Target variable is the total value of stolen goods in a shop.
Auxiliary variable is the floor space of the shop. A simple random sample of 100
shops is selected without replacement. The sample results are summarized in the
table below.

Mean value of shoplifting (euro) 500
Standard deviation of shoplifting (euro) 300
Mean floor space (square meters) 4,900
Standard deviation of floor space (square meters) 3,200
Covariance between shoplifting and floor area 770,000

Furthermore, the information is available that the average floor size of all

5000 shops is equal to 5000 m>.

a. Estimate the standard error of the sample mean of the shoplifting values.

b. Compute the value of the regression estimator, assuming floor size is used as
auxiliary variable.

c. Estimate the standard error of the regression estimator. To do this, first
compute the correlation coefficient.

d. Compare the standard errors computed under (a) and (c), and explain the
differences.

An income survey has been carried out in the town of Woodham. A simple
random sample of 100 households has been selected from the total population of
3410 households. Woodham consists of two neighborhoods: Old North and New
South. The number of households in each neighborhood is known. All available
information is summarized in the table below.

Old North New South Woodham

Sample households 25 75 100
Sample mean of income 348 1,692
Sample variance of income 48,218 724,649 895,455
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6.5

6.6

a. Compute the sample mean of all 100 households.

b. Estimate the standard error of the sample mean.

c. Estimate the 95% confidence interval for the mean income in the population.
Interpret this interval in general term.

d. Suppose the additional information is available that there are 1210 house-
holds in the Old North and 2200 households in the New South. Use the
poststratification estimator to compute an estimate of the mean income in the
population, using neighborhood as auxiliary variable.

e. Estimate the standard error of the poststratification estimator.

f. Compare the values of the estimators computed under (a) and (d). Explain the
differences.

Thereis arelationship between the income of ahousehold and the total floor space
of the home of a household in a certain region of Samplonia. A simple random
sample of size 4 has been selected without replacement. The table below contains
the sample data.

Household 1 2 3 4
Floor space 116 81 73 99
Income 1200 950 650 1050

The mean floor space of all houses in the population is 103.7 m>.

a. Compute the ratio estimator for the mean income using floor space as auxiliary
variable.

b. Compute the regression estimator for the mean income using floor space as
auxiliary variable.

Local elections will be held in the town of Springfield. There is new political
party, Forward Springfield, that takes part in elections for the first time. To get
some indication of the popularity of this party, an opinion poll is carried out.
The total population of voters consists of 40,000 people. The town consists of
two neighborhoods: Northwood (with 30,000 voters) and Southfield (with
10,000 voters). A simple random sample of 2000 voters is drawn. Each selected
person is asked for which party he or she will vote. The sample results are
summarized in the table below.

Votes for Forward

Springfield Northwood Southfield
Yes 1338 58
No 182 422

a. Estimate the percentage of voters that will vote for Forward Springfield.
Estimate the variance of this estimator and compute the 95% confidence
interval.
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There are substantial differences between the two neighborhoods of
Northwood and Southfield. Typically, poorer people live in Northwood and
richer people in Southfield. It is not unlikely that there is a relationship
between voting behavior and socioeconomic status. So it might be a good
idea to use the poststratification estimator.

. Estimate the percentage of voters that will vote for Forward Springfield

poststratifying the sample by neighborhood. Also, estimate the variance of
this estimator.

Itis very likely that this opinion poll will be repeated in the future. Then, a
stratified sample will be selected. The variable neighborhood will be used as
stratification variable. Costs of interviewing are different in the two neigh-
borhoods. The costs per interview are €16 in Northwood and € 25 in
Southfield. Suppose the variance of the target variable (votes for Forward
Springfield) is 900 in Northwood and 1600 in Southfield.

. Compute the optimal allocation for this sampling design under the condition

that the total interviewing costs may not exceed €20,000.



CHAPTER7

Data Collection

7.1 TRADITIONAL DATA COLLECTION

The first step in the survey process concentrates on design issues. The target population
is defined, the population parameters to be estimated are determined, and a question-
naire is designed. In addition, a sampling design is specified and the sample is selected
accordingly from the sampling frame. The next step in the survey process is collecting
the survey data. The questions in the questionnaire have to be answered by the
selected elements. This phase of the survey is sometimes called the fieldwork.
This term refers to the interviewers who go into the “field” to visit the persons
selected in the sample. However, there are more means to collect the data. This section
describes three traditional modes of data collection: face-to-face interviewing,
telephone interviewing, and mail interviewing. Section 7.2 is devoted to more modern
ways of data collection.

Mail interviewing is the least expensive of the three data collection modes. Paper
questionnaires are sent by mail to the elements (e.g., persons, households, or
companies) selected in the sample. They are invited to answer the questions and to
return the completed questionnaire to the survey agency. A mail survey does not
involve interviewers. Therefore, it is a cheap mode of data collection. Data collection
costs include only mailing costs (letters, postage, and envelopes). Another advantage
is that the absence of interviewers can be considered less threatening by potential
respondents. As a consequence, respondents are more inclined to answer sensitive
questions.

The absence of interviewer also has a number of disadvantages. They cannot
provide additional explanation or assist the respondents in answering the questions.
This may cause respondents to misinterpret questions, which has a negative impact on
the quality of the data collected. Also, it is not possible to use show cards. Show cards
are typically used for answering closed questions. Such a card contains the list of all
possible answers to a question. It allows respondents to read through the list at their
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own pace and select the answer that reflects their situation or opinion. Mail surveys put
high demands on the design of the paper questionnaire. It should be clear to all
respondents how to navigate through the questionnaire and how to answer questions.

Since the persuasive power of the interviewers is absent, response rates of mail
surveys tend to be low. Of course, reminder letters can be sent, but this is often not very
successful. More often survey documents end up in the pile of old newspapers.

In summary, the costs of a mail survey are relatively low, but often a price has to be
paid in terms of data quality: response rates tend to be low, and the quality of the
collected data is also often not very good. However, Dillman (2007) believes that good
results can be obtained by applying his Tailored Design Method. This is a set of
guidelines for designing and formatting mail survey questionnaires. They pay atten-
tion to all aspects of the survey process that may affect response rates or data quality.

Face-to-face interviewing is the most expensive of the three data collection modes.
Interviewers visit the homes of the persons selected in the sample. Well-trained
interviewers will be successful in persuading many reluctant persons to participate in
the survey. Therefore, response rates of face-to-face surveys are usually
higher than those of a mail survey. The interviewers can also assist respondents in
giving the right answers to the questions. This often results in better quality data.
However, the presence of interviewers can also be a drawback. Research suggests that
respondents are more inclined to answer sensitive questions if there are no inter-
viewers in the room.

The survey organization may consider sending a letter announcing the visit of the
interviewer. Such a letter can also give additional information about the survey,
explain why it is important to participate, and assure that the collected information is
treated confidentially. As a result, the respondents are not taken by surprise by the
interviewers. Such an announcement letter may also contain the telephone number
of the interviewer. This makes it possible for the respondent to make an appointment
for a more appropriate day and/or time. Of course, the respondent can also use this
telephone number to cancel the interview.

The response rate of a face-to-face survey is higher than that of a mail survey, and so
is the quality of the collected data. But a price has to be paid literally: face-to-face
interviewing is much more expensive. A team of interviewers has to be trained and
paid. Also, they have to travel a lot, and this costs time and money.

A third mode of data collection is telephone interviewing. Interviewers are also
needed for this mode, but not as many as needed for face-to-face interviewing. They do
not lose time traveling from one respondent to the next. They can remain in the
call center of the survey agency and conduct more interviews in the same amount of
time. Therefore, the interviews cost less. An advantage of telephone interviewing over
face-to-face interviewing is that often respondents are more inclined to answer
sensitive questions because the interviewer is not present in the room.

Telephone interviewing also has some drawbacks. Interviews cannot last too long
and questions may not be too complicated. Another complication may be the lack of a
proper sampling frame. Telephone directories may suffer from severe undercoverage
because more and more people do not want their phone number to be listed in the
directory. Another development is that increasingly people replace their landline
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phone by a mobile phone. Mobile phone numbers are not listed in directories in many
countries. For example, according to Cobben and Bethlehem (2005) only between
60% and 70% of the Dutch population can be reached through a telephone directory.

Telephone directories may also suffer from overcoverage. For example, if the target
population of the survey consists of households, then only telephone numbers
of private addresses are required. Telephone numbers of companies must be ignored.
It is not always clear whether a listed number refers to a private address or a company
address (or both).

A way to avoid the undercoverage problems of telephone directories is to apply
random digital dialing (RDD) to generate random phone numbers. A computer
algorithm computes valid random telephone numbers. Such an algorithm is able to
generate both listed and unlisted numbers. So, there is complete coverage. Random
digital dialing also has drawbacks. In some countries, it is not clear what an
unanswered number means. It can mean that the number is not in use. This is a
case of overcoverage. No follow-up is needed. It can also mean that someone simply
does not answer the phone, a case of nonresponse, which has to be followed up.
Another drawback of RDD is that there is no information at all about nonrespondents.
This makes correction for nonresponse very difficult (see also Chapter 9 about
nonresponse and Chapter 10 about weighting adjustment).

The fast rise of the use of mobile phones has not made the task of the telephone
interviewer easier. More and more landline phones are replaced by mobile phones.
A landline phone is a means to contact a household whereas a mobile phone makes
contact with an individual person. Therefore, the chances of contacting any member of
the household are higher in case of landline phones. And if persons can only be
contacted through their mobile phones, it is often in a situation not fit for conducting
an interview. In addition, it was already mentioned that sampling frames in many
countries do not contain mobile phone numbers. And a final complication is that in
countries such as The Netherlands, people often switch from one phone company to
another. As a result, they get a different phone number. For more information about
the use of mobile phones for interviewing, see, for example, Kuusela et al. (2006).

The choice of the mode of data collection is not an easy one. It is usually
a compromise between quality and costs. In a large country such as the United
States, it is almost impossible to collect survey data by means of face-to-face
interviewing. It requires so many interviewers to do so much traveling that the costs
would be very high. Therefore, itis not surprising that telephone interviewing emerged
here as a major data collection mode. In a very small and densely populated country
such as The Netherlands, face-to-face interviewing is much more attractive. Coverage
problems of telephone directories and low response rates also play a role in the choice
for face-to-face interviewing. More about data collection issues can be found in
Couper et al. (1998).

7.2 COMPUTER-ASSISTED INTERVIEWING

Collecting survey data can be a complex, costly, and time-consuming process,
particularly if high-quality data are required. One of the problems of traditional
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data collection is that the completed paper questionnaire forms usually contain many
errors. Therefore, substantial resources must be devoted to make these forms error
free. Extensive data editing is required to obtain data of acceptable quality. Rapid
developments in information technology since the 1970s have made it possible to
use microcomputers for data collection. Thus, computer-assisted interviewing (CAI)
was born. The paper questionnaire was replaced by a computer program containing
the questions to be asked. The computer took control of the interviewing process,
and it also checked answers to questions on the spot.

Like traditional interviewing, computer-assisted interviewing has different
modes of data collection. The first mode of data collection was computer-assisted
telephone interviewing (CATI). Couper and Nicholls (1998) describe how it was
developed in the United States in the early 1970s. The first nationwide telephone
facility for surveys was established in 1966. The driving force was to simplify
sample management. These systems evolved in subsequent years into full-featured
CATI systems. Particularly in the United States, there was a rapid growth in the
use of these systems. However, CATI systems were used little in Europe until the
early 1980s.

Interviewers in a CATI survey operate a computer running interview software.
When instructed so by the software, they attempt to contact a selected person by phone.
If thisis successful and the person is willing to participate in the survey, the interviewer
starts the interviewing program. The first question appears on the screen. If this is
answered correctly, the software proceeds to the next question on the route through
the questionnaire.

Many CATI systems have a tool for call management. Its main function is to offer
the right phone number at the right moment to the right interviewer. This is particularly
important when the interviewer has made an appointment with a respondent for
a specific time and date. Such a call management system also has facilities to deal with
special situations such as a busy number (try again after a short while) or no answer
(try again later). This all helps to increase the response rate as much as possible.

More about the use of CATI in the United States can be found in Nicholls and
Groves (1986). De Bie et al. (1989) give an overview of the available software in the
early stages of development.

The emergence of small portable computers in the 1980s made computer-assisted
personal interviewing (CAPI) possible. It is a form of face-to-face interviewing in
which interviewers take their laptop computer to the home of the respondents. There
they start the interview program and attempt to get answers to the questions.

Statistics Netherlands started experiments with this mode of data collection in
1984. Computers were first tried in a price survey. In this survey, interviewers visit
shops and record prices of products. It turned out that interviewers were able to handle
the hardware and software. Moreover, respondents (shopkeepers) did not object to
this kind of data collection.

The outcome of this experiment provided insight into the conditions laptop
computers had to satisfy to be useful for this kind of work. First, they should not
be too heavy. A weight of 3kg was considered the maximum (often women)
interviewers could handle. Second, the readability of the screen should always be
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sufficient, even in bad conditions, such as a sunny room. Third, battery capacity should
be sufficient to allow a day of interviewing without recharging. And if this was not
possible, interviewers should have easy-to-replace spare batteries. The situation
should be avoided in which the interviewer has to plug a power cable into wall socket
in the home of the respondent. Finally, the interviewers preferred a full-size keyboard.
They considered small keys too cumbersome and error-prone.

After the success of the first experiment, a second experiment was carried out.
This time, the laptops were tested in a real interview situation in the homes of the
respondents. The aim of this experiment was to test whether respondents accepted
this type of data collection. Respondents were randomly assigned to a group that was
interviewed in the traditional way or a group that was interviewed with laptops.
It turned out there was no effect on response rates. Respondents simply accepted it
as a form of progress in survey taking. At that time, there was some concern about
“big brother” effects. This form of electronic data collection might cause anxiety
among respondents that they might have become part of a large government operation
to collect large amounts of data about people and that therefore their privacy was at
stake. However, no such “big brother” effects could be observed. Another conclusion
was that interviewers very rapidly became accustomed to using the new technology
for their work.

The success of these experiments convinced Statistics Netherlands that is was
possible to use CAPI in its regular surveys. In 1987, the Dutch Labor Force Survey
(LFS) became a CAPI survey. Approximately, 400 interviewers were equipped with
a laptop computer. It was an EPSON PX-4, running under the operating system CP/M
(see Fig. 7.1). Each month, the interviewers visited 12,000 addresses and conducted
around 30,000 interviews. After the day of work, they returned home and
connected their computers to the power supply to recharge the batteries. They also
connected their laptop to a telephone and modem. At night, when the interviewers
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Figure 7.1 The Epson PX-4 laptop computer that was used in the 1987 Labor Force Survey of Statistics
Netherlands.
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were asleep, their computers automatically called Statistics Netherlands and uploaded
the collected data. New address data were downloaded in the same session. In the
morning, the computer was ready for a new day of interviewing.

It is interesting to compare the old Labor Force Survey with the new one. The old
LFS was carried out each year from 1973 to 1985. During the course of the fieldwork
spanning a number of weeks, approximately 150,000 respondents were visited.
There were no professional interviewers. Interviews were carried by civil servants
of the municipality. They used paper questionnaire forms. The fieldwork for the new
LFS was spread over 12 months and was carried out by professional interviewers
equipped with laptops. So, the old and new LFS differed in several ways. Therefore,
it is not easy to determine to what extent computer-assisted interviewing led to
improvements. Still, some conclusions could be drawn. First, CAPI has considerably
reduced the total data processing time. The period between the completion of the
fieldwork and the publication of the first results could be many months for the old
LFS. For the new LFS, the first tables were published only a few weeks after the
completion of the fieldwork. Of course, these timely statistics were much more
valuable. Second, the quality of the collected data improved. This was to be expected
due to the checks that were incorporated in the interview program. Third, respondents
completely accepted computer-assisted interviewing as a mode of survey data
collection. There was no increase in nonresponse rates. Fourth, interviewers had
no problems using laptops for interviewing. They needed only a moderate amount of
training and supervision. Finally, the conclusion was that, with the exception of the
financial investments required, CAPI had advantages.

The CAPI system of Statistics Netherlands is called Blaise. It was developed
by Statistics Netherlands. It evolved in the course of time in a system running under
MS-DOS and later under Windows. All surveys of this institute, and of many other
national statistical institutes, are now carried out with Blaise. More about the early
years of CAPI at Statistics Netherlands can be found in CBS (1987) and Bethlehem
and Hofman (2006). More information about CAPI in general can be found in Couper
et al. (1998).

The computer-assisted mode of mail interviewing also emerged. It is called
computer-assisted self-interviewing (CASI), or sometimes also computer-assisted
self-administered questionnaires (CASAQ). The electronic questionnaire is sent to
the respondents. They answer the questions and send it back to the survey agency.
Early CASI applications used diskettes or a telephone and modem to send the
questionnaire, but nowadays it is common practice to download it from the
Internet. The answers are returned electronically in the same fashion.

A CASIsurvey is only feasible if all respondents have a computer on which they can
run the interview program. Since the use of computers was more widespread
among companies than households in the early days of CASI, the first CASI
applications were business surveys. An example is the production of fire statistics
in The Netherlands. These statistics were collected in the 1980s by means of CASI.
Diskettes were sent to the fire brigades. They ran the questionnaire on their (MS-DOS)
computers. The answers were stored on diskettes. After completing the questionnaire,
the diskettes were returned to Statistics Netherlands.
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Another early application of CASI was data collection for the foreign trade
statistics of Statistics Netherlands. Traditionally, data for these statistics were
collected through customs at the borders of the country. However, borders have
vanished within the European Union. So, data collection at the borders with
the neighboring countries of The Netherlands came to an end. Now, data are collected
by a survey among the companies exporting and importing goods. To do this as
efficiently as possible, a CASI survey was conducted. The interviewing program was
sent (once) to the companies. On aregular basis, they ran the program and sent back the
data to Statistics Netherlands.

An early application of CASI in social surveys was the Telepanel (see Saris, 1998).
The Telepanel was founded in 1986. It was a panel of 2000 households that agreed to
regularly fill in questionnaires with the computer equipment provided to them by the
survey organization. A home computer was installed in each household. It was
connected to the telephone with a modem. It was also connected to the television
in the household so that it could be used as a monitor. After a diskette was inserted into
the home computer, it automatically established a connection with the survey agency
to exchange information (downloading a new questionnaire or uploading answers of
the current questionnaire). Panel members had agreed to fill in a questionnaire each
weekend.

The rapid development of the Internet in 1990s led to a new mode of data collection.
Some call it computer-assisted web interviewing (CAWI). The questionnaire is
offered to respondents through the Internet. Therefore, such a survey is sometimes
also called a web survey or online survey. In fact, such an online survey is a special
type of a CASI survey. At first sight, online surveys have a number of attractive
properties. Now that so many people are connected to the Internet, it is an easy way to
get access to a large group of potential respondents. Furthermore, questionnaires
can be distributed at very low costs. No interviewers are needed, and there are no
mailing and printing costs involved. Finally, surveys can be launched very quickly.
Little time is lost between the moment the questionnaire is ready and the start of the
fieldwork. As a result, it is a cheap and fast means to get access to a large group of
people.

However, online surveys also have some serious drawbacks. These drawbacks are
mainly caused by undercoverage (not everyone has access to Internet) and the lack of
proper sampling designs (often self-selection is applied). Because of the increasing
popularity of online surveys and the associated methodological problems, a special
chapter is devoted to this mode of data collection (Chapter 11).

Application of computer-assisted interviewing for data collection has three major
advantages:

e Itsimplifies the work of interviewers. They do not have to pay attention any more
to choosing the correct route through the questionnaire. Therefore, they can
concentrate on asking questions and assisting respondents in getting the answers.

 Itimproves the quality of the data collected because answers can be checked and
corrected during the interview. This is more effective than having to do it
afterward in the survey agency.
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e Data are entered in the computer during the interview resulting in a clean record,
so no more subsequent data entry and data editing are necessary. This consider-
ably reduces time needed to process the survey data and thus improves the
timeliness of the survey results.

7.3 MIXED-MODE DATA COLLECTION

It is clear that surveys can be conducted by using various data collection modes. This
raises the question which mode to use in a specific survey. Biemer and Lyberg (2003)
discuss optimal designs for data collection using one mode. This is also called single-
mode data collection. Modes differ in various aspects, particularly data quality, costs,
and timeliness. Face-to-face interviewing is expensive. Every household does not
have a telephone or Internet connection and therefore cannot be approached by a
telephone or online survey. Mail surveys have alow response rate and take a lot of time
to process. Thus, each individual data collection mode has its advantages and
disadvantages. Mixing data collection modes provides an opportunity to compensate
for the weakness of each individual mode. This can reduce costs and at the same time
increase response rates and data quality. Sampled elements can be allocated to
a specific mode on the basis of known background characteristics. If there are persons
that do not cooperate in one mode and are willing to participate in another mode,
this can reduce the selectivity of the response.

For example, Dutch statistics show that 90% of the children between 12 and
14 years had access to Internet in 2005. For men over 65 years, this percentage was
much lower, 34%, and for women over 65 years, it was only 21% (source: Statline,
Statistics Netherlands). Consequently, the elderly would be severely underrepresented
in an online survey. However, elderly persons are known to be cooperative
when interviewed face-to-face. So, one might consider approaching the elderly
face-to-face and using online interviewing for young people. This is a form of
what is called mixed-mode data collection.

Mixed-mode data collection consists of a combination of two or more data
collection modes. De Leeuw (2005) describes two mixed-mode approaches. The
first is a concurrent approach. The sample is divided in groups that are approached by
different modes, at the same time (see Fig. 7.2). The concurrent approach aims at
maximizing response rates by selecting the proper mode for each group.

A 4 A 4
Mode 1 ‘ Mode 2 ‘ Mode m

Figure 7.2 A concurrent mixed-mode approach.
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Figure 7.3 A sequential mixed-mode approach.

A second mixed-mode approach is the sequential approach. All sample elements
are approached by one mode. The nonrespondents are then followed up by a different
mode than the one used in the first approach. This process can be repeated for several
modes of data collection (see Fig. 7.3).

Another form of a mixed-mode data collection is to let respondents select
their preferred data collection mode. They are given a choice, which is a very flexible
and respondent-friendly alternative. There is a potential drawback though, as this
option provides persons with an extra opportunity to refuse participation. For example,
if the choice is presented in the form of a postcard that they have to return to indicate
their preference. This requires an effort from the respondent, and not returning the
postcard can be regarded as refusal.

Longitudinal or panel surveys often use some kind of mixed approach. Persons
fill in a questionnaire a number of times. Often, the first questionnaire is a large one,
in which a lot of information about the respondents is selected. The follow-up
questionnaires are short. They only record possible changes in the situation of the
respondents. It is common practice to use a more expensive mode in the first wave
to maximize response. A less costly mode is used in the follow-up interviews.
For example, most Labor Force Surveys in Europe are panel surveys where the
first wave is conducted face-to-face and the subsequent waves are conducted by
telephone.

The Labor Force Survey approach is different from the sequential approach as
displayedin Fig. 7.3. The entire sample is approached in the same mode. In subsequent
waves, a different mode is used, but this is still the same mode for all the sample
persons. In the situation displayed in Fig. 7.3, the nonrespondents of the initial sample
are followed up in a different mode from the one used for the entire sample.

There are some studies into the effects of nonresponse that use the sequential
mixed-mode design. At Statistics Netherlands, a large-scale follow-up of nonrespon-
dents from the Dutch Labor Force Survey has been performed (see Schouten, 2007).
The Social and Cultural Planning Office in The Netherlands also used a mixed-mode
design to follow up nonrespondents in the Dutch Amenities and Services Utilization
Survey (see Stoop, 2005). But these are merely experiments, no regular fieldwork
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practices. They serve a methodological purpose: validating the methods that are used
and the assumptions that are made when adjusting for nonresponse.

It is not easy to decide which mixture of modes to use. Several factors need
to be considered before choosing the optimal design. Some of them are discussed
here.

A major concern in mixed-mode data collection is that data quality may get
affected by the occurrence of mode effects, a phenomenon in which asking a
person the same question in different data collection modes would lead to different
answers. An example is asking a closed question with a substantial number of
answer options. The respondent in a face-to-face survey would be presented a show
card with all possible answers. In case of a telephone survey, the interviewer would
read all possibilities to the respondents. Research indicates that this results in a
preference for the last options in the list. Respondents in a web survey have to read
through the list themselves. This seems to lead to a preference for answers early in
the list.

Sequential mixed-mode data collection may help increase response rates.
However, nonresponse is not the only source of errors in surveys. Chapter 8 presents
an overview of possible errors. The effects of these errors may differ for each mode.
For example, a mail survey is affected more by processing errors than a computer-
assisted telephone survey. Generally, data collection modes with the most serious
errors also tend to be the cheapest modes. So, it comes down to a trade-off between
data quality and costs.

The topic of the survey may limit mixed-mode possibilities. Some topics may be
less suited for a survey that is interviewer assisted. Typically, answers to sensitive
questions may be closer to the truth when there are no interviewers involved. A
mail survey or web survey may therefore be more appropriate for this type of
questions.

Time is also an important aspect. The fieldwork of a sequential mixed-mode
approach will take longer because modes follow each other in time. So, much time may
notbe available. This survey design also requires decisions when to move on to the next
data collection mode. Should such a decision be time dependent only? Or should it be
based on the response rate of the current mode? The latter strategy will make it
uncertain how long the fieldwork period will be.

Data collection costs also depend on the mode chosen. A telephone survey is much
cheaper than a face-to-face survey. A mail survey is even cheaper than a telephone
survey. The cheapest mode is probably a web survey. If there is only a limited budget
available, face-to-face interviewing may be out of question, and a choice has to be
made for one or more less costly modes.

Last but certainly not the least, attention has to be paid to case management.
Sample elements have to be assigned to the proper mode. In the course of the
fieldwork, they may have to be reassigned to another mode. This requires an
effective and reliable case management system. It has to see to it that the cases are
assigned to the proper mode, cases are not assigned to multiple modes, or cases are
not assigned to any mode at all. Unfortunately, there are no general-purpose case
management systems for mixed-mode surveys. This means that tailor-made systems
have to be developed.
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7.4

ELECTRONIC QUESTIONNAIRES

The elements of paper questionnaires were rather straightforward, containing
questions for respondents and instructions for interviewers to jump to other questions
or to the end of the questionnaire. Application of some form of computer-assisted
interviewing requires the questionnaires to be defined. Such questionnaires can have
more elements than paper questionnaires. Here is a nonexhaustive list:

Questions. Each question may have an identification (number or name), a
question text, a specification of the type of answer that is expected (text, number,
selection from a list, etc.), and a field in which the answer is stored.

Checks. This is a logical expression describing a condition that must be fulfilled,
and an error message (which is displayed when the condition is not met).

Computations. They may involve answers to previous questions and other
information. Computations can be used to compute the answer to another
question, as a component in a check, or to compute the route to the following
question.

Route Instructions. These instructions describe the order in which questions are
processed and also under which conditions they are processed.

Route instructions can take several forms. This is illustrated using a simple
example of a fragment of a questionnaire. Figure 7.4 shows how this fragment could
look like in paper form.

3.
Interviewer: If younger than 17 then goto END

4.

END OF QUESTIONNAIRE

Are you male or female?
Male . . . . . . . . . . . . . . ... Skip to question 3
Female . . . . . . . . . . . . . . . . .2

Have you ever given birth?

Yes B
No . . . . . . . . . 0000002
How old are you? _ _ years

What is your marital status?

Never been married 1 Skip to question 6
Married . e e e e s 2
Separated . . . . . . . . . . . . . . .3
Divorced 4 Skip to question 6
Widowed 5 Skip to question 6
What is your spouse's age? _ _ years

Are you working for pay or profit?
Yes e
No . . . . . . . . . . 000 . .2

Figure 7.4 A paper questionnaire.
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The questionnaire contains two types of routing instructions. First, there are skip
instructions attached to answer codes of closed questions. This is the case for questions
1 and 4. The condition deciding the next question asked depends only on the answer to
the current question. Second, there are instructions for the interviewer that are
included in the questionnaire between questions. These instructions are typically
used when the condition deciding the next question depends on the answers to several
questions, or on the answer to a question that is not the current question. Figure 7.4
contains an example of such an instruction between questions 3 and 4.

Specification languages of CAI systems (so-called authoring languages) usually
do not contain interviewer instructions. Skip instructions appear in different formats.
Figure 7.5 contains a specification of the sample questionnaire of Fig. 7.4 in the
authoring language of the CASES system. This system was developed by the
University of California in Berkeley.

Route instructions are goto oriented in CASES. There are two types:

« Skips attached to answer codes are called unconditional gotos. An example is the
jump to question “Age” if the answer to the question “Sex” is “Male”.

* Interviewer instructions are translated into conditional gotos. An example is the
instruction at the end of the question “Age.” There is a jump to the end of the
questionnaire if answer to the question “Age” is less than 16.

An example of a CAI system with a different authoring language is the Blaise
system developed by Statistics Netherlands. The authoring language of this system
uses [F-THEN-ELSE structures to specify routing instructions. Figure 7.6 contains the
Blaise code for the sample questionnaire.

There has been an intensive debate on the use of goto instructions in programming
languages. A short paper by Edsger Dijkstra in 1968 (“Go To Statement Considered
Harmful””) was the start of the structured programming movement. It has become clear
that this also applies to questionnaires. Use of goto instructions in questionnaires
makes these instruments very hard to test and to document.

The way in which the routing structure is specified is not the only difference
between Figs 7.5 and 7.6. The developers of Blaise have considered a clear view on the
routing structure so important that routing is specified in a separate section of the
specification (the rules section).

Note that in the example shown in Fig. 7.6 only questions have been used. It
contains no checks or computations.

Several CAI software systems offer a modular way of specifying electronic
questionnaires. This means the questionnaire is split into a number of subquestion-
naires, each with its own question definitions and routing structure. Subquestionnaires
can be developed and tested separately. It is possible to incorporate such modules as a
standard module in several surveys, thereby reducing development time and promot-
ing consistency between surveys.

There can also be routing instructions at the level of subquestionnaires. Answers to
questions in one subquestionnaire may determine whether or not another subques-
tionnaire is executed. Furthermore, subquestionnaires can be used to implement
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>Sex<
Are you male or female?
<1l> Male [goto Age]
<2> Female
@

>Birth<
Have you ever given birth?
<l> Yes
<2> No
@

>Agec<
How old are you ?
<12-20>
@

[@] [if Age 1t <16> goto End]

>MarStat<
What is your marital status?
<1> Never been married [goto Work]

<2> Married

<3> Separated

<4> Divorced [goto Work]
<5> Widowed [goto Work]
@

>Spousex<
What is your spouse's age?
<16-20>
@

>Work<
Are you working for pay or profit?
<l> Yes
<2> No
@

Figure 7.5 The sample questionnaire in CASES.

hierarchical questionnaires. Such questionnaires allow a subquestionnaire to be
executed a number of times. A good example of a hierarchical questionnaire is a
household questionnaire. There are questions at the household level, and then there is a
set of questions (subquestionnaire) that must be repeated for each eligible member of
the household.

On the one hand, a subquestionnaire can be seen as one of the objects in a
questionnaire. It is part of the routing structure of the questionnaire, and it can be
executed just like a question or a check. On the other hand, a subquestionnaire
contains a questionnaire of its own. By zooming into a subquestionnaire, its
internal part becomes visible, and that is a questionnaire with its objects and routing
conditions.

Interviewing software can have different modes of behavior. The first aspect is
routing behavior. This determines how the software leads interviewers or respondents
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DATAMODEL

FIELDS
Sex
Birth
Age
MarStat

Spouse
Work

RULES
Sex
IF Sex
Birt
ENDIF
Age
IF Age
MarS
IF M
S
ENDI
Work
ENDIF

ENDMODEL

Example
"Are you male or female?": (Male, Female)
"Have you ever given birth?": (Yes, No)
"How old are you?: 0..120
"What is your marital status?":
(Never Mar "Never been married",
Married "Married",
Separate "Separated",
Divorced "Divorced",
Widowed "Widowed")
"What is your spouse's age?": 0..120
"Are you working for pay or profit?": (Yes,No)
= Female THEN
h
>= 17 THEN
tat
arStat = Married) OR (MarStat = Separate) THEN
pouse
F

Figure 7.6 The sample questionnaire in Blaise.

through the questionnaire. There are two types of routing: dynamic routing and static

routing.

e Dynamic routing means that one is forced to follow the route through the
questionnaire as defined by the implemented branching and skipping instruc-
tions. One is always on the route as it was programmed by the developer. It is not
possible to go to questions that are off the route. CAPI and CATT almost always
apply dynamic routing.

e Static routing means that one has complete freedom to move to any question in
the questionnaire, whether it is on or off the route. This is usually inappropriate
for interviewing systems, but it is often applied when entering or editing data
collected on paper forms (computer-assisted data input, CADI).

CAI software

often has the possibility to include checks in interviewing programs.

There can be range errors and consistency errors. A range error occurs if a given
answer is outside the valid set of answers, for example, an age of 348 years.
A consistency error indicates an inconsistency in the answers to a set of questions.
An age of 8 years may be valid, a marital status “married” is not uncommon, but if

the same person

gives both answers, there is probably something wrong. To detect
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these types of errors, conditions can be specified that have to be satisfied. Checking
behavior determines how these conditions are checked. There are two types of
checking: dynamic checking and static checking.

e Dynamic checking means that all relevant conditions are immediately checked
after an answer has been entered. This is usually appropriate in an interviewing
situation.

e Static checking means that conditions are checked only after the program is
instructed to do so, for example, by pressing a special function key. Static
checking may be appropriate when entering data from paper forms. First, all data
are copied from the form to the computer and then checks are activated.

Sometimes, it is also possible to set error reporting behavior of an interviewing
program. It determines if and how errors are displayed to the interviewer or
respondent:

e Dynamic error reporting means that a message is displayed on the screen
immediately after an error has been encountered. The interviewer or respondent
cannot continue with the interview. First, the problem has to be solved. This type
of error reporting is often applied in CAI software.

e Static error reporting means that no immediate action is required when errors
are detected. Questions involved in errors are marked. One can continue
answering questions. Error messages can be viewed at any time by moving
to a specific question and asking for error reports involving this question. This
form of error reporting can be applied in data entry situations.

7.5 DATA COLLECTION WITH BLAISE

7.5.1 What is Blaise?

There are many software packages for survey data collection. One of these packages
has more or less become a de facto standard in the world of data collection for official
statistics. The name of this package is Blaise. The first version of the Blaise system was
developed in 1986 by Statistics Netherlands. The aim was to tackle the disadvantages
of traditional data collection with paper questionnaire forms. See Bethlehem (1997)
for more background information.

The Blaise language is the basis of the Blaise system. This language is used to define
a questionnaire. The Blaise questionnaire definition contains all possible questions,
route instructions, checks to be carried out on the answers, and computations that may
be needed in the course of the interview. Therefore, this definition can be seen as
metadata definition. It describes the data to be collected. It acts as a knowledge base
from which the system extracts information it needs for its various modules for data
collection or data processing. Therefore, Blaise enforces consistency of data and
metadata in all steps of the survey process.
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Development of a Blaise survey starts with the questionnaire definition in the
Blaise language. Such a definition is called a data model in Blaise. Once the data
model has been entered in the system, it is checked for correctness. If so, it is translated
into a metadata file. The most important module of the system is the data entry
program (DEP). It is used for entering data. The DEP can do this in various ways
depending on the data collection mode selected:

e The DEP can enable easy entry and correction of data that have been collected
by means of traditional paper questionnaire forms. This data collection and
processing mode is called computer-assisted data input in Blaise.

e The DEP can enable computer-assisted interviewing. It supports CAPI, CATI,
and CAWL

Blaise is not a data analysis package. However, it helps in preparing data and
metadata for existing statistical analysis. The system contains a tool for generating
system files for packages such as SPSS and Stata.

The first version of Blaise was released in 1986. It ran under the operating system
MS-DOS. The first Windows version came on the market in 1999. In 2003, a version
was released allowing online data collection. For more information about Blaise, see
Statistics Netherlands (2002).

Blaisederivesits name from the famous French theologian and mathematician Blaise
Pascal (1623-1662). Pascal is famous not only for his contributions to science but also
for the fact that his name was given to the well-known programming language. The
Blaise language has its roots, for a large part, in this programming language.

7.5.2 A Simple Blaise Questionnaire

Here it is shown how a very simple questionnaire is created in the Blaise system. This
example contains only a few basic features of the Blaise language. Figure 7.7 contains
the questionnaire as it could have been designed in the traditional paper form.

The questionnaire contains only seven questions, and they are about work. There
are a few things in this questionnaire worth mentioning. There are various types of
questions. Questions 1, 2, and 5 are closed questions. An answer has to be selected
from a list. Question 7 is also a closed question, but here more than one answer is
allowed. Such a question is sometimes called a check-all-that-apply question.
Furthermore, questions 3 and 4 are numerical questions. They require a number as
answer. Finally, question 6 is an example of an open question. On an open question, any
text is accepted as an answer.

The questionnaire contains route instructions. These instructions are necessary to
prevent respondents from answering irrelevant questions. Route instructions appear in
two forms. First, some questions are followed by jump instructions. For example, if a
respondent is still going to school, no job description is required, so he skips to question
6. Second, there are written instructions for the interviewer, for example, “If male, then
skip question 3.”
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THE NATIONAL COMMUTER SURVEY
1. Are you male or female?
Male ... e e 1

Female ... ... e e 2

2. What is your marital status?

Never married ... ...ttt 1
Married . ... e e 2
Divorced . ... e 3
Widowed . ..ottt e 4

Interviewer: If male, then skip question 3.
3. How many children have you had? ... children
4. What is your age? .. years

5. What is your main activity?

Going to sSChOoOl . .v ittt 1 > 7
WOXKING vttt it et et e e e e 2 2> 6
Keeping hoUSe ... ..viiiiiiin it iiiiaeenn 3 - Stop
Something else . ...ttt 4 - Stop

6. Give a short description of your job

7. How do you travel to your work or school?
(Check at most 3 answers)

Public bus, tram or metro ...........'eiuiun.. 1
1 o= < 2
Car or motor cycle ..... ... 3
Bicycle . e e 4
Walked .. ... e e 5
Other ... e 6

Figure 7.7 A simple paper questionnaire.

Figure 7.8 contains a possible definition of this questionnaire in the Blaise
language. Some words, such as QUESTIONNAIRE and ENDIF, are printed in upper
case. These words have a special meaning in the Blaise language. Their use is reserved
for special situations and therefore are called reserved words. To emphasize this
special meaning, they are printed in boldface and capitals. However, reserved words
may also be typed in lowercase and normal face.

The first line of the questionnaire in Fig. 7.8 is the identification of the question-
naire. The end of the specification is indicated by the reserved word ENDQUEST.
The questionnaire definition contains two sections: the fields section and the rules
section. The fields section contains the definition of all questions to be asked (together
with a description of what type of answer is expected). So, it defines the fields in the
database to contain the survey data. The rules section defines what is to be done
with the questions (fields). It contains the order of the questions, checks to be carried
out on the answers, and computations.
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DATAMODEL Commut "The National Commuter Survey"

FIELDS
Gender "Are you male or female?": (Male, Female)
MarStat "What is your marital status?":
(NevMarr "Never married",
Married "Married",
Divorced "Divorced",
Widowed "Widowed")
Children "How many children have you had?": 0..25
Age "What is your age?": 0..120
Activity "What is your main activity?":
(School "Going to school".
Working "Working",
HousKeep "Keeping house",
Other "Something else")
Descrip "Give a short description of your job": STRING[40]
Travel "How do you travel to your school or work?":
SET [3] OF
(NoTravel "Do not travel, work at home",
PubTrans "Public bus, tram or metro",

Train "Train",

Car "Car or motor cycle",

Bicycle "Bicycle",

Walk "Walk",

Other "Other means of transport")
RULES

Gender MarStat

IF Gender = Female THEN
Children

ENDIF

Age Activity

IF Activity = Working THEN
Descrip

ENDIF

IF (Activity = Working) OR (Activity = School) THEN
Travel

ENDIF

IF (Age < 15) "If age less than 15" THEN
MarStat = NevMarr "he/she is too young to be married!"

ENDIF

ENDMODEL

Figure 7.8 A simple Blaise questionnaire.

7.5.3 The Fields Section

All questions are defined in the fields section. This section starts with the reserved word
FIELDS. Every question definition follows a simple scheme. It starts with question
name. It identifies the question. The question name is followed by the guestion text.
This is the text of the question to be presented to the respondents (on screen or
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on paper). The question text must be placed between quotes and must be followed by
acolon. The last part of the question definitions is the answer definition. It describes the
valid answers to that question.

The difference with traditional questionnaires is that the question numbers in
Fig. 7.7 are replaced by question names in Fig. 7.8. So one does not talk about question
2 butabout question “Age”, and one refers to question “Travel” instead of question 6. It
is important to identify questions by names instead of numbers. It improves the
readability of the questionnaire, and problems are avoided in case questions have to be
added or deleted.

The fields section in Fig. 7.8 introduces eight questions. The Blaise language offers
different types of questions. It is possible to define an open question. For such a
question, any text is accepted as an answer provided the length of the text does not
exceed the specified maximum length. An example is the question Descrip. The
answer may not be longer than 40 characters:

Descrip "Give a short description of your job": STRING [40]

A numerical question expects a number as an answer. This number must be in the
specified range. The question Age is an example. The answer must be in the range from
0 to 120:

Age "What is your age?": 0..120

For a closed question, an answer must be picked from a specified list of answer
options. The question Activity in Fig. 7.8 is an example of such a question :

Activity "What is your main activity?":
(School "Going to school™".
Working "Working",
HousKeep "Keeping house",
Other "Something else")

Each possible answer is defined by a short answer name (e.g., School) and,
optionally, a longer answer text (e.g., "Going to school"). The answer name is
used internally to identify the answer. The answer text is presented to the respondent.
Note that possible answers are identified by names instead of by numbers. Just like in
the case of question names, using answer names improves readability and maintain-
ability of questionnaire specifications.

Sometimes, the respondent must be allowed to select more than one answer
from a list. For this case, the reserved words SET OF can be added to a closed
question. Then the question becomes a check-all-that-apply question. Optionally, the
maximum number of answers to be selected may be specified between square brackets.



172 DATA COLLECTION

The question Travel is such a closed question. At most, three options can be selected
to answer this question:

Travel "How do you travel to your school or work?" :
SET [3] OF
(NoTravel "Do not travel, work at home",
PubTrans "Public bus, tramor metro",
Train "Train",
Car "Car or motor cycle",
Bicycle "Bicycle",
Walk "Walk",
Other "Other means of transport")

There are two predefined answers that can always be given in response to a
question of any type: DONTKNOW and REFUSAL. These answer possibilities do not
have to be defined because they are implicitly available. They can be entered with
special function keys.

This simple example does not exhaust all possible question types that can be used in
Blaise. More information can be found in Statistics Netherlands (2002).

7.5.4 The Rules Section

The rules section starts with the keyword RULES. This section describes what the
system must do with the questions. There are four types of rules:

® Route instructions. describe the order of the questions and the conditions under
which they will be asked.

o Checks. determine whether a specified statement is true for the answers of the
questions involved. If it is false, the system will generate an error message.
Subsequent action depends on the application at hand. Two kinds of checks are
supported. A check can detect a hard error. This is a real error that must be fixed
before the form can be considered clean. A check can also detect a soft error.
Such an error may point to a possible problem. Soft errors may be suppressed if it
is decided there is nothing wrong.

o Computations. on the values of questions and other data can be used to
determine the proper route through the questionnaire, to carry out complex
checks, or to derive values of questions that are not asked or that are corrected.

e Layout instructions. determine the layout of the questions and the entry fields
displayed on the screen.

The example shown in Fig. 7.8 contains a number of route instructions.
Writing down the name of a question in the rules section means asking the question.
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The rules section of the example starts with the two question names Gender
and MarStat:

RULES
Gender MarStat

The two questions will be processed in this order. Questions can also be asked,
subject to a condition. The question Chi 1dren will only be asked in the example if the
answer Female has been given to the question Gender:

IF Sex = Female THEN
Children
ENDIF

Checks are conditions that have to be satisfied. Checks are stated in terms of what
the correct relationship between fields should be. An example from the questionnaire
in Fig. 7.8 is as follows:

MarStat = NevMarr

The specification instructs the system to check whether the field Marstat has the
value NevMarr. If not, an error message will be produced. A label, any text between
double quotes, can be attached to a condition. Such a text will be used as an error
message if the condition is not satisfied.

MarStat = NevMarr "he/she is too you to be married!"

Checks can be subject to conditions:

IF (Age >15) THEN
MarStat = NevMarr
ENDIF

The check MarStat = NevMarr will only be carried out if the answer to the
question Age has a value less than 15. The application will reject entries in which
people younger than 15 years are married.

The example in Fig. 7.8 does not contain any computation or layout instruction.

7.5.5 Dynamic Question Texts

It is important that respondents always understand the questions in the questionnaire.
Sometimes, it helps to adapt the question text to the situation at hand. For paper
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questionnaires this is, of course, not possible, but computer-assisted interviewing
software usually has this feature.

The Blaise system can adapt all question texts in the data model. This is accom-
plished by including the name of a question in the text of another question. The
question name has to be preceded by a ~. When the system displays the text on the
screen, the question name will be replaced by its answer.

For example, suppose the field section of a data model contains the questions
Travel and Reason as defined below. Note that the name Travel is included both
in the text of the question Reason and in the text of its answer:

FIELDS
Travel
"How do you travel towork?":
(train, bus, metro, car, bicycle)
Reason
"Why do you go by "Travel and not by car?":
(Jam "By “Travel no traffic jams",
Comfort "Going by "Travel is more comfortable",
Environ "Going by "Travel is better for the

environment",
Health "Going by "Travel is healthier",
NoCar "Does not have a car")
RULES

Travel

IF NOT (Travel = Car) THEN
Reason

ENDIF

Suppose, a CAPI interview is conducted, and the respondent gives the answer
bicycle to the question Travel. Then the question Reason will be displayed as
follows:

Why do you go by bicycle and not by car?

1: By bicycleno traffic jams

Going by bicycle is more comfortable

Going by bicycle is better for the environment
Going by bicycle is healthier

U W N

Does not have a car

7.5.6 Subquestionnaires

Simple questionnaires all follow the scheme described above: first a set of questions is
defined in the rules section. Then the order in which they will be asked is defined in the
rules section. In many situations, however, questionnaires have a much more complex
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structure. First of all, some survey situations call for a hierarchical approach. Suppose
a labor force survey is carried out. The questionnaire starts by asking a few general
questions about the composition of the household. Then, members of the household
are asked about their activities. People who work will be asked about their jobs, and
those looking for work will be asked how they go about looking for work. In fact, anew
questionnaire is filled in for each relevant household member. And it is not clear in
advance how many of these subquestionnaires are needed.

There is another problem. If a comprehensive survey is to be conducted, the
questionnaire will tend to become large and complex. In such a case, it is wise to take
an approach commonly used in software development: the best way to build a large
program is to analyze it in subproblems and solve each one of them separately.
This approach makes it possible to build modular systems. Blaise is designed to
stimulate such a structured design of large questionnaires. It is possible to distribute
the questions over several subquestionnaires, keeping together questions that
are logically related to each another. A simple questionnaire is designed for every
group of questions. Next, the subquestionnaires are combined into one large
questionnaire.

7.5.7 Integrated Survey Processing

The Blaise system promotes integrated survey processing. The Blaise language is, in
fact, ametadata language. It is used to specify relevant information about the data to be
collected and processed. The system is able to exploit this knowledge. It can
automatically generate various data collection and data editing applications.
Moreover, it can prepare data and metadata for other data processing software, for
example, for adjustment weighting, tabulation, and analysis. This avoids having to
specify the data more than once, each time in a different “language.” It also enforces
data consistency in all data processing steps.

The data model is the knowledge base of the Blaise system. It forms the backbone
of an integrated survey processing system (see Fig. 7.9). The data model is created in
the design phase of the survey. If data are to be collected by means of a paper
questionnaire form, the form and the corresponding data entry and data editing
program (CADI) can be generated from the data model. If data are to be collected
by means of some form of computer-assisted interviewing, there is a choice for CAPI,
CATI, CASI, or CAWI. Blaise can also be used for mixed-mode data collection. It can
generate the data collection instruments for several modes simultaneously. Since all
these instruments are generated from the same metadata source, consistency between
modes is guaranteed.

Whatever form of data collection is used, the result will be a “clean” data file.
The next step in the process will often be the computation of adjustment weights to
correct a possible bias due to nonresponse (see also Chapters 9 and 10). The Blaise
tool Bascula can take care of this. It is able to read the Blaise data files directly
and extract the information about the variables (the metadata) from the Blaise
specification. Running Bascula will cause an extra variable to be added to the data
file containing the adjustment weight for each case.
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Data model

| PAPI | | CAPI | | CATI | | CASI | | CAWI |

Weighting

Analysis

Figure 7.9 Integrated survey processing.

Now the data are ready for analysis. There are many packages available for this.
Well-known examples are SAS, SPSS, and Stata. They all require a data file and a
description of the data (metadata). Blaise has tools to put the data in the proper format
(Manipula). Furthermore, there is a tool (Cameleon) to create setup files with data
descriptions for a number of statistical packages.

EXERCISES

7.1 What was the effect on response rates of the introduction of computers for face-
to-face interviewing (CAPI)?

a. The response rates were lower than those of traditional face-to-face
interviewing.

b. The response rates were higher than those of traditional face-to-face
interviewing.

c. No significant changes in response rates were observed.

d. Because of all other advantages of computer-assisted interviewing, effects
on response rates have not been investigated.

7.2 Which of the following effects is not caused by a change from traditional face-
to-face interviewing to CAPI?

a. It is easier to follow the correct route through the questionnaire.
b. Nonresponse rates decrease.
c. Less time is required to process the survey data.

d. It is possible to carry out complex checks on the answers to the questions.
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7.3 To carry out a telephone survey among households, a sample of phone numbers

7.4

7.5

is selected from a telephone directory. This procedure can lead to

a. overcoverage, but not to undercoverage;

b. undercoverage, but not to overcoverage;

c¢. both to overcoverage and undercoverage;

d. all kinds of problems (such as nonresponse) but not to overcoverage or
undercoverage.

Design a small questionnaire in the Blaise language. The questionnaire must

contain four questions:

o Ask whether the respondent has a PC at home.

o If so, ask the respondent whether there is Internet access at home.

o If so, ask whether the Internet is used for e-mail and/or surfing on the World
Wide Web.

o Ask which browser is used (Internet Explorer, Firefox, etc.).

¢ Pay attention to question texts, question types, and routing.

Which of the following statements about random digit dialing is not true?
a. Also people with nonlisted phone numbers can be contacted.

b. There are no coverage problems.

c. There is no information about people not answering the call.

d. It may be impossible to distinguish nonexisting numbers from nonresponse
due to “not at home.”



CHAPTER 8

The Quality of the Results

8.1 ERRORS IN SURVEYS

When conducting a survey, a researcher is confronted with all kinds of phenomena
that may have a negative impact on the quality, and therefore the reliability, of the
outcomes. Some of these disturbances are almost impossible to prevent. So, efforts
will have to be aimed at reducing their impact as much as possible. Notwithstanding all
these efforts, final estimates of population parameters may be distorted. All phenom-
ena causing these distortions are called sources of error. The impact these together
have on the estimates is called the total error.

Sources of error will, if present, increase the uncertainty with respect to the correctness
of estimates. This uncertainty can manifest itself in two ways in the distribution
of an estimator: (1) it can lead to a systematic deviation (bias) from the true
population value or (2) it can increase the variation around the true value of the
population parameter.

Let Z be a population parameter that has to be estimated and let z be an estimator
that is used for this purpose. Chapter 6 discussed the properties of a good estimator.
One was that an estimator must be unbiased. This means its expected value must be
equal to the value of the population parameter to be estimated:

E(z)=Z. (8.1)
If an estimator is not unbiased, it is said to have a bias. This bias is denoted by
B(z) = E(z)—-Z. (8.2)

Another desirable property of an estimator is that its variance is as small as possible.
This means that

V(z) = E(z — E(2))? (8.3)
must be small. An estimator with a small variance is called precise.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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A precise estimator may still be biased. Therefore, just the value of the variance
itself is not a good indicator of how close estimates are to the true value. A better
indicator is the mean square error. This quantity is defined by

M(z) = E(z—2Z)*. (8.4)

It is the expected value of the squared difference of the estimator from the value to
be estimated. Writing out this definition leads to a different expression for the mean
square error:

M(z) = V(z) + B*(2). (8.5)

Now, it is clear that the mean square error contains both sources of uncertainty: a
variance component and a bias component. The mean square error of an estimator is
equal to its variance if it is unbiased. A small mean square error can be achieved only
if both the variance and the bias are small. Figure 8.1 distinguishes four different
situations that may be encountered in practice.

The distribution on the upper left side is the ideal situation of an estimator that is
precise and unbiased. All possible outcomes are close to the true value, and there is no
systematic overestimation or underestimation. The situation in the lower left graph is
less attractive. The estimator is still unbiased but has a substantial variance. Hence,
confidence intervals will be wider. Reliability is not affected. The confidence level of a
95% confidence interval remains 95%. The situation is completely different for the
graph in the upper right corner. The estimator is precise but has a substantial bias. As a
result, aconfidence interval computed using the survey data would almost certainly not

Precise and unbiased Precise, but biased
1 1
z z
Unbiased, but not precise Biased not precise

_.‘.__‘._

T T
Z Z

Figure 8.1 The relation between total error, bias, and precision.
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Total Sampling Estimation
error error error
Selection
error
Nonsampling Observation Overcoverage
error error error
Measurement
error
Processing
error
—— Nonobservation Undercoverage
error error
Nonresponse
error

Figure 8.2 Taxonomy of survey errors.

contain the true value. The confidence level is seriously affected. Estimates will be
unreliable. Wrong conclusions will be drawn. The graph in the lower right corner
offers the highest level of uncertainty. The estimator is biased and moreover it is also
not precise. This is the situation in which the mean square error has its largest value.

Survey estimates will never be exactly equal to the population characteristics they
intend to estimate. There will always be some error. This error can have many causes.
Bethlehem (1999) describes taxonomy of possible causes. It is reproduced in Fig. 8.2.
The taxonomy is a more extended version of one given by Kish (1967).

The ultimate result of all these errors is a discrepancy between the survey estimate
and the population parameter to be estimated. Two broad categories of phenomena can
be distinguished contributing to this total error: sampling errors and nonsampling
errors.

Sampling errors are introduced by the sampling design. They are due to the fact that
estimates are based on a sample and not on a complete enumeration of the population.
Sampling errors vanish if the complete population is observed. Since only a sample is
available for computing population characteristics, and not the complete data set, one
has to rely on estimates. The sampling error can be split into a selection error and an
estimation error.

The estimation error denotes the effect caused by using a probability sample. Every
new selection of a sample will result in different elements and thus in a different value
of the estimator. The estimation error can be controlled through the sampling design.
For example, the estimation error can be reduced by increasing the sample size or by
taking selection probabilities proportional to the values of some well-chosen auxiliary
variable.
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A selection error occurs when wrong selection probabilities are used in the
computation of the estimator. For example, true selection probabilities may differ
from anticipated selection probabilities if elements have multiple occurrences in the
sampling frame. Selection errors are hard to avoid without thorough investigation of
the sampling frame.

Nonsampling errors may even occur if the whole population is investigated.
They denote errors made during the process of obtaining answers to questions
asked. Nonsampling errors can be divided into observation errors and nonobser-
vation errors.

Observation errors are one form of nonsampling errors. They refer to errors
made during the process of obtaining and recording answers. An overcoverage erroris
caused by elements that are included in the survey but do not belong to the target
population. A measurement error occurs when respondents do not understand a
question or do not want to give the true answer, or if the interviewer makes an error in
recording the answer. In addition, interview effects, question wording effects, and
memory effects belong to this group of errors. A measurement error causes a difference
between the true value and the value processed in the survey. A processing error
denotes an error made during data processing, for example, data entry.

Nonobservation errors are made because the intended measurements cannot be
carried out. Undercoverage occurs when elements of the target population do not have
a corresponding entry in the sampling frame. These elements can and will never be
contacted. Another nonobservation error is nonresponse error when elements selected
in the sample do not provide the required information.

The taxonomy discussed above makes it clear that a lot can go wrong during the
process of collecting survey data, and usually it does. Some errors can be avoided by
taking preventive measures at the design stage. However, some errors will remain.
Therefore, it is important to check collected data for errors, and when possible, to correct
these errors. This activity is called data editing. Data editing procedures are not able to
handle every type of survey error. They are most suitable for detecting and correcting
measurement errors, processing errors, and possibly overcoverage. Phenomena such as
selection errors, undercoverage, and nonresponse require a different approach. This
approach often leads to the use of adjustment weights in estimation procedures, and not
to the correction of individual values in records.

8.2 DETECTION AND CORRECTION OF ERRORS

A survey is a fallible instrument, subject to many forms of bias and error. Data editing is
one means of controlling and reducing survey errors, especially those arising from the
interchange between respondents and interviewers, or between respondents and self-
administered forms, during the data collection process.

Data editing is the process of detecting errors in survey data and correcting the
detected errors, whether these steps take place in the interview or in the survey
office after data collection. Traditionally, statistical organizations, especially those
in government, have devoted substantial amounts of time and major resources to data
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editing in the belief that this was a crucial process in the preparation of accurate
statistics. Current data editing tools have become so powerful that questions are now
raised as to whether too much data editing occurs. A new objective for some is to
minimize the amount of data editing performed while guaranteeing a high level of data
quality.

Data editing taking place at the level of individual forms is called microediting.
Questionnaire forms are checked and corrected one at a time. The values of the
variables in aform are checked without using information in other forms. Microediting
typically is an activity that can take place during the interview or during data capture.

Data editing taking place at the level of aggregated quantities, obtained by using all
available cases, is called macroediting. Macroediting requires a file of records. This
means it is typically an activity that takes place after data collection, after data entry,
and possibly after microediting. According to Pierzchala (1990), data editing can be
seen as addressing four principal types of data errors:

e Completeness Errors. The first thing to be done when filled-in forms come
back to the survey agency is to determine whether they are complete enough to
be processed. Forms that are blank or unreadable, or nearly so, are unusable.
They can be treated as cases of unit nonresponse (see Chapter 9), scheduled
for callback, deleted from the completed sample, imputed in some way (see
Section 8.3), depending on the importance of the case.

e Domain Errors. Each question has a domain (or range) of valid answers. An
answer outside this domain is considered an error. Such an error can easily be
detected for numeric questions, since domain errors are defined as any answer
falling outside the allowable range. For questions asking for values or quantities,
it is sometimes possible to specify improbable as well as impossible values. For
example, if the age of respondents is recorded, a value of 199 would certainly be
unacceptable. A value of 110 is unlikely but not impossible. For a closed
question, the answer has to be chosen from a list (or range) of alternatives. The
error may consist of choosing no answer, more answers than allowed, or an
answer outside the allowable range. For open questions, the domain imposes no
restrictions. Any text is accepted as an answer.

e Consistency Errors. Consistency errors occur when the answers to two or
more questions contradict each other. Each question may have an answer in
its valid domain, but a combination of answers may be impossible or unaccept-
able. A completed questionnaire may report a person as being an employee or
less than 5 years of age, but the combination of these answers for the same person
is probably an error. For instance, a firm known to have 10 employees should not
report more than 10,000 person-days worked in the past year. Consistency errors
usually occur for combinations of closed questions and/or numeric questions.

When a consistency error is detected, the answer causing the error is not
always obvious. A correction may be necessary in one, two, or more questions.
Moreover, resolving one inconsistency may produce another. So, it is easier to
detect consistency errors than to solve them.
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e Routing Errors (Skip Pattern Errors). Many questionnaires contain routing
instructions. These instructions specify conditions under which certain ques-
tions must be answered. In most cases, closed and numeric questions are used in
these instructions. In paper questionnaires, routing instructions usually take the
form of skip instructions attached to the answers of questions, or of printed
instructions to the interviewer. Routing instructions ensure that all applicable
questions are asked, while inapplicable questions are omitted.

A routing error occurs when an interviewer or respondent fails to follow a
route instruction, and a wrong path is taken through the questionnaire. Routing
errors are also called skip pattern errors. As a result, the wrong questions are
answered or applicable questions are left unanswered.

When errors are detected in completed questionnaire forms, they have to be
corrected. One obvious way to accomplish this is to recontact the respondents
and confront them with the errors. They may then provide the correct answers.
Unfortunately, this approach is not feasible in daily practice. Respondents consider
completing a questionnaire form already a burden in the first place. Having to
reconsider their answers would in most cases lead to arefusal to do so. Moreover, this
approach is time consuming and costly. Therefore, survey agencies rely on other
techniques to deal with errors in the collected data. They start with a survey data file
in which all wrong answers are removed, so that the corresponding questions are
considered to be unanswered.

It should be noted that analyzing a survey data set with missing data items is not
without risks. First, the “holes” in the data set may not be missing at random (MAR). If
data are missing in some systematic way, the remaining data may not properly reflect
the situation in the target population. Second, many statistical analysis techniques are
not able to properly cope with missing data and therefore may produce misleading
results. Some techniques even require all data to be there and interpret codes for
missing values as real values.

There are two approaches that ignore missing data in the statistical analysis. The
first one is called list-wise deletion. This approach simply omits all records from the
analysis in which at least one value is missing. So, only complete records are used.
Application of list-wise deletion assumes the remaining records to be arandom sample
from all records. So, there are no systematic differences between the records with
missing data and the complete records. Unfortunately, this is often not the case in
practice. It is not uncommon that specific groups in the population have problems
answering a question. Moreover, a consequence of this approach is that a lot of infor-
mation is not used. The whole questionnaire form is thrown away if the answer to just
one question is missing.

Another, less drastic approach is pair-wise deletion. To compute a statistical
quantity all records are used for which the relevant variables have a value. This
means that different sets of records may be used for different statistics.

A simple example shows the effects of list-wise deletion and pair-wise deletion.
Table 8.1 contains a small data set, containing the values of three variables X, Y, and Z
for four records.
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Table 8.1 A Data Set with Missing Values

Record X Y Z
1 4 4 5
2 5 6
3 - 5 4
4 6 6 -

The data set contains a missing value in three different records. Suppose, the
objective is to compute the correlation between the two variables X and Y. Application
of list-wise deletion would lead to omitting three records, including record 4 that
contains values for both X and Y. Since only one record remains, it is not possible to
compute the correlation coefficient.

The correlation coefficient Ryy is defined as Ryy = Sxy/(Sx X Sy), where Syy is the
covariance between X and Y, and Sy and Sy are the respective standard deviations.
Computation of the covariance requires records with the values of both X and Y.
Records 2 and 4 can be used for this. This results in Sxy = 2. Computation of Sy requires
records with a value for X. There are three such records (1, 2, and 4), resultingin Sy = 1.
Likewise, records 1, 3, and 4 can be used for Sy. This gives Sy= 1. Hence, the
correlation coefficient is equal to Ryxy=2/(1 x 1)=2. Since, by definition, the
correlation coefficientis constrained to the interval [— 1, + 1], this value is impossible!
The cause of this inconsistency is that computation of the various components is based
on different sets of records.

The approach probably most often applied in practical situations is imputation. A
wrong or missing value is replaced by a synthetic value. This synthetic value is the
outcome of a technique that attempts to predict the unknown value as accurately as
possible using the available information. Imputation techniques are discussed in more
detail in Section 8.3.

Checks for domain errors involve only one question at the time. In case an error is
detected, it is clear which question is causing this error and therefore which answer
must be corrected. The situation is different with respect to checks for consistency
and routing errors. Several questions are usually involved in such checks. If an error
is detected, it will often not be clear which question caused the error. The answer to
one question can be wrong, butitis also possible that there are errors in the answers to
more questions. Without more information it is often impossible to detect the source
of the error. Fellegi and Holt (1976) have developed a theory to solve this problem.
Their theory is based on the principle that the values of the variables in a record
should be made to satisfy all checks by changing the fewest possible number of
values. The number of synthetic values should be as small as possible. Real data
should be preferred over synthetic data. It is assumed that, generally, errors are rare
and therefore it must be possible to get rid of errors by changing a few data values.
Consequently, a useful rule of thumb is to first locate the variable that is involved in
many errors in a record. Changing the value of just that variable may cause many
errors to disappear.
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8.3 IMPUTATION TECHNIQUES

To avoid missing data problems, often some kind of imputation technique is applied.
Imputation means that missing values are replaced by synthetic values. This synthetic
value is obtained as the result of some technique that attempts to estimate the missing
values. After applying an imputation technique, there are no more “holes” in the data
set. So, all analysis techniques can be applied without having to worry about missing
values. However, there is a downside to this approach.

There is no guarantee that an imputation technique will reduce a bias that may
have been caused by the missing data. It depends on the type of missing data pattern
and the specific imputation technique that is applied. Three types of missing data
mechanisms can be distinguished. Let X represent a set of auxiliary variables that are
completely observed and let Y be a target variable of which some values are missing.
The variable Z represents causes of missingness unrelated to X and Y, and the
variable R indicates whether or not a value of Y is missing.

In case of missing completely at random (MCAR), missingness is caused by a
phenomenon Z that is completely unrelated to X and Y. Estimates for parameters
involving Y will not be biased. Imputation techniques will not change this.

In case of missing at random (MAR), missingness is caused partly by an indepen-
dent phenomenon Z and partly by the auxiliary variable X. So, there is an indirect
relationship between Y and R. This leads to biased estimates for Y. Fortunately, it is
possible to correct such a bias by using an imputation technique that takes advantage of
the availability of all values of X, both for missing and for nonmissing values of Y.

In case of not missing at random (NMAR), there may be a relationship between Z
and R and between X and R, but there is also a direct relationship between Y and R that
cannot be accounted for X. This situation also leads to biased estimates for Y.
Unfortunately, imputation techniques using X are not able to remove the bias.

There are many imputation techniques available. A number of them are described in
this chapter. These are all single-imputation techniques. This means that a missing
value is replaced by one synthetic value. Another approach is multiple imputation.
This technique replaces a missing value by a set of synthetic values. A summary of
technique is given at the end of this section.

8.3.1 Single-Imputation Techniques

Assuming sampling without replacement, the sample is represented by the set of
indicators @y, as, . . ., ay. The value of the indicator a; is equal to 1 if element is selected
in the sample, otherwise it is equal to O.

Let Y be the target variable for which some values are missing in the sample.
Missingness is denoted by the set of indicators Ry, R», . .., Ry. Of course, R, =0 if
a,, = 0. A missing value of a sampled element k is indicated by ¢, =1 and R, =0.

Let X be an auxiliary variable for which no missing values occur in the sample. So,
the value X, is always available if a; = 1.

Sometimes, the value of a missing item can be logically deduced with certainty
from the nonmissing values of other variables. This is called deductive imputation.
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If strict rules of logic are followed, this technique has no impact on the properties of the
distribution of estimators.

For example, if we know a girl is 5 years old, we can be certain she has had no
children. Likewise, if a total is missing but the subtotals are not missing the total can
easily be computed.

Although deductive imputation is the ideal form of imputation, it is frequently not
possible to apply it.

Imputation of the mean implies that a missing value of a variable is replaced by the
mean ygof the available values of this variable. Let k be an element in the sample for
which the value Y is missing. The imputed value is defined by

N
> @R Yk
Vi=yp=S—. (8.6)
Z ai Ry,
k=1

Since all imputed values will be equal to the same mean, the distribution of this
variable in the completed data set will be affected. It will have a peak at the mean of the
distribution.

For imputation of the mean within groups, the sample is divided into a number of
nonoverlapping groups. Qualitative auxiliary variables are used for this. Within a group, a
missing value is replaced by the mean of the available observations in that group.

Imputation of the mean within groups will perform better than imputation of the
mean if the groups are homogeneous with respect to the variable being imputed. Since
all values are close to each other, the imputed group mean will be a good approxima-
tion of the true, but unknown, value.

Random imputation means that a missing value is replaced by a value that is
randomly chosen from the available values for the variable. The set of available values
is equal to

{Yk|ak =1AR, = 1} (87)

This imputation is sometimes also called hot-deck imputation. It is a form of donor
imputation: a value is taken from an existing record where the value is not missing.

The distribution of the values of the variable for the complete data set will look
rather natural. However, this distribution does not necessarily resemble the true
distribution of the variable. Both distributions may differ if the missing values are not
randomly missing.

Random imputation within groups divides the sample into a number of nonover-
lapping groups. Qualitative auxiliary variables are used to create these groups. Within
a group, a missing value is replaced by a randomly chosen value from the set of
available values in that group.

Random imputation within groups will perform better than random imputation
if the groups are homogeneous with respect to the variable being imputed. Since all
values are close to each other, the randomly selected value will be a good approxima-
tion of the true, but unknown, value.
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The idea of nearest neighbor imputationis that arecord is located in the data set that
resembles as much as possible the record in which a value is missing. Some kind of
distance measure is defined to compare records on the basis of values of auxiliary
variables that are available for all records.

If all auxiliary variables are of a quantitative nature, some kind of Euclidean
distance may be used. Suppose there are p such variables. Let X;; be the value of
variable X; for element k, for k=1,2,...,Nand j=1, 2, ..., p. Then, the distance
between the records of two elements i and k could be defined by

Let k be an element in the sample for which the value Y} is missing. The imputed
value is copied from the record of a sampled element i with the smallest distance Dy,
and for which the value of Y is available.

Ratio imputation assumes a relationship between the target variable Y (with
missing values) and an auxiliary variable X (without missing values). If this relation-
ship is (approximately) of the form Y, = B x X, for some constant B, then a missing
value of Yfor element k can be estimated by B x X,. If the value of Bis notknown, it can
be estimated using the available data by

N
> arRi Yy

k=1
b=ttt (8.9)

> arRi X
=1

Let k& be an element in the sample for which the value Y} is missing. The imputed
value is defined by

Yi = bXg. (8.10)

Ratio estimation is often used when the same variable is measured at two different
moments in time in a longitudinal survey.

Regression imputation assumes a relationship between the target variable Y (with
missing values) and an auxiliary variable X (without missing values). If this relation-
ship is (approximately) of the form Y, = A + B x X}, for some constants A and B, then
a missing value of Y for element k can be estimated by A + B X Xj.

If the values of A and B are not known, they can be estimated by applying ordinary
least squares on the available data by

g) @R (Yi—y,) (Xk—X;)

k=1
h="1 (8.11)

S @R (X —%.)
=1
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and
a =y,—bx. (8.12)

Let k be an element in the sample for which the value Y} is missing. The imputed
value is defined by

Yi = a+bX;. (8.13)

The regression model above contains only one auxiliary variable. Of course it is
possible to include more variables in the regression models. This will often increase
the explanatory power of the model, and therefore imputed values will be closer to the
true (but unknown) values.

At first sight, all single-imputation techniques mentioned above seem rather
different. Nevertheless, almost all of them fit in a general model. Let k be an element
in the sample for which the value Y} is missing. The imputed value is defined by

P
Yy =By + ZBiji+Ek’ (814)
=

where X;; denotes the value of auxiliary variable X; for element k, By, By, .. ., B, are
regression coefficients, and Ej is a random term the nature of which is determined by
the specific imputation technique.

By taking By equal to the mean of the available values of Y, and setting the other
coefficients B; and Ej equal to 0, the model reduces to imputation of the mean.

If the auxiliary variable X, X, . . ., X,, are taken to be dummy variables that indicate
to which group an element belongs (X; = 1 if element k is in group j, and otherwise
X;;=0), Bo=0 and E; =0, then (8.14) is equal to imputation of the group mean.

Model (8.14) reduces to random imputation if the model for imputation of the mean
isused, but arandom term Ej is added. Its value is obtained by a random drawing from
the set of values

YR — Yk (8.15)

for which a, =1 and R, =1.

Random imputation within groups is obtained by adding a random term Ej to the
model for imputation of the group mean. The value of E is a random drawing from a
set of values. These values are obtained by subtracting the available values from their
respective group means.

It is clear that ratio imputation and regression imputation also are special cases of
model (8.14). Nearest neighbor imputation does not fit in this model.

8.3.2 Properties of Single Imputation

There are many single-imputation techniques. So, the question may arise which
technique to use in a practical situation. There are several aspects that may play arole
in this decision. A number of these effects are discussed in this section.
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The first aspect is the type of variable for which missing values have to be imputed. In
principle all mentioned imputation techniques can be applied for quantitative variables.
However, not every single-imputation technique can be used for qualitative variables.
A potential problem is that the synthetic value produced by the imputation technique
does not necessarily belong to the domain of valid values of the variable. For example,
if the variable gender has to be imputed, mean imputation produces an impossible
value (what is the mean gender?). Therefore, only some form of “donor imputation”
is applicable for qualitative variables. These techniques always produce “real” values.

Single-imputation techniques can be divided into two groups. One contains
deterministic imputation techniques and the other random imputation techniques.
The random term Ej in model (8.14) is zero for deterministic techniques and not for
random techniques.

For some deterministic imputation techniques (e.g., imputation of the mean), the
mean of a variable before imputation is equal to the mean after imputation. This shows
that not every imputation technique is capable of reducing a bias caused by miss-
ingness. For random imputation techniques, the mean before imputation is never equal
to the mean after imputation. However, expected values before and after imputation
may be equal.

Deterministic imputation may affect the distribution of a variable. It tends to
produce synthetic values that are close to the center of the original distribution. The
imputed distribution is more “peaked.” This may have unwanted consequences.
Estimates of standard errors may turn out to be too small. A researcher using the
imputed data (not knowing that the data set contains imputed values) may get the
impression that his estimates are very precise, while in reality this is not the case.

The possible effects of imputation on estimators are explored by analyzing two
single-imputation techniques in some more detail: imputation of the mean and random
imputation.

8.3.3 Effects of Imputation of the Mean

Imputation of the mean replaces missing values by the mean of the available values.
LetYy,Ys,,. .., Yybethe values of the variable to be imputed. A sample of size n without
replacement is denoted by the set of indicators @, as, . . ., ay. Missingness is indicated
by the set of indicators Ry, R, . . ., Ry, where R, = 1 only if k is in the sample (a;, = 1)
and the value Yy is available. Of course, R; = 0 if ¢, = 0. A missing value for a sampled
element £ is indicated by a; = 1 and R, = 0. The number of available observations is
denoted by

N
m=> aRy. (8.16)
k=1

The mean of the available observations is equal to

lN
YR = — axRy Yy 8.17
iy 17
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In case of imputation of the mean, a missing observation is replaced by the mean of
the available values. So, if ¢y =1 and R; = 0 for some element k, the imputed value

Ve = i (8.18)

isused. Now a new estimator for the population mean is obtained by taking the average
of all “real” and all “synthetic” values of Y. Let

1

n—m

N
¥ = > a1 - ROV (8.19)
k=1

denotes the mean of all imputed values. Consequently, the mean after imputation can
be written as

i mygp + (n—m)y
Yip = ————— (n iy (8.20)

In case of imputation of the mean, expression (8.19) reduces to

R . R
y; = 1—RL Y, = 1—-R)yp =Y 8.21
A n_mg:l ar(1 = Ri) Y ”‘m;;:l ak(1 = Ri)yr = Ir (8.21)
and therefore,
_ mygr +(n—m)yy myg+(n—m)y _
Yimp = h ( )I: K ( )R:)’R- (8~22)

n n

The conclusion can be drawn that the mean after imputation is equal to the mean
before imputation. Imputation does not affect the mean.

To determine the characteristics of an estimator after imputation, it should be
realized that two different types of probability mechanisms may play arole. Of course,
there always is the probability mechanism of the sample selection. An extra source of
randomness may be introduced by the imputation technique, for example, if a
randomly selected value is imputed. To take this into account, the expected value
of an estimator (after imputation) is determined with the expression

E(ypvp) = EsE1(YimpS)- (8.23)

Erdenotes the expectation over the imputation distribution and Eg the expectation over
the sampling distribution S. This is applied to the case of imputation of the mean. Given
the sample, the estimator is a constant. So taking the expectation over the imputation
distribution results in the same constant. Hence, the expected values of the estimators
before and after imputation are the same. Imputation of the mean will not be able to
reduce a possibly existing bias due to missingness.

To compute the variance of the estimator after imputation of the mean, the expression

V(¥imp) = VSE1(YimplS) + EsVi(Fivp|S) (8.24)

isused. Given the sample, estimator (8.20) is a constant. This means the second term in
expression (8.24) is equal to 0. The first term is equal to the variance of the estimator
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before imputation. Consequently, imputation of the mean does not change the variance
of the estimator.

Problems may arise when an unsuspecting researcher attempts to estimate the
variance of estimators, for example, for constructing a confidence interval. To keep
things simple, it is assumed the available observations can be seen as a simple random
sample without replacement, that is, missingness does not cause a bias. Then the
variance after imputation is equal to

Ve) = V0Or) = %52 (8.25)
in which $7 is the population variance.

It is a well-known result from sampling theory that in case of a simple random
sample without replacement, the sample variance s~ is an unbiased estimator of the
population variance S°. This also holds for the situation before imputation: the s*
computed using the m available observations is an unbiased estimator of S

What would happen if an attempt would be made to estimate S” using the complete
data set, without knowing that some values have been imputed? The sample variance
would be computed, and it would be assumed that this quantity is an unbiased
estimator of the population variance. However, this is not the case. For the sample

variance of the imputed data set, the following expression holds:

1 (& N .
Stvp = (ZakRk(Yk —3r)°+ Y k(1 —Re)(Yx —yR)2>
k=1

n—1 —
= (8.26)
1 (& 2 m—1 ,
= — akRk(Yk—yR) +0)=—-—s".
n—1 p n—1
Hence,
—1
E(siyp) = mfl s (8.27)

This is not an unbiased estimator of the population variance. The population
variance is underestimated. One gets the impression that estimators are very precise,
whereas in reality this is not the case. So someone analyzing imputed data runs a
substantial risk of drawing wrong conclusions from the data. This risk is larger as there
are more imputed values.

Imputation has an impact also on the correlation between variables. Suppose the
variable Y is imputed using imputation of the mean. And suppose the variable X is
completely observed for the sample. It can be shown that in this case the correlation
after imputation is equal to

m—1

'IMPX,Y = Txy (8.28)

n—1

where ryyis the correlation in the data set before imputation. So, the more observations
are missing for Y, the smaller the correlation coefficient will be. Researchers not aware
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of their data set having been imputed will obtain the impression that relationships
between variables are weaker than they are in reality. In addition, there is a risk of
drawing wrong conclusions.

8.3.4 Effects of Random Imputation

The effects of imputation mentioned in the previous section are less severe when
random imputation is applied. Random imputation means that a missing value is
replaced by a value that is randomly chosen from the available values for the variable.
Usually, synthetic values are selected by means of drawing values without replace-
ment. This is, of course, impossible if there are more missing values than nonmissing
values.

The estimator

Yimp = e (1= (8.29)
n
is now composed of two random terms: the mean of the m2 “real” observations and the
mean of the n — m “synthetic” observations.

Given the sample, the expected value of the mean of the synthetic values over the
imputation distribution is equal to the mean of the real values. If applied to expres-
sion (8.23), the conclusion can be drawn that the expected value of the mean after
imputation is equal to the expected value of the mean before imputation. Imputation
does not change the expected value of the estimator.

The computation of the variance of the estimator is now a little bit more complex,
because the second term in expression (8.24) is not any more equal to zero. The
variance turns out to be equal to

1= (m/N) n (n—m)(2m—n)
m n’m

V() = s2. (8.30)

Apparently, random imputation increases the variance of the estimator. The
variance consists of two components: the first one is contributed by the sampling
design and the second one is contributed by the imputation mechanism.

What happens if aresearcher is unaware of the fact that random imputation has been
carried out? He computes the sample variance s* using the complete data set, and
he assumes this is an unbiased estimator of the population variance S°. This assumption
is wrong in case of imputation of the mean. In case of random imputation, it can be
shown that

2m—n
E)=81+—"—=). 8.31
=501 220 o
So, s2is not an unbiased estimator of S2, but for large samples the bias will be small.
Therefore, s* is an asymptotically unbiased estimator.
It should be noted that random imputation affects the value of correlation co-
efficients. These values will generally be too low when computed using the imputed
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data set. This is caused by the fact that imputed values are randomly selected without
taking into account possibly existing relationships with other variables. This phe-
nomenon can also be encountered when applying other single-imputation techniques.

8.3.5 Multiple Imputation

Single imputation can be seen as a technique that solves the missing data problem by
filling the holes in the data set by plausible values. When analyzing data, one is not
bothered any more by missing data. This is clearly an advantage. However, there are
also disadvantages. When a single-imputation technique is applied in a naive way, it
may create more problems than it solves. It was shown in the previous section that
single imputation may distort the distribution of an estimator. Therefore, there is a
serious risk of drawing wrong conclusions from the data set. More details about this
aspect of imputation can be found in, for example, Little and Rubin (1987).

To address the problems caused by single-imputation techniques, Rubin (1987)
proposed multiple imputation, a technique in which each missing value is replaced by
m > 1 synthetic values. Typically, m is small, say 3—10. This leads to 7 complete data
sets. Each data set is analyzed by using standard analysis techniques. For each data set,
an estimate of a population parameter of interest is obtained. The m estimates for a
parameter are combined to produce estimates and confidence intervals that incorpo-
rate missing data uncertainty.

Rubin (1987) developed his multiple-imputation technique primarily for solving
the missing data problem in large public use sample survey data files and censuses files.
With the advent of new computational methods and software for multiple imputation,
this technique has become increasingly attractive for researchers in other sciences
confronted by missing data (see also Schafer, 1997).

Multiple imputation assumes some kind of model. This model is used to generate
synthetic values. Let Y be the variable of which some values are missing, and let Xj,
X5, ..., X, be variables that have been observed completely. The imputation model for
a quantitative variable Y will often be some regression model like

)4
Yi=Bo+ Y BXi+Ex. (8.32)
Jj=1

Aloglinear model can be used for qualitative variables. For the sake of convenience,
this overview will consider only quantitative variables.

The effects of imputation depend on the missing data mechanism that has generated
the missing values. The most convenient situation is missing completely at random.
This means that missingness happens completely at random. It is not related to any
factor, known or unknown. Missingness does not cause a bias in estimates for Y. In
this case, multiple synthetic drawings can be generated by means of applying random
imputation a number of times. It is also possible to use imputation of the mean if the
variation is modeled properly. For example, this can be done by adding a random
component to the mean that has been drawn from a normal distribution with the proper
variance.
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MCAR is usually not a very realistic assumption. The next best assumption is that
data are missing at random. This means that missingness depends on one or more
auxiliary variables, but these variables have been observed completely. A model such
as (8.32) can be used in this case. Sets of synthetic values are generated using the
regression model to predict the missing values. To give the imputed values the proper
variance, usually arandom component is added to the predicted value. This component
is drawn from a distribution with the proper variance.

The worst case is the situation in which data is not missing at random. Then
missingness depends on unobserved variables, and therefore no valid imputation
model can be built using the available data. The distribution of the estimators cannot be
repaired by applying multiple imputation. There still is a risk of drawing wrong
conclusions from the analysis.

Rubin (1987) describes how estimates for the multiple data sets can be combined
into one proper estimate. This is summarized here, concentrating on estimating the
population mean.

Let y; denote the estimator of data set j (for j=1, 2, ..., m), and let S(y;) be the
associated standard error. The overall estimator for the population mean of Y is now
defined by

Ymr =

Zyj. (8.33)

The variance of this estimator is equal to

B

~ 1 m - 1 1 m B .
Vo) = VO + (140 ) oy D G-n) 834
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The first term in expression (8.34) can be seen as the within imputation variance (the
variation within the data sets) and the second one as the between imputation variance
(the variation caused by differences in imputed values).

Rubin (1987) claims that the number of imputations per missing value should not
exceed m = 10. He shows that the relative increase in variance of an estimator based on
m imputations to the one based on an infinite number of imputations is approximately

equal to
A
1+ — 8.35
(1+2) (8.35)

where A is the rate of missing information. For example, with 50% missing information
(A =0.5), the relative increase in variance of an estimator based on m = 5 imputations
equals 1.1. This means that the standard error will only be 5% larger.

Multiple imputation can be a useful tool for handling the problems caused by
missing data, but if it is not done carefully, it is potentially dangerous. If an
imputation does not model the missing data mechanism properly, analysis of the
imputed data sets can be seriously flawed. This means that used models should
always be checked.
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8.4 DATA EDITING STRATEGIES

Data editing was mainly a manual activity in the days of traditional survey processing.
Domain errors were identified by visually scanning the answers to the questions one at
a time. Consistency errors were typically caught only when they involved a small
number of questions on the same page or on adjacent pages. Route errors were found
by following the route instructions and by noting deviations. In general, manual
editing could identify only a limited number of problems in the data set.

The data editing process was greatly facilitated by the introduction of computers.
Initially, these were mainframe computers, which permitted only batch-wise editing.
Tailor-made editing programs, usually written in COBOL or FORTRAN, were de-
signed for each survey. Later, general-purpose batch editing programs were developed
and extensively used. These programs performed extensive checks on each record
and generated printed lists of error reports by case ID. The error lists were then sent to
subject-matter experts or clerical staff, who attempted to manually reconcile these
errors. This staff then prepared correction forms, which were keyed to update the data
file, and the process was repeated.

Batch computer editing of data sets improved the data editing process because
it permitted a greater number and more complex error checks. Thus, more data errors
could be identified. However, the cycle of batch-wise checking and manual correction
was proved to be labor-intensive, time consuming, and costly.

Statistics Netherlands carried out a Data Editing Research Project in 1984 (see
Bethlehem, 1997). A careful evaluation of data editing activities was conducted
in a number of different surveys: large and small surveys, and social and economic
surveys. Although considerable differences were observed between surveys, still
some general characteristics could be identified. The traditional data editing process is
summarized in Fig. 8.3.

After collection of the questionnaire forms, subject-matter specialists checked
them for completeness. If necessary and possible, skipped questions were answered
and obvious errors were corrected on the forms. Sometimes, forms were manually
copied to a new form to allow the subsequent step of data entry. Next, the forms were
transferred to the data entry department. Data typists entered the data in the computer
at high speed without error checking. The computer was a dedicated system for data
entry. After data entry, the files were transferred to the mainframe computer system.
On the mainframe, an error detection program was run. Detected errors were printed
on a list. The lists with errors were sent to the subject-matter department. Specialists
investigated the error messages, consulted corresponding forms, and corrected errors
on the lists. Lists with corrections were sent to the data entry department, and data
typists entered the corrections in the data entry computer. The file with corrections was
transferred to the mainframe computer. Corrected records and already present correct
records were merged. The cycle of batch-wise error detection and manual correction
was repeated until the number of detected errors was considered to be sufficiently
small.

After the last step of the editing process, the result was a “clean” data set, which
could be used for tabulation and analysis. Detailed investigation of this process for the
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Figure 8.3 The traditional data editing process.

four selected surveys leads to a number of conclusions. These conclusions are
summarized below.

First, various people from different departments were involved. Many people dealt
with the information: respondents filled-in forms, subject-matter specialists checked
forms and corrected errors, data typists entered data in the computer, and programmers
from the computer department constructed editing programs. The transfer of material
from one person/department to another could be a source of error, misunderstanding,
and delay.

Second, different computer systems were involved. Most data entry was carried out
on Philips P7000 minicomputer systems, and data editing programs ran on a CDC
Cyber 855 mainframe. Furthermore, there was a variety of desktop (running under
MS-DOS) and other systems. About 300 interviewers had been equipped with laptops
running under CP/M. Transfer of files from one system to another caused delay, and
incorrect specification and documentation could produce errors.

Third, not all activities were aimed at quality improvement. A lot of time was spent
juston preparing forms for data entry, not on correcting errors. Subject-matter specialists
had to clean up forms to avoid problems during data entry. The most striking example
was manually assigning a code for “unknown” to unanswered questions.

Another characteristic of the process is that it was going through macrocycles. The
whole batch of data was going through cycles: from one department to another, and
from computer system to another. The cycle of data entry, automatic checking, and
manual correction was in many cases repeated three times or more. Due to these
macrocycles, data processing was very time consuming.
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Finally, the nature of the data (i.e., the metadata) had to be specified in nearly every
step of the data editing process. Although essentially the same, the “metadata
language” was completely different for every department or computer system in-
volved. The questionnaire itself was the first specification. The next one was with
respect to data entry. Then, automatic checking program required another specifica-
tion of the data. For tabulation and analysis, for example, using the statistical package
SPSS, again another specification was needed. All specifications came down to a
description of variables, valid answers, routing, and possibly valid relations.

With the emergence of microcomputers in the early 1980s, completely new methods
of data editing became possible. One of these approaches has been called computer-
assisted data input (CADI). The same process has also been called computer-assisted
data entry (CADE). CADI provides an interactive and intelligent environment for
combined data entry and data editing of paper forms by subject-matter specialists or
clerical staff. Data can be processed in two ways: either in combination with data entry or
as a separate step. In the first approach, the subject-matter employees process the survey
forms with a microcomputer one by one. They enter the data “heads up,” which means
that they tend to watch the computer screen as they make entries. After completion of
entry for a form, they activate the check options to test for all kinds of errors (omission,
domain, consistency, and route errors). Detected errors are displayed and explained on
the screen. Staff can then correct the errors by consulting the form or by contacting the
supplier of the information. After the elimination of all visible errors, a “clean” record,
that is, one that satisfies all check edit criteria, is written to file. If staff members do not
succeed in producing a clean record, they can write it to a separate file of problem
records. Specialists can later deal with these difficult cases with the same CADI system.
This approach of combining capture and editing is efficient for surveys with relatively
small samples but complex questionnaires.

In the second approach, clerical staff (data typists or entry specialists) enter data
through the CADI system “heads down,” that is, without much error checking. When
this entry step is complete, the CADI system checks all the records in a batch run and
flags the cases with errors. Then subject-matter specialists take over, examine the
flagged records and fields one by one on the computer screen, and try to reconcile the
detected errors. This approach works best for surveys with large samples and simple
questionnaires.

The second advance in data editing occurred with the development of computer-
assisted interviewing (CAI). It replaced the paper questionnaire with a computer
program that was in control of the interviewing process. It began in the 1970s with
computer-assisted telephone interviewing (CATI) using minicomputers. The emer-
gence of small, portable computers in the 1980s made computer-assisted personal
interviewing (CAPI) possible. Computer-assisted interviewing is being increasingly
used in social and demographic surveys. CAI offers three major advantages over
traditional paper and pencil interviewing (PAPI):

e Computer-assisted interviewing integrates three steps in the survey process: data
collection, data entry, and data editing. Since interviewers use computers to
record the answers to the questions, they take care of data entry during the
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interview. Since most of the data editing is carried out during the interview, a
separate data editing step has become superfluous in many surveys. After all
interviewer files have been combined into one data file, the information is clean
and therefore ready for further processing. Thus, computer-assisted interviewing
reduces the length and the cost of the survey process.

¢ The interview software takes care of selecting the proper next question to ask and
ensuring that entries are within their domains. Hence, routing and range errors
are largely eliminated during data entry. This also reduces the burden on the
interviewers, since they need not worry about routing from item to item and can
concentrate on getting the answers to the questions.

e With CAl it becomes possible to carry out consistency checking during the
interview. Since both the interviewer and the respondent are available when data
inconsistencies are detected, they can immediately reconcile them. In this way,
computer-assisted interviewing should produce more consistent and accurate
data, correcting errors in the survey office after the interview is over.

Computer-assisted interviewing has been shown to increase the efficiency of the
survey operations and the quality of the results. For more information about these
aspects, see Couper and Nicholls (1998).

The use of computer-assisted interviewing techniques makes it possible to move
data editing to the front of the statistical process. The interviewers can take over many
of the data editing tasks. This raises the question as to whether all data editing should be
carried out during the interview, thereby avoiding a separate data editing step. There is
much to say in favor of this approach. In his famous book on quality control, Deming
(1986) strongly advises against dependence on mass inspection of the final product. It
is ineffective and costly. Instead, quality control should be built into the production
process and be carried out at the first opportunity. For computer-assisted interviewing,
that first opportunity occurs in the interview itself. Powerful interviewing software,
such as the Blaise system, can perform checks on data as entered and report any
detected errors. Both the interviewer and the respondent are available, so together they
can correct any problem. Experience has shown that many errors are detected and
resolved in this way. Data editing during the interview has been shown to produce
better data than editing after data collection.

Data editing during the interview has also some drawbacks. First, checks built into
the interviewing program can be very complex, resulting in error message that are
difficult for the interviewers and respondents to understand. Correction of some
detected errors may prove to be a very difficult task. The developer of the interviewing
program has to recognize that the interviewer is not a subject-matter specialist. Only
errors that the interviewer can easily handle should be made part of the interview.

Second, having many checks in the interviewing program will increase the length of
the interview as the interviewer is stopped to correct each detected error. Interviews
should be kept as short as possible. If longer interviews, the respondent may lose
interest, with a possible loss of data quality, and this may offset quality gains from
additional editing.
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Third, not all forms of data editing are possible during the interview. When com-
parisons of entered data are necessary with information from other sources, such
as large database systems, laptop computers used in CAPI may not have sufficient
facilities and capacities to use them.

Fourth, improperly specified checks can completely obstruct the completion of an
interview. The interviewing software will not accept entries that violate programmed
checks, and if the respondent claims that the answers are correct, there can be an
impasse. Fortunately, most interviewing software has ways to avoid these deadlocks.
One solution is to permit both hard checks and soft checks.

Hard checks designate errors that must be corrected. The interviewer is permitted to
continue the interview until changes have been made that no longer violate the check.
Soft checks result in warnings of situations that are highly unlikely although possible.
If the respondent insists that the answer is correct, the interviewer can accept the
answer and continue. Soft checks must be used wherever there is arisk of an impasse in
the interview. It is also possible to combine soft and hard checks. A soft check with
somewhat relaxed conditions is used to detect suspicious cases, whereas the same type
of check with more strict conditions is specified as a hard check to detect the real errors.

Despite the drawbacks mentioned, the possible extra burden on the interviewer, and
the limitations imposed by hardware, there are time, money, and quality considera-
tions generally encouraging as much data editing as possible in the interview. Only
editing not possible during the interview should be carried out after data collection.
This requires a careful thought during the design stage in the development of both the
interview and the postinterview editing instruments.

Performing data editing during a computer-assisted interview is greatly facilitated
when the interviewing software allows specification of powerful checks in an easy and
user-friendly way. Although checks can be hard coded for each survey in standard
programming languages, this is a costly, time-consuming, and error-prone task. Many
CALI software packages now offer very powerful tools for microediting, permitting
easy specification for a large number of checks, including those involving complex
relationships among many questions. Editing during CAlis now extensively used both
in government and private sector surveys.

Whether microediting is carried out during or after the interview, the entire process
may have major disadvantages, especially when carried to extremes. Little and Smith
(1987) have mentioned the risk of overediting. Powerful editing software offers ample
means for almost any check one can think of, and itis sometimes assumed that the more
checks one carries out, the more errors one will correct. But there are risks and costs.

First, the use of too many checks may cause problems in interviewing or postinter-
view data correction, especially if the checks are not carefully designed and thor-
oughly tested prior to use. Contradictory checks may cause virtually all records to be
rejected, defeating the purpose of editing. Redundant checks may produce duplicate or
superfluous error messages slowing the work. And checks for data errors that have
little impact on the quality of published estimates may generate work that does not
contribute to the quality of the finished product.

Second, since data editing activities make up a large part of the total survey costs,
their cost effectiveness has to be carefully evaluated at a time when many survey
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agencies face budget reductions. Large numbers of microedits that require individual
corrections will increase the costs of a survey. Every attempt should be made to
minimize data editing activities so that they do not affect the quality of the survey
results.

Third, it must be recognized that not all data problems can be detected and repaired
with microediting. One such problem is that of outliers. An outlier is a value of a
variable that is within the domain of valid answers to a question butis highly unusual or
improbable when compared with the distribution of all valid values. An outlier can be
detected only if the distribution of all values is available. Macroediting is required
for this.

The remaining sections of this chapter describe three alternative approaches to
editing that address some of the limitations of traditional microediting. In some
situations, they could replace microediting. In other situations, they could be carried
out in combination with traditional microediting or with each other. They are

o Automatic editing attempts to automate microediting. Since human intervention
is eliminated, costs are reduced and timeliness is increased.

e Selective editing attempts to minimize the number of edits in microediting. Only
edits having an impact on the survey results are performed.

e Macroediting offers a top—down approach. Edits are carried out on aggregated
cases rather than on individual records. Microediting of individual records is
invoked only if problems are identified by macroedits.

A more detailed description of these data editing approaches can be found in
Bethlehem and Van de Pol (1998).

8.4.1 Automatic Editing

Automatic editing is a process in which records are checked and corrected automati-
cally by a software package. Since no human activities are involved, this approach is
fast and cheap. For automatic editing, the usual two stages of editing, error detection
and error correction, are expanded to three:

e Error Detection. As usual, the software detects errors or inconsistencies by
reviewing each case using the prespecified edit rules.

o Determining the Variables Causing the Error. If an edit detects an error that
involves several variables, the system must next determine which variable caused
the error. Several strategies have been developed and implemented to solve this
problem.

e Error Correction. Once the variable causing the error has been identified, its
value must be changed so that the new value no longer causes an error message.

There is no straightforward way to determine which of the several variables causes
a consistency error. One obvious criterion is the number of inconsistencies in which
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that variable is involved. If variable A is related to three other variables B, C, and D, an
erroneous value of A may generate three inconsistencies with B, C, and D. If B, C, and
D are involved in no other edit failures, A seems the likely culprit. However, it could be
noted that no other edit rules have been specified for B, C, and D. Then, also B, C, and D
could be candidates for correction.

Edit rules have to be specified to be able to detect errors. Such rules are
mathematical expressions that describe relationships between variables. For quanti-
tative variables, such relationships usually take the form of equalities or inequalities.
Suppose, three variables are measured in a business survey: turnover, costs, and profit.
By definition, the first two variables only assume nonnegative values. The third vari-
able may be negative. The following edit rules may apply to these variables:

Profit + Costs = Turnover
Costs > 0.6 X Turnover

Edit rules for qualitative variables often take the form of IF-THEN-ELSE con-
structions. An example for two variables, age and marital status, is

IF Age < 15 THEN MarStat = Unmarried

If arecord satisfies all specified edit rules, it is considered correct. If at least one edit
rule is violated, it is considered incorrect and will need further treatment. As an
example, Table 8.2 contains two records that have to be checked using the quantitative
edit rules mentioned above.

The variables in record 1 satisfy both edit rules. Therefore, the record is considered
correct. There is something wrong with record 2 as profit and costs do not add up to
turnover. Note that the edit rules would be satisfied if the value 755 is replaced with 75.
So, the error may have been caused by a typing error.

The Fellegi—Holt methodology takes a more sophisticated approach (Fellegi and
Holt, 1976; United Nations, 1994). To reduce dependence on the number of checks
defined, the Fellegi—-Holt methodology performs for each variable an analysis of the
pertinent edit checks. Logically superfluous checks are removed and all implied
checks that can be logically derived from the checks in question are added. Records are
then processed as a whole, and not on a variable-by-variable basis, with all consistency

Table 8.2 Examples of Two Records to be Checked

Record Profit Costs Turnover

1 30 70 100
755 125 200
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checks in place to avoid the introduction of new errors as identified ones are resolved.
The smallest possible set of imputable fields is located, with which a record can be
made consistent with all checks.

In the Fellegi—Holt methodology, erroneous values are often corrected with hot-
deck imputation. Hot-deck imputation employs values copied from a similar donor
record (another case) not violating any edit rules. When the definition of “similar”
is very strict or when the receptor record is unique, it may be impossible to find a
similar donor record. In this situation, a simple default imputation procedure is applied
instead.

The Fellegi—-Holt methodology has been programmed and put into practice by
several survey agencies. For an overview of software and algorithms, see Bethlehem
(1997). All these programs identify values that are likely to be incorrect and impute
new values. In practical applications, many ties occur, that is, several variables are
equally likely to be in error. With one check and two inconsistent values, there is a 50%
chance that the wrong variable will be changed, an undesirably high percentage of
erroneous corrections. Ties are less frequent when more edit rules are specified, but
the Fellegi—Holt methodology makes more checks costly as more computing re-
sources are required. When checks are interrelated, there can be hundreds of thousands
of implied checks, using a vast amount of computing time for their calculation.
Nevertheless, a large number of original checks are advisable to avoid ties.

The Fellegi—Holt methodology is based on the idea that usually the number of errors
in a record will be very small. Consequently, as few changes as possible should be
made in a record to remove errors. So, if arecord can be made to satisfy all edit rules by
making either small changes in two values or a large change in one field, the latter
should be preferred. This also ensures that large errors will be detected and corrected.

Suppose, the Fellegi—Holt methodology is applied to record 2 in Table 8.2. To
question is whether the data can be made to satisfy all edit rules by changing just one
value. There are three possibilities:

e Change the Value of the Variable Costs. To satisfy the first edit rule, the value of
Costs must be equal to —555. However, this is not possible as it would violate the
rule that the value of Costs must be nonnegative.

o Change the Value of the Variable Turnover. To satisfy the first edit rule, the value
of Turnover must be made equal to 880. However, this is not possible, as it would
violate the second edit rule that costs must be larger than 60% of the turnover.

o Change the Value of the Variable Profit. To satisfy the first edit rule, the value of
Profit must be made equal to 75. This does not affect the second rule, which was
already satisfied. So, this change will lead to a situation in which all edit rules are
satisfied. This is the preferred correction.

The most likely correct value could be computed in the example above. The
situation is not always that simple in practice. Usually, some imputation technique is
used to compute a new value. See Section 8.3 for an overview of some imputation
techniques. It may happen that after imputation (e.g., imputation of the mean) the
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records still do not satisfy all edit rules. This calls for another round of changes. One
should be careful to change only imputed values and “real” values.

Algorithms for automatic imputation can be very complex. This is because they
have to solve two problems simultaneously. First, the algorithm must see to it that
a situation is created in which all edit rules are satisfied. Second, this must be
accomplished with as few changes as possible.

8.4.2 Selective Editing

The implicit assumption of microediting is that every record receives the same
treatment and the same effort. This approach may not be appropriate or cost-effective
in business surveys, since not every record has the same effect on computed estimates
of the population. Some large firms may make substantially larger contributions to the
value of estimates than others.

Instead of conserving editing resources by fully automating the process, they may
be conserved by focusing the process on correcting only the most necessary errors.
Necessary errors are those that have a noticeable effect on published figures. This
approach is called selective editing.

To establish the effect of data editing on population estimates, one can compare
estimates based on unedited data with estimates based on edited data. Boucher
(1991) and Lindell (1997) did this and found that for each variable studied, 50-80%
of the corrections had virtually no effect on the estimate of the grand total. Similar
results were obtained in an investigation carried out by Van de Pol and Molenaar
(1995) on the effects of editing on the Dutch Annual Construction Survey. Research
in this area shows that only a few edits have a substantial impact on the final figures.
Therefore, data editing efforts can be reduced by identifying those edits. One way to
implement this approach is to use a criterion that splits the data set into a critical and a
noncritical stream. The critical stream contains records that have a high risk of
containing influential errors and therefore requires thorough microediting. Records
in the noncritical stream could remain unedited or could be limited to automatic
editing.

The basic question of selective editing is: is it possible to find a criterion to split the
data set into a critical and a noncritical stream? At first sight, one might suggest that
only records of large firms will contain influential errors. However, Van de Pol and
Molenaar (1995) show that this is not the case. Both large and small firms can generate
influential errors. A more sophisticated criterion is needed than just the size of the firm.
For selective editing to be effective and efficient, powerful and yet practical criteria
must be available. This involves taking account of inclusion probabilities, nonre-
sponse adjustments, size of relevant subpopulations, relative importance of record,
and most important of all, a benchmark to determine whether an observed quantity
may be in error. Examples of such benchmarks could be deviations from the sample
mean (or median) for that quantity.

Hidiroglou and Berthelot (1986) probably were the first to use a score function to
select records with influential errors in business surveys. Their approach was followed
by Lindell (1997) and Engstrom (1995). Van de Pol and Molenaar (1995) use a
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somewhat modified approach. They concentrate on edits based on ratios. Let
Rijx = Yi /Yy (8.36)

be the ratio of the values of two variables j and & for firm i. This ratio is compared with
the median value My of all the ratios, by computing the distance

R My
D :Max{ i f‘} (8.37)
Mji Rijic
or, equivalently,
Dj = ellog(Ri) —log(Mj)| (8.38)

A cutoff criterion may be used to set D to zero when it is not suspiciously high. Next,
a risk index is computed as a weighted sum of the distances for all edits in a record:
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The number of ratios involved is denoted Q. The quantity /; denotes the relative
importance of firm i. It may be included to ensure that more important firms get a higher
edit priority than small firms. The inclusion probability 7r; is determined by the
sampling design. The weight W is the reciprocal of the estimated standard deviation
of the log(Dy.).

This risk index can be transformed into an OK index by carrying out the
transformation

100 RI;

OK,; = 100— ——————.
' Med(RI;) + RI;

(8.40)
Low values of the OK index indicate a record is not OK and is in need for further
treatment. The transformation causes the values of the OK index to be more or less
uniformly distributed over the interval [0, 100]. This has the advantage of a simple
relationship between the criterion value and the amount of work to be done: the
decision to microedit records with an OK index value below a certain value ¢ means
that approximately ¢% of the records are in the critical stream.

The OK index can be used to order the records from the lowest OK index value to the
highest. If microediting is carried out in this sequence, the most influential errors will
be taken care of first. The question arises when to stop editing records. Latouche and
Berthelot (1992), Engstrom (1995), and Van de Pol and Molenaar (1995) discuss
several stop criteria. Van de Pol and Molenaar (1995) suggest that editing records with
an OK index value under 50 would have little effect on the quality of estimates. Hence,
it would generally be sufficient to edit only half of the records.

8.4.3 Macroediting

Macroediting provides a solution to some of the data problems left unsolved by
microediting. It can address data problems at the aggregate level. The types of edit
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rules employed by macroediting are similar to those of microediting, but the difference
is that macroedit checks involve aggregated quantities. Two general methods of
macroediting are described here.

The first method is sometimes called the aggregation method (see Granquist, 1990;
United Nations, 1994). It formalizes and systematizes what statistical agencies
routinely do before publishing statistical tables. They compare the current figures
with those of the previous periods to see if they appear plausible. Only when an unusual
value is observed at the aggregate level, the individual records contributing to the
unusual quantity are edited at the microlevel. The advantage of this form of editing is
that it concentrates on editing activities at those points that have an impact on the final
results of the survey. No superfluous microediting activities are carried out on records
that do not produce unusual values at the aggregate level. A disadvantage is that results
are bent in the direction of one’s expectations. There is also arisk that undetected errors
may introduce undetected biases.

A second method of macroediting is called the distribution method. The distribu-
tion of variables is computed using the available data, and the individual values are
compared with the distribution. Measures of location, spread, and covariation are
computed. Records containing values that appear unusual or atypical in their distri-
butions are candidates for further inspection and possible editing.

Many macroediting techniques analyze the behavior of a single observation in the
distribution of all observations. Exploratory data analysis (EDA) is a field of statistics
for analyzing distributions of variables. Tukey (1977) advocates using graphical
techniques as they provide more insight into the behavior of variables than numerical
techniques do. Many of these techniques can be applied directly to macroediting
and are capable of revealing unusual and unexpected properties that might not be
discovered through numerical inspection and analysis. There are two main groups of
techniques. The first group analyzes the distribution of a single variable and con-
centrates on detection of outliers. This can be done by means of one-way scatter plots,
histograms, and box plots.

There are also numerical ways to characterize the distribution and to search for
outliers. Obvious quantities to compute are the mean y and standard deviation s of the
observations. If the underlying distribution is normal, approximately 95% of the
values must lie in the interval

(3—1.96 x5, y+1.96 % s). (8.41)

Outliers can now be defined as values outside one of these intervals. This simple
technique has two important drawbacks:

e The assumptions are only satisfied if the underlying distribution is approxi-
mately normal. Hence, this technique should be used only if a graphical method
has shown that this model assumption is not unrealistic.

¢ Traditional statistical analysis is very sensitive to outliers. A single outlier can
have a large effect on the values of mean and standard deviation, and may
therefore obscure the detection of outliers. Hence, this numeric technique should
be used only after graphical methods have justified assumptions of normality.
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Numeric techniques based on the median and quartiles of the distribution are
less vulnerable to extreme values. For example, the box plot could be applied in a
numerical way. Values smaller than the lower adjacent value or larger than the upper
adjacent value can be identified as outliers. See also the description of the box plot in
Section 12.4.

The second group of macroediting techniques analyzes the relationship between two
variables and tries to find records with unusual combinations of values. The obvious
graphical technique to use is the two-dimensional scatter plot. If points in a scatter plot
show a clear pattern, this indicates a certain relationship between the variables. The
simplest form of relationship is a linear relationship. In this case, all points will lie
approximately on a straight line. When such a relationship seems present, it is important
to look for points not following the pattern. They may indicate errors in the data.

EXERCISES

8.1 Which of the sources of error below does not belong to the category of
observation errors?

a. Measurement error
b. Overcoverage

c. Undercoverage

d. Processing error

8.2 Memory effects occur if respondents forget to report certain events or when they
make errors about the date of occurrence of events. To which source of errors do
these memory effects belong?

a. Estimation error

b. Undercoverage

¢. Measurement error
d. Nonobservation error

8.3 A CADI system reports many errors for a form. It turns out that one variable is
involved in all these errors. What kind of action should be undertaken?

a. The corresponding record should be removed from the data file.
b. The variable should be removed from the data file.

c. Correct the value of this variable in such a way that the error messages
disappear.

d. Impute a value for the variable that makes the error message disappear.

8.4 Which of the sources of error below belongs to the category “sampling error?”

a. Selection error
b. Overcoverage
c. Nonresponse

d. Undercoverage
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8.5 The general imputation model can be written as

8.6

8.7

P
Yi=Bo+ > BX;+E;.
=1
Which values of the parameters hajve to be used to obtain imputation of the
mean as special case?
a. Take all B; and E; equal to 0, except B,.
b. Take all B; equal to 0, except By.
c. Take all B; equal to 0.
d. Just take all X;; equal to 0.

The ministry of agriculture in a country wants to have more information about
the manure production by pigs on pig farms. The target variable is the yearly
manure production per farm. Among other variables recorded are the number of
pigs per farm and the region of the country (north or south). The table below
contains part of the data:

Farm Manure Production Region Number of Pigs
1 295,260 North 220
2 259,935 North 195
3 294,593 North 221
4 253,604 North 188
5 ? North 208
6 520,534 South 398
7 ? South 435
8 559,855 South 375
9 574,528 South 416
10 561,865 South 405

The value of manure production is missing in two records due to item
nonresponse. Describe six imputation techniques for replacing the missing
value by a synthetic value. Compute for each technique which values are
obtained. Explain the consequences of estimating the mean manure production
per region. Indicate whether these consequences are acceptable.

It is assumed that there is a relationship between the energy consumption of a
house and its total floor space. A simple random sample (with equal probabili-
ties and without replacement) of four houses has been selected. The table below
contains the collected data:

Electricity
Floor Gas Consumption Consumption
House space (m?) (m>) (kWh)
1 116 1200 1715
2 81 950 1465
3 73 650 1020
4 99 1050 -
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Itis a known fact that the mean floor space of all houses in target population is
equal to 103.7 m”.

a. Compute the value of the ratio estimator for the mean gas consumption in the
population.

b. Apply regression imputation to compute the missing value of electricity
consumption of house 4.

Four variables are measured in a business survey: income (I), personnel costs
(PC), other costs (OC), and profit (P). The following there rules are checked in
the data editing process:

e P=1-PC - 0OC
e PC > 15 x OC
e 150 < I < 250

Check the four records in the table below. Determine which rules are satisfied
and which are not. Correct the records using the Fellegi and Holt principle.

Record I PK OK W
1 260 110 70 50
2 180 80 50 50
3 210 160 20 30
4 240 50 40 30

A town council has carried out an income survey among its inhabitants. A

simple random sample of 1000 persons has been selected. The total size of the

population is 19,000. All selected persons have been asked to reveal their net

monthly income. From previous research it has become clear that the standard

deviation of the net monthly income is always equal to 600.

a. Assuming all sampled persons cooperate and provide their income data,
compute the standard error of the sample mean.

b. Suppose 10% of the sampled persons do not provide their income data. The
researcher solves this problem by imputing the mean.
Compute the standard error of the mean after imputation.
c¢. Suppose the sample standard deviation before imputation happens to be equal to
the population standard deviation (600). The imputed survey data set is made
available to a researcher. He does not know that imputation has been carried out.
If he computes the estimated standard error, what value would he get?
d. Which conclusion can be drawn from comparing the results of (a) and (c)?



CHAPTERO

The Nonresponse Problem

9.1 NONRESPONSE

Nonresponse occurs when elements in the selected sample that are also eligible for the
survey do not provide the requested information or that the provided information is not
usable. The problem of nonresponse is that the researcher does not have control any
more over the sample selection mechanism. Therefore, it becomes impossible to
compute unbiased estimates of population characteristics. Validity of inference about
the population is at stake.

This chapter gives a general introduction of the phenomenon of nonresponse as
one of the factors affecting the quality of survey based estimates. It is shown that
nonresponse has become an ever more serious problem in course of time. Attention is
paid to two approaches that provide insight in the possible consequences of nonre-
sponse: the follow-up survey and the basic question approach. These techniques can
also be successful in reducing a possible bias of estimates.

Adjustment weighting is one of the most important nonresponse correction
techniques. Chapter 10 will be devoted to adjustment weighting.

There are two types of nonresponse: unit nonresponse and item nonresponse.
Unit nonresponse occurs when a selected element does not provide any information at
all, thatis, the questionnaire form remains empty. Item nonresponse occurs when some
questions have been answered but no answer is obtained for some other, possibly
sensitive, questions. So, the questionnaire form has been partially completed.

In case of unit nonresponse, the realized sample size will be smaller than planned.
This will lead to increased variances of estimates and thus will lead to alower precision
of estimates. Valid estimates can still be obtained because computed confidence
intervals still have the proper confidence level.

To avoid the realized sample of being too small, the initial sample size should be
taken larger. For example, if a sample of 1000 elements is required and the expected
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response rate is in the order of 60%, the initial sample size should be approximately
1000/0.6 = 1667.

The main problem of nonresponse is that estimates of population characteristics
may be biased. This situation occurs if, due to nonresponse, some groups in the
population are over- or underrepresented in the sample, and these groups behave
differently with respect to the characteristics to be investigated. Then, nonresponse is
said to be selective.

It is likely that survey estimates are biased unless very convincing evidence to the
contrary is provided. Bethlehem and Kersten (1985) mention a number of Dutch
surveys were nonresponse was selective:

¢ A follow-up study of the Dutch Victimization Survey showed that people who
are afraid to be alone at home during night are less inclined to participate in the
survey.

e In the Dutch Housing Demand Survey, it turned out that people who refused to
participate have lesser housing demands than people who responded.

e For the Survey of Mobility of the Dutch Population, it was obvious that the more
mobile people were underrepresented among the respondents.

It will be shown in Section 9.3 that the amount of nonresponse is one of the factors
determining magnitude of the bias of estimates. The higher the nonresponse rate, the
larger will be the bias.

The effect of nonresponse is shown using a somewhat simplified example that uses
data from the Dutch Housing Demand Survey. Statistics Netherlands carried out this
survey in 1981. The initial sample size was 82,849. The number of respondents was
58,972, which comes down to a response rate of 71.2%.

To obtain more insight in the nonresponse, a follow-up survey was carried out
among the nonrespondents. Among other things they were also asked whether they
intended to move within 2 years. The results are summarized in Table 9.1.

Based on the response, the percentage of people with the intention to move within
2 years is 29.7%. However, for the complete sample (response and nonresponse) a
much lower percentage of 24.8% is obtained. The reason is clear: there is a substantial
difference between respondents and nonrespondents with respect to the intention to
move within 2 years. For nonrespondents, this is only 12.8%.

Nonresponse can have many causes. It is important to distinguish these causes.
To reduce nonresponse in the field, it is important to know what caused it. Moreover,

Table 9.1 Nonresponse in the Dutch Housing Demand Survey 1981

Do You Intend to Move

Within 2 Years? Response Nonresponse Total
Yes 17,515 3056 20,571
No 41,457 20,821 62,278

Total 58,972 23,877 82,849
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different types of nonresponse can have different effects on estimates and therefore
may require different treatment.

There are no unique ways to classify nonresponse by its cause. This makes it difficult
to compare the nonresponse for different surveys. Unfortunately, no standardized
classification exits. There have been some attempts. The American Association for
Public Opinion Research (AAPOR) has published a report with a comprehensive list
of definitions of possible survey outcomes (see AAPOR, 2000). However, these
definitions apply only to household surveys with one respondent per household and
samples selected by means of Random Digit Dialing (RDD). Lynn et al. (2002) have
proposed a more general classification. This classification will be used here.

The classification follows the possible courses of events when selected elements
are approached in an attempt to get cooperation in a survey (see Fig. 9.1).

Contact?

y

Nonresponse: Overcoverage
Noncontact

Eligible?

Overcoverage

Participates?

Nonresponse:

Yes Refusal

Nonresponse:

Yes Not-able

Response

Figure 9.1 Possible survey outcomes.
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First, contact must be established with the selected element. If this is not successful,
there are two possibilities:

e If the selected element belongs to the target population (i.e., it is eligible),
it should have been part of the sample. So, this is nonresponse due to
noncontact.

o If the selected element does not belong to the target population (i.e., it is not
eligible), it should not be included in the sample. This is an example of over-
coverage, and therefore it can be excluded from the survey.

In practical situations, it is often impossible to determine whether a noncontact
belongs to the target population or not. This makes it difficult to calculate response
rates.

If there is contact with a selected element, the next step is to establish whether it
belongs to the target population or not. If not, it can be dismissed as a case of over-
coverage.

In the case of contact with an eligible element, its cooperation is required to get the
answers to the questions. If the selected element refuses to cooperate, this is non-
response due to refusal.

If there is an eligible element, and it cooperates, there may be still problems if
this element is not able to provide the required information. Reasons for this
may be, for example, illness or language problems. This is a case of non-
response due to not-able.

Finally, if an eligible element wants to cooperate and is able to provide information,
then the result is response.

Figure 9.1 shows that there are three main causes for nonresponse: noncontact,
refusal, and not-able. Nonresponse need not be permanent. In case of a noncontact,
another contact attempt may be tried at some other moment. Some surveys may
undertake six contact attempts before the case is closed as a noncontact. Also, arefusal
may be temporary. If an interviewer calls at an inconvenient moment, it may be
possible to make an appointment for some other date. However, many refusals turn out
to be permanent. In case someone is not able to participate because of illness, an
interviewer may be successful after the patient has recovered.

9.2 RESPONSE RATES

Due to the negative impact nonresponse may have on the quality of survey results, the
response rate is considered to be an important indicator of the quality of a survey.
Response rates are frequently used to compare the quality of surveys and also to
explore the quality of a survey that is repeated over time.

Unfortunately, there is no standard definition of a response rate. Here a definition is
used that is similar to the one introduced by Lynn et al. (2002): The response rate is
defined as the proportion of eligible elements in the sample for which a questionnaire
has been completed.
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The initial sample size ny can be written as
ny = nnc + noc + NRe +INA + 7R, (9.1

where nyc denotes the number of noncontacts, 7o the number of noneligible elements
among the contacts (i.e., cases of overcoverage), nrr the number of refusers, nna the
number of not-able elements, and ng the number of respondents.

The response rate is defined as the number of respondents divided by the number of
ng eligible elements in the sample:

Response rate = R (9.2)
ng
There is a problem in computing the number of eligible elements. This problem
arises because the noncontacts consist of eligible noncontacts and noneligible non-
contacts. It is not known how many of these noncontacts are eligible. If it is assumed
that all noncontacts are eligible, then ng = nyc + #irg + Bna + Br. Consequently, the
response rate is given as follows:

nr
nNc + HRE 1 1INA 1 1R

Response rate = (9.3)

This might not be a realistic assumption. Another assumption is that the proportion
of eligibles among the noncontacts is equal to the proportion of eligibles among the
contacts. Then, the response rate would be equal to

MR
nc (R +nna +1R) / (noc + nrr + nxa + 1R )] 4 IRE 4 1Na + 1R
(9.4)

Response rate =

Response rate definitions like (9.3) or (9.4) can be used in a straightforward way for
surveys in which one person per household is selected. The situation is more
complicated when the survey population consists of households for which several
or all of its members have to provide information. Then, partial response may also
occur. It is possible to introduce response rates for households and for persons, and
these response rates would be different.

Another complication concerns self-administered surveys. These are surveys in
which there are no interviewers, like a mail survey or a Web survey. For such surveys, it
is very difficult to distinguish between different sources of nonresponse and also very
difficult to determine eligibility. The questionnaire is either returned or not returned.
The response rate simplifies to

nRr

Response rate = ———.
IR + NNR

(9.5)
The computation of the response rate is illustrated using data from the Survey on
Well-being of the Population. The results are listed in Table 9.2.
The category “not able” contains nonresponse because of illness, handicap, or
language problems. The extra nonresponse category “other nonresponse” contains
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Table 9.2 Fieldwork Results of the Survey on Well-Being
of the Population in 1998

Outcome Frequency
Overcoverage 129
Response 24,008
Noncontact 2,093
Refusal 8,918
Not-able 1,151
Other nonresponse 3,132
Total 39,431

cases that are not processed by interviewers due to workload problems. Also,
people who had moved and could not be found any more are included in this
category.

If it is assumed that all noncontacts are eligible, the response rate of this survey is

24,008

100 x
24,008 42093 + 8918 + 1151 + 3132

= 61.09%.

If it is assumed that the proportion of eligibles among contacts and noncontacts is
the same, the response rate is equal to
o 24,008
24,008+2093 x [(39,431-2093—129)/(39,431-2093)]+8918+1151+3132

100

=61.11%.

The differences in response rates are very small. This is due to small amount of
overcoverage.

Another aspect making the definition of response rate difficultis the use of sampling
designs with unequal selection probabilities. If, on the one hand, the response rate is
used as an indicator of the quality of survey outcomes, the sizes of the various outcome
categories should reflect the structure of the population. Consequently, observation
should be weighted with inverse selection probabilities. This leads to a so-called
weightedresponse rate.If, on the other hand, the response rate is used as an indicator of
the quality of the fieldwork, and more specifically the performance of interviewers, an
unweighted response rates may be more appropriate.

Response rates have declined over time in many countries. Table 9.2 contains
(unweighted) response rates for a number of surveys of Statistics Netherlands. The
definition of response rates is more or less the same for each survey. It is not easy to
explain differences in response rates between surveys. Response rates are determined
by a large number of factors such as the topic of the survey, the target population,
the time period, the length of the questionnaire, the quality of the interviewers, and the
organization of the fieldwork.

Itis clear from Table 9.3 that nonresponse is a considerable problem. The problem has
become more serious over the years. It also has an impact on the costs of the survey. It
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Table 9.3 Response Rates of Some Survey of Statistics Netherlands

Consumer Survey on

Labor Force Sentiments Well-Being Mobility Holiday
Year Survey Survey of the Population Survey Survey
1972 71
1973 88 77
1974 75 72
1975 86 78 86
1976 72 77¢ 87
1977 88 69 70 81
1978 64 67 78
1979 81 63 65° 69 74
1980 61 61 68 74
1981 83 65 68 74
1982 60 64 66 71
1983 81 63 58 66 74
1984 65¢ 64 69
1985 77 69 61 68
1986 71 59 59 66
1987 60 71 59
1988 59 68 55
1989 61 68 44 58
1990 61 68 47 55
1991 60 69 46 57
1992 58 69 45 57
1993 58 72 46 56
1994 59 70 52¢ 55
1995 60 67 54 54
1996 58 67 52 52
1997 56 57 63 50
1998 54 64 60
1999 56 62 60
2000 56 61 57
2001 58 64 60
2002 58 65
2003 59 65 62

“ Young only.
» Elderly only.
¢ Change in survey design.

takes more and more effort to obtain estimates with the precision as specified in the survey
design.

The Labor Force Survey is probably one of the most important surveys of
Statistics Netherlands. We will denote it by its Dutch acronym EBB (Enquéte
Beroepsbevolking). It has been exposed to many redesigns, the most important one
taking place in 1987. Then, several things were changed in the design:
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 Before 1986, data collection was carried out by means of a paper questionnaire
form (PAPI). In 1987, Statistics Netherlands changed to computer-assisted personal
interviewing (CAPI). The Blaise System was developed for this. The EBB became a
CAPI survey. Each month, approximately 400 interviewers equipped with laptops
visited 12,000 addresses.

e Until 1987, the fieldwork for the EBB was carried out by the municipal
employees. So, they were not professional interviewers. From 1987 onward,
the fieldwork was done by the professional interviewers.

e In 1987, the questionnaire of the EBB was completely redesigned.

Another important survey of Statistics Netherlands is the Survey of Well-being of
the Population, denoted by its Dutch acronym POLS (Permanent Onderzoek
Leefsituatie). It is a continuous survey in which every month a sample of 3000
persons is selected. The survey has a modular structure. There is a base module with
questions for all sampled persons and in addition there are a number of modules about
specific themes (such as employment situation, health, and justice). The sampled
persons are selected for one of the thematic modules; the base module is answered by
everyone. POLS exists only since 1997, before that all the modules were separate
surveys.

The Consumer Sentiments Survey (denoted by CCO) measures consumer confi-
dence (for instance in the economic situation). Since April 1986, it is performed
monthly by means of computer-assisted telephone interviewing (CATT). Before 1984,
the interview was conducted by pen and paper (PAPI). Every month 1500 households
are selected in a simple random sample. The Dutch telephone company (KPN)
adds telephone numbers to the selected addresses. Only listed numbers of fixed-
line telephones can be added. This is possible for about two-third of the addresses.
These phone numbers are then passed through to the CATI interviewers. Only one
person in every household is interviewed.

The response rates of these three major surveys are also graphically presented in
Fig. 9.2. From 1972 to 1983, response percentages of CCO and POLS show a
similar, falling trend. After 1983, the response percentage for CCO stabilized
whereas for POLS it kept on falling. It seems as though both rates start to converge in
1993 and show a similar pattern in the last 6 years. The two breakpoints coincide
with redesigns these surveys (CCO in 1984 and POLS in 1997). The redesign of
CCOin 1984 caused a temporary increase in response rates. The same is true for the
redesign of POLS in 1997.

The response percentage of the EBB was initially higher than that of the other two
surveys, but during 1983-1984 it decreased and reached the same level as the rates of
CCO and POLS. From 1987, response shows a more or less stable pattern. As
mentioned before, there was a comprehensive redesign of EBB in 1987.

Table 9.4 shows an international comparison of response rates. Stoop (2005) used
data from the European Social Surveys (ESS) for this. The ESS is a biannual survey of
values, attitudes, beliefs, and behavioral patterns in the context of a changing Europe.
Its major aim is to provide data to social scientists for both substantive and
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Figure 9.2 Response percentages for three Dutch surveys (EBB, POLS, and CCO).

Table 9.4 Response and Nonresponse Rates in the European Social Survey

Country Response Rate  Noncontact Rate  Refusal Rate  Not-Able Rate
Austria 60 12 26 2
Belgium 59 8 25 8
Czech Republic 43 12 20 5
Denmark 68 4 24 5
Finland 73 4 19 4
France 43 15 39 4
Germany 57 8 26 8
Greece 80 3 16 1
Hungary 70 7 14 9
Ireland 64 10 20 5
Israel 71 6 22 1
Italy 44 4 44 8
Luxemburg 44 11 45 0
The Netherlands 68 3 24 3
Norway 65 3 25 7
Poland 73 2 20 5
Portugal 69 3 26 1
Slovenia 71 5 17 5
Spain 53 11 32 3
Sweden 69 4 21 6
Switzerland 33 3 55 9
UK 56 5 33 5

Reprinted by permission of Ineke Stoop (2005), The Hunt for the Last Respondent.
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methodological studies and analyses. The first round of the ESS took place in
2002-2003. Data were collected in 22 European countries.

To improve comparability between countries, there was one centrally specified
sampling design for all participating countries. Furthermore, the response target
was 70% and the target for the noncontact rate was 3%. Central fieldwork
specifications saw to it that variations due to different procedures in the field
were minimized. Table 9.4 is taken from Stoop (2005) and shows the differences in
response rates.

There are large differences in response rates. Switzerland has a very low response
rate (33%), followed by the Czech Republic (43%), Italy, and Luxemburg (both 44%).
The highest response rate was obtained in Greece (80%), followed by Finland (73%),
Israel, and Slovenia (both 71%). Note that many countries were not able to reach the
target of 70% response.

The noncontact rates differ substantially across countries. The rates vary from 2%
in Poland to 15% in France.

The refusal rates vary from 14% in Hungary to 55% in Switzerland. The large
difference may partly be due to the differences in procedures for dealing with refusers.
For example, refusers were reapproached in Switzerland, United Kingdom, The
Netherlands, Finland, and Greece. This hardly ever happened in Luxemburg, Hungary,
and Italy.

The not-able rates vary from 0% in Luxemburg to 9% in Switzerland. These figures
seem to indicate that difference may be caused by differences in reporting than
differences in fieldwork results.

9.3 MODELS FOR NONRESPONSE

To be able to investigate the possible impact of nonresponse on estimators of
population characteristics, this phenomenon should be incorporated in sampling
theory. Two approaches are described. One is the random response model and the
other is the fixed response model. Both approaches are discussed in Lindstrom et al.
(1979), Kalsbeek (1980), Cassel et al. (1983), and Bethlehem and Kersten (1986).
Both models give insight in conditions under which nonresponse causes estimators to
be biased.

Itis also explored in this chapter what the effect of biased estimators will be on the
validity of confidence intervals.

9.3.1 The Fixed Response Model

The fixed response model assumes the population to consist of two mutually
exclusive and exhaustive strata: the response stratum and the nonresponse stratum.
If selected in the sample, elements in the response stratum will participate in the
survey with certainty and elements in the nonresponse stratum will not participate
with certainty.
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A set of response indicators
Ri,Ry,...,Ry (9.6)
is introduced, where R, =1 if the corresponding element & is part of the response
stratum and R, = 0 if element k belongs to the nonresponse stratum. So, if selected,

Ry =1 means response and R; =0 means nonresponse.
The size of the response stratum can be denoted by

N
Ng = Z Ry (9.7)
k=1
and the size of the nonresponse stratum can be denoted by
N
Nxg = > (1-Ry), (9.8)
k=1

where N =Nr + Nngr. The mean of the target variable Y in the response stratum is
equal to

YR =— Ry Y. (9.9)

Likewise, the mean of the target variable in the nonresponse stratum can be
written as

N

_ 1
Yng = — 1—Ry) Y. 9.10
NR = ;( ) (9.10)

The contrast K is introduced as the difference between the means of the target
variable in response stratum and the nonresponse stratum:

K = YR_YNR~ (911)

It as an indicator of the extent to which respondents and nonrespondents differ on
average.

Now suppose a simple random sample without replacement of size n is selected from
this population. This sample is denoted by the set of indicators a;, as, . . ., ay, where
a,, = 1 means that element k is selected in the sample and otherwise a; = 0. It is not
known beforehand to which of the two strata selected elements belong. There will be

N
nR = aRy (9.12)
k=1

elements from the response stratum and

N
mwr =Y ac(1-Ry), (9.13)
k=1

where n =ng + nngr.
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Only the values for the ngr selected elements in the response stratum become
available. The mean of these values is denoted by

1 N
Yp = — RiYy. 9.14
YR= EZI arRy Y (9.14)

Theoretically, it is possible that no observations at all become available. This
occurs when all sample elements happen to fall in the nonresponse stratum. In
practical situations, this event has a very small probability of happening. Therefore,
it will be ignored. Then, it can be shown that the expected value of the response mean
is equal to

EGy) = Yx. (9.15)

This is not surprising since the responding elements can be seen as a simple random
sample without replacement from the response stratum.

Of course, it is not the objective of the survey to estimate the mean of the response
stratum but the mean in the population. If both means have equal values, there is no
problem, but this is generally not the case. Therefore, estimator (9.14) will be biased
and this bias is given as

_ . Nnr,s -
B() = Yo —7 =~ (Ve —Yxe) = OK, (9.16)
where K is the contrast and Q = Nyr/N is the relative size of the nonresponse stratum.
From expression (9.16), it is clear that the bias is determined by two factors:

e The amount to which respondents and nonrespondents differ, on average, with
respect to the target variable. The more they differ, the larger the bias will be.

e The relative size of the nonresponse stratum. The bigger the group of non-
respondents is, the larger the bias will be.

The fixed response model is applied to data from the Dutch Housing Demand
Survey. Statistics Netherlands carried out this survey in 1981. The sample size was
82,849. The number of respondents was 58,972, which comes down to a response rate
of 71.2%. One of the target variables was whether one had the intention to move within
2 years. The population characteristic to be estimated was the percentage of people
with the intention to move within 2 years.

To obtain more insight in the nonresponse, a follow-up survey was carried out
among the nonrespondents. One of the questions asked was the intention to move
within 2 years. The results are summarized in Table 9.5.

The percentage of potential movers in the response stratum can be estimated using
the response data. The estimate is equal to 100 x 17,517/58,972=29.7%. The
percentage of potential movers in the nonresponse stratum can be estimated using
the data in the follow-up survey. The estimate is equal to 100 x 3056/23,877 = 12.8%.
Hence, the contrast Kis equal to 29.7-12.8 = 16.9%. Apparently, the intention to move
is much higher among respondents than under nonrespondents.
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Table 9.5 Nonresponse in the 1981 Dutch Housing Demand Survey

Do you Intend to Move

Within 2 Years? Response Nonresponse Total

Yes 17,515 3056 20,571
No 41,457 20,821 62,278
Total 58,972 23,877 82,849

The relative size of the nonresponse stratum is estimated by 23,877/
82,849 =0.288. Therefore, the bias of the estimator just based on the response
data is equal to 16.9 x 0.288 =4.9%.

9.3.2 The Random Response Model

The random response model assumes every element k in the population to have
(an unknown) response probability p. If element k& is selected in the sample, a random
mechanism is activated that results with probability p; in response and with probabil-
ity 1 — p; in nonresponse. Under this model, a set of response indicators

Ri,Ry, ..., Ry (9.17)

is introduced, where R, = 1 if the corresponding element k responds; R, =0, other-
wise. So, P(R,=1)=p; and P(R,=0)=1 — py.

Now, suppose a simple random sample without replacement of size 7 is selected
from this population. This sample is denoted by the set of indicators ay, as,. . ., dy,
where a; = 1 means that element k is selected in the sample, and otherwise a; = 0. The
response only consists of those elements k for which a; =1 and R, = 1. Hence, the
number of available cases is equal to

N
ng =Y arRy. (9.18)
k=1

Note that this realized sample size is a random variable. The number of non-
respondents is equal to

N
mw =Y ar(1—Ry), (9.19)
k=1

where n=ngr + nngr-
The values of the target variable become available only for the ng responding
elements. The mean of these values is denoted by

yp = — Ry. 9.20
YR= Zak k (9.20)

Theoretically, it is possible that no observations at all become available. This happens
when all sample elements do not respond. In practical situations, this event has a very
small probability of happening. Therefore, we will ignore it. It can be shown
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(see Bethlehem, 1988) that the expected value of the response mean is approximately
equal to

E(yg) ~ Y, (9.21)
where
o I hp,
Y = — XY 9.22
N; : (9.22)
and
|
ﬁ:]vzpk (9.23)
k=1

is the mean of all response probabilities in the population. From expression (9.21), itis
clear that, generally, the expected value of the response mean is unequal to the
population mean to be estimated. Therefore, this estimator is biased. This bias is
approximately equal to

Byg) = V-7 =220 %,

p p

where S,y is the covariance between the values of the target variable and the response
probabilities, R,y is the corresponding correlation coefficient, Sy is the standard
deviation of the variable Y, and S, is the standard deviation of the response probabili-
ties. From this expression of the bias a number of conclusions can be drawn:

(9.24)

e The bias vanishes if there is no relationship between the target variable and
response behavior. Then R,y = 0. The stronger the relationship between target
variable and response behavior, the larger the bias will be.

e The bias vanishes if all response probabilities are equal. Then S, = 0. Indeed, in
this situation the nonresponse is not selective. It just leads to a reduced sample
size.

e The magnitude of the bias increases as the mean of the response probabilities
decreases. Translated in practical terms, this means that lower response rates will
lead to larger biases.

The effect of nonresponse is shown by means of a simulation experiment. From the
working population of the small country of Samplonia 1000 samples of size 40 were
selected. For each sample, the mean income was computed as an estimate of the mean
income in the population. The distribution of these 1000 estimates is displayed in
Fig. 9.3. The sampling distribution is symmetric around the population value to be
estimated (indicated by the vertical line). Therefore, the estimator is unbiased.

Now the experiment is repeated, but also nonresponse is generated. Response
probabilities are taken linearly related to income. People with the lowestincome have a
response probability of 0.95 and people with the highest income have a response
probability of 0.05. So the higher the income is, the lower is the probability of response.
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Figure 9.3 The distribution of the mean income in 1000 samples from the working population of
Samplonia. There is no nonresponse.

Again 1000 samples of (initial) size 40 are generated. The resulting sampling
distribution of the estimator is displayed in Fig. 9.4.

The distribution has shifted to the left. Apparently, people with lower incomes
are overrepresented and people with high incomes are underrepresented. The vertical
line representing the population mean is not in the center of the distribution any more.
The average of the sample mean of all 1000 samples is equal to 970 whereas the
population mean is equal to 1234. Clearly, the estimator has a substantial bias.

9.3.3 The Effect of Nonresponse on the Confidence Interval

The precision of an estimator is usually quantified by computing the 95% confidence
interval. Suppose, for the time being, that all sampled elements cooperate. Then,
the sample mean can be computed. This is an unbiased estimator for the population

500.000 1250.000 2000.000

Figure 9.4 The distribution of the mean income in 1000 samples from the working population of
Samplonia. Nonresponse increases with income.



224 THE NONRESPONSE PROBLEM

mean. Since the sample mean has (approximately) a normal distribution, the 95%
confidence interval for the population mean is equal to

I=(5-1.96 x S(¥); y+1.96 x §(3)), (9.25)

where S(¥) is the standard error of the sample mean. The probability that this interval
contains the true value is, by definition (approximately), equal to

P(Y €1)=0.95. (9.26)

In case of nonresponse, only the response mean y, can be used to compute the
confidence interval. This confidence interval is denoted by /. It can be shown that

P(YcI) = <I><1.96 l;gg) @(1.96 ?83) : (9.27)

in which @ is the standard normal distribution function. Table 9.6 presents values of
this probability as a function of the relative bias, which is defined as the bias divided by
the standard error.

It is clear that the confidence level can be much lower than expected. If the bias is
equal to the standard error, that is, the relative bias is 1, the confidence level is only
0.83. Astherelative bias increases, the situation becomes worse. The conclusion is that
due to nonresponse the interpretation of the confidence interval is not correct any more.

The effect of nonresponse on the confidence interval can also be shown by means of
a simulation experiment. From the working population of Samplonia, samples of size
40 were selected. Again nonresponse was generated. People with the lowest income
had a response probability of 0.95. Nonresponse increased with income. People with
the highest income had a response probability of 0.05.

For each sample, the 95% confidence interval was computed. Figure 9.5 shows the
result of the first 30 samples. Each confidence interval is indicated by a horizontal line.
The vertical line denotes the true population mean to be estimated. Note that only 10

Table 9.6 The Confidence Level of the 95% Confidence
Interval as a Function of the Relative Bias

[B(r)/S(Vr)! P(Y € Ir)
0.0 0.95
0.2 0.95
0.4 0.93
0.6 091
0.8 0.87
1.0 0.83
1.2 0.78
1.4 0.71
1.6 0.64
1.8 0.56

2.0 0.48
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Figure 9.5 Confidence intervals for the mean income in the working population of Samplonia.
Nonresponse increases with income.

out of 30 confidence intervals contain the population mean. This suggests a confidence
level of 33.3% instead of 95%.

9.4 ANALYSIS OF NONRESPONSE

One should always be aware of the potential negative effects of nonresponse. It
is therefore important that a nonresponse analysis is carried out on the data that
have been collected in a survey. Such an analysis should make clear whether or not
response is selective, and if so, which technique should be applied to correct for a
possible bias.

This chapter gives an example of such a nonresponse analysis. Data used here are
the data from the Integrated Survey on Household Living Conditions (POLS) that has
been conducted by Statistics Netherlands in 1998.

9.4.1 How to Detect a Bias?

How can one detect that the nonresponse is selective? The available data with respect
to the target variables will not be of much use. There are data only for the respondents
and not for the nonrespondents. So, it is not possible to establish whether respondents
and nonrespondents differ with respect to these variables. The way out for this problem
is to use auxiliary variables (see Fig. 9.6).

An auxiliary variable in this context is a variable that has been measured in the
survey and for which the distribution in the population (or in the complete sample) is
available. So, it is possible to establish a relationship between this variable and the
response behavior.

Three different response mechanisms were introduced in Chapter 8. The first one is
missing completely at random (MCAR). The occurrence of nonresponse (R) is
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Figure 9.6 Relationships between target variable, response behavior, and auxiliary variable.

completely independent of both the target variable (Y) and the auxiliary variable (X).
The response is not selective. Estimates are not biased. There is no problem.

In case of MCAR, the response behavior (R) and any auxiliary variable (X) are
unrelated. If it is also known that there is a strong relationship between the target
variable (Y) and the auxiliary variable (X), this is an indication that there is no strong
relationship between target variable (Y) and response behavior (R) and thus the
estimators do not have a severe bias.

It should be noted that if there is no strong relationship between the auxiliary
variable (X) and the target variable (Y), analysis of the relationship between the
auxiliary variable (X) and the response behavior will provide no information about a
possible bias of estimates.

The second response mechanism is missing at random (MAR). This situation
occurs when there is no direct relationship between the target variable (¥) and the
response behavior (R), but there is a relationship between the auxiliary variable (X) and
the response behavior (R). The response will be selective, but this can be cured by
applying a weighting technique using the auxiliary variable. Chapter 10 is devoted to
such weighting techniques.

Incase of MAR, response behavior (R) and the corresponding auxiliary variable (X)
will turn out to be related. If it is also known that there is a strong relationship between
the target variable (Y) and the auxiliary variable (X), this is an indication there is (an
indirect) relationship between target variable (Y) and response behavior (R), and thus
the estimators may be biased.

The third response mechanism is not missing at random (NMAR). There is a direct
relationship between the target variable (Y) and the response behavior (R) and this
relationship cannot be accounted for by an auxiliary variable. Estimators are biased.
Correction techniques based on use of auxiliary variables will be able to reduce such a
bias.

All this indicates that the relationship between auxiliary variables and response
behavior should be analyzed. If such a relationship exists and it is known that there is
also a relationship between the target variables and auxiliary variables, there is a
serious the risk of biased estimates. So, application of nonresponse correction
techniques should be considered.
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9.4.2 Where to Find Auxiliary Variables?

To be able to analyze the effects of nonresponse, auxiliary variables are needed. Those
variables have to be measured in the survey and moreover information about
the distribution of these variables in the population (or in the complete sample)
must be available.

One obvious source of auxiliary information is the sampling frame itself. For
example, if the sample is selected from a population register, variables such as age
(computed from date of birth), gender, marital status, household composition, and
geographical location (e.g., neighborhood) are available. The values of these variables
can be recorded for both respondents and nonrespondents.

The sample for the 1998 Integrated Survey on Household Living Conditions
(POLYS) of Statistics Netherlands was selected from the population register. It was a
stratified two-stage sample. In the first stage municipalities were selected within
regional strata. In the second stage, a sample was drawn in each selected municipality.
Sampling frames were the population registers of the municipalities. These registers
contain, among other variables, marital status. So, marital status is known for both
respondents and nonrespondents. Figure 9.7 shows the response behavior for the
various categories of marital status.

Married people have the highest response rates (62.6%). Response is also reason-
ably high for unmarried people (61.5%), but response is much lower for divorced
people (51.0%) and widowed people (53.4%).

It is also possible to collect auxiliary information about respondents and non-
respondents by letting interviewers record observations about the location of the
selected persons. Examples are the neighborhood, type of house, and age of house.

Figure 9.8 shows the relationship between response behavior and the building
period of the house. Response is worse in houses that have been built between the two
world wars. Of course, there is no causal relationship between the building period of a
house and the response behavior of its inhabitants. The differences in response rates are
probably caused by different socioeconomic characteristics of the people living in the
house. This calls for more analysis.
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Figure 9.7 Response by marital status in POLS.
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Figure 9.8 Response by building period of house in the Housing Demand Survey 1977-1978.

National statistical institutes and related agencies are a third source of auxiliary
information. The publications (on paper or electronic) of these institutes often contain
population distributions of auxiliary variables.

By comparing the town of residence of respondents in the 1998 Integrated Survey
on Household Living Conditions (POLS) of Statistics Netherlands with the population
distribution over towns, the relation between response behavior and town size can be
explored (see Fig. 9.9).

A well-known phenomenon can be observed in this figure: getting response in big
towns is much harder than getting it in small towns. The response is high in rural
areas (60.3%), but low in urbanized areas (41.1%). Getting response is particularly
difficult in the three big cities in The Netherlands: Amsterdam, Rotterdam, and The
Hague.
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Figure 9.9 Response by town size in POLS.
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9.4.3 Nonresponse Analysis of POLS 1998

As an example, nonresponse in the 1998 Integrated Survey on Household Living
Conditions (POLS) is analyzed in this section. A lot of auxiliary information was
available for this survey. POLS is a large continuous survey of Statistics Netherlands.
Every month, a sample is selected. The survey consists of a number of thematic
modules. Persons are selected by means of a stratified two-stage sample. In the first
stage, municipalities are selected within regional strata with probabilities proportional
to the number of inhabitants. In the second stage, an equal probability sample is drawn
in each selected municipality. Sampling frames are the population registers of the
municipalities.

The fieldwork of POLS 1998 covered a period of two months. In the first month,
selected persons where approached with CAPI. For persons who could not be
contacted or refused and who had a listed phone number, a second attempt was
made in the second month using CATI. Table 9.7 contains the fieldwork results.

The sample size mentioned in Table 9.7 is the final sample size. The initial sample
size was larger. It consisted of 39,431 persons. In 129 cases, persons did not belong to
the target population of the survey. So, they were removed from the sample
(overcoverage).

Ultimately, about 61% of the sampled persons responded. Note that almost 60% of
these respondents (14,275 out of 24,008) refused one or more times before they
cooperated.

The composition of the nonresponse is displayed in Fig. 9.10. By far, it is clear that
refusal is the largest cause of nonresponse (58%). In 16% of the cases, no contact could
be established with the sampled persons. Also, 16% of the cases were not processed in
the field. Reasons for this type of nonresponse are lack of capacity (high workload of
the interviewer) and interviewer not available (illness, holiday). Only 8% of the

Table 9.7 The Fieldwork Results of POLS 1998

Result Frequency Percentage
Sample size 39,302 100.0
Response 24,008 61.1
Immediate response 9,718 24.7
Converted refusers 14,275 36.3
Other response 15 0.0
Nonresponse 15,294 38.9
Unprocessed cases 2,514 6.4
Non contact (not-at-home) 2,093 53
Non contact (moved) 376 1.0
Not-able (illness, handicap) 735 1.9
Not-able (language problem) 416 1.1
Refusal 8,918 22.7

Other nonresponse 242 0.6
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Figure 9.10 The composition of the nonresponse in POLS.

nonresponse is caused by the people who are not able to answer the questions due to
illness, handicap, or language problems.

In the early nineties of the last century, Statistics Netherlands started the develop-
ment of an integrated system of social statistics. This system is called the Social
Statistics Database (SSD). The SSD will ultimately contain a wide range of
characteristics on each individual in The Netherlands. There will be data on demog-
raphy, geography, income, labor, education, health, and social protection. These data
are obtained by combining data from registers and administrative data sources.
Moreover, data from surveys are included. These data relate to attitude, behavior,
and so on. For more information about the SSD, see Everaers and Van Der Laan (2001).

SSD records can be linked to the survey data records using internal personal
identification numbers. This can be done both for respondents and nonrespondents.
Thus, demographic variables such as sex, age, province of residence, and ethnicity
became available for all sampled persons and also socioeconomic variables such as
employment and various types of social security benefits.

The Netherlands is divided in approximately 420,000 postal code areas. A postal
code area contains, on average, 17 addresses. These areas are homogeneous with
respect to social and economic characteristics of its inhabitants. Using information
from the population register, Statistics Netherlands has computed some demographic
characteristics for these postal code areas. Since postal codes are included in the survey
data file for both respondents and nonrespondents, these characteristics can be linked
to the survey data file. Among the variables used in this analysis are degree of
urbanization, town size, and percentage of people with a foreign background (non-
natives). From another source also the average house value was included.

During the fieldwork period, interviewers kept record of all contact attempts. For
each attempt, its contact result was recorded (contact, or not). In case contact was
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established, the result of the cooperation request was recorded (response or nonre-
sponse, and in case of nonresponse the reason of nonresponse). Also other information
was included, like the mode of the fieldwork attempt (CAPI or CATI), and whether
there was contact with the person to be interviewed or another member of the
household. All this fieldwork information was included in the analysis data file.

Two other variables were included in the survey data file. The first one was the
interviewer’s district code. Thus, for every respondent and nonrespondent, it is known
which interviewer made the contact attempts. The second variable was an indicator
whether a selected person has a listed telephone number or not.

In the nonresponse analysis, possible relationships between auxiliary variables and
response behavior were explored. The most interesting results are presented here.

Figure 9.11 shows the relationship between response behavior and age. Response is
high for the people younger than the age of 20. Response is much lower for those
between 20 and 30 years of age. There are relatively many unprocessed cases and
noncontacts. Over the years, response rates tend to increase, but they drop again for the
elderly. The group of not-able persons is particularly large here.

Figure 9.12 shows the possible effects of marital status on the fieldwork results. The
response rate is highest for married people. Both the groups of noncontacts and not-
ables are small. This is acommon phenomenon. These are often young or middle-aged
people with a family. Making contact is relatively easy.

There is a larger number of unprocessed cases and noncontacts for unmarried
people. This group may coincide at least partially with the young people in the
previous graph. For divorced people, it is apparently difficult to make contact. Also,
the number of unprocessed cases is large. Among the widowed people, the group of
not-able is large. This group probably coincides with the elderly in Fig. 9.11.
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Figure 9.11 Bar chart for fieldwork results by age.
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Figure 9.12 Bar chart for fieldwork results by marital status.

Figure 9.13 shows the relationship between the fieldwork result and the size of
the household. There is a clear trend: response rates increase with the size of the
household. Not surprisingly, nonresponse due to noncontact is less likely as
the household size increases. Also, the refusal rate and the number of unprocessed

cases are smaller for larger households.
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Figure 9.13 Bar chart for fieldwork results by household size.
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Figure 9.14 Bar chart for fieldwork results by degree of urbanization.

The results of this graph confirm an earlier conclusion that it is relatively easy to
obtain response from families with children.

The results in the following four graphs explore relationships between response
behavior and characteristics of the neighborhood in which people live. The first
variable is degree of urbanization. Figure 9.14 shows its relationship with the
fieldwork result.

Response rates are very low in the extremely urbanized areas. These are the four
largest towns in The Netherlands (Amsterdam, Rotterdam, The Hague, and Utrecht).
Also, note the high number of unprocessed cases here. Furthermore, the noncontact
rate is high in densely populated areas. Response rates are high in rural areas. Note that
there is not much variation in refusal rates.

The Netherlands is divided into 12 provinces. Figure 9.15 shows how the fieldwork
results differ by province. Response rates are low in three provinces: Utrecht, Noord-
Holland, and Zuid-Holland. These are the three most densely populated provinces.
The four largest cities lie in these provinces. So, this confirms the pattern found in
Fig. 9.14 that it is difficult to get a high response rate in big cities.

The Netherlands is divided into approximately 420,000 postal code areas. Each
area contains around 17 houses. The average house value is available in each area.
Since the postal code of each sampled person is known, the relationship between
response behavior and the average house value in the area can be explored. Figure 9.16
shows the result.

The graph shows a clear pattern: response is low in areas with cheap housing. Note
that nonresponse is particularly caused by a high noncontact rate and a large number of
unprocessed cases. Refusal rates are somewhat lower here.
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Figure 9.15 Bar chart for fieldwork results by province.

Approximately 3 million of the total 16 million inhabitants of The Netherlands have
a foreign background. There are substantial ethnic minority groups from Turkey,
Morocco, and the former colonies in the West Indies and South America (Surinam).
The percentage of nonnative people in each of the approximately 420,000 postal code
areasisavailable. So, a possible relationship between response behavior and nonnative
background can be analyzed. The results are displayed in Fig. 9.17.

A clear, almost linear, pattern can be observed: Response rates decrease as the
percentage of nonnatives in the neighborhood increases. In areas with more than 50%
nonnatives, response rate drops to 40%. The high number of unprocessed cases is a
major cause of nonresponse. Also, the noncontact rate is high. The high percentage of
not-able cases is caused by language problems.

It is remarkable that the refusal rate is very low among nonnatives. This seems to
contradict the believe of many natives that nonnatives refuse to integrate in the
population.

Together, Figs 9.16 and 9.17 seem to suggest that response rates are low in areas
with a low socioeconomic status.

One more variable turned out to be interesting. This variable indicates whether a
selected person has a listed phone number or not. For every person selected in the
sample, it is known whether he or she has a listed phone number or not. The telephone
company provides phone numbers, but only for those people with a fixed-line
phone that is listed in the directory.

From Fig. 9.18, it becomes clear that people with a listed phone number have a
much higher response rate. People without such a number tend to refuse more and are
much harder to contact. Also, there are a larger number of unprocessed cases.
Figure 9.18 seems to confirm the hypothesis sometimes found in the literature that
social isolation may be a factor contributing to nonresponse.
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Figure 9.16 Bar chart for fieldwork results by average house value.

Analysis of the POLS data shows that additional auxiliary variables help to explain
what is going on with respect to response and nonresponse. Not only demographic and
socioeconomic variables are useful in this respect but also fieldwork variables that
describe various contact attempts. Traditionally, fieldwork reports are made to monitor
fieldwork and interviewer performance. Use of this type of information in a nonre-
sponse analysis requires this information to be recorded in a more systematic way in
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Figure 9.17 Bar chart for fieldwork results by percentages of nonnatives.
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Figure 9.18 Bar chart for fieldwork results by listed phone number.

the survey data file. Also, itis important that fieldwork information becomes a standard
part of this file.

Itis a good idea to split the response mechanism in two sequential phases. The first
phase is that of the contact attempt. The second phase is that of the cooperation attempt
once contact has been established. Analysis of both phenomena may require different
models and different auxiliary variables. However, in practical survey situations it is
not easy to separate both mechanisms. Future survey design should attempt to take care
of this in a better way. Of course, it also remains important to distinguish other groups
of nonrespondents.

9.5 NONRESPONSE CORRECTION TECHNIQUES

There is ample evidence that nonresponse often causes population estimates to be
biased. This means that something has to be done to prevent wrong conclusions to
be drawn from the survey data. There are several correction approaches possible.

A frequently used correction technique is adjustment weighting. It assigns weights
to the observed elements. These weights are computed in such a way that overrepre-
sented groups get a smaller weight than underrepresented groups. Adjustment
weighting has many aspects. Chapter 10 is completely dedicated to this approach.

In the remainder of this chapter, two other approaches are described: the follow-up
survey and the basic question approach. To be able to assess whether nonresponse
causes estimators to be biased, information about nonrespondents is needed. This is
difficult to achieve as nonrespondents by definition do not provide information.
The follow-up survey and the basic question approach attempt to at least partially solve
this problem.
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9.5.1 The Follow-Up Survey

Hansen and Hurwitz (1946) were among the first to recognize that nonresponse can
lead to biased estimates of population parameters. They proposed investigating
nonresponse in mail surveys by taking a sample of nonrespondents and trying to
obtain the required information by means of a face-to-face interview. If the informa-
tion collected in the second phase is representative for all nonrespondents, an
indication can be obtained of the differences between respondents and nonrespon-
dents. Furthermore, it is possible to correct for a nonresponse bias.

The basic idea of Hansen Hurvitz was to conduct a follow-up survey among
nonrespondents. Such a follow-up survey is also possible if data collection in the main
survey is carried out by means of face-to-face interviews instead of through mail
questionnaires. Then, specially trained interviewers can reapproach the nonrespon-
dents. Of course, this substantially increases the survey costs.

The follow-up survey is described under the fixed response model. Then, the target
population consists of two strata: a stratum of respondents and a stratum of non-
respondents. Suppose a simple random sample of size 7 is selected without replace-
ment from this population. The sample is denoted by the set of indicators aj, as, . . ., ay,
where a; = 1 means that element k is selected in the sample, and otherwise a; = 0. The
number of elements selected in the response stratum is denoted by

N
ng = Ry (9.28)
k=1
and the number of selected elements in the nonresponse stratum is denoted by
N
ne =Y ar(1-Rg), (9.29)
k=1

where n=ng + nngr-
Only the values of Y of the ny selected elements in the response stratum are available
for estimation purposes. The mean of these values is denoted by

1 N
YVR="— Z @Ry Y. (9.30)
R 1

The bias of this estimator is equal to

NNR - =
B() = Te—¥ =~ (Yr—Txr) = OK, (9.31)

where K is the contrast and Q = Nyr/N is the relative size of the nonresponse stratum.
For the follow-up survey, a simple random sample is selected from the nonre-
spondents in the main survey. This comes down to drawing a simple random sample
from the nonresponse stratum.
Formally, this approach contradicts the assumptions underlying the fixed response
model. This model assumes the existence of a subpopulation consisting of elements
who would never respond in a survey. However, the fixed response model should be
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Figure 9.19 The follow-up survey.

seen as conditional on the survey design. The design of a follow-up survey assumes a
different population (the main survey nonrespondents) with different response and
nonresponse strata. The situation is depicted in Fig. 9.19.

If everybody responds in the follow-up survey, or if the nonresponse in the follow-
up survey is ignorable (i.e., there is no direct correlation with target variables), it is
possible to compute unbiased estimates of the parameters of the nonresponse stratum.
However, one may wonder whether this condition is always fulfilled in practical
situations. It is, for example, possible that the population consists of three strata:
respondents, soft respondents (they cooperate in the follow-up), and hard nonrespon-
dents (they never cooperate).

Suppose a sample of size m is selected for the follow-up survey. The number of
respondents in this survey is denoted by mg.

Let yyg denote the mean of the mig values of the responding elements. It is assumed
that these mii observations constitute a simple random sample from the nonresponse
stratum of the main survey. This mean is an unbiased estimator of the mean of the target
variable in the nonresponse stratum of the main survey. Consequently,

Nr_  Nr_

N R + N ONR (9.32)

is an unbiased estimator of the population mean of Y. Unfortunately, the sizes of the
response stratum and the nonresponse stratum are unknown. Therefore, the quantities
Nr/N and Nngr/N are replaced by their unbiased estimates ng/n and ngr/n. This results
in the estimator

nR _ HINR _
a - 9.33
pa + o INR (9.33)

Under the condition mentioned, this is an unbiased estimator.



NONRESPONSE CORRECTION TECHNIQUES 239

From July 2005 to December 2005, Statistics Netherlands conducted a large-scale
follow-up of nonrespondents in the Dutch Labor Force Survey (LFS). For a detailed
description of this study, see Schouten (2007).

A sample of 775 LFS nonrespondents was approached once more by a small
number of selected interviewers. The interviewers had received additional training in
doorstep interaction, they could offer incentives and they could earn a bonus based on
their response rate. The households that were eligible for the follow-up survey were
former refusals, noncontacts, and nonprocessed households.

An additional response of 43% was obtained, leading to a weighted overall
response rate of 77%. It turned out that the respondents in the follow-up survey
differed from the LFS respondents with respect to geographical variables, having a
listed landline telephone and ethnicity. The follow-up survey respondents
more often lived in the more urbanized, western parts of The Netherlands.
Furthermore, households that did not have a listed landline telephone were overrep-
resented as were Moroccan and non-Western households other than Moroccan and
Turkish households.

Furthermore, the follow-up respondents resembled the follow-up nonrespondents
with respect to demographic and socioeconomic characteristics. So, they were a good
representation of the nonresponse in the LFS.

Besides the differences in background characteristics between follow-up respon-
dents and the LFS respondents, there was no significant difference in job and
employment status. This implies that the survey estimates of employment were
unaffected by the addition of the follow-up response.

9.5.2 The Basic Question Approach

A follow-up survey such as proposed by Hansen and Hurwitz (1946) will be expensive.
The costs per interview in the follow-up survey will be much higher than that in the
main survey. It requires a lot of travel for a relative small amount of interviews.
Another factor is timeliness. Sampling and interviewing nonrespondents will sub-
stantially increase the duration of the fieldwork period.

Kersten and Bethlehem (1984) have proposed the basic question approach as an
alternative to the follow-up survey. It can be applied in situations where a follow-up
survey cannot be carried out due to time and money constraints.

The basic question approach assumes that many survey questionnaires are
composed around a few basic questions. Answers to these questions are required
to be able to formulate the most important conclusions of the survey. If interviewers
face problems in getting cooperation during the fieldwork, they can change their
strategy and attempt to obtain only answers to a few basic questions “with the foot in
the door.” Another approach could be to carry out the basic question approach
afterward by means of telephone or mail follow-up (for example, for the not-at-
homes).

One way to apply the basic question approach is to let the interviewers attempt the
basic questions straight away after they have been confronted with a refusal for the
main questionnaire. This may lead to higher nonresponse rates for the main
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questionnaire. Therefore, it is better, but also more expensive, to reapproach the
refusers after a short while with different interviewers.

The main goal of the basic question approach is to gain insight in possible
differences between respondents and nonrespondents with respect to the most
important variables of the survey. If such differences are detected, the approach
also provides information for correcting estimates for other variables.

The basic question approach was born from the observation that people who refuse
to participate, can often be persuaded to answer a few basic questions. Many surveys
have basic questions. Only these questions are asked when it is clear that the further
attempts to get the questionnaire completed will be useless.

It is stressed that these questions can only be a limited approximation of the set of
research variables that have to be measured. Often the values of important research
variables depend on the answers to several questions. If not all these questions can be
asked, the value of the research variable cannot be derived.

Here it is supposed that there is just one basic question. Of course, it is possible to
ask more basic questions. Itis advisable to keep the number of basic questions as small
as possible. The more questions are asked, the higher the risk of getting no information
at all. Here are some examples of basic questions that have been used in surveys of
Statistics Netherlands:

e Housing Demand Survey. Do you intend to move within 2 years?
e Labor Force Survey. How many people in this household have a paid job?
e Holiday Survey. Have you been on holiday during the last 12 months?

Family Planning Survey. Taking into account your present circumstances and
your expectations of the future, how many children do you think to get from this
moment on?

The basic question approach helps to get as much answers as possible to the
important questions of the survey. The approach seems to have worked well in several
specific surveys. People who refuse to cooperate can be persuaded to answer just a few
questions if the interviewer states “OK, I accept your refusal, but please help me to fix
my administration,” or “OK, I will not persist any more, but at least answer this
question.” Even for refusal in a telephone survey the basic question approach may work.

Considerable insight into the characteristics of nonrespondents can be obtained in
situations where especially the name of the survey causes nonresponse. This may
occur when people think that the survey does not apply to them, that is, if they do not
intend to move (in a housing demand survey), they do not have a job (in a labor force
survey), or they do not visit a doctor (in a health survey).

The large-scale follow-up of nonrespondents to the Dutch LFS also comprised the
basic question approach. A sample out of the nonresponse was reapproached using a
basic questionnaire. The regular LFS was face-to-face. The second wave (with basic
questions) was by telephone for those addresses where a listed landline telephone was
available. If no telephone number was available, households were asked to fill in either
apaper or web questionnaire. The questionnaires used were a strongly condensed form
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Table 9.8 Results of the Basic Question Approach in the Dutch LFS

Group Mode Sample Size Response Rate (%)
Nonrespondents Telephone 564 50

Paper or Web 378 23
Control group Telephone 667 80

Paper or Web 333 25

of the regular questionnaire. The condensed questionnaire contained a maximum of 10
questions and took between 1 and 3 min to answer. For analytical purposes also a fresh
control group received the same treatment. Table 9.8 shows the response rates of the
various groups.

A response rate of 50% could be obtained by reapproaching nonrespondents by
telephone with basic questions. This is, of course, lower than the 80% of the control
group. This should come as no surprise as the control group also contains households
that would have participated in the regular LES questionnaire.

To be able to compare respondents and nonrespondents, the basic question must be
answered by both respondents and nonrespondents. To avoid all kinds of interviewing
effects, questionnaire effects and mode effects, the basic question must be presented to
respondents in a situation that resembles the nonresponse situation as much as
possible. Therefore, the basic questions should be among the first questions in the
questionnaire. It is also important that the answer to the basic question is not changed
when the answers to subsequent questions indicate that the answer to the basic
question may be wrong.

The estimation procedure for the basic question approach is described under the
fixed response model. Then, the population can be divided in a stratum Ug of Ny
(potential) respondents and a stratum Unr of Nng nonrespondents, with
N :NR + NNR-

Suppose, there is some target variable Y with values Yy, Y5, ..., Yy, and a basic
question variable Z with values Z;, Z,, . . ., Zy. A simple random sample of size n is
selected without replacement. There are ng respondents and nng nonrespondents. Not
every nonrespondent answers the basic question. The number of nonrespondents who
answer the basic question is denoted by ming.

The response means y, and Zz are unbiased estimators of the response stratum
means of the target variable and the basic question variable, respectively.

Estimating the mean of the basic question variable in the nonresponse stratum is not
so simple. The fundamental question is: May nonrespondents who answer the basic
question be regarded as a simple random sample from all nonrespondents? It is
assumed that this is the case.

Let zngr be the mean of the available my values of the basic question variable in the
nonresponse stratum. Then, this mean is an unbiased estimator of the mean of the basic
question variable in nonresponse stratum. Consequently,

—ZR+ ——INR (9.34)
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is an unbiased estimator. Unfortunately, the sizes of the response stratum and
the nonresponse stratum are not known. Therefore, the quantities Ng/N and
Nnr/N are replaced by their unbiased estimates ng/n and nyr/n. This results in the
estimator

_ nR _ FINR _
ZBQ = 72]{ + YZNR. (935)

This is an unbiased estimator, provided the nonrespondents answering the basic
question are a simple random sample from all nonrespondents.

The basic question approach has been tested in the Dutch Housing Demand Survey
1981 (see Kersten and Bethlehem, 1984). Excluding overcoverage, the sample size of
this face-to-face survey was 82,849. The number of respondents was 58,972 and this
amounts to a response percentage of 71%. When contacted people refused to
cooperate, the basic question approach was tried at the door. In total, 8383 refusers
could be persuaded to answer the basic question. This implies that
58,972 + 8383 =67,355 people answered the basic questions, which comes down
to a response percentage of 81% (for this variable).

The basic question in the survey was: “Do you intend to move within two years?”
Table 9.9 shows the results of these questions for two groups: the initial respondents
and the refusers who answered the basic question. It is clear that there is a difference
between the two groups. Initial respondents are much more inclined to move than
refusers answering the basic question.

In the Dutch Housing Demand Survey 1981, also a second wave of fieldwork was
carried out. Callbacks were made for a sample of nonrespondents including those who
answered the basic question. This provided a means to check the answers to the basic
question. For the 1638 refusers in the first wave, both their answer to the basic question
in the first wave and their answer in the complete interview in the second wave became
available. The results are presented in Table 9.10.

The same answer was given in 8.6 + 74.1 =82.7% of the cases. So, there is a
reasonable amount (but not complete) of consistency. Note that there was a time lag of
3 months between the two waves. It is not unlikely that at least some people may have
changed their mind in this period.

It is clear that estimation for basic variables can be improved. But what about the
other variables in the survey? It is also possible to improve estimation for these

Table 9.9 Results of the Basic Question Approach in the Dutch Housing Demand
Survey 1981

Do you Intend to Refusers Answering the
Move Within 2 Years? Initial Respondents (%) Basic Question (%)
Yes 29.7 12.8

No 70.3 87.2

Total 100.0 100.0
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Table 9.10 Checking the Basic Question Approach in the Dutch Housing
Demand Survey 1981

Second Wave

First Wave Intends to Move (%) Does not Intend to Move (%)
Intends to move 8.6 5.1
Does not intend to move 12.1 74.1

variables. To that end, the basic question variable is treated as an auxiliary variable. If
the basic question variable is a qualitative variable, the poststratification estimator can
be used and if the basic question variable is a quantitative variable, the ratio estimator
or regression estimator can be used.

First, the case of a qualitative basic question variable is considered. The
expression for the poststratification estimator for a target variable Y other than a
basic question is

I R
Yps = *ZNhyul)' (9.36)
Ni=

To be able to apply poststratification, the numbers N, of population elements in the
strata corresponding to the categories of the basic question variable must be available.
This is not the case, but they can be estimate using the answers to the basic question
(both for the initial respondents and the refusers). Next, the average of the target
variable is computed for every category of the basic question variable. Only the data for
the initial respondents can be used for this. By substituting these means in expres-
sion 9.36, an estimate is obtained, that is, hopefully, less biased. It has been shown
already that poststratification works better as target variable and auxiliary variable
have a stronger relationship. Since the basic question variable is also a target variable
of the survey and target variables are often correlated, it is not unlikely that the basic
question approach produces better estimates.

Now the case of a quantitative basic question variable is considered. One way to
improve the estimate for a target variable is to use a ratio estimator in which the basic
question variable is used as an auxiliary variable. In the case, the ratio estimator would
take the form

_ _Z
YRAT = YR —_BQ . (9.37)
ZR

The more the values of Y and Z are proportional, the more effective the ratio
estimator is.

An even better approach is to use the regression estimator in which the basic
question variable plays the role of auxiliary variable. This estimator would take the
form

YreG = Yr—D(ZrR—ZBQ)- (9.38)
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Table 9.11 Results of the Follow-Up Survey and the Basic Question
Approach in an Election Survey

Result Cases Percentage
Response in first wave 508 51.1
Response in basic question approach 196 19.7
Response in callback approach 224 22.5
Final nonresponse 67 6.7
Total 995 100.0

This estimator is effective if there is a more or less linear relationship between the
values of the target variable and the basic question variable.

Voogt (2004) presents an interesting example of a survey in which both a follow-up
survey and the basic question approach were applied. His research focused on
nonresponse bias in election research. He selected a simple random sample of 995
voters from the election register of the town of Zaanstad in The Netherlands. There
were two basic questions in this survey:

e Did you vote in the parliamentary election on Wednesday May 6, 1998?
e Are you interested in politics, fairly interested or not interested?

In the first wave of the survey, people were contacted by phone if a phone number
was available. If not, they were send a questionnaire by mail. The basic question
approach was applied in a separate follow-up. All refusers were offered the possibility
to answer just the two basic questions (by phone or mail). The follow-up approach was
applied to those who refused to cooperate in the basic question approach. This time the
refusers were visited at home by interviewers. The results of the fieldwork are
summarized in Table 9.11.

One conclusion that can be drawn from this table is that the situation need not be
hopeless if the response is low in the first wave. With additional measures, response
rates can be increased substantially.

Because the researcher had access to the voting register of the town, he could establish
with certainty whether all 995 people in the survey had voted or not. In this group,
72.9% had voted. The voting behavior for the various groups is listed in Table 9.12.

Table 9.12 Voting Behavior in the Follow-Up Survey and the Basic
Question Approach of an Election Survey

Group % Voters
Response in first wave 85.4
Response in basic question approach 66.3
Response in follow-up approach 55.8

Final nonresponse 53.7
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The groups are ordered in growing reluctance to participate. There seems to be a
relationship between this reluctance and voting behavior: the more reluctant the group,
the lower is the percentage of voters. It can be concluded that the response in the basic
question approach is not representative for all nonresponse after the first wave.
Applying estimator (9.35) leads to an estimate of

508 487
503 X 854+ 555663 =764, (9.39)

This value is much better than the 85.4% for the initial response, but it is still
too high.

EXERCISES

9.1 A survey is usually carried out to measure the state of a target population at a
specific reference date. The survey outcomes are supposed to describe the status
of the population at that point in time. Ideally, the fieldwork of the survey should
take place at that date. This is not possible in practice, so interviewing
usually takes place in a period of a number of days or weeks around the
reference date.

Suppose, a business survey is carried out. A sample of companies is selected
from the sampling frame (the business register) 2 weeks before the reference
date. Interviewing takes place in the period of 4 weeks: the 2 weeks between
sample selection and reference date and the 2 weeks after the reference date.

For each of the situations described below, explain whether there is a problem
and if so, explain what kind of problem it is: nonresponse, undercoverage,
overcoverage, or an error in the sampling frame (a frame error).

a. The contact attempt takes place between the sample selection date and the
reference date. It turns out the company that went bankrupt (and thus it does
not exist any more) before the sample selection date.

b. The contact attempt takes place between the sample selection date and the
reference date. It turns out the owner who went out of business (and thus the
company does not exist any more) after the sample selection date.

c. The contact attempt takes place after the reference date. It turns out the
company has moved to a different country before the sample selection date.

d. The contact attempt takes place after the reference date. It turns out the
company went bankrupt (and thus it does not exist any more) between the
sample selection date and the reference date.

e. The contact attempt takes place after the reference date. It turns out the
company that was destroyed by a fire (and thus the company does not exist
any more) after the reference date.
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9.2

9.3
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A town council wants to do something about the traffic problems in its town
center. There is a plan to turn it into a pedestrian area. So, cars will not be able to
access the center any more. The town council wants to know what companies
think of this plan. A simple random sample of 1000 companies is selected. Each
selected company is invited to participate in the survey. They are asked whether
they are in favor of the plan, or not. Furthermore, the location of the company is
recorded (town center or suburb). The results of the survey are summarized in
the table below:

Suburbs Town Center
In favor 120 80
Not in favor 40 240

a. Compute the response percentage.
b. Compute the percentage of respondents in favor of the plan.

c. Compute alower bound and an upper bound for the percentage in favor in the
complete sample.

A survey is carried to measure how much money people spend on health care.
The target population consists of 24,000 people. A sample of 800 persons is
selected. Only 600 people respond. Among the respondents, the average amount
spent on health care per year is €1240. Suppose it is known that the health care
costs of nonrespondents are on average 10% higher. Using this information,
compute a better estimate of average health care costs.

A researcher wants to find out whether inhabitants of a town are interested in
local politics. To that end, he carries out a survey. Unfortunately, the survey is
affected by nonresponse. The total population of potential voters consists of
38,000 people. Suppose, the fixed response model applies and we have the
following distribution for interest in local politics over response and nonre-
sponse stratum:

Interest in Politics

Response Yes No
Yes 15,200 3,800
No 7,600 11,400

a. Compute the expected fraction of interested people if a simple random
sample is selected and the response mechanism works as described in the
above table.

b. Compute the value of the contrast K.
c. Compute the bias of the estimator.
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9.5

9.6

A researcher carries out a time budget survey. Among the things, he wants to
know is the time spent (per week) on surfing the Internet. A simple random
sample of 20 households is selected. Each selected household is asked for its
number of members and the numbers of hours spent on the Internet. The results
are in the table below:

Household Members Internet Hours Household Members Internet Hours

1 1 6 11 1 -
2 2 - 12 2 9
3 3 17 13 4 -
4 4 - 14 5 27
5 4 - 15 6 28
6 1 - 16 1 -
7 2 - 17 3 -
8 4 18 18 4 20
9 5 23 19 5 -
10 6 32 20 7 35

The survey suffers from nonresponse. Therefore, it is not possible to record
time spent on the Internet for some households. The household size can be
retrieved from the sampling frame.

a. Assuming the households for which the Internet variable is available form a
simple random sample, estimate the average hours spent on the Internet.

b. Looking at the available data, explain why the nonresponse will probably be
selective with respect to hours spent on the Internet.

c. Use the ratio estimator to computer a better estimate. Use household size as
auxiliary variable.

d. Compare the outcomes under (a) and (c). Explain why (or why not) the ratio
estimator produces better estimates.

A simple random sample of size 2000 is selected from the population of 20,000

potential voters in the town of Harewood. Objective of this opinion poll is to

estimate the percentage of voters for the new political party “Forza Harewood.”

Only 50% of the selected voters wants to participate in the survey. Among those,

300 say that they will vote for the new party.

a. Assuming the response is a simple random sample from the population,
compute an estimate, and also the 95% confidence interval, for the percent-
age of “Forza Harewood.”

b. A simple random sample of size 100 is selected from the nonrespondents.
With a lot of extra efforts and specially trained interviewers, these non-
respondents are reapproached. It turns out that they all want to cooperate in
this follow-up survey and 10 people say they will vote for the new party.
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Use all available information to compute a better estimator.
c. Assuming the margin of the confidence interval computed under (a) is not

affected by nonresponse, what can be said about the confidence level of the
interval computed under (a)?

9.7 The basic question approach can be used to reduce the negative effects of
nonresponse. Assuming there is only one basic question, what should its
position be in the questionnaire for the respondents?

a. At the beginning of the questionnaire.
b. At the end of the questionnaire.
c. The location of the question is not relevant.

d. The question need not be included in the questionnaire.



CHAPTER 10

Weighting Adjustment

10.1 INTRODUCTION

There is ample evidence that nonresponse often causes estimates to be biased. This
means that something has to be done to correct this bias. A frequently used technique
is adjustment weighting. Adjustment weighting is typically applied in case of unit
nonresponse. Different correction techniques are available for item nonresponse
(see Chapter 8).

Adjustment weighting is based on the use of auxiliary information. Auxiliary
information is defined in this context as a set of variables that have been measured in
the survey and for which information on the population (or the complete sample)
distribution is available. By comparing the population distribution of an auxiliary
variable with its response distribution, it can be assessed whether or not the response is
representative for the population (with respect to this variable). If these distributions
differ considerably, one must conclude that nonresponse has resulted in a selective
sample.

As a next step, this auxiliary information can be used to compute adjustment
weights. Weights are assigned to all observed records of observations. Estimates of
population characteristics can now be obtained by using the weighted values instead
of the unweighted values. The weights are defined in such a way that population
characteristics for the auxiliary variables can be computed without error. Then the
weighted sample is said to be representative with respect to the auxiliary variables used.

Suppose, the inclusion weight c;= 1/; is introduced as one over the first-order

inclusion probability of selected element i, for i=1, 2,...,n. Consequently, the
Horvitz—Thompson estimator can be written as
1 n
)’HT:N;C%- (10-1)

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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Adjustment weighting replaces this estimator by a new estimator
1 n
oy = N; WiVis (10.2)

where the weight w; is equal to
w; = ¢; X dl' (103)

and d; is a correction weight produced by an weighting adjustment technique.

If the response can be made representative with respect to several auxiliary
variables, and if all these variables have a strong relationship with the phenomena
to be investigated, then the (weighted) sample will also be (approximately) represen-
tative with respect to these phenomena, and hence estimates of population character-
istics will be more accurate.

Several weighting techniques will be described in this chapter. It starts with the
simplest and most commonly used one: poststratification. Next linear weighting is
described. It is more general than poststratification. This technique can be applied
in situations where the auxiliary information is inadequate for poststratification.
Then multiplicative weighting is discussed as an alternative for linear weighting.
Furthermore, an introduction into calibration is provided. This can be seen as an even
more general theoretical framework for adjustment weighting that includes linear
weighting and multiplication as special cases. Finally, an overview of propensity
weighting is given.

10.2 POSTSTRATIFICATION

Poststratification is a well-known and often used weighting method. Note that
poststratification has already been introduced in Chapter 6 as an estimation technique
that can lead to more precise estimators. In this chapter, it is shown that poststratifica-
tion can also be effective in reducing nonresponse bias. First, the case of complete
response is considered.

To be able to carry out poststratification, one or more qualitative auxiliary variables
are needed. Suppose, there is an auxiliary variable X having L categories. So it divides
the population U into L strata Uy, U,, ..., U,. The number of population elements
in stratum U, is denoted by N, for h=1,2,...,L.SON =N +N,+ -+ +N|.

A sample of size n is selected from the population. If », denotes the number of
sample elements in stratum U;, (for h=1,2,...,L),thenn=n1+n,+ --- +ny.
Note that the values of the n;, are the result of a random selection process. So, they are
random variables.

Poststratification assigns identical adjustment weights to all elements in the same
stratum. In case of simple random sampling without replacement, the correction
weight d; for an observed element 7 in stratum U, is equal to

gy =N
ny/n

(10.4)
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If the values of the inclusion probabilities (c; = n/N) and correction weights (10.4) are
substituted in expression (10.2), the result is the poststratification estimator

| L
Yps = NZNh)_’(h), (10.5)
h=1

where 3 is the mean of the observed elements in stratum /. So, the poststratification
estimator is equal to a weighted sum of sample stratum means.

The computation of adjustment weights is shown in an example. A sample of size
100 is selected from the Samplonian population of size 1000. There are two auxiliary
variables: Sex (with two categories male and female), and AgeClass (with three
categories Young, Middle, and Old). Table 10.1 contains the population and sample
distribution of these variables.

The sample is not representative for the population. For example, the percentage
of young females in the population is 20.9%, whereas the corresponding sample
percentage is 15.0%. The sample contains too few young females.

The correction weights in Table 10.1 have been computed by means of expres-
sion (10.4). For example, the weight for young female is equal to (209/1000)/
(15/100) = 1.393. Young females are underrepresented in the sample and therefore
get a weight larger than 1. People in overrepresented strata get a weight less than 1.

The adjustment weights w; are obtained by multiplying the correction weights
d; by the inclusion weights ¢;. Here, all inclusion weights are equal to N/n=10.

Table 10.1 Computation of Adjustment Weights in Case of Poststratification

Population
Male Female Total
Young 226 209 435
Middle 152 144 296
Elderly 133 136 269
Total 511 480 1000
Sample
Male Female Total
Young 23 15 38
Middle 16 17 33
Elderly 13 16 29
Total 52 48 100
Weights
Male Female
Young 0.983 1.393
Middle 0.950 0.847

Elderly 1.023 0.850
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Suppose, these weights are used to estimate the number of young females in the
population. The weighted estimate would be 15 x 10 x 1.393 =209, and this is
exactly the population total. Thus, application of weights to the auxiliary variables
results in perfect estimates. If there is a strong relationship between the auxiliary
variable and the target variable, estimates for the target variable will be improved if
these weights are used.

Now suppose the sample is affected by nonresponse. Then the poststratification
estimator takes the form

— 1 L —(h
YRPS = —ZNhyfq), (10.6)
N h=1

where yl@ denotes the mean of the responding elements in stratum /. It can be shown

that the bias of this estimator is equal to

B(Yr.ps) ZN” . (10.7)

Apparently, the bias of this estimator is the weighted sum of the biases of the stratum
estimators. By applying the random response model, this bias can be written as

S
yRPS ZN r? Y( >)7 (10.8)

(1)

where Y"" is the mean of the target variable in stratum /, and

Ni
p k l

(10.9)

Here, Y,Eli) denotes value of the target value of element k in stratum, pgch) is the
corresponding response probability, and

1 N
p = 3" p 10.10
=5 ]; pi (10.10)

is the mean of the response probabilities in stratum /. In a fashion similar to expression
(9.24) in Chapter 9, the bias can be rewritten as

(h) a(h) o(h)
R,ySy"Sy
B(ypsr) ZNh ORnt (10.11)
where R(};) is the correlation between the Y and p in stratum /. S;f’> and § (Yh) are the

standard errors of p and Y in stratum /, respectively.
The bias of the poststratification estimator is small if the biases within strata are
small. A stratum bias is small in the following situations:
o If there is little or no relationship between the target variable and the response
behavior within all strata, then their correlations are small.
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e If response probabilities within a stratum are more or less equal, then their
standard errors are small.

e If values of the target variable within a stratum are more or less equal, then their
standard errors are small.

These conclusions give some guidance with respect to the construction of strata.
Preferably, strata should be used that are homogeneous with respect to the target
variable, response probabilities, or both. The more the elements resemble each within
strata, the smaller the bias will be.

Two variables were used for weighting in Table 10.1: AgeClass and Sex. Strata
were formed by crossing these two variables. Therefore, this weighting model is
denoted by

AgeClass x Sex.

The idea of crossing variables can be extended to more than two variables. As long
as the table with population frequencies is available, and all response frequencies
are greater than 0, weights can be computed. However, if there are no observations
in a stratum, the corresponding weight cannot be computed. This leads to incorrect
estimates. If the sample frequencies in the strata are very small, say less than 5, weights
can be computed, but estimates will be unstable.

As more variables are used in a weighting model, there will be more strata.
Therefore, the risk of empty strata or strata with too few observations will be larger.
There are two solutions for this problem. One is to use less auxiliary variables, but then
a lot of auxiliary information is thrown away. Another is to use collapse strata. This
means merging a stratum having too few observations with another stratum. It is
important to combine strata that resemble each other as much as possible. Collapsing
strata is not a simple job, particularly if the number of auxiliary variables and strata is
large. It is often a manual job.

Another problem with the use of several auxiliary variables is the lack of a sufficient
amount of population information. This is shown in Table 10.2. The population
distributions of the two variables AgeClass and Sex are known separately, but the
distribution in the cross-classification is not known. In this case, the poststratification
AgeClass x Sex cannot be carried out because weights cannot be computed for the
strata in the cross-classification.

One way to solve this problem is to use only one variable, but this would mean
ignoring all information with respect to the other variable. What is needed is a
weighting technique that uses both marginal frequency distributions simultaneously.
There are two weighting techniques that can do this: linear weighting and multiplica-
tive weighting. These two techniques are described in the next two sections.

10.3 LINEAR WEIGHTING

The technique of linear weighting is based on the theory of general regression
estimation. The regression estimator was already introduced in Chapter 6. It uses
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Table 10.2 Lack of Population Information

Population
Male Female Total
Young ? ? 435
Middle ? ? 296
Elderly ? ? 269
Total 511 480 1000
Sample
Male Female Total
Young 23 15 38
Middle 16 17 33
Elderly 13 16 29
Total 52 48 100
Weights
Male Female
Young ? ?
Middle ? ?
Elderly ? ?

an auxiliary variable to produce more precise estimates. This estimator is extended
here to the generalized regression estimator. It is shown that this estimator can also
help to reduce a bias due to nonresponse. The theory of linear weighting is described
assuming that data have been collected by means of simple random sampling without
replacement. The theory can easily be generalized (Bethlehem, 1988).

First, the case of full response is considered. Suppose there are p auxiliary variables
available. The p vector of values of these variables for element k is denoted by

X = (Xe1, X2y - - - Xip) - (10.12)

The symbol ' denotes transposition of a matrix or vector. Let Y be the N vector of
all values of the target variable, and let X be the N X p matrix of all values of the
auxiliary variables. The vector of population means of the p auxiliary variables is
defined by

X =(X,Xa,...,X,)" (10.13)

If the auxiliary variables are correlated with the target variable, then for a suitably
chosenvectorB=(B,,B,, ..., Bp)/ of regression coefficients for a best fit of Y on X, the
residuals E=(E|, E,, ..., Ey)' defined by

E=Y-XB (10.14)
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vary less than the values of the target variable itself. Application of ordinary least
squares results in

—1 N
B=(XX)"'xy = (ZN:XkX,Q> (mec). (10.15)
k=1

k=1

For a simple random sample without replacement, the vector B can be estimated by

N -1 N n -1 n
b = ( akaX/k> (Z ClkaYk> = (Z x,-x’,—) (Z xl-y,->, (1016)
k=1 k=1 i=1 i=1

where x; = (X;1, X2, . . ., X;,)" denotes the p vector of values of the p auxiliary variables
for sample element i (for i=1, 2, ..., n). The estimator b is an asymptotically design
unbiased (ADU) estimator of B. It means the bias vanishes for large samples. The
generalized regression estimator is now defined by

Yor =¥+ (X —x)'b, (10.17)

where X is the vector of sample means of the auxiliary variables.

The generalized regression estimator is an ADU estimator of the population mean
of the target variable. If there exists a p vector ¢ of fixed numbers such that Xc =1,
where [ is a vector consisting of 1’s, the generalized regression estimator can also be
written as

Yor = X'D. (10.18)
It can be shown that the variance of the generalized regression estimator can be
approximated by

1 _
Vi) = L 3, (10.19)

where S% is the population variance of the residuals E, E,, ..., En.

Expression (10.19) is identical to the variance of the simple sample mean, but with
the values Y replaced by the residuals E,. This variance will be small if the residual
values Ej are small. Hence, the use of auxiliary variables that can explain the behavior
of the target variable will result in a precise estimator.

In case of nonresponse, the following modified version of the general regression
estimator is introduced:

Yerr = YR + (X — xr)'br = X by, (10.20)
in which by is defined by

N -1/ N
b = (Z akRkaX'k> <Z akRkaYk) . (10.21)
k=1 k=1
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So bris the analogue of b, but just based on the response data. Bethlehem (1988) shows
that the bias of estimator (10.20) is approximately equal to

B(yorr) = XBr — Y, (10.22)

where By is defined by

N -1/ N
Br = < PkaX/k> (Z PkaYk> . (10.23)
k k=1

=1

The bias of this estimator vanishes if Bg = B. Thus, the regression estimator will be
unbiased if nonresponse does not affect the regression coefficients. Practical experi-
ence (at least in The Netherlands) shows that nonresponse often seriously affects
estimators, such as means and totals, but less often causes estimates of relationships to
be biased. Particularly, if relationships are strong (the regression line fits the data well),
the risk of finding wrong relationships is small.

By writing

N -1/ N
Br = B+ (Z pkxkx’k> (Z kakEk> , (10.24)
k=1

k=1

the conclusion can be drawn that the bias will be small if the residuals are small.

This theory shows that use of the generalized regression estimator has the potential
of improving the precision and reducing the bias in case of ignorable nonresponse.
Therefore, it forms the basis for linear weighting adjustment techniques.

Bethlehem and Keller (1987) have shown that the generalized regression estima-
tor (10.17) can be rewritten in the form of weighted estimator (10.2). The adjustment
weight w; for observed element i is equal to w;=V'X;, and v is a vector of weight
coefficients that is equal to

; -1
v=n (Z x,~x’> X. (10.25)
Py

Poststratification is a special case of linear weighting, where the auxiliary variables
are qualitative variables. To show this, qualitative auxiliary variables are replaced by
sets of dummy variables. Suppose there is one auxiliary variable with L categories.
Then L dummy variables X, X, ..., X, can be introduced. For an observation in a
certain stratum /1, the corresponding dummy variable X, is assigned the value 1, and all
other dummy variables are set to 0. Consequently, the vector of population means of
these dummy variables is equal to

_ N; N N,
% (_1,_27.,,7_L), (10.26)
N’ N N

and

Ni N N\
v:ﬁ(—‘,—z,...,—L). (10.27)
N\n n nr
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Table 10.3 Weighting by Crossing the Variables Sex and AgeClass

Sex AgeClass Xl X2 X3 X4 X5 X6
Male Young 1 0 0 0 0 0
Male Middle 0 1 0 0 0 0
Male Elderly 0 0 1 0 0 0
Female Young 0 0 0 1 0 0
Female Middle 0 0 0 0 1 0

Female Elderly 0 0 0 0 0 1
Population means 0.226 0.152 0.133 0.209 0.144 0.136
Weight coefficients 0.983 0.950 1.023 1.393 0.847 0.850

If this form of v is used to compute w;=V'X, and the result is substituted in
expression (10.2) of the weighted estimator, the poststratification estimator is obtained.

Suppose there are two qualitative auxiliary variables: Sex and AgeClass (in three
categories). Crossing these two variables produces a table with 2 x 3 =6 cells.
A dummy variable is introduced for each cell. So, there are six dummy variables.
The possible values of these dummy variables are shown in Table 10.3.

The table also contains the vector of population means of the auxiliary variables.
These values are equal to the population fractions in the cells of the population
table.

The weight coefficients in the vector v are given in the bottom row of the table.
These weight coefficients are used to compute the adjustment weights for the observed
elements. For example, the weight for a young male is equal to 0.983.

Linear weighting can address the problem of the lack of sufficient population
information. It offers a possibility to include variables in the weighting scheme without
having to know the population frequencies in the cells obtained by cross-tabulating
all variables. The trick is to use a different set of dummy variables. Instead of defining
one set of dummy variables corresponding to the cells in the table, a set of dummy
variables is defined for each variable separately. This approach allows the use of all
marginal frequency distributions simultaneously. Of course, the amount of informa-
tion used is less than that for a complete poststratification. However, still information
about all auxiliary variables is used.

Continuing the example in Table 10.3, it is now shown how to use just the marginal
distributions of Sex and AgeClass. Two sets of dummy variables are introduced: one
set of two dummy variables for the categories of Sex, and another set of three dummy
variables for the categories of AgeClass. Then there are 2 + 3 =5 dummy variables.
In each set, always one dummy has the value 1, whereas all other dummies are 0. The
possible values of the dummy variables are shown in Table 10.4.

The first dummy variable X represents the constant term in the regression model.
It always has the value 1. The second and third dummy variables relate to the two sex
categories, and the last three dummies represent the three age categories. The vector
of population means is equal to the fractions for all dummy variables separately. Note
that in this weighting model always three dummies in a row have the value 1.



258 WEIGHTING ADJUSTMENT

Table 10.4 Weighting by Using the Marginal Distributions of Sex and AgeClass

Sex AgeClaSS Xl X2 X3 X4 X5 X6
Male Young 1 1 0 1 0 0
Male Middle 1 1 0 0 1 0
Male Elderly 1 1 0 0 0 1
Female Young 1 0 1 1 0 0
Female Middle 1 0 1 0 1 0
Female Elderly 1 0 1 0 0 1
Population means 1.000 0.511 0.489 0.435 0.296 0.269
Weight coefficients 0.991 —0.033 0.033 0.161 —0.095 —0.066

The weight for an observed element is now obtained by summing the appropriate
elements of this vector. The first value corresponds to the dummy X, which always has
the value 1. So there is always a contribution of 0.991 to the weight. The next two
values correspond to the categories of Sex. Note that their sum equals zero. For males,
an amount 0.033 is subtracted, and for females, the same amount is added. The final
three values correspond to the categories of AgeClass. Depending on the age category
a contribution is added or subtracted. For example, the weight for a young male is
now equal to 0.991 — 0.033 + 0.161 =1.119.

No information is used about crossing Sex by AgeClass here, but only the marginal
distributions. Therefore, a different notation is introduced. This weighting model is
denoted by

Sex + AgeClass.

Owing to the special structure of the auxiliary variables, the computation of the weight
coefficients v cannot be carried out without imposing extra conditions. Here, for every
qualitative variable the condition is imposed that the sum of the weight coefficients for
the corresponding dummy variables must equal zero.

The weights obtained by using the model Sex + AgeClass are not equal to the
weights obtained by complete poststratification. This is not surprising since the model
Sex 4+ AgeClass uses less information than the model Sex x AgeClass.

The examples in Tables 10.3 and 10.4 use only two auxiliary variables. More
variables can be used in a weighting model. This makes it possible to define various
weighting models with these variables. Suppose there are three auxiliary variables
Sex, AgeClass, and MarStat (marital status). If the complete population distribution
on the crossing of all three variables is available, then the weighting model

Sex x AgeClass x MarStat

can be applied. If only the bivariate population distributions of every crossing of two
variables are available, the following weighting scheme could be applied:

(Sex x AgeClass) + (AgeClass x MarStat) + (Sex x MarStat).
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Note that in this scheme three poststratifications are carried out simultaneously. If
only marginal frequency distributions are available, the model

Sex + AgeClass + MarStat

could be considered. More details about the theory of linear weighting can be found in
Bethlehem and Keller (1987).

Until now only linear weighting with qualitative auxiliary variables was described.
It is also possible to apply linear weighting with quantitative auxiliary variables, or a
combination of qualitative and quantitative variables.

If there is only one quantitative variable, linear weighting comes down to applying
the simple regression estimator that was described in Chapter 6, and if there are more
quantitative auxiliary variables, the generalized regression estimator can be used. It is
also possible to combine qualitative and quantitative auxiliary variables. This is shown
in an example with one quantitative variable Age and one qualitative variable Sex.
Three different weighting models are described. Table 10.5 contains the first few cases.

The first weighting model only uses the variable Age. If a weighting model contains
quantitative variables, always a column of constants must be included in the model.
The matrix X for this model consists of the two columns X; and X, in the table.

Note that table also contains the population means. The value 34.369 denotes the
mean age in the population. The row indicated by “weight coefficients 1 contains the
weight coefficients for this model. There are only two coefficients: one corresponding
to the constant term and other for Age. The second weight coefficient is negative
(—0.003). This implies that weight decreases with age: younger people have higher
weight than older people. Apparently, young people are underrepresented in the
survey, while older people are overrepresented.

Table 10.5 Weighting by Using a Quantitative and Qualitative Variable

Age Sex Xl X2 X3 X4 X5 X6
65 Male 1 65 1 0 65 0
36 Male 1 36 1 0 36 0
73 Female 1 73 0 1 0 73

6 Male 1 6 1 0 6 0
33 Female 1 33 0 1 0 33
82 Female 1 82 0 1 0 82

2 Male 1 2 1 0 2 0
32 Male 1 32 1 0 32 0
66 Female 1 66 0 1 0 66

2 Female 1 2 0 1 0 2
Population means 1.000 34.369 0.511 0.489 33.509 35.268
Weight coefficients 1 1.101 —0.003

Weight coefficients 2 1.101 —0.003 —0.032 0.032

Weight coefficients 3 1.087 —0.001 —0.004
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The second weighting model uses both variables Age and Sex. The weighting model
isdenoted by Age + Sex. This model uses columns X (the constant term), X; (age), X3
(dummy for male), and X, (dummy for female). The row marked “weight coefficients
2” contains the weight coefficients for this model. There are four coefficients: one for
the constant term, one for age, one for males, and one for females. The second weight
coefficient is negative. This implies that again weight decreases with age: for males,
an extra amount is subtracted from the weight and for females, the same amount is
added. A look at the adjustment weights would reveal that, for example, young females
are underrepresented and that old males are overrepresented. The model Age + Sex
should be a better model than the one just containing age since more population
information is used.

The third example of a weighting model is a model in which the qualitative variable
Sex and the quantitative variable Age are crossed. This weighting model is denoted
by Age x Sex. The theory allows only one quantitative variable to be crossed with a
number of qualitative variables in each term of the model. Crossing a quantitative
variable with qualitative variables means that no longer the relative sizes of the strata
in the population are required to be known, but rather the population means of the
quantitative variables in the strata. Hence, for the model Age x Sex mean ages of males
and females are required. For this model, columns X, X5, and X¢ are used. Note that the
ages for males are set to zero in the column for females, and vice versa the ages of
females are set to zero in the column for males. The resulting weights can be found in
the row “weight coefficients 3”. There are three coefficients: one for the constant term,
one for the age of males, and one for the age of females. The weight coefficients for
both strata are negative. This means that for both males and females weights decrease
with age. The weight coefficient for females is more negative than that for males.
So females get a lower weight than males.

104 MULTIPLICATIVE WEIGHTING

If linear weighting is applied, correction weights are obtained that are computed as the
sum of a number of weight coefficients. It is also possible to compute correction
weights in a different way, namely, as the product of a number of weight factors. This
weighting technique is usually called raking or iterative proportional fitting. Here,
it is denoted by multiplicative weighting because weights are obtained as the product
of a number of factors contributed by various auxiliary variables.

Multiplicative weighting can be applied in the same situations as linear weighting
as long as only qualitative variables are used. It computes correction weights by means
of an iterative procedure. The resulting weights are the product of factors contributed
by all cross-classifications.

The iterative proportional fitting technique was already described by Deming and
Stephan (1940). Skinner (1991) discusses application of this technique in multiple
frame surveys. Little and Wu (1991) describe the theoretical framework and show that
this technique comes down to fitting a loglinear model for the probabilities of getting
observations in strata of the complete cross-classification given the probabilities for



MULTIPLICATIVE WEIGHTING 261

marginal distributions. To compute the weight factors, the following scheme must be
carried out:

Step 1. Introduce a weight factor for each stratum in each cross-classification term.
Set the initial values of all factors to 1.

Step 2. Adjust the weight factors for the first cross-classification term so that the
weighted sample becomes representative with respect to the auxiliary variables
included in this cross-classification.

Step 3. Adjust the weight factors for the next cross-classification term so that the
weighted sample is representative for the variables involved. Generally, this will
disturb representativeness with respect to the other cross-classification terms in
the model.

Step 4. Repeat this adjustment process until all cross-classification terms have been
dealt with.

Step 5. Repeat steps 2, 3, and 4 until the weight factors do not change anymore.

Use of multiplicative weighting is illustrated using the same data as in Tables 10.3
and 10.4. The weighting model contains the two qualitative auxiliary variables Sex
and AgeClass.

Suppose only the population distribution of Sex (two categories) and AgeClass
(three categories) are separately available and not the cross-classification. Table 10.6
contains the starting situation. The upper left part of the table contains the weighted
relative frequencies in the sample for each combination of AgeClass and Sex.

The row and column denoted by “weight factor” contain the initial values of the
weight factors (1.000). The values in the row and column denoted by “weighted sum”
are obtained by first computing the weight for each sample cell (by multiplying
the relevant row and column factors) and then summing the weighted cell fractions.
Since the initial values of all factors are equal to 1, the weighted sums in Table 10.6 are
equal to the unweighted sample sums. The row and the column denoted by “population
distribution” contain the fractions for AgeClass and Sex in the population.

Table 10.6 Multiplicative Weighting, Starting Situation

Starting Situation

Weight Weighted Population

Male Female Factor Sum Distribution
Young 0.230 0.150 1.000 0.380 0.435
Middle 0.160 0.170 1.000 0.330 0.296
Elderly 0.130 0.160 1.000 0.290 0.269
Weight factor 1.000 1.000
Weighted sum 0.520 0.480 1.000

Population distribution 0.511 0.489 1.000
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Table 10.7 Multiplicative Weighting, Situation after Adjusting the Rows

Situation after Adjusting for AgeClass

Weight Weighted Population

Male Female Factor Sum Distribution
Young 0.230 0.150 1.145 0.435 0.435
Middle 0.160 0.170 0.897 0.296 0.296
Elderly 0.130 0.160 0.928 0.269 0.269
Weight factor 1.000 1.000
Weighted sum 0.527 0.473 1.000
Population distribution 0.511 0.489 1.000

The iterative process must result in row and column factors with such values that
the weighted sums match the population distribution. This is clearly not the case in the
starting situation. First, the weight factors for the rows are adjusted. This leads to
weight factors 1.145,0.897, and 0.925 for Young, Middle, and Elderly (see Table 10.7).
The weighted sums for the rows are now correct, but the weighted sums for the columns
are 0.527 and 0.473 and thus still show a discrepancy.

The next step will be to adjust the weight factors for the columns such that the
weighted column sums match the corresponding population frequencies. Note that
this adjustment for Sex will disturb the adjustment for AgeClass. The weighted sums
for the age categories no longer match the relative population frequencies. However,
the discrepancy is much less than that in the initial situation.

The process of adjusting for AgeClass and Sex is repeated until the weight factors
do not change anymore. The final situation is reached after a few iterations. Table 10.8
shows the final results.

The adjustment weight for a specific sample element is now obtained by multiply-
ing the relevant weight factors. For example, the weight for a young male is equal to

Table 10.8 Multiplicative Weighting, Situation after Convergence

Situation after Convergence

Weight Weighted Population

Male Female Factor Sum Distribution
Young 0.230 0.150 1.151 0.435 0.435
Middle 0.160 0.170 0.895 0.296 0.296
Elderly 0.130 0.160 0.923 0.269 0.269
Weight factor 0.968 1.035
Weighted sum 0.511 0.489 1.000

Population distribution 0.511 0.489 1.000
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1.151 x 0.968 = 1.114. For this example, the adjustment weights differ only slightly
from those obtained by linear weighting as described in the previous section.

10.5 CALIBRATION ESTIMATION

Deville and Sarndal (1992) and Deville et al. (1993) have created a general framework
for weighting, of which linear weighting and multiplicative weighting are special
cases. Assuming simple random sampling, their starting point is that adjustment
weights have to satisfy two conditions:

¢ The adjustment weights w; have to be as close as possible to 1.

e The weighted sample distribution of the auxiliary variables has to match the
population distribution, that is,

I ,
Xw = ﬁ; wix; = X. (10.28)

The first condition sees to it that resulting estimators are unbiased, or almost
unbiased, and the second condition guarantees that the weighted sample is
representative with respect to the auxiliary variables used.

Deville and Sarndal (1992) introduce a distance measure D(w;, 1) measuring the
difference between w; and 1 in some way. The problem is now to minimize

iD(}V,-, 1) (10.29)

under the condition (10.28). This problem can be solved by using the method of
Lagrange. By choosing the proper distance function, linear and multiplicative weight-
ing can be obtained as special cases of this general approach. For linear weighting,
the distance function is defined by

D(w;, 1) = (w; — 1)?, (10.30)
and for multiplicative weighting the distance
D(w;, 1) = w;log(w;) —w; +1 (10.31)

must be used.

Deville and Sarndal (1992) and Deville et al. (1993) only consider the full response
situation. They show that estimators based on weights computed within their
framework have asymptotically the same properties. This means that for large samples
it does not matter whether linear or multiplicative weighting is applied. Estimators
based on both weighting techniques will behave approximately the same way. Note
that although the estimators behave in the same way, the individual weights computed
by means of linear or multiplicative weighting may differ substantially.
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The situation is different under nonresponse. Generally, the asymptotic properties
of linear and multiplicative weighting will not be equal under nonresponse. The extent
to which the chosen weighting technique is able to reduce the nonresponse bias
depends on how well the corresponding underlying model can be estimated using
the observed data. Linear weighting assumes a linear model to hold with the target
variable as dependent variable and the auxiliary variables as explanatory variables.
Multiplicative weighting assumes a loglinear model for the cell frequencies. An
attempt to use a correction technique for which the underlying model does not hold
will not help to reduce the bias.

10.6 OTHER WEIGHTING ISSUES

There are several reasons why survey researchers may want to have some control over
the values of the adjustment weights. One reason is that extremely large weights are
generally considered undesirable. Large weights usually correspond to population
elements with rare characteristics. Use of such weights may lead to unstable estimates
of population parameters. To reduce the impact of large weights on estimators, a
weighting method is required that is able to keep adjustment weights within pre-
specified boundaries and that at the same time enables valid inference.

Another reason to have some control over the values of the adjustment weights is
that application of linear weighting might produce negative weights. Although theory
does not require weights to be positive, negative weights should be avoided, since
they are counterintuitive, they cause problems in subsequent analyses, and they are
an indication that the regression model does not fit the data well.

Negative weights can be avoided by using a better regression model. However, it is
not always possible to find such models. Another solution is to use the current model
and force weights within certain limits. Several techniques have been proposed for
this. A technique developed by Deville et al. (1993) comes down to repeating the
(linear) weighting process a number of times. First, a lower bound L and an upper
bound U are specified. After the first run, weights smaller than L are set to L and
weights larger than U are set to U. Then, the weighting process is repeated, but records
from the strata with the fixed weights L and U are excluded. Again, weights may be
produced not satisfying the conditions. These weights are also set to the value either L
or U. The weighting process is repeated until all computed weights fall within the
specified limits. Convergence of this iterative process is not guaranteed. Particularly,
if the lower bound L and upper bound U are not far apart, the process may not converge.

Huang and Fuller (1978) use a different approach. Their algorithm produces
weights that are a smooth, continuous, monotone increasing function of the original
weights computed from the linear model. The algorithm is iterative. At each step,
the weights are checked against a user supplied criterion value M. This value M is the
maximum fraction of the mean weight by which any weight may deviate from
the mean weight. For example, if M is set to 0.75, then all weights are forced into
the interval with lower bound equal to 0.25 times the mean weight and upper bound
equal to 1.75 times the mean weight. Setting the value to 1 implies that all weights are



OTHER WEIGHTING ISSUES 265

forced to be positive. Huang and Fuller (1978) proved that the asymptotic properties of
the regression estimator constructed with their algorithm are asymptotically the same
as those of the generalized regression estimator. So, restricting the weights has (at least
asymptotically) no effect on the properties of population estimates computed with
these weights.

Another issue is the computation of weights that are consistent for persons and
households. Some statistical surveys have complex sample designs. One example of
such a complex design is cluster sampling. Many household surveys are based on
cluster samples. First, a sample of households is selected. Next, all persons in the
selected households are interviewed. The collected information can be used to make
estimates for two populations: the population consisting of all households and
the population consisting of all individual persons. In both situations, weighting
can be carried out to correct for nonresponse. This results in two weights assigned to
each record: one for the household and other for the individual. Having two weights in
each record complicates further analysis.

If the aim of the survey is to make inference on the population of all individual
persons, the process is fairly straightforward. The unit of measurement is the
individual person. The data file must be approached as a file of records with data
on persons. Available population information on the distribution of personal char-
acteristics can be used to compute adjustment weights, and these weights are assigned
to the individual records.

For making inference on the population of households, the same approach can be
used. However, there is a problem. In The Netherlands, for example, there is no or
limited information available on the population distribution of household variables.
Even information on simple variables, such as size of the household and household
composition, is lacking. This makes it impossible to carry out an efficient weighting
procedure.

Since it is possible to compute weights for the members of the household, one may
wonder whether it is possible to use the individual weights to compute household
weights. Possible approaches could be totake (1) the weight of head of the household,
(2) the weight of a randomly selected household member, or (3) to compute some
kind of average weight of the household members. Whatever approach is used, there
are always problems. If household weights are applied to members of the households,
weighted estimates of individual characteristics will not match known population
frequencies. This discrepancy will not occur if the individual weights are used.
Furthermore, inconsistencies may turn up. For example, an estimate of the total
income through the households will not be equal to an estimate based on the individual
persons.

Generalized regression estimation offers a solution to these problems. The trick is
to sum the dummy variables corresponding to the qualitative auxiliary variables for the
individuals over the household. Thus, quantitative auxiliary variables are created at
the household level.

The resulting weights are assigned to the households. Furthermore, all elements
within a household are assigned the same weight, and this weight is equal to the
household weight. This approach forces estimates computed using element weights to
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be consistent with estimates based on cluster weights. For an application of consistent
weighting, see Nieuwenbroek (1993).

10.7 USE OF PROPENSITY SCORES

The weighting techniques described in the previous sections were all based on the
principle of assigning correction weights to observations. These weights were com-
puted in such a way that weighted estimators have better properties than unweighted
estimators. The technique of propensity scores implements a slightly different
approach. Itconcentrates on firstestimating response probabilities. Then, the estimated
probabilities are used to improve estimators.

The use of propensity scores is described under the random response model. 1t is
assumed that whether or not an individual responds is the result of some random
process, where each individual k has a certain, unknown probability p; of responding
when selected, fork=1,2, ..., N. Let R denote an indicator variable, where R, = 1 if
individual k responds, and where Ry =0 otherwise. Then P(R;, = 1) = py.

Only those values Y; become available in the survey for whichindividual k is selected
in the sample (a; =1) and responds (R, =1). Therefore, the first-order inclusion
probability for element k is equal to 7p;. To obtain an unbiased estimator, the
Horvitz—Thompson estimator is replaced by an adapted Horvitz—Thompson estimator

1 & aiRi Yy
Var = — . 10.32
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The response probabilities p; are unknown quantities. Therefore, they are estimated
using the available data. Rosenbaum and Rubin (1983) introduced the technique of
propensity scores to achieve this.

The propensity score p(X) is the conditional probability that an individual with
observed characteristics X responds in a survey when invited to do so (R=1):

p(X) = P(R = 1|X). (10.33)

It is assumed that within subpopulations defined by values of the observed character-
istics X, all individuals have the same response probability. This is the missing at
random (MAR) assumption that was introduced in Chapter 8. Both linear weighting
and the propensity score method rely on this assumption.

Often, the propensity score is modeled by means of a logit model:

p(Xx) /
log(l—p(Xk)> = a+ B X;. (10.34)
Other models can be used too, but, Dehija and Wahba (1999) for example, conclude
that different models often produce similar results.

The model is fitted with maximum likelihood estimation. The resulting model is
used to predict the propensity scores. These predicted scores can be used in various
ways: the first approach is called propensity score weighting. The response
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probabilities py. in the adapted Horvitz—Thompson estimator (10.32) are replaced by
their estimates p(Xj) from the logit model. Cobben and Bethlehem (2005) show that
this approach does not always performs very well. In an example, estimates of
population parameters turn out to be unstable. This might be caused by the fact that
estimates highly depend on the model used for the propensity scores.

A second approach is propensity score stratification. This is a form of poststra-
tification where strata are formed on the basis of the propensity scores. Suppose
the sample is stratified into L strata by means of the estimated propensity score. The
poststratification estimator is defined by

1 L
yos = > Ny, (10.35)
=

where N, is the number of elements in stratum / and ) is the mean of the available
observations in stratum /. Bethlehem (1988) shows that the bias of the poststratified
Horvitz—Thompson estimator can be written as
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where RI(J/;) is the correlation between Y and p in stratum /. SL’” and S(Yh) are the standard

errors of p and Y in stratum /i, respectively. p, is the average of the response
probabilities in stratum /.

This bias is small if the variation in response probabilities is small. So it makes sense
to construct strata in such a way that most variation of these probabilities is between
strata and not within strata. Cochran (1968) suggests that as much as five strata may be
sufficient to remove a large part of the bias.

Cobben and Bethlehem (2005) have tested this approach. It turned out that values of
estimates move in the right direction but are often still far away from the full sample
estimates. So, stratification based on just propensity scores was not able to completely
correct for the bias. They also explored the effects of using a different number of strata.
Estimates based on 25 propensity score strata performed slightly better. This is not
surprising because the strata will be more homogeneous with respect to the values of
the propensity scores.

A third approach to using response propensities is linear weighting with adjusted
inclusion probabilities. In its most general form, the generalized regression estimator
is defined by

Yor = Yur + (X — Xur)'b, (10.37)

where X is the vector of population means of a set of auxiliary variables, Xyt is the
vector of Horvitz—Thompson estimators for the auxiliary variables, and b is a vector
of regression coefficients defined by

N N/ N
1779. 9. 4" ar X Yy
b= ( E T) ( E 7T—k> (10.38)

k=1 k=1
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Linear weighting produces only consistent estimates if the proper inclusion probabil-
ities are used. Therefore, in case of nonresponse, the 77 in (10.38) should by replaced
by 7p;. Unfortunately, the p; are unknown, so they are replaced by their estimates
p(Xi).

Cobben and Bethlehem (2005) showed that in their example estimates based on
this approach performed better than those based on propensity score stratification.
Estimates were closer to the true values. This could be expected because now the
adjusted inclusion probabilities have been used.

A final approach is linear weighting including propensity score strata. This comes
down to using a normal weighting model but including in it a categorical propensity
score variable.

Cobben and Bethlehem (2005) tested this approach with two versions of a
propensity score variable, one with 5 categories and other with 25 categories. The
weight model with the second variable performed better than the model with the five-
category variable. Again, this is no surprise. Including a categorical propensity score
variable in the model pays.

10.8 A PRACTICAL EXAMPLE

Since 1995, Statistics Netherlands has an integrated system of social surveys. It is
known under its Dutch acronym POLS (Permanent Onderzoek Leefsituatie). POLS
is a continuous survey. Every month a sample is selected. The target population
consists of people of age 12 and older. The samples are stratified two-stage samples.
In the first stage, municipalities are selected within regional strata with probabilities
proportional to the number of inhabitants. In the second stage, an equal probability
sample is drawn in each selected municipality. Sampling frames are the population
registers of the municipalities. The samples are self-weighted samples; that is, all
individuals have the same probability of being selected in the sample.

In this example, the effect of weighting on one social participation variable is
studied. This is the variable recording whether or not a person is doing any volunteer
work. It is to be expected that there is a relationship between social participation and
response behavior: people participating more in social activities will also be more
inclined to respond. The sample size of the thematic module on social participation
was 6672, with a response percentage of 56.6%.

For this example, the only population information used was taken from the
Statistical Yearbook of Statistics Netherlands, see Statistics Netherlands (1998). It
contains frequency distributions with respect to five variables: gender, age, marital
status, province of residence, and degree of urbanization of the area of residence.

The ideal situation would be to have the complete crossing of these five variables.
However, the Statistical Yearbook contains only information with respect to partial
crossings. Table 10.9 contains counts for the distribution of gender by age by marital
status.

With respect to the two variables, province and degree of urbanization, only the
crossing with age is available as displayed in Tables 10.10 and 10.11, respectively.
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Table 10.9 Population Distribution of Age x Gender x Marital Status (x1000)

Male Female

Age Unmarried Married Widowed Divorced Unmarried Married Widowed Divorced

12-19 7524 0.4 0.0 0.0 716.5 35 0.0 0.0
20-29 9815 185.7 0.2 10.2 785.0 330.6 0.7 22.7
30-39 4454 795.1 1.9 72.1 283.5 879.3 5.7 93.8
4049  164.7 899.0 6.9 113.9 103.1 882.9 21.5 138.4
50-59 67.3 732.9 15.8 86.3 444 675.9 56.1 98.8
60-69 42.0 519.2 31.7 42.6 41.4 458.9 140.0 51.5
70-79 214 308.4 52.5 16.6 43.0 239.9 2543 279
80 + 8.0 84.0 504 4.0 35.0 49.6 243.9 12.4

Note that in Tables 10.10 and 10.11, the age variable only has five categories,
whereas in Table 10.9 it has eight categories. In a linear weighting model, this causes
no problems. It is possible to use both age variables simultaneously.

Note that poststratification can only be applied if one of these three tables is used.
And even Table 10.9 cannot be used as it is because it contains four empty cells. This
problem could be solved by collapsing strata with other strata, see, for example,
Tremblay (1986), Kalton and Maligalig (1991), Little (1993), and Gelman and Carlin
(2000). For example, the two age categories 12—19 and 20-29 could be merged into
one new age category 12-29.

To select a weighting model, the general guideline could be applied to use as much
population information as possible. The more auxiliary variables are used, the better
the regression model will be able to explain the behavior of the target variables, and so

Table 10.10 Population Distribution of Province x Age (x1000)

Age
Province 12-19 20-44 45-64 65-79 80+
Groningen 49.3 222.1 127.8 48.4 20.8
Friesland 61.5 225.7 144.0 65.7 21.6
Drenthe 43.7 165.9 1143 539 15.3
Overijssel 106.2 404.2 240.2 110.8 31.9
Flevoland 33.8 115.7 53.0 21.8 42
Gelderland 183.4 720.6 4434 195.7 56.9
Utrecht 103.7 439.4 238.6 102.2 325
Noord-Holland 220.5 999.9 574.4 254.3 82.1
Zuid-Holland 316.2 1307.9 759.5 347.1 117.7
Zeeland 35.0 130.1 89.2 44.1 15.6
Noord-Brabant 218.7 898.7 562.4 225.2 57.9

Limburg 100.8 429.5 289.8 127.1 30.8
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Table 10.11 Population Distribution of Degree of Urbanization x Age (x1000)

Age
Urbanization 12-19 2044 45-64 65-79 80+
Very strong 223.2 1196.6 565.3 293.4 113.0
Strong 336.5 1468.4 839.0 389.8 114.6
Moderate 317.1 1223.7 766.3 321.7 90.5
Little 333.7 1226.3 820.6 328.8 93.4
None 262.3 944.7 645.4 262.6 75.8

the smaller the remaining bias will be. On the contrary, auxiliary variables having
no relationship with the target variables will not help to reduce the bias. Moreover, use
of many auxiliary variables may inflate variance estimates. Therefore, it is a good
idea to compare population and response distributions for each auxiliary variable
(Table 10.12).

For the variable age, nonresponse is highest for people between 20 and 30 years of
age (mainly not at home) and elderly people (mainly refusal). A look at marital status
shows a relatively high response for married people. Divorced people tend to respond
less than average. Response is particularly high in the provinces Gelderland and
Noord-Brabant. There is a lot of nonresponse in the more densely populated and more
urbanized provinces of Noord-Holland and Zuid-Holland. This phenomenon is also
reflected in the variable degree of urbanization. Quite striking is the low response rate
in the very strongly urbanized areas.

This analysis indicates that at least the variables marital status, province, and degree
of urbanization should be included in the weighting model. Note that the last two
variables are partially but not completely confounded.

A number of different weighting models have been computed for this example.
The computations were carried out with the software package Bascula, developed by
Statistics Netherlands (Bethlehem, 1996). Weights obtained in this way have been
used to estimate the percentage of people doing some kind of volunteer work. Since it
is expected that people doing this kind of work are overrepresented, the estimated
percentage should decrease as more effective weighting models are applied.
Table 10.13 contains the results of the computations.

A clear pattern can be distinguished: the more auxiliary information is used, the
lower the estimate of the percentage of people doing volunteer work. Of course, the
effectiveness of a model cannot be judged by just looking at the deviation from
the unadjusted estimate. However, use of more information also leads to a decrease in
standard error, and this is an indication of better fitting models. Hence, it is not unlikely
that in this example the number volunteers are overrepresented in the response, and
the weighting models correct for this. Standard errors were computed using the
method of balanced half-samples (Renssen et al., 1997).

If only one auxiliary variable is used for weighting, it turns out that variable gender
has no effect. Weighting using the variable marital status, degree of urbanization, or
age (in eight categories) reduces the estimate by 0.5-0.6%.
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Table 10.12 Population and Response Distributions of the Auxiliary Variables (%)

Age Response Population Difference
12-19 12.8 11.1 1.7
20-29 15.9 17.5 -1.6
39-39 20.5 194 1.1
40-49 17.9 17.6 0.3
50-59 14.0 134 0.6
60-69 10.0 10.0 0.0
70-79 6.5 7.3 -0.8
80+ 2.5 3.7 -1.2
Private Response Population Difference
Groningen 2.7 35 -0.8
Friesland 4.3 3.9 0.4
Drenthe 2.3 3.0 —-0.7
Overijssel 6.8 6.7 0.1
Flevoland 1.8 1.7 0.1
Gelderland 154 12.1 33
Utrecht 54 6.9 —-1.5
N-Holland 14.0 16.1 -2.1
Z-Holland 18.0 21.5 -3.5
Zeeland 2.7 2.4 0.3
N-Brabant 17.6 14.8 2.8
Limburg 9.1 74 1.7
Marital Status Response Population Difference
Unmarried 32.7 34.2 —-1.5
Married 57.2 53.2 4.0
Widowed 5.2 6.0 -0.8
Divorced 49 6.7 —2.8
Urbanization Response Population Difference
Very strong 11.8 18.0 —6.2
Strong 24.0 23.8 0.2
Moderate 23.2 20.5 2.7
Little 23.3 21.1 2.2
None 17.7 16.5 1.2
Gender Response Population Difference
Male 48.6 49.1 -0.5
Female 514 50.9 0.5

Modelscontaining the degree of urbanization produce the largest shiftin the estimate.
This suggests that this variable is more effective than the other auxiliary variables.

Poststratification by gender, marital status, and age is not possible due to empty
cells. But even merging the age categories 12—19 and 20-29 would produce cells with
less than five observations, which could produce unstable weights. Therefore, instead
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Table 10.13 Estimates of the Percentage of People Doing Volunteer Work, Based on
Various Weighting Models

Number of Standard
Weighting Model Parameters Estimate Error
1 No weighting 0 43.4 1.2
2 Gender 2 434 1.2
3 Province 12 433 1.2
4 MarStat 4 429 1.2
5  Urban 5 42.9 1.0
6  AgeS8 8 42.8 1.2
7  Age5 x Province 60 429 1.2
8 (Gender x Age8) + (Gender x MarStat) 22 42.3 1.1
9  Age5 x Urban 25 42.5 1.0
10 Gender + Age8 + MarStat + Urban + Province 23 42.1 1.0
11 (Gender x Age8) + (Gender x MarStat) + 53 42.0 0.9

(Age5 x Urban) + Province

of attempting to carry out the poststratification Gender x MarStat x AgeS, the linear
weighting model (Gender x Age8) + (Gender x MarStat) was used. Application of
this model produces a decrease in the estimate of 1.1%.

Model 11 in Table 10.13 contains the maximum possible weighting model. The
population information required for the term (Gender x Age8) + (Gender x MarStat)
istaken from Table 10.9 and that for the term Age5 x Urbanfrom Table 10.10. Note that
only the term Province is used and not Age5 x Province because the response table
contains cells with too few observations. Population counts for Province are taken
from Table 10.11. Application of this maximum weighting model shows the greatest
decrease in the estimate, from 43.3 to 42.0.

It is also interesting to look at the result of model 10 in Table 10.9. In this model,
all auxiliary variables are used, but only their marginal distributions. This is a much
smaller model, which can be seen by looking at the number of model parameters in
Table 10.9 (53 for model 11 and 23 for model 10). Still the simpler model 10 performs
almost as well as the maximum model 11. This is an indication that in this example
the main effects of the auxiliary variables play an important role in reducing the bias
of the estimates, whereas all kinds of interaction effects are less important.

EXERCISES

10.1 Which property of an auxiliary variable makes is useful for including in a
weighting adjustment model?
a. The response distribution of the variable is approximately equal to its
population distribution.
b. The sample distribution of the variable is approximately equal to its
population distribution.
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10.2

10.3

c. The response distribution of the variable differs considerably from its
population distribution.

d. The response distribution of the variable is approximately equal to its
sample distribution.

A large company has 2500 employees. The management has installed coffee
machines everywhere in the building. After a while, the management wants to
know whether or not the employees are satisfied with the coffee machines.

a. Determine the sample size under the condition that the margin of the 95%
confidence interval may not exceed 4%.

b. It is decided to draw a simple random sample without replacement of 500
employees. It turns out that 380 employees complete the questionnaire
form. Of them, 310 are satisfied with the coffee machines.

Compute the 95% confidence interval of the percentage of the percentage
of employees in the company who are satisfied with the coffee machines.

c. Only 380 out of 500 selected employees responded. So there is a nonre-
sponse problem.
Compute a lower bound and an upper bound for the percentage of
employees in the sample who are satisfied with the coffee machines.

d. Previous research has showed that employees with a higher level of
education are less satisfied with the coffee facilities. The management
knows the level of education of each employee in the company: 21% has a
high education and 79% has a low education. The table below shows the
relationship between coffee machine satisfaction and level of education for
the 380 respondents:

Low Education High Education  Total

Satisfied 306 4 310
Not satisfied 40 30 70
Total 346 34 380

A weighting adjustment procedure is carried out to reduce the nonresponse
bias.
Compute weights for low- and high-educated employees.
e. Compute the weighted estimate of the percentage of employees in the
company satisfied with the coffee facilities.

There are plans in The Netherlands to introduce a system of road pricing. It
means car drivers are charged for the roads they use. Such a system could lead
to better use of the available road capacity and reduction in traffic congestion.
An automobile association wants to know what the attitude of the Dutch is
toward road pricing. It conducts a survey in which a simple random sample of
1000 people is selected. Selected people are asked two questions:

¢ Are you in favor of road pricing?
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¢ Do you have a car?

WEIGHTING ADJUSTMENT

Unfortunately, not everybody wants to participate in the survey. Due to
nonresponse, only a part of selected people answer the questions. The results

are summarized below:

o T

In Favor of Road Pricing?

Has a Car? Yes No
Yes 128 512
No 60 40

. Compute the response percentage.

. Using the available data, compute the percentage in favor of road pricing.

Using the available data, compute a lower bound and upper bound for the
percentage in the complete sample in favor of road pricing.

d. From another source, it is known that 80% of the target population owns a
car, and 20% does not have one. Use this additional information to apply

weighting adjustment.

Compute a weight for car owners, and a weight for those without a car.

-

Make a table like the one above, but with weighted frequencies.
Compute a weighted estimate for the percentage in favor of road pricing.

g. Explain the difference between the weighted and unweighted estimate.

10.4 A transport company carries out a survey to determine how healthy its truck
drivers are. From the population of all its drivers a simple random sample has
been selected. Of course, there is nonresponse. Therefore, data on only 21
drivers become available. Each respondent has been asked if he has visited a
doctor because of medical problems. Also, experience of the driver (little,
much) and age (young, middle, old) have been recorded. The results are shown
in the table:

No. Age Experience Doctor Visits No. Age Experience Doctor Visits
1  Young Much 2 12 Middle Little 6
2  Young Much 3 13 Middle Little 6
3 Young Much 4 14 Middle Little 7
4  Young Little 3 15 Old Much 8
5 Young Little 4 16 Old Much 10
6 Young Little 4 17 Old Much 10
7 Young Little 5 18 Old Much 8
8 Middle Much 5 19 Olid Little 8
9 Middle Much 6 20 Old Little 9

10 Middle Much 7 21 Oud Little 10
11 Middle Little 5
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a. Estimate the average number of doctor visits, assuming that the response
can be seen as a simple random sample.

b. Assume that the population distributions of experience and age are
available for the population of all drivers of the company:

Experience Percentage
Much 48%
Little 52%
Age Percentage
Young 22%
Middle 30%
Old 48%

Establish whether or not the response is selective. Explain which of these
two auxiliary variables should be preferred for computing adjustment
weights.

c. For each auxiliary variable separately carry out weighting adjustment.
Compute weights for each of the categories of the auxiliary variable.

d. Compute for both weighting adjustments a weighted estimate of the
average number of doctor visits.

e. Compare the outcomes under (a) and (d). Explain differences and/or
similarities.



CHAPTER 11

Online Surveys

11.1 THE POPULARITY OF ONLINE RESEARCH

Collecting data using a survey is a complex, costly, and time-consuming process.
Traditionally, surveys were carried out using paper forms (PAPI). One of the problems
of this mode of data collection was that data usually contained many errors. Therefore,
extensive data editing was required to obtain data of acceptable quality. Data editing
activities often consume a substantial part of the total survey budget. Chapter 7
described how rapid developments in information technology in the last few
decades of the previous century have made it possible to use microcomputers for
computer-assisted interviewing (CAI). This type of data collection has three major
advantages: (1) It simplifies work of the interviewers because they do not have
to pay attention any more to choosing the correct route through the questionnaire,
(2) it improves the quality of the collected data because answers can be checked
and corrected during the interview, and (3) it considerably reduces time needed to
process the survey data. Thus, it improves the timeliness of survey results and
reduces survey costs. More on the benefits of CAI can be found in Chapter 7 and
Couper et al. (1998).

Computer-assisted interviewing comes in various modes. It started in the 1970s
with computer-assisted telephone interviewing (CATI). More recent was computer-
assisted personal interviewing (CAPI), that is, face-to-face interviewing in which
interviewers use a laptop computer to ask the questions. CAPI emerged in the 1980s
when lightweight laptop computers made face-to-face interviewing with a computer
feasible. After more and more companies and households purchased their own
computers, mail surveys could be replaced with their electronic analogue, and thus
computer-assisted self-interviewing (CASI) emerged.

The rapid development of Internet in the last decade has led to computer-assisted
Web interviewing (CAWI), a new type of computer-assisted interviewing.
The questionnaire is designed as a Web site, which is accessed by respondents.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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These online surveys, also called Web surveys, are almost always self-administered:
respondents visit the Web site and complete the questionnaire by answering the
questions. Not surprisingly, survey organizations use, or consider using, online
surveys. At first sight, they seem to have some attractive advantages:

e Now that so many people are connected to Internet, an online survey is a simple
means to get access to a large group of potential respondents.

¢ Questionnaires can be distributed at very low costs. No interviewers are needed,
and there are no mailing and printing costs involved.

e Surveys can be launched very quickly. Little time is lost between the moment the
questionnaire is ready and the start of the fieldwork.

¢ Online surveys offer new, attractive possibilities, such as the use of multimedia
(sound, pictures, animation, and movies).

Thus, online surveys seem to be a fast, cheap and attractive means of collecting
large amounts of data. However, there are methodological problems, caused partly by
the use of Internet for selecting respondents and partly by the use of the Web as a
measuring instrument. If these problems are not seriously addressed, online surveys
may result in low-quality data by which no proper inference can be made with respect
to the target population of the survey.

This chapter discusses some of the methodological issues that are specific for online
surveys. Particularly, attention is paid to the effects of undercoverage and self-
selection. Some theory is developed, and it is shown what the effects of some
correction techniques can be. Practical implications are explored using data from a
fictitious population.

11.2 ERRORS IN ONLINE SURVEYS

In the process of carrying out a survey, a lot of things can happen that may have an
impact on the quality of the survey outcomes. Chapter 8 presented a systematic
overview of possible problems. Many of these problems can also occur in online
surveys.

Undercoverage occurs when elements of the target population do not have a
corresponding entry in the sampling frame. These elements can and will never be
contacted. Undercoverage is a serious problem if Internet is used as a sampling frame
and the target population contains people without Internet. These people can never be
selected for the survey.

Selection errors can occur in an online survey when the sample is based on self-
selection. The survey questionnaire is simply put on the Web. Respondents are those
people who happen to have Internet access, visit the Web site, and decide to participate
in the survey. The survey researcher is not in control of the selection process.
Consequently, selection probabilities are unknown, and therefore unbiased estimation
is not possible.
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Nonresponse can also occur in online surveys. An online survey questionnaire is a
self-administered questionnaire. Therefore, online surveys have a potential of high
nonresponse rates. An additional source of nonresponse problems is technical
problems of respondents having to interact with Internet (see, for example,
Couper, 2000; Dillman and Bowker, 2001; Fricker and Schonlau, 2002; Heerwegh
and Loosveldt, 2002). Slow modem speeds, unreliable connections, high connection
costs, low-end browsers, and unclear navigation instructions may frustrate
respondents.

Coverage and selection problems are discussed in more detail in the following
subsections.

11.2.1 Coverage Problems

The collection of all elements that can be contacted through the sampling frame is
called the frame population. Since the sample is selected from the frame population,
conclusions drawn using the survey data will apply to the frame population, and not
necessarily to the target population. Coverage problems can arise when the frame
population differs from the target population.

Undercoverage occurs when elements in the target population do not appear in the
frame population. These elements have zero probability of being selected in the
sample. Undercoverage can be a serious problem for online surveys. If the target
population consists of all people with an Internet connection, there is no problem.
However, usually the target population is wider than that. Then, undercoverage occurs
due to the fact that still many people do not have access to Internet. According to
Eurostat (2007), the statistical office of the European Union, countries differ substan-
tially in Internet coverage of households. Table 11.1 summarizes the extremes.

Internet access is very high in The Netherlands. More than four out of five
households have an Internet connection. Internet coverage is also high in
Scandinavian countries of Sweden and Denmark. Coverage is very low in the
Balkan countries of Romania and Bulgaria. Approximately, only one out of five
households has Internet access.

Table 11.1 Internet Access by Households in Europe in 2007

Country Internet Access Broadband Connection
Netherlands 83% 74%
Sweden 79% 67%
Denmark 78% 70%
Greece 25% 7%
Romania 22% 8%
Bulgaria 19% 15%
EU 54% 42

Source: Eurostat (2007).



ERRORS IN ONLINE SURVEYS 279

90 83
68
70 65

60 -k
43

[¢)]
X

50
Percentage
9 40

30 26 -k

20 116 R
ot
0

1998 1999 2000 2001 2002 2003 2004 2005

Year

Figure 11.1 Percentage of persons having Internet (in The Netherlands).

Table 11.1 also contains information about the percentage of households with a
broadband Internet connection. Itis clear that still many Internet connections are based
on slow modems. This may put restrictions on the questionnaires used. They may not
be too long and too complicated, and prohibit advanced features such as the use of
images, video, and animation. Slow questionnaire processing may cause respondents
to break off the session, resulting in only partially completed questionnaires.

In The Netherlands, the percentage of persons having an Internet connection at
home has increased from year to year (see Fig. 11.1). In 7 years, the number of Internet
connections increased from 16 to 83%. Still, it is clear that not every household will
have access to Internet in the near future.

An analysis of data on Internet access in The Netherlands in 2005 indicates that
Internet access is unevenly distributed over the population. Figure 11.2 shows the
distribution by gender. Apparently, more males than females have access to the
Internet.

Figure 11.3 contains the percentage of Dutch people having Internet by age group
(in 2005). The percentage of Internet access at home decreases with age. Particularly,
the people of age 55 and older will be very much underrepresented when the Internet is
used as a selection mechanism.

| I
Male 84
Female 81
! ! ! !
0 20 40 60 80 100
Percentage

Figure 11.2 Having Internet by gender.
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Figure 11.3 Having Internet by age.

Figure 11.4 shows the percentage of people in The Netherlands with an access to
Internet by level of education (in 2005). It is clear that people with a higher level of
education tend to have Internet access more frequently than people with a lower level
of education.

According to De Haan and Van’t Hof (2006), Internet access among nonnative
young people is much lower in The Netherlands than among native young people: 91%
of the young natives have access to Internet. This access is 80% for young people from
Surinam and Antilles, 68% for young people from Turkey, and only 64% for young
people from Morocco.

The results described above are in line with the findings of many authors in other
countries (see Couper, 2000; Dillman and Bowker, 2001).

Itis clear that the use of Internet as a sampling frame will cause problems, because
specific groups are substantially underrepresented. Evenif a proper probability sample
is selected, the result will be a selective sample. Specific groups in the target population
will not be able to fill in the (electronic) questionnaire form.

Note that there is some similarity with CATI surveys in which telephone directories
are used as a sampling frame. Here, people without a telephone and people with an
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Figure 11.4 Having Internet by level of education.
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unlisted number will be excluded from the survey. It is interesting to note that, for
example, in The Netherlands between 60 and 70% of the people have listed fixed-line
telephone number. This implies that by using a telephone directory as a sampling
frame, one out of three households will never be selected. So Internet coverage is much
higher than telephone coverage in The Netherlands (for listed fixed-line telephones).
These numbers speak in favor of online surveys. However, the effects of under-
coverage are also determined by the extent to which the undercovered part of the
population differs from the covered part (with respect to the target variables of the
survey) (see also Section 11.3.2).

11.2.2 Selection Problems

Horvitz and Thompson (1952) show in their seminal paper that unbiased estimates of
population characteristics can be computed only if a real probability sample has been
used, every element in the population has a nonzero probability of selection, and all
probabilities are known to the researcher. Furthermore, only under these conditions
can the accuracy of estimates be computed.

Many online surveys are not based on probability sampling. The survey question-
naire is simply put on the Web. Respondents are those people who happen to have
Internet access, visit the Web site and decide to participate in the survey. The survey
researcher is not in control of the selection process. Selection probabilities are
unknown, and therefore neither can unbiased estimates be computed nor can the
accuracy of estimates be determined. These surveys are called self-selection surveys.

The effects of self-selection can be illustrated by using an example related to the
general elections in The Netherlands in 2003. Various organizations made attempts to
use opinion polls to predict the outcome of these elections. The results of these polls are
summarized in Table 11.2.

Table 11.2 Dutch Parliamentary Elections 2003: Outcomes and the Results
of Various Opinion Surveys

Election Kennisnet RTL4 SBS6 Nederland 1

Sample size 17,000 10,000 3,000 1,200

Seats in Parliament
CDA (Christian democrats) 44 29 24 42 42
LPF (populist party) 8 18 12 6 7
VVD (liberals) 28 24 38 28 28
PvdA (social democrats) 42 13 41 45 43
SP (socialists) 9 22 10 11 9
GL (green party) 8 26 9 6 8
D66 (liberal democrats) 6 4 7 5 6
Other parties 5 14 9 7 7

Mean absolute difference 12.5 5.3 1.8 0.8
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A typical example of a self-selection survey was the survey on the Dutch Web site
Kennisnet (Knowledge net). This is a Web site for all those involved in education.
More than 11,000 schools and other educational institutes use this Web site. The
survey was an opinion poll for the general elections held on January 22, 2003.
Everybody, including those not involved in education, could participate in the poll.
Table 11.2 contains both the official results (seats in Parliament) of the election
(column Election) and the results of this poll on the morning of the election day
(column Kennisnet). The survey estimates were based on votes of approximately
17,000 people. No adjustment weighting was carried out. Although this was a large
sample, it is clear that the survey results were no way near the true election results.
The mean absolute difference (MAD) is equal to 12.5, which means that the estimated
number of seats and the true number of seats differ on average by an amount of 12.5.

Another example of a self-selection Web survey was the election site of the Dutch
television channel RTL4. It resembled to some extent the Kennisnet survey but was
targeted at a much wider audience. Again, the survey researcher had no control at all
over who was voting. There was some protection, by means of cookies, against voting
more than once. However, this also had a drawback as only one member of the
family could participate. Table 11.2 shows the survey results at noon on the day of the
general elections (column RTL4). Figures were based on slightly over 10,000 votes.
No weighting adjustment procedure was carried out. The results are better than that
of the Kennisnet survey (the MAD decreased from 12.5 to 5.3). However, deviations
between estimates and true figures are still substantial, particularly for the large
parties. Note that even a large sample size of over 10,000 people did not help to get
accurate estimates.

The Dutch commercial television channel SBS6 used an access panel. This is an
Internet panel. Its members are regularly approached to complete a questionnaire on
the Internet. Values of basic demographic variables were available for all panel
members. A sample of size 3000 was selected. Selection was carried out such that
the sample was representative with respect to the social-demographic and voting
characteristics. Table 11.2 shows the results (column SBS6). The survey took place
on the day before the general elections. Although attempts have been made to create
a “representative” sample, the results differ still from the final result. The MAD has
decreased to 1.8 but is still substantial.

A better prediction was obtained with a true probability sample. The table shows the
results of a survey based on such a probability sample. It was carried out by the
television channel Nederland 1 in cooperation with the marketing agency Interview-
NSS. A sample of size 1200 was selected by means of random digit dialing. The MAD
was reduced to 0.8.

The conclusion from the analysis above is that a probability sample is a vital
prerequisite for making proper inference about the target population of a survey. Even
with a probability sample only of size 1200, better results can be obtained than with a
nonprobability sample of size 10,000 or more.

A more recent comparison is presented in Table 11.3. Politieke Barometer, Peil.nl
and De Stemming are opinion polls for the Dutch General Election of 2006. These
polls are based on samples from online panels. To reduce a possible bias, adjustment
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Table 11.3 Dutch Parliamentary Elections 2006: Outcomes and the Results
of Various Opinion Surveys

Election  Politieke DPES
Result  Barometer Peil.nl De Stemming 2006
Sample size 1000 2500 2000 2600
Seats in Parliament
CDA (Christian democrats) 41 41 42 41 41
PvdA (social democrats) 33 37 38 31 32
VVD (liberals) 22 23 22 21 22
SP (socialists) 25 23 23 32 26
GL (green party) 7 7 8 5 7
D66 (liberal democrats) 3 3 2 1 3
ChristenUnie (Christian) 6 6 6 8 6
SGP (Christian) 2 2 2 1 2
PvdD (animal party) 2 2 1 2 2
PvdV (conservative) 9 4 5 6 8
Other parties 0 2 1 2 1
Mean absolute difference 1.27 1.45 2.00 0.36

weighting has been carried out. DPES is the Dutch Parliamentary Election Study. The
fieldwork was carried out by Statistics Netherlands. It used a true (two-stage)
probability sample. Respondents were interviewed face-to-face (using CAPI). It is
clear that the DPES outperformed the online polls.

Probability sampling has the additional advantage of providing protection
against certain groups in the population attempting to manipulate the outcomes of
the survey. This may typically play a role in opinion polls. Self-selection does not
have this safeguard. An example of this effect could be observed in the election of the
2005 Book of the Year award (Dutch: NS Publieksprijs), a high-profile literary prize.
The winning book was determined by means of a poll on a Web site. People could vote
for one of the nominated books or mention another book of their choice. More than
90,000 people participated in the survey. The winner turned out to be the new
interconfessional Bible translation launched by The Netherlands and Flanders
Bible Societies. Although this book was not nominated, an overwhelming majority
of respondents (72%) voted it. This was due to a campaign launched by (among others)
Bible societies, a Christian broadcaster and Christian newspaper. Although this was all
completely within the rules of the contest, the group of voters could clearly not be
considered representative of the Dutch population.

11.3 THE THEORETICAL FRAMEWORK

11.3.1 The Internet Population

Let the target population of the survey consist of N identifiable elements, which are
labeled 1,2, .. ., N. Associated with each element k is a value Y of the target variable Y.
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The aim of the Web survey is assumed to be an estimation of the population mean

.1
Y==3 "% (11.1)
Nk:l

of the target variable Y.

The population U is divided into two subpopulations: U; of elements having an
access to Internet and Uy of elements not having an access to the Internet. Associated
with each element k is an indicator I;, where I; = 1 if element k has access to Internet
(and thus is an element of subpopulation Uy), and I;, = 0 otherwise. The subpopulation
U will be called the Internet population and Uy is the non-Internet population. Let

N
Ny = Z[k (11.2)
k=1

denote the size of subpopulation U;. Likewise, Ny denotes the size of the subpopula-
tion UN[, where N] + NNI =N.
The mean of the target variable for the elements in the Internet population is equal to

_ 1 &
Yi=— I.Y:. 11.3
= (113)

Likewise, the mean of the target variable for the non-Internet population is
denoted by

N

Y1 :NLZ(l—Ik)Yk. (11.4)

NEg=

11.3.2 A Random Sample from the Internet Population

The first situation to consider for an online survey is the more or less ideal case in which
it is possible to select a random sample without replacement from the Internet
population. This would require a sampling frame listing all elements with an access
to Internet. No such list exists, but there are ways to get close to such a situation. One
way to do this is to select a random sample from a larger sampling frame (e.g., a
population or address register), approach the selected people in a classical way (by
mail, telephone, or face-to-face), and filter out only those people having an access to
Internet. Next, selected people are provided with an Internet address where they can fill
in the questionnaire form. It is clear that initially such registers suffer from over-
coverage, but with this approach every element in the Internet population has a positive
and known probability of being selected.

A random sample selected without replacement from the Internet population is
represented by a series

ay,dy,...,dy (115)

of Nindicators, where the kth indicator a; assumes the value 1 if element & is selected,
otherwise it assumes the value 0, for k=1, 2, ..., N. Note that always a;, =0 for
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elements k in the non-Internet population. The sample size is denoted by
nm=a +a+ --- +ay.

The expected value 7, = E(ay) is the first-order inclusion probability of element k.
Recall that Horvitz and Thompson (1952) have shown that always an unbiased
estimator of the population mean can be defined if all elements in the population
have known positive probability of being selected. The Horvitz—Thompson estimator
for the mean of the Internet population is defined by

1 & Yi
YT = — ali —, 11.6
YHT N ; ™ ( )

where by definition Y;/7; = 0 for all elements outside the Internet population. In case
of a simple random sample from the Internet population, all first-order inclusion
probabilities are equal to n/Ny. Therefore, expression (11.6) reduces to

IN
V= — ai i Y. 11.7
-5 1)

This estimator is an unbiased estimator of the mean Y| of the Internet population

but not necessarily of the mean Yof the target population. The bias is equal to
B(Yur) = E(Gur)—Y = Yl_y:%(yl_ym)- (11.8)

The magnitude of this bias is determined by two factors. The first factor is the
relative size Ny/N of the subpopulation without Internet. The bias will increase as a
larger proportion of the population does not have access to Internet. The second
factor is the contrast Y1—Yny between the Internet population and the non-Internet
population. The more the mean of the target variable differs for these two subpopula-
tions, the larger the bias will be.

Presently, the size of the non-Internet population cannot be neglected in The
Netherlands. Figure 11.1 shows that although the percentage of people without
Internet is rapidly decreasing, it is still in the order of 17%.

Furthermore, there are substantial differences between these two subpopulations.
The graphs in Section 11.2 show that specific groups are underrepresented in the
Internet population; for example, the elderly, those with a low level of education,
and ethnic minority groups. So, the conclusion is that generally a random sample from
an Internet population will lead to biased estimates for the parameters of the target
population.

11.3.3 Self-Selection from the Internet Population

For many online surveys no proper random sample is selected from the Internet
population. These surveys rely on self-selection of respondents. Participation requires
that respondents are first aware of the existence of a survey (they have to accidentally
visit the Web site or they have to follow up a banner or an e-mail message). Second,
they have to make the decision to fill in the questionnaire on the Internet. All this means
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that each element k in the Internet population has unknown probability p; of
participating in the survey, for k=1, 2, ..., N;. The responding elements can be
denoted by a series

Ri,Rs,....Ry (11.9)

of N indicators, where the kth indicator R, assumes the value 1 if element k
participates, and otherwise it assumes the value 0, for k=1, 2, ..., N. Not that
selection without replacement is assumed. The expected value p;, = E(R)) will be
called the response probability of element k. For the sake of convenience also response
probabilities are introduced for the elements in the non-Internet population. By
definition, the values of all these probabilities are 0.

The realized sample size is equal to

N
ns =Y Ry (11.10)
k=1

A naive researcher assuming that every element in the Internet population has the
same probability of being selected in the sample will use the sample mean

1 N
ys=—> RiYy (11.11)
s

as an estimator for the population mean. The expected value of this estimator is
approximately equal to

N I~
E(ys) = Y :N—IﬁZpklkYk, (11.12)
k=1

where p is the mean of all response probabilities in the Internet population (see, for
example, Bethlehem, 1988).
By using an approach similar to Cochran (1977, p. 31), it can be shown that the
variance of the sample mean is approximately equal to
1 & .

V(ys) %W;Pk(l—%)(yk—y ). (11.13)

Note that this expression for the variance does not contain a sample size (because no
fixed size sample is drawn) but the expected sample size Nip. Not surprisingly, the
variance decreases as the expected sample size increases.

In general, the expected value of the sample mean is not equal to the population
mean of the Internet population. The only situation in which the bias vanishes is that in
which all response probabilities in the Internet population are equal. In terms of
nonresponse correction theory, this comes down to missing completely at random
(MCAR). See also Section 8.3 on imputation techniques for item nonresponse and
Section 9.4 on the analysis of unit nonresponse.

Indeed, in case of equal selection probabilities, self-selection does not lead to an
unrepresentative sample because all elements have the same selection probability.
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Similar to Bethlehem (1988), it can be shown that the bias of the sample mean 11.11
can be written as

B(ys) = E(s)-V1~ ¥ =¥y :@:M, (11.14)
p p
in which
1 Y _
Spy :ﬁlkzllk(ﬁ’k_ﬁ)(yk_y) (11.15)

is the covariance between the values of target variable and the response probabilities in
the Internet population, and p is the average response probability. Furthermore, R,y is
the correlation coefficient between target variable and the response behavior, S, is the
standard deviation of the response probabilities, and Sy is the standard deviation of the
target variable.

The bias of the sample mean (as an estimator of the mean of the Internet population)
is determined by the following factors:

e The average response probability. The more likely people are to participate in the
survey, the higher the average response probability will be, and thus the smaller
the bias will be.

e The relationship between the target variable and response behavior. The higher
the correlation between the values of the target variable and the response
probabilities, the higher the bias will be.

e The variation in the response probabilities. The more these probabilities vary, the
larger the bias will be.

Three situations can be distinguished in which this bias vanishes:

(1) All response probabilities are equal. Again, this is the case in which the self-
selection process can be compared with a simple random sample.

(2) All values of the target variable are equal. This situation is very unlikely to
occur. If this were the case, no survey would be necessary. One observation
would be sufficient.

(3) There is no relationship between target variable and response behavior. It
means participation does not depend on the value of the target variable.

Expression (11.14) for the bias of the estimator can be used to compute an upper
bound for the bias. Given the mean response probability p, there is a maximum value
that the standard deviation S, of the response probabilities cannot exceed

Sy < Vp(1-7). (11.16)

This implies that in the worst case (S, assumes its maximum value and the
correlation coefficient R,y is equal to either + 1 or —1), the absolute value of the
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1
|Bunas | :S”/E—l. (11.17)

This worst-case value of the bias also applies to the situation in which a probability
sample has been drawn and subsequently nonresponse occurs in the fieldwork.
Therefore, expression (11.17) provides a means to compare potential biases in various
survey situations.

For example, regular surveys of Statistics Netherlands have response rates of
around 70%. This means the absolute maximum bias is equal to 0.65 x Sy. One of the
largest Web surveys in The Netherlands was 2 Iminuten.nl. This survey was supposed
to provide answers to questions about important problems in the Dutch society.
Within a period of 6 weeks in 2006 about 170,000 people completed the questionnaire
(which took about 21 min). As everyone could participate in the survey, the target
population was not defined properly. If it is assumed the target population consists of
all Dutch citizens from the age of 18, the average response probability was 170,000/
12,800,000 =0.0133. Hence, the absolute maximum bias is equal to 8.61 x Sy.
The conclusion is that the bias of the large Web survey can be a factor 13 larger
than the bias of the small probability survey.

In many cases, the objective of the survey is not to estimate the mean of the
Internet population but the mean of the total population, the target population. In this
case, the bias of the sample mean is equal to

bias will be equal to

Nni

B(ys) = E(s)~Y = E(s) Y1+ Y=Y =~ (VY1) + Clp,Y)

(11.18)

The bias now consists of two terms: a bias caused by interviewing just the Internet
population instead of the complete target population (undercoverage bias) and a bias
caused by self-selection of respondents in the Internet population (self-selection bias).
Theoretically, it is possible that these two biases compensate one another. If people
without Internet resemble people with Internet who are less inclined to participate,
the combined effects will produce a larger bias. Practical experiences suggest that
this may often be the case. For example, suppose Yis a variable measuring the intensity
of some activity on the Internet (surfing, playing online games). Then, a positive
correlation between Y and response propensities is not unlikely. Also, the mean of Y
for the Internet population will be positive whereas the mean of the non-Internet
population will be 0. So, both bias terms have a positive value.

11.4 CORRECTION BY ADJUSTMENT WEIGHTING

Weighting adjustment is a family of techniques that attempt to improve the quality
of survey estimates by using auxiliary information. Auxiliary information is defined
as a set of variables that have been measured in the survey and for which information
on their population distribution is available. By comparing the population distribution
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of an auxiliary variable with its sample distribution, it can be assessed whether or not
the sample is representative for the population (with respect to this variable). If these
distributions differ considerably, one must conclude that the sample is selective.
To correct this, adjustment weights are computed. Weights are assigned to all records
of observed elements. Estimates of population characteristics can now be obtained
by using the weighted values instead of the unweighted values. Weighting adjustment
used to correct surveys that are affected by nonresponse has been described in
Chapter 10 (see also Bethlehem, 2002).

This section explores the possibility of reducing the bias of online survey estimates.
The usefulness of adjustment weighting is described separately for undercoverage and
self-selection. Section 11.4.1 shows how poststratification may reduce an undercoverage
bias and Section 11.4.2 is about poststratification to reduce the self-selection bias.

11.4.1 Poststratification to Correct for Undercoverage

Poststratification is a well-known and often-used weighting adjustment method. It is
typically used to correct the negative effects of nonresponse. It is now explored
whether poststratification can also successfully reduce the bias caused by
undercoverage.

To carry out poststratification, one or more qualitative auxiliary variables are
needed. Here, only one such variable is considered. The situation for more variables
is not essentially different. Suppose there is an auxiliary variable X having L
categories. So it divides the target population into L strata. The strata are denoted
by the subsets Uy, Us, ..., U of the population U. The number of target population
elements in stratum Uy, is denoted by Nj, for k=1, 2, ..., L. The population size N is
equaltoN = Ny + N, + --- + Ni. This is the population information assumed to be
available.

Suppose a sample of size #; is selected from the Internet population. If ;, denotes
the number of sample elements in stratum /4, then ny=n;+n,+ -+ +ng.
The values of the ny, are the result of a random selection process, so they are random
variables. Note that since the sample is selected from the Internet population,
only elements in the substrata Uy N Uy, are observed (for =1, 2, ..., L).

Poststratification assigns identical adjustment weights to all elements in the same
stratum. The weight wy for an element k in stratum /% is equal to

Ni/N
= . 11.19
= (11.19)
The simple sample mean
1
yp=— I Y 11.20
n=- Zak 1Y ( )

Ly}
is now replaced by the weighted sample mean

: RN
Yips = _ZakaIkYk- (11.21)
oy
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Substituting the weights and working out this expression leads to the poststratifica-
tion estimator

- I & L o
Yips = ﬁzNhy§ )= Z Why§ ) (11.22)
h=1 h=1

where )7§h) is the sample mean in stratum /2 and W), = N, /N is the relative size of stratum

h. The expected value of this poststratification estimator is equal to

E(Yips) ZNh ZWh W=7, (11.23)

where Y( " is the mean of the target variable in stratum / of the Internet population.
Generally, this mean will not be equal to the mean 7" of the target variable in stratum
h of the target population. The bias of this estimator is equal to

L L
_ _ - o 5 St o Nnvn (o) o
B(yps) = E(ips)—Y =Y1-Y = Z Wh(ﬁ -y )) = ZWhiNh' (Y£ )—Y§\n>)7

h=1 h=1
(11.24)

where Ny, is the number of elements in stratum / of the non-Internet population.

The bias will be small if there is (on average) no difference between elements with
and without Internet within the strata. This is the case if there is a strong relationship
between the target variable Y and the stratification variable X. The variation in the
values of Y manifests itself between strata but not within strata. In other words, the
strata are homogeneous with respect to the target variable. In nonresponse correction
terminology, this situation comes down to missing at random (MAR).

It can be concluded that the application of poststratification will successfully
reduce the bias of the estimator if proper auxiliary variables can be found. Such
variables should satisfy three conditions:

¢ They have to be measured in the survey.
o Their population distribution (Ny, N, ..., N;) must be known.
e They must be strongly correlated with all target variables.

Unfortunately, such variables are not very often available or there is only a weak

correlation.
The variance of the poststratification estimator is equal to

V (Fps) Z w2V (™). (11.25)

Cochran (1977) shows that in the case of a simple random sampling from the
complete population, this expression is equal to

1
V(ps) fz WiS2 + 22 (1-W,)S2, (11.26)
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where f=n/N and Si is the variance in stratum /4. If the strata are homogeneous
with respect to Y, the variance of estimator will be small.

In case of simple random sampling from the Internet population, the variance
of the estimator 11.7 becomes

L
VQies) = > W, Loy W e (11.27)
' =1 mWin (W)™ M)

where Ny, is the size of stratum / in the Internet population, Wy, = Ny /Ny and S%‘ B
is the variance in stratum / of the Internet population.

11.4.2 Poststratification to Correct for Self-Selection

It is now explored whether poststratification can also successfully reduce
the bias caused by self-selection. Poststratification requires auxiliary variables.
The population of these auxiliary variables must be known. For a probability sample
in which nonresponse has occurred, it is also possible to use the distribution of
the auxiliary variables in the complete sample instead of their population distribution.
Such information can sometimes be retrieved from the sampling frame. This situation
does not apply to self-selection samples as there is no sampling frame.

Suppose a self-selection sample is selected from the Internet population. The total
sample size is denoted by ng. If 1, denotes the number of respondents in stratum /4,
thenng = n; +n, + --- + np. The values of the i, are the result of a Poisson sampling
process, so they are random variables.

Poststratification assigns identical adjustment weights to all elements in the same
stratum. The weight wy for a respondent k in stratum / is equal to

_ Nh/N

= i 11.28
M s ( )
The simple sample mean
1 &
y=—> R (11.29)
s 4=
is now replaced by the weighted sample mean
| &
Yps = _ZWkRkYk- (1130)
gy

Substituting the weights and working out this expression leads to the poststratifica-
tion estimator

S TR S
YPS:NZNthZZWhyhv (11.31)
=1 =1

where ¥, is the sample mean in stratum /1 and W), = N;/Nis the relative size of stratum /.
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The expected value of this poststratification estimator is equal to

L
E(3ps) ZNhE =3 Wi, =Y, (11.32)
h=1
where
o 1 Nj '
Y, = LA (11.33)
Nllzk 1 D

is the weighted mean of the target variable in stratum /. The subscripts k, i denote the
kth element in stratum /, and p, is the average response probability in stratum /.

Expression 11.33 is the analogue of expression 11.12, but now computed for
stratum /. Generally, this mean will not be equal to the mean of the target variable in
stratum /1 of the target population. The bias of this estimator is equal to

Ny 5 . - L Roy 1Sp Sy p
B(yps) = E(¥ps)—Y = Z Y/, Yy) = ZWhT, (11.34)
=1 =1 J

where the subscript / indicates that the respective quantities are computed just for
stratum /1 and not for the complete population.
This bias will be small if

e the response propensities are similar within strata;
e the values of the target variable are similar within strata;

e there is no correlation between response behavior and the target variable within
strata.

These conditions can be realized if there is a strong relationship between the target
variable Y and the stratification variable X. Then the variation in the values of ¥
manifests itself between strata but not within strata. In other words, the strata are
homogeneous with respect to the target variable. Also, if the strata are homogeneous
with respect to the response probabilities, the bias will be reduced. In nonresponse
correction terminology, this situation comes down to missing at random (MAR).

It can be concluded that the application of poststratification will successfully
reduce the bias of the estimator if proper auxiliary variables can be found. Such
variables must have been measured in the survey, their population distribution must be
known, and they must produce homogeneous strata. Unfortunately, such variables are
rarely available.

In the case of a self-selection Web survey, the variance V (¥, )of the sample meanina
stratum is the analogue of variance 11.13 butrestricted to observations in that stratum.
Therefore, the variance of the poststratification estimator is approximately equal to

V(¥ps) ZWh Zpk (1=p) (Yi— Yh)' (11.35)

h=1 (MVy hPh) keU,
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This variance is small if the strata are homogeneous with respect to the target
variable. So, a strong correlation between the target variable Y and the stratification
variable X will reduce both the bias and the variance of the estimator.

11.5 CORRECTION USING A REFERENCE SURVEY

Poststratification can be an effective correction technique provided auxiliary variables
that have a strong correlation with the target variables of the survey are available.
If such variables are not available, it might be considered to conduct a reference survey.
This reference survey is based on a small probability sample, where data collection
takes place with a mode different from the Web, for example, computer-assisted
personal interviewing, with laptops or computer-assisted telephone interviewing.
The reference survey approach has been applied by several market research organiza-
tions (see Borsch-Supan et al., 2004; Duffy et al., 2005).

Under the assumption of no nonresponse, or ignorable nonresponse, this reference
survey will produce unbiased estimates of quantities that have also been measured in the
online survey. Unbiased estimates for the target variable can be computed, but due to the
small sample size, these estimates will have a substantial variance. The question is now
whether estimates can be improved by combining the large sample size of the online
survey with the unbiasedness of the reference survey in improving estimates.

Section 11.5.1 explores the use of a reference survey to correct an undercoverage
bias. Section 11.5.2 does the same for the self-selection bias.

11.5.1 Reducing the Undercoverage Bias with a Reference Survey

It is assumed that one qualitative auxiliary variable is observed both in the online
survey and the reference survey, and that this variable has a strong correlation with
the target variable of the survey. Then, a form of poststratification can be applied where
the stratum means are estimated using online survey data and the stratum weights are
estimated using the reference survey data. This leads to the poststratification estimator

L

_ mp _(h

YIRS = E —Zy£ )a (11.36)
= M

where y%h) is the online survey-based estimate for the mean of stratum /2 of the Internet

population (for A=1, 2, ..., L) and my/m is the relative sample size in stratum / as
estimated in the reference survey sample (for h=1, 2, ..., L). Under the conditions
described above, the quantity n1,/m is an unbiased estimate of W, = N,/N.

Let I denote the probability distribution for the online survey and let P be the
probability distribution for the reference survey. Then, the expected value of the
poststratification estimator is equal to

L L
- _ Ni _ Sy _ 5
E(3ixs) = EiEr(izsll) = Er (Z el 1’) =y =7 (1137)
h=1 h=1
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where W;, = N,/N is the relative size of stratum / in the target population. So, the
expected value of this estimator is identical to that of the poststratification estima-
tor 11.23. The bias of this estimator is equal to

L
_ _ i NNLE o) 5
B()’[,Rs) :E()’I,Rs) =1-Y= ZW YM = ZWh NhI(YY)_Yﬁn))-

h=1 h=1

(11.38)

If a strong relationship exists between the target variable and the auxiliary variable
used for computing the weights, there is little or no variation of the target variable
within the strata. This implies that if the stratum means for the Internet population and
for the target population do not differ much, this results in a small bias. So, using a
reference survey with proper auxiliary variables can substantially reduce the bias of
online survey estimates.

Note that the expression for the bias of the reference survey estimator is equal to that
of the poststratification estimator. An interesting aspect of the reference survey
approach is that any variable can be used for adjustment weighting as long as it is
measured in both surveys. For example, some market research organizations use
“webographic” or “psychographic” variables that divide the population in “mentality
groups.” People in the same groups have more or less the same level of motivation
and interest to participate in such surveys. Deployment of effective weighting
variables resembles the MAR situation. This implies that within weighting strata
there is no relationship between participating in an online survey and the target
variables of the survey.

Bethlehem (2007) shows that if a reference survey is used, the variance of the
poststratification estimator is equal to

1 L —(h - —(h
VGigs) th 7% S W= W)v o) + Y wiv ey

/1 1 h=1 h=1
(11.39)

The quantity yf” is measured in the online survey. Therefore, its variance V(y}’”)

will be of the order 1/n;. This means that the first term in the variance of the
poststratification estimator will be of the order 1/m, the second term of order
1/mny, and the third term of order 1/n;. Since n; will generally be much larger than
min practical situations, the first term in the variance will dominate, that is, the (small)
size of the reference survey will determine the accuracy of the estimates. So, the large
number of observations in the online survey does not help to produce accurate
estimates. One could say that the reference survey approach reduces the bias of
estimates at the cost of a higher variance.

11.5.2 Reducing the Self-Selection Bias with a Reference Survey

This section explores the effects of using a reference survey to reduce the bias in a self-
selection survey. Again, it is assumed that one qualitative auxiliary variable is
observed both in the Web survey and the reference survey, and that this variable
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has a strong correlation with the target variable of the survey. A form of poststratifica-
tion can be applied where the stratum means are estimated using Web survey data
and the stratum weights are estimated using the reference survey data. This leads to the
poststratification estimator

L
_ my, _
Yrs = — ¥, 11.40
s = D (11.40)
where y, is the Web survey-based estimate for the mean of stratum / of the target
population (for A=1, 2, ..., L) and m,/m is the estimated relative sample size
in stratum / using the reference survey (for A=1, 2, ..., L). Under the conditions
described above, the quantity n1,/m is an unbiased estimate of W, = N,/N.
Let I denote the probability distribution for the Web survey and let P be the
probability distribution for the reference survey. Then the expected value of the
poststratification estimator is equal to

- - N,
E(yrs) = EiEp(Yrs|m,ma, ... ,my) = E; (Z y ) Z Wth =7

h=1
(11.41)

So, the expected value of this estimator is identical to that of the poststratification
estimator 11.32. The bias of this estimator is equal to

- - L L Ry 1SpnSy i
B(yrs) = E(¥rs)—Y = Z (Y,=Yy) = Z Wi — 5
=1 =1 h

(11.42)

A strong relationship between the target variable and the auxiliary variable used
for computing the weights means that there is little or no variation of the target variable
within the strata. Consequently, the correlation between target variable and response
behavior will be small, and the same applies to the standard deviation of the target
variable. So, using a reference survey with the proper auxiliary variables can
substantially reduce the bias of Web survey estimates.

Bethlehem (2008) shows that if a reference survey is used, the variance of the
poststratification estimator is equal to

L

V(s) th ViV P LS W WV, S WV, (1143)

h=1 h=1

The quantity y,, is measured in the online survey. Its variance (y,) will be at most of
the order 1/E(ns) = 1/(Np). This means that the first term in the variance of the
poststratification estimator will be of the order 1/m, the second term will be of order
1/(mE(ng)), and the third term of order 1/E(ng). Since E(ng) will generally be much
larger than m in practical situations, the first term in the variance will dominate, that s,
the (small) size of the reference survey will determine the accuracy of the estimates.
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Moreover, since strata preferably are based on groups of people with the same
psychographic characteristics, and target Variatlles may very well be related to the
psychographic variables, the stratum means Y, may vary substantially. This also
contributes to a large value of the first variance component.

The conclusion is that a large number of observations in the online survey do not
help to produce accurate estimates. The reference survey approach may reduce the bias
of estimates, but it does so at the cost of a higher variance.

The effectiveness of a survey design is sometimes also indicated by means of the
effective sample size. This is the sample size of a simple random sample of elements
that would produce an estimator with the same precision. Using a reference survey
implies that the effective sample size is much lower than the size of the Web survey. See
Section 11.9 for an example showing this effect.

11.6 SAMPLING THE NON-INTERNET POPULATION

The fundamental problem of online surveys is that persons without Internet are
excluded from the survey. This problem could be solved by selecting a stratified
sample. The target population is assumed to consist of two strata: the Internet
population Uj of size Ny and the non-Internet population Uy of size Nyp.

To be able to compute an unbiased estimate, a simple random sample must be
selected from both strata. The online survey provides the data about the Internet
stratum. If this is a random sample with equal probabilities, the sample mean

1 N
yp=-— arli Yi 11.44
=13 (1149

is an unbiased estimator of the mean of the Internet population.

Now suppose a random sample (with equal probabilities) of size m is selected from
the non-Internet stratum. Of course, there is no sampling frame for this population.
This problem could be avoided by selecting a sample from the complete target
population (a reference survey) and by using only people without Internet access.
Selected people with Internet access can be added to the large online sample, but this
will have no substantial effect on estimators. The sample mean of the non-Internet
sample is denoted by

1 &
YN = — E b (1—1) Yy, 11.45
INI 2 ( ) ( )

where the indicator b; denotes whether or not element k is selected in the reference
survey, and

m:ibk(lflk). (11.46)
k=1
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The stratification estimator is now defined by

_ Nr_ | Nni_
YsT =y REVIRANE (11.47)
This is an unbiased estimator for the mean of the target population. Application of
this estimator assumes the size Ny of the Internet population and the size Ny of the non-
Internet population to be known. The variance of the estimator is equal to

Nt

vise) = () vou+ (5 vesa (1.4

The variance of the sample mean in the Internet stratum is of order 1/n and the
variance in the non-Internet stratum is of order 1/m. Since m will be much smaller than
n in practical situation, and the relative sizes of the Internet population and the non-
Internet population do not differ that much, the second term will determine the
magnitude of the variance. So the advantages of the large sample size of the online
survey are for a great part lost by the bias correction.

Note that the sizes of the Internet and non-Internet population are usually unknown.
In this case, they have to be estimated. This can, for example, be done using data from
the reference survey.

11.7 PROPENSITY WEIGHTING

Propensity weighting is used by several market research organizations to correct a
possible bias in their online survey (see Borsch-Supan et al., 2004; Duffy et al., 2005).
The original idea behind propensity weighting goes back to Rosenbaum and Rubin
(1983,1984). They developed a technique for comparing two populations. They
attempted to make the two populations comparable by simultaneously controlling
for all variables that were thought to explain the differences. Propensity weighting has
already been described in Section 10.7 as a technique to reduce the nonresponse bias.

Inthe case of an online survey, there are also two populations: those who participate
in the online survey and those who do not participate.

Propensity scores are obtained by modeling a variable that indicates whether or not
someone participates in the survey. Usually, a logistic regression model is used where
the indicator variable is the dependent variable and attitudinal variables are the
explanatory variables. These attitudinal variables are assumed to explain why
someone participates or not. Fitting the logistic regression model comes down to
estimating the probability (propensity) of participation, given the values of the
explanatory variables.

Application of propensity weighting assumes some kind of random process
determining whether or not someone participates in the online survey. Each element
k in the population has a certain, unknown probability p; of participating, for k = 1, 2,
..., N. Let R{, Ry, ..., Ry denote indicator variables, where R, =1 if person k
participates in the survey, and R; =0 otherwise. Consequently, P(R; = 1) = p.
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The propensity score p(X) is the conditional probability that a person with observed
characteristics X participates, that is,

p(X) = P(R = 1|X). (11.49)

It is assumed that within the strata defined by the values of the observed char-
acteristics X, all persons have the same participation propensity. This is the missing at
random assumption. The propensity score is often modeled using a logit model:

p(Xk) /
10g<1—p(Xk)> = a+B'X. (11.50)

The model is fitted using Maximum Likelihood estimation. Once propensity scores
have been estimated, they are used to stratify the population. Each stratum consists
of elements with (approximately) the same propensity scores. If indeed all elements
within a stratum have the same response propensity, there will be no bias if just the
elements in the Internet population are used for estimation purposes. Cochran (1968)
claims that five strata are usually sufficient to remove a large part of the bias. The
market research agency Harris Interactive was among the first to apply propensity
score weighting in online surveys (see Terhanian et al., 2001).

To be able to apply propensity score weighting, two conditions have to be fulfilled.
The first condition is that proper auxiliary variables must be available. These are
variables that are capable of explaining whether or not someone participates in the
online survey. Variables often used measure general attitudes and behavior. They are
sometimes referred to as webographic or psychographic variables. Schonlau et al.
(2004) mention as examples “Do you often feel alone?”” and “On how many separate
occasions did you watch news programs on TV during the past 30 days?”

The second condition for this type of adjustment weighting is that the population
distribution of the webographic variables must be available. This is generally not the
case. A possible solution to this problem is to carry out an additional reference survey.
To allow unbiased estimation of the population distribution, the reference survey must
be based on a true probability sample from the entire target population.

Such a reference survey can be small in terms of the number of questions asked.
It can be limited to the webographic questions. Preferably, the sample size of the
reference survey should be large to allow precise estimation. A small sample size
results in large standard errors of estimates. This is similar to the situations described
in Section 11.5.

Schonlau et al. (2004) describe the reference survey of Harris Interactive.
This is a CATI survey, using random digit dialing. This reference survey is used to
adjust several online surveys. Schonlau et al. (2003) stress that the success of this
approach depends on two assumptions: (1) the webographic variables are capable
of explaining the difference between the online survey respondents and the other
persons in the target population and (2) the reference survey does not suffer from
nonignorable nonresponse. In practical situations, it will not be easy to satisfy these
conditions.

It should be noted that from a theoretical point of view propensity weighting should
be sufficient to remove the bias. However, in practice the propensity score variable will
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often be combined with other (demographic) variables in a more extended weighting
procedure (see Schonlau et al., 2004).

11.8 SIMULATING THE EFFECTS OF UNDERCOVERAGE

The possible consequences of undercoverage and the effectiveness of correction
techniques are now illustrated using a simulation experiment. A fictitious population
was constructed. For this population, voting intentions for the next general elections
were simulated and analyzed.

The relationship between variables involved was such that it could resemble more
or less a real-life situation. With respect to the Internet population, both missing at
random (MAR) and not missing at random (NMAR) were introduced. The character-
istics of estimators (before and after correction) were computed based on a large
number of simulations.

First, the distribution of the estimator was determined in the ideal situation of a
simple random sample from the target population. Then, it was explored how the
characteristics of the estimator change if a simple random sample is selected just from
the Internet population. Finally, the affects of weighting (poststratification and
reference survey) were analyzed.

A fictitious population of 30,000 individuals was constructed. There were five
variables:

e Age in Three Categories. Young (with probability 0.40), Middle aged (with
probability 0.35), and Old (with probability 0.25).

e Ethnic Origin in Two Categories. Native (with probability 0.85) and Nonnative
(with probability 0.15).

e Having Access to Internet with Two Categories Yes and No. The probability of
having access to Internet depended on the two variables Age and Ethnic origin.
For natives, the probabilities were 0.90 (for Young), 0.70 (for Middle aged), and
0.50 (for Old). So, Internet access decreases with age. For nonnatives, these
probabilities were 0.20 (for Young), 0.10 (for Middle aged), and 0.00 (for Old).
These probabilities reflect the much lower Internet access among nonnatives.

e Vote for the National Elderly Party. The probability to vote for this party
depended on age. Probabilities were 0.00 (for Young), 0.40 (for Middle aged),
and 0.60 (for Old).

e Vote for the New Internet Party. The probability to vote for this party depended on
both age and having Internet. For people with Internet, the probabilities were 0.80
(for Young), 0.40 (for Middle aged), and 0.20 (for Old). For people without Internet,
all probabilities were equal to 0.10. So, for people with Internet voting decreases
with age. Voting probability is low for people without Internet (Fig. 11.5).

In the experiment, the variable NEP (National Elderly Party) suffered from
missingness due to missing at random. There is a direct relationship between voting
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| Age l—bl Internet | Age l—bl Internet

NIP NEP

Figure 11.5 Relationships between variables.

for this party and age, and also there is a direct relationship between age and having
Internet access. This will cause estimates to be biased. It should be possible to correct
this bias by weighting using the variable age.

The variable NIP (New Internet Party) suffers from not missing at random. There
exists (among other relationships) a direct relationship between voting for this party
and having Internet access. Estimates will be biased, and there is no correction
possible.

The distribution of estimators for the percentage of voters for both parties was
determined in various situations by repeating the selection of the sample 800 times. In
all cases, the sample size was n = 2000.

Figure 11.6 contains the results for the variable NEP (vote for the National Elderly
Party). The upper-left graph shows the distribution of the estimator for simple random
samples from the complete target population. The vertical line denotes the population
value to be estimated (25.4%). The estimator has a symmetric distribution around this
value. This clearly indicates that the estimator is unbiased.

The upper-right graph shows what happens if samples are not selected from the
complete target population, but just from the Internet population. The shape of the
distribution remains the same, but the distribution as a whole has shifted to the left. All
values of the estimator are systematically too low. The expected value of the estimator
isonly 20.3%. The estimator is biased. The explanation of this bias is simple: relatively
few elderly have Internet access. Therefore, they are underrepresented in samples
selected from the Internet. These are typically people who will vote for the NEP.

The lower left graph in Fig. 11.6 shows the distribution of the estimator in case of
poststratification by age. The bias is removed. This was possible because this is a case
of missing at random.

Poststratification by age can be applied only if the distribution of age in the
population is known. If this is not the case, one could consider conducting a small
(m = 100) reference survey, in which this population distribution is estimated unbi-
ased. The lower right graph in Fig. 11.6 shows what happens in this case. The bias is
removed but at the cost of a substantial increase in variance.

Figure 11.7 shows the results for the variable NIP (vote for the New Internet Party).
The upper left graph shows the distribution of the estimator for simple random samples
from the complete target population. The vertical line denotes the population value to
be estimated (39.5%). Since the estimator has a symmetric distribution around this
value, it is clear that the estimator is unbiased.
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Survey from complete target population Online survey
10.0 25.0 40,0 | 10.0 25.0 40.0
Online survey, weighting using age Online survey, reference survey
10.0 25.0 40.0 | 10.0 25.0 400

Figure 11.6 Results of the simulations for variable NEP.

The upper right graph shows what happens if samples are not selected from the
complete target population, but just from the Internet population. The distribution has
shifted to the right considerably. All values of the estimator are systematically too
high. The expected value of the estimator is now 56.5%. The estimator is severally
biased. The explanation of this bias is straightforward: voters for the NIP are
overrepresented.

The lower left graph in Fig. 11.7 shows the effect of poststratification by age. Only a
small part of the bias is removed. This is not surprising as there is a direct relationship
between voting for the NIP and having Internet access. This is a case of not missing at
random.

Also in this case, one can consider conducting a small reference survey if the
population distribution of age is not available. The lower right graph in Fig. 11.7 shows
what happens in this case. Only a small part of the bias is removed and at the same time
there is a substantial increase in variance.

11.9 SIMULATING THE EFFECTS OF SELF-SELECTION

The possible consequences of self-selection and the effectiveness of correction
techniques are also illustrated using a simulation experiment. A fictitious population
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Survey from complete target population Online survey
30.0 45.0 60.0| 30.0 © 450 60.0
Online survey, weighting using age Online survey, reference survey
30.0 45.0 60.0 | 30.0 45.0 60.0

Figure 11.7 Results of the simulations for variable NIP.

was constructed. Again, voting intentions for the next general elections were
simulated and analyzed. Relationships between variables involved were modeled
somewhat stronger than they probably would be in a real-life situation. Effects are
therefore more pronounced, making it clearer what the pitfalls are.

The characteristics of estimators (before and after correction) were computed
based on a large number of simulations. First, the distribution of the estimator was
determined in the ideal situation of a simple random sample from the target population.
Then, it was explored how the characteristics of the estimator change if self-selection
is applied. Finally, the effects of weighting (poststratification and reference survey)
were analyzed.

A fictitious population of 100,000 individuals was constructed. There were five
variables:

o The variable Internet indicates how active a person is on the Internet. There are
two categories: very active users and more passive users. The population consists
of 1% of active users and 99% of passive users. Active users have a response
probability of 0.99 and passive users have a response probability of 0.01.

o The variable Age in three categories young, middle aged, and old. The active
Internet users consist of 60% of young people, of 30% of middle-aged people,
and of 10% of old people. The age distribution for passive Internet users is 40%
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| Age |—>| Internet | | Age I—’I Internet

Figure 11.8 Relationships between variables.

young, 35% middle aged, and 25% old. So, typically younger people are more
active Internet users.

e Vote for the NEP. The probability to vote for this party depends only on age.
Probabilities are 0.00 (for Young), 0.30 (for Middle aged), and 0.60 (for Old).

¢ Vote for the NIP. The probability to vote for this party depends both on the age
and on the use of Internet. The probabilities were 0.80 (for Young), 0.40 (for
Middle aged), and 0.20 (for Old) for active Internet users. The probabilities are
all equal to 0.10 for passive Internet users. So, for active users voting decreases
with age. Voting probability is always low for passive users.

Figure 11.8 shows the relationships between the variables in a graphical way.
The variable NEP suffers from missingness due to MAR. There is direct relationship
between voting for this party and age, and also there is a direct relationship between
age and propensity to participate in the survey. This will cause estimates to be biased.
It should be possible to correct this bias by weighting using the variable age.

The variable NIP suffers from NMAR. There exists a direct relationship between
voting for this party and response probability. Estimates will be biased, and there is no
correction possible.

The distribution of estimators for the percentage of voters for both parties was
determined in various situations by repeating the selection of the sample 500 times.
The average response probability in the populationis 0.01971. Therefore, the expected
sample size in a self-selection survey is equal to 1971.

Figure 11.9 shows the results for the variable NEP (votes for National Elderly
Party). The upper left graph shows the distribution of the estimator for simple random
samples of size 1971 from the target population. The vertical line denotes the
population value to be estimated (25.6%). The estimator has a symmetric distribution
around this value. This clearly indicates that the estimator is unbiased.

The upper right graph shows what happens if samples are selected by means of self-
selection. The shape of the distribution remains more or less the same, but
the distribution as a whole has shifted to the left. All values of the estimator are
systematically too low. The expected value of the estimator is only 20.5%. The
estimator is biased. The explanation of this bias is simple: relatively few elderly
are active Internet users. Therefore, they are underrepresented in the samples. These
are typically people who will vote for the NEP.

The lower left graph in Fig. 11.9 shows the distribution of the estimator in case of
poststratification by age. The bias is removed. Weighting works because this is a case
of missing at random.
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Figure 11.9 Results of the simulations for variable NEP.

Poststratification by age can be applied only if the distribution of age in the
population is known. If this is not the case, one could consider conducting a small
(m = 100) reference survey, in which this population distribution is estimated unbi-
ased. The lower right graph in Fig. 11.9 shows what happens in this case. The bias is
removed but at the cost of a substantial increase in variance. The variance is equal to
that of a simple random sample of size of 290. So, the effective sample size is equal to
290. Apparently, an online survey of size 2000 is not more precise than a simple
random sample of size 290 if a reference survey is used to correct the bias caused by
self-selection.

Figure 11.10 shows the results for the variable NIP (vote for New Internet Party).
The upper left graph shows the distribution of the estimator for simple random samples
of size 1971 from the target population. The vertical line denotes the population value
to be estimated (10.5%). Since the estimator has a symmetric distribution around this
value, it is clear that the estimator is unbiased.

The upper right graph shows what happens if samples are selected by means of self-
selection. The distribution has shifted to the right considerably. All values of the
estimator are systematically too high. The expected value of the estimator is now
35.6%. The estimator is severally biased. The explanation of this bias is straightfor-
ward: voters for the NIP are overrepresented in the self-selection samples.
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Simple random sample Self-selection survey
0.0 200 40.0| 0.0 20.0 40.0
Self-selection survey, weighting by age Self-selection survey + reference survey
0.0 20.0 400 | 0.0 20.0 40.0

Figure 11.10 Results of the simulations for variable NIP.

The lower left graph in Fig. 11.10 shows the effect of poststratification by age. Only
asmall part of the bias is removed. Weighting is not successful. This is not surprising as
there is a direct relationship between voting for the NIP and use of Internet. This is a
case of NMAR.

Also in this case, one can consider conducting a small reference survey if the
population distribution of age is not available. The lower right graph in Fig. 11.10
shows what happens in this case. Only a small part of the bias is removed, and at the
same time there is a substantial increase in variance. The variance is equal to that of a
simple random sample of size of 288. So, the effective sample size is 288. Apparently,
an online survey of size 2000 is not more precise than a simple random sample of size
288. Moreover, the bias is not removed.

11.10 ABOUT THE USE OF ONLINE SURVEYS

This chapter discussed some of the methodological problems of online surveys. The
underlying question is whether an online survey can be used as a data collection
instrument for making valid inference about a target population. Costs and timeliness
seem to be important arguments in favor of online survey. However, there are
methodological challenges with respect to the properties of estimates.
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Selecting a probability sample requires a sampling frame. The Internet is not an
ideal sampling frame. It suffers from undercoverage. Certain groups in the population
are underrepresented, for example, the elderly, low educated, and nonnatives.
Therefore, estimates will often be biased and correction techniques are required to
remove this bias. Unfortunately, correction techniques will be effective only if not
having access to the Internet can be seen as missing at random.

It should be noted that other modes of data collection also have their coverage
problems. For example, a CATI survey requires a sampling frame consisting of
telephone numbers. Statistics Netherlands uses only fixed-line listed telephone
numbers for this, as well as listed mobile numbers. Only between 60 and 70% of
the people in The Netherlands have a listed phone number (see Cobben, 2004). This
implies that only two out of three persons can be reached this way.

The undercoverage problem for CATI surveys will become even more severe over
time. This is due to the popularity of mobile phones and the lack of lists of mobile
phone numbers (see Kuusela, 2003). The situation is improving for surveys using the
Internet as a sampling frame. In many countries, there is a rapid rise in households
having Internet access. For example, the number of households with Internet is now
over 80% in The Netherlands, and it keeps growing. So one might expect that online
survey coverage problems will be less severe in the near future.

Unbiased estimators for population characteristics can be constructed only if all
elements in the population have a known and positive probability of being selected.
This is not always the case for online surveys. Market research agencies in The
Netherlands have carried out an analysis of all their major online panels (see Vonk
et al., 2006). It turned out that most of these panels are based on self-selection of
respondents. The researchers concluded that panel members differ substantially from
other people, and that therefore most of these panels cannot be considered represen-
tative for the population.

Can an online survey be an alternative for a CAPI or CATI survey? Coverage
problems may be solved in the future, but there are also other aspects to consider. With
respect to data collection, there is a substantial difference between CAPI and CATT on
the one hand and online surveys on the other. Interviewers carry out the fieldwork in
CAPI and CATT surveys. They are important in convincing people to participate in the
survey, and they also can assist in completing the questionnaire. There are no
interviewers in an online survey. It is a self-administered survey. Therefore, quality
of collected data may be lower due to higher nonresponse rates and more errors in
answering questions. According to De Leeuw and Collins (1997) response rates tend to
be higher if interviewers are involved. However, response to sensitive questions is
higher without interviewers. At present, little is known about the quality of the online
survey data compared to CAPI or CATI survey data.

CAPI and CATTI are both a form of computer-assisted interviewing. CAI has the
advantage that error checking can be implemented. See also Chapter 7 about data
collection. Answers to questions can be checked for consistency. Errors can be
detected during the interview and therefore corrected during the interview itself. It
has been shown (see Couper et al., 1998) that CAI can improve the quality of the
collected data. The question is now whether error checking should be implemented in
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an online survey? What happens when respondents are confronted with error
messages? Maybe they just correct their mistakes, but it may also happen that they
will become annoyed and stop answering questions. There may be a trade-off here
between nonresponse and data quality. Further research should make clear what the
best approach is.

A reference survey is proposed as one way to remove the bias of estimates in an
online survey. One of the advantages of a reference survey is that auxiliary variables
can be used for weighting that are highly correlated with either target variables or
participation probabilities. Therefore, correction will be effective. A disadvantage of a
reference survey is that itresults in large standard errors and therefore a small effective
sample size. So areference survey reduces the bias at the cost of aloss in precision. One
attractive characteristic of an online survey is that it is rather easy to collect a large
amount of data. If areference survey is used, the large sample size of the online survey
does not imply a high precision. So, one may wonder whether it is still worthwhile to
carry out an online survey.

The reference survey only works well if it is a real probability sample without
nonresponse, or with ignorable nonresponse (MCAR). This condition may be hard to
satisfy in practical situations. Almost every survey suffers from nonresponse. If
reference survey estimates are biased due to nonresponse, the online survey bias is
replaced by a reference survey bias. This does not really help to solve the problem.

Reference surveys will be carried out in a mode other than CAWI. This means there
may be mode effects that have an impact on estimates. Needless to say that a reference
survey will dramatically increase survey costs.

If a reference survey is conducted, stratified estimation may be an option. The
Internet population is one stratum and the non-Internet population is another stratum. In
principle, this results in unbiased estimates. The drawback is that the complete
questionnaire has to be used in the survey of the non-Internet population. If the
reference survey is used just for weighting purposes, only relevant weighting variables
need to be measured in both surveys. This reduces the reference survey in size and costs,
and also the nonresponse may be less of a problem if a very short questionnaire is used.

One can say that an online survey based on self-selection and correction by means
of a reference survey is not a reliable and cost-effective data collection instrument.
This does not mean it is completely useless. When given a sound basis, for example,
using probability sampling and more developed correction techniques, online surveys
hold a promise for producing accurate and reliable information. This may make online
survey an interesting and worthwhile topic for future research.

EXERCISES

11.1 Which of the statements below about an online survey is correct?
a. An online survey always has a higher response rate than other types of
surveys.
b. Due to the large amount of respondents, estimates are always very close to
the true values.
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c. The quality of the results is often lower than those of CAPI or CATI surveys.

d. It is always possible to obtain unbiased estimates by using the
Horvitz—Thompson estimator.

Why can a reference survey be useful to improve estimates based on data from

an online survey?

a. A reference survey always provided unbiased estimates of population
distributions of auxiliary variables.

b. The estimates after adjustment will be much more precise than the
estimates before adjustment.

c. It is possible to use attitudinal variables for weighting. These variables
suffer less from measurement errors than from factual variables.

d. The researcher can choose the most effective auxiliary variables for
adjustment weighting.

A researcher wants to estimate the average number of hours per week the adult
inhabitants of Samplonia spend on the Internet? He draws a simple random
sample of Internet users. There is no nonresponse. The sample mean turns out
to be Sh.

a. Given that only three out of five inhabitants have access to Internet,
compute an estimate of the bias of the sample mean.

b. Compute a better estimate for the average number of hours an inhabitant
spends on the Internet.

A town council wants to know what percentage of the population is engaged in
some form of voluntary work. Since there is only a limited budget available, it
is decided to conduct an online survey. The target population consists of
1,000,000 persons. Only 70% of these persons have access to the Internet. It
turns out that 10,000 persons participate in the survey. Of these respondents,
60% do some voluntary work.

a. Assuming that the 10,000 respondents are a simple random sample without
replacement from the target population, compute the 95% confidence
interval of the percentage of persons in the population doing voluntary work.

b. There is a strong suspicion that the survey estimates may be biased because
only people with Internet access can participate. Therefore, a follow-up
survey is conducted among people without Internet access. It turns out to be
possible to draw a simple random sample of size 100 from this non-Internet
population. The result is that 40% of the respondents in the follow-up
survey do voluntary work.

Compute an improved estimate for the population percentage of people
involved in voluntary work.

¢. Compute a new 95% confidence interval of the percentage of persons in the
population doing voluntary work.

d. Compare both confidence intervals and explain any differences.
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11.5 A pollis conducted each year in The Netherlands to elect the best politician of
the year. This poll is a self-selection Web survey. More than 21,000 people
voted in 2006. Participants were also asked for which party they voted at the
last general elections. Part of the results is summarized in the table below.

Vote at Last Elections

Politician CDA VVD SP Other
Jan-Peter Balkenende (CDA) 1980 254 38 218
Jan Marijnissen (SP) 135 97 3006 2080
Rita Verdonk (VVD) 385 1000 183 866
Other politicians 1427 1644 1540 6685

CDA is the party of the Christian democrats, VVD is the liberal party, and
SP is the socialist party. Note that the category Other includes both other
parties and people who did not vote.

a. Compute the percentages of votes for each politician. Determine the rank
order of the three politicians.

b. Due to self-selection, the results will not properly reflect the situation in the
population. Therefore, a weighting adjustment procedure is carried out.
The CDA obtained 19.4% of the votes in the last general elections, the VVD
got 10.7%, 12.1% voted for the SP, and 57.8% voted for another party or did
not vote at all.

c¢. Compute adjustment weights for the three parties CDA, VVD, and SP and
the category Other. Determine which parties are over- or underrepresented
in the Web survey.

d. Compute a new table with weighted frequencies. Round the frequencies to
integer numbers.

e. Compute weighted percentages of votes for the three politicians. Compare
these percentages with those computed under (a). Explain the differences.



CHAPTER 12

Analysis and Publication

12.1 ABOUT DATA ANALYSIS

Statistics is a part of science that explains how to set up research, how to collect data,
how to analyze these data, how to interpret the outcomes of the analysis, and how to
publish the results of the analysis. The data are usually obtained by measuring or
observing characteristics of people, objects, and phenomena. Survey research is a part
of statistics in which data are collected by means of asking questions. The measuring
instrument is the survey questionnaire.

Many statistical analysis techniques are available for analysis of the collected data.
Most of these techniques assume a model stating that the data form an independent
identically distributed random sample from some normal distribution. These assump-
tions are almost never satisfied in practical survey situations. More often, the dirty data
theorem applies. It states that the data come from a dependent sample with unknown
and unequal selection probabilities from a bizarre and unspecified distribution
whereby some values are missing and many other values are subject to substantial
measurement errors.

Analysts of survey data should take into account that their data maybe affected by
measurement errors and nonresponse, that some values may not be observed but
imputed, and that weights have to be used to compensate for a possible nonresponse
bias. Many software packages for statistical data analysis assume the ideal model for
the data, and have no possibilities to account for the effects of dirty data. Therefore,
analysts should be very careful in their analysis. There are anecdotes about researchers
discovering an interesting structure in the data, which in the end turned out to be the
model used for imputing missing observations.

Survey data analysis will be carried out with some kind of statistical analysis
package. A survey data file has to be prepared for this. Some general characteristics of
such a survey data file are discussed here.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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Information is collected in a survey by means of asking questions. The questions
correspond to the variables that have to be measured. The answers to the questions (i.e.,
the values of the variables) are recorded in the form of texts, numbers, and codes. Two
types of variables are distinguished: qualitative variables and quantitative variables. It
is important to also make this distinction in the analysis of the collected data.

Qualitative variables are variables that just divide the elements in groups. Their
values are just labels. Examples of such variables are marital status, ethnic back-
ground, and region of the country. Most computations with these values are not
meaningful. Only frequencies and percentages are relevant. Qualitative variables are
usually measured by means of closed questions.

Quantitative variables measure a size, quantity, or value. Examples are the weight
and length of a person, the profit of a company, and the number of students of a school.
Computations with the values of these variables can be meaningful. Typical quantities
are totals and averages. Quantitative variables are usually measured by means of
numerical variables.

Many software packages for data analysis require the survey data to be in the format
of a survey data matrix. This is a table in which each column denotes a variable and
each row represents a record corresponding to an element. For reasons of efficiency,
values of variables are stored in numeric format. This is obvious for quantitative
variables. For qualitative variables, a code number is assigned to each category. These
code numbers are stored instead of the labels of the categories. This requires much less
storage space and moreover problems due to misspelling of labels are avoided.
Table 12.1 shows this approach. It is part of the data matrix with data about Samplonia.

Table 12.1 shows the data. But just data are meaningless without a description of the
data. The description is called metadata. So, there can be no data without metadata.
Software packages for statistical analysis usually have ample facilities for document-
ing the data. It is important to do this properly and extensively, to avoid problems with
the interpretation of the outcomes of the survey. Metadata are particularly important if
a survey data set is reanalyzed long after the survey has been carried out. Table 12.2

Table 12.1 Part of the Data Matrix for Samplonia

Record District Province Gender Age Employed Income
1 5 2 1 65 2 0
2 6 2 1 36 2 0
3 7 2 2 73 2 0
4 6 2 1 6 2 0
5 3 1 2 33 1 158
6 1 1 2 82 2 0
7 2 1 1 2 2 0
8 1 1 1 32 1 525
9 5 2 2 66 2 0
10 3 1 2 2 2 0
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Table 12.2 Metadata for Samplonia

Variable Type Description Values
District Qualitative District of residence of the 1 = Wheaton;
respondent 2 = Greenham;
3 =Newbay;
4 = Qakdale;
5 = Smokeley;
6 = Crowdon;
7 =Mudwater
Province Qualitative Province of residence of the 1 = Agria;
respondent 2 = Induston
Gender Qualitative Gender of the respondent 1 =Male;
2 =Female
Age Quantitative Age if respondent (in years) 0t/m 99
Employed Qualitative Respondent has a paid job for 1 = Yes;
at least 12 h per week 2=No
Income Quantitative Monthly net income of the 0-4500
respondent (in Samplonian
dollars)

contains a simple example of how the metadata of a survey about Samplonia could
look like.

Many survey data sets suffer from missing values. These “holes” in the data matrix
may be caused by item nonresponse or by errors in the values of variables that could not
be corrected. Sometimes, analysis software uses special symbols or codes to indicate
missing values. This facility sees to it that missing values are properly documented and
also that missing values can be excluded from the analysis.

Traditionally, missing values were often denoted by filling the value field in the data
matrix by a series of nines. For example, if the field for the variable “income” is four
characters wide, a missing income would be represented by 9999. Of course, the
analysis software must know that 9999 means a missing observation. If the software is
not aware of this, something will go wrong in the computation of estimates. If 9999 is
taken as a “real” income, estimates of the mean income will be systematically too high.

Some software packages allow distinguishing several types of missing values. For
example, there could be special codes for “refusal” and “don’t know.”

Of course, it is possible to remove missing values from the survey data file.
Imputation techniques can be used for this (see Chapter 8).

12.2 THE ANALYSIS OF DIRTY DATA

Many software packages for the analysis of survey data assume that the data can
be seen as an independent identically distributed random sample from some normal
distribution. Often this is not the case. This section describes three issues: sampling
designs with unequal inclusion probabilities, weighting adjustment, and imputation.
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12.2.1 Sampling Design Issues

The Horvitz—Thompson estimator has been introduced in Chapter 2. This estimator
allows for unbiased estimation of population characteristics if all inclusion probabili-
ties or selection probabilities are known and strictly positive. To be able to compute
these estimates, inclusion or selection probabilities have to be included in the survey
data file. Often inclusion weights (the inverse inclusion probabilities) are included.

Failure to include these probabilities in the survey data file, and to rely on standard
estimation procedures implemented in software packages, may lead to biased
estimates. An example illustrates this. Suppose a stratified sample of 50 persons is
selected from the working population of Samplonia. There are two strata: the
provinces of Agria and Induston. A simple random sample of 25 persons is selected
without replacement from both strata. Since the province of Agria contains 121
persons, the inclusion probability here is 25/121 =0.207 for all elements. Induston
contains 220 persons, which means the inclusion probability here is equal to
25/220=0.114. So, the inclusion probabilities differ in both strata.

Figure 12.1 contains the results of an experiment in which 1000 samples were
selected using this sampling design. The upper box plot contains the distribution of the
estimator taking into account the inclusion probabilities. The vertical line corresponds
to the population mean to be estimated. It is clear that the estimator is unbiased.

The lower box plotin Fig. 12.1 shows what happens if the inclusion probabilities are
not taken into account and the simple sample mean is computed using some statistical
analysis package. The distribution has shifted to the left. The estimator is clearly
biased. Its values are systematically too low. The explanation is that people in high-
income areas are underrepresented in the samples.
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Figure 12.1 Effect of not taking into account inclusion probabilities.
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Of course, it is possible to compute proper estimates with an analysis package. The
trick is to include an extra variable in the survey data value containing the inclusion
weight or similar quantity. One way to do this is to introduce a correction weight. It
corrects for the wrong inclusion probability #/N = 50/341. For persons in the province
of Agria, the correction weight is (121/25)/(341/50) =0.710. This value is smaller
than 1, because persons from Agria are overrepresented in the sample. For persons
in the province of Induston, the correction weight is (220/25)/(341/50) = 1.290.
This value is larger than 1 because persons from Induston are underrepresented in
the sample. If a software package is instructed to use this correction weight in the
computation of estimates, a weighted estimator is obtained that is identical to the
Horvitz—Thompson estimator in case of stratification. Its distribution corresponds to
the upper box plot.

12.2.2 Weighting Issues

Ithas already been said that many general software packages for statistical analysis can
handle weights. However, it should be realized there are several types of weights. Each
statistical package may interpret weights differently. Even weights can be interpreted
differently within the same package. Here the following types of weights are
considered:

e Inclusion weights. These weights are the inverse of the inclusion probabilities.
Inclusion weights are determined by the sampling design. They must be known
and nonzero to compute unbiased estimates (see Horvitz and Thompson, 1952).

e Correction weights. These weights are the result of applying some kind of
weighting adjustment technique.

e (Final) adjustment weights. These weights combine inclusion weights and
correction weights. When applied, they should provide unbiased estimates of
population characteristics.

e Frequency weights. These weights are whole numbers indicating how many
times a record occurs in a sample. It should be seen as a trick to reduce file size.

Problems may arise if weights are interpreted as frequencies weights while in fact
they are inclusion weights. Suppose a sample of size # has been selected from a finite
population of size N. The sample values of the target variable are denoted by yq, y,, . . .,
vn. Let m; be the inclusion probability of element i, for i=1, 2,..., n. Then, the
inclusion weight for element 7 is equal to 1/7;. If these inclusion probabilities are used
as frequency weights, the weighted sample mean is equal to

Swy Y (w/m)
yw=— =15 (12.1)
dowi > (1/m)

i=1 i=1
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According to the theory of Horvitz and Thompson (1952), the unbiased estimator is
equal to

1 1y
Yuyr = — Vi = — — 12.2
YHT N;Wy N,—Z;'”'i ( )

Generally, these two estimators are not the same. However, in the case of simple random
sampling with equal probabilities (7; = n/N), expression (12.1) reduces to (12.2).

Similar problems occur when computing estimates of variances. Many statistical
packages assume the sample to be an independent random sample selected with equal
probabilities. If the weights are interpreted as frequency weights, then the sample size
is equal to

n
wr = Z Wi (12.3)
i=1
and the proper estimator for the variance of the sample mean is

n
Z; wi(yi—yw)’
Wy) =—F—— 12.4
Usually survey samples are selected without replacement, which means that the proper
expression for the variance of the estimator is

R S
w)=|——= | ——F— 12.5
ow) = (3= 3) B (125)
If the finite population correction factor f=wy/N is small, expressions (12.4)
and (12.5) are approximately the same.
The situation becomes more problematic if the weights w; represent inclusion
weights. In the simple case of an equal probability sample (w; = N/n), expression (12.4)
will be equal to

3> (i—yw)’

— i=1
== 12.6
W) =y (126)
which is a factor (N — 1)/(n — 1) to small as a variance estimator.
In general, without replacement sampling designs a completely different expres-
sion should be used to estimate the variance of the estimator:

n n 2
- (mimj—mmy) (yi Y
v(hy) = — === . (12.7)
;;;; 1 i LR

Note that expression (12.7) involves second-order inclusion probabilities 7,
which do not appear in expression (12.3).

The problems described above also occur in a more in depth analysis of the data.
Many multivariate analysis techniques are based on the assumption of identically
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distributed independent samples. Due to complex sampling designs, adjustment
weighting and imputation (see Section 12.3), estimates for the first and second-order
moments of distributions are likely to be wrong.

12.2.3 Imputation Issues

Some imputation techniques affect the distribution of a variable. They tend to produce
synthetic values that are close to the center of the original distribution. Hence, the
imputed distribution is more “peaked.” This may have undesirable consequences.
Estimates of standard errors may turn out to be too small. Analysts using the imputed
data (not knowing that the data set contains imputed values) may get the impression
that their estimates are very precise while in reality this is not the case.

Possible effects of imputation are illustrated by analyzing one single imputation
technique: imputation of the mean. This type of imputation does not affect the response
mean of the variable: the mean yp,p after imputation is equal to the mean yy before
imputation. As a result, the variance of the estimator also does not change.

Problems may arise when an unsuspecting analyst attempts to estimate the variance
of an estimator, for example, for constructing a confidence interval. To keep things
simple, itis assumed the available observations can be seen as a simple random sample
without replacement, that is, missingness does not cause a bias. Then the variance after
imputation is equal to

V(mp) = V0OR) =

in which m < n is the number of “real” observations and S* is the population variance.

It is known from sampling theory that, in case of a simple random sample without
replacement, the sample variance s° is an unbiased estimator of the population
variance S°. This also holds for the situation before imputation that the s° computed
using the m available observations is an unbiased estimator of $°.

What would happen if an analyst attempted to estimate S using the complete data
set, without knowing that some values have been imputed? He would compute the
sample variance, and he would assume this is an unbiased estimator of the population
variance. However, this is not the case. For the sample variance of the imputed data set,
the following expression holds:

%S{ (12.8)

m—1
S%MP = msz. (129)
Hence,
—1
E(syp) = %sz. (12.10)

This is not an unbiased estimator of the population variance. The population
variance is underestimated by afactor (m — 1)/(n — 1). This creates the impression that
estimators are very precise whereas in reality this is not the case. So, there is a
substantial risk of drawing wrong conclusions from the data. This risk is larger as there
are more imputed values.
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Imputation also has an impact on the correlation between variables. Suppose the
variable Y is imputed using imputation of the mean. And suppose the variable X is
completely observed for the sample. In this case, it can be shown that the correlation
after imputation is equal to

m—1
n—1

IIMPX,Y = rxy (12.11)
where ryyis the correlation in the data set before imputation. So, the more observations
are missing for Y, the smaller the correlation coefficient will be. Analysts not aware of
their data set having been imputed will get the impression that relationships between
variables are weaker than they are in reality. Also here, there is arisk of drawing wrong
conclusions.

12.3 PREPARING A SURVEY REPORT

Analysis of the survey data will lead to a publication of the results. Form and contents
of such a publication depend on the objective of the survey, the nature of the collected
data and the intended audience. It is important that this audience understands what is
said in the publication. Readers should be able to use the survey results to full
advantage, to assess the reliability of the outcomes, and to be aware of their scope.

Furthermore, the publication should contain sufficient technical documentation
about the survey. This documentation should enable survey researchers to understand
how the survey was set up, how data were collected, what practical problems were
encountered, what was done to correct problems, how accurate the results are, and so on.

The main purpose of a survey publication is communicating its results. Therefore,
structure and style have to be such that this is accomplished as concisely and
effectively as possible. This section presents some guidelines. Section 12.3.1 is about
general issues. Section 12.3.2 concentrates on the general part of the publication. This
part is intended to describe the results of the survey, usually for a nontechnical
audience. Section 12.3.3 deals with the more technical survey documentation. Since
the intended audience of the general part and the technical part can be very different,
one might consider writing two separate publications.

12.3.1 General Issues

The audience for the general part of the publication can be very diverse. Therefore, itis
important to use plain language. Technical jargon and mathematical formulas must be
avoided. The language should be clear and concise. Short and simple sentences should
be preferred.

The text should be written in a neutral and objective style. Informal language is not
acceptable. Overfamiliar phrases like “at the end of the day” and “in a nutshell” should
be avoided. The text should not contain personal opinions. For example, adjectives in
“painstaking data collection” and “careful analysis,” and “surprising results” must be
left out.
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Itis usually advised to write the publications text in the passive voice (i.e., the third
person). Use of “I,” “we,” and “you” must be avoided. So, “the data were collected in a
period of 4 weeks” is better than “We collected the data in a period of 4 weeks.”
However, sometimes the active voice should be preferred, for example, if the passive
voice would mean hiding responsibility for specific activities. A text like
“Interviewers made errors during the fieldwork” is more informative then “errors
were made during the fieldwork.”

Most of the text should be written in the past tense. This particularly holds for the
executive summary of the publication, the methodology section (the description of
how the survey was carried out), and the section with the survey results. The
introduction of the publication and the discussion of the results can be written in
the present tense.

12.3.2 General Part

Most scientific reports have acommon structure. This structure can also be used for the
general part of the survey publication. It includes the following elements:

e Title

¢ Abstract

e Introduction
e Methodology
e Analysis

e Discussion

e References

¢ Appendices

The title must be short and precise. It should inform the reader about what has been
investigated in the survey. Any unnecessary words (e.g., “A study of ...”) should be
omitted.

The abstract is a self-contained summary of the whole report. It should therefore be
written last and it is usually limited to just one paragraph of approximately 150 words.
It must at least contain an outline of what has been investigated, the main results, and
the conclusion.

The introduction consists of two parts. The first part describes the problem that has
been addressed in the survey, and how it was addressed. The following topics must at
least be included:

e Definition of the target population. This is the population to which the results
refer.

e Major variables that have been measured.
¢ A nontechnical summary of the sampling frame and the sampling design.
e Description of the way the data were collected in the field.
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e Initial sample size, the number of respondents, and the response rate.
e Indication of the accuracy of the results, for example, margins of error.

The second part of the introduction gives an overview of the main conclusions of the
survey. It is just a list of conclusions, without any arguments or underpinning.
Technical jargon and mathematical formulas must be avoided.

The introduction can also be seen as an executive summary of the survey
report. It must be self-contained and readable for all those interested in the survey
results.

The section on methodology must give a detailed description of every step in the
survey process. The information should not be too technical so that a nonexpert can
also get a good idea of how the survey was conducted. The following topics must be
included in this section:

¢ A definition of the target population of the survey. What is exactly the population
to which the survey results refer?

¢ The population characteristics that were estimated. What were the main survey
questions? How were they translated into questions?

e A description of the questionnaire. How many questions did it contain? How
long did it take to complete a form? Did respondents encounter any problems in
answering the questions? The questionnaire itself could be included in an
appendix of the report.

¢ A description of the sampling frame. What sampling frame was used? Was the
frame up-to-date? How well covered this sampling frame the target population?
Was there any undercoverage or overcoverage?

¢ A description of how the sample was selected from the sampling frame. What
was the sampling design? What was the initial sample size?

¢ A description of the fieldwork. What mode of data collections were used? Were
interviewers involved? If yes, how many and how were they trained?

e A description of data editing techniques. What kind of data editing took place?
Where many errors detected? How were errors corrected?

¢ A description of the nonresponse. What was the number of respondents? What
was the response rate? Was the nonresponse selective? What has been done to
correct for this? Have any imputation techniques or adjustment weighting been
carried out?

e A description of the accuracy of the survey results. What are the margins of
error? Could anything be said about the magnitude of nonsampling errors?

The analysis section covers the results of the analysis of the survey data (after
editing and nonresponse correction). This section could start with an exploratory
analysis of all relevant survey variables separately. This can be done in the form of
descriptive tables (frequency distributions, means, standard errors, and so on) or
graphs.
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The second part could explore relationships between variables. Also, here a choice
can be made between numerical or graphical display of the results. In case specific
patterns, structures or relationships are discovered, it must be made clear whether they
are significant or could be attributed to sampling variation. If possible, artifacts must
be distinguished from discovery of new knowledge that can be explained from the
underlying subject-matter theory.

It should be realized that data cannot be used at the same time to formulate and to
test a hypothesis about the target population. Hypothesis testing should always be
based on new, independent data. It might be a good idea to split the survey data set
randomly in two subsets: one for exporatory analysis, leading to the formulation of
hypotheses, and the other for testing these hypotheses.

In case of hypothesis testing, always specify which tests were carried out
and why they were chosen for this purpose. Also, mention significance levels or
p-values.

There could be a third part with a more in-depth multivariate analysis of the survey
data. It should be kept in mind that many multivariate analysis techniques require the
data to be generated according to some models (e.g., an independent sample form a
normal distribution). The “dirty data” produced by the survey may not always satisfy
the underlying model assumptions.

The discussion section is an important part of the survey report. It places the survey
results in the context of the relevant subject-matter area. It should enable the reader to
understand the relevance of the results, also in relation to other research work in the
area.

The discussion section starts with an overview of all main results of the analysis of
the survey data. The next step is to interpret these results. Does it give new insight in the
population? How do the results relate to other findings? Are the findings consistent
with an underlying theory? Can this theory explain the findings?

It should be made clear what the implications are of the survey findings. They may
suggest future research to obtain insight in specific topics. It may happen that all kinds
of limitations were encountered during the survey process. Such limitations may
restrict generalization of the findings. Were possible recommendations should be
made to improve a possible future repetition of the survey.

The discussion may end with conclusions that summarize the most important
elements of the discussion.

The references section contains a list of references to all literature mentioned in the
survey report. It should include both references to subject-matter literature and
statistical literature.

The appendices contain material that is relevant to the survey report, but that would
disrupt its flow if it was contained within the main text. The appendices could contain
the survey questionnaire and also the survey data (if the survey is not too large and there
are no confidentiality problems). There could also be a glossary of terms, or other
information that the reader may find useful. All appendices should be clearly labeled
and referred to where appropriate in the main text, for example, “See Appendix A for
the complete questionnaire.”
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12.3.3 Technical Part

Already in 1948, a United Nations commission came with recommendations for the
preparation of survey reports. Such a report should enable users of the survey data and
the survey results to use the survey results to full advantage, to assess their reliability,
and to utilize it in carrying out future surveys (see United Nations, 1964). These
recommendations were updated in 1962.

The UN guidelines recommend making two reports, a general report and a technical
report. The general report was already discussed in the previous subsection. This
subsection is about the technical report. Such a report should be seen as the survey
documentation.

The goal of the technical report is to provide complete, unambiguous information
about all aspects of the survey. It should contain sufficient information to allow other
researcherstoassessthe quality of the survey and the survey results. Italso should contain
sufficient information to carry out an exact copy of the survey at a future point in time.

A detailed description of the sampling frame should be given. It should be made
clear whether the frame was constructed specifically for this survey. Particulars should
be given of any known or suspected deficiencies, among which undercoverage,
overcoverage errors.

The sampling design should be carefully specified, including details such as the
type of sampling unit, sampling fractions, particulars of stratification, and so on. The
procedure used in selecting sampling units should be described. If no random selection
was applied, justification should be given for an alternative procedure.

It is desirable to give an account of the organization of the personnel employed in
collecting, processing, and tabulating the primary data, together with information
regarding their previous training and experience. Arrangements for training, inspection,
and supervision of the staff should be explained. Also, a description should be given of
applied data editing techniques. A brief mention of the equipment (for example,
hardware and software) used is frequently of value toreaders of the report. The statistical
methods used for correcting item and unit nonresponse should be described.

If more elaborate statistical analysis techniques have been used than those for
simple estimation of means and totals, these techniques should be explained, and the
relevant formulas being reproduced where necessary. Where proper application of
these techniques relies on specific conditions to be satisfied, this should be discussed.

A detailed account should be given of how the accuracy of the estimates is
computed, taking into account the sampling design, and possible nonresponse
correction techniques (like adjustment weighting). Where nonsampling errors are
expected to have a substantial impact on the accuracy of the estimates, attempts should
be made to compute at least some indication of the magnitude of these errors.

Every reasonable effort should be made to provide comparisons with other
independent sources of information. Such comparisons should be reported along
with the other results and the significant differences should be discussed. The objective
of this is not to throw light on the sampling error since a well-designed survey provides
adequate internal estimates of such errors, but rather to gain knowledge of biases, and
other nonsampling errors. Where disagreement between sample survey results and
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other independent sources may be due, in whole or in part, to differences in concepts
and definitions, this should be reported.

A sample survey can often supply the required information with greater speed and
at lower cost than a complete enumeration. For this reason, information on the costs
involved in sample surveys is of particular value for the development of sample
surveys by other researchers. It is therefore recommended that fairly detailed
information should be given on costs of a survey. Where possible, costs of different
activities should be specified, like planning, fieldwork, supervision, processing,
analysis, publication, and overhead costs.

The results of a survey often provide information that enables investigation of the
efficiency of the sampling design in comparison to other sampling designs that might
have been used in the survey. The results of any such investigations should be reported.

12.4 USE OF GRAPHS

12.4.1 Why Graphs?

Survey results can be communicated in various ways. One obvious way to do this
would be to do it in plain text. If there is a lot of information or if the information is
complex, readers may easily lose their way. More compact ways of presenting this type
of information are tables and graphs. Particularly for statistically less educated users,
graphs have a number of advantages over text and tables. These advantages were
already summarized by Schmid (1983).

e A graph can provide a comprehensive picture. This makes it possible to obtain a
more complete and better balanced understanding of the problem.

¢ Graphs can bring out facts and relationships that otherwise would remain hidden.

» Use of graphs saves time since the essential meaning of a large amount of data
can be visualized at a glance.

 Relationships between variables as portrayed by graphs are more clearly grasped
and more easily remembered.

e Well-designed graphs are more appealing and therefore more effective in
creating the interest of the reader.

Graphs can be used in surveys in two ways. One way is to use them as tool for data
analysis. Particularly, graphs can be very effective in an exploratory data analysis, to
explore data sets, to obtain insight, and to detect unexpected patterns and structures.
Users will have a background in statistics. Layout issues play a limited role here.
Another use of graphs is use in survey publications. Most importantly, these graphs
should be able to convey a message to statistically inexperienced readers. Therefore,
the type of graph should be carefully selected. The visual display of the graph should be
such that it reveals the message and not obscures it.

This section is devoted to the use of graphs in survey publications. The use of the
KISS principle is promoted. KISS is an acronym for “Keep it simple, stupid.” The
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principle states that simplicity should be a key design goal. Unnecessary complexity
should be avoided. The KISS principle will be translated into a number of guidelines
for the design of graphs. Furthermore, this section recommends which type of graph to
use to display specific aspects of the data.

12.4.2 Some History of Graphs

Itisnot always simple to convey information in plain text, particularly if the message to
be conveyed is complex. Therefore, it is not surprising that already, far back in history,
attempts have been made to find different means. Probably the first graphs have been
maps. Maps were already made thousands of years ago in China and Egypt. However,
the idea to add statistical information did not appear until the seventeenth century. The
first known graph of a time-series probably dates back to the tenth century (see
Fig. 12.2). It shows the inclination of the orbits of the planets over time. For more
information, see Tufte (1983).

It took 800 years before this type of graph was really used for statistical purposes.
John Playfair (1759-1823) is seen by many as the inventor of the statistical graph. He
published a book in 1786 that contains more than 40 graphs. Almost all of these graphs
show time-series of economic variables. Figure 12.3 shows an example, the value of
the trade between England and the East Indies.

Playfair (1786) has one other type of graph in his book. This is a bar chart. So, he can
be seen as the inventor of the bar chart.

A classical graph is the map of the campaign of Napoleon in Russia in 1812. The
French engineer Charles Joseph Minard made this graph in 1862. This graph is
discussed in Tufte (1983) and Wainer (1997). It is reproduced in Fig. 12.4.

The graph is a combination of a map and a time-series. The map shows the route of
Napoleon’s army to Moscow and back. The size of the army is indicated by the width of
the band. As it invades Russia, the army consists of 422,000 men. Only 100,000 men
reach Moscow. The black band describes the retreat of the army. The graph dramati-
cally shows the crossing of the Berezina river. Only 28,000 of the 50,000 reached the
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Figure 12.2 The first known time-series graph. Source: Tufte (1983).
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Chart of exports and imports to and from the East Indies
from the year 1700 to 1780 by W. Playfair
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Figure 12.3 One of the first time-series of an economic variable. From Howard Wainer (1997), Visual
Revelations. Reprinted by kind permission of Springer Science and Business Media.

other side of the river. The graph also shows daily temperature during the retreat. It was
avery cold winter. This was one of the causes of the disaster of the Berezina crossing.
In fact, this graph displays several variables simultaneously as a time-series: geo-
graphical position, size of the army, and temperature. Tufte (1983) suggestsit may well
be one of the best statistical graphs ever drawn. It tells with simple means and in a very
clear way, a reasonably complex story.

CARTE FIGURATIVE des perien successives an hommes de IAemie Frangaise dans la campagne de Russie 1812-1813,
Oresede par M Minard inspecteur Genéral der Ponts et Chavasées en retraite.
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Figure 12.4 Minard’s map of Napoleon’s campaign in Russia. Reprinted by permission, Edward R. Tufte,
The Visual Display of Quantitative Information (Cheshire, Connecticut, Graphics Press LLC, 1983, 2001).
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12.4.3 Guidelines for Designing Graphs

A graph can be a powerful tool to convey a message contained in a survey data set,
particularly for those without experience in statistics. Graphs can be more meaningful
and more attractive than tables with numbers. Not surprisingly, graphs are often
used in the popular media like newspapers and television. Use of graphs is, however,
not without problems. Poorly designed graphs may convey the wrong message. There
are ample examples of such graphs. Designers without much statistical expertise often
make them. They pay much more attention to attractiveness of the graphic design than
to its statistical content.

To avoid problems with graphs, a number of design principles should be followed.
Some guidelines are proposed in this section that may help to produce proper graphs.
Also, some examples are given of badly designed graphs.

Rule 1: Show the data. A graph should show the patterns, structures, and relation-
ships that exist in the survey data set. It should do that in a clear way. It should be
easy to see what the specific properties of the variables are. Graphs should be
designed such that they support this principle. Every effort should be made to
avoid graphs that obscure the message to be conveyed.

Graphs can be particularly powerful for displaying large amounts of data in
one picture. Indeed, one picture can tell us more than a thousand words.
Figure 12.5 shows an example of such a graph. Is shows the population density
in Europe in 2004 (source: Eurostat).

The European Union uses the Nomenclature des Unités Territoriales
Statistiques (NUTS) classification for dividing up to territory of its member
countries, and other countries. NUTS is a hierarchical classification. It sub-
divides each country into three levels: NUTS 1, NUTS 2, and NUTS 3. Each
classification is a subdivision of a previous level, respectively. NUTS 2 is used in
the map. It divides Europe into 313 regions. The population density is shown for
eachregion. This implies that the graph contains at least 3 x 313 =939 numbers
(geographical position of the region in longitude and latitude, and population
density for 313 regions). Notwithstanding this large amount of numbers, the
information in the graph is very readable. Not only global trends can be observed
(high density in The Netherlands, Belgium, and the German Ruhr area) but also
details like the relative high population density in the Stockholm area compared
to the rest of Sweden.

Figure 12.5 is a typical example of a graph with a high density. Tufte (1983)
proposed the data density index (DDI) as an indicator of the amount of data in a
graph. It is defined as the number of data points per square inch. Research by
Tufte (1983) showed that the DDI can assume values between 0 (graphs without
data) to over 300.

The DDI of the population density map is around 50 (at this scale), which is
reasonably high. Figure 12.6 shows an example of a graph with a very low
DDIL. It is a plot of the labor productivity of Japan versus that of the United
States.
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Figure 12.5 Population density in Europe in 2004. Source: Eurostat.

The graph on the left contains only three numbers: 44.0, 62.3, and 70.0. The
DDI here is about 1.5, which is much lower than the DDI of the population
density map in Fig. 12.5.

The labor productivity graph contains a lot of decoration that does not really
helps to convey the statistical message. On the contrary, it obscures the message.
It serves no other purpose than making the picture more attractive from an artistic
point of view. This is what Tufte (1983) calls chart junk. It should be avoided.
Tufte (1983) had introduced the data-ink ratio (DIR) as a measure of the amount
of chart junk in a graph. It is defined as the ratio of the amount of ink used to draw
to nonredundant parts of the graph (the real data) and the total amount of ink
used. An ideal graph would have a DIR value of 1. Much smaller values of DIR
are an indication that the graph contains too much chart junk. It will be clear that
the DIR of the graph on the left in Fig. 12.6 is much smaller than the DIR of the
graph on the right.

Rule 2: Do not mess around with the scales. The scales on the axes should help

the reader interpreting the magnitude of the displayed phenomena correctly.
Where the measurement scale of a variable has a clear interpretation of the
value 0, the axis should start at this value, and not at an arbitrary larger
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Figure 12.6 Labor productivity of the United States versus Japan. Source: Washington Post, 1978. From
Howard Wainer (1997), Visual Revelations. Source: Washington Post, 1978. Reprinted by kind permission
of Springer Science and Business Media.

value, as this could lead to a wrong interpretation of the graph. Figure 12.7
shows an example.

Both graphs show the average length of adult males in various parts of The
Netherlands. Apparently, males are longer, on average, in the northern part of the
country than in the southern part. The Y-axis in the graph on the left starts not at 0
but at 179. As a consequence, the differences between the regions are exagger-
ated. One almost gets the impression that men in the south are less than half as
long as men in the north.

The graph on the right shows the same data, but now the scale at the Y-axis
starts at the value 0. The difference between the regions turns out to be very small.
This picture contains a more realistic message: the average age in the south is
slightly smaller than in the north.

Figure 12.8 contains an example of a graph where two different Y-axes are
used. The graph on the left shows the increase in average length (in centimeters)
over the years for both men and women. It is reproduced version of a graph
published by Statistics Netherlands (Webmagazine, January 17, 2008).

There seems to be a dramatic increase in length in 24 years and at first glance,
the difference in length between men and women are substantial. Without
looking at the vertical scale, one gets the impression that women are only half as
long as men. By looking are the scale on the left, the difference seem to be a little

Average length of adult males in The Netherlands Average length of adult males in The Netherlands

182 200
’E\ 181 = 150 -
§ §
< 180 1 < i
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Figure 12.7 A graph with a scale not starting at zero.
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Figure 12.8 The increase in length of men and women over time.

over 1 cmin 1982. However, a closer look reveals that there is different scale for
women. Its values for women are shown on the Y-axis on the right. So, the
difference in length between men and women in 1982 is more than 11 cm.
Another problem with this graph is that both Y-scales do not start a 0. The
message conveyed by this graph can be confusing if not enough attention is paid
to its details.

The graph on the right in Fig. 12.8 gives a more realistic picture. Now, the
same scale for men and women is used and both scales start at zero. The changes
over time are less profound.

A third example of the use of a wrong scale is also taken from Wainer (1997).
The graph on the left in Fig. 12.9 displays the income of physicians from 1939 to
1976. The graph suggests a linear trend in the first part of the period. The yearly
increase seems to slow down a little in the second part of the period.

A closer look at the scale of the X-axes reveals that the time gap between
subsequent values is not the same everywhere. The first gap is 8 years, followed
by periods of 4 years and at the end of the scale there is only a period of 1 year
between subsequent values. The graph on the rightin Fig. 12.9 shows the resultin
case of a proper regular scale for the X-axis. Now it becomes clear that the
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Figure 12.9 Incomes of doctors versus other professionals. Source: Washington Post, 1979. From
Howard Wainer (1997), Visual Revelations. Reprinted by kind permission of Springer Science and Business

Media.
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Figure 12.10 Commission payments to travel agents. Source: New York Times, 1978. From Howard
Wainer (1997), Visual Revelations. Reprinted by kind permission of Springer Science and Business Media.

salaries of doctors increase much more than linear. So, the message is completely
different.

Rule 3: Show the data in the proper context. The graph should promote presenta-
tion of the statistical information in the proper context so that the right
conclusion is drawn by the user. Design and composition of the graph should
be such that the correct message is conveyed. A misleading presentation must be
avoided.

The graph on the left in Fig. 12.10 contains commission payments to travel
agents by airlines. It seems to suggest that these payments have decreased
dramatically in 1978. However, there is some small print in the graph explaining
that the payments in 1979 only cover a period of 6 months and not the complete
year. A more correct picture of the situation would be obtained if the commission
payments for the whole year were estimated. This has been done in the graph on
the right. This graph conveys a different, more correct, message: commission
payments are still increasing.

Figure 12.11 shows another example of a misleading graph. The graph on the
left shows the United States export to and import from China. The graph on the
right does the same, but for Taiwan. At first sight, the impression is that there is not
much difference between China and Taiwan with respect to trade.

However, a closer look would reveal that the Y-axes of both graphs are not the
same. The scale for China runs from 0 to 3000 and the scale for Taiwan runs from
0 to 6000. To make the two graphs comparable, the graph for Taiwan should be
twice as high.

Also, note that the shades have been interchanged in the graphs. Black
corresponds in the left-hand graph to import and in the right-hand graph to
export. This makes the comparison even more confusing. Finally, the scale of the
X-axis on the left starts at the year 1972 while it starts on the right at
the year 1970.
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Figure 12.11 Trade of the United States with China and Taiwan. Source: New York Times, 1980. From
Howard Wainer (1997), Visual Revelations. Reprinted by kind permission of Springer Science and Business
Media.

Rule4: Use the right metaphor. Graphs are used to visually display the magnitude
of phenomena. There are many techniques to do this. Examples are bars of the
proper lengths, or points on a scale. Whatever visual metaphor is used to
represent the magnitude, it must be such that it enables correct interpretation.
For example, it should retain the natural order of the values. If a value is twice
as large as another value, the user should interpret the metaphor of the first as
twice as large as the second metaphor. Unfortunately, this is not always the
case. Particularly, graphs in popular printed media tent to violate this
principle.

The soaring price of oil

The OPEC cartel is certain
to raise oil prices again next
week, The only questions
and how much—and what
effect the hike will have on a
troubled world economy.

Deollars per barrel

— OPEC PRICES
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'
crude oil 56
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Figure 12.12 A bar chart using the wrong metaphor. Reprinted by permission of John Wiley & Sons, Inc.
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Figure 12.12 shows a typical example of use of a wrong metaphor. The
graph attempts to show the increase of oil prices in the years from 1970 to
1979. Schmid (1983) also discussed this graph. The price per barrel was $1.80
in 1970. In 1979, this price had increased to $20. Instead of bars, the graph
uses oil barrels to indicate the oil price. The height of the oil barrels is taken
proportional to the oil price. So, if the prices double, the oil barrel becomes
twice as high. Something goes wrong here because the width of the barrel is
also doubled. Consequently, the area of the picture of the oil barrel becomes
four times larger. The visual impression of the value is that it becomes four
times larger. A linear increase would therefore be displayed as a quadratic
increase in the size of the metaphor. In this case, the reader gets the impression
of a much faster increasing oil price.

Tufte (1983) introduced the /ie factor for this type of graphs. Itis defined as the
value suggested by the graph divided by the true value. According to Fig. 12.12,
oil prices haverisen by a factor 20/1.8 = 11.1 from 1970 to 1979. The areas of the
oil barrels have increased by a factor 74.2 in the same period. So, the lie factor
here is equal to 74.2/11.1 =6.7.

Note that there is another problem with this graph: the X-axis in not equally
spaced over time. So, one also gets a wrong impression of the trend in oil prices in
this respect.

Rule 5: Avoid three-dimensional graphs. Graphical designers instead of statisti-
cians sometimes make graphs for popular media. They may find simple graphs
boring and therefore attempt to make them more attractive, for example, by
adding chart junk. Another way to do this is to add a three-dimensional
perspective. Many statistical packages (e.g., Microsoft Excel) support this.
However, three-dimensional graphs are not a good idea from a statistical point of
view because they tend to make correct interpretation more difficult.

Figure 12.13 shows the distribution of the population of Samplonia over
its districts. The three-dimensional shape of the graph on the left makes it
very difficult to compare the size of sectors. For example, it is not clear
whether Wheaton or Crowdon has more inhabitants. The three-dimensional
perspective has been removed in the graph on the right. It is now easier to
compare sectors although the situation is not ideal. It would be better to use a
bar chart for this purpose.

Wheaton Wheaton

R -._m_‘_"‘—.—..\__“_\_ M
: Greenham Laivertet

Mudwater

Greenham

Newbay
Crowdon A Oakdale

Smokeley

Crowdon

Smokeley

Figure 12.13 Pie charts of the population in the districts of Samplonia.
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Figure 12.14 Bar charts of the population in the districts of Samplonia.

Figure 12.14 shows a bar chart of the population of Samplonia in a three-
dimensional perspective. It is not easy to determine the length of the bars. This
caused by the fact that there appears to be space between the bars and the
background. For example, the graph seems to suggest that Mudwater has exactly
250 inhabitants, which is not correct. The three-dimensional perspective has
been removed on the right. The design of the graph is much simpler, but it is also
much easier to determine the lengths of the bars.

12.4.4 Types of Graphs

The available computer software offers ample possibilities of creating graphs.
Generally, it is easy the produce all kinds of graphs. However, not every graph
type is meaningful for every type of variable. Some graph types can only be used for
qualitative variables and other types only for qualitative variables. Moreover, different
graph types perform different functions. Some aim at displaying the distribution of
variables and others at portraying relationships. Table 12.3 may be helpful in selecting
the proper graph in a specific situation.

It is not only important to choose the proper type of graph but also attention should
be paid to the graphic design of the graph. Chart junk should be avoided. Graphs should
be simple and clear. Therefore, the KISS design principle already mentioned is
advocated.

Table 12.3 Possible Graph Types

Variables Distribution Relationship
Quantitative Histogram Scatter plot
Box plot
Qualitative Bar chart Grouped bar chart
Pie chart Stacked bar chart
Pie charts

Mixed Box plots
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It should be mentioned that there are more graph types than mentioned in
Table 12.3. The graphs mentioned here are particularly useful in publications for
nonstatisticians. Other graphs can be very meaningful in exploratory data analysis.

12.4.4.1 The Distribution of a Quantitative Variable

The box plot (or box-and-whisker plot) is a graphical summary of the distribution of
the variable. See Fig. 12.15, for an example. The box represents the central part of the
distribution. It stretches from the lower hinge (the first quartile) to the upper hinge (the
third quartile). It contains the middle 50% of the values. The line in the box represents
the median (the second quartile). Therefore, this is the dividing line between the lower
half and the upper half of the distribution. It is the center of the distribution.

The H-spread is defined as the length of the box (the distance between the first and
third quartile). The value of the szep is equal to 1.5 times the H-spread. The inner fences
are defined as values that are a distance equal to szep outside the box (atboth sides). The
lower adjacent value is the smallest observation above the lower inner fence and the
upper adjacent value is the largest observation below the upper inner fence. The
whiskers run from the box to the adjacent values. Observations further away than the
adjacent values are displayed as separate points. They should be seen as outliers. It
indicates an element that substantially differs from other elements. An outlying value
could also be caused by a measurement error.

A box plot gives a good impression of the location and spread of the observed
values. Figure 12.15 shows that the incomes in Samplonia vary between 0 and 4500.
The median income is 1000. The central half of the incomes are approximately in the
range between 500 and 1500.

The box plot also provides some indication of the symmetry and skewness of the
distribution. The distribution of incomes in Samplonia is clearly skewed to the right.

Monthly net income s

0 1000 2000 3000 4000 500C

Figure 12.15 Box plot of income in the working population of Samplonia.
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The plot shows some outlying values. As they are very close to a whisker, this may be
the result of the skewness of the distribution instead of true outliers.

The histogram is another, maybe much more used, way to display the distribution of
aquantitative variable. To that end the range of possible values is divided into a number
of intervals. Then the number of observations in each interval is computed. For each
interval, a column is drawn; the length of which is taken proportional to the number of
observations. So, a histogram is graphical analogue of the frequency distribution.

Attention should be paid to the number of intervals used. In case of only a few
intervals, a more global picture of the distribution will be obtained. Details may be
hidden.

Figure 12.16 contains two histograms of the income distribution of the working
population of Samplonia. In case of many intervals, the focus will be more on details
and the global picture may be less clear. Sometimes, a rule of thumb is suggested to
take the number of intervals equal to the square root of the number of observations,
with a minimum of 5.

Both histograms in Fig. 12.16 are based on 341 observations. Applying the rule
of thumb would mean 18 intervals. This number has been used in the histogram on the
right. On the one hand, it shows the global shape of the (skewed) distribution, and on the
other, it also shows some detail, like the relatively low number of incomes around 350.

Note that the columns have been drawn adjacent to each other without any space
between them. This is in contrast to bar charts.

12.4.4.2 The Distribution of a Qualitative Variable
The only thing that can be done with a qualitative variable is to count the number of
observations in each category. The resulting frequency distribution can be displayed as
bar chart or a pie chart.

The bar chart consists of a number bars. Each bar represents a category and the
length of the bar is taken proportional to the number of observations in that category.
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Figure 12.16 Histograms of income in the working population of Samplonia.
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Figure 12.17 Bar charts of the population distribution in Samplonia.

The bars are drawn separate from each other, with some space between. Thus, the
impression is avoided that the graph displays a quantitative variable. Figure 12.17
contains two examples of a bar chart. The same variable (District) is shown. So the bars
represent the number of inhabitants in each district.

It is recommended using a bar chart with horizontal bars. This even more avoids
confusion with a histogram. Moreover, there is ample space for labeling the bars. Note
that there is no need for use of different colors. All bars can get the same color or shade.
Use of different colors could be confusing. Intensive colors may create an impression
that some categories are more important than other.

Usually, the categories of a qualitative variable have no natural order. So, no
meaning can be attached to the order of the bars. If this is meaningful, one could decide
to order the bars in increasing (or decreasing) order of magnitude. This also may
enhance ease of interpretation.

Popular media often seem the prefer pie charts to bar charts. The pie chart consists
of a circle divided in to sectors. Each sector represents a category. The angle of the
sector (and thus its area) is taken proportional to its frequency. Figure 12.18 shows an
example. It shows again the population distribution in Samplonia.

Maybe a pie chart has a less dull appearance, but its interpretation is more difficult.
Particularly, comparison of the size sectors is not easy if they roughly have the same
order of magnitude. Being aware of this problem, software often offers the possibility
to include frequencies or percentages in the graph.

To be able to distinguish the sectors in the pie chart, different colors are shades have
to be used. Selection of colors or shades should be done carefully. Their intensities
should not differ so much that they suggest some sectors more important than others.

Some software packages offer the possibility to give bar charts or pie charts a
three-dimensional look. Section 12.4.3 suggested avoiding such a three-dimensional
look. It may increase the aesthetic value of a picture, but can seriously hamper correct
interpretation.
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Figure 12.18 Pie chart of the population distribution in Samplonia.

12.4.4.3 The Relationship Between Quantitative Variables
The scatter plot is the obvious graphical tool to display the relationship between two
quantitative variables. For each element 7, the values x; and y; of two variables X and Y
are seen as the coordinates of a point in two-dimensional space. Figure 12.19 shows an
example. The incomes of working people is plotted against their ages.

Clear patterns in the cloud of points usually indicate some kind of relationship
between the two variables. For example, it is easy to detect a linear relationship. This
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Figure 12.19 The relationship between income and age in Samplonia.
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Figure 12.20 The relationship between income and age in Samplonia.

may be very helpful in explaining the behavior of one variable from another variable.
Also, clustering of observations or outlying points will be clearly visible.

Figure 12.19 shows a number of clusters of points. Within each cluster, there seems
to be a linear relationship between age and income. In several clusters, income
increases with age but there are also cluster in which income seems to be independent
of age.

It would be interesting to show what makes up all these different clusters. One way
to do this is to introduce a third (qualitative) variable and to use different markers for
different values of this variable. An example is shown in Fig. 12.20. There are two
types of markers: circles for the province of Induston and triangles for Agria. It now
becomes clear that incomes are higher in Induston than in Agria.

12.4.4.4 The Relationship Between Qualitative Variables
For showing the relationship between two qualitative variables the clustered bar chart
and the stacked bar chart can be used.

The clustered bar chart consists of a number of simple bar charts of one variable.
There is one for each category of the other variable. Figure 12.21 contains an example.
It shows the age distribution for each district in Samplonia. Vertical bars have been
used here, but, as was suggested earlier, it could have been better to use horizontal bars
to avoid confusion with a histogram. Of course, it is possible to interchange to role of
the two variables and to make bar charts of districts for each age category. This would
show the data from a different perspective.

The clustered bar chart works well for showing some aspects like the absolute size
of each age class. For example, it is clear that there are no old people in Newbay and no
young people in Oakdale. Other aspects are more difficult to observe, like the total size
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Figure 12.21 Clustered bar chart of the population distribution in Samplonia by district and age.

of each district or the relative contribution of each age class within each district. For
example, it is hard to answer the question whether the percentage of young people is
larger in Smokeley than in Mudwater.

Another way to show the relationship between two qualitative variables is to make a
stacked bar chart. Within a category of one variable, the bars corresponding to the
categories of the other variable are not drawn adjacent to each other, but stacked upon
each other. Figure 12.22 shows two ways to do this.

The stacked bar chart on the left was obtained by stacking the bars of Fig. 12.21.Itis
now clear which district has the most inhabitants and which district the fewest. It is also
possible to see which age class is relatively well represented in each district. For
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Figure 12.22 Stacked bar charts of the population distribution in Samplonia by district and age.
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Figure 12.23 Box plots for the distribution of income in the districts of Samplonia.

example, one can observe that there are no elderly in Newbay and no young in Oakdale.
However, it is still not easy to compare the age distributions of two districts. The
stacked bar chart on the right in Fig. 12.22 may be better suited for this. Now, all bars
have the same length (100%). There are no absolute numbers, just relative sizes. Age
compositions within districts can be compared. For example, the percentage of elderly
in Smokeley and Mudwater is larger than in Wheaton in Greenham.

12.4.4.5 The Relationship Between Mixed Variables
There are no specific graphic tools to show the relationship between a qualitative and a
quantitative variable. Usually, use made of graphs for the distribution of a quantitative
variable. These graphs are repeated within each category of the qualitative variable.
The box plot is particularly suited for this. Figure 12.23 shows an example. The graph
contains the income distribution in each district of Samplonia.

The graph clearly shows the substantial differences in the income distributions.
Wheaton, Greenham, and Newbay are poor areas, and Oakdale is a very rich area. Of
course, for each district separately, symmetry and possible outliers can be analyzed.

EXERCISES

12.1 Ifthe sample is selected with unequal probabilities whereas an analyst assumes
a simple random sample without replacement, then

a. the estimator is biased and also the variance estimator is biased;

b. the estimator is biased, but the variance estimator is unbiased;

c. the estimator is unbiased, but the variance estimator is biased;

d. the estimator is unbiased and also the variance estimator is unbiased.
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A simple random sample of size 5 is selected without replacement is selected
form a population of size 20. The sample values of the target variable are: 8, 9,
10, 11, and 12.

a. Compute the estimate for variance of the sample mean.

b. What value would have been obtained if the variance estimate was
computed with a statistical package assuming the data to come from an
independent sample selected with equal probabilities?

c. Explain the difference of the estimates in (a) and (b).

The new political party “Social Democratic Harewood (SDH)” is taking part in
the upcoming local elections in the town of Harewood. A local radio station
carries out a poll to find out how popular the new party is. There are two
neighborhoods in the town: Rhinegate and Millwood. A stratified sample has
been selected. The sample size in each neighborhood was 500. All sampled
persons were asked whether they would vote for the SDH or not. The table
below summarizes all relevant information.

Neighborhood  Population Size ~ Sample Size  Percentage for SDH

Rhinegate 15,000 500 40
Millwood 5,000 500 20

a. Compute an estimate of the percentage of voters in Harewoood that will
vote for the SDH. Also, estimate the variance of the estimator and the 95%
confidence interval.

b. Alot of computer software for data analysis assumes the data to come from
an independent equal probability sample. In this case, the proper estimator
for the variance of sample percentage is equal to p (100 — p)/(n — 1).

Suppose such a computer program would have been used to analyze the
Harewood poll data. What would be the estimate of the percentage of voters
for the SDH? And what would be the estimated variance and the 95%
confidence interval of the estimator?

c. Compare the outcomes of (a) and (b). Explain the differences.

A survey report should at least contain the following three components:

a. Underpinning and derivation of all formulas, summary of the problem and
conclusions, and a detailed description of all steps in the analysis.

b. Underpinning and derivation of all formulas, results in comprehensible
language, and a detailed description of all steps in the analysis.

¢. Results in comprehensible language, summary of the problem, and con-
clusions and a detailed description of all steps in the analysis.

d. Underpinning and derivation of all formulas, results in comprehensible
language, summary of the problem, and conclusions.
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12.5 An executive summary of the survey results should at least satisfy the
following three conditions:

a. It contains an extensive description of the target population, it allows the
commissioner of the survey to take policy decisions, and it does not contain
arguments.

b. It contains a concise overview of the conclusions, it allows the commis-
sioner of the survey to take policy decisions, and it does not contain
arguments.

c. It contains a concise overview of the conclusions, it contains an extensive
description of the target population, and it does not contain arguments.

d. It contains a concise overview of the conclusions, it contains an extensive
description of the target population, and it allows the commissioner of the
survey to take policy decisions.

12.6 Which style should be preferred for the text of the survey report?
a. The text should be written in the passive voice.
b. The text should be written in comprehensible spoken language.
c. The text should be written in the imperative voice.

9 <

d. The text should be written in the active voice using “we,” “you,” or “I.”

12.7 Describe at least two situations in which graphs with a three-dimensional
perspective cause interpretation problems.

12.8 Describe at least six different ways to mislead readers of a statistical graph.



CHAPTER 13

Statistical Disclosure Control

13.1 INTRODUCTION

National statistical offices and other data collection agencies meet the increasing
demand for releasing survey data files. These files contain for each respondent the
scores on the variables measured in the survey. Because of this trend and an increasing
public consciousness about the privacy of individuals, the problems involved in
releasing survey data have become more serious over the years. Many national sta-
tistical offices, including Eurostat, the statistical office of the European Union, are
confronted with these problems. For example, the situation in the United States was
discussed by Cox et al. (1986), and CBS (1987) gives an account of a joint seminar of
Sweden and The Netherlands on openness and protection of privacy.

This chapter explains why, at least in some countries, disclosure is a problem. The
basic identification and disclosure problem is described in Section 13.2. In section
13.3 the concept of uniqueness is introduced. Uniqueness plays an important role in
the identification of individuals, and the subsequent disclosure of information.
Concentrating on the concept of identification, a basic, but probably impractical
rule, for identification protection is formulated in this section. Various types of
disclosure are distinguished in Section 13.4. In the analysis of disclosure risks, it
is important to get some indication of the number of individuals who are unique in the
population. Section 13.5 presents a model to estimate uniqueness and lays down two
criteria for determining the disclosure risk. Many users of disseminated survey data
sets are interested only in data relating to a particular subpopulation, for example, a
specific region of the country. So the analysis of disclosure risks has to be extended to
uniqueness in subpopulations, and Section 13.5 proposes a simple method to deter-
mine the critical size of such subpopulations. Section 13.5 also contains an example of
the analysis of population uniqueness. A procedure that at least is able to cope with
some types of disclosure risk is presented in Section 13.6.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright © 2009 John Wiley & Sons, Inc.
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13.2 THE BASIC DISCLOSURE PROBLEM

The description of the basic disclosure problem is based on the fundamental assumption
that the statistical agencies collect data from respondents for statistical purposes only
and not for administrative purposes. The difference between statistics and admini-
stration is crucial: statistics deals with information on groups of individuals differenti-
ated by some broad characteristics (income, social class, region, race, etc.), whereas
administration deals with data of designated individuals. More on the difference
between administrative and statistical use of data can be found in Begeer et al. (1986).

The disclosure problem relates to the possibility of identification of individuals in
released statistical information (including publications on paper, tape, CD-ROM,
Internet, etc.) and to the revelation of what these individuals consider to be sensitive
information. Disclosure is a two-step process:

(1) Identification of an Individual. A one-to-one relationship can be established
between a record in a released survey data file and a specific individual. For
example, identification is very easy if the survey data file contains names and
addresses of surveyed persons.

(2) Disclosure of Sensitive Information. This is information in the record of the
identified individual that was not known beforehand and which this individual
does not want to be known. This is the so-called sensitive information.

The definition of disclosure agrees to some extent with the definition of disclosure
as suggested by Dalenius (1977) and the U.S. Department of Commerce (1978), which
states that disclosure takes place if publication of statistical data makes it possible to
determine characteristics of specified individuals more accurately than is possible
without access to this statistical information.

Why is disclosure undesirable? First, it is undesirable for legal reasons. In countries
like The Netherlands, for example, there is a law stating that firms should provide
information to the national statistical office, while the office may not publish statistical
information in such a way that information about separate individuals, firms, and
institutions becomes available:

... Data, collected in accordance with this law, may not be disclosed in such a way that returns
and information about a separate person, firm or institution can be observed, unless that
person, the head of the firm, or the management of the institution has no objection.

Second, there is an ethical reason. When collecting data from individuals, the
following statement is made by the Statistics Netherlands:

The data requested from you and other persons by the Statistics Netherlands will be used
exclusively for the preparation of statistical publications. From these publications no
identifiable information concerning separate persons can be derived by others, including
other government services. Statistics Netherlands takes great care to ensure that the
information provided by you can never be used for other than statistical purposes.
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The International Statistical Institute (ISI) Declaration on Professional Ethics, see
ISI (1985), states that

Statisticians should take appropriate measures to prevent their data from being published or
otherwise released in a form that would allow any subject’s identity to be disclosed or
inferred.

Therefore, there is an ethical and legal obligation to avoid disclosure by any means.

Third, there is a very practical reason: if respondents do not trust statistical
agencies, they will not respond. Nonresponse rates in household surveys in The
Netherlands have increased over the last decade to a level of, say, 40%. Hence,
confidence is of the utmost importance for the statistical office. The willingness of
respondents to cooperate is a very important condition for the production of reliable
statistical information.

Having stated that disclosure of data concerning individuals is unacceptable, the
question arises to what extent statistical publications are to be protected to achieve this
goal. Too heavy confidentiality protection of the data may violate another right: the
freedom of information. 1t is the duty of every statistical agency to collect and dis-
seminate statistical information. Itis this dilemma, right of anonymity versus freedom of
information, thatis the core of the considerations about disclosure control of survey data.

The objective of Statistical Disclosure Control is to develop techniques that avoid
identification of individuals. Often 100% protection is not possible. Therefore, dis-
closure control techniques aim at protecting survey data sets such that the identifica-
tion and disclosure become very unlikely, and in fact can only be accomplished after
disproportionately large efforts.

This chapter focuses on the disclosure problem in survey data files. Such files
contain the individual values of survey variables that have been obtained in a survey. It
should be noted that the disclosure problem can also occur in, for example, published
statistical tables. For more information on this aspect of statistical disclosure control,
see Hundepool et al. (2007) and Willenborg and De Waal (1996).

13.3 THE CONCEPT OF UNIQUENESS

A survey data file consists of records of values of the variables measured in the survey.
The information in the records is considered to consist of two disjointed parts:
identifying information on the one hand and sensitive information on the other.

Identifying information relates to those variables in the record (called identification
variables or key variables) that allow one to identify arecord, that is, to establish a one-
to-one correspondence between the record and a specific individual. The well-known
key variables are name and address, but household composition, age, race, gender,
region of residence, occupation, and region of work can also help to identify
individuals. All key variables are assumed to be qualitative variables.

Since identifying information is assumed to be known or accessible to others than
the respondent (neighbors, relatives, friends, colleagues, etc.), this information is not
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considered to be sensitive in the sense of “information not to be revealed by statistical
dissemination.” Therefore, identifying and sensitive information are considered to be
disjoint. However, in practice, a situation may arise where these types of information are
not separable in this way. For example, in many confidentiality laws, no distinction is
made between identifying information and other (sensitive) information. In many parts
of the world, membership of an ethnic group may be both identifying and sensitive.

Sensitive information refers to the values of variables that belong to the private
domain of the respondents, and hence to characteristics that they do not like to be
revealed. No exact definition can be given of variables to be considered sensitive.
Some general consensus exists about variables like sexual behavior and criminal past.
For other variables, it may depend on the context and cultural background. A simple
example is income, which in The Netherlands is considered to be sensitive whereas in
Sweden it would sometimes be characterized as an identification variable.

Having established the distinction between identifying information and sensitive
information, it is now possible to formulate the basic rule for disclosure control: a
disseminated survey data set should be composed such that itis impossible for others to
correctly link records to individuals by using the identifying information in the data set
and prior knowledge.

A crucial element is the prior knowledge of the user of the data: if someone has no
information whatsoever about a specific individual, identification and therefore dis-
closure is impossible. Hence, the risk of disclosure depends on the nature and amount of
a priori available knowledge. Particularly, if the data are used by other government
agencies that maintain comprehensive data files for administrative purposes such as tax
collection, keeping disclosure risk at an acceptable level will pose severe problems.

Since protection against disclosure is very difficult, the basic rule implies that many
survey data sets cannot be published. Therefore, in practice, this rule will have to be
relaxed to continue the release of useful survey data sets.

To protect a survey data set against disclosure, it must be known how identification
takes place in practice. Identification is made possible by unigueness. To be able to
define uniqueness, the key is introduced. The key denotes the set of variables to be used
for identification purposes. Knowledge of the key constitutes the identifying infor-
mation. The key will be taken to have K different actually occurring values. The score
combinations of the key are denoted by 1, 2, . . ., K. If, for example, the key is composed
of age (in 6 categories) and gender (in 2 categories), there are 12 different score
combinations; so K = 12. The number of elements in the population with key value 7 is
denoted by F;(i=1,2, .. ., K) and the corresponding number of elements in the sample
isequaltof;(i=1,2,...,K). All F;are strictly positive, but some of the f; may be equal
to zero.

The value of K need not necessarily be equal to the product of the numbers of
categories of the key variables. If some combinations are impossible (i.e., there are so-
called structural zeros), K will be less than the product of the categories. An example is
akey consisting of age and marital status: the combination of being married and being
younger than 10 years is impossible.

Let N be the size of the population. Then the probability that a person, selected at
random from this population, has key value i is equal to 7;= F/N.
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The resolution of a key is defined by

(13.1)

The resolution is equal to the reciprocal of the probability that two random
elements, selected with replacement from the population, have the same key value.
The resolution of a key gives some indication of the risk of identification. If, on the one
hand, the resolution of the key is high, the probability of an accidental match is low.
Therefore, there would be many persons who would differ on the set of key values. In
this sense, there are many unique persons. So in many cases, it is possible to establish a
one-to-one relationship between a specific person and a record in the data set. If, one
the other hand, the resolution of the key is low, the probability of an accidental match is
high. There will not be many persons with a unique set of values on the key variables.
Hence, if a link is established between a specific person and a record in the data set,
chances are high that this record contains data on a different person.

From the point of view of disclosure risk, high-resolution keys are dangerous. To
get some feeling of which value of the resolution indicates dangerous keys, two
extreme cases are considered. Disregarding the trivial case of K=1, the risk of
disclosure is least if the key assumes only two different values with equal probability in
alarge population. Since 7r; = 0.5, the resolution is equal to R = 2, whichis far less than
N. The risk of disclosure is highest if every person is unique. This is the case if the key
assumes as many values as there are elements in the population. Since 7; = 1/K and
N =K, the resolution is equal to R = K = N. So there are real disclosure problems if the
resolution is of the same order as the population size. Note thatif 7;= 1/Kand K < N,
the resolution is equal to R =K.

An example of a harmless key is the key that consists only of the variable gender.
Assuming that the probabilities of being male and female are the same, the
resolution is equal to 2, which is generally much lower than the population size.
The resolution will be much higher if more variables are included in the key. For
example, the combination of age (in 17 categories), income (in 13 categories), and
size of town (in 6 categories) produces a resolution of 500. For a specific population
of households, consisting of father, mother, and two children, and a key consisting of
ages of father and mother and the ages and sexes of both children, the resolution was
found to be approximately equal to 500,000. Particularly in small regions, this is a
dangerous key, as illustrated in Section 13.4.

Some individual is unique in the population if this person is the only one in the
population with a particular set of scores on the key, that is, he/she has key value i with
F;=1, forsome i. Likewise, someone is unique in the sample if he/she is the only one in
the sample with that set of scores on the key, that is, he/she has value i with f;=1.

Every unique person in the population will also be unique in the sample, if selected.
However, uniqueness in the sample does not imply uniqueness in the population.
Sample uniqueness may also occur if exactly one person out of several with the same
key value is selected. It is clear that a statistical spy, interested in persons who are
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unique in the population and who have been selected in the sample, can concentrate on
records with a unique key value in the sample.

Uniqueness in the population is vital for disclosure. Suppose some user of a data set
knows that a specific person is unique in a well-defined population. Then there are two
possibilities: either this person is in the sample or he is not. If he is in the sample, he will
be identified and disclosed with certainty. If he is not in the sample, no harm can be
done. Knowledge of population uniqueness should not be underestimated, in particu-
lar if the data set contains variables that make it possible to detect respondents living in
a small area. For example, in many small areas, certain professions are unique (the
doctor, the notary, the dentist). In such subpopulations, many persons are unique on a
key consisting of only one identifier. It is thus clear that from the viewpoint of
disclosure, geographical information is very dangerous identifying information.

13.4 DISCLOSURE SCENARIOS

It is important to know the prevalence of unique persons on a key of current
identification variables. It should be realized that even if the categories of single
identifiers are sufficiently filled, the combination of two such identifiers may still
generate a large number of unique persons. Take, as an example, the two identifiers
profession and region. Persons are certainly not unique if one variable at a time is
considered. Although there are many dentists and many people live in small regions,
often there is only one dentist in a small region. So, using only these two identifiers, it is
possible toidentify persons in a survey data set. And if the identifier gender is included,
a female dentist may even be unique in a much larger area. So, in this example, gender
is no longer a harmless key variable.

The danger of a high-resolution key is illustrated by means of an example based on
figures for The Netherlands. The population in a certain region contained 83,799
households. Of these households, 23,485 were composed of father, mother, and two
children. Suppose a key consists of the ages of father and mother and ages and sexes of
the two children (all ages in years). On this key of 6 variables, 16,008 out of the 23,485
households turned out to be unique, which is about 68%! So, if a certain household with
father, mother, and two children is known to be in a sample from this region, there is a
high probability that this household can be identified.

High-resolution keys are dangerous, but that does not mean that low-resolution
keys are always safe. In a Dutch health survey consisting of a sample of n=3500
persons, about 250 persons (7%) were unique on a key, consisting of the variables age
(17 categories), household income (13 categories), and size of the municipality (6
categories). In this case, K was equal to the product of the number of categories (1326)
and the resolution was equal to 500.

Even on a low-resolution key, there will still be exceptional values, for example, a
widow of 18. Disclosure of these “rare persons’ happens often by accident. This type
of disclosure will be called disclosure by spontaneous recognition. It is important to
always check for these “rare persons” and do something about them, for example,
remove them from the survey data file.
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Disclosure with high-resolution keys can be accomplished by matching the data set
with aregister containing the key and also names and addresses. If a register contains a
complete enumeration of the population or of a subpopulation (e.g., all inhabitants of a
large town), nearly every record in the data set can be matched uniquely to a record in
the register. This phenomenon will be called disclosure by matching. This type of
disclosure can only be carried out by a specialized sleuth.

The danger of disclosure by matching was revealed more or less by accident by
Statistics Netherlands in 1984 when, in the context of a project on real income changes,
a successful exact matching procedure was carried out for statistical purposes on files
with tax data (from the Internal Revenue Service). Subjects could be located and
matched in files from several years, without using their exact names and addresses; see
Van de Stadt et al. (1986). The danger of matching was also discovered by Paass and
Wauschkuhn (1985) in a seminal study on exact and statistical matching. They showed
that with information generally available to institutions such as police headquarters,
credit organizations, health bureaus, a large proportion of the records in statistical data
sets could be identified and disclosed.

Knowledge about uniqueness in the population is vital for a successful dis-
closure operation. In many cases, this type of information is limited. However, in
case of complete enumeration of a population, uniqueness can easily be estab-
lished from the data set. Someone who is unique in this data set is also unique in
the population.

Another interesting case of additional knowledge is response knowledge, that is,
knowledge that a person was interviewed for a particular survey. If the statistical spy
knows that a specific individual has participated in a survey and, consequently, that his
data must be in the data set, identification and disclosure is accomplished very easily if
this individual is unique in the sample (not necessarily in the population!). Even
knowledge of which primary sampling units were selected in a multistage survey
increases the risk of disclosure substantially.

Identification can be established by a simple selection or elimination procedure. No
advanced technology is needed. A computer and some generally available software
(e.g., a statistical package like SPSS or STATA) are sufficient. Experiments have
shown that records with specified key values for, say, 3—20 variables can be found in a
file consisting of 10,000 records within a few minutes.

Response knowledge reduces population uniqueness to sample uniqueness.
Population uniqueness is not always easy to verify, but a simple tabulation program
is sufficient to determine sample uniqueness. Therefore, response knowledge signifi-
cantly increases the dangers of disclosure.

A simple, but realistic, example of disclosure by response knowledge shows the
danger of this scenario. The survey data set used contained all key variables from
a health survey data file consisting of 3500 records. Now suppose it is known that
colleague John is in the data set. John is 42 years old, has an academic degree, and
works for the government. The disclosure attempt starts with all 3500 records. First, all
records with an age outside the interval 40—44 are deleted. This leaves only 164
records. Next, excluding all records of persons without an academic degree reduces the
number of remaining records to five. Finally, picking out only those people who are
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employed in government institutions results in just one record. This is John! And only
three variables were required to identify him.

From the point of view of disclosure control, a sample is safer than a complete
enumeration of the population. In large surveys, the sampling fraction could be 0.05.
So, only 1 out of each 20 persons is in the sample and not everyone’s private
information can be revealed. Furthermore, a sample does not give information
about uniqueness in the population. Is a sample therefore safe? No, certainly not.
Since a small sample contains more unique persons than a large sample, the risk
of disclosure by response knowledge even becomes larger as the sample size
decreases.

Time may also be a factor affecting the disclosure risk. If the fieldwork of the survey
was carried out a long time ago, all information necessary for identification must refer
to that time. Since people are generally not very good in recalling events and facts from
the past, disclosure based on old data sets may be more difficult than disclosure based
on recent data sets.

13.5 MODELS FOR THE DISCLOSURE RISK

For estimating the number of population uniques using sample survey data, a simple
model is proposed. The model is based on the assumption that the cell frequencies in
the population are a realization of a superpopulation distribution. Let the population
consist of N individuals, and suppose the key divides the population into K cells.
Each cell i is assigned a superpopulation parameter ; > 0 (a probability) and a
random variable F; denoting the population frequency in that cell. It is assumed that
F; has a Poisson distribution with expected value w;= Nm;. Furthermore, let U,
denote the expected number of population uniques. Under these assumptions, U, is
equal to

K
Up=> me . (13.2)
i=1

The expected number of population uniques can be used as an approximation to the
realized number of unique individuals under the superpopulation model. To estimate
the number of uniques, all expected values w1, wy, . . ., g have to be estimated. Since
the number of cells is usually very large, this can turn out to be a complex problem. To
simplify calculations, a model is assumed that governs the generation of the super-

population parameters wy, (o, - . ., iLx. TWO possible models are discussed here: the
Constant-Poisson model and the Poisson-Gamma model.
The Constant-Poisson model assumes that all parameters u, (o, . . ., g are equal.

Consequently, all F; have the same Poisson distribution with expected value w. Since
all probabilities have to sum to 1, it follows that

== 13.3
= (133)
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fori=1,2,...,K. Using u;= u = N/K, the expected number of population uniques is
equal to

U, = Ne V/K. (13.4)

This is a nice and simple expression that can be computed quickly. Unfortunately,
the Constant-Poisson model rarely holds in practical situations. It is too simple.

The idea of the Poisson-Gamma model is to allow variations in the 7; by
considering them as realizations of Gamma(«, f3) distributed random variables, G,
say. The first parameter « controls the magnitude of the 7r; and the second parameter 3
controls the variation in the 7;. This distribution is used because it covers a wide range
of possible distributions, and also arithmetic is rather simple. The usefulness of
this model was investigated by Bethlehem et al. (1990), Skinner et al. (1990), and
Greenberg and Zayatz (1992).

Although logically > G; = 1, it is simply assumed that > E(G;) = 1. Then a =
1/Kf, so there is only one unknown parameter left in the common distribution of
the G;’s. This parameter (f) reflects the amount of dispersion of the superpopulation
probabilities G; around their common mean 1/K.

The Poisson-Gamma model can now be summarized as

G; ~ Gamma(a, f3),

. (13.5)
F; ~ Poisson(u; = Nmj|m; = G),
fori=1, 2, ..., K. An attractive property of this model is that the marginal distri-
bution of each F; is the negative-binomial distribution (Johnson and Kotz, 1969).
Consequently, the expected value of F; is

N
E(Fy) :M:Naﬂ:E» (13.6)
and its variance is equal to
N
V(F) = u(1+NB) = 2 (1+Np). (137)

Note that expressions (13.6) and (13.7) do not contain the parameter a. Due to the
restriction aff = 1/K, the choice of a value for f fixes the value of «.

Under the Constant-Poisson model, the variance of F;is equal to N/K. Comparison
with expression (13.7) shows that the Poisson-Gamma model allows more variation.
The expected number of population uniques is under this model that is equal to

Upy=N(1+Np)~ 179, (13.8)

To estimate U, estimates of the parameters o and f8 of the Poisson-Gamma model
are required. Expressions can be given for the maximum likelihood (ML) estimators,
but the moment estimators can also be used. These can be found by equating the first
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and second sample moments to their expected values. An estimator b for /3 is obtained
by solving

n
(1+nb)?f—K_] '

K
i=

(i*%)z. (13.9)

1
Then an estimator a for « is obtained from the equation

1
=—. 13.1
a=4r (13.10)

Now the expected number of population uniques U, can be estimated by
U, = N(1+Nb)" 9. (13.11)

Only those records in the survey data file can be identified that are unique in the
population. The expected number of population uniques in the survey data file is
denoted by Up. Assuming equal selection probabilities, U, can be estimated by

n
Ups :NUP' (13.12)

Two criteria can be proposed for establishing the disclosure risk, based on the
available information in the data file. The purpose of these criteria is to determine
whether (additional) measures for disclosure protection should be taken. The first
criterion is an absolute criterion of the form U, < C,, where C,, the absolute critical
value, is a constant, small enough to ensure that U, is negligible. The second, relative
and less stringent, criterion states that the proportion of possibly identifiable records
(Ups/n = U,/N) must be smaller than some critical value C,. This is a relative critical
value. The motivation for a relative criterion is that it might be acceptable if just a few
of the many sample elements are identifiable, because it will then be very unlikely that
a specific record will be recognized as being unique.

Geographical variables in a survey data file may lead to even more severe
disclosure control problems, particularly if such variables describe a detailed geo-
graphical classification. There is a dilemma here. On the one hand, researchers often
want a detailed geographical classification for their analysis, and on the other, this may
cause confidentiality of data to be at stake. This calls for a criterion that helps to
determine which level of detail of a geographical variable is still acceptable in terms of
disclosure risk.

One possibility for modeling uniqueness in geographical areas is to use a negative
binomial distribution for each area separately, that is,

Fj; ~ Negative binomial (N}, a;, b;), (13.13)

where F;is the frequency in cell i of area j. This model will, in general, give a better fit
than a model that ignores the subpopulation structure by having only one « and f
parameter and one population size N. Moreover, separate models for each area enable
estimation of the number of unique elements Uy, in each area j. Hence, the number
of unique elements in the entire population can be estimated by summing the U,,.
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However, if the number of areas is large, the computational effort can be considerable.
A simpler model that requires only one « and one f to be estimated is obtained by
assuming all ;; and all f; to be equal, that is,

Fjj ~ Negative binomial (N}, a, b). (13.14)

This model can be used to choose which of the more or less refined several regional
classifications to include in the data set. In such situations, some indication is required
about which regional classification still satisfies the criterion for a “safe” data file, even
for the smallest region in that classification. Assuming model (13.14) is a good enough
approximation for this purpose; the relative criterion

U
= (14+Np)~ (13.15)

can be seen as a function of N. Since « and f are positive, expression (13.15) is a
monotonic decreasing function of N. Now the critical population size N¢ is defined as
the population size for which the relative criterion is just satisfied; so,

U, (N
GllVe) _ ¢, (13.16)
Nc
and
(C;l/(1+a)_1)
Ne = ———F—— (13.17)

The estimates a for & and b for ff can be used to estimate the critical population size.
And this estimate will indicate how refined the regional classification can be: the
regional classification must be such that the smallest distinguished area has a
population size larger than Nc.

The theory discussed in this section is illustrated with an example, using a survey
data file containing data of 8399 individuals. There are four identification variables:
household composition (H) in 24 categories, age (A) in 14 categories, marital status
(M) in 2 categories, and gender (G) in 2 categories.

Four different keys were used. The first key consisted of variable H only. The
second key H X A was obtained by crossing H and A. In the same way, the third and
fourth keys were defined and denoted by H x A x M and H x A x M x G. For each of
these keys, the contingency table containing the sample frequencies for all possible
key values was formed. Since not all combinations are possible, the number of possible
key values was smaller than the product of the categories of the variables involved. In
contingency table terminology, structural zeros were excluded from the analysis but
sampling zeros were not.

The performance of the Constant-Poisson model and the Poisson-Gamma model
was analyzed by estimating the numbers of uniques in the sample (not necessarily also
unique in the population). The estimated number of uniques in the sample could be
compared with the corresponding observed number as a partial check of the model.
The results are summarized in Table 13.1.
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Table 13.1 Estimating the Number of Uniques and the Critical Population Size

Number of  Estimate for Estimate for Critical
Number of Uniques in Constant- Poisson- Population
Key Key Values the Sample Poisson Model Gamma Model Size
H 23 0 <0.01 0.1 743
HxA 288 23 <0.01 21.6 17,422
HxAxM 554 50 0.002 379 32,206
HxAXxMxG 1108 108 43 80.2 63,624

The estimates based on the Constant-Poisson model differ substantially from the
observed number of uniques. Clearly, this model does not fit in this example. Although
the Poisson-Gamma model underestimates the number of sample uniques in all cases,
the order of magnitude is roughly correct.

The critical population sizes were computed by using a relative criterion value
of 0.1%, that is, the number of possibly identifiable records in any subpopulation
must be smaller than 0.1%. At first sight this criterion value seems rather small,
yet in a population of 14,000,000 (the Dutch population at that time), this would
mean that 14,000 people were unique and therefore at the risk of disclosure. The
results show that a data set containing any of the four keys (but no other key
variables) can be released as long as they pertain to subpopulations with more than
63,624 inhabitants.

13.6 PRACTICAL DISCLOSURE PROTECTION

Experiences with the analysis of disclosure risks of real survey data files have led to a
number of observations:

¢ Inevery survey data file containing 10 or more key variables, a large number of
persons can be identified by matching this file with another file containing the
key and names and addresses (disclosure by matching).

* Response knowledge nearly always leads to identification (disclosure by re-
sponse knowledge), even on a low-resolution key.

¢ On a key consisting of only two or three identifiers, a considerable number of
persons are unique in the sample, some of them being “rare persons,” and there-
fore also unique in the population.

If someone is unique in the population, the question may arise: How high is the
risk of identification? This risk depends on the amount of knowledge that is available
to some user of the data. Furthermore, there are many respondents and many
potential users, and the amount of available knowledge may vary substantially. This
makes it difficult, but not impossible, to model additional knowledge and to quantify
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the probability that someone has knowledge of certain information; see, for
example, Cassel (1976), Frank (1976, 1979), and Duncan and Lambert (1986,
1987). Sometimes statistical agencies take a different approach by asking the
question: Does a respondent consider his private information in the survey data
file safe? Hence, the risk of disclosure is considered not only from the legal, ethical,
and practical viewpoints of the agency but also from the viewpoint of the single
respondent who might have second thoughts about answering questions in a survey.
A consequence of such a standpoint is that all respondents, who are either unique in
the sample while it might be known that they are in the sample or who are unique in
the population, have the right of protection. In particular, this right is appropriate for
persons who are unique on a low-resolution key, that is, persons with exceptional
characteristics.

In the literature, several techniques can be found that reduce the risk of disclosure.
Spruill (1983), Paass (1985), Kim (1986), and McGuckin and Nguyen (1988) discuss
adding random noise to the data. However, this works well only for quantitative
variables and not so well for qualitative variables. For example, adding noise to
the variable gender would turn males into females, and vice versa. For qualitative
variables, noise may affect the structure and nature of the data too much. Furthermore,
Paass (1985) has shown that adding noise to data does not significantly reduce the
disclosure risk.

Another disclosure avoidance technique is data swapping, suggested by
Dalenius and Reiss (1982). Data swapping transforms the data set into another
data set by exchanging the values of variables. So the value of a variable in the
record of a respondent is not his own value but the value of some other respondent.
Data swapping affects the internal structure of the data, but knowing how much
swapping has been done does allow one to correct the estimates of second-order
moments.

A third technique to avoid disclosure is called microaggregation (Spruill, 1983;
Cox etal., 1986). The individual data are not published, but aggregated data are. In the
case of quantitative variables, it is often sufficient to publish means, variances, and
covariances only. With these aggregates, many multivariate analyses techniques, for
example, regression analysis, can be carried out (McGuckin and Nguyen, 1988). For
qualitative variables, microaggregation means publishing two-dimensional, or higher
dimensional, tables. To satisfy the needs of all users and to make possible all kinds of
analysis techniques for this type of data, for example, loglinear analysis, the released
data set should contain the frequency counts for the crossing of all variables, and this
will come down to the individual data.

A final technique to be mentioned here is the reduction of the resolution of the key.
This reduction can be obtained by removing identification variables from the data set
or by collapsing categories of identification variables. This often means a reduction to
at most 10 identifiers. Removal of so much vital information can make disseminated
data sets useless for scientific research.

The risk of disclosure by response knowledge can be reduced by not publishing the
survey data file immediately after finishing the fieldwork. Still, by allowing a number
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of years to pass between fieldwork and publication, one may wonder whether the
respondent will feel comfortable if he knows that response knowledge will reveal his
private data almost with certainty.

The problem of disclosure by spontaneous recognition of rare persons can be
tackled. This risk will be diminished if population uniqueness is removed from all low-
dimensional tables of key variables.

The following procedure is proposed to remove uniqueness in low-dimensional
tables. A disclosure analysis always starts with establishing the key variables. A file is
created that contains the values of only these key variables. Next, it must be decided
what the criterion should pertain to. If the criterion pertains to population uniques, the
Poisson-Gamma model can be used to estimate the number of uniques. However, it is
also possible to apply the criterion to the sample uniques. On the one hand, this is much
simpler and straightforward, but on the other it is a conservative criterion: it causes
more protection measures to be undertaken than really necessary (sample uniques
need not be population uniques). On the file with key variables, an analysis is carried
out that consists of four steps:

Step 1: Univariate Scan. Check the univariate frequency distributions and locate
variables with small frequencies that do not satisfy the criterion.

Step 2: Collapse/Remove. If a variable does not satisfy the criterion, it can be
removed entirely from the data set, but often a better approach is to collapse
categories or to recode a bad (rare) category as “unknown” or “otherwise.”

Step 3: Bivariate Scan. Check the bivariate distributions frequency distributions
and locate the tables that do not satisfy the criterion.

Step4: Collapse/Remove/Recode.1f abivariate table does not satisfy the criterion,
something has to be done about at least one of the two variables concerned. The
choice may depend on the behavior of the variables in other tables. Variables
causing problems can be removed entirely or some categories may be col-
lapsed. If the problems are caused by only a few records, the relevant scores in
these records may be set to “unknown,” thus minimizing the loss of
information.

Of course, the analysis can be extended to trivariate tables, but if the number of key
variables is substantial, this will be very time consuming.

If the data set contains some kind of regional classification, it is recommended to
perform the analysis for each region separately. In fact, this is a trivariate analysis in
which one variable is always equal to region.

It should be noted that this procedure will not protect the data set against disclosure
by matching, and hardly will it protect against disclosure by response knowledge.
Specifying more stringent criterion values will produce data sets that might to some
extent be protected against these two types of disclosure, but the subsequent loss of
information will generally be unacceptably large.

It turns out that disclosure of sensitive information in survey data files is often
possible, and difficult to prevent, unless the information in the data set is severely
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reduced. Disclosure of “rare persons” can be prevented by taking care of the uniques in
two- or three-dimensional tables. The risk of disclosure by response knowledge can be
limited by advising the respondents not to tell anyone else that they were in a survey.
Furthermore, delaying the release of the survey data may help. The third type of
disclosure, disclosure by matching, requires considerable resources in terms of
methodology, computing power, and manpower. Therefore, if survey data files are
released under the conditions that the data may be used for statistical purposes only and
that no matching procedures would be carried out at the individual level, any huge
effort to identify and to disclose clearly shows malicious intent. In view of the duty of
statistical agencies to disseminate statistical information, disclosure protection for this
kind of malpractice could and should be taken care of by legal arrangements and not by
restrictions on the data to be released.

EXERCISES

13.1 How is the number of key values K defined?
a. The sum of the numbers of categories for all key variables.
b. The product of the numbers of categories of all key variables.
c. The outcome under (a) minus the number of impossible key combinations.
d. The outcome under (b) minus the number of impossible key combinations.

13.2 What happens to the value of the resolution R if the number of records in a
survey data set is made four times large by adding three copies of the data set to
the data set.

a. The value of the resolution will be four times as large.
b. The value of the resolution will be two times as large.
c. The value of the resolution does not change.

d. The value of the resolution will be half as large.

13.3 A survey data set relates to a province consisting of three districts. The
population sizes in the districts are 40,000, 20,000, and 10,000. A variable age
has been measured in three categories. The age distribution is the same in each
district: 30% young, 40% middle aged, and 30% elderly. Also gender has been
recorded. It is known that within each combination of district and age, the
number of males is equal to the number of females.

a. Compute the resolution of the key consisting of district, age, and gender.

b. What would have been the resolution of this key if the number of people for
each combination of district, age, and gender was exactly the same?

13.4 A simple key just splits the population into two categories. The number of
persons in the first category is F'and the number in the second category is N—F.
Assuming that the value of F can vary, compute the minimum and maximum
values of the resolution. For which values of F are these extreme values
obtained?
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13.5

13.6

13.7

Which of the following statements is correct?

a. The Constant-Poisson model fits better in practice than the Poisson-
Gamma model because it allows more variation in the frequencies of the
key values.

b. The Constant-Poisson model fits worse in practice than the Poisson-
Gamma model because it allows less variation in the frequencies of the
key values.

c. In most practical applications, the fit of the Constant-Poisson model is as
good as the fit of the Poisson-Gamma model.

d. The Constant-Poisson model fits better in practice than the Poisson-
Gamma model because it contains less parameters.

A population consists of 100,800 persons. There are 5 key variables: gender
(2 categories), region (12 categories), composition of the household (6
categories), age (10 categories), and education (7 categories). Suppose, the
number of persons F; with key value 7 has a Poisson distribution. Also suppose
that the expected value of all F; is the same.

a. Compute the expected number of key values i with F; > 0.

b. Compute the expected number of key values i with F;=1.

A research agency intends to disseminate a survey data file, but wants to keep
the disclosure risk to a minimum. The file contains the data of a sample from a
population of 7,000,000 employed persons. The survey agency considers
making available one of the following two files:

¢ A file with a detailed regional classification, but with less detailed other
variables. The identification variables are municipality (600 categories),
gender (2 categories), age (10 categories), level of education (7 categories),
and function type (12 categories).

o Afile with aless detailed regional classification, but with more detailed other
variables. The identification variables are province (12 categories), gender
(2 categories), age (20 categories), level of education (7 categories), function
type (12 categories), marital status (2 categories), and composition of the
household (13 categories).

The research agency applies a relative criterion value of 0.001 for
disclosure control for all its survey data files.

a. Using the Constant-Poisson model, determine whether or not both survey
data files satisfy this criterion, and thus whether or not they can be
published. It can be assumed that there are no structural zeros among
all possible combinations of the categories of the key variables.

b. There is different survey data set that relates to the same target population.
This file does not contain a regional classification variable. The number of
different key values of the available key variables is equal to 1,000,000.
An analysis shows that the Poisson-Gamma model fits well. The estimate
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for the parameter « is equal to 0.00005 and the estimate for the parameter 3
is equal to 0.02.

Estimate the number of uniques in the total population. Can this file be
published if the relative criterion of 0.001 is applied?

. Compute the critical population size. What conclusion can be drawn from

the result of this computation?

13.8 The town council of a large city has carried out a survey among its inhabitants.
The total population size is N = 600,000 and the sample size of the survey was
n=10,000. The town council intends to make the survey data file available to
other organizations. Before making a decision, a disclosure analysis is carried
out. There are 5 key variables in the file: gender (2 categories), marital status (4
categories), age (20 categories), neighborhood (40 categories), and occupation
(15 categories).

a.

Compute the number of different key values K. If it is assumed that every
key value appears with the same frequency in the table, compute the
resolution R.

. Using the Constant-Poisson model, estimate the number of population

uniques. Can this file be disseminated under a relative criterion of 0.001?
Using the sample data, it can be shown that

1y "\ _ 5 1875
K—14 (fi_E> Tt

. Compute estimates ¢ and b for the parameters « and f§ of the Poisson-

Gamma model. Next, estimate the number of population unique. Can this
survey data set be published under a relative criterion of 0.001?

. Using the estimates a and b, compute the critical population size. What

conclusion can be drawn with respect to publishing data at the level of a
neighborhood?
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