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Preface

This is a book about surveys. It describes the whole survey process, from design to

publication. It not only presents an overview of the theory from a statistical

perspective, but also pays attention to practical problems. Therefore, it can be seen

as a handbook for those involved in practical survey research. This includes survey

researchers working in official statistics (e.g., in national statistical institutes),

academics, and commercial market research.

The book is the result of many years of research in official statistics at Statistics

Netherlands. Since the 1980s there have been important developments in computer

technology that have had a substantial impact on the way in which surveys are

carried out. These developments have reduced costs of surveys and improved the

quality of survey data. However, there are also new challenges, such as increasing

nonresponse rates.

The book starts by explaining what a survey is, and why it is useful. There is a

historic overview describing how the first ideas have developed since 1895. Basic

concepts such as target population, population parameters, variables, and samples

are defined, leading to the Horvitz–Thompson estimator as the basis for estimation

procedures.

The questionnaire is the measuring instrument used in a survey. Unfortunately, it

is not a perfect instrument. A lot can go wrong in the process of asking and

answering questions. Therefore, it is important to pay careful attention to the design

of the questionnaire. The book describes rules of thumb and stresses the importance

of questionnaire testing.

Taking the Horvitz–Thompson estimator as a starting point, a number of

sampling designs are discussed. It begins with simple sampling designs such as

simple random sampling, systematic sampling, sampling with unequal probabilities,

and systematic sampling with unequal probabilities. This is followed by some more

complex sampling designs that use simple designs as ingredients: stratified

sampling, cluster sampling, two-stage sampling, and two-dimensional sampling

(including sampling in space and time).

Several estimation procedures are described that use more information than the

Horvitz–Thompson estimator. They are all based on a general descriptive model
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using auxiliary information to estimate population characteristics. Estimators

discussed include the direct estimator, the ratio estimator, the regression estimator,

and the poststratification estimator.

The book pays attention to various ways of data collection. It shows how

traditional data collection using paper forms (PAPI) evolved into computer-assisted

data collection (CAPI, CATI, etc.). Also, online surveys are introduced. Owing to its

special nature and problems, and large popularity, online surveys are discussed

separately and more extensively. Particularly, attention is paid to undercoverage and

self-selection problems. It is explored whether adjustment weighting may help

reduce problems. A short overview is given of the Blaise system. It is the de facto

software standard (in official statistics) for computer-assisted interviewing.

A researcher carrying out a survey can be confronted with many practical

problems. A taxonomy of possible errors is described. Various data editing

techniques are discussed to correct detected errors. Focus is on data editing in large

statistical institutes. Aspects discussed include the Felligi–Holt methodology,

selective editing, automated editing, and macroediting. Also, a number of

imputation techniques are described (including the effect they may have on the

properties of estimators).

Nonresponse is one of the most important problems in survey research. The book

pays a lot of attention to this problem. Two theoretical models are introduced to

analyze the effects of nonresponse: the fixed response model and the random

response model. To obtain insight into the possible effects of nonresponse, analysis

of nonresponse is important. An example of such an analysis is given. Two

approaches are discussed to reduce the negative effects of nonresponse: a follow-up

survey among nonrespondents and the Basic Question Approach.

Weighting adjustment is the most important technique to correct a possible

nonresponse bias. Several adjustment techniques are described: simple poststrati-

fication, linear weighting (as a form of generalized regression estimation), and

multiplicative weighting (raking ratio estimation, iterative proportional fitting). A

short overview of calibration estimation is included. It provides a general theoretical

framework for adjustment weighting. Also, some attention is paid to propensity

weighting.

The book shows what can go wrong if in the analysis of survey data not all aspects

of the survey design and survey process are taken into account (e.g., unequal

probability sampling, imputation, weighting). The survey results will be published

in some kind of survey report. Checklists are provided of what should be included in

such a report. The book also discusses the use of graphs in publications and how to

prevent misuse.

The final chapter of the book is devoted to disclosure control. It describes the

problem of prevention of disclosing sensitive information in survey data files. It

shows how simple disclosure can be accomplished. It gives some theory to estimate

disclosure risks. And it discusses some techniques to prevent disclosure.

The fictitious country of Samplonia is introduced in the book. Data from this

country are used in many examples throughout the book. There is a small computer

program SimSam that can be downloaded from the book website (www.applied-
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survey-methods.com). With this program, one can simulate samples from finite

populations and show the effects of sample size, use of different estimation

procedures, and nonresponse.

A demo version of the Blaise system can also be downloaded from the website.

Small and simple surveys can be carried out with this is demo version.

The website www.applied-survey-methods.com gives an overview of some basic

concepts of survey sampling. It includes some dynamic demonstrations and has

some helpful tools, for example, to determine the sample size.

JELKE BETHLEHEM
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C H A P T E R 1

The Survey Process

1.1 ABOUT SURVEYS

We live in an information society. There is an ever-growing demand for statistical

information about the economic, social, political, and cultural shape of countries. Such

information will enable policy makers and others to make informed decisions for a

better future. Sometimes, such statistical information can be retrieved from existing

sources, for example, administrative records. More often, there is a lack of such

sources. Then, a survey is a powerful instrument to collect new statistical information.

A survey collects information about a well-defined population. This population

need not necessarily consist of persons. For example, the elements of the population

can be households, farms, companies, or schools. Typically, information is collected

by asking questions to the representatives of the elements in the population. To do this

in a uniform and consistent way, a questionnaire is used.

One way to obtain information about a population is to collect data about all its

elements. Such an investigation is called a census or complete enumeration. This

approach has a number of disadvantages:

. It is very expensive. Investigating a large population involves a lot of people

(e.g., interviewers) and other resources.

. It is very time-consuming. Collecting and processing a large amount of data

takes time. This affects the timeliness of the results. Less timely information is

less useful.

. Large investigations increase the response burden on people. Asmanypeople are

more frequently asked to participate, they will experience it more and more as a

burden. Therefore, people will be less and less inclined to cooperate.

A survey is a solution to many of the problems of a census. Surveys collect

information on only a small part of the population. This small part is called the sample.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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In principle, the sample provides information only on the sampled elements of the

population. No information will be obtained on the nonsampled elements. Still, if

the sample is selected in a “clever” way, it is possible to make inference about the

population as awhole. In this context, “clever”means that the sample is selected using

probability sampling. A random selection procedure uses an element of chance to

determine which elements are selected, and which are not. If it is clear how this

selection mechanism works and it is possible to compute the probabilities of being

selected in the sample, survey results allow making reliable and precise statements

about the population as a whole.

At first sight, the idea of introducing an element of uncertainty in an investigation

seems odd. It looks like magic that it is possible to say something about a complete

population by investigating only a small randomly selected part of it. However, there

is no magic about sample surveys. There is a well-founded theoretical framework

underlying survey research. This framework will be described in this book.

1.2 A SURVEY, STEP-BY-STEP

Carrying out a survey is often a complex process that requires careful consideration

and decision making. This section gives a global overview of the various steps in the

process, the problems thatmaybe encountered, and the decisions that have to bemade.

The rest of the book describes these steps in much more detail. Figure 1.1 shows the

steps in the survey process.

Thefirst step in the survey process is survey design. Before data collection can start,

a number of important decisions have to be made. First, it has to become clear which

population will be investigated (the target population). Consequently, this is the

population to which the conclusions apply. Next, the general research questions must

Survey design

Data collection 

Data editing 

Nonresponse correction 

Analysis 

Publication 

Figure 1.1 The survey process.
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be translated into specification of population characteristics to be estimated. This

specification determines the contents of the questionnaire. Furthermore, to select a

proper sample, a sampling design must be defined, and the sample size must be

determined such that the required accuracy of the results can be obtained.

The second step in the process is data collection. Traditionally, in many surveys

paper questionnaires were used. They could be completed in face-to-face interviews:

interviewers visited respondents, asked questions, and recorded the answers on

(paper) forms. The quality of the collected data tended to be good. However, since

face-to-face interviewing typically requires a large number of interviewers, who all

may have to do much traveling, it was expensive and time-consuming. Therefore,

telephone interviewing was often used as an alternative. The interviewers called the

respondents from the survey agency, and thus no more traveling was necessary.

However, telephone interviewing is not always feasible: only connected (or listed)

people can be contacted, and the questionnaire should not be too long or too

complicated. A mail survey was cheaper still: no interviewers at all were needed.

Questionnaires were mailed to potential respondents with the request to return the

completed forms to the survey agency. Although reminders could be sent, the

persuasive power of the interviewers was lacking, and therefore response tended

to be lower in this type of survey, and so was the quality of the collected data.

Nowadayspaperquestionnaires areoften replacedwith electronicones.Computer-

assisted interviewing (CAI) allows to speed up the survey process, improve the quality

of the collected data, and simplify thework of the interviewers. In addition, computer-

assisted interviewing comes in three forms: computer-assisted personal interviewing

(CAPI), computer-assisted telephone interviewing (CATI), and computer-assisted

self-interviewing (CASI). More and more, the Internet is used for completing survey

questionnaires. This is called computer-assisted web interviewing (CAWI). It can be

seen as a special case of CASI.

Particularly if the data are collected by means of paper questionnaire forms, the

completed questionnaires have to undergo extensive treatment. To produce high-

quality statistics, it is vital to remove any error. This step of the survey process is called

data editing. Three types of errors canbedistinguished:A range erroroccurs if a given

answer is outside the valid domain of answers; for example, a person with an age of

348 years. A consistency error indicates an inconsistency in the answers to a set of

questions.An age of 8 yearsmay bevalid, amarital status “married” is not uncommon,

but if both answers are given by the same person, there is something definitely wrong.

The third type of error is a routing error. This type of error occurs if interviewers

or respondents fail to follow the specified branch or skip instructions; that is, the route

through the questionnaire is incorrect: irrelevant questions are answered, or relevant

questions are left unanswered.

Detected errors have to be corrected, but this can bevery difficult if it has to be done

afterward, at the survey agency. In many cases, particularly for household surveys,

respondents cannot be contacted again, so other ways have to be found out to solve

the problem. Sometimes, it is possible to determine a reasonable approximation of

a correct value by means of an imputation procedure, but in other cases an incorrect

value is replaced with the special code indicating the value is “unknown.”
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After data editing, the result is a “clean” data file, that is, a data file in which no

errors can be detected any more. However, this file is not yet ready for analysis. The

collected data may not be representative of the population because the sample is

affected by nonresponse; that is, for some elements in the sample, the required

information is not obtained. If nonrespondents behave differently with respect to the

population characteristics to be investigated, the results will be biased. To correct for

unequal selection probabilities and nonresponse, aweighting adjustment procedure is

often carried out. Every record is assigned someweight. These weights are computed

in such a way that the weighted sample distribution of characteristics such as gender,

age, marital status, and region reflects the known distribution of these characteristics

in the population.

In the case of item nonresponse, that is, answers are missing on some questions,

not all questions, an imputation procedure can also be carried out. Using some kind of

model, an estimate for a missing value is computed and substituted in the record.

Finally, a data file is obtained that is ready for analysis. The first step in the analysis

will probably nearly always be tabulation of the basic characteristics. Next, a more

extensive analysis will be carried out. Depending on the nature of the study, this will

take the form of an exploratory analysis or an inductive analysis. An exploratory

analysiswill be carried out if there are no preset ideas, and the aim is to detect possibly

existing patterns, structures, and relationships in the collected data. Tomake inference

on the population as a whole, an inductive analysis can be carried out. This can take

the form of estimation of population characteristics or the testing of hypotheses that

have been formulated about the population.

The survey results will be published in some kind of report. On the one hand, this

report must present the results of the study in a form that makes them readable for

nonexperts in the field of survey research. On the other hand, the report must contain

a sufficient amount of information for experts to establish whether the study was

carried out properly and to assess the validity of the conclusions.

Carrying out a survey is a time-consuming and expensive way of collecting

information. If done well, the reward is a data file full of valuable information. It

is not unlikely that other researchers maywant to use these data in additional analysis.

This brings up the question of protecting the privacy of the participants in the survey.

Is it possible to disseminate survey data sets without revealing sensitive information

of individuals? Disclosure control techniques help establish disclosure risks and

protect data sets against disclosing such sensitive information.

1.3 SOME HISTORY OF SURVEY RESEARCH

The idea of compiling statistical overviews of the state of affairs in a country is already

very old. As far back as Babylonian times, censuses of agriculture were taken. This

happened fairly shortly after the art ofwritingwas invented.AncientChina counted its

people to determine the revenues and the military strength of its provinces. There are

also accounts of statistical overviews compiled by Egyptian rulers long before Christ.

Rome regularly tookacensusofpeopleandofproperty.Thedatawereused toestablish
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the political status of citizens and to assess their military and tax obligations to the

state.And of course, therewas numbering of the people of Israel, leading to the birth of

Jesus in the small town of Bethlehem.

In the Middle Ages, censuses were rare. The most famous one was the census

of England taken by the order of William the Conqueror, King of England. The

compilation of this Domesday Book started in the year 1086 AD. The book records a

wealth of information about each manor and each village in the country. There is

information about more than 13,000 places, and on each county there are more than

10,000 facts. Tocollect all thesedata, the countrywasdivided into anumberof regions,

and in each region, a group of commissioners was appointed from among the greater

lords. Each county within a region was dealt with separately. Sessions were held

in each county town. The commissioners summoned all those required to appear

before them. They had prepared a standard list of questions. For example, there were

questions about the owner of themanor, the number of freemen and slaves, the area of

woodland, pasture, andmeadow, the number of mills and fishponds, to the total value,

and the prospects of getting more profit. The Domesday Book still exists, and county

data files are available on CD-ROM or the Internet.

Another interesting example can be found in the Inca Empire that existed between

1000 and 1500 AD in South America. Each Inca tribe had its own statistician, called

Quipucamayoc (Fig. 1.2). This man kept records of, for example, the number of

people, the number of houses, the number of llamas, the number of marriages, and

the number of young men who could be recruited to the army. All these facts were

recorded on a quipu, a system of knots in colored ropes. A decimal system was used

for this.

Figure 1.2 The Quipucamayoc, the Inca statistician. Reprinted by permission of ThiemeMeulenhoff.
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At regular intervals, couriers brought the quipus to Cusco, the capital of the

kingdom, where all regional statistics were compiled into national statistics. The

system of Quipucamayocs and quipus worked remarkably well. Unfortunately,

the system vanished with the fall of the empire.

An early census also took place in Canada in 1666. Jean Talon, the intendant of

New France, ordered an official census of the colony to measure the increase in

population since the founding of Quebec in 1608. The enumeration, which recorded

a total of 3215 people, included the name, age, gender, marital status, and occupation

of every person. Thefirst censuses inEuropewere undertaken by theNordic countries:

The first census in Sweden–Finland took place in 1746. It had already been suggested

earlier, but the initiativewas rejected because “it corresponded to the attempt of King

David who wanted to count his people.”

The first known attempt to make statements about a population using only

information about part of it was made by the English merchant John Graunt

(1620–1674). In his famous tract, Graunt describes a method to estimate the popula-

tion of London on the basis of partial information (Graunt, 1662). Graunt surveyed

families in a sample of parishes where the registers were well kept. He found that on

average there were 3 burials per year in 11 families. Assuming this ratio to be more

or less constant for all parishes, and knowing the total number of burials per year in

London to be about 13,000, he concluded that the total number of families was

approximately 48,000. Putting the average family size at 8, he estimated the popula-

tion of London to be 384,000. Although Graunt was aware of the fact that averages

such as the number of burials per family varied in space and time, he did not make

any provisions for this phenomenon. Lacking a proper scientific foundation for his

method, John Graunt could not make any statement about the accuracy of his method.

Another survey-like method was applied more than a century later. Pierre Simon

Laplace (1749–1827) realized that it was important to have some indication of the

accuracy of the estimate of the French population. Laplace (1812) implemented

an approach that was more or less similar to that of John Graunt. He selected

30 departments distributed over the area of France. Two criteria controlled the

selection process. First, he saw to it that all types of climate were represented.

In this way, he could compensate for climate effects. Second, he selected departments

for which the mayors of the communes could provide accurate information. By using

the central limit theorem, he proved that his estimator had a normal distribution.

Unfortunately, he overlooked the fact that he used a cluster sample instead of a simple

random sample, and moreover communes were selected within departments purpo-

sively, and not at random. These problems made the application of the central limit

theorem at least doubtful. The work of Laplace was buried in oblivion in the course

of the nineteenth century.

In the period until the late 1880s, there were many partial investigations. These

were statistical inquiries in which only a part of human population was investigated.

The selection from the population came to hand incidentally, or wasmade specifically

for the investigation. In general, the selection mechanism was unclear and undocu-

mented.While by that time considerable progress had already been made in the areas

of probability theory and mathematical statistics, little attention was paid to applying
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these theoretical developments to survey sampling. Nevertheless, gradually proba-

bility theory found its way in official statistics. An important role was played by the

Dutch/Belgian scientist, Lambert Adolphe Jacques Quetelet (1796–1874). He was

involved in the first attempt in 1826 to establish The Netherlands Central Bureau of

Statistics. In 1830, Belgium separated from The Netherlands, and Quetelet continued

his work in Belgium.

Quetelet was the supervisor of statistics for Belgium (from 1830), and in this

position, he developed many of the rules governing modern census taking. He also

stimulated statistical activities inother countries.TheBelgian censusof 1846, directed

by him, has been claimed to be the most influential in its time because it introduced

careful analysis and critical evaluation of the data compiled. Quetelet dealt only with

censuses and did not carry out any partial investigations.

According to Quetelet, many physical and moral data have a natural variability.

This variability can be described by a normal distribution around a fixed, true value.

He assumed the existence of something called the true value. He proved that this true

value could be estimated by taking the mean of a number of observations. Quetelet

introduced the concept of average man (“l’homme moyenne”) as a person of which

all characteristics were equal to the true value. For more information, see Quetelet

(1835, 1846).

In the second half of the nineteenth century, so-called monograph studies or

surveys became popular. They were based on Quetelet’s idea of the average man

(see Desrosi�eres, 1998). According to this idea, it suffices to collect information only

on typical people. Investigation of extreme people was avoided. This type of inquiry

was still appliedwidely at the beginning of the twentieth century. It was an “officially”

accepted method.

Industrial revolutionwas also an important era in the history of statistics. It brought

about drastic and extensive changes in society, as well as in science and technology.

Among many other things, urbanization started from industrialization, and also

democratization and the emerging social movements at the end of the industrial

revolution created new statistical demands. The rise of statistical thinking originated

partly from the demands of society and partly from work and innovations of men

such as Quetelet. In this period, the foundations for many principles of modern social

statistics were laid. Several central statistical bureaus, statistical societies, confer-

ences, and journals were established soon after this period.

The development of modern sampling theory started around the year 1895. In that

year, Anders Kiaer (1895, 1997), the founder and first director of Statistics Norway,

published hisRepresentativeMethod. It was a partial inquiry in which a large number

of persons were questioned. This selection should form a “miniature” of the popula-

tion. Personswere selected arbitrarily but according to some rational scheme based on

general results of previous investigations. Kiaer stressed the importance of represen-

tativeness. His argument was that if a sample was representative with respect to

variables for which the population distribution was known, it would also be represen-

tative with respect to the other survey variables.

Kiaer was way ahead of his time with ideas about survey sampling. This becomes

clear in the reactions on the paper he presented at a meeting of the International
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Statistical Institute in Bern in 1895. The last sentence of a lengthy comment by the

influential Bavarian statisticianvonMayr almost became a catch phrase: “Il faut rester

ferme et dire: pas de calcul l�a où l’obervation peut être faite.” The Italian statistician
Bodio supported von Mayr’s views. The Austrian statistician Rauchberg said

that further discussion of the matter was unnecessary. And the Swiss statistician

Milliet demanded that such incomplete surveys should not be granted a status equal

to “la statistique serieuse.”

A basic problem of the representative method was that there was no way of

establishing theaccuracyofestimates.Themethod lackedaformal theoryof inference.

It was Bowley (1906) who made the first steps in this direction. He showed that for

large samples, selected at random from the population, the estimate had an approxi-

mately normal distribution.

From this moment on, there were two methods of sample selection. The first one

was Kiaer’s representative method, based on purposive selection, in which represen-

tativeness played a crucial role, and for which no measure of the accuracy of the

estimates could be obtained. The second was Bowley’s approach, based on simple

random sampling, for which an indication of the accuracy of estimates could be

computed. Both methods existed side by side for a number of years. This situation

lasted until 1934, when the Polish scientist Jerzy Neyman published his now famous

paper (see Neyman, 1934). Neyman developed a new theory based on the concept of

the confidence interval. By using random selection instead of purposive selection,

there was no need any more to make prior assumptions about the population.

Neyman’s contribution was not restricted to the confidence interval that he

invented. By making an empirical evaluation of Italian census data, he could prove

that the representative method based on purposive sampling failed to provide

satisfactory estimates of population characteristics. The result ofNeyman’s evaluation

of purposive sampling was that the method fell into disrepute in official statistics.

Random selection became an essential element of survey sampling. Although

theoretically very attractive, it was not very simple to realize this in practical

situations.How to randomly select a sample of thousands of persons fromapopulation

of several millions? How to generate thousands of random numbers? To avoid this

problem, often systematic samples were selected. Using a list of elements in the

population, a starting point and a step size were specified. By stepping through this

list from the starting point, elements were selected. Provided the order of the elements

is more or less arbitrary, this systematic selection resembles random selection.

W.G. and L.H. Madow made the first theoretical study of the precision of systematic

sampling only in 1944 (see Madow and Madow, 1944). The use of the first tables of

random numbers published by Tippet (1927) also made it easier to select real random

samples.

In 1943, Hansen and Hurvitz published their theory of multistage samples.

According to their theory, in the first stage, primary sampling units are selected

with probabilities proportional to their size. Within selected primary units, a fixed

number of secondary units are selected. This proved to be a useful extension of the

survey sampling theory. On the one hand, this approach guaranteed every secondary

unit to have the same probability of selection in the sample, and on the other, the
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sampled units were distributed over the population in such a way that the fieldwork

could be carried out efficiently.

The classical theory of survey sampling was more or less completed in 1952.

Horvitz and Thompson (1952) developed a general theory for constructing unbiased

estimates. Whatever the selection probabilities are, as long as they are known and

positive, it is always possible to construct a reliable estimate. Horvitz and Thompson

completed the classical theory, and the random sampling approach was almost

unanimouslyaccepted.Mostof theclassical booksabout samplingwerealsopublished

by then: Cochran (1953), Deming (1950), Hansen et al. (1953), and Yates (1949).

Official statistics was not the only area where sampling was introduced. Opinion

polls can be seen as a special type of sample surveys, in which attitudes or opinions

of a group of people aremeasured on political, economic, or social topics. The history

of opinion polls in the United States goes back to 1824, when two newspapers, the

Harrisburg Pennsylvanian and the Raleigh Star, attempted to determine political

preferences of voters before the presidential election. The early polls did not paymuch

attention to sampling. Therefore, it was difficult to establish the accuracy of results.

Such opinion polls were often called straw polls. This expression goes back to rural

America. Farmers would throw a handful of straws into the air to see which way the

wind was blowing. In the 1820s, newspapers began doing straw polls in the streets to

see how political winds blew.

It took until the 1920s before more attention was paid to sampling aspects. At that

time, Archibald Crossley developed new techniques formeasuringAmerican public’s

radio listening habits. And George Gallup worked out new ways to assess reader

interest in newspaper articles (see, for example, Linehard, 2003). The sampling

technique used by Gallup was quota sampling. The idea was to investigate groups

of people who were representative for the population. Gallup sent out hundreds of

interviewers across the country. Each interviewer was given quota for different types

of respondents: so many middle-class urban women, so many lower class rural men,

and so on. In total, approximately 3000 interviews were carried out for a survey.

Gallup’s approach was in great contrast with that of the Literary Digestmagazine,

which was at that time the leading polling organization. This magazine conducted

regular “America Speaks” polls. It based its predictions on returned ballot forms that

were sent to addresses obtained from telephone directories and automobile registra-

tion lists. The sample size for these polls was very large, something like 2 million

people.

The presidential election of 1936 turned out to be decisive for both approaches

(see Utts, 1999). Gallup correctly predicted Franklin Roosevelt to be the new

President, whereas Literary Digest predicted that Alf Landon would beat Franklin

Roosevelt. How could a prediction based on such a large sample be so wrong?

The explanation was a fatal flaw in the Literary Digest’s sampling mechanism. The

automobile registration lists and telephone directories were not representative

samples. In the 1930s, cars and telephones were typically owned by the middle

and upper classes. Morewell-to-do Americans tended to vote Republican and the less

well-to-do were inclined to vote Democrat. Therefore, Republicans were overrepre-

sented in the Literary Digest sample.
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Asa result of this historicmistake, theLiteraryDigestmagazine ceasedpublication

in 1937.And opinion researchers learned that they should rely onmore scientificways

of sample selection. They also learned that the way a sample is selected is more

important than the size of the sample.

1.4 THIS BOOK

This book deals with the theoretical and practical aspects of sample survey sampling.

It follows the steps in the survey process described in Section 1.1.

Chapter 2 deals with various aspects related to the design of a survey. Basic

concepts are introduced, such as population, population parameters, sampling,

sampling frame, and estimation. It introduces the Horvitz–Thompson estimator as

the basis for estimation under different sampling designs.

Chapter 3 is devoted to questionnaire designing. It shows the vital importance of

properly defined questions. Its also discusses various question types, routing (branch-

ing and skipping) in the questionnaire, and testing of questionnaires.

Chapters 4 and 5 describe a number of sampling designs in more detail. Chapter 3

starts with some simple sampling designs: simple random sampling, systematic

sampling, unequal probability sampling, and systematic sampling with unequal

probabilities. Chapter 4 continues with composite sampling designs: stratified sam-

pling, cluster sampling, two-stage sampling, and sampling in space and time.

Chapter 6 presents a general framework for estimation. Starting point is a linear

model that explains the target variable of a survey from one or more auxiliary

variables. Some well-known estimators, such as the ratio estimator, the regression

estimator, and the poststratification estimator, emerge as special cases of this

model.

Chapter 7 is about data collection. It compares traditional data collectionwith paper

questionnaire forms with computer-assisted data collection. Advantages and disad-

vantages of various modes of data collection are discussed. To give some insight into

the attractive properties of computer-assisted interviewing, a software package is

described that can be seen as the de facto standard for CAI in official statistics. It is the

Blaise system.

Chapter 8 is devoted to the quality aspects. Collected survey data always contain

errors. This chapter presents a classification of things that can go wrong. Errors can

have a serious impact on the reliability of survey results. Therefore, extensive error

checking must be carried out. It is also shown that correction of errors is not always

simple. Imputation is discussed as one of the error correction techniques.

Nonresponse isoneof themost important problems in survey research.Nonresponse

can cause survey estimates to be seriously biased. Chapter 9 describes the causes of

nonresponse. It also incorporates this phenomenon in sampling theory, thereby

showing what the effects of nonresponse can be. Usually, it is not possible to avoid

nonresponse in surveys. This calls for techniques that attempt to correct the negative

effect of nonresponse. Two approaches are discussed in this chapter: the follow-up

survey and the Basic Question Approach.
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Adjustment weighting is one of the most important nonresponse correction tech-

niques. This technique assigns weights to responding elements. Overrepresented

groups get a small weight and underrepresented groups get a large weight.

Therefore, the weighted sample becomes more representative for the population,

and the estimates based on weighted data have a smaller bias than estimates based

on unweighted data. Several adjustment weighting techniques are discussed in

Chapter 10. The simplest one is poststratification. Linearweighting andmultiplicative

weighting are techniques that can be applied when poststratification is not possible.

Chapter 11 is devoted to online surveys. They become more and more popular,

because such surveys are relatively cheap and fast.Also, it is relatively simple toobtain

cooperation from large groups of people. However, there are also serious methodo-

logical problems. These are discussed in this chapter.

Chapter 12 is about the analysis of survey data. Due to their special nature

(unequal selection probabilities, error correction with imputation, and nonresponse

correction by adjustment weighting), analysis of such data is not straightforward.

Standard software for statistical analysis may not interpret these data correctly.

Therefore, analysis techniques may produce wrong results. Some issues are

discussed in this chapter. Also, attention is paid to the publication of survey results.

In particular, the advantages and disadvantages of the use of graphs in publications are

described.

The final chapter is devoted to statistical disclosure control. It is shown how large

the risks of disclosing sensitive information can be. Some techniques are presented

to estimate these risks. It becomes clear that it is not easy to reduce the risks without

affecting the amount of information in the survey data.

1.5 SAMPLONIA

Examples will be used extensively in this book to illustrate concepts from survey

theory. To keep these examples simple and clear, they are all taken from an artificial

data set. The small country of Samplonia has been created, and a file with data for all

inhabitants has been generated (see Fig. 1.3).Almost all examples of sampling designs

and estimation procedures are based on data taken from this population file.

Samplonia is a small, independent island with a population of 1000 souls.

A mountain range splits the country into the northern province of Agria and the

southern province of Induston. Agria is rural province with mainly agricultural

activities. The province has three districts. Wheaton is the major supplier of vege-

tables, potatoes, and fruits. Greenham is known for growing cattle. Newbay is a fairly

new area that is still under development. Particularly, young farmers from Wheaton

and Greenham attempt to start a new life here.

The other province, Induston, is for a large part an industrial area. There are four

districts. Smokeley and Mudwater have a lot of industrial activity. Crowdon is a

commuter district.Manyof its inhabitantswork inSmokeleyandMudwater.The small

district of Oakdale is situated in the woods near the mountains. This is where the rich

and retired live.
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Samplonia has a central population register. This register contains information

such as district of residence, age, and gender for each inhabitant. Other variables

that will be used are employment status (has or does not have a job) and income (in

Samplonian dollars). Table 1.1 contains the population distribution. Using an

Figure 1.3 The country of Samplonia. Reprinted by permission of Imre Kortbeek.

Table 1.1 The Population of Samplonia by Province and District

Province/District Inhabitants

Agria 293

Wheaton 144

Greenham 94

Newbay 55

Induston 707

Oakdale 61

Smokeley 244

Crowdon 147

Mudwater 255

Total 1000
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artificial data file has the advantage that all population data are exactly known.

Therefore, it is possible to compare computed estimates with true population

figures. The result of such a comparison will make clear how well an estimation

procedure performs.

Some survey techniques are illustrated by using another artificial example. There

are 200 dairy farms in the rural part of Samplonia. Surveys are regularly conducted

with as objective estimation of the average daily milk production per farm. There is a

register containing the number of cows and the total area of grassland for each farm.

Table 1.2 summarizes these variables.

Included in the book is the software package SimSam. This is a program for

simulating samples from finite populations. By repeating the selection of a sample

and the computation of an estimate a large number of times, the distribution of

the estimates can be characterized in both graphical and numerical ways. SimSam

can be used to simulate samples from the population of Samplonia. It supports several

of the sampling designs and estimation procedures used in this book. It is a useful tool

to illustrate the behavior of various sampling strategies. Moreover, it is also possible

to generate nonresponse in the samples. Thus, the effect of nonresponse on estimation

procedures can be studied.

EXERCISES

1.1 The last census in TheNetherlands took place in 1971.One of the reasons to stop

it was the concern about a possible refusal of a substantial group of people to

participate. Another was that a large amount of information could be obtained

from other sources, such as population registers. Which of statements below

about a census is correct?

a. In fact, a census is a sample survey, because there are always people who

refuse to cooperate.

b. A census is not a form of statistical research because the collected data are

used only for administrative purposes.

c. A census is a complete enumeration of the population because, in principle,

every member of the population is asked to provide information.

d. The first census was carried out by John Graunt in England around

1662.

Table 1.2 Milk Production by Dairy Farms in Samplonia

Mean Standard Deviation Minimum Maximum

Milk production (liters per day) 723.5 251.9 10.0 1875.0

Area of grassland (hectares) 11.4 2.8 4.0 22.0

Number of cows 28.9 9.0 8.0 67.0
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1.2 The authorities in the district of Oakdalewant to know how satisfied the citizens

arewith the new public swimming pool. It is decided to carry out a survey.What

would be the group of people to be sampled?

a. All inhabitants of Oakdale.

b. All adult inhabitants of Oakdale.

c. All inhabitants of Oakdale who have visited the swimming pool in a specific

week.

d. All inhabitants of Oakdale who have an annual season ticket.

1.3 No samples were selected by national statistical offices until the year 1895.

Before that data collection was mainly based on complete enumeration. Why

did they not use sampling techniques?

a. The idea of investigating just a part of the population had not yet emerged.

b. They considered it improper to replace real data by mathematical

manipulations.

c. Probability theory had not been invented yet.

d. National statistical offices did not yet exist.

1.4 Arthur Bowley suggested in 1906 to use random sampling to select a sample

from a population. Why was this idea so important?

a. It made it possible to introduce the “average man” (“l’hommemoyenne”) in

statistics.

b. It was not important because it is too difficult to select probability samples in

practice.

c. It made it possible to carry out partial investigations.

d. It made it possible to apply probability theory to determine characteristics of

estimates.

1.5 Why could Gallup provide a better prediction of the outcome of the 1936

Presidential election than the poll of the Literary Digest magazine?

a. Gallup used automobile registration lists and telephone directories.

b. Gallup used a much larger sample than Literary Digest magazine.

c. Gallup used quota sampling, which resulted in amore representative sample.

d. Gallup interviewed people only by telephone.
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C H A P T E R 2

Basic Concepts

2.1 THE SURVEY OBJECTIVES

The survey design starts by specifying the survey objectives. These objectives may

initially be vague and formulated in terms of abstract concepts. They often take the

form of obtaining the answer to a general question. Examples are

. Do people feel safe on the streets?

. Has the employment situation changed in the country?

. Make people more and different use of the Internet?

Such general questions have to be translated into a more concrete survey instru-

ment. Several aspects have to be addressed. A number of themwill be discussed in this

chapter:

. The exact definition of the population that has to be investigated (the target

population).

. The specification of what has to be measured (the variables) and what has to be

estimated (the population characteristics).

. Where the sample is selected from (the sampling frame).

. How the sample is selected (the sampling design and the sample size).

It is important to pay careful attention to these initial steps. Wrong decisions have

their impact on all subsequent phases of the survey process. In the end, it may turn out

that the general survey questions have not been answered.

Surveys can serve several purposes. One purpose is to explore and describe a

specific population. The information obtained must provide more insight into the

behavior or attitudes of the population. Such a survey should produce estimates of

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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all kinds of population characteristics. Another purpose could be to test a

hypothesis about a population. Such a survey results in a statement that the

hypothesis is rejected or not. Due to conditions that have to be satisfied, hypothesis

testing may require a different survey design. This book focuses on descriptive

surveys.

2.2 THE TARGET POPULATION

Defining the target population of the survey is one of the first steps in the survey design

phase. The target population is the population that should be investigated. It is also the

population to which the outcomes of the survey refer. The elements of the target

population are often people, households, or companies. So, the population does not

necessarily consist of persons.

Definition 2.1 The target population U is a finite set

U ¼ 1; 2; . . . ;Nf g ð2:1Þ

of N elements. The quantity N is the size of the population. The numbers 1, 2, . . . ,N
denote the sequence numbers of the elements in the target population. When the text

refers to “element k,” this should be understood as the element with sequence number

k, where k can assume a value in the range from 1 to N.

It is important to define the target population properly. Mistakes made during this

phase will affect the outcomes of the survey. Therefore, the definition of the target

population requires careful consideration. It must be determined without error

whether an element encountered “in the field” does or does not belong to the target

population.

Take, for example, a labor force survey.What is the target population of this survey?

Every inhabitant of the country above or below a certain age? What about foreigners

temporarilyworking in the country?What about natives temporarilyworking abroad?

What about illegal immigrants? If thesequestions cannot be answeredunambiguously,

errors can and will be made in the field. People are incorrectly excluded from or

included in the survey. Conclusions drawn from the survey results may apply to a

different population.

A next step in the survey design phase is to specify the variables to be measured.

These variables measure characteristics of the elements in the target population. Two

types of variables are distinguished: target variables and auxiliary variables.

The objective of a survey usually is to provide information about certain aspects

of the population. How is the employment situation? How do people spend their

holidays?What about Internet penetration? Target variablesmeasure characteristics

of the elements that contribute to answering these general survey questions. Also,

these variables provide the building blocks to get insight into the behavior or
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attitudes of the population. For example, the target variables of a holiday survey

could be the destination of a holiday trip, the length of the holiday, and the amount of

money spent.

Definition 2.2 A target variablewill be denoted by the letter Y, and its values for the

elements in the target population by

Y1; Y2; . . . ; YN : ð2:2Þ

SoYk is thevalue ofY for elementk, wherek¼ 1, 2, . . .,N. For example, ifY represents

the income of a person, Y1 is the income of person 1, Y2 is the income of person 2,

and so on.

For reasons of simplicity, it is assumed that there is only one target variable Y in the

survey. Of course, many surveys will have more than just one.

Other variables than just the target variables will usually be measured in a survey.

At first sight, theymay seem unrelated to the objectives of the survey. These variables

are called auxiliary variables. They often measure background characteristics of the

elements. Examples for a survey among persons could be gender, age, marital status,

and region. Such auxiliary variables can be useful for improving the precision of

estimates (see Chapter 6). They also play a role in correcting the negative effects of

nonresponse (seeChapter 10). Furthermore, theyoffer possibilities for amore detailed

analysis of the survey results.

Definition 2.3 An auxiliary variable is denoted by the letter X, and its values in the

target population by

X1;X2; . . . ;XN : ð2:3Þ

So Xk is the value of variable X for element k, where k¼ 1, 2, . . ., N.

Data that have been collected in the surveymust be used to obtainmore insight into

the behavior of the target population. This comes down to summarizing its behavior in

a number of indicators. Such indicators are called population parameters.

Definition 2.4 A population parameter is numerical indicator, the value of which

depends only on the values Y1, Y2, . . ., YN of a target variable Y.

Examples of population parameters are the mean income, the percentage of

unemployed, and the yearly consumption of beer. Population parameters can also

be defined for auxiliary variables. Typically, the values of population parameters for

target variables are unknown. It is the objective of the survey to estimate them.

Population parameters for auxiliary variables are often known. Examples of such

parameters are the mean age in the population and the percentages of males and
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females. Therefore, these variables can be used to improve the accuracy of estimates

for other variables.

Some types of population parameters often appear in surveys. They are the

population total, the population mean, the population percentage, and the (adjusted)

population variance.

Definition 2.5 The population total of target variable Y is equal to

YT ¼
XN
k¼1

Yk ¼ Y1 þ Y2 þ � � � þ YN : ð2:4Þ

So the population total is simply obtained by adding up all values of the variable in

the population. Suppose, the target population consists of all households in a country,

andY is the number of computers in the household, then the population total is the total

number of computers in all households in the country.

Definition 2.6 The population mean of target variable Y is equal to

�Y ¼ 1

N

XN
k¼1

Yk ¼ Y1 þ Y2 þ � � � þ YN

N
¼ YT

N
: ð2:5Þ

The population mean is obtained by dividing the population total by the size of the

population. Suppose the target population consists of all employees of a company.

Then the population mean is the mean age of the employees of the company.

A target variable Y can also be used to record whether an element has a specific

property or not. Such a variables can only assume two possible values: Yk¼ 1 if

elementkhas the property, andYk¼ 0 if it does not have the property. Such avariable is

called dichotomous variable or a dummy variable. It can be used to determine the

percentage of elements in the population having a specific property.

Definition 2.7 If the target variable Ymeasures whether or not elements in the target

population have a specific property, where Yk¼ 1 if element k has the property and

otherwise Yk¼ 0, then the population percentage is equal to

P ¼ 100�Y ¼ 100

N

XN
k¼1

Yk ¼ 100
Y1 þ Y2 þ � � � þ YN

N
¼ 100

YT

N
: ð2:6Þ

Since Y can only assume the values 1 and 0, its mean is equal to the fraction of 1s in

the population, and therefore the percentage of 1s is obtained bymultiplying themean
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by 100. Examples of this type of variable are an indicatorwhether or not some element

is employed and an indicator for having Internet access at home.

This book focuses on estimating the population mean and to a lesser extent on

population percentages. It should be realized that population total and population

mean differ only by a factor N. Therefore, it is easy to adapt the theory for estimating

totals. Most of the time, it is just a matter of multiplying by N.

Another important population parameter is introduced here, and that is the popula-

tionvariance. This parameter is an indicator of the amount of variationof thevalues of a

target variable.

Definition 2.8 The population variance of a target variable Y is equal to

s2 ¼ 1

N

XN
k¼1

ðYk��YÞ2: ð2:7Þ

This quantity can be seen as a kind of mean distance between the individual values

and their mean. This distance is the squared difference. Without taking squares,

all differences would cancel out, resulting always in a mean equal to 0.

The theory of sampling from a finite population that is described in this book uses

a slightly adjusted version of the population variance. It is the adjusted population

variance.

Definition 2.9 The adjusted population variance of a target variable Y is equal to

S2 ¼ 1

N�1

XN
k¼1

ðYk��YÞ2: ð2:8Þ

The difference with the population variance is that the sum of squares is not divided

byNbut byN� 1.Use of the adjusted variance is somewhatmore convenient. Itmakes

many formulas of estimators simpler. Note that for largevalue ofN, there is hardly any

difference between both variances.

The (adjusted) variance can be interpreted as an indicator for the homogeneity

of the population. The variance is equal to 0 if all values of Y are equal. The variance

will increase as the values of Y differ more. For example, if in a country the variance

of the incomes is small, then all inhabitants will approximately have the same income.

A large variance is an indicator of substantial income inequality.

Estimation of the (adjusted) population variance will often not be a goal in itself.

However, this parameter is important, because the precision of other estimators

depends on it.
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2.3 THE SAMPLING FRAME

How to drawa sample froma population?How to select a number of people that can be

considered representative? There are many examples of doing this wrongly:

. In a survey on local radio listening behavior among inhabitants of a town, people

were approached in the local shopping center at Saturday afternoon. There were

many people there at that time, so a lot of questionnaire forms were filled.

It turned out that no one listened to the sports program broadcasted on Saturday

afternoon.

. To carry out a survey on reading a free distributedmagazine, a questionnairewas

included in the magazine. It turned out that all respondents at least browsed

through the magazine.

. If Dutch TV news programs want to know how the Dutch think about political

issues, they often interview people at one particular market in the old part of

Amsterdam. They go there because people often respond in an attractive, funny,

and sometimes unexpected way. Unwanted responses are ignored and the

remaining part is edited such that a specific impression is created.

It is clear that this is not the proper way to select a sample that correctly represents

the population. The survey resultswould be severely biased in all examplesmentioned

above. To select a sample in a scientifically justifiedway, two ingredients are required:

a sampling design based on probability sampling and a sampling frame. Several

sampling designs are described in detail in Chapters 4 and 5. This section will discuss

sampling frames.

A sampling frame is a list of all elements in the target population. For every element

in the list, there must be information on how to contact that element. Such contact

information can comprise of, for example, name and address, telephone number, or e-

mail address. Such lists can exist on paper (a card index box for themembers of a club, a

telephone directory) or in a computer (a database containing a register of all compa-

nies). If such lists are not available, detailed geographical maps are sometimes used.

For selecting a sample from the total population of The Netherlands, a population

register is available. In principle, it contains all permanent residents in the country. It is

a decentralized system. Each municipality maintains its own register. Demographic

changes related to their inhabitants are recorded. It contains information on gender,

date of birth, marital status, and nationality. Periodically, all municipal information is

combined into one large register, which is used byStatisticsNetherlands as a sampling

frame for its surveys.

Another frequently used sampling frame in The Netherlands is the Postal Delivery

Points file of TNT Post, the postal service company. This is a computer file containing

all addresses (of both private houses and companies) where post can be delivered.

Typically, this file can be used to draw a sample of households.

The sampling frame should be an accurate representation of the population. There is

a riskofdrawingwrongconclusion fromthe survey if the samplehasbeen selected from

a sampling frame that differs from the population. Figure 2.1 showswhat can gowrong.
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The first problem is undercoverage. This occurs if the target population contains

elements that donothaveacounterpart in the sampling frame.Suchelements cannever

be selected in the sample.Anexampleofundercoverage is the surveywhere the sample

is selected fromapopulation register. Illegal immigrants are part of the population, but

they are never encountered in the sampling frame. Another example is an online

survey, where respondents are selected via the Internet. In this case, there will be

undercoverage due to people having no Internet access. Undercoverage can have

serious consequences. If the elements outside the sampling frame systematically differ

from the elements in the sampling frame, estimates of population parameters may be

seriously biased. A complicating factor is that it is often not very easy to detect the

existence of undercoverage.

The second sampling frame problem is overcoverage. This refers to the situation

where the sampling frame contains elements that do not belong to the target population.

If such elements end up in the sample and their data are used in the analysis, estimates

of population parameters may be affected. It should be rather simple to detect

overcoverage in the field. This should become clear from the answers to the questions.

Another example is given to describe coverage problems. Suppose a survey is

carried out among the inhabitants of a town. It is decided to collect data by means of

telephone interviewing. At first sight, it might be a good idea to use the telephone

directory of the town as the sampling frame. But this sampling frame can have serious

coverage problems. Undercoverage occurs because many people have unlisted

numbers, and some will have no phone at all. Moreover, there is a rapid increase

in the use of mobile phones. In many countries, mobile phone numbers are not listed

in directories. In a country like The Netherlands, only two out of three people can be

found in the telephonedirectory.A telephonedirectory also suffers fromovercoverage,

because it contains the telephone numbers of shops, companies, and so on. Hence, it

may happen that persons are contacted who do not belong to the target population.

Moreover, some people may have a higher than assumed contact probability, because

they can be contacted both at home and in the office.

A survey is often supposed to measure the status of a population at a specific

moment of time. This is called reference date. The sampling frame should reflect the

Figure 2.1 Target population and sampling frame.
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status at this reference date. Since the sample will be selected from the sampling

frame before the reference date, this might not be the case. The sampling frame may

contain elements that do not exist anymore at the reference date. Peoplemay have died

or companies may have ceased to exist. These are the cases of overcoverage. It may

also happen that new elements come into existence after the sample selection and

before the reference date; for example, a personmoves into the townor a newcompany

is created. These are cases of undercoverage.

Suppose a survey is carried out in a town among the people of age 18 and older.

The objective is to describe the situation at the reference date ofMay 1. The sample is

selected in the design phase of the survey, say on April 1. It is a large survey, so data

collection cannot be completed in 1 day. Therefore, interviews are conducted in a

periodof 2weeks, starting1weekbefore the referencedate and ending1week after the

reference date. Now suppose an interviewer contacts a selected person on April 29.

Thereafter, it turns out that the person hasmoved to another town. It becomes a case of

overcoverage. What counts is the difference in the situation on May 1, as the person

does not belong anymore to the target population at the reference date. So, there is

no problem. Since this is a case of overcoverage, it can be ignored. The situation

is different if an interviewer attempts to contact a person on May 5, and this person

turns out to have moved on May 2. This person belonged to the target population

at the reference date, and therefore should have been interviewed. This is no

coverage problem, but a case of nonresponse. The person should be tracked down

and interviewed.

Problems can also occur if the units in the sampling frame are different from those

in the targetpopulation.Typical is thecasewhereoneconsists of addresses and theother

of persons. First, the case is considered where the target population consists of persons

and thesampling frameofaddresses.Thismayhappen ifa telephonedirectory isusedas

a sampling frame. Suppose persons are to be selected with equal probabilities. A na€ıve
way todo thiswouldbe to randomlyselect a sampleof addresses and todrawoneperson

from each selected address. At first sight, this is reasonable, but it ignores the fact that

now not every person has the same selection probability: members in large families

have a smaller probability of being selected than members of small families.

A second case is a survey in which households have to be selected with equal

probabilities, and the sampling frame consists of persons. This can happen if the

sample is selected from a population register. Now large families have a larger

selection probability than smaller families, because larger families have more people

in the sampling frame. In fact, the selection probability of a family is proportional to

the size of the family.

2.4 SAMPLING

The basic idea of a survey is tomeasure the characteristics of only a sample of elements

from the target population. This sample must be selected in such a way that it allows

drawing conclusions that arevalid for thepopulation as awhole.Of course, a researcher

could just take some elements from the population randomly. Unfortunately, people do
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not do very well in selecting samples that reflect the population. Conscious or

unconscious preferences always seem to play a role. The result is a selective sample,

a sample that cannot be seen as representative of the population. Consequently, the

conclusions drawn from the survey data do not apply to the target population.

2.4.1 Representative Samples

To select a sample, two elements are required: a sampling frame and a selection

procedure. The sampling frame is an administrative copy of the target population. This

is the file used to select the sample from. Sampling frames have already been described

in Section 2.3. Once a sampling frame has been found, the next step is to select a

sample. Now the question is: How to select a sample?What is the goodway to select a

sample and what is the bad way to do it? It is often said that a sample must be

representative, but what does it mean?

Kruskal and Mosteller, (1979a, 1979b, 1979c) present an extensive overview of

what representative is supposed tomean in nonscientific literature, scientific literature

excluding statistics, and in the current statistical literature. They found the following

meanings for “representative sampling”:

(1) General acclaim for data. It means not much more than a general assurance,

without evidence, that the data are OK. This meaning of “representative” is

typically used by the media, without explaining what it exactly means.

(2) Absence of selective forces. No elements or groups of elements were favored in

the selection process, either consciously or unconsciously.

(3) Miniature of the population. The sample can be seen as a scale model of the

population. The sample has the same characteristics as the population. The

sample proportions are in all respects similar to population proportions.

(4) Typical or ideal case(s). The sample consists of elements that are “typical” of

the population. These are “representative elements.” This meaning probably

goes back to the idea of l�homme moyenne (average man) that was introduced

by the Dutch/Belgian statistician Quetelet, (1835, 1846).

(5) Coverage of the population�s heterogeneity. Variation that exists in the

population must also be encountered in the sample. So, the sample should

also contain atypical elements.

(6) A vague term, to be made precise. Initially the term is simply used without

describing what it is. Later it is explained what is meant by it.

(7) A specific sampling method has been applied. A form of probability sampling

must have been used giving equal selection probabilities to each element in the

population.

(8) As permitting good estimation. All characteristics of the population and the

variability must be found back in the sample, so that it is possible to compute

reliable estimates of population parameters.

(9) Good enough for a particular purpose. Any sample that shows that a phenom-

enon thought to be very rare or absent occurs with some frequency will do.
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Due to the many different meanings the term “representative” can have, it is

recommended not to use it in practice unless it ismade clear what ismeant by it. In this

book, the term “representative” is used only in one way: a sample is said to be

representativewith respect to avariable if its relativedistribution in the sample is equal

to its relative distribution in the population. For example, a sample is representative

with respect to the variable gender, if the percentages of males and females in the

sample are equal to the percentages of males and females in the population.

The foundations of survey sampling learn that samples have to be selected with

some kind of probability mechanism. Intuitively, it seems a good idea to select a

probability sample in which each element has the same probability of being selected.

It produces samples that are “on average” representative with respect to all variables.

Indeed, this is a scientifically soundwayof sample selection, and probably also the one

that is most frequently applied in practice.

In subsequent chapters, it will be shown that selecting samples with unequal

probabilities can also bemeaningful. Under specific conditions, this type of sampling

can lead to evenmore accurate estimates of population characteristics. The remainder

of this chapter limits itself to sampling with equal probabilities.

2.4.2 Randomizers

Drawing an equal probability sample requires a selection procedure that indeed gives

each element in the population the same probability of selection. Elements must be

selected without prejudice. Human beings, however, are not able to select such a

sample. They just cannot pick a number of elements giving each element the same

probability of selection. Conscious or unconscious preferences always seem to play a

role. An illustration of this phenomenon is an experiment in which a sample of 413

personswere asked to pick an arbitrary number in the range from1 up to and including

9. The results are summarized in Fig. 2.2.

Figure 2.2 Picking a random number.
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If people can behave as a random number generator, each number should be

mentioned with approximately the same frequency of 11%. This is definitely not the

case. People seem to have a high preference for the number “seven.” More than 40%

mentioned it. Apparently, “seven” is more random than any other number. The

numbers “one” and “two” are almost never mentioned. The conclusion is clear

that people should not select a random sample. If they did, they would behave

as train travelers who conclude that railroad crossings are always closed for road

traffic.

Samples have to be drawn by means of an objective probability mechanism

that guarantees that every element in the population has exactly the same

probability of being selected. Such a mechanism will be called a randomizer

(see Hemelrijk, 1968).

Definition 2.10 A randomizer is a machine (electronic or mechanical) with the

following properties:

. It can be used repeatedly.

. It has N possible outcomes that are numbered 1, 2, . . ., N, where N is known.

. It produces one of the N possible outcomes every time it is activated.

. Each time it is activated, all possible outcomes are equally probable.

Themainpropertyof a randomizer is that its outcome is unpredictable in thehighest

possible degree. All methods of prediction, with or without knowledge or use of past

results, are equivalent.

A randomizer is a theoretical concept. The perfect randomizer does not exist in

practice. There are, however, devices that come close to a randomizer. They serve the

purpose of a randomizer. The proof of the pudding is in the eating: the people living in

the princedomofMonaco do not pay taxes as the randomizers in the casino ofMonaco

provide sufficient income for the princedom.

A simple example of a randomizer is a coin. The two outcomes “heads” and “tails”

are equally probable. Another example of a randomizer is a dice. Each of the numbers

1–6 has the same probability, provided the dice is “fair” (Fig. 2.3).

A coin can be used to drawa sample only if the population consists of two elements.

A dice can be used only for a population of six elements. This is not very realistic.

Target populations are usually much larger than that. Suppose a sample of size 50 is to

Figure 2.3 Example of a randomizer: dice. Reprinted by permission of Imre Kortbeek.
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be selected from a population of size 750. In this case, a coin and a dice cannot be used.

What can be used is a 20-sided dice; see Fig. 2.4.

Such adice contains the numbers from1 to20. If 10 is subtracted from theoutcomes

of 10 and higher, and 10 is interpreted as 0, then the dice contains twice the numbers

from0 to 9. Three throws of such a dice produce a three-digit number in the range from

0 to 999. If the outcome 0 and all outcomes over 750 are ignored, a sequence number of

an element is obtained. This element is selected in the sample. By repeating this

procedure 50 times, a sample of size 50 is obtained.

The use of a 20-sided dice guarantees that all elements in the population have the

same probability of being selected. Unfortunately, selecting a sample in thismanner is

a lengthyprocess.Oneway to reduce theworkof selecting a sample to someextent is to

use a table of random numbers. The first table of random numbers was published by

Tippet (1927). Such a table contains numbers that have been obtained with a

randomizer. To select a sample, an arbitrary starting point must be chosen in the

table. Starting from that point, as many numbers as needed are taken. Figure 2.5

contains a fragment of such a table.

Suppose a sample is to be drawn from the numbers from 1 to 750. To that end,

groups of three digits are taken from the table. This produces three-digit numbers.

Values 000 and over 750 are ignored. For example, the table is processed row-wise.

Figure 2.4 A 20-sided dice.

06966  75356  46464  15180  23367  31416  36083  38160  44008  26146 
62536  89638  84821  38178  50736  43399  83761  76306  73190  70916 
65271  44898  09655  67118  28879  96698  82099  03184  76955  40133 
07572  02571  94154  81909  58844  64524  32589  87196  02715  56356 
30320  70670  75538  94204  57243  26340  15414  52496  01390  78802 

94830  56343  45319  85736  71418  47124  11027  15995  68274  45056 
17838  77075  43361  69690  40430  74734  66769  26999  58469  75469 
82789  17393  52499  87798  09954  02758  41015  87161  52600  94263 
64429  42371  14248  93327  86923  12453  46224  85187  66357  14125 
76370  72909  63535  42073  26337  96565  38496  28701  52074  21346 

Figure 2.5 A table with random numbers.
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Of each group of five digits, only the first three are used. This produces the following

sequence of numbers:

069 753 464 151 233 314 360 381 440 261 625 896 848 381 ...

If irrelevant numbers (753, 896, 848) are removed, the series reduces to

069 464 151 233 314 360 381 440 261 625 381 . . .

These are the sequence numbers of the elements that have been selected in the

sample. For larger samples from much larger populations, this manual process of

sample selection remains cumbersome and time-consuming. It seems obvious to let a

computer draw a sample. However, it should be realized that a computer is determin-

istic machine, and therefore is not able to generate random numbers. Theway out is to

use a pseudorandomizer. Most computers or computer programming languages have

algorithms that produce pseudorandom numbers. Such an algorithm generates a

deterministic sequence of numbers. For all practical purposes, these numbers cannot

be distinguished from real random numbers.Most implementations of pseudorandom

number generators use an algorithm like

u�iþ 1 ¼ f ðuiÞ: ð2:9Þ
The next pseudorandomnumber uiþ 1 is computed by using the previous number ui

as the argument in some function f. When the pseudorandomizer is used for the first

time, itmust begiven some initial value u0. This initial value is sometimes also called a

seed value. The initial value is used to compute the first random number u1. This first

value is used to compute the second value u2, and so on. So, if the same seed value is

used, the same sequence of random numbers will be generated.

Many pseudorandomizers in computers generate values ui in the interval [0, 1).

Possibly, the value 0 may be produced, but never the value 1. The values of this basic

randomizer can easily be transformed into other random numbers. To draw a random

sample from a population of size N, integer random numbers from the range 1–N are

needed. A value ui from the interval [0, 1) can be transformed in such an integer by

applying the formula

1þ ½ui � N�; ð2:10Þ
where the square brackets denote rounding downward (truncation) to the nearest integer.

Multiplying ui byN produces a value in the interval [0,N). Truncation gives an integer in

the range from 0 to N–1. Finally, adding 1 results in an integer in the range from 1 to N.

An example illustrates this approach. The district of Mudwater in Samplonia has

255 inhabitants. Random integers in the range from 1 to 255 are needed to select a

sample of persons from this district. A hand calculator is used to generate a value from

[0, 1). Let the result be 0.638.Multiplicationby255gives162.69 and truncation results

in 162. Adding 1 gives the random integer 163.
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2.4.3 Samples With and Without Replacement

Carrying out a survey means that a sample is selected from some population U

(asdescribed inSection2.2). Information isobtainedonly about the sampledelements.

This information must be used to say something about the population as whole.

Reliable conclusions can only be drawn if the sample is selected by means of a

probability sample,where everyelement in the populationhas anonzero probability of

being selected.Researchers can control the characteristics of the samplingmechanism

(sample size, selection probabilities), but theyhavenocontrol overwhich elements are

ultimately selected.

Samples that have been selected by means of a probability mechanism are called

probability samples. Such samples allow not only good estimates of population

parameters but also quantification of the precision of the estimates.Usually, indicators

such as the variance, the standard error, or the confidence interval are used for this

purpose. Only probability samples are considered in this book. For convenience,

they will just be called samples here.

Definition 2.11 A sample a from a target populationU¼ {1, 2, . . .,N} is a sequence
of indicators,

a ¼ ða1; a2; . . . ; aNÞ: ð2:11Þ

The value of the indicator ak (for k¼ 1, 2, . . ., N) is equal to the number of times

element k is selected in the sample.

Definition 2.12 The sample size n of the sample a from the populationU is equal to

n ¼
XN
k¼1

ak: ð2:12Þ

Here only sample selection mechanisms will be considered where each possible

sample has the same size. Note, however, that there are probability mechanisms

where not every sample has the same size. Each possible sample may have a

different size.

The sample selection mechanism is formally defined in the sampling design.

Definition 2.13 A sampling design p assigns to every possible sample a from the

population U a probability p(a) of being selected, where 0� p(a)� 1 and

X
a

pðaÞ ¼ 1: ð2:13Þ
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Summation is over every possible sample a fromU. The set of all samples a fromU

that have a nonzero probability p(a) of being selected under the sampling design p is

defined by

A ¼ fajpðaÞ>0g: ð2:14Þ

Every sampling design can be characterized by a set of first-order, second-order,

and higher order inclusion expectations. The first-order inclusion expectations are

needed to construct estimators of population parameters. The second-order inclusion

expectations are needed to compute the precision of estimators.

Definition 2.14 The first-order inclusion expectation pk of element k is defined by

pk ¼ EðakÞ ¼
X
a2Ap

akpðaÞ; ð2:15Þ

for k¼ 1, 2, . . ., N. E denotes the expected value of the random variable ak. So the

first-order inclusion expectation pk of element k is equal to its expected frequency

of appearance in one sample.

For example, a sample of size 2 is selected from a population of size 6. A six-sided

dice is thrown for both the first and the second sample element. In total, 36 different

outcomes are possible: (1, 1), (1, 2), . . ., (6, 6). Each sample has a probability 1/36 of

being selected. There is only one sample possible in which 5 appears twice: (5, 5).

There are 10 samples in which 5 appears once: (1, 5), (2, 5), . . ., (5, 1). All other
samples do not contain 5. Therefore, the first-order inclusion expectation of element 5

is equal to p5¼ (1� 2 þ 10� 1 þ 25� 0)/36¼ 0.333.

Definition 2.15 The second-order inclusion expectation pkl of two elements k and l

is defined by

pkl ¼ EðakalÞ ¼
X
a2A

akalpðaÞ; ð2:16Þ

for k¼ 1, 2, . . ., N and l¼ 1, 2, . . ., N. So the second-order inclusion expectation pkl

of the two elements k and l is equal to the expected value of the product of the sample

frequencies of the these two elements.

Coming back to the example of the sample of size 2 from a population of size 6,

there are only two samples containing both elements 3 and 5: (3, 5) and (5, 3). For all

other samples, either a3¼ 0 or a5¼ 0. Therefore, the second-order inclusion proba-

bility p35 of elements 3 and 5 is equal to 2/36.

If a dice is thrown a number of times, it is quite possible that a certain number

appears more than once. The same applies to any other randomizer. If a sequence of
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random numbers is generated, numbers may occur more than once. The consequence

would be that an element is selected more than once in the sample. This is not very

meaningful. It would mean repeating the measurements for this element. If the

questions are answered a second time, the answers will not be different. Therefore,

sampling without replacement is preferred. This is a way of sampling in which each

element can appear at most only once in a sample.

A lotto machine is a good example of sampling without replacement. A selected

ball is not replaced in the population. Therefore, it cannot be selected for a second time

(Fig. 2.6).

The procedure for selecting a sample without replacement is straightforward.

A sequence of random numbers in the range from 1 to N is selected using some

randomizer. If a number is generated that has already been selected previously,

it is simply ignored. The process is continued until the sample size has been

reached.

If a sample is selectedwithout replacement, there are only twopossibilities for each

element k in the population: the element is selected or the element is not selected.

Consequently, the indicator ak in the sample a can assume only the two possiblevalues

1 and 0. The inclusion expectationpk of element k is now equal to the probability that

element k is selected in the sample. Therefore, the first-order inclusion expectation is

called the first-order inclusion probability in this situation. Likewise,pkl is called the

second-order inclusion probability of elements k and l.

Suppose a population consists of four elements: U¼ {1, 2, 3, 4}. The possible

samples of size 2 without replacement are as follows:

   (1, 2)     (1, 3)     (1, 4)  
   (2, 1)     (2, 3)     (2, 4) 
   (3, 1)     (3, 2)     (3, 4) 
   (4, 1)     (4, 2)     (4, 3) 

Figure 2.6 A lotto machine: a sample without replacement. Reprinted by permission of Imre Kortbeek.
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There are somesituations inpracticewhere samplingwith replacement is preferred.

This is the case for samples selected with unequal probabilities. This sampling design

is described in Section 4.3. A sample with replacement can also be represented by a

sequence of indicators a¼ (a1, a2, . . ., aN). But now every indicator ak can assume the

values 0, 1, 2, . . ., n.
A roulette wheel is a good example of sampling with replacement. At every turn,

each of the possible numbers can again be produced with the same probability. It is

possible (butnot very likely) that in a sequenceof10 turns, thenumber7 is produced10

times (Fig. 2.7).

A simple example illustrates sampling with replacement. Suppose, the population

consists of four elements: U¼ {1, 2, 3, 4}. Then the possible samples of size 2 are as

follows:

   (1, 1)     (1, 2)     (1, 3)     (1, 4)  
   (2, 1)     (2, 2)     (2, 3)     (2, 4) 
   (3, 1)     (3, 2)     (3, 3)     (3, 4) 
   (4, 1)     (4, 2)     (4, 3)     (4, 4) 

So a sampling design describes which samples a from U are possible. The set of

all possible samples is denoted by A. The sampling design also fixes the probability

p(a) of realization of each possible sample a in A. A number of different sampling

designs will be treated in Chapters 4 and 5.

The sampling design described which samples are possible and what their pro-

babilities are. The sampling design does not describe how it must be implemented in

practice. The practical implementation is described in the sample selection scheme.

Definition 2.16 The sample selection scheme describes a practical algorithm for

selecting elements from the population with some randomizer. This algorithm may

produce samples only in the set A. The probability of a sample being selected must be

equal to the probability p(a) as specified in the sampling design.

Definition 2.17 The first-order selection probability

p
ðiÞ
k ð2:17Þ

Figure 2.7 A roulette: a sample with replacement. Reprinted by permission of Imre Kortbeek.
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is equal to the probability that ith draw of the sample selection scheme results in

element k, where k¼ 1, 2, . . ., N and i¼ 1, 2, . . ..

Suppose a sample of size 2 is to be selected from a population of size 6.

Furthermore, the following sample selection scheme is used:

. Make six lottery tickets, numbered 1–6.

. Arbitrarily select one ticket and write down the number.

. Arbitrarily select onemore ticket from the remaining five tickets and write down

the number.

According to this selection scheme, the first-order selection probability p
ð1Þ
4 to select

element in the first draw is equal to 1/6. The first-order selection probability p
ð2Þ
4 to

select element 4 in the second draw is less simple to compute. Element 4 can only be

selected in the second draw if it has not been selected in the first draw. Therefore,

p
ð2Þ
4 ¼ 1

6
� 0þ 5

6
� 1

5
¼ 1

6
:

Definition 2.18 The second-order selection probability

p
ði; jÞ
kl ð2:18Þ

is equal to the probability that in the ith draw element k is selected and in the jth draw

element l, for k, l¼ 1, 2, . . ., N and i, j¼ 1, 2, . . ..

Going back to the example of selection of a sample of size 2 from a population of

size 6, the probability of selecting element 3 in the first draw, and element 5 in the

second draw, is equal to

p
ð1;2Þ
35 ¼ 1

6
� 1

5
¼ 1

30
:

If a sample is selected with replacement, then the selection mechanism is the same

for each consecutive draw. Therefore,

p
ði;jÞ
kl ¼

pkpl ; if i 6¼j;

0; if k 6¼l and i ¼ j;

pk; if k ¼ l and i ¼ j:

8>>><
>>>:

ð2:19Þ
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For sampling designs with a fixed sample size n, the following relations hold:

pk ¼
Xn
i¼1

p
ðiÞ
k ; ð2:20Þ

pkl ¼
Xn
i¼1

Xn
j¼1

p
ði; jÞ
kl : ð2:21Þ

For sampling designs without replacement and with a fixed sample size n, the

following relations hold:

XN
k¼1

pk ¼ n; ð2:22Þ

XN
l¼1

pkl ¼ npk; ð2:23Þ

XN
k¼1

XN
l 6¼k

pkl ¼ nðn�1Þ: ð2:24Þ

2.5 ESTIMATION

Estimation of population parameters has to be based on the information that is

collected in the sample. Values of variables can be measured only for those elements

k in the population for which the indicator ak has a nonzero value.

Definition 2.19 Suppose a sampleof sizenhasbeen selectedwith a samplingdesign.

The sample values of the target variable Y are denoted by

y1; y2; . . . ; yn: ð2:25Þ
Each yi represents one of the values Y1, Y2, . . ., YN of the target variable. If a

sample is selected without replacement, all yi will be obtained from different

elements in the population. If the sample is selected with replacement, some yimay

be equal because they are obtained from the same population element that has been

selected more than once.
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A similar notation is used if auxiliary variables have also been measured in the

sample. So the measured values of the auxiliary variable X are denoted by

x1; x2; . . . ; xn: ð2:26Þ

The sample values are to be used to say something about the values of population

parameters. Such statements take the form of estimates of the population parameters.

The recipe (algorithm) to compute such an estimate is called an estimator.

2.5.1 Estimators

The values of the target variable Y can only be measured for the sampled elements.

Furthermore, if an auxiliary variable X is included in the survey, its sample values also

become available. This auxiliary information can be used to improve estimates. This

only works if more information about the auxiliary variables is available than just the

samplevalues.Typically, it turnsout tobeveryuseful tohave thepopulationdistribution

auxiliary variables. Such improved estimators are treated in detail in Chapter 6.

The first step in defining estimators is the definition of a statistic. Estimators are

statistics with special properties.

Definition 2.20 A statistic is a real-valued function t that with respect to the target

variable Y only depends on its sample values y1, y2, . . ., yn. Possibly, tmay depend on

the sample values x1, x2, . . ., xn of an auxiliary variable X and of some population

parameter for X.

The sample mean and the sample variance are introduced as examples of statistics.

Definition 2.21 The sample mean of a target variable Y is equal to

�y ¼ 1

n

Xn
i¼1

yi: ð2:27Þ

The sample mean is simply obtained by summing the sample values and dividing the

result by the sample size.

Definition 2.22 The sample variance of a target variable Y is equal to

s2 ¼ 1

n�1

Xn
i¼1

ðyi��yÞ2: ð2:28Þ

This statistic is obtained by subtracting the sample mean from each sample value,

by summing the squared differences, and by dividing the result by n� 1.
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Note that the definitions of the sample mean and sample variance are similar to

those of the population mean and (adjusted) population variance. The only difference

is that for the population quantities all values in the population are usedwhereas for the

sample quantities only the sample values are used.

Definition 2.23 An estimator t for a population parametery is a statistic t that is used
for estimating the population parameter y. Given the population U and the sampling

design p, the value of the statistic t only depends on the sample a. Therefore, the

notation t¼ t(a) is sometimes used.

The performance of an estimator is determined to a large extent by the sampling

design. The combination of a sampling design p and an estimator t is called the

sampling strategy (p, t).

2.5.2 Properties of Estimators

Application of an estimator to the sample data provides a value. This value is an

estimate for a population value u. An estimator performs well if it produces estimates

that are close to the true value of the population parameter. Four quantities play an

important role in judging the performance of estimators: expected value, bias,

variance, and mean square error.

Definition 2.24 The expected value of an estimator t for a population parameter y is
under the sampling strategy (p, t) equal to

EðtÞ ¼
X
a2A

tðaÞpðaÞ: ð2:29Þ

So the expected value of an estimator is obtained by multiplying its value for each

possible sample a by the probability p(a) of its selection and summing the results.

The expected value can be seen as a weighted average of its possible values, where

the weights are the selection probabilities. The expected value is a kind of center

value around which its possible values vary.

The first condition that an estimator must satisfy is that its expected value is

equal to the value of the population parameter to be estimated.

Definition 2.25 An estimator t for a population parameter y under the sampling

strategy (p, t) is called an unbiased estimator if E(t)¼ y.

Repeated use of an unbiased estimator results in estimates that are on average

equal to the value of the population parameter. There will be no systematic under- or

overestimation.
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Definition 2.26 The bias of an estimator t for a population parameter y under the

sampling strategy (p, t) is equal to

BðtÞ ¼ EðtÞ�u: ð2:30Þ

The bias of an unbiased estimator is equal to 0.

Definition 2.27 The varianceof anestimator t for apopulationparameteryunder the
sampling strategy (p, t) is equal to

VðtÞ ¼ E t�EðtÞð Þ2 ¼
X
a2A

tðaÞ�EðtÞð Þ2pðaÞ: ð2:31Þ

The variance is equal to the expected value of the squared difference between the

estimators and the expected value of the estimator. The variance is an indicator of the

amount of variation in the possible outcomes of the estimator. The variance is small if

all possible values are close to each other. The variance is large if there are large

differences in the possible outcomes.

The unit ofmeasurement of the variance is the square of the unit ofmeasurement of

the target variable itself. For example, if Ymeasures income in euros, the variance is

measured in squared euros. This makes interpretation of the value of the variance

somewhat cumbersome. Moreover, its values tend to be large numbers. To simplify

things, a different quantity is often used: the standard error.

Definition 2.28 The standard error of an estimator t for a population parameter y
under the sampling strategy (p, t) is equal to

SðtÞ ¼
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
: ð2:32Þ

So the standard error is simply equal to the square root of thevariance.An estimator

is called precise of its variance (or standard error is small). An estimator is said to

performwell if it is unbiased and precise. If these conditions are satisfied, the possible

values of the estimator will always be close to the true, but unknown, value of the

population parameter. There is a theoretical quantity that measures both aspects of an

estimator simultaneously, and that is the mean square error.

Definition 2.29 Themean square errorof anestimator t for apopulationparametery
under the sampling strategy (p, t) is equal to

MðtÞ ¼ E t�uð Þ2: ð2:33Þ

So the mean square error is equal to the expected value of the squared difference

between the estimator and the value of the population parameter. A small mean square
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error indicates that all possible values of the estimator will be close to the value to be

estimated. By working out expression 2.33, it can be shown that it can be written as

MðtÞ ¼ V tð ÞþB2ðtÞ ¼ S2ðtÞþB2ðtÞ: ð2:34Þ
It can be concluded from this expression that a small mean square implies both a

small bias and a small variance. So, an estimator with a small mean square error is a

good estimator. Note that for unbiased estimators, the bias component in (2.34)

vanishes. Consequently, the mean square error is then equal to the variance.

2.5.3 The Confidence Interval

Thevalue of thevariance of standard is not easy to interpret in practical situation.What

does a specific value mean? When is it large and when is it small? The Polish

statistician Jerzy Neyman (1934) invented a more meaningful indicator, the confi-

dence interval, for the precision of estimators.

Definition 2.30 The 100� (1�a)% confidence interval is determined by a lower

bound and an upper bound that have been computed by using the available sample

information such that the probability that the interval covers the unknown population

value is at least equal to predetermined large probability 1� a. The quantity 1� a is
called the confidence level.

The use of the confidence interval is based on the central limit theorem. According

to this theorem,many (unbiased) estimators have approximately a normal distribution

with as expected value the population parameter u to be estimated and as variance the

variance V(t) of the estimator. The approximation works better as the sample size

increases.

Often, thevalue ofa is set to 0.05. This implies the confidence level is equal to 0.95.

This can be interpreted as follows: if the sample selection and the subsequent

computation of the estimator are repeated a large number of times, on average

in 95 out of the 100 cases the confidence interval will contain the true population

value. To say it differently: in 5% of the cases, the statement that the confidence

interval contains the true population parameter is wrong. So in 1 out of 20 cases,

the researcher will draw the wrong conclusion.

If the estimator has an approximate normal distribution, the 95% confidence

interval is equal to

t�1:96� SðtÞ;tþ 1:96� SðtÞð Þ: ð2:35Þ
Researchers are free in their choice of the confidence level. If they want to draw a

more reliable conclusion, they can choose a smaller value of a. For example, a value

of a¼ 0.01 could be considered. The corresponding 99% confidence interval is then

equal to

t�2:58� SðtÞ; tþ 2:58� SðtÞð Þ: ð2:36Þ
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A price has to be paid for a more reliable conclusion. This price is that the

confidence interval is wider. In fact, there is always a compromise between reliability

and precision. Either a more reliable conclusion can be drawn about a less precise

estimate, or a less reliable conclusion is drawn about a more precise estimate.

The confidence interval can only be computed if the value S(t) of the standard error

is known. This is generally not the case, because it requires knowledge of all possible

values of the estimator. The distribution of the estimator can only be computed if all

values of Y in the population are known. If all these values were known, there was

no need to carry out the survey. However, the confidence interval can be estimated.

First, thevarianceV(t) is estimated using the available data. This estimator is indicated

by v(t). Next, an estimator s(t) for S(t) is obtained by taking the square root of v(t).

This estimator s(t) is used to compute an estimated confidence interval:

t�1:96� sðtÞ; tþ 1:96� sðtÞð Þ: ð2:37Þ

2.5.4 The Horvitz–Thompson Estimator

The accuracy of the conclusions of a survey is to a large extent based on the choice

of the sampling design and the estimator. All kinds of combinations are possible,

but one combination may lead to more precise estimates than another combination.

On the one hand, the advantages of a well-chosen sampling design can be undone by

a badly chosen estimator. On the other hand, a badly chosen sampling design can be

compensated for by using an effective estimator.

The properties of a sampling design can only be investigated in combination with

an estimator. Such an estimator must be unbiased, or approximately unbiased.

Furthermore, often the additional condition must be satisfied that the estimator

must be simple to compute, for example, as a linear combination of the sample

values of the target variable. Fortunately, it is always possible to construct an estimator

with these properties. This estimator was first developed by Horvitz and Thompson

(1952) in their seminal paper. Therefore, it is called theHorvitz–Thompson estimator.

This estimator can be used for all sampling designs thatwill be discussed inChapters 4

and 5. Note that the Horvitz–Thompson estimator does not use any auxiliary

information. Chapter 6 describes a number of estimators that do use auxiliary

variables.

Definition 2.31 Let a¼ (a1, a2, . . ., aN) be a sample from a populationU. Suppose a

sampling design p has been used with first-order inclusion expectations pk (k¼ 1, 2,

. . ., N) and second-order inclusion expectations pkl (k, l¼ 1, 2, . . ., N). The

Horvitz–Thompson estimator for the population mean of the target variable Y is

now defined by

�yHT ¼ 1

N

XN
k¼1

ak
Yk

pk
: ð2:38Þ
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TheHorvitz–Thompson estimator is an unbiased estimator provided thatpk> 0 for
all k. Since by definition pk¼E(ak), the expected value of this estimator is equal to

Eð�yHTÞ ¼
1

N

XN
k¼1

EðakÞ Ykpk ¼ 1

N

XN
k¼1

pk
Yk

pk
¼ �Y : ð2:39Þ

If allpk> are positive, the variance of the Horvitz–Thompson estimator is equal to

Vð�yHTÞ ¼
1

N2

XN
k¼1

XN
l¼1

pkl�pkplð Þ Yk
pk

Yl

pl
: ð2:40Þ

For samples without replacement, ak can only assume two values: ak¼ 0 or ak¼ 1.

Therefore, ak¼ ak
2, and consequently pkk¼E(akak)¼E(ak)¼pk. The variance can

now be written as

Vð�yHTÞ ¼
1

N2

XN
k¼1

1�pkð Þ Y
2
k

pk
þ 1

N2

XN
k¼1

XN
l¼1
l 6¼k

pkl�pkplð Þ Yk
pk

Yl

pl
: ð2:41Þ

Expression (2.41) was derived by Horvitz and Thompson (1952). For sampling

designs producing samples of a fixed size n, the variance in (2.40) can be rewritten as

Vð�yHTÞ ¼
1

2N2

XN
k¼1

XN
l¼1

pkpl�pklð Þ Yk

pk
� Yl

pl

� �2

: ð2:42Þ

From expression (2.42), it becomes clear that the variance of the Horvitz–Thompson

estimator is smaller if the values Yk of the target variable and the inclusion

expectations pk are more proportional. If this is the case, the ratios Yk/pk are almost

constant, and therefore the quadratic term in (2.42) will be small. In the ideal case

of exact proportionality, the variance will even be equal to zero. This will not happen

in practice. Taking the inclusion probabilities exactly proportional to the values of the

target variables would mean that these values are known. The survey was carried out

because these values were unknown.

The important message conveyed by the Horvitz–Thompson estimator is that it is

not self-evident to draw elements in the sample with equal probabilities. Equal

probability sampling may be simple to implement, but other sampling designs may

result in more precise estimators.

Section 2.4 introduced the concept of selection probabilities for samples with

replacement. The Horvitz–Thompson estimator can be adapted for this type of

sampling. To keep things simple, it is assumed that selection probabilities remain

the same for each consecutive draw. This implies that the probability of selecting

element k in the ith draw of the sample selection scheme is equal to

p
ðiÞ
k ¼ pk: ð2:43Þ
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The probability to select element k in the ith draw and element l in the jth draw

(where i 6¼ j) is equal to

p
ði; jÞ
kl ¼ pkpl : ð2:44Þ

So, subsequent draws are independent. It follows from expressions 2.22 and 2.24

that

pk ¼ npk ð2:45Þ
and

pkl ¼ nðn�1Þpkpl ð2:46Þ
for k 6¼ l.

Substitution of (2.45) in expression (2.38) of the Horvitz–Thompson estimator

leads to the following expression for the estimator in case of with replacement

sampling:

�yHT ¼ 1

N

XN
k¼1

ak
Yk

pk
¼ 1

Nn

XN
k¼1

ak
Yk

pk
: ð2:47Þ

Substitutionof (2.45) and (2.46) in expression (2.42) gives the followingexpression

for the variance of estimator (2.47):

Vð�yHTÞ ¼
1

2nN2

XN
k¼1

XN
l¼1

pkpl
Yk

pk
� Y1

p1

� �2

: ð2:48Þ

Taking into account that subsequent draws are independent, the expression for the

variance can be written in a much simpler form:

Vð�yHTÞ ¼
1

n

XN
k¼1

pk
Yk

Npk
��Y

� �2

: ð2:49Þ

The above theory introduced the Horvitz–Thompson estimator for estimating the

populationmean of a quantitativevariable. This estimator can also be used to estimate

population totals. The estimator for the population total YT of Y is equal to

yHT ¼ N�yHT: ð2:50Þ

The variance of this estimator is equal to

VðyHTÞ ¼ N2Vð�yHTÞ: ð2:51Þ
If the target variable measures whether or not elements have a specific property

(with values 1 and 0), then

pHT ¼ 100�yHT ð2:52Þ
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is an unbiased estimator for the population percentage P of elements with that

property. The variance of this estimator is equal to

VðpHTÞ ¼ 10; 000Vð�yHTÞ: ð2:53Þ

The theory of the Horvitz–Thompson estimator will be applied to a number of

different sampling designs in Chapters 4 and 5.

EXERCISES

2.1 The population variance s2 and the adjusted population variance S2 are related.

The adjusted population variance can be computed by multiplying population

variance by

a. N/(N� 1);

b. (N� 1)/N;

c. (N� n)/(N� 1);

d. (N� n)/N.

2.2 Undercoverage occurs in a sampling frame if it contains elements that

a. do not belong to the target population and do not appear in the sampling

frame;

b. do belong to the target population and do not appear in the sampling frame;

c. do not belong to the target population and do appear in the sampling frame;

d. do belong to the target population and do appear in the sampling frame.

2.3 The local authorities of a townwant to knowmore about the living conditions of

single households. To that end, a sample frame is constructed from an address

register. Due to a programming error, the sampling frame consists only of

households with at least two persons. What is wrong with this sampling frame?

a. There is both undercoverage and overcoverage.

b. There is only undercoverage.

c. There is only overcoverage.

d. There is no coverage problem.

2.4 A large company regularly distributes newsletters among its employees. The

management wants to know whether the employees really read the newsletter.

Therefore, a questionnaire form is included in the next release of the newsletter.

Questions included in the questionnaire are whether people are aware of the

newsletter, and whether they read the newsletter. Employees are invited to

complete the questionnaire and to send it back to the management. Explain why

this is, or is not, a good way to obtain an estimate of the readership of the

newsletter.
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2.5 The second-order inclusion probability is equal to

a. The unconditional probability that both the elements are selected in the

sample.

b. The conditional probability that an element is selected in the sample, given

that another element is selected in the sample.

c. The unconditional probability that an element is selected in the sample

twice.

d. The conditional probability that an element is selected in the sample a

second time, given that it has already been selected in the sample.

2.6 Prove that the following relationship holds for sampling designs for samples of a

fixed size n:

p1 þ p2 � � � þ pN ¼ n:

2.7 The Horvitz–Thompson estimator is a random variable because

a. The inclusion expectations p1, p2, . . ., pN are random variables.

b. Both the inclusion expectations p1,p2, . . .,pN and the values Y1, Y2, . . ., YN
of the target variable are random variables.

c. Both the selection indicators a1, a2, . . ., aN and thevaluesY1,Y2, . . .,YN of the
target variable are random variables.

d. The selection indicators a1, a2, . . ., aN are random variables.

2.8 The Horvitz–Thompson estimator is an unbiased estimator provided

a. The underlying distribution is the normal distribution.

b. The standard deviation of the values of the target variable is known.

c. All first-order inclusion expectations are positive.

d. All second-order inclusion expectations are positive.
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C H A P T E R 3

Questionnaire Design

3.1 THE QUESTIONNAIRE

The survey process starts with the formulation of the general research question. The

objective of the survey is to answer this question. To that end, the research question

must be translated into a set of variables (both target and auxiliary variables) that are to

bemeasured in the survey.Thevalues of thesevariableswill be used to estimate a set of

relevant population parameters. Together, the values of these parameters should pro-

vide sufficient insight. Questions must be defined to obtain the values of the variables.

Together, these questions make up the questionnaire.

So, the questionnaire is a measuring instrument. However, it is not a perfect

measuring instrument. A measuring scale can be used for determining someone’s

length, and the weight of a person can be determined by a weighing scale. These

physicalmeasuring devices are generally very accurate. The situation is different for a

questionnaire. It only indirectly measures someone’s behavior or attitude. Schwarz

et al. (2008) describe the tasks involved in answering a survey question. First,

respondents need to understand the question. They have to determine the information

they are asked to provide. Next, they need to retrieve the relevant information from

theirmemory. In the case of a nonfactual question (e.g., an opinion question), theywill

nothave this information readily available. Instead, theyhave to formanopinionon the

spot withwhatever information comes tomind. In the case of a factual question (e.g., a

question about behavior), they have to retrieve from their memory information about

events in the proper time period. Then theyhave to translate the relevant information in

a format fit for answering the questions. Finally, respondents may hesitate to give this

answer. If the question is about a sensitive topic, theymay refuse to give an answer, and

if an answer is sociallyundesirable, theymaychange their answer.All this complicates

the use of a questionnaire as a measuring instrument.

A lot can go wrong in the process of asking and answering questions. Problems in

the survey questionnaires will affect the collected data, and consequently, also the

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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survey results. It is of utmost importance to carefully design and test the survey

questionnaire. It is sometimes said that questionnaire design is an art and not a skill.

Nevertheless, long years of experience have led to a number of useful rules. A number

of these rules are described in this chapter. They deal with question texts, question

types, and the structure of the questionnaire. Also, some attention is paid to testing a

questionnaire.

3.2 FACTUAL AND NONFACTUAL QUESTIONS

Kalton and Schuman (1982) distinguish factual and nonfactual questions. Factual

questions are asked to obtain information about facts and behavior. There is always

an individual true value. This true value could also be determined, at least in theory,

by some other means than asking a question to the respondent. Examples of factual

questions are “What is your regular hourly rate of pay on this job,” “Do you own or

rent your place of residence,” and “Do you have an Internet connection in your

home?”

The fact to bemeasured by a factual questionmust be precisely defined. It has been

shown that even a small difference in the question text may lead to a substantially

different answer. As an example, a question about the number of rooms in the house-

hold can cause substantial problems if it is not clear what constitutes a room and what

not. Should a kitchen, a bathroom, a hall, and a landing be included?

Nonfactual questions ask about attitudes and opinions. An opinion usually reflects

views on a specific topic, such as voting behavior in the next elections. An attitude is a

more general concept, reflecting views about awider, oftenmore complex issue.With

opinions and attitudes, there is no such thing as a truevalue. Theymeasure a subjective

state of the respondent that cannot be observed by another means. The attitude only

exists in the mind of the respondent.

There are various theories explaining how respondents determine their answer to

an opinion question. One such theory is the online processing model described by

Lodge et al. (1995). According to this theory, people maintain an overall impression

of ideas, events, and persons. Every time they are confronted with new information,

this summary view is updated spontaneously. When they have to answer an opinion

question, their response is determined by this overall impression. The online proces-

sing model should typically be applicable to opinions about politicians and political

parties.

There are situations inwhich people do not have formed an opinion about a specific

issue.Theyonly start to think about itwhenconfrontedwith thequestion.According to

thememory-basedmodelofZaller (1992), people collect all kinds of information from

the media and their contacts with other people. Much of this information is stored in

memory without paying attention to it. When respondents have to answer an opinion

question, they may recall some of the relevant information stored in memory. Owing

to the limitations of the human memory, only part of the information is used. This is

the information that immediately comes to mind when the question is asked. This

is often information that has been stored only recently in memory. Therefore, the
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memory-based model is able to explain why people seem to be unstable in their

opinions. Their answer may easily be determined by the way the issue was recently

covered in the media.

3.3 THE QUESTION TEXT

The question text is the most important part of the question. This is what the

respondents respond to. If they do not understand the question, they will not give

the right answer, or they will give no answer at all. Some rules of thumb are presented

here that may help avoid the most obvious mistakes. Examples are given of question

texts not following these rules.

. Use Familiar Wording. The question text must use words that are familiar to

those who have to answer them. Particularly, questionnaire designers must be

careful not to use jargon that is familiar to themselves but not to the respondents.

Economists may understand a question such as

Do you think that food prices are increasing at the same rate as

a year ago, at a faster rate, or at a slower rate?

This question asks about the rate at which prices rise, but a less knowledgeable

person may easily interpret the question as asking whether prices decreased,

have stayed the same, or increased. Unnecessary and possibly unfamiliar

abbreviation must be avoided. Do not expect respondents to be able to answer

questions about, for example, caloric content of food, disk capacity (in

megabytes) of their computer, or the bandwidth (in Mbps) of their Internet

connection.

Indefinitewords like “usually,” “regularly,” “frequently,” “often,” “recently,”

and “rarely” must be avoided if there is no additional text explaining what they

mean. How regular is regularly?How frequent is frequently? Thesewords do not

have the same meaning for every respondent. One respondent may interpret

“regularly” as everyday,while it couldmeanonce amonth to another respondent.

Here is an example of such a question:

Have you been to the cinema recently?

What does “recently” mean? It could mean the last week or the last month. The

question can be improved by specifying the time period:

Have you been to the cinema in the last week?
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Even this question text could cause some confusion. Does “last week” mean the

past 7 days or maybe the period since last Sunday?

. Avoid Ambiguous Questions. If the question text is such that different respon-

dents may interpret the question differently, their answers will not be compara-

ble. For example, if a question asks about income, it must be clear whether it is

about weekly, monthly, or annual income. It must also be clear whether the

respondents should specify their income before or after tax has been deducted.

Vague wording may also lead to interpretation problems. A respondent con-

fronted with the question

Are you satisfied with the recreational facilities in your

neighborhood?

may wonder about what recreational facilities exactly are. Is this a question

about parks and swimming pools? Do recreational facilities also include

libraries, theaters, cinemas, playgrounds, dance studios, and community

centers? What will respondents have in their mind when they answer this

question? It is better to describe in the question text what is meant by

recreational facilities.

. Avoid Long Question Texts. The question text should be as short as possible. A

respondent attempting to comprehend a long question may leave out part of the

text and thus change the meaning of the question. Long texts may also cause

respondent fatigue, resulting in a decreased motivation to continue. Of course,

the question text should not be so short that it becomes ambiguous. Here is an

example of a question that may be too long:

During the past 7 days, were you employed for wages or other

remuneration, were you self-employed in a household enterprise,

were you engaged in both types of activities simultaneously, or

were you engaged in neither activity?

Some indication of the length and difficulty of a question text can be

obtained by counting the total number of syllables and the average number of

syllables per word. Table 3.1 gives examples of indicators for three questions.

The first question is simple and short. The second one is also short, but it is

much more complex. The third question is very long and has an intermediate

complexity.

If a question text appears to be too long, it might be considered to split

into two or more shorter questions. It should be noted that some research

shows that longer question text sometimes lead to better answers. According

to Kalton and Schuman (1982), longer text may work better for open

questions about threatening topics.

. AvoidRecall Questions asmuch asPossible. Questions requiring recall of events

that have happened in the past are a source of errors. The reason is that people
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make memory errors. They tend to forget events, particularly when they

happened a long time ago. Recall errors are more severe as the length of the

reference period is longer. Important events, more interesting events, and more

frequently happening events will be remembered better than other events. For

example, the question

How many times did you contact your family doctor in the past 2 years?

is a simple question to ask but difficult to answer for many people. Recall

errors may even occur for shorter periods. In the 1981 Health Survey of

Statistics Netherlands, respondents had to report contacts with their family

doctor over the past 3 months. Memory effects were investigated by Sikkel

(1983). It turned out that the percentage of not-reported contacts increased

linearly with time. The longer ago an event took place, the more likely it is that

it would be forgotten. The percentage of unreported events for this question

increased on average by almost 4% per week. Over the total period of

3 months, about one quarter of the contacts with the family doctor were

not reported.

Recall questions may also suffer from telescoping. This occurs if respon-

dents report events as having occurred either earlier or later than they actually

did. As a result, an event is incorrectly reported within the reference period, or

incorrectly excluded from the reference period. Bradburn et al. (2004) note

that telescoping more often leads to overstating than to understating a number

of events. Particularly, for short reference periods, telescoping may lead to

substantial errors in estimates.

. Avoid Leading Questions. A leading question is a question that is not asked in a

neutral way but leads the respondents in the direction of a specific answer. For

example, the question

Do you agree with the majority of people that the quality of the

health care in the country is falling?

Table 3.1 Indicators for the Length and Complexity of a Question

Questions Words Syllables

Syllables

Per Word

Have you been to the cinema in the last week? 9 12 1.3

Are you satisfied with the recreational facilities

in your neighborhood?

10 21 2.1

During the past 7 days, were you employed for wages

or other remuneration, were you self-employed in

a household enterprise, were you engaged in both

types of activities simultaneously, or were you engaged

in neither activity?

38 66 1.7
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contains a reference to the “majority of people.” It suggests that it is socially

undesirable to not agree. A question can also become leading by including the

opinion of experts in questions text, such as

Most doctors say that cigarette smoking cause lung cancer. Do you

agree?

Questionnaire designers should watch out for loaded words that have a tendency

of being attached to extreme situations:

What should be done about murderous terrorists who threaten the

freedom of good citizens and the safety of our children?

Particularly, adjectives such as “murderous” and “good” increase a specific

loading of the question.

Opinion questions may address topics about which respondents may not

have yet made up their mind. They may even lack sufficient information for a

balanced judgment. Questionnaire designersmay sometime provide additional

information in the question text. Such information should be objective and

neutral and should not influence respondents in a specific direction. Saris

(1997) performed an experiment to show the dangers of making changes in the

question text. He measured the opinion of the Dutch about increasing the

power of the European Parliament. Respondents were randomly assigned one

of these two questions:

Question 1 Question 2

An increase of the powers of

the European Parliament

will be at the expense of

the national parliament.

Many problems cross national

borders. For example, 50% of the

acid rain in The Netherlands comes

from other countries.

Do you think the powers of the

European Parliament should

be increased?

Do you think the powers of the

European Parliament should be

increased?

In case respondentswere offered the question on the left, 33%answered “yes”

and 42% answered “no.” In case respondents were offered the question on the

right, 53% answered “yes” and only 23% answered “no.” These substantial

differences are not surprising, as the explanatory text on the left stresses a

negative aspect and the text on the right stresses a positive aspect.
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. Avoid Asking Things Respondents Don’t Know. A question text can be very

simple, and completely unambiguous, but still it can be impossible to answer it.

Thismay happen if the respondents are asked for facts that they do not know. The

following is an example:

How many hours did you listen to your local radio station in the

past 6 months?

Respondents do not keep record of all kinds of simple things happening in their

lives. So, they can only make a guess. This guess need not necessarily be an

accurate one. Answering this question is even more complicated by using a

relatively long reference period.

. Avoid Sensitive Questions. Sensitive questions should be avoided as much as

possible. Sensitive questions address topics that respondents may see as embar-

rassing. Such questionsmay result in inaccurate answers. Respondentsmay refuse

to provide information on topics such as income or health. Respondents may also

avoid giving an answer that is socially undesirable. Instead, they may provide a

response that is socially more acceptable.

Sensitive questions can be asked in such away that the likelihood of response

is increased andamorehonest response is facilitated.Thefirst option is to include

the question in a series of less sensitive questions about the same topic. Another

option is tomake it clear in the question text that the behavior or attitude is not so

unusual. Bradburn et al. (2004) give the following example:

Even the calmest parents sometimes get angry at their children. Did

your children do anything in the past 7 days to make you angry?

A similar effect can be obtained by referring in question text to experts that

may find the behavior not so unusual:

Many doctors now believe that moderate drinking of liquor helps

reduce the likelihood of heart attacks and strokes. Have you drunk

any liquor in the past month?

A question asking about numerical quantities (such as income) can be

experienced as threatening if an exact value must be supplied. This can be

avoided by letting the respondent select a range of values.

. Avoid Double Questions (or Double-Barreled Questions). A question must ask

one thing at a time. Ifmore than one thing is asked in a question, it is unclearwhat

the answer means. For example, the question

Do you think that people should eat less and exercise more?
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actually consists of two questions: “Do you think that people should eat less?”

and “Do you think that people should exercise more?” Suppose, someone thinks

that people should not eat less but should exercise more, what answer must be

given: yes or no?The solution to this problem is simple: the questionmust be split

into two questions, each asking one thing at a time.

. Avoid Negative Questions. Questionsmust not be asked in the negative, as this is

more difficult to understand for respondents. Respondents may be confused by a

question such as

Are you against a ban on smoking?

Even more problematic are double-negative questions. They are a source of

serious problems.

Would you rather not use a nonmedicated shampoo?

Negative questions can usually be rephrased such that negative effect is

removed. For example, “are you against . . .” can be replaced by “are you

in favor . . . .”

. AvoidHypotheticalQuestions. It is difficult for people to answer questions about

imaginary situations, as they relate to circumstances they have never experi-

enced. At best, the answer is guesswork and a total lie at worst. Here is an

example of a hypothetical question:

If you were the president of the country, how would you stop crime?

Hypothetical questions are often asked to get more insight into attitudes and

opinions about certain issues. However, little is known about processes in the

respondent’smind that lead to an answer to such a question. So, onemaywonder

whether hypothetical questions really measure what a researcher wants to

measure.

3.4 ANSWER TYPES

Only the text of the question has been discussed until now. Another import aspect of a

survey question is the way in which the question must be answered. Several answer

types are possible.Advantages anddisadvantages of anumberof suchanswer types are

discussed.

An open question is a simple question to ask. It allows respondents to answer the

question completely in their own words. An open question is typically used in

situations where respondents should be able to express themselves freely. Open
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questions often invoke spontaneous answers.Openquestions also have disadvantages.

The possibility always exists that a respondent overlooks a certain answer. Consider

the following question from a readership survey:

Which weekly magazines have you read in the past 2 weeks ?  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Research in The Netherlands has shown that if this question is offered to

respondents as an open question, typically television guides are overlooked. If a

list is presented containing all weekly magazines, including television guides, much

more people answer that they have read TV guides.

Asking an open question may also lead to vague answers. Consider the following

question:

To many respondents it will be unclear what kind of answer is expected. They will

probably answer something like “salary.” What do they mean if they say this? It is

important to get a high salary, or a regular salary, or maybe both?

Processing the answers to open questions is cumbersome, particularly if the

answer is written down on a paper form. Entering such answers in the computer

takes effort, and even more if the written text is not very well readable. Answers to

open questions also take more disk space than answers to other types of questions.

Furthermore, analyzing answers to open questions is not very straightforward. It is

often done manually because there is no intelligent software that can do this

automatically.

Considering the potential problems mentioned above, open questions should be

avoidedwherever possible.However, there are situationswhere there is no alternative.

An example is a question asking for the occupation of the respondent. A list containing

all possible occupations would be very long. It could easily have thousands of entries.

Moreover, respondentswith the sameoccupationmaygiveverydifferent descriptions.

All this makes it impossible to let respondents locate their occupation in the list. The

only way out is to ask for occupation by means of an open question. Extensive, time-

consuming automatic and/or manual coding procedures must be implemented to find

the proper classification code matching the description.

A closed question is used to measure qualitative variables. There is a list of

possible answers corresponding to the categories of the variable. Respondents have

to pick one possibility from the list. Of course, this requires the list to contain all

possible answers:
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There will be problem if respondents cannot find their answer. One way to avoid

such a problem is to add a category “other,” possibly also offering the option to enter

the answer. An example is the question below for listeners to a local radio station:

Which type of programs do you listen the most on your 
local radio station??

Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
News and current affairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If other, please specify: ……………………………………………………

1
2
3
4
5

If the listwith answer options is long, itwill be difficult for the respondent tofind the

proper answer, particularly in telephone surveys, where the interviewer has to read out

all options. By the time the interviewer has reached the end of the list, the respondent

has already forgotten the first options in the list. Use of showcardsmay help in face-to-

face interviews. A show card contains the complete list of possible answers to a

question. Such a card can be handed over to respondents who then can pick their

answer from the list.

Only one answer is allowed for a closed question. Therefore, radio buttons are used

to implement such a question in an electronic questionnaire. Indeed, only one option

can be selected by clicking on it.Clicking on another optionwould deselect the current

selected option. See Fig. 3.1 for an example.

If the list of options is long, the order of the options in the list matters. If the

interviewer reads out the options, thefirst options in the list tend to be forgotten. In case

Figure 3.1 The implementation of a closed question.
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of a self-completion questionnaire, the respondents have to read the list themselves.

This leads to preference for the first options in the list.

Figure 3.2 show how a long list of possible answers could be implemented in an

electronic questionnaire. Only five items in this list are visible. To see other options,

respondents have to scroll through the list. Experiments have shown that the options

initially visible tend to be selected more than the other options in the list.

Sometimesaquestion cannot be answeredbecause respondents simplydonot know

the answer. Such respondents should have the possibility to indicate this on the

questionnaire form. Forcing them to make up an answer will reduce the reliability of

the data. It has always been amatter of debate how to deal with the don’t-know option.

Oneway to deal with don’t know is to offer it as one of the options in a closed question:

Do you remember for sure whether or not you voted in the last 
elections to the European Parliament of June 10, 2004?

Yes, I voted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
No, I didn’t vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
Don’t know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

1 
2 
3 

Particularly for self-completion questionnaire, this tends to lead to satisficing (see

Krosnick, 1991). Respondents seek the easiest way to answer a question by simply

selecting the don’t-know option. Such behavior can be avoided in CAPI or CATI

surveys. Interviewers are trained to assist respondents to give a real answer and to

avoid don’t know as much as possible. The option is not explicitly offered but is

implicitly available. Only if respondents indicate that they really do not know the

answer, the interviewer records this response as don’t know.

Another way to avoid satisficing is to introduce a filter question. This question asks

whether respondents have an opinion about a certain issue. And only if they say they

have an opinion, they are asked to specify their opinion in a subsequent question.

The closed questions discussed until now allowed for exactly only one answer to be

given. All answer options have to be mutually exclusive and exhaustive. So respon-

dents can always find one and only one option referring to their situation. Sometimes,

however, there are closed questions in which respondents must have the possibility to

select more than one option. Figure 3.3 gives an example.

The question asks for modes of transport to work. Respondents may use more than

one means of transport for their journey to work, so more answers must be possible.

Figure 3.2 The implementation of a closed question with many possible answers.
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Therefore, they can check every option applying to them. Figure 3.3 shows the answer

of a respondent who first takes his bicycle to go to the railway station, where he takes

the train.

A closed questionwithmore than one answer is sometimes called a check-all-that-

apply question. Often square check boxes are used to indicate that more than one

answer can be given (see Fig. 3.3). Dillman et al. (1998) have shown that such a

question may lead to problems if the list of options is very long. Respondents tend to

stop after they have checked a few answers and do not look at the rest of the list

anymore.Too fewoptions are checked.Figure3.4 showsadifferent format for a check-

all-that-apply question. Each check box has been replaced by two radio buttons, one

for “yes” and the other for “no.” This approach forces respondents to do something for

each option. They have to check either “yes” or “no.” So, they have to go down the list

option by option and give an explicit answer for each option. This approach leads to

more options that apply. This approach has the disadvantage that it takes more time to

answer the question.

Another frequently occurring type of question is a numerical question. The answer

to such a question is simply a number. Examples are questions about age, income, or

prices. In most household survey questionnaires, there is a question about the number

of members in the household:

How many people are there in your household?                _ _

Figure 3.3 A check-all-that-apply question.

Figure 3.4 A check-all-that-apply question with radio buttons.
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The two separate dashes give a visual clue to the respondent as to howmany digits

are (at most) expected. Numerical questions in electronic questionnaires may have a

lower and anupper boundbuilt in for the answer. This ensures that entered numbers are

always within a valid range.

It should be noted that respondents in many situations are not able to give exact

answers to numerical questions because they simply do not know the answer. An

example is the following question:

How many hours did you listen to your local radio station in the 
past 7 days?

_  _  _

Analternativemaybe to ask a closed questionwith a number of intervals as options:

How many hours did you listen to your local radio station in the 
past 7 days?

0 – 1 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 – 2 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 – 5 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 – 10 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
More than 10 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 
2 
3 
4 
5 

A special type of question is a date question. Many surveys ask respondents to

specify dates, for example, date of birth, date of purchase of a product, or date of

retirement:

What is your date of birth?                             _  _      _  _      _  _

day   month  year

Of course, a date can be asked by means of an open question, but if used in

interviewing software, dedicated date questions offermuchmore control, and thus few

errors will be made in entering a date.

3.5 QUESTION ORDER

Once all questions have been defined, they have to be included in the questionnaire in

the proper order. The first aspect is grouping of questions. It is advised to keep

questions about the same topic close together. This will make answering question

easier for respondents and therefore will improve the quality of the collected data.

The second aspect is the potential learning effect. An issue addressed early in the

questionnaire may make respondents think about it. This may affect answers to later
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questions. This phenomenon played a role in a Dutch housing demand survey. People

turned out to bemuchmore satisfiedwith their housing conditions if this questionwas

asked early in the questionnaire. The questionnaire contained a number of questions

about the presence of all kind of facilities in and around the house (Doyouhave a bath?

Do you have a garden? Do you have a central heating system?). As a consequence,

several people realized that they lacked these facilities and therefore became less and

less satisfied about their housing conditions.

Question order can affect the results in two ways. One is that mentioning

something (an idea, an issue, a brand) in one question can make people think of

it while they answer a later question, when they might not have thought of it if it had

not been previously mentioned. In some cases, this problem may be reduced by

randomizing the order of related questions. Separating related questions by unre-

lated ones might also reduce this problem, though neither techniquewill completely

eliminate it.

Tiemeijer (2008) alsomentions an examplewhere the answers to specific questions

were affected by a previous question. The Eurobarometer (www.europa.eu/public_

opinion) is an opinion survey in all member states of the European Union held since

1973. The European Commission uses this survey to monitor the evolution of public

opinion in themember states. Thismay help inmaking policy decision. The following

question was asked in 2007:

Taking everything into consideration, would you say that the coun-

try has on balance benefited or not from being a member of the

European Union?

It turned out that 69% of the respondents were of the opinion that the country

had benefited from the EU. A similar question was included at the same time in a

Dutch opinion poll (Peil.nl). However, the question was preceded by another

question that asked respondents to select the most important disadvantages of

being a member of the EU. Among the items in the list were the fast extension of

the EU, the possibility of Turkey becoming a member state, the introduction of the

Euro, the waste of money by the European Commission, the loss of identity of the

member states, the lack of democratic rights of citizens, the veto rights of member

states, and the possible interference of the European Commission with national

issues. As a result, only 43% of the respondents considered membership of the EU

beneficial.

The third aspect of the order of the questions is that a specific question order can

encourage people to complete the survey questionnaire. Ideally, the early questions in

a survey should be easy and pleasant to answer. Such questions encourage respondents

to continue the survey. Whenever possible, difficult or sensitive questions should be

asked near the end of the questionnaire. If these questions cause respondents to quit, at

least many other questions have been answered.

Another aspect of the order of questions is routing. Usually, not every question is

relevant for every respondent. For example, a labor force survey questionnaires will
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contain questions for both employed and unemployed people. For the employed, there

may be questions about working conditions, and for unemployed there may be

questions about looking for work. Irrelevant questions may irritate people, possibly

resulting in refusal to continue.Moreover, theymaynot be able toanswerquestionsnot

relating to their situation. Finally, it takes more time to complete a questionnaire if

irrelevant questions also have to be answered. To avoid all these problems, route

instruction should be included in the questionnaire. Figure 3.5 contains an example of

a simple questionnaire with route instructions.

There are two types of route instructions. Thefirst type is that of a branch instruction

attached to an answer option of a closed question. Question 3 has such instructions. If

respondents answer “yes,” they are instructed to jump to question 4 and continue from

there. If the answer to question 3 is “no,” they are finished with the questionnaire.

Sometimes a route instruction does not depend on just an answer to a closed question.

It may happen that the decision to jump to another question depends on the answer to

several other questions, or on the answer to another typeof question. In this case, a route

instruction may take the form of an instruction to the interviewer. This is a text placed

between questions. Figure 3.5 contains such an instruction between questions 2 and 3.

It was already mentioned that route instructions not only see to it that only relevant

questions are asked, but also reduce the number of questions asked, so that the

1. What is your gender?                                                  
Male ......................................................... 1
Female ....................................................... 2

2. What is your age (in years)?                               ...

Interviewer: Ask questions below only of persons of 
age 15 and older.                                    

3. Do you have a paid job?                         
Yes .......................................................... 1 → 4    
No  .......................................................... 2 STOP 

4. What is your occupation?......................................

5. What is the distance from your home to your work?
Lees than 5 km ..............................................  1
Between 5 and 10 km .........................................  2
Between 10 and 20 km ........................................  3
More than 20 km .............................................  4

6. What is your mode of transport to work? 
(more than one answer allowed))                  
Walking...................................................... 1
Bicycle .....................................................  2
Motorcycler .................................................  3
Car .........................................................  4
Bus, tram ...................................................  5
Train .......................................................  6
Other mode of transport .....................................  7

Figure 3.5 A simple questionnaire with route instructions.
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interview takes less time. However, it should be remarked that many and complex

route instructions increase theburden for the interviewer.Theremaybe an extra source

of possible errors.

3.6 QUESTIONNAIRE TESTING

Before a questionnaire can be used to collect data, it must be tested. Errors in the

questionnaire may cause wrong questions to be asked and right questions to be

skipped. Also, errors in the questions themselves may lead to errors in answers. Every

researcher will agree that testing is important, but this does not always happen in

practice. Often there is no time to carry out a proper testing procedure. An overview of

someaspects of questionnaire testing is givenhere.More information canbe found, for

example, in Converse and Presser (1986).

Questionnaire testing usually comes down to trying it out in practice. There are

two approaches to do this. One is to imitate a normal interview situation. Interviewers

make contact with respondents and interview them, as in a real survey situation. The

respondents do not know that it is just a test, and therefore they behave like they are

appearing in a normal interview. If they know it were just a test, they could very well

behave differently. Another way to test a questionnaire is to inform respondents that

they are part of a test. This has the advantage that the interviewers can ask the

respondentswhether they have understood the questions, whether thingswere unclear

to them, and why they gave specific answers.

A number of aspects of a questionnaire should be tested. Maybe the most important

aspect is the validity of the question. Does the question measure what the researcher

wants to measure? It is not simple to establish question validity in practice. A first step

may be to determine themeaning of the question. It is important that the researcher and

the respondent interpret the questionexactly in the sameway.There are ample examples

in thequestionnairedesignliteratureabout small and largemisunderstandings.Converse

andPresser (1986)mention a question about “heavy traffic in the neighborhood,”where

the researcher meant “trucks” and respondents thought that the question was about

“drugs.” Another question asks about “family planning,” where the researcher meant

“birth control” and respondents did interpret this as “saving money for vacations.”

The above examples make it clear how important validity testing is. Research has

shown that often respondents interpret questions differently from what the researcher

intended. Also, if respondents do not understand the question, they change the

meaning of the question in such a way that they can answer it.

Another aspect of questionnaire testing is to check whether questions offer

sufficient variation in answer possibilities. A survey question is not very interesting

for analysis purposes if all respondents give the same answer. It must be possible to

explore and compare thedistributionof the answers to aquestion for several subgroups

of the population.

It should be noted that there are situations where a very skew answer distribution

may be interesting. For example, DeFuentes-Merillas et al. (1998) investigate

addiction to scratch cards in The Netherlands. It turned out that only 0.24% of the
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adult population was addicted. Although this was a small percentage, it was important

to have more information about the size of the group.

Themeaning of a questionmaybe clear, and itmay also allow sufficient variation in

answers, but this still doesnotmean that it can always be answered. Somequestions are

easy to ask but difficult to answer. A question such as

How many kilograms of coffee did you consume in the last year in

your household?

is clear, butveryhard to answer, because respondents simplydonot know theansweror

can only determine the answer with great effort. Likewise, asking for the net yearly

income is not as simple as it looks. Researchers should realize they may get only an

approximate answer.

Many people are reluctant to participate in surveys. Even if they cooperate, they

may not bevery enthusiastic ormotivated to answer the questions. Researchers should

realize thismay have an effect on the quality of the answers given. Themore interested

respondents are, the better their answerswill be. One aspect of questionnaire testing is

to determine how interesting questions are for respondents. The number of uninter-

esting questions should be as small as possible.

Another important aspect is the length of the questionnaire. The longer the

questionnaire, the larger the risk of problems. Questionnaire fatigue may cause

respondents to stop answeringquestionsbefore the endof the questionnaire is reached.

A rule sometimes suggested in The Netherlands is that an interview should not last

longer than a class in school (50min). However, it should be noted that this also partly

depends on the mode of interviewing. For example, telephone interviews should take

less time than face-to-face interviews.

Up until now, testing was aimed at individual questions. However, the structure of

the questionnaire as a whole also has to be tested. Each respondent follows a specific

route through the questionnaire. The topics encountered en route must have a

meaningful order for all respondents. One way the researcher can check this is by

reading aloud the questions (instead of silent reading). While listening to this story,

unnatural turns will become apparent.

To keep the respondent interested, and to avoid questionnaire fatigue, it is

recommended to start the questionnaire with interesting questions. Uninteresting

and sensitive questions (gender, age, income) should come at the end of the ques-

tionnaire. This way potential problems can be postponed until the end.

It should be noted that sometimes the structure of the questionnaire requires

uninteresting questions, such as gender to be asked early in the questionnaire. This

may happen when they are used as filter questions. The answer of such a question

determines the route through the rest of the questionnaire. For example, if a

questionnaire contains separate parts for male and female respondents, first gender

of the respondent must be determined.

The growing potential of computer hardware and software has made it possible

to develop very large and complex electronic questionnaires. It is not uncommon
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for electronic questionnaires to have thousands of questions. To help respondents

avoid answering all these questions, routing structures and filter questions see to it

that only relevant questions are asked and irrelevant questions are skipped. Owing

to the increasing size and complexity of electronic questionnaires, it has become

increasingly difficult for developers, users, and managers to keep control of the

content and structure of questionnaires. It takes a substantial amount of knowl-

edge and experience to understand such questionnaires. It has become difficult to

comprehend electronic questionnaires in their entirety and to understand the

process that leads to responses for each of the questions as they ultimately appear

in data files.

A number of concrete problems have arisen in survey agencies due to the lack of

insight into complex electronic questionnaires:

. It has becomevery hard to test electronic questionnaires. It is no simplematter to

test whether every possible person one might encounter in the field will answer

the questions correctly in the correct order.

. Creating textual documentation of an electronic questionnaire has become an

enormous task. It is usually a manual task and is therefore error-prone. There is

no guarantee that handmade documentation exactly describes the real ques-

tionnaire. Making documentation by hand is, of course, also very time-

consuming.

. There are always managers in survey organizations who have to approve

questionnaires going into the field. In the earlier days of paper questionnaires,

they could base their judgment on the paper questionnaire. However, for modern

electronic questionnaire instruments, they have nothing to put their signature on.

The printout of the questionnaire specification in the authoring language of the

CAI system is usually not very readable for the nonexpert.

. Interviewers carrying out a survey with a paper questionnaires could use the

paper questionnaire to get some idea of where they are in the questionnaire,

of what the next question is about, and of how close they are to the end. If they

have an electronic questionnaire, they lack such an overview. Therefore, they

often ask for a paper document describing the global content and structure of

the questionnaire, which they can use as a tool together with the electronic

questionnaire.

All these problems raise the question of the feasibility of a flexible tool capable of

representingcontent and logic of an electronic questionnaire in ahuman-readableway.

Such a tool should not only provide a useful documentation but also help analyze the

questionnaire and report possible sources of problems. Bethlehem and Hundepool

(2004) have shown that there is a need of software capable of displaying the various

routes through the questionnaire in the form of a flow chart. Figure 3.6 shows an

example of such a flowchart.

Jabine (1985) describes flowcharts as a tool to design survey questionnaires.

Particularly, flowcharts seem to be useful in the early stages of questionnaire
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development. Sirken (1972) used flowcharts to effectively explore alternative struc-

tures and sequences for subquestionnaires. He also found that more detailed flow-

charts, for example, of the structure of subquestionnaires, can be equally effective.

Another example is the QD system developed by Katz et al. (1999).

Figure 3.6 Flowchart of the global route structure of a questionnaire.
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Flowcharts can also be a useful tool in the documentation of electronic ques-

tionnaires. Their strong point is that they can give a clear idea of the routing structure.

However, they also have theweak point that the amount of textual information that can

be displayed about the questionnaire object is limited. Therefore, a flowchart can be a

very important component of questionnaire documentation, but it will not be the only

component.

There have been a number of initiatives for automatically producing survey

documentation, but they pay little or no attention to documentation of survey data

collection instruments. They focus on postsurvey data documentation and not

on providing tools to assist in the development and analysis of the operation of

the collection instrument. The TADEQ project was set up to develop a tool doc-

umenting these instruments. See Bethlehem and Hundepool (2004) for more

information.

The last aspect that can be taken into account when developing a questionnaire is

the general well-being of the respondents. Nowadays surveys are conducted over a

wide range of topics, including sensitive topics such as use of alcohol and drugs,

homosexual relationships, marriage and divorce, maltreatment of children, mental

problems, depression, suicide, physical and mental handicaps, and religious ex-

periences. Although the principle of informed consent should be applied to

respondents, one may wonder whether respondents feel as happy after the survey

interview as before the interview if sensitive issues such as the ones mentioned are

addressed in the survey.

Testing a survey questionnaire may proceed in two phases. Converse and Presser

(1986) suggest that the first phase should consist of 25–75 interviews. Focus is

on testing closed questions. The answer options must be clear and meaningful.

All respondents must be able to find the proper answer. If the answer options do

not cover all possibilities, there must be away out by having the special option “other,

please specify . . . .”
To collect the experiences of the interviewers in the first phase, Converse and Presser

(1986) suggest letting them complete a small survey with the following questions:

. Did any of the questions seem to make the respondents uncomfortable?

. Did you have to repeat any questions?

. Did the respondents misinterpret any questions?

. Which questions were the most difficult or awkward for you to ask? Have you

come to dislike any questions? Why?

. Did any of the sections in the questionnaire seem to drag?

. Were there any sections in the questionnaire in which you felt that the

respondents would have liked the opportunity to say more?

The first phase of questionnaire testing is a thorough search for essential errors. The

second phase should be seen as a final rehearsal. The focus is not anymore on repairing

substantial errors or on trying out a completely different approach. This is just the

finishing touch. The questionnaire is tested in a real interview situation with real
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respondents. The respondents do not know that they are participating in a test. The

number of respondents in the second phase is also 25–75. This is the phase to consult

external experts about the questionnaires.

EXERCISES

3.1 Indicate what is wrong with the following question texts:

. In the past 2 years, how often did you go the cinema?

. Are you against a ban on smoking in restaurants?

. Did you ever visit a coffee shop in Amsterdam and did you buy soft drugs

there?

. Should the mayor spend even more tax money trying to keep the streets in

town in shape?

3.2 A survey intends to explore how frequently households are bothered by

companies trying to sell products or services by telephone. One of the questions

is “How often have you been called lately by insurance companies attempting to

sell you a private pension insurance?”Give at least three reasonswhy this is not a

good question.

3.3 A researcher wants to get more insight into the statistical software packages that

are used for data analysis by commercial and noncommercial statistical research

agencies. He considers two types of questions for this: an open question and a

check-all-that-apply question. Give advantages and disadvantages of both types

of questions.

3.4 The question “Do you regularly downloadmusic from the Internet”may cause

problems because it contains the word “regularly.” Describe what can go

wrong.

3.5 An opinion poll is designed to measure the opinion of the people in The

Netherlands about building new nuclear power stations. The table below

contains two ways to ask this question. Explain which question would you

prefer?

To be able to satisfy the future need

for energy in The Netherlands, some

politicians think it is necessary to build

a new nuclear power station within the

next 10 years. What is your opinion?

To be able to satisfy the future need for

energy in The Netherlands, some

politicians think it is necessary to build

a new nuclear power station within the

next 10 years. What is your opinion?

* Agree * Agree

* Do not agree * Do not agree

* Don’t know
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3.6 Improve the questionnaire below by including route instructions.

10. Have you drunk any alcoholic beverages in the last week? * Yes

* No

11. Have you drunk any wine in the last week? * Yes

* No

12. How many glasses of wine did you drink last week? . . .
13. Have you smoked any cigarettes last week? * Yes

* No

3.7 A researcher wants to include a question in a readership survey questionnaire

aboutweeklymagazines. Hewants to knowwhichweeklymagazines are read in

the sampled households. He has the choice to format this question as an open

question or as a closed question (with a list of magazines). Give at least two

reasons why he should prefer a closed question.

3.8 Kalton et al. (1978) describe an experiment with wording of a question in a

survey on public views on transport in a town. The question is: “Do you think

that giving buses priority at traffic signals would increase or decrease traffic

congestion?” Half the sample was also offered the neutral middle option “or

would it make no difference.” The results are summarized in the table below.

Without Neutral Option With Neutral Option

Increases congestion 33% 25%

Decreases congestion 20% 12%

Makes no difference 47% 63%

Note that even if the neutral option was not offered, still 47% gave that

answer. Explain the differences in the answers for the two approaches.
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C H A P T E R 4

Single Sampling Designs

4.1 SIMPLE RANDOM SAMPLING

A simple random sample is closest to what comes into the mind of many people when

they think about random sampling. It is similar to a lottery. It is also one of the simplest

ways to select a random sample. The basic property is that each element in the target

has the same probability of being selected in the sample (Fig. 4.1).

A simple random sample can be selected with and without replacement. Only

samplingwithout replacement is considered in this section. This ismore efficient than

sampling with replacement. Sampling without replacement guarantees that elements

cannot be selected more than once in the same sample. All sample elements will be

different.

4.1.1 Sample Selection Schemes

There are several techniques to implement selection of a simple random sample

without replacement. For small samples, the following manual sample selection

schemes can be used:

. Use a 20-sided dice to create numbers in the range from 1 to at least the

population sizeN. If, for example, the population consists of 341 elements, throw

the dice three times for each number. The three dice throws produce three digits

that together form a number in the range from 0 to 999. If such a number is in the

range from 1 to 341, and this number has not already been drawn, it denotes

the sequence number of the next element in the sample. This process is repeated

until the sample size has been reached.

. Use a tablewith random numbers and use the same procedure as for the 20-sided

dice. Take sufficient digits to form a number in the proper range. For a population

of size N¼ 341, this would mean three digits. Numbers outside the valid range

and already generated numbers are ignored.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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. Use a hand calculator with a random number generator. These random number

generators often produce values u in the interval [0, 1). Such values can be

transformed into numbers in the range from 1 toNwith the formula 1 þ [u�N].

The square brackets indicate that the value is rounded downward to the nearest

integer. If a number reappears, it is ignored.

. The dice and the random number table can also be used to construct values

between 0 and 1. Simply take a number of digits and see it is a fraction by putting

“0.” in front of it. For example, 169971 becomes 0.169971. Then the hand

calculator can be applied to form numbers between 1 and N.

Note that in fact all sample selection schemes described above select samples with

replacement. By ignoring multiple numbers, the sample becomes a sample without

replacement.

Amore efficient way to select a simple random sample is to implement a computer

algorithm for it. Recipe 4.1 describes such an algorithm.

Figure 4.1 A simple random sample. Reprinted by permission of Imre Kortbeek.

Recipe 4.1 Selecting a Simple Random Sample Without Replacement

Ingredients Population size N

Sample size n

Random values u from the interval [0, 1)

Step 1 Fill a vector v of length N with the numbers from 1 to N: v[1]¼ 1,

v[2]¼ 2, . . ., v[N]¼N

Step 2 Set the counter i to 1

Step 3 Draw a random value u from [0, 1)

Step 4 Compute the sequence number k¼ [i þ (N� i þ 1)� u].

The square brackets denote rounding down to the nearest integer

Step 5 Exchange the values of elements v[i] and v[k]

Step 6 If i is smaller than n, increase the value of i with 1 and go back to step 3

Step 7 If the value of i is equal to n, sample selection is ready.

The first n elements v[1], v[2], . . ., v[n] of the vector v contain the

sequence numbers of the sampled elements
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The algorithm in Recipe 4.1 has the advantage that it never produces numbers

outside the valid range and also it never produces double numbers. Sample selection is

ready after n draws.

4.1.2 Estimation of a Population Mean

A simple random sample without replacement of size n from a population of size N

assigns the same first-order inclusion probability to each element, sopk¼pl for each

k and l (with k „ l). According to expression (2.22), the sum of all N inclusion

probabilities is equal to n. Consequently, the first-order inclusion probability of

element k is equal to

pk ¼ n

N
ð4:1Þ

for k¼ 1, 2, . . ., N. Application of the same theorem to the second-order inclusion

probabilities leads to

pkl ¼ nðn�1Þ
NðN�1Þ : ð4:2Þ

Note that the quantity

f ¼ n

N
; ð4:3Þ

obtained by dividing the sample size n by the population N size, is also called the

sampling fraction f.

An unbiased estimator for the population mean can be found by substituting the

first-order inclusion probabilities (4.1) in definition (2.38) of the Horvitz–Thompson

estimator. Then the estimator turns out to be equal to

�y ¼ 1

n

Xn
i¼1

yi ¼ y1 þ y2 þ � � � þ yn

n
: ð4:4Þ

For a simple random sample, the sample mean is an unbiased estimator of the

population mean. This is an example of what is sometimes called the analogy

principle: an estimator for a population characteristic is obtained by computing

the samequantity for just the sample data. The analogyprinciple often (but not always)

leads to unbiased estimators.

The variance of this estimator can be determined by substituting the inclusion

probabilities (4.1) and (4.2) in formula (2.41) for the variance of the

Horvitz–Thompson estimator. This leads to the expression

Vð�yÞ ¼ 1�f

n
S2 ¼ 1�f

n

1

N�1

XN
k¼1

Yk��Yð Þ2: ð4:5Þ
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The quantity f is the sampling fraction n/N. The factor 1� f is also sometimes called

the finite population correction. S2 is the (adjusted) population variance. See also

definition (2.9). Two interesting conclusions can be drawn from formula (4.5).

. Since (1� f)/n can be rewritten as (1/n� 1/N), the variance becomes smaller as

the sample size increases. This means selecting a larger sample increases the

precision of estimators.

. Since the population size N is usually much larger than the sample size n, the

quantity (1� f)/n is approximately equal to 1/n. It implies that the variance of the

estimator does not depend on the size of population. As long as the population

variance remains the same, it does not matter for the precision whether a sample

is selected from the Dutch population (16 million people) or the Chinese

population (1300 million people). This may sound counterintuitive to some

people. Maybe the metaphor of tasting soup helps: just tasting one spoonful of

soup is sufficient to judge its quality. It does not matter whether this spoonful

came from a small pan of soup or a large bathtub full of soup as long as the soup

was properly stirred.

To be able to compute the precision of an estimate, the value of the variance (4.5)

is required. Unfortunately, this value depends on the unknown population variance

S2. Estimating the population variance using the sample data solves this problem.

Also, here the analogy principle applies. It can be shown that sample variance s2,

defined by

s2 ¼ 1

n�1

Xn
i¼1

yi��yð Þ2; ð4:6Þ

is an unbiased estimator of the population variance S2. Therefore,

vð�yÞ ¼ 1�f

n
s2 ð4:7Þ

is anunbiasedestimator of thevariance of the samplemean.An (estimated) confidence

interval can be computed using this estimated variance. See also Section 2.5.

Anotherway to investigate the precision of an estimator is to simulate the process of

sample selection a large number of times. The working population of Samplonia is

used as an example. This population consists of 341 persons. The target variable is the

monthly net income. The objective is to estimate the mean income in the population.

Then seeing what range of values the mean income in the sample can assume, the

sample selection process has been repeated 1000 times. For each sample, the mean

income has been computed. All values have been summarized in a histogram. The

result is shown in Fig. 4.2. The graph on the left is based on samples of size 20, and

the graph on the right is for samples of size 40. The true population value to be

estimated (1234) is indicated by means of a vertical line.

In both simulations, the estimates are symmetrically distributed around the

population value. This indicates that both estimators are unbiased. Outcomes closer

68 SINGLE SAMPLING DESIGNS



to the populationvaluehave a higher frequency thanvalues further away.The spreadof

the values is larger for samples of size 20, which means that estimator has a larger

variance in this case.

Simulation experiments can also illustrate how confidence intervals work.

Figure 4.3 contains a graphical presentation of confidence intervals. The graph on

the left shows 30 confidence intervals, constructed using samples of size 20. A 95%

confidence interval has been estimated for each sample. Each confidence interval is

represented by a horizontal line. The vertical line indicates the population value to be

estimated. Almost all intervals contain the population value. Only in one case this

value is outside the interval. Hence, in 1 out of 30 cases, the statement that confidence

interval contains the population is wrong. This is 3%, which is very close to the

theoretical value of 5%, corresponding to a confidence level of 95%.

The graph on the right in Fig. 4.3 contains 95% confidence intervals for samples of

size 40. The horizontal lines are shorter than those for samples of size 20, implying the

width of the intervals is smaller and thus that estimators are more precise. Note that

also here only 1 out of 30 intervals does not contain the population value. The sample

size does not affect the confidence level, but it does affect the precision.

Table 4.1 presents a practical example of the computations that have to be carried

out to compute a confidence interval. A sample of 20 persons has been selected from

the working population of Samplonia. Income has been recorded for each selected

person.

The second column (“element”) contains the sequence numbers of the selected

elements. All numbers are in the range 1–341, and they are all different. The column

Figure 4.2 Distribution of the mean income in samples from the working population of Samplonia.

Figure 4.3 Simulation of confidence intervals.
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“value” contains the incomes of the sampled elements. The sum of these incomes is

equal to 27,566. The mean income in the sample (1378) is obtained by dividing the

sample sum (27,566) by the sample size (20). To compute the sample variance, the

mean income is subtracted from each sample income and the results are squared.

Summation of all these results produces a value 26,601,160. The sample variance

1,400,061 is obtaineddividing by19 (the sample sizeminus 1).Application of formula

(4.7) gives 65,897 as the value of estimated variance of the estimator. The estimated

standard error is obtained by taking the square root. This results in a value of 257. Now

the 95% confidence interval can be computed by applying formula (2.37). The

resulting interval has a lower bound of 875 and an upper bound of 1883. So,

one can conclude that (with 95% confidence) the population mean of the income

in the working population of Samplonia will be between 875 and 1883.

If a statement is required with a higher level of confidence level, value ofamust be

changed. For example, a¼ 0.01 results in a confidence level of 99%. In this case,

the value of 1.96 in expression (2.37) and in Table 4.1 must be replaced by 2.58.

The 99% confidence interval becomes (716, 2042). This is a wider interval than

Table 4.1 Computations for a 95% Confidence Interval

Number Element Value (Value�Mean) (Value�Mean)2

1 73 2439 1061 1125721

2 103 2956 1578 2490084

3 296 944 �433 187489

4 44 515 �862 743044

5 303 4464 3086 9523396

6 256 531 �846 715716

7 214 951 �426 181476

8 74 627 �750 562500

9 62 158 �1219 1485961

10 166 2289 911 829921

11 169 481 �896 802816

12 210 3493 2115 4473225

13 164 193 �1184 1401856

14 115 1588 210 44100

15 289 1002 �375 140625

16 118 961 �416 173056

17 85 1873 495 245025

18 96 527 �850 722500

19 188 619 �758 574564

20 104 955 �422 178084

Total 27566 26601160

Mean 1378 1400061

Estimate: 27566/20¼ 1378, sample variance: 26601160/19¼ 1400061, estimated variance of the

estimator: (1� 20/341)� 1400061/20¼ 65897, estimated standard error of the estimator:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65897 ¼ 257

p
,

lower bound of the confidence interval: 1379� 1.96� 257¼ 875, and upper bound of the confidence

interval: 1379 þ 1.96� 257¼ 1883.
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the 95% confidence interval. This is the price that has to be paid for a higher

confidence level.

Note that the population mean of the incomes is equal to 1234. Both confidence

intervals indeed contain this value. So these intervals lead to correct statements about

the population value.

4.1.3 Estimation of a Population Percentage

Population percentages are probably estimated more often than population means.

Typical examples are the percentage of people voting for a presidential candidate, the

percentage of households having an Internet connection, and the unemployment

percentage.

The theory for estimating percentages does not essentially differ from the theory of

estimating means. In fact, percentages are just population means multiplied by 100

where the target variable Y assumes only the value 1 (if the element has the specific

property) or 0 (if the element does not have the property). Because of this restriction,

formulas become even much simpler.

If Y only assumes the values 1 and 0, the population mean �Y is equal to the

proportion of elements having a specific property. The population percentage P is

therefore equal to

P ¼ 100�Y : ð4:8Þ
Estimation of a population percentage comes down to first estimate the population

mean.The samplemean is anunbiased estimator for this quantity.Multiplicationof the

sample mean by 100 produces the sample percentage. This estimator is denoted by

p ¼ 100�y: ð4:9Þ
Since the samplemean is anunbiasedestimator for thepopulationmean, the sample

percentage is an unbiased estimator of population percentage.

The variance of this estimator can be found by working out the term S2 in variance

formula (4.5) for a population in which a percentage P of the elements has a specific

property and a percentage 100�P does not have this property. This results in the

simple formula

Vð pÞ ¼ 1�f

n

N

N�1
Pð100�PÞ: ð4:10Þ

This variance can be estimated using the sample data. Again, the analogy principle

applies. If p denotes the sample percentage, then

vð pÞ ¼ 1�f

n�1
pð100�pÞ ð4:11Þ

is an unbiased estimator of the variance (4.10). The estimated variance is used

in practical situations to obtain an (estimated) confidence interval. See also

Section 2.5.
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The computations to be carried out for obtaining a confidence interval are

illustrated in a numerical example. Suppose the objective of the survey is to estimate

the percentage of employed people in the total population of Samplonia. From

the population (of size N¼ 1000), a simple of size n¼ 100 is drawn. It turns out

that 30 people in the sample are employed. So, the estimate of the employment

percentage in the total population is 30%.

The sampling fraction is f¼ 100/1000¼ 0.1. Substitution of n¼ 100, p¼ 30, and

f¼ 0.1 in formula (4.11) produces a variance of the sample percentage v(p)¼ 19.09.

The estimated standard error s(p) is obtained by taking the square root. The result is

s(p)¼ 4.37.

The marginM of the 95% confidence interval is estimated by m¼ 1.96� s( p)¼
1.96� 4.37¼ 8.6. To obtain the lower bound of the interval, the margin is subtracted

from the estimate, resulting in 21.4%. Likewise, the upper bound is obtained by

adding the margin to the estimate, and this gives 38.6%. So, the 95% confidence

interval is equal to (21.4, 36.6). Note that since the population percentage is equal to

P¼ 34.1%, this statement is correct.

4.1.4 Determining the Sample Size

Adecision tobemade in the surveydesignphase is the size of the sample tobe selected.

This is an important decision. If, on the one hand, the sample is larger than what is

really necessary, a lot of time andmoneymay bewasted. And if, on the other hand, the

sample is too small, the required precision will not be achieved, making the survey

results less useful.

It is not so simple to determine the sample size, since it depends on a number of

different factors. It has already been shown that there is a relationship between

precision of estimators and the sample size: the larger the sample is, the more precise

the estimators will be. Therefore, the question about the sample size can only be

answered if it is clear how precise the estimators must be. Once the precision has been

specified, the sample size can be computed. A very high precision nearly always

requires a large sample. However, a large survey will also be costly and time-

consuming. Therefore, the sample size will in practical situations always be a

compromise between costs and precision.

Some formulas will be given here for the size of a simple random without

replacement. The first situation to be considered is that for estimating population

percentages. Then the case of estimating population means will be described.

Starting point is that the researcher gives some indication of how large themargin

of error atmostmaybe. Themargin is defined as distance between the estimate and the

lower or upper bound of the confidence interval. Formulas are given for the sample

size that is at least required to achieve this margin of error. In the case of a 95%

confidence interval, the margin of error is equal to

1:96� Sð pÞ: ð4:12Þ
For a 99% confidence interval, the value of 1.96 must be replaced by 2.58.
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SupposeM is themaximumvalue of themarginof error the survey researcherwants

to accept. This mean that the actual margin of error must not exceedM. Rewriting this

condition leads to

Sð pÞ � M

1:96
: ð4:13Þ

The variance of the estimator for a population percentage can be found in

expression (4.10). Substituting in inequality (4.13) leads to the conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�f

n

N

N�1
Pð100�PÞ

r
� M

1:96
: ð4:14Þ

The lower bound for the sample size can now be computed by solving n from

this equality. However, there is a problem because expression contains an

unknown quantity, and that is population percentage P. There are two ways to solve

this problem:

. There is a rough indication of the value of P. Maybe there was a previous survey

in which this quantity was estimated or maybe a subject matter expert provided

an educated guess. Such an indication can be substituted in expression (4.14),

after which it can be solved.

. Nothing at all is known about the value of P. Now P(100�P) is a quadratic

function that assumes its minimum value 0 in the interval [0, 100] for P¼ 0 and

P¼ 100. Exactly in the middle, for P¼ 50, the function assumes its maximum

value. This implies that the upper bound for the variance can be computed by

filling in the value P¼ 50. So the worst case for the variance is obtained for this

value of P. For any other value of P, the variance is smaller. If the value is

determined so that the worst-case variance is not exceeded, then the true variance

will certainly be smaller. It should be noted that for values ofP between, say, 30%

and 70%, the true variance will not differ much from the maximum variance.

Solving n from inequality (4.14) leads to a lower bound of n equal to

n � 1

ðN�1=NÞðM=1:96Þ2ð1=Pð100�PÞÞþ 1=N
: ð4:15Þ

Asimple approximation can be obtained if the population sizeN is very large. Then

(N� 1)/N can be approximated by 1 and 1/N can be ignored, reducing (4.15) to

n � 1:96

M

� �2

Pð100�PÞ: ð4:16Þ

An example illustrates the use of this expression. Suppose an opinion poll has

predicted that 38% of the voters will support a certain party. A new survey will be

conducted to measure the current support for that party. No dramatic changes are

expected. Therefore, it is not unreasonable to fill in a value of 38 for P in
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expression (4.16). Furthermore, the margin of error should not exceed M¼ 3%.

Substitution in expression (4.16) results in

n � 1:96

3

� �2

38� 62 ¼ 1005:6:

So, the sample sizemust be at least equal to 1006.The confidence level is 95%.Fora

confidence level of 99%, the value of 1.96 must be replaced by 2.58, leading to a

minimum sample size of 1689.

Expression (4.13) is also the starting point for the computation of the sample size if

the objective of the survey is to estimate themean of a quantitative variable. However,

there is no simple expression for the standard error available. Expression (4.13) can be

rewritten as ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
� 1

N

� �
S 2

s
� M

1:96
; ð4:17Þ

in which S2 is the adjusted population variance. The problem is that usually this

variance is unknown. Sometimes a rough estimated can be made using data from a

previous survey, ormay be some indication can be obtained from a test survey. In these

situations, the approximatevalue canbe substituted inexpression (4.17).Rewriting the

inequality leads to

n � 1

ðM=1:96SÞ2 þ 1=N
: ð4:18Þ

The quantity 1/N can be ignored for large values ofN. This produces the somewhat

simpler expression

n � 1:96S

M

� �2

: ð4:19Þ

If no information at all is available about the value of S, the following rules of

thumb may help to determine the sample size for estimating the mean of the target

variable Y:

. The values of Y have amore or less normal distribution over an interval of known

length L. This implies that Lwill be approximately equal to 6� S. Hence, a value

of L/6 can be substituted for S.

. The values of Y have amore or less homogeneous distribution over an interval of

length L. Then S will be roughly equal to 0.3� L.

. The values of Y have a more or less exponential distribution over an interval of

length L. There aremany small values and only a few large values. Then Swill be

roughly equal to 0.4� L.

. The values of Y are distributed over an interval of known length, but nothing at

all is known about the form of the distribution. In theworst case, half of the mass

of the distribution concentrates at the lower bound of the interval and the other

half at the upper bound. Then S will be roughly equal to 0.5� L.
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4.2 SYSTEMATIC SAMPLING

Asystematic sample is also an equal probability sample, and it is also selectedwithout

replacement. However, a different sample selection procedure is followed, and

therefore the statistical properties of the estimator differ from those for simple random

sampling.

Systematic sampling is typically convenient if samples have to be selected by

hand. One could think of a sampling frame consisting of a file of cards with names

and addresses or telephone numbers. Systematic sampling is also useful if a

sample (of phone numbers) has to be selected from a telephone directory in book

format.

Systematic sampling was used in The Netherlands in the previous century to select

samples of people from a population register. Each municipality had its own register.

Therewas a cardwith personal data for each inhabitant.All these cardswere stored in a

large number of drawers. Therewere no sequence numbers on the cards. To select, say,

person 3163, one had to count 3163 cards from the start to reach the specific card. This

makes selecting a simple random sample a cumbersome and time-consuming affair.

The process was simplified by drawing systematic samples (Fig. 4.4).

Thebasic principle of systematic sampling is that a randomstartingpoint is selected

in the sampling frame. This is the first element in the sample. From there, subsequent

elements are selected by repeatedly jumping forward a fixed number of elements. The

process continues until the end of the sampling frame is reached.

4.2.1 Sample Selection Schemes

Systematic sampling is often used as a kind of approximation of simple random

sampling, but in fact it is a totally different sampling design. The random number

generator is only used to select the first element in the sample. This first element

immediately determines the rest of the sample.

A first, simple sample selection schema assumes the population size N to be a

multiple of the sample size n. The step length F is now defined by

F ¼ N

n
: ð4:20Þ

Figure 4.4 A systematic sample. Reprinted by permission of Imre Kortbeek.
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This is an integer number. Next, the starting point b is determined by drawing a

randomnumber in the range from1 toF. This canbedonebyhandwith a20-sideddice,

a table of random numbers, or a calculator with a random number generator. This

starting point is the sequence number of the first element in the sample. The rest of the

sample is obtained by selecting each next Fth element. In other words, the sample

consists of the elements with sequence numbers

b; bþF; bþ 2F; bþ 3F; . . . ; bþðn�1ÞF: ð4:21Þ

The starting point b can only assume F different values (1, 2, . . ., F ). Therefore,

only F different samples are possible. This is far less than in the case of simple

random sampling. For example, a systematic sample will never contain two

elements that are adjacent in the sampling frame. Systematic sampling excluded

many samples that are possible for simple random sampling. This affects the

properties of estimators.

Suppose a systematic sample of size 1000 has to be drawn from a population of size

19,000. The step length is equal to F¼ 19,000/1000¼ 19. The starting point is a

random number from the integers 1 up to and including 19. Suppose the number 5 is

produced. Then the elements with sequence numbers 5, 24, 43, . . .will be selected in
the sample. Note that only 19 different samples are possible.

This sample selection scheme assumes the population size to be a multiple of the

sample size. If this is not the case, a different sampling scheme must be used. For

example, the above sampling scheme could be adapted by rounding down N/n to the

nearest integer. It turns out that then sample size depends on the value of the starting

point b. An example illustrates this phenomenon. Suppose, a systematic sample of size

n¼ 3 must be selected from the population of N¼ 7 districts in Samplonia. The step

length is F¼ [N/n]¼ [7/2]¼ 2. So, there are two possible starting points: b¼ 1 and

b¼ 2. Ifb¼ 1, the sample consists of elements 1, 3, 5, and 7 and forb¼ 2, the sample is

equal to elements 2, 4, and6. In thefirst case, the sample size is 4, and in the secondcase

it is 3. It can be shown that the sample sizes differ by at most 1.

The problem of variable sample size can be avoided by using a different, more

general, sample selection scheme. Application requires a random number generator

that produces values in the interval [0, 1). Such generators are often available on

computers and hand calculators. Even a 20-sided dice or a table of randomnumber can

be used by generating a series of digits and putting “0.” in front of it. A random value

from the interval [0, 1) will be denoted by u.

To select a systematic sample of sizen fromapopulationof sizeN, the interval (0,N]

is divided into N intervals of length 1:

ð0; 1�; ð1; 2�; . . . ; ðN�1;N�:
The step lengthF is nowequal to the real-valued numberF¼N/n. A starting point b

is definedby selecting a randomvalue from the interval (0,F].This value isobtainedby

selecting a random value u from [0, 1), subtracting this value from 1 (producing a

value in the interval (0, 1]), and multiplying the result by F (producing a value in the
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interval (0, F]). In short, b¼ (1� u)�F. Next, the values

b; bþF; bþ 2F; . . . ; bþðn�1ÞF
are determined.Each of thesevalueswill be part of oneof the intervals (0, 1], (1, 2], . . .,
(N� 1, N ]. Is a value contained in the interval (k� 1, k], for a certain value k, then

element k is selected in the sample.

Selecting a systematic sample is illustrated in a graphical way in Fig. 4.5. For a

sample of size 3 from a population of size 7, the step length is F¼ 7/3¼ 2.333. The

starting point is a random value from the interval (0, 2.333]. Say, the value 0.800 is

produced. This leads to the values 0.800, 0.800 þ 2.333¼ 3.133, and

0.800 þ 4.667¼ 5.467. Therefore, the selected sequence numbers are 1, 4, and 6.

The procedure for selecting a systematic sample is summarized in Recipe 4.2.

4.2.2 Inclusion Probabilities

In case of the first sample selection scheme (N is a multiple of n), there are F possible

samples. Only one such sample will select a specific element k. Therefore, the first-

order inclusion probability of element k is equal to

pk ¼ 1

F
¼ n

N
: ð4:22Þ

In case of the second sampling scheme, all possible values in the interval (0, F] are

possible, but only the values in a subinterval of length 1will cause a specific element k

to be selected in the sample. Therefore, the first-order inclusion is also equal to n/N.

Thefirst-order inclusion probabilities for systematic sampling are identical to those

for simple random sampling. However, there are differences for the second-order

Figure 4.5 A systematic sample of size 3 from a population of size 7.

Recipe 4.2 Selecting a Systematic Sample

Ingredients Population size N

Sample size n

Generator of random values u from [0, 1)

Step 1 Compute the step length F¼N/n

Step 2 Select a random value u from [0, 1)

Step 3 Compute the starting point: b¼ (1� u)�F

Step 4 Compute sequence number k by rounding b upward to the nearest integer

Step 5 Select element k in the sample

Step 6 If the sample size has not been reached yet, add an amount F to b

and go back to step 4
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inclusion probabilities. These probabilities are the same for each pair of elements if

simple random sampling is applied. They are not the same for each pair in systematic

sampling. For example, it is possible to select the pair of elements 1 and 4 in Fig. 4.5.

This implies that p14> 0. It is not possible to select a sample that contains the pair of

elements 1 and 2. So p12¼ 0.

There are no simple formulas for the second-order inclusion probabilities. They

depend on the “distance” between elements in the sampling frame and the value of the

step length. Figure 4.6 shows this graphically. The line segment of Fig. 4.6 has been

split into n¼ 3 subsegments of lengthF¼ 2.333. These subsegments have been drawn

beloweachother.The startingpoint of the sample is a randompoint in thefirst segment.

The sample is selected by drawing a vertical (dashed) line through the starting point.

The second-order inclusion probability of two elements is determined by the amount

ofoverlapof their corresponding intervals. For example, theoverlap for elements2and

5 is equal to 0.333, which means that p25¼ 0.333/F¼ 0.333/2.333¼ 0.143.

4.2.3 Estimation

Thefirst-order inclusion probabilities of a systematic sample are identical to those of a

simple random sample. Consequently, the Horvitz–Thompson estimator for the

population mean of Y is also the same. So, if a systematic sample of size n is selected

from a population of size N, then the sample mean

�yS ¼
1

n

Xn
i¼1

yi ð4:23Þ

is an unbiased estimator of the population mean of Y. The variance of estimator (4.23)

is determined to a high degree by the order of the elements in the sampling frame.

There is no simple expression for the second-order inclusion probabilities, and

therefore the variance expression of the Horvitz–Thompson estimator cannot be

used. To get somemore insight into the properties of the estimator (4.23), its variance

can be written in a different form

Vð�ySÞ ¼ s2�Eðs2
bÞ; ð4:24Þ

Figure 4.6 Showing the second-order inclusion probabilities.
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in which s2 is the unadjusted population variance (with denominator N), and

s2
b ¼

1

n

Xn
i¼1

ðYbi��YÞ2; ð4:25Þ

where Yb1, Yb2, . . ., Ybn denote the values of Y in the sample with starting point b. So,

thevariance of the estimator is obtained by subtracting themean samplevariance from

the population variance.

Expression (4.24) shows that the variance can be reduced by ordering the elements

in the sampling frame in such a way that all possible sample variances are as large as

possible. In other words, the possible samples must be as heterogeneous as possible

with respect to the values of the target variable. The smallest variance is obtained if

each sample variance is equal to the population variance s2. Then the variance of the

estimator is 0. The variance of the estimator obtains its maximum value if all samples

are so homogeneous that each sample variance is 0. Then the variance of the estimator

is equal to the population variance. Note that the variance of the estimator does not

depend on the sample size. A larger samplewill not necessarily lead to amore precise

estimator.

4.2.4 Estimation of the Variance

It is not possible to estimate the variance of the estimator with the Horvitz–Thompson

approach. The reason is that this approach requires estimation of quantities Yk� Yl or

Yk� Yl. All these quantities can never be estimated because the sampling design

excludes these quantities for a large number of combinations of Yk and Yl. It is, of

course, possible to compute to sample variance, but this variance need not necessarily

be a good indicator of the variance of the estimator. If it is not unreasonable to assume

that the order of the elements in the sampling frame is completely arbitrary, the theory

for simple random sampling can be applied. This implies that

vð�ySÞ ¼
1�f

n
s2 ð4:26Þ

will be a reasonably good estimator for the variance of estimator (4.23).

There is an approach that can produce an unbiased estimator for the variance. This

requires more than one sample to be selected. Suppose the planned sample size is n.

Instead of selecting one sample of size n, r independent samples of sizem are selected,

where n¼ r�m. Let

�yð jÞ ð4:27Þ
be the sample mean of the jth sample. This is an unbiased estimator for the population

mean. The r estimators are combined into one new estimator

�yð:Þ ¼ 1

r

Xr

j¼1

�yðjÞ: ð4:28Þ
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This is also an unbiased estimator of the population mean. The variance of this

estimator is equal to

V
�
�yð:Þ

� ¼ 1

r2

Xr

j¼1

V
�
�yðjÞ

�
: ð4:29Þ

This variance can be estimated unbiasedly by

v
�
�yð:Þ

� ¼ 1

rðr�1Þ
Xr

j¼1

�
�yðjÞ��yð:Þ�2: ð4:30Þ

This estimator is in fact based on only r observations and thereforewill not be very

precise.

In many practical situations, systematic samples will be treated as if they were

simple random samples. One should realize that variance estimator (4.26) will be only

meaningful if the order of the elements in the sampling frame is arbitrary with respect

to the values of the target variable. If one suspects that this may not be the case, this

estimator should not be used. For example, if each sample ismuchmore homogeneous

than the population as awhole, a optimistic impressionof theprecisionof the estimates

is obtained.

Itwill havebynowbecomeclear thatmuchdepends on the structure of the sampling

frame. If the order of elements is random, then a systematic sample can be treated as a

simple random sample. Much more precise estimators can be obtained with a specific

order of the elements. For example, if the values of the target variable in the sampling

frame show a linear trend (i.e., there is linear relationship betweenvalue and sequence

number), the truevariance of the estimatorwill bemuch smaller than its estimate based

on the particular sample. Serious problems occur if there is a cyclic pattern in the

values of Y, and the step length is equal to the length of the cycle. The true variance of

the estimator will be much larger than its estimate based on one sample. Such a

problem can be avoided if the length of the cyclic pattern is known, and the step length

is taken to be half of this periodicity.

4.2.5 An Example

Some aspects of systematic sampling are now illustrated in a somewhat pronounced

example. Objective is to estimate the mean number of passengers in a public transport

bus between the two Samplonian towns ofCrowdon andMudwater.A sample of hours

is drawn from a period of eight working days. The numbers of passengers in the bus is

counted in each selectedhour.Thepopulationdata (which, of course, are unknown) are

reproduced in Table 4.2.

Each day is divided into eight 2 hour periods. This 2 hour period is the sampling

unit. There are in total 8� 8¼ 64 such periods. Themean number of passengers (27.6)

must be estimated on the basis of a sample of eight periods.

Samples can be selected in various ways. Three different ways are shown here. The

first one is to select a simple random sample of size n¼ 8 periods. This gives an

unbiased estimator with a variance equal to 21.9.
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A second way is to select a systematic sample. Oneway to do this is to combine all

rows into one large row consisting of 64 elements. A systematic sample is drawn from

this row. The step length is equal toF¼ 64/8¼ 8. Hence, the start point will always be

in the first row, andF¼ 8 implies that all selected elementswill be in the same column.

Eight different samples are only possible, corresponding to the eight columns in the

table. The characteristics of each sample are summarized in Table 4.3.

Confidence intervals havebeen computedunder the assumptionof a simple random

sample, so using the sample variance s2. All confidence intervals contain the

population value to be estimated (27.6). The widths of all these intervals are

surprisingly wide considering how close the sample means are to the true value.

This is caused by the inappropriate assumption of simple random sampling.

The true variance of the estimator for a systematic sample is 0.616. So the true

margin of the confidence is obtained by taking the square root and multiplying the

result by 1.96. This gives a margin of 1.5. Unfortunately, it is not possible to compute

this margin with the data from a sample.

Ordering of elements row-by-row allows for systematic samples, leading to very

precise estimators. If simple random sampling is assumed, computed confidence

intervals are much wider than they should be. The wrong impression is created that

estimators are not so precise.

Table 4.3 Systematic Samples (Row-Wise)

Starting Point b Mean s2
b s2 Confidence Interval

1 28.6 185.2 211.7 (19.2, 38.1)

2 28.0 190.0 217.1 (18.4, 37.6)

3 26.9 194.1 221.8 (17.2, 36.5)

4 26.3 195.2 223.1 (16.6, 35.9)

5 27.1 196.1 224.1 (17.4, 36.8)

6 28.4 207.0 236.6 (18.4, 38.3)

7 28.3 200.9 229.6 (18.4, 38.1)

8 27.3 203.4 232.5 (17.4, 37.1)

Table 4.2 Numbers of Passengers in the Bus Between Crowdon and Mudwater

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Mean

7–9 h 48 51 50 49 52 51 49 50 56.6

9–11 h 31 30 29 31 29 29 30 31 30.4

11–13 h 20 22 19 19 20 18 21 21 20.5

13–15 h 10 9 11 10 10 10 11 9 10.6

15–17 h 39 41 40 41 41 39 40 39 39.5

17–19 h 42 38 39 39 38 42 39 43 40.0

19–21 h 20 19 21 20 21 21 20 18 19.8

21–23 h 10 10 11 11 9 10 10 9 9.4

Mean 28.6 28.0 26.9 26.3 27.1 28.4 28.3 27.3 27.6
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Another way to draw a random sample is to combine the columns (instead of rows)

into one large column of 64 elements and to draw a systematic sample from this

column. Again, the step length isF¼ 64/8¼ 8. A starting point is randomly chosen in

the first column. A step length of 8 nowmeans that a complete row will be selected in

the sample. Eight different samples are possible corresponding to the eight different

rows. The characteristics of the samples are summarized in Table 4.4.

Again, confidence intervals have been computed under the assumption of simple

random sampling and using the sample variance s2. All confidence intervals are very

small and not any of them contains the populationvalue to be estimated (27.6). Again,

the assumption leads tomisleading results. The truevariance of the estimator based on

systematic sampling is 195.7. The truemarginof the confidence interval is obtained by

taking the square root andmultiplying the result by 1.96, which gives 27.4. So the true

margin ismuch larger.Asmentionedbefore, the truemargin cannot be computedusing

the sample data.

The ordering of the elements is now such that systematic sampling leads to

estimators that are not very precise. Assuming simple random sampling produces

estimates that create a wrong impression of very high precision.

4.3 UNEQUAL PROBABILITY SAMPLING

Up until now, sampling designs have been discussed in which all elements have the

same probability of being selected. In the first years of the development of survey

sampling methodology, one assumed that this was only meaningful way to draw

samples. A fundamental change took place in the early 1950s when Horvitz and

Thompson (1952) showed in their seminal paper that samples can be selected with

unequal probabilities as long as these selection probabilities are known and estimation

procedures correct for these unequal probabilities (Fig. 4.7).

4.3.1 Drawing Samples with Unequal Probabilities

Selecting elements with unequal probabilities is more cumbersome, but there are also

advantages. With the proper choice of selection probabilities, estimators are much

Table 4.4 Systematic Samples (Column-Wise)

Starting Point b Mean s2
b s2 Confidence Interval

1 50.6 1.2 1.4 (49.9, 51.4)

2 30.4 1.5 1.7 (29.5, 31.2)

3 20.5 1.3 1.4 (19.7, 21.3)

4 10.6 1.5 1.7 (9.8, 11.5)

5 39.5 1.5 1.7 (38.7, 40.3)

6 40.0 2.5 2.9 (38.9, 40.1)

7 19.8 1.2 1.4 (19.0, 20.5)

8 9.4 0.7 0.8 (8.8, 10.0)
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moreprecise.Horvitz andThompson (1952) have shown that thevariance is smaller as

the selection probabilities of the elements aremore proportional to values of the target

variable. The variance is even 0 if the probabilities are exactly proportional to the

values of the target variable. This ideal situation will never occur in practice. It would

mean the values of the target variable could be computed from the selection

probabilities, making a survey superfluous.

Drawing a sample with unequal probabilities is realized in practice by looking for

an auxiliary variable that has a strong correlation with the target variable. All values

of the auxiliary variable must be positive. A concrete example is a survey about

shoplifting. The target population consists of shops, and the target variables are the

number of thefts and the total value of thefts in a certain period. Shops are drawn in the

samplewith probabilities proportional to their floor size.Theunderlying assumption is

that therewill bemore shoplifting in large shops than in small shops. Large shops have

larger selection probabilities than small shops. So, there will be a lot of information

about shoplifting in the sample. Of course, this is not a representative sample. Large

shops are overrepresented, and small shops are underrepresented. So a correction is

necessary. Horvitz–Thompson estimator just does that. Values for large shops are

divided by larger selection probabilities, so their influence is reduced. The opposite

effect is obtained for values of small shops.

It turns out to be not so simple to make a sample selection scheme for a without

replacement unequal probability sample. A way out is to draw a with replacement

sample. Let p1, p2, . . ., pN be the selection probabilities. It has been described in

Section 2.5 that the variance of Horvitz–Thompson estimator for the populationmean

is equal to

Vð�yHTÞ ¼
1

n

XN
k¼1

pk
Yk

Npk
��Y

� �2

: ð4:31Þ

This variance is small if all quadratic terms in this formula are small. And the

quadratic term is small if

pk � cYk; ð4:32Þ

Figure 4.7 Sample selection with unequal selection probabilities. Reprinted by permission of Imre

Kortbeek.
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where

c ¼ 1

N�Y
: ð4:33Þ

The selection probabilities cannot, in practice, be chosen such that condition (4.32)

is exactly satisfied, as this implies that the values of target variable are known. If these

values are known, no survey is necessary. Still, attempts can be made to define the

selection probabilities such that condition (4.32) is satisfied to some degree. To that

end, one tries to find an auxiliary variable X that is more or less proportional to target

variable Y. The values of X in the populationmust be known, and all these values must

be strictly positive. This implies that

pk ¼ Xk

XT

¼ Xk

N�X
: ð4:34Þ

If Xk and Yk are approximately proportional, then Xk� cYk for a certain constant c.

Consequently,

pk ¼ Xk

N�X
� cYk

Nc�Y
¼ Yk

N�Y
: ð4:35Þ

So themore theXk andYk are proportional, the smaller thevariance of the estimator

for the population will be.

4.3.2 Sample Selection Schemes

It is not easy to make a sample selection scheme to select an unequal probability

samplewithout replacement. There is such a sampling scheme for systematic unequal

probability sampling. This is described in Section 4.4.

Some without replacement unequal probability sampling schemes have been

proposed in the literature. An overview is given by Chaudhuri and en Vos (1988).

All these sampling schemes have their problems: they are so complex that they can

only be used for small samples, or they lead to negative estimates of variances. To keep

things simple, onlywith replacement sampling schemes are discussed here.Of course,

with replacement sampling is less efficient compared to without replacement sam-

pling. If the sample is selected with replacement, elements can be drawn more than

once in the same sample. This reduces the amount of information that becomes

available. However, if the population is much larger than the sample, differences are

ignorable.

Two sample selection schemes are discussed here for selecting a sample with

replacement and with unequal probabilities. There are called the cumulative scheme

and the Lahiri scheme.

The cumulative scheme is summarized inRecipe 4.3. First, the subtotals T1,T2, . . .,
TN have to be computed, where

Tk ¼
Xk
i¼1

Xi: ð4:36Þ
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Recipe 4.3 Selecting an Unequal Probability Sample with the Cumulative Scheme

Ingredients Population size N,

Population values X1, X2, . . ., XN of an auxiliary variable X

(all values must be positive)

Sample size n

Generator of random values u from [0, 1)

Step 1 Compute subtotals Tk ¼ X1 þX2 þ � � � þXk for k ¼ 1; 2; . . . ;N. T0¼ 0

Step 2 Draw a random value u from [0, 1)

Step 3 Compute t¼ (1� u)� TN
Step 4 Determine the sequence number k for which Tk-1< t� Tk
Step 5 Select the element with sequence number k in the sample

Step 6 If the sample size has not been reached yet, go back to step 2

It follows that TN¼XT. By definition T0¼ 0. To select an element, a random value t is

drawn from the interval (0, TN]. This is done by drawing a random value u from the

interval [0, 1) and computing t¼ (1� u)� TN. This value t will lie between two

subtotals. If t lies in the interval (Tk�1, Tk] for a certain value k, then element k is

selected in the sample.

The probability pk of selecting element k is the probability that the value t turns out

to lie in the interval (Tk�1, Tk]. This probability is equal to the length of this interval

(Xk) divided by the length of the interval (0, TN], and this is equal to pk¼Xk/XT.

The cumulative scheme has the disadvantage that first all subtotals T1, T2, . . ., TN
must be computed. The Lahiri scheme avoids this. This scheme was developed by

Lahiri (1951). It requires the knowledge of an upper bound Xmax of the values of the

auxiliary variable in the population. So, the condition Xk�Xmax must be satisfied for

k¼ 1, 2, . . ., N.
Selection of an element starts by drawing a candidate. This candidate is random

numberk selectedwith equal probabilities from the range 1–N. Then a randomvaluex

is drawn from the interval (0, Xmax]. Candidate k is selected in the sample if x<Xk.

Otherwise, candidate k is not selected, and a fresh attempt is made by selecting a new

candidate k and value x. This process is continued until the sample size has been

reached (Recipe 4.4).

At first sight, it is not obvious that the Lahiri scheme uses probabilities that are

proportional to the values of the auxiliary variable. To show this, first the probability

Prej is computed that an attempt (k,x) results in the rejection of a candidate k. This

probability is equal to

Prej ¼
XN
i¼1

Pðk ¼ i and x > XiÞ ¼
XN
i¼1

Pðx > Xijk ¼ iÞPðk ¼ iÞ

¼
XN
i¼1

1� Xi

Xmax

� �
1

N
¼ 1�

�X

Xmax

:

ð4:37Þ
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The probability Pi that attempt (k,x) results in accepting element i is equal to

Pi ¼ Pðk ¼ i and x � XiÞ ¼ 1

N

Xi

Xmax

: ð4:38Þ

The probability that for a next sample element ultimately element i is selected is

equal to

Pi þPrejPi þP2
rejPi þ � � � ¼ Pi

�
1þPrej þP2

rej þ � � � � ¼ Pi

1�Prej

¼ 1

N

Xi

Xmax

� �,
�X

Xmax

� �
¼ Xi

XT

:

ð4:39Þ

Indeed, the selection probability of element i is proportional toXi. Note that it is not

required that the value Xmax be assumed by one or more elements. For example, if

people are selected proportional to their age, and themaximumage in the population is

not known, a value of Xmax¼ 200 is safe upper bound. However, the closer the Xmax is

to the truemaximumofX1,X2, . . .,XN, the smaller the number of rejected elementswill

be. Avalue ofXmax far way from the realmaximumwill requiremore attempts until an

element is selected.

4.3.3 Estimation

For a sample selected with replacement and with selection probabilities pk, the

Horvitz–Thompson estimator takes the form

�yUP ¼ 1

Nn

XN
k¼1

ak
Yk

pk
: ð4:40Þ

The subscript UP indicates unequal probability sampling. If the selection proba-

bilities pkmust be proportional to the values Xk of the auxiliary variable X, and at the

Recipe 4.4 Selecting an Unequal Probability Sample with the Lahiri Scheme

Ingredients Population size N

Population values X1, X2, . . ., XN of an auxiliary variable X

(only for candidate elements)

An upper bound Xmax with Xk�Xmax

Sample size n

Generator of random values u from [0, 1)

Step 1 Draw a random value u1 from [0, 1)

Step 2 Compute sequence number k¼ 1 þ [N� u1]. Square brackets indicate

rounding downward to the nearest integer

Step 3 Draw a random value u2 from [0, 1)

Step 4 Compute x¼ (1� u2)�Xmax

Step 5 If x�Xk, select element k in the sample

Step 6 If the sample size has not been reached yet, go back to step 1
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same time the condition must be satisfied that the selection probabilities must add up

to 1, it follows that

pk ¼ Xk

N�X
: ð4:41Þ

Substituting (4.41) in (4.40) leads to

�yUP ¼
�X

n

XN
k¼1

ak
Yk

Xk

: ð4:42Þ

Estimator (4.42) can bewritten in a different way. Suppose a new variable Z¼ Y/X

is defined. The values of Z in the population are denoted by Z1, Z2, . . ., ZN, where
Zk¼ Yk/Xk, for k¼ 1, 2, . . .,N. Note that it is assumed that Xk> 0 for all k, and hence

the value of Zk is always defined.

The sample provided values y1, y2, . . ., yn of Y and values x1, x2, . . ., xn of X. These
values can be used to compute the sample values z1, z2, . . ., zn ofZ, where zi¼ yi/xi, for

i¼ 1, 2, . . ., n. Estimator (4.42) can now be written as

�yUP ¼ �X�z; ð4:43Þ
in which

�z ¼ 1

n

Xn
i¼1

zi: ð4:44Þ

This estimator is equal to the product of two means: population mean of the

auxiliary variable X and the sample mean of the Z.

SupposeX is a variable assuming thevalue 1 for each element in the population. So,

X is a constant. Then, expression (4.42) reduces to the simple sample mean. This is

correct because it comes down to simple random sampling with replacement and with

equal probabilities.

Expression (2.49) contains thevariance of theHorvitz–Thompson estimator in case

of sampling with replacement. Substitution of (4.41) leads to

Vð�yUPÞ ¼
�X

Nn

XN
k¼1

Xk

Yk

Xk

�
�Y
�X

� �2

: ð4:45Þ

Suppose, the values Yk and Xk are proportional, so Yk¼ cXk. Hence, Yk/Xk¼ c, and

also the ratio of the mean of Y and the mean of X is equal to c, resulting in a variance

equal to 0. This ideal situationwill not happen in practice.However, even ifY andX are

only approximately proportional, this will reduce the variance.

In practice, variance (4.45) must be estimated using the sample data. The unbiased

estimator for the variance is equal to

vð�yUPÞ ¼
�X
2

nðn�1Þ
Xn
i¼1

ðzi��zÞ2: ð4:46Þ

This estimator can be used to construct a confidence interval.
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4.3.4 An Example

The effects of unequal probability sampling are shown in a simulation experiment.

This time, the target population consists of 200 dairy farms in the rural part of

Samplonia.Objectiveof the survey is to estimate the averagedailymilk production per

farm. Several different sampling designs can be considered. Of course, the most

straightforward way is a simple random sample. Unequal probability sampling is also

possible because two auxiliary variables are available: the number of cows per farm

and the area of grassland per farm.

It is not unreasonable to assume a relationship between milk production and the

number of cows (more cowswill producemoremilk), or betweenmilk production and

the area of grassland (more grass means more cows and thus more milk). Therefore,

one could consider drawing farms with probabilities proportional to the number of

cows or the area of grass.

The upper left graph in Fig. 4.8 shows the distribution of the estimator based on 600

simple random samples of size 50 (without replacement andwith equal probabilities).

The standard error of the estimator is 30.9.

The upper right graph contains the distribution of the estimator in case of sampling

farms with probabilities proportional to the area of grassland. The variation of the

possible outcomes is less than in the case of simple random sampling. The standard

error is reduced from 30.0 to 25.8. Apparently, there is a certain relationship between

the target variable and the auxiliary variable.

The lower left graph in Fig. 4.8 contains the distribution of the estimator in case of

sampling farms with probabilities proportional to the number of cows per farm. The

variation of the possible outcomes is even much less. The standard error is reduced to

Figure 4.8 Simulation of unequal probability sampling.
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13.8. This is caused by a strong relationship between themilk production per farm and

the number of cows per farm, which is, of course, not surprising.

4.4 SYSTEMATIC SAMPLING WITH UNEQUAL PROBABILITIES

Manually drawing an unequal probability sample from a large sampling frame can be

cumbersome and time-consuming. To avoid these problems, a systematic sampling

can be selected with unequal probabilities. In fact, the same arguments apply to this

sampling design as were discussed for systematic sampling with equal probabilities

(see Section 4.2).

It should also be noted that it is problematic to draw an unequal probability sample

without replacement. Chaudhuri and en Vos (1988) present an overview of various

sample selection schemes. They all seem to have some kind of disadvantage of

preventing application in a real survey. Some are so complex that they can only be

applied for very small surveys, and others may produce negative variance estimates.

Systematic sampling with unequal probabilities does implement a form of without

replacement sampling. This type of sampling design can be seen as a kind of crossing

between systematic sampling (Section 4.2) and unequal probability sampling

(Section 4.3). It combines the advantages of both types of sampling designs. By

systematically working through the sampling frame an unequal probability sample

without replacement is obtained (Fig. 4.9).

Systematic samplingwith unequal probabilities has the potential of producing very

precise estimates. This depends on the availability of an auxiliary variable that has a

strong correlation with the target variable. Taking the inclusion probabilities (approx-

imately) proportional to the values of this auxiliary variable will result in a consider-

able variance reduction.

Of course, the disadvantages of systematic sampling should be also taken into

account. A special structure in the order of elements in the sampling frame may

produce wrong estimates of variances and therefore wrong statements about the

population characteristics.

Because elements are drawn without replacement, the theory can be described in

terms of inclusion probabilities (instead of selection probabilities). Horvitz and

Thompson (1952) have shown that precise estimators can be obtained by taking

the inclusion probabilities approximately equal to the values of the target variable.

This is accomplished in practice by taking the inclusion probabilities proportional to

Figure 4.9 Systematicsampleselectionwithunequalprobabilities.ReprintedbypermissionofImreKortbeek.
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thevalues of an auxiliary variable having a strong relationshipwith the target variable.

Suppose such a variable X is available, with values X1, X2, . . ., XN. It was shown in

chapter 2 that the sumof the inclusionprobabilities is always equal to the sample sizen.

Therefore, the inclusion probability of element k must be equal to

pk ¼ n
Xk

XT

¼ n
Xk

N�X
; ð4:47Þ

for k¼ 1, 2, . . ., N.

4.4.1 A Sample Selection Scheme

The sample selection scheme for a systematic unequal probability sample is a

generalized version of the scheme for a simple systematic sample (with equal

probabilities) that was described in Section 4.2. First, the subtotals T1, T2, . . ., TN
have to be computed, where

Tk ¼
Xk
i¼1

Xi: ð4:48Þ

Consequently, TN¼XT. Furthermore, by definition T0¼ 0.

To draw a sample of size n from a population of size N, the line segment (0, TN] is

divided intoN intervals.Each interval corresponds toanelement in thepopulation.The

first interval corresponds to element 1 and has length X1, the second interval

corresponds to element 2 and has length X2, and so on. So there are N intervals

ðT0; T1�; ðT1; T2�; . . . ; ðTN�1; TN �: ð4:49Þ
The step length is defined by F¼ TN/n¼XT/n. This is a real-valued quantity. The

starting point b is defined by drawing a random value from the interval (0, F]. This

value is obtained by taking a random value u from the interval [0, 1), subtracting it

from1 andmultiplying the result byF. So b is equal to b¼ (1� u)�F. Next, the values

t1 ¼ b; t2 ¼ bþF; t3 ¼ bþ 2F; . . . ; tn ¼ bþðn�1ÞF ð4:50Þ
are computed. Each value tiwill belong to one of the intervals (Tk�1,Tk]. So, for each ti
the sequence number k is determined for which

Tk�1 < ti � Tk; ð4:51Þ
and the corresponding element k is selected in the sample. (Recipe 4.5)

An example of systematic unequal probability sampling illustrates the above

theory. A sample of size n¼ 3 is selected from the population of N¼ 7 districts in

Samplonia. Inclusionprobabilities are takenproportional to thenumberof inhabitants.

The required data are shown in Table 4.5.

The step length is equal to TN/n¼ 1000/3¼ 333.333. So, the starting point is

drawn from the interval (0, 333.333]. Suppose, this results in the value b¼ 112.234.

The t-values are now equal to t1¼ 112.234, t2¼ 112.234 þ 333.333¼ 445.567 and

t3¼ 112.234 þ 2� 333.333¼ 778.901. The first value lies between T0 and T1, so
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district Wheaton is selected in the sample. The second value lies between T4 and T5.

This means district Smokeley is added to the sample. Finally, the third value lies

between T6 and T7, which means that Mudwater is included in the sample. See also

Fig. 4.10.

To obtain more insight into the second-order inclusion probabilities, the selection

process can be displayed in a different way. The line segment (0, TN] as shown in

Fig. 4.10 is divided into n subsegments of length F. These subsegments are

drawn below each other (Fig. 4.11). The starting point is a random value in the

first subsegment. The sample is obtained by drawing a vertical line through

Table 4.5 Numbers of Inhabitants in the Districts of Samplonia

k District Population Xk Subtotal Tk

1 Wheaton 144 144

2 Greenham 94 238

3 Newbay 55 293

4 Oakdale 61 354

5 Smokeley 244 598

6 Crowdon 147 745

7 Mudwater 255 1000

Figure 4.10 A systematic unequal probability sample of size 3 from a population of size 7.

Recipe 4.5 Selecting a Systematic Sample with Unequal Probabilities

Ingredients Population size N

Population values X1, X2, . . ., XN of an auxiliary variable X (Xk> 0 for all k)

Sample size n

Generator of random values u from [0, 1)

Step 1 Compute the subtotals Tk ¼ X1 þX2 þ � � � þXk for k ¼ 1; 2; . . . ;N. T0¼ 0

Step 2 Compute the step length F¼ TN/n

Step 3 Check for each element k whether Xk�F. If this is the case, select

element k in the sample, reduce the sample size n by 1, remove

element k from the population, and return to step 1

Step 4 Draw a random value u from [0, 1)

Step 5 Compute the starting point b¼ (1� u)�F

Step 6 Determine the sequence number k from which Tk�1< b� Tk
Step 7 Select the element with sequence number k in the sample

Step 8 If the sample size has not been reached yet, add an amount F to b

and go back to step 6
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the starting point. If the line transects interval (Tk�1, Tk], element k is selected in the

sample.

The first-order inclusion probability of an element is equal to the probability

of transecting its interval. This probability is equal to Xk/F¼ nXk/XT for

element k. Indeed, its inclusion probability is proportional to its value of the auxiliary

variable.

The second-order inclusion probabilities depend on the order of the elements and

also on the values of the auxiliary variables. For example, it is clear fromFig. 4.11 that

elements 5 and 7 have a high probability of being together in the sample. Moreover, it

will not be possible to have the elements 2 and 6 together in the sample.

Depending on the sample size and the values of the auxiliary variable, a problem

mayoccurwith “big elements.”Big elements are defined as those elementsk forwhich

the value Xk is larger than the step length F. Such elements are always selected in

the sample whatever be the value of the starting point b. The length of the interval

(Tk�1, Tk] is so large that it is impossible to jump over it. Their inclusion probability is

equal topk¼ 1. It is not proportional toXk. IfF ismuch smaller thanXk, elementk can

even be selected more than once in the same sample. This situation is illustrated in

Fig. 4.12.

Suppose four districts are selectedwith probabilities proportional to the population

size.The step length is equal toTN/n¼ 1000/4¼ 250.Thedistrict ofMudwaterhas255

inhabitants. This is more than the step length. So, Mudwater is a “big element.” If the

starting value turns out to be b¼ 248, the t-values are equal to t1¼ 248, t2¼ 498,

t3¼ 748, and t4¼ 998. Both the values t3 and t4 are between T6 and T7, so element 7

(Mudwater) is even selected twice.

Figure 4.12 A systematic unequal probability sample with “big elements.”

Figure 4.11 A systematic unequal probability sample of size 3.
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Note that the fourth subsegment in Fig. 4.12 completely belongs to element 7.

Whatever vertical line is drawn, it will always transect the interval of element 7. So,

element 7 will always be selected. Also, the last (small) part of the third segment

belongs to element 7. Every vertical line transecting this part will result in a sample

containing element 7 twice.

The problem of the “big elements” is solved in practice by first removing

these elements from the population and including them in the sample. A somewhat

smaller population will remain, and the rest of the sample is selected from this

population.

Returning to the exampleof a sampleof sizen¼ 4 fromapopulationof sizeN¼ 7, it

turned out that element 7 (Mudwater) was a big element. Since the number of

inhabitants of all other districts is smaller than the step length F¼ 250, Mudwater

is the only big element. Therefore, this district is removed from the population and

included in the sample. The remaining population consists of six districts, with a total

population size of 745. A sample of size 3 must be selected from this reduced

population. This means a step length of F¼ 745/3¼ 248.3. Again, the situation must

be checked for big elements. The largest remaining district is Smokeley with 245

inhabitants. This value is smaller than the step length, and therefore there are no big

elements any more.

4.4.2 Estimation

If the inclusion probabilities pkmust be proportional to the values Xk of the auxiliary

variable X, and at the same time the condition must be satisfied that the inclusion

probabilities must add up to n, it follows that

pk ¼ n
Xk

XT

¼ n
Xk

N�X
; ð4:52Þ

for k¼ 1, 2, . . .,N. Substituting (4.52) in expression (2.38) for theHorvitz–Thompson

estimator leads to the estimator

�ySUP ¼
�X

n

XN
k¼1

ak
Yk

Xk

: ð4:53Þ

Estimator (4.53) can alsobewritten in adifferentway.Suppose, anewvariableZ¼ Y/X

is defined. The values of Z in the population are denoted by Z1, Z2, . . ., ZN, where
Zk¼ Yk/Xk, for k¼ 1, 2, . . .,N. Note that it is assumed that Xk> 0 for all k, and hence

the value of Zk is always defined.

The sample provided values y1, y2, . . ., yn of Y and values x1, x2, . . ., xn of X. These
values can be used to compute the sample values z1, z2, . . ., zn ofZ, where zi¼ yi/xi, for

i¼ 1, 2, . . ., n. Estimator (4.42) can now be written as

�ySUP ¼ �X�z; ð4:54Þ
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with

�z ¼ 1

n

Xn
i¼1

zi: ð4:55Þ

This estimator is equal to the product of two means: population mean of the

auxiliary variable X and the sample mean of the Z. Note that the formula for the

estimator is exactly equal to that of the estimator for unequal probability sampling (see

Section 4.3).

SupposeX is a variable assuming thevalue 1 for each element in the population. So,

X is a constant. Then, expression (4.53) reduces to the simple sample mean. This is

correct because it comes down to systematic sampling with equal probabilities.

There is no simple expression for thevariance of estimator (4.53). This is caused by

the complex nature of the second-order inclusion probabilities. They depend on the

both order of the elements in the sampling frame and magnitude of the values of the

auxiliary variable. For example, Fig. 4.11 shows that on the one hand elements 2 and 4

will never end up together in the sample, so that their second-order inclusion

probability is 0. On the other hand, elements 5 and 7 have a high probability of being

selected together in the sample.

In principle, it is possible to process all elements in the sampling frame and to

compute all second-order inclusion probabilities, but this can mean a lot of work.

Suppose, a survey has to be carried out in a townwith a population of 600,000 people.

Then even for this relatively small population, the number of second-order inclusion

probabilities is equal to 600,000� (600,000� 1)/2¼ 179,999,700,000.

Themagnitudeof thevariance isdeterminedby several factors.Thevariancewill be

small if the inclusion probabilities are approximately proportional to the values of

target variable. This property is inherited from unequal probability sampling.

Furthermore, the variance will be small if the homogeneity of each sample is similar

to that of the population. This property is inherited from systematic sampling.

It is difficult to estimate the variance of the estimator properly. This is caused by

problems similar to that of systematic sampling. If there is a specific cyclic structure in

the order of the elements in the sampling frame, and the step length is equal to the

length of this cycle, thevariance in the samplewill not be indicativeof the truevariance

of the estimator. This may cause variance estimates to be too small, creating a wrong

impression of precise estimators.

In the case of systematic sampling with equal probabilities, the variance expres-

sions of simple random sampling can be used as an approximation if the order of the

elements in the sampling frame is completely random. A similar approach can also be

used for systematic sampling with unequal probabilities. However, one should be

careful because the expression for unequal probability sampling in Section 4.3 applies

to with replacement sampling, whereas systematic sampling with unequal probabili-

ties is a form ofwithout replacement sampling. Nevertheless, the approximationsmay

work if the population size is much larger than the sample size.

If it is important to have a good estimate of the variance, an approach similar to that

described in Section 4.2 can be applied. Instead of selecting one sample, a number of
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independent small subsamples are selected. An estimate is computed for each

subsample. Application of expressions (4.29) and (4.30) produces a combined

estimate and an estimate of the variance of this combined estimate.

It will be assumed in many practical situations that the properties of a systematic

sample with unequal probabilities will not differ much from those of an unequal

probability sample as described in Section 4.3 and that therefore expression (4.46) can

be used. However, one should always be careful.

4.4.3 An Example

The properties of systematic sampling with unequal probabilities are illustrated using

a small example. The target population consists of all workingmen in the Samplonian

province of Agria. This population consists of only 58 people. The small population

size simplifies the work of computing the second-order inclusion probabilities.

A sample of 10 persons is selected from this population. Theobjective is to estimate

to mean income. Age can be used as an auxiliary variable.

Table 4.6 contains the variance of the estimator of the mean for various sampling

designs. For the nonsystematic samples, the formula for the Horvitz–Thompson

estimator was used. For the systematic samples, second-order inclusion probabilities

were computed for the original order of the elements and also for a sampling frame in

which the elements were ordered by increasing income.

The table shows that simple random sampling is not the best way to get a precise

estimate of the mean income. Apparently, the structure of the sampling frame is such

that systematic sampling reduces the variance by approximately a factor 2. The

relationship between income and age is not very strong, but still unequal probability

sampling also reduces thevariance by a factor 2. The result is even better (reduction by

a factor 4) for systematic sampling with probabilities proportional to age. The best

results for systematic sampling are achieved by ordering the sampling frame by

increasing income. Of course, this is not feasible in practice.

The variance of the estimator based on systematic sampling with unequal proba-

bilities is equal to 292. This means that in terms of a 95% confidence interval in 95 out

of 100 cases the estimate will not differ more than 1:96� ffiffiffiffiffiffiffiffi
292

p ¼ 33 from the true

value. So even for a small sample of size 10, the mean income can be estimated with a

reasonably high precision.

Table 4.6 Precision of Estimators for Various Sampling Designs Resulting in a

Sample of 10 from the Working Men in Agria

Sampling Design Variance

Simple random 1178

Systematic 541

Systematic (ordered by income) 201

Probabilities proportional to age 544

Systematic, probabilities proportional to age 292

Systematic, probabilities proportional to age (ordered by income) 155
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EXERCISES

4.1 Use the tablewith random numbers given below to draw a sample of size n¼ 20

from a population of size N¼ 80. Work row-wise and use the first two digits of

each group of five digits. Write down the sequence number of the selected

elements.

06966 75356 46464 15180 23367 31416 36083 38160 44008 26146

62536 89638 84821 38178 50736 43399 83761 76306 73190 70916

65271 44898 09655 67118 28879 96698 82099 03184 76955 40133

07572 02571 94154 81909 58844 64524 32589 87196 02715 56356

30320 70670 75538 94204 57243 26340 15414 52496 01390 78802

94830 56343 45319 85736 71418 47124 11027 15995 68274 45056

17838 77075 43361 69690 40430 74734 66769 26999 58469 75469

82789 17393 52499 87798 09954 02758 41015 87161 52600 94263

64429 42371 14248 93327 86923 12453 46224 85187 66357 14125

76370 72909 63535 42073 26337 96565 38496 28701 52074 21346

4.2 Atarget populationconsists of 1000companies.A researcherwants to estimate the

percentage of companies exporting their products to other countries. Therefore, he

selects a simple random sample of 50 companies without replacement.

a. Compute the variance of the sample percentage of exporting companies,

assuming that 360 out of 1000 companies indeed do so.

b. Estimate the variance of the sample percentage, assuming the population

percentage is unknown and there are 18 exporting companies in the sample.

c. Estimate the variance of the sample percentage, assuming the population

percentage is unknown and there are 14 exporting companies in the sample.

d. Estimate the variance of the sample percentage, assuming the population

percentage is unknown and there are 22 exporting companies in the sample.

4.3 A company wants to carry out a customer satisfaction survey among its 10,000

customers. The questionnaire contains a number of questions that are used to

compute a satisfaction index. This is value in the interval from 0 to 100, where 0

means extremely unsatisfied and 100 means extremely satisfied. Before really

carrying out the survey, a test is conducted. A simple random sample of 20

customers is selectedwithout replacement. The satisfaction scores turn out to be

100 88 72 81 80 69 84 83 65 69 90 65 70 80 90 74 70 96 62 67

a. Compute the samplemean. Compute also an estimate of the standard error of

the sample mean.

b. Compute the 95% confidence interval for the mean satisfaction index of all

10,000 customers. The company has a quality management policy aiming at

a mean satisfaction index of 80. What conclusion can be drawn from the

sample with respect to this target?
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c. The company decides to really carry out the customer satisfaction survey.

The requirement is that the margin of error of the 95% confidence interval

must not exceed a value of 2. Compute the corresponding sample size, using

the information obtained in the test survey.

4.4 A camera shop in a town considers including an advertisement for digital

cameras in the newsletter of the local tennis club. This club has 1000 members.

Before deciding to do so, the shop owner wants to have an estimate of the

percentage of tennis club members having a digital camera. To this end, he

carries out a survey. He assumes that the percentage of club members with a

digital camera does not exceed 30%. Compute the required sample size if the

width of the 95% confidence interval may not exceed 3 percent points.

4.5 If a sample has been selected with unequal probabilities, the estimates must be

corrected by weighting the observed values of the target variable using

a. the values of the auxiliary variable;

b. the selection probabilities;

c. the square roots of the values of the auxiliary variable;

d. a combination of the quantities mention in a, b, and c.

4.6 Aforestrycompanyexperimentswith the rateofgrowthofdifferent typesof trees.

It hasplanted48 trees inone long line alongside a road.The trees are alternatelyof

typesA andB.After 2 years, the companywants to know the average height of all

trees. The length of all 48 trees can be found in the table below:

629 353 664 351 633 314 660 381 640 366 696 348 681 307 633 337 663 331 609 338

675 361 696 304 647 366 669 384 669 389 693 324 698 309 602 341 671 352 663 344

671 342 627 323 612 376 629 363

a. Compute the mean length and the standard deviation of all 48 trees.

b. Draw a simple random sample without replacement of size n¼ 8. Use the

table with random numbers below.Work row-wise and use only the first two

digits of each group of five digits. Compute the sample mean and the sample

standard deviation.

94830 56343 45319 85736 71418 47124 11027 15995 68274 45056

17838 77075 43361 69690 40430 74734 66769 26999 58469 75469

82789 17393 52499 87798 09954 02758 41015 87161 52600 94263

64429 42371 14248 93327 86923 12453 46224 85187 66357 14125

76370 72909 63535 42073 26337 96565 38496 28701 52074 21346

c. Draw a systematic sample of size 8. Use the value b¼ 3 as starting point.

Compute the sample mean and the sample standard deviation.

d. Compare the results of exercises (b) and (c) with those of exercise. Explain

observed differences and/or similarities.
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4.7 The table below contains an imaginary population of 20 transport companies. It

contains for every company the number of trucks it owns and the amount of

goods that have been transported in a specific week. A sample of eight

companies is selected. The objective is to estimate the mean of transported

goods per company.

Company Number of trucks (X) Transported goods (Y)

1 3 35

2 4 37

3 5 48

4 6 64

5 7 75

6 6 62

7 4 39

8 5 46

9 3 29

10 9 93

11 12 124

12 20 195

13 4 42

14 3 28

15 5 46

16 8 83

17 7 71

18 3 25

19 4 41

20 3 27

a. Suppose the sample is selected with equal probabilities and without re-

placement. Compute the variance and the standard error of the samplemean.

Also, compute the margin of error of the 95% confidence interval.

b. Select a sample of eight companies with unequal probabilities. Use the

number of trucks per company as auxiliary variable. Select the sample with

the cumulative scheme. Use the following values of the randomizer for

values in the interval [0, 1): 0.314, 0.658, 0.296, 0.761, 0.553, 0.058, 0.128,

and 0.163.

c. Compute the value of the estimator for this sampling design.Make clear how

this value is obtained.

d. Estimate the variance and the standard error of the estimator. Also, deter-

mine the 95% confidence interval. Compare the margin of error of this

estimated interval with the margin of the confidence interval as computed in

(a) and draw conclusions with respect to the precision of estimator.

Determine whether the estimated confidence interval indeed contains the

value of the population parameter.
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4.8 Apopulation consists ofN¼ 9 elements. There are three elements for which the

value of the target variable Y is equal to 1. For another three elements, the value

is equal to 2. The value of Y is equal to 3 for the three remaining elements.

Suppose a systematic sample with equal probabilities of size n¼ 3 is selected

from this population.

a. The elements are ordered in the sampling frame such that their values are

equal to 1,2,3,1,2,3,1,2,3. Compute the variance of the sample mean for this

situation.

b. Determine the sequence of elements that results in the smallest variance of

the sample mean. What is the value of this variance?

c. Suppose a naive researcher uses the variance formula for a simple random

sample without replacement. In which of the situations described under (a)

and (b) would this result in the largest mistake? Explain why this is so.
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C H A P T E R 5

Composite Sampling Designs

5.1 STRATIFIED SAMPLING

Stratified sampling is based on the idea of dividing the population into a number

of subpopulations (strata) and to drawasample fromeach stratumseparately.This idea

is as old as sampling theory itself. Sampling theory emerged at the end of the

nineteenth century. At that time, researchers were still reluctant to draw samples.

It was argued that there was no need to use samples if every element in the population

could be observed. Moreover, it was considered improper to replace observations by

mathematical calculations. The general idea at that timewas that it was impossible to

draw reliable conclusions about a population using data that were collected for just a

small part of the population.

5.1.1 Representative Samples

The first ideas about sampling were discussed at the meeting of the International

Statistical Institute (ISI) in Bern in 1895. It was Anders Kiaer, director of

the Norwegian statistical institute, who proposed using sampling instead of complete

enumeration. He argued that good results could be obtained with his Representative

Method. This was a type of investigation where data on a large selection from

the population were collected. This selection should reflect all aspects of the

population as much as possible. One way to realize such a sample was the “balanced

sample.” The population was divided into subpopulations by using variables such as

gender, age, and region. These subpopulations were called strata. The sizes of the

strata were supposed to be known. A percentage of persons was taken from each

stratum. This percentage was the same for each stratum. Selection of samples took

place in some haphazard way (probability sampling had not yet been invented). As a

result, the sample distribution of variables such as gender, age, and regionwas similar
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to the distribution in the population. The sample was representative with respect to

these variables.

Probability sampling was introduced in later years, but stratification remained a

useful technique to improve the “representativity” of the sample. Stratification also

turned out to have the potential to improve the precision of estimates. This particularly

works well if strata are chosen such that they are homogeneous with respect to the

target variables of the survey (Fig. 5.1).

5.1.2 Sample Selection Schemes

To select a stratified sample, the population is first divided into strata (subpopulations).

Next, a sample is selected in each stratum.Researchers are free to choose the sampling

design for each stratum, as long as it provides an unbiased estimate of the value of the

population parameter in each stratum. Finally, the estimates for all strata are combined

into an estimate for whole population.

Stratified sampling has some flexibility. For example, it offers the possibility to say

something about each stratum separately. Hence, a national survey could provide

information about each province of the country and a business survey could produce

statistics for each separate branch.By choosing the proper sample size in each stratum,

sufficient precise estimates can be computed.

Stratification can be carried out only if it is known in advance towhich stratum each

populationelementbelongs.Sinceaseparatesampleisselectedfromeachstratum, there

must be a sampling frame for each stratum. For example, if a stratified sample must be

selected from a large town, where stratification is by neighborhood, a separate sample

must be drawn fromeach neighborhood, requiring a sampling frame for each neighbor-

hood.Lackofavailabilityof sampling framesperstratamayprevent stratifiedsampling.

First, the situation is discussed where samples are selected from all strata using

arbitrary sampling designs. Next, the theorywill beworked out for the case in which a

simple random sample (with equal probabilities and without replacement) is selected

fromeach stratum.Stratificationoffers notmuchnews froma theoretical point of view.

Instead of drawing just one sample, a number of samples are drawn. The only

Figure 5.1 Stratified sampling. Reprinted by permission of Imre Kortbeek.
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difference is the manner in which stratum estimates are combined into an estimate for

the whole population.

5.1.3 Estimation

To be able to write down the formulas for estimators and variances, notations

are slightly adapted. Several quantities get an extra index denoting the stratum to

which they apply. Suppose the population U is divided into L strata. These strata are

denoted by

U1;U2; . . . ;UL: ð5:1Þ
The strata do not overlap and together cover the complete population U. The

number of elements in stratum h is indicated byNh (for h¼ 1, 2, . . ., L). Consequently,

XL
h¼1

Nh ¼ N1 þN2 þ � � � þNL ¼ N: ð5:2Þ

The Nh values of the target variable Y in stratum h are denoted by

Y
ðhÞ
1 ; Y

ðhÞ
2 ; . . . ; Y

ðhÞ
Nh

: ð5:3Þ

The mean of the target variable in stratum h is denoted by

�Y
ðhÞ ¼ 1

Nh

XNh

k¼1

Y
ðhÞ
k : ð5:4Þ

The mean in the whole population can be written as

�Y ¼ 1

N

XL
h¼1

Nh
�Y
ðhÞ
: ð5:5Þ

So the population mean is equal to theweighted average of the stratummeans. The

(adjusted) variance in stratum h is equal to

S2h ¼
1

Nh�1

XNh

k¼1

�
Y
ðhÞ
k ��Y

ðhÞ�2
: ð5:6Þ

A sample of size n is drawn from this stratified population. This sample is realized

by selecting L subsamples, with respective sample sizes n1, n2, . . . , nL, where
n1 þ n2 þ � � � þ nL ¼ n. Whatever sampling design is used for stratum h, with

the theory of Horvitz and Thompson (1952), it is always possible to construct an

estimator

�y
ðhÞ
HT ð5:7Þ

102 COMPOSITE SAMPLING DESIGNS



allowing unbiased estimation of the stratummean (5.4). The variance of this estimator

is denoted by

V
�
�y
ðhÞ
HT

�
: ð5:8Þ

Since estimator (5.7) is an unbiased estimator for the mean of stratum h (for

h¼ 1, 2, . . . , L), expression

�yS ¼
1

N

XL
h¼1

Nh�y
ðhÞ
HT ð5:9Þ

is an unbiased estimator of the mean of target variable Y in the whole population.

Because the subsamples are selected independently, the variance of estimator (5.9)

is equal to

Vð�ySÞ ¼
1

N2

XL
h¼1

N2
hV
�
�y
ðhÞ
HT

�
: ð5:10Þ

This expression shows that the variance of the estimator will be small if the

variances of the estimators within the strata are small. This offers interesting

possibilities for constructing precise estimators.

The theory will now be applied to the case of a stratified sample where a simple

random samplewithout replacement is selected in each stratum. Let the sample size in

stratum h be equal to nh. The nh observations that become available in stratum h are

denoted by

y
ðhÞ
1 ; y

ðhÞ
2 ; . . . ; yðhÞnh

: ð5:11Þ
The sample mean in stratum h is equal to

�yðhÞ ¼ 1

nh

Xnh
i¼1

y
ðhÞ
i : ð5:12Þ

The sample mean in stratum h is an unbiased estimator of the population mean in

stratum h. The variance of the estimator is equal to

V
�
�yðhÞ
�
¼ 1�fh

nh
S2h ð5:13Þ

where fh¼ nh/Nh. This variance can be estimated in an unbiased manner by

v
�
�yðhÞ
�
¼ 1�fh

nh
s2h ð5:14Þ

where

s2h ¼
1

nh�1

Xnh
i¼1

�
y
ðhÞ
i ��yðhÞ

�2
: ð5:15Þ
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Now the estimators for the stratummeans can be combined into an estimator for the

population mean. This estimator is equal to

�yS ¼
1

N

XL
h¼1

Nh�y
ðhÞ: ð5:16Þ

This is an unbiased estimator for the population mean. So this estimator is equal to

theweightedaverageof the samplemeans in the strata.Thevarianceof estimator (5.16)

is equal to

Vð�ySÞ ¼
1

N2

XL
h¼1

N2
h

1�fh

nh
S2h: ð5:17Þ

This variance can be estimated in an unbiased manner by

vð�ySÞ ¼
1

N2

XL
h¼1

N2
h

1�fh

nh
s2h: ð5:18Þ

A closer look at expression (5.17) shows that the variance of the stratification

estimator is small if the stratumvariances S2h are small. Thiswill be the case if the strata

are homogeneous with respect to the target variable, which means there is not much

variation in the values of the target variable within strata. The variation in this

case is mainly due to the differences in stratum means. So, there is a lot of variation

between strata, and not within strata. The conclusion can be drawn that the stratified

estimator will be precise if it is possible to construct a stratificationwith homogeneous

strata.

5.1.4 Stratification Variables

The sampling design for a stratified sample is flexible. There are many different ways

to construct strata. The only condition is that the stratum sizes must be known and that

it must be possible to select a sample in each stratum separately.

Analysis of the variance expression (5.17) has shown that strata should be

constructed such that within strata variances are small. This will result in precise

estimators. Therefore, the search for proper stratification variables (i.e., variables

used for the construction of strata) should be aimed at finding variables that have a

strong relationship with the target variable. Such a relationship implies that the value

of the target variable can be predicted from the value of stratification variables. This

comes down to a situation where there is little variation in the values of the target

variables, given the values of the stratification variables.

Sometimes, a candidate stratification variable is quantitative. It assumes many

different values. An example is the variable age. To be useful as a stratification

variable, it has to be transformed into a qualitative variable. For variables such as age,

this would mean categorizing age into different groups, for example, 20–29 years,

30–39years, and soon.The question that remains is “Whichgrouping ismost effective

in the sense that the resulting stratified estimator has the smallest variance?”
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Dalenius and Hodges (1959) have proposed a rule for this. It is called the cumulative-

square-root-f rule. First, the frequency distribution of the original variable is deter-

mined. The square root of the product of the frequency ( f ) and the interval width (w)

is computed for each value of the variable. Next, values are grouped in such away that

the sum of the computed quantities is approximately the same in each group.

Table 5.1 contains an example of this procedure. It starts from an age distribution

in 11 small groups. These 11 groups have to be combined into a smaller number

of groups. Five strata have been formed, each containing about one-fifth of the total

of all values
ffiffiffiffiffiffiffiffiffiffiffiffi
f � w

p
.

5.1.5 Sample Allocation

An important aspect of a stratified sample is the allocation of the sample. This is the

distribution of the total sample size n over the L strata. Conditions on the precision of

the estimators in each stratum would determine the sample size in each stratum

and therefore the total sample size. However, usually the total sample size n is

determined beforehand. This leads to the question how to divide this sample size over

the strata.

If theobjective is to estimate thepopulation asprecise aspossible, thebest estimator

is obtained bymeans of the so-called optimal allocation. This allocation is sometimes

also called the Neyman allocation. According to this allocation, the sample size nh
in stratum h must be taken equal to

nh ¼ n
NhShPL

j¼1

NjSj

: ð5:19Þ

Ifnh turnsoutnot tobean integernumber, it shouldbe rounded to thenearest integer.

The sample size in a stratum will be larger if the variance in a stratum is larger. Not

surprisingly, more elements must be observed in less homogeneous strata.

Table 5.1 Construction of Age Strata Using the Cumulative-Square-Root-f Rule

Age Frequency f Width w
ffiffiffiffiffi
fw

p ffiffiffiffiffi
fw

p
Cumulated Strata

0–4 90 5 21 21 0–14

5–9 86 5 21 42

10–14 79 5 20 62

15–19 88 5 21 83 15–29

20–29 149 10 39 122

30–39 110 10 33 155 30–49

40–49 119 10 34 189

50–59 101 10 32 221 50–69

60–69 74 10 27 248

70–79 59 10 24 272 70–99

80–99 45 20 30 302
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It may happen that the computed value nh is larger than the total size Nh of the

stratum h. In this case, all elements in strata should simply be observed. The remaining

sample size can be divided over all other strata by using the optimal allocation rule.

If nh elements are selected from stratum h of size Nh, the inclusion probabilities of

these elements are all equal to nh/Nh. As a result, the inclusion probabilities are

proportional to the stratum standard deviations Sh. Not every element has the same

inclusion probability. This is no problem as estimator (5.16) corrects for this. This

formula is obtained if the inclusionprobabilitiesnh/Nh are substituted in the expression

for the Horvitz–Thompson estimator.

It is only possible to compute the optimum allocation if the values of the stratum

standard deviations Sh are known. Often this is not the case. If estimates from a

previous surveyare available, they canbeused. Sometimes, stratification is appliednot

only for increasing precision but also for administrative purposes (there is no sampling

frame forwhole population, but there are sampling frames for each stratumseparately)

or for obtaining estimates within strata. In this case, it may not be unreasonable to

assume that the stratum standard deviations do not differ too much. If all standard

deviations are equal, the allocation expression (5.19) reduces to

nh ¼ n
Nh

N
: ð5:20Þ

Allocationaccording to this formula is calledproportional allocation. Proportional

allocation means that every element in the population has the same inclusion

probability n/N. This is why this type of sample is sometimes called a self-weighting

sample. This is what early survey researchers had in mind when they talked about

representative samples.

It has already been said that the choice of the sampling design and the sample size

is often a compromise between precision and costs. The costs of data collection can

also play a role in determining the allocation of the sample to the strata. There can

be situationswhere interviewing in one stratum ismore costly than in another stratum.

As a result, the optimal allocation may not be the cheapest allocation.

Suppose that the total costs of the fieldwork may not exceed a specified amount C.

Let ch denote the cost of interviewing one element in stratum h. Then the allocation

must be such that

C ¼
XL
h¼1

chnh: ð5:21Þ

This condition replaces the condition that the total sample size must be equal to n.

Note that the condition n1 þ n2 þ � � � þ nL ¼ n is obtained as a special case of

condition (5.21) if the costs of interviewing are the same in all strata.

It can be shown that under condition (5.21), the most precise estimator is obtained

if the sample size in stratum h is equal to

nh ¼ K
NhShffiffiffiffiffi
ch

p ; ð5:22Þ
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where the constant K is equal to

K ¼ C

PL
h¼1

NhSh
ffiffiffiffiffi
ch

p : ð5:23Þ

The obvious conclusion can be drawn from this expression that fewer elements are

selected in more expensive strata.

5.1.6 An Example of Allocation

The effect of allocation on the precision of the estimator is illustrated using an

example. The target population is the working population of Samplonia. The

objective is to estimate the mean income. A stratified sample of size 20 is selected.

There are two strata: the provinces of Agria and Induston. Table 5.2 summarizes

the data.

Note that both stratum variances are smaller than the population variance.

Apparently, the strata are more homogeneous than the population as a whole.

Therefore, it is worthwhile to consider a stratified sample. Size and variance in the

stratum of Agria are small. This will result in only a small sample in this stratum. This

can be observed in both the optimal (only two sample elements) and the proportional

allocation (seven sample elements). The result for the optimal allocation is different

from that of the proportional allocation. This is caused by the fact that the stratum

variances are not the same.

Table 5.3 contains the variance of the estimator of the mean income of the

working population of Samplonia for each possible allocation of a sample of

size 20.

The smallest variance is obtained if 2 persons are selected in Agria and 18

in Induston. This results in a variance equal to 18,595. This is the optimal

allocation. The variance is somewhat larger for proportional allocation (7 from

Agria and 13 from Induston). Note that a simple random sample of size 20 would

result in a variance of 43,757. Many allocations in the table produce a smaller

variance. So, even a nonoptimal allocation may help improving precision. However,

one should always be careful, as a bad allocation can lead to much less precise

estimators.

Table 5.2 Stratification by Province in Samplonia

Allocation

Stratum Size Variance in Incomes Optimal Proportional

Agria 121 47,110 2 7

Induston 220 738,676 18 13

Samplonia 341 929,676 20 20
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5.2 CLUSTER SAMPLING

The sampling designs discussed until now always assumed a sampling frame for the

whole population to be available. This is, unfortunately, not always the case.Away out

could be to construct a sampling frame specifically for the survey, but this is verycostly

and time-consuming. A typical example of such a situation is a survey of individuals

where there is no sampling frame containing all individuals in the population.

Sometimes, a sampling frame is available at an aggregate level. The population

elements can be grouped into clusters and there is a sampling frame containing all

clusters. The idea behind cluster sampling is to draw a number of clusters and to

include all elements in the selected clusters in the sample.

One example of cluster sampling is to select a number of addresses from an address

list and to include all people at the selected addresses (as far as theybelong to the target

population) in the sample.

Another reason to apply cluster sampling can be to reduce fieldwork costs.

Interviewers in a face-to-face survey have to travel less if the people to be interviewed

are clustered in regional areas (addresses, neighborhoods).

5.2.1 Selecting Clusters

Cluster sampling assumes that the population can be divided into a number of

nonoverlapping subpopulations. These subpopulations are called clusters. A number

of clusters are selected by using some sampling design. All elements in each selected

cluster are included in the sample (Fig. 5.2).

Note that cluster sampling is not the same as stratified sampling. Drawing a

stratified samplemeans that in every stratum a sample of elements is selected, whereas

drawing a cluster sample means that in a sample of strata all elements are selected.

A cluster sample can be seen as a simple random sample at an aggregate level.

Table 5.3 The Variance of the Estimator for Each Possible Allocation

Allocation Allocation

Agria Induston Variance Agria Induston Variance

1 19 20,662 11 9 33,244

2 18 18,595 12 8 37,468

3 17 18,611 13 7 42,918

4 16 19,247 14 6 50,204

5 15 20,231 15 5 60,421

6 14 21,497 16 4 75,764

7 13 23,044 17 3 101,356

8 12 24,909 18 2 152,563

9 11 27,155 19 1 306,224

10 10 29,883
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The selected elements are clusters and the values associated with these elements are

the totals of the variables for all individual elements in the clusters.

It should be stressed that the choice for cluster sampling is often based on practical

arguments. Estimates based on this type of sample designneed not necessarily bemore

precise than estimates based on simple random sampling. On the contrary, including

all members of a cluster in the sample maymean that a number of more or less similar

elements are observed. This implies that less information is available than if elements

would have been selected completely independent of each other. As a result, variances

of cluster sample estimators will usually be larger. This phenomenon is called the

cluster effect.

Clusters can be selected by using all kinds of sampling designs, including the

sampling designs that have already been discussed. This chapter describes two such

designs. One is to select clusters by means of a simple random sample, with equal

probabilities andwithout replacement. Theother is to select clusterswith probabilities

equal to their size (with replacement).

5.2.2 Selecting Clusters with Equal Probabilities

The notations used for cluster sampling are similar to those used for stratified

sampling. It is assumed that the population U can be divided into M clusters

U1;U2; . . . ;UM: ð5:24Þ
The clusters donot overlap and together cover the complete populationU. LetNhbe

the size of cluster Uh (h¼ 1, 2, . . . , M). Consequently,

XM
h¼1

Nh ¼ N: ð5:25Þ

The Nh values of the target variable Y cluster h are denoted by

Y
ðhÞ
1 ; Y

ðhÞ
2 ; . . . ; Y

ðhÞ
Nh

: ð5:26Þ

Figure 5.2 Cluster sampling. Reprinted by permission of Imre Kortbeek.
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If the mean of the target variable in cluster h is denoted by

�Y
ðhÞ ¼ 1

Nh

XNh

k¼1

Y
ðhÞ
k ð5:27Þ

and the total of this target variable in cluster h by

Y
ðhÞ
T ¼

XNh

k¼1

Y
ðhÞ
k ¼ Nh

�Y
ðhÞ
; ð5:28Þ

then the population mean of Y can be written as

�Y ¼ 1

N

XM
h¼1

Nh
�Y
ðhÞ
: ð5:29Þ

Another population parameter that will be used is the mean cluster total

�YT ¼ 1

M

XM
h¼1

Y
ðhÞ
T ¼ 1

M

XM
h¼1

Nh
�Y
ðhÞ
: ð5:30Þ

A simple random sample of m clusters is selected without replacement and with

equal probabilities from this population. All elements in the selected clusters are

included in the survey. The totals of the target variables in the selected clusters are

indicated by

y
ð1Þ
T ; y

ð2Þ
T ; . . . ; y

ðmÞ
T : ð5:31Þ

Assuming the clusters are the elements to be surveyed and the cluster totals are the

values of these elements, the Horvitz–Thompson can be used at this aggregated level.

By applying the theory provided in Section 4.1, the sample mean

�yT ¼ 1

m

Xm
i¼1

y
ðiÞ
T ð5:32Þ

of the cluster totals is an unbiased estimator of the mean cluster total (5.30).

Consequently,

�yCL ¼ M

N
�yT ð5:33Þ

is an unbiased estimator of the population mean of the elements in the target

population. The variance of this estimator is, similar to expression (4.5), equal to

Vð�yCLÞ ¼
M

N

� �2
1�f

m
S2C ð5:34Þ
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where f¼m/M and

S2C ¼ 1

M�1

XM
h¼1

Y
ðhÞ
T ��YT

� �2
: ð5:35Þ

This variance can be estimated in an unbiased manner by

s2C ¼ 1

m�1

Xm
j¼1

�
y
ðhÞ
T ��yT

�2
: ð5:36Þ

Note that the variance of the values of the target variable within the clusters does not

play a role in this formula.Thevariance is determinedby thevariationbetween clusters

and not within clusters.

5.2.3 Selecting Cluster Probabilities Proportional to Size

Expressions (5.34) and (5.35) show that the variance of the estimator is determined by

the variation in the cluster totals of the target variable. Themore they differ, the larger

the variance will be. In populations where the values of the target variable show little

variation, the cluster totals are largely determined by the numbers of elements in the

clusters.The total of a largeclusterwill be largeand that of a small clusterwill be small.

Consequently, the estimator will have a large variance in such situation.

The effect of the cluster sizes on the variance of the estimator can be reduced by

drawing an unequal probability sample. Instead of drawing the clusters with equal

probabilities, they can be drawnwith probabilities proportional to their size. Tobe able

to apply the theory provided in Section 4.3, the clusters have to be selected with

replacement. Again, the clusters are seen as the elements to be surveyed, and the

cluster totals are the values of the elements. The selection probability qh of cluster h is

taken equal to

qh ¼ Nh

N
; ð5:37Þ

for h¼ 1, 2, . . . , M. By substituting Xh¼Nh in expression (4.43) the

Horvitz–Thompson estimator for the mean of the cluster totals becomes

N

M
��y; ð5:38Þ

where

��y ¼ 1

m

Xm
j¼1

�yð jÞ ð5:39Þ

is the mean of the observed cluster means. Hence,

�yCL ¼ M

N

N

M
��y ¼ ��y ð5:40Þ
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is an unbiased estimator for the population mean of the target variable Y. By applying

formula (4.45), the variance of estimator (5.40) can be written as

Vð�yCLÞ ¼
1

Nm

XM
h¼1

Nh

�
�Y
ðhÞ��Y

�2
: ð5:41Þ

This variance can be estimated in an unbiased manner by

vð�yCLÞ ¼
1

mðm�1Þ
Xm
j¼1

�
�yðjÞ���y

�2
: ð5:42Þ

Expression (5.41) shows that the variance of the estimator is determined by

the variation in the cluster means of the target variable and not by the cluster totals.

The variancewill be small if there is little variation in the cluster means. Themore the

cluster means differ, the larger the variance will be.

5.2.4 An Example

The use of cluster sampling is shown using data from Samplonia. A sample of persons

is tobe selected. The sevendistricts are used as clusters.A sample is drawnby selecting

two districts and by including all their inhabitants in the sample. The relevant data are

listed inTable5.4.The sample sizedependson the clusters selected.For example, if the

two smallest clusters (Newbay and Oakdale) are selected, the sample size is equal to

49, whereas the sample size would be 145 if the two largest clusters (Smokeley and

Mudwater) were selected.

If two clusters are selected with equal probabilities and without replacement, the

standard error of the estimator for the mean income is equal to 565. If two clusters are

selected with probabilities equal to their size (and with replacement), the standard

error of the estimator turns out to be equal to 602. So, this variance is even larger.

Apparently, the cluster size is not (approximately) proportional to the cluster total.

The standard error of the equal probability cluster sample is so large because there

is a substantial amount of variation in the cluster totals. This can be seen in Table 5.4.

Table 5.4 Income by District in Samplonia

District Size Total Income Mean Income

Wheaton 60 21,371 356

Greenham 38 12,326 324

Newbay 23 7,910 344

Oakdale 26 91,872 3534

Smokeley 73 117,310 1607

Crowdon 49 66,425 1356

Mudwater 72 103,698 1440

Samplonia 341 420,913 1234
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The standard error of the unequal probability cluster sample is so large because there is

a substantial amount of variation in the cluster means. It makes a lot of difference

whether two clusters are selected from the province of Agria or Induston. Incomes in

Agria are on average much lower than in Induston.

Note that a standard error in the order of magnitude of 600 would also have been

obtained with a simple random sample of three elements. Although many more

elements are observed in the cluster sample (it varies between 49 and 145), the

precision of the estimator is equal to only that of a simple random sample of size 3.

This is a disappointing result. Apparently, it does not matter so much whether two

elements are observed or two clusters of elements are observed. This is caused by the

phenomenon that elements within clusters are very similar. Observing more elements

in a cluster does not provide much more information. This phenomenon is called the

cluster effect.

The effectiveness of a sampling design is indicated sometimes also bymeans of the

effective sample size. This is the sample size of a simple random sample of elements

that would produce an estimator with the same precision. For both cluster sampling

designs, the effective sample size is 3.

5.3 TWO-STAGE SAMPLING

It has been shown in the previous section that the cluster samplesmaynot performvery

well from the point of view of precision. Due to the cluster effect, the variances of

estimatorsmaybemuch larger than thosebased on simple randomsamples of the same

size. One could say that more elements are observed than are really necessary for such

a precision. The performance can be improved by not including all elements in the

selected clusters in the sample, but just a sample of elements. This is the principle

underlying the two-stage sample design.

5.3.1 Selection in Stages

To select a two-stage sample, first a sample of clusters is drawn. Next, a sample of

elements is drawn from each selected cluster. The clusters are called primary units in

the terminology of two-stage sampling and the elements in the clusters are called

secondary units.

Sampling need not be restricted to two stages. It is very well possible to draw a

three-stage sample. For example, the first stagemay consist of drawingmunicipalities

(the primary units), followed in the second stage by drawing addresses (the secondary

units) in the selected municipalities, and finally persons (the tertiary units) are drawn

at the selected addresses. Two-stage samples occur much more than three-stage

samples and samples with even more stages. Only two-stage samples are described

here (Fig. 5.3).

A number of choices have to bemade to define a two-stage sampling design. First, a

sampling design must be chosen for selecting primary units. Second, a sampling

design must be defined to draw secondary units from the selected primary units.
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Finally, a sample allocation decisionmust bemade. On the one hand, small samples of

elements could be drawn from a large sample of clusters, and on the other hand, large

samples of elements could be drawn from a small sample of clusters. Generally, the

former will increase the precision of estimators, but it will also increase the cost of the

fieldwork.

5.3.2 Notations

Notations for two-stage sampling are similar to thoseof cluster sampling. It is assumed

the population U can be divided into M clusters (primary units)

U1;U2; . . . ;UM: ð5:43Þ
The clusters donot overlap and together cover the complete populationU. LetNhbe

the size of cluster Uh (h¼ 1, 2, . . . , M). Consequently,

XM
h¼1

Nh ¼ N: ð5:44Þ

The Nh values of the target variable Y in cluster h are denoted by

Y
ðhÞ
1 ; Y

ðhÞ
2 ; . . . ; Y

ðhÞ
Nh

: ð5:45Þ
If the mean of the target variable in cluster h is denoted by

�Y
ðhÞ ¼ 1

Nh

XNh

k¼1

Y
ðhÞ
k ð5:46Þ

and the total of this target variable in cluster h by

Y
ðhÞ
T ¼

XNh

k¼1

Y
ðhÞ
k ¼ Nh

�Y
ðhÞ
; ð5:47Þ

Figure 5.3 Two-stage sampling. Reprinted by permission of Imre Kortbeek.
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then the population mean of Y can be written as

�Y ¼ 1

N

XM
h¼1

Nh
�Y
ðhÞ
: ð5:48Þ

Another population parameter that will be used is the mean cluster total

�YT ¼ 1

M

XM
h¼1

Y
ðhÞ
T ¼ 1

M

XM
h¼1

Nh
�Y
ðhÞ
: ð5:49Þ

A sampling design and a sample size have been determined in advance for each

possible primary unit, in case it is selected. The sample sizes in theM primary units are

denoted by

n1; n2; . . . ; nM: ð5:50Þ
The values of the nh sampled elements in primary unit h are denoted by

y
ðhÞ
1 ; y

ðhÞ
2 ; . . . ; yðhÞnh

: ð5:51Þ

Not only the sampling design and the sample size are determined in advance for each

primary unit but also the estimator to be used for estimating the total of the target

variable Y. These estimators are denoted by

y
ð1Þ
T ; y

ð2Þ
T ; . . . ; y

ðMÞ
T : ð5:52Þ

Asample ofmprimaryunits is selected from this population.The sample is denoted

by the vector

b ¼ ðb1; b2; . . . ; bMÞ ð5:53Þ
of indicators. If this sample is drawn without replacement, the indicators can only

assume the value 1 (selected) or 0 (not selected). If the sample is selected with

replacement, the value of the indicator bh is equal to the frequency of element h in the

sample (for h¼ 1, 2, . . . , M).

5.3.3 Selection of Primary Sampling Units Without Replacement

First, thecase isdescribedinwhichprimaryunitsareselectedwithoutreplacement.The

first-order inclusion probability of primary unit h is denoted by th, for h¼ 1, 2, . . . ,M.

The second-order inclusion probability of primary units g and h is denoted by tgh, for
g, h¼ 1, 2, . . . , M.

The estimator defined by

�yTS ¼ 1

N

XM
h¼1

bh
y
ðhÞ
T

th
ð5:54Þ
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is an unbiased estimator for the population mean of the target variable. The subscript

TS denotes two-stage sampling. The variance of this estimator is equal to

Vð�yTSÞ ¼
1

2N2

XM
g¼1

XM
h¼1

ðtgth�tghÞ Y
ðgÞ
T

tg
� Y

ðhÞ
T

th

 !2

þ 1

N2

XM
h¼1

V
�
y
ðhÞ
T

�
th

: ð5:55Þ

The variance consists of two components. The first component covers the variation

in clusters totals. It measures the variation between clusters. The second component

covers the variation of the values of the elements in the clusters. So, it measures

variation within clusters.

The cluster effect occurs if elements within a cluster are similar to one another.

In that case, the variance (5.55) reduces to that of the estimator for the cluster sample.

Apparently, it does notmatter verymuchwhether all elements in a cluster are observed

or just a sample of elements is observed. The precision of the estimator is mainly

determined by the number of the primary units in the sample.

The simplest two-stage sampling design is that of simple random sampling in both

stages: primary and secondary units are selected with equal probabilities and without

replacements. Ifnh secondary units are drawn fromprimaryunith (h¼ 1, 2, . . .,M), the

first-order inclusion probability of all secondary units is equal to nh/Nh. Therefore, the

Horvitz–Thompson estimator for the total of primary unit h is equal to

y
ðhÞ
T ¼ Nh�y

ðhÞ ¼ Nh

nh

Xnh
i¼1

y
ðhÞ
i : ð5:56Þ

This is the sample mean multiplied by the size of the primary unit.

If m primary units are selected with equal probabilities and without replacement,

thefirst-order inclusionprobability of primaryunith is equal to th¼m/M. Substitution

in expression (5.54) results in the unbiased estimator for the population mean

�yTS ¼ M

N

1

m

XM
h¼1

bhNh�y
ðhÞ: ð5:57Þ

So, the estimator is equal to the mean of the estimators for the population totals in

the selected primary units.

Substitution of the first- and second-order inclusion probabilities in expres-

sion (5.55) produces the variance of estimator (5.57). This variance is equal to

Vð�yTSÞ ¼
M

N

� �2

1�m

M

� � S21
m

þ M

mN2

XM
h¼1

N2
h 1� nh

Nh

� �
S22;h

nh
; ð5:58Þ

where

S21 ¼
1

M�1

XM
h¼1

�
Y
ðhÞ
T ��YT

�2
ð5:59Þ
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is the variance of the totals of the primary units and

S22;h ¼
1

Nh�1

XNh

k¼1

�
Y
ðhÞ
k ��Y

ðhÞ�2 ð5:60Þ

is the variance within primary unit h, for h¼ 1, 2, . . .,M. The variance (5.58) can be

estimated in an unbiased manner by

vð�yTSÞ ¼
M

N

� �2

1�m

M

� � s21
m

þ M

mN2

XM
h¼1

bhN
2
h 1� nh

Nh

� �
s22;h

nh
; ð5:61Þ

where

s21 ¼
1

m�1

XM
h¼1

bh

�
Nh�y

ðhÞ�N�yTS

�2
ð5:62Þ

is the sample variance of the estimated totals of the primary units and

s22;h ¼
1

nh�1

XNh

k¼1

�
y
ðhÞ
k ��yðhÞ

�2
ð5:63Þ

is the sample variance within primary unit h.

The two-stage sample design can be chosen such that the sample becomes

self-weighting. This means that all elements in the population have the same

probability of being selected in the sample. The inclusion probability of an element

in a two-stage sample (with simple random sampling in both stages) is equal to the

product of the inclusion probability of the cluster it is part of and the inclusion

probability of the element within the cluster. So the inclusion probability of element

k in cluster h is equal to

m

M

nh

Nh

: ð5:64Þ

To obtain a self-weighting sample, the same proportion of elements must be drawn in

all clusters. This means that nh/Nh must be constant over all clusters. Assuming the

total sample size to be equal to n, the sample size nh in cluster h must be equal to

nh ¼ n

N

M

m
Nh: ð5:65Þ

Substitution of expression (5.65) in estimator (5.57) leads to

�yTS ¼ 1

n

XM
h¼1

bh
Xnh
i¼1

y
ðhÞ
i : ð5:66Þ

TWO-STAGE SAMPLING 117



It is clear from expression (5.66) that all selected elements are assigned the same

weight. The estimator is simply computed by adding all sample values and dividing

this sum by the total sample size n.

5.3.4 Selection of Primary Sampling Units with Replacement

Expressions (5.59) and (5.60) show that thevariance of the estimator is determined to a

large extent by the differences in the totals of the target variable of the primary units.

Particularly if the means of the primary units are more or less the same, differences in

sizes of the primary units may lead to a large variance. This effect was already

described for cluster sampling. Here also, its impact can be reduced by drawing

primary units with probabilities proportional to their size. To implement this, the

sample has to be selected with replacement. Let

q1; q2; . . . ; qM ð5:67Þ
be the selection probabilities of the primary units. If a sample of m primary units is

drawn, the inclusion expectations are th¼E(bh)¼mqh. This notation is similar to that

for selecting primary units without replacement.

In a two-stage sample, where primary units are drawn with replacement, the

estimator defined by

�yTS ¼ 1

mN

XM
h¼1

bh
y
ðhÞ
T

qh
ð5:68Þ

is an unbiased estimator for the population mean of the target variable. According to

a theorem by Raj (1968), the variance of this estimator is equal to

Vð�yTSÞ ¼
1

mN2

XM
h¼1

qh
Y
ðhÞ
T

qh
�YT

 !2
1

mN2

XM
h¼1

V
�
y
ðhÞ
T

�
qh

: ð5:69Þ

This variance can be estimated in an unbiased manner by

vð�yTSÞ ¼
1

mðm�1ÞN2

XM
h¼1

bhðzh��zÞ2; ð5:70Þ

where

zh ¼ y
ðhÞ
T

qh
ð5:71Þ

and

�z ¼ 1

m

XM
h¼1

bhzh: ð5:72Þ
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This theorem is applied to the situation in which primary units are drawn with

probabilities proportional to their size. Furthermore, it is assumed that secondary

units are drawn with equal probabilities and without replacement. Consequently,

qh ¼ Nh

N
; ð5:73Þ

for h¼ 1, 2, . . . , M. The Horvitz–Thompson estimator for the populations is now

equal to

�yTS ¼ 1

m

XM
h¼1

bh�y
ðhÞ: ð5:74Þ

So, the estimator is simply equal to the mean of the sample means in the clusters.

The variance of this estimator is equal to

Vð�yTSÞ ¼
1

mN

XM
h¼1

Nh

�
�Y
ðhÞ��Y

�2
þ 1

mN

XM
h¼1

Nh 1� nh

Nh

� �
S22;h: ð5:75Þ

The first component in this variance is the variance of the Horvitz–Thompson for a

cluster sample where clusters are drawn proportional to their size (see expres-

sion (5.41)). The second component is contributed by the within-cluster sampling

variation. Variance (5.75) can be estimated in an unbiased manner by

vð�yTSÞ ¼
1

mðm�1Þ
XM
h¼1

bh

�
�yðhÞ���y

�2
; ð5:76Þ

where

��y ¼ 1

m

XM
h¼1

bh�y
ðhÞ ð5:77Þ

is the mean of the sample means of the observed elements in the clusters.

The two-stage sampling design can be tuned such that samples are self-weighting.

The inclusion probabilities of all elements can be made equal if the inclusion

probability of secondary element k in primary unit h is taken equal to

pk ¼ m
Nh

N

nh

Nh

¼ m
nh

N
: ð5:78Þ

To obtain a self-weighting sample, the same number of elements must be drawn in

each selected cluster. If n0 is the sample size in each cluster, the estimator (5.72) turns

into

�yTT ¼ 1

mn0

XM
h¼1

bh
Xn0
i¼1

y
ðhÞ
i : ð5:79Þ

Expressions for thevariance and for the estimator of thevariance canbe obtained by

substituting nh¼ n0 in expressions (5.75) and (5.74).
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Selecting the primary units with probabilities proportional to their size has some

advantages over selecting primary units with equal probabilities. It has already

been shown that this type of sampling may lead to estimators with a higher

precision. This is the case when there is not much variation in the means of the

primary units. An additional advantage is that the workload is more evenly spread,

as the same number of elements are observed in each primary unit. The last

advantage is that the sample size in each cluster is the same. Sample sizes do not

depend anymore on the primary units selected. So, the total sample size in known

in advance.

5.3.5 An Example

The properties of a two-stage sample are illustrated in an example where the mean

income of the working population of Samplonia is estimated. The seven districts are

primary units (M¼ 7).A sample of districts is drawnwith probabilities proportional to

size. The individual persons are the secondary units. Samples of persons are selected

with equal probabilities and without replacement. The same number of persons is

drawn in each selected sample, thereby making the sample self-weighting. The

variance of the estimator is equal to expression (5.75).

Table 5.5 contains the variance of the estimator for all kinds of combinations of

sample sizes for primary and secondary units, all resulting in a total sample size of

approximately 20. Note that districts have been selected with replacement. Therefore,

it may happen that a district is selected more than once in the sample. In this case, a

new sample of secondary units is drawn for each occurrence in the sample.

It should be kept in mind that the variance of the estimator in a simple

random sample of size 20 is equal to 43,757. All two-stage samples provided in

Table 5.5 have a larger variance. Only if 20 districts are selected, and one person per

district, thevariance is of the sameorder ofmagnitude. Thiswill not come as a surprise

as the two-stage sample resembles the simple random sample very much in this

situation.

Table 5.5 The Variance of the Estimator of the Mean Income in a Self-Weighting

Two-Stage Sample

Number of

Selected District

Number of Selected

Persons per District Sample Size

Variance in

the Estimator

1 20 20 731,697

2 10 20 370,987

3 7 21 250,261

4 5 20 190,632

5 4 20 154,561

7 3 21 112,847

10 2 20 82,418

20 1 20 46,347
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5.3.6 Systematic Selection of Primary Units

There is one type of two-stage sampling that is sometimes used by national statistical

institutes and that is a design inwhich both primary and secondary units are selected by

means of systematic sampling. It is described how this was done at Statistics

Netherlands. This sampling design was developed at a time when there was no

sampling frame available for the total population of The Netherlands. However, The

Netherlands was divided into municipalities and each municipality separately had its

own population register. Therefore, it was decided to select a two-stage samplewhere

the municipalities were the primary units. The first stage of the sample selection

process consisted of selecting a systematic sample ofmunicipalitieswith probabilities

proportional to the population size of the municipalities. The second stage of the

process consisted of selecting a systematic sample of persons (with equal probabili-

ties) from each selected municipality.

To reduce travel costs, there was the additional condition that in each selected

municipality a minimum number of persons must be selected. This minimum number

is indicated by n0. If n is the total sample size, the number of municipalities to

be selected must be equal to m¼ n/n0. Recipe 4.5 can be used to draw a systematic

sampleof sizemwithunequal probabilities. The step length is equal toF¼N/m,where

N is the total population of The Netherlands.

Municipalities h for whichNh�F are “big” elements. They are always selected in

the sample. Not n0 persons but nh¼ nNh/N persons are to be selected from “big”

elements. This change is required to keep inclusion probabilities the same for all

persons in the population. The inclusion probability pk of a person k in a “big”

municipality h is now equal to

pk ¼ 1� nh

Nh

¼ nNh=N

Nh

¼ n

N
: ð5:80Þ

The total size of all “big”municipalities together is denoted byNB. If the number of

persons to be selected from these municipalities is denoted by nB, then

nB ¼ n
NB

N
: ð5:81Þ

The remainingmunicipalities together have a total size ofN�NB.A sample of size

n� nB personsmust be selected from thesemunicipalities. Since n0 persons have to be

observed in each selected municipality, the number of still-to-be-selected municipal-

itiesmust be equal to (n� nB)/n0. The inclusion probability of such amunicipality h is

equal to

n�nB

n0

Nh

N�NB

ð5:82Þ

and the inclusion probability pk of a person in such a municipality is equal to

pk ¼ n�nB

n0

Nh

N�NB

n0

Nh

¼ n

N
: ð5:83Þ
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It turns out that all persons, in whatever municipality they live, have the same

inclusion probability. So, this produces a self-weighting sample.

Note that it is assumed that several computations above produce integer results.

This does not always have to be the case in practical situations. Some roundingwill be

required, and this may result in slight deviations.

Since this sampling design produces self-weighting samples, the estimator for the

populationmean of the target variable is simply obtained by computing themeanof all

observed elements in the sample.

Sample selection is systematic in both stages. This makes it difficult to properly

estimate the variance of the estimator. At least, two strata have to be distinguished, a

stratumof“big”municipalities thatare selectedwithcertaintyandastratumcontaining

all other municipalities. Assuming the order of elements in the sampling frames of the

municipalities is unrelated to the target variables of the survey, sampling within

municipalities can be assumed to be simple random. If not toomanymunicipalities are

selected, and theorderof themunicipalities in thesampling frame isarbitrary, sampling

of municipalities can be seen as with unequal probabilities and with replacement.

Expressions (5.75)and (5.76)can thenbeused forapproximatevariancecomputations.

5.4 TWO-DIMENSIONAL SAMPLING

Thus far, the elements in the population can be identified by a single unique sequence

number.Consequently, elements could be represented as points on a straight line. Such

a population is called one-dimensional population. There are, however, situations in

which it is meaningful to see a target population as two-dimensional. Suppose, the

objective of a research project is to investigate howmanyplants of a specific type grow

in the field. Counting all plants in the field is a time-consuming job. Therefore, themap

of the area is divided into squares of 1m� 1m by means of a rectangular grid. A

sample of squares is selected and the plants are counted in the selected grid. The

squares are the units of measurement. Each square is now identified by two sequence

numbers: a row number and a column number. Therefore, the population of squares

could be called a two-dimensional population.

5.4.1 Two-Dimensional Populations

An element of a two-dimensional population is identified by two sequence numbers,

one for each dimension. The sequence numbers in the first dimension run from 1 to N

and the sequence numbers in the second dimension run from 1 to M. A two-

dimensional population can be represented by Table 5.6.

Element (k, h) denotes the element with row number k and column number h in the

table. Thevalue of the target variable for this element is denotedbyYkh (k¼ 1, 2, . . . ,N
and h¼ 1, 2, . . . , M). Furthermore, the notation

Ykþ ¼
XM
h¼1

Ykh ð5:84Þ
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is introduced for the kth row total and

Yþ h ¼
XN
k¼1

Ykh ð5:85Þ

for the hth column total. Therefore, the population total YT is equal to

YT ¼
XN
k¼1

Ykþ ¼
XM
h¼1

Yþ h: ð5:86Þ

All information with respect to the target variable is summarized in Table 5.7.

5.4.2 Sampling in Space and Time

Two-dimensional samplingmay be an option if a phenomenon to be investigated has a

geographical spread, such as the occurrence of plants or animals in an area. Maybe

more often, two-dimensional sampling is used in survey where time is one of the

dimensions. An example is a budget survey. The objective of such a survey is to

estimate yearly expenditures of households. At first sight, the way to do this may be

selecting a sample of households and asking them to keep track of all their expen-

ditures for a year. This requires a very large (if not impossible) effort for households.

Therefore, a two-dimensional population is constructed where the first dimension

Table 5.6 A Two-Dimensional Population

Dimension 2

Dimension 1 1 2 . . . M

1 (1, 1) (1, 2) . . . (1, M)

2 (2, 1) (2, 2) . . . (2, M)
..
. ..

. ..
. ..

.

N (N, 1) (N, 2) . . . (N, M)

Table 5.7 The Target Variable in a Two-Dimensional Population

Dimension 2

Dimension 1 1 2 . . . M Total

1 Y11 Y12 . . . Y1M Y1þ
2 Y21 Y22 . . . Y2M Y2þ
..
. ..

. ..
. ..

.

N YN1 YN2 . . . YNM YNþ
Total Yþ1 Yþ2 . . . YþM YT
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consists of households and the seconddimensiondivides theyear into anumberof time

periods, for example, months. The elements to be investigated are households in

specific months (see Table 5.8). Consequently, a selected household needs to keep

track of its expenditures in 1 month only.

Sampling from two-dimensional populations where time is one dimension is

usually called sampling in space and time (Fig. 5.4).

There are many ways to select a sample from a two-dimensional population.

Assuming the sample size to be equal to r, here is a list of some possible sampling

designs.

. Method A. Transform the two-dimensional population into a one-dimensional

population by ordering all elements in some way. This could, for example, be

done row-wise or column-wise. The two-dimensional nature of the population

is ignored, and one of the sampling designs of Chapter 4 can be applied.

. Method B1. First, draw a simple random sample of n rows from theN rows. Next,

draw a simple random sample of r/n elements (assuming r is divisible by n) from

each selected row. This comes down to selecting a two-stage sample where the

rows are the primary units and the elements in the rows are the secondary

elements.

. Method B2. First, draw a simple random sample of m columns from the M

columns. Next, draw a simple random sample of r/m elements (assuming r is

divisible bym) from each selected column. This comes down to selecting a two-

stage sample where the columns are the primary units and the elements in the

columns are the secondary elements.

. Method C. First, draw a simple random sample of n rows from theN rows. Next,

draw a simple random sample ofm columns from theM columns. Finally, draw a

simple random sample (ignoring the two-dimensional character) of size r from

the resulting n�m elements. This guarantees that not too many elements are

selected from one row or one column.

. MethodD. First, draw a simple random sample of n rows from theN rows. Next,

drawa simple randomsample ofm columns from theM columns. Finally, apply a

fixed filter that selects r elements from amatrix of n�m elements. This filter can

be designed such that the sample is spread over a fixed number of rows and

columns.

Table 5.8 Two-Dimensional Sampling for a Budget Survey

Month

Household 1 2 . . . 12

1 (1, 1) (1, 2) . . . (1, 12)

2 (2, 1) (2, 2) . . . (2, 12)
..
. ..

. ..
. ..

.

N (N, 1) (N, 2) . . . (N, 12)
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Method A offers no guarantees for a balanced spread of the sample observations

over rows and columns. It may very well happen that one element has to report about

moreperiods thananother element.Also, the amount offieldwork inoneperiodmaybe

much more than in another period.

Methods B1 and B2 are both two-stage samples. This makes it possible to control

the distribution of the sample in one dimension. Method B1 allows controlling the

number of elements in the sample. Since periods are selected at random for elements,

it may happen that in certain periods of the year much more data are collected than in

another period of the year. Method B2 allows controlling the number of periods in

which data collection takes place, but it may happen that one element has to report on

more periods than another element.

Methods C and D give more control over the distribution of the sample over both

dimensions. The first step is to select n rows andm columns. This results in a subtable

consisting of n rows and m columns. The elements in this subtable together form the

donor table.

The next step for method C is to select a simple random sample of size r from the

donor table. The next step for method D is to apply the so-called filter table. See

Table 5.9 for an example. A filter table consists, like the donor table, of n rows andm

columns. The value rij in cell (i, j) can either by 0 or 1. The corresponding element in

the donor table is selected in the sample if rij¼ 1 and it is not selected if rij¼ 0.

The filter tablemust be composed such that its total is equal to r. Furthermore, each

row total must be equal to s and each column total must be equal to t.

Figure 5.4 Sampling in space and time. Reprinted by permission of Imre Kortbeek.

Table 5.9 A Filter Table

Dimension 2

Dimension 1 1 2 . . . m Total

1 r11 r12 . . . r1m r1þ
2 r21 r22 . . . r2m r2þ
..
. ..

. ..
. ..

. ..
.

n rn1 rn2 . . . rnm rnþ

Total rþ1 rþ2 . . . rþm r
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Method D is illustrated by means of an example. Suppose a survey is carried out to

estimate the number of passengers on a specific day in the buses of the public transport

system of the province of Induston in Samplonia. Starting point is a two-dimensional

populationwhere the six rows represent the six bus lines and the six columns represent

2-h time periods. The population data can be found in Table 5.10.

A sample of size r¼ 5 must be selected from this population. First, a donor table

consisting of three rows and three columns is selected. So, the donor table contains

nine elements. To select a sample of five elements from this donor table, the following

filter table could be applied:

1 1 0 

0 1 1 

0 0 1 

Suppose, rows 4, 1, and 2 and columns 1, 5, and 3 are selected. Then, the donor table

will contain the following elements:

(4,1) (4,5) (4,3)

(1,1) (1,5) (1,3)

(2,1) (2,5) (2,3)

Application of the filter table produces a sample consisting of the elements (4, 1),

(4, 5), (1, 5), (1, 3), and (2, 3).

5.4.3 Estimation of the Population Mean

Thefirst-order inclusion probability of an element does not depend on the composition

of the filter table. It can be shown that the first-order inclusion probability of every

Table 5.10 Transported Passengers on Bus Lines in Induston

Time Period

Bus Line 7–9 9–11 11–13 13–15 15–17 17–19

Oakdale–Smokeley 3 8 2 4 4 5

Oakdale–Crowdon 4 5 4 3 3 4

Oakdale–Mudwater 2 9 1 5 3 6

Smokeley–Crowdon 22 6 11 5 3 23

Smokeley–Mudwater 12 8 2 8 4 14

Crowdon–Mudwater 19 4 7 2 1 21
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element (k, h) is equal to

p0 ¼ pðk;hÞ ¼ r

NM
: ð5:87Þ

The second-order inclusion probabilities do depend on the composition of the filter

table. This will not come as a surprise as a filter may exclude specific combinations of

elements. For example, if the filter table only has 1s at the diagonal, elements in the

same row or in the same column can never be selected together.

The second-order inclusionprobability of twoelements (k,h) and (k0,h0)withk „ k0
and h¼ h0 is denoted by p1. This inclusion probability is equal to

p1 ¼ pðk;hÞðk0;hÞ ¼ 1

NðN�1ÞM
Xm
j¼1

r2þ j�r

 !
: ð5:88Þ

The second-order inclusion probability of two elements (k, h) and (k0, h0) with
k¼ k0 and h „ h0 is denoted by p2. This inclusion probability is equal to

p2 ¼ pðk;hÞðk;h0Þ ¼ 1

MðM�1ÞN
Xn
i¼1

r2iþ�r

 !
: ð5:89Þ

Finally, the second-order inclusion probability of two elements (k, h) and (k0, h0)
with k „ k0 and h „ h0 is denoted by p3. This inclusion probability is equal to

p3 ¼ pðk;hÞðk0;h0Þ ¼
1

MðM�1ÞNðN�1Þ r2 þ r�
Xn
i¼1

r2iþ�
Xm
j¼1

r2þ j

 !
: ð5:90Þ

The values of the target variable Y in the donor table are denoted by zij (for i¼ 1,

2, . . . , n and j¼ 1, 2, . . . , m). Furthermore, the notation

yij ¼ rijzij ð5:91Þ
is introduced. So, the value yij is equal to the value of the target variable if the

corresponding element in the donor table is selected in the sample. And yij¼ 0, if

the element is not selected in the sample. The Horvitz–Thompson estimator for the

population mean of Y can now be written as

�yTD ¼ 1

p0MN

Xn
i¼1

Xm
j¼1

yij : ð5:92Þ

This is an unbiased estimator. To be able to write down the variance of this

estimator, three quantities D1, D2, and D3 are introduced:

D1 ¼ N
XN
k¼1

XM
h¼1

Y2
kh�

XM
h¼1

Y2
þ h; ð5:93Þ
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D2 ¼ M
XN
k¼1

XM
h¼1

Y2
kh�

XN
k¼1

Y2
kþ ; ð5:94Þ

and

D3 ¼ NM
XN
k¼1

XM
h¼1

Y2
kh�Y2�D1�D2: ð5:95Þ

The variance of estimator (5.92) is now equal to

Vð�yTDÞ ¼
p2
0�p1

p2
0

D1 þ p2
0�p2

p2
0

D2 þ p2
0�p3

p2
0

D3: ð5:96Þ

To be able towrite down the variance of this estimator by using the sample data, the

sample analogues of D1, D2, and D3 are introduced:

d1 ¼
Xm
j¼1

rþj

Xn
i¼1

y2ij�
Xm
j¼1

y2þ j; ð5:97Þ

d2 ¼
Xn
i¼1

riþ
Xm
j¼1

y2ij�
Xn
i¼1

y2iþ ; ð5:98Þ

and

d3 ¼ r
Xn
i¼1

Xm
j¼1

y2ij�y2þþ�d1�d2; ð5:99Þ

where

yiþ ¼
Xm
j¼1

yij ; ð5:100Þ

yþ j ¼
Xn
i¼1

yij; ð5:101Þ

and

yþþ ¼
Xn
i¼1

Xm
j¼1

yij : ð5:102Þ

128 COMPOSITE SAMPLING DESIGNS



Table 5.11 Possible Samples of Size 3 from the Two-Dimensional Population of Bus

Lines in Induston

Filter Table Variance of 
the Estimator 

1 0 0 

0 1 0 

0 0 1 

12,153 

1 0 

1 0 

0 1 

14,922 

1 

1 

1 

20,459 

1 1 0 

0 0 1 

14,035 

1 1 

1 0 

16,804 

1 1 1 
17,800 
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The estimator of variance (5.96) is now equal to

vð�yTDÞ ¼
p2
0�p1

p2
0

d1

p1

þ p2
0�p2

p2
0

d2

p2

þ p2
0�p3

p2
0

d3

p3

: ð5:103Þ

5.4.4 An Example

The effect of the composition of the filter table on the variance of the estimator

is illustrated using the example of the bus lines in Induston. All population data

are provided in Table 5.10. The objective is to estimate the number of passengers on a

specific day in the buses of the province of Induston. Suppose, sample of size r¼ 3

must be selected. Table 5.11 contains a number of different filter tables that

result in such a sample. For each filter table, the variance of the estimator has been

computed.

Note that all other possible filter tables can be obtained from the filter tables in

Table 5.11 by permuting either the rows or the columns. Thevalue of thevariance does

not change under such permutations.

The smallest value of the variance is obtained if the sample is distributed over as

many rows and columns as possible. This can be explained by the lack of a cluster

effect. If several elements are selected within a row or within a column, there will be a

cluster effect resulting in larger variances.

Drawing a simple random sample of size 3 from the filter table (method C) would

result in anestimatorwith avariance equal to14,146.Comparisonwith thevariances in

Table 5.11 leads to the conclusion that the precision canonly be improved if the sample

is forced over as many rows and columns as possible.

Most standard works about sampling theory do not discuss two-dimensional

sample. A source of more information on this type of sampling is De Ree (1978).

EXERCISES

5.1 Anders Kiaer, the director of the Norwegian national statistical office, proposed

a sampling technique in 1895 that

a. was similar to a simple random sample;

b. resulted in a sample that resembled the population as much as possible;

c. was similar to a two-stage sampling design;

d. was similar to a stratified samplewith simple random samplingwithin strata.

5.2 If it is assumed that the costs of interviewing are the same for every person in the

population, the optimal allocation in a stratified sample is determined

a. with the cumulative-square-root-f rule;

b. by taking the sample sizes in the strata proportional to the standard

deviations of the target variable in the strata;
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c. by taking the sample sizes in the strata proportional to the product of the size

and the standard deviation of the target variable in the strata;

d. by taking the sample sizes in the strata proportional to the product of the size

and the variances of the target variable in the strata.

5.3 A stratified sample is obtained by

a. randomly drawing strata and randomly drawing elements from the selected

strata;

b. randomly drawing strata and selecting all elements in the selected strata;

c. randomly drawing elements from all strata;

d. randomly selecting elements from the population and afterward establishing

from which strata the selected elements came.

5.4 A sampling design must be defined for an income survey in the town of

Rhinewood. The town consists of two neighborhoods Blockmore and

Glenbrook.The tablebelowcontains someavailable information that canbeused.

Town Variance of the Variable Income Number of Inhabitants

Blockmore 40,000 15,000

Glenbrook 640,000 10,000

Rhinewood 960,000 25,000

The variance estimates have been obtained in an earlier survey. They can be

used as indicators of the actual (adjusted) population variances.

a. Suppose a simple random sample without replacement of size 400 is

selected. Compute the variance and the standard error of the sample

mean of the income variable. Also, compute the margin of the 95%

confidence interval.

b. The researcher decides to draw a stratified sample (with simple random

sampling without replacement within strata). The sample sizes are allocated

by means of proportional allocation. Compute the variance and the standard

error of the estimator of the mean income for this sampling design. Also

compute the margin of the 95% confidence interval.

c. Since indications of stratum variances are available, it is possible to apply

optimal allocation. Compute the variance and the standard error of the

estimator of the mean income for this sampling design. Also, compute the

margin of the 95% confidence interval.

d. Compare the results of exercises (a), (b), and (c). Explain the observed

differences and/or similarities.

5.5 The town ofBallycastle has been struck by a flood. The town is divided into three

neighborhoods Balinabay, Oldbridge, and Roswall with 10,000, 5000, and

20,000 houses, respectively. To establish the value of the damage, a stratified
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sample of 140 houses is selected. One estimates the ratios of the standard

deviations of damage in the three neighborhoods as 10: 7:3.

a. Compute the proportional allocation.

b. Compute the optimal allocation assuming equal costs.

5.6 A population consisting of 30 elements can be divided into six subpopulations

labeledA, B, . . ., F. The table below contains the values of the target variable for

each subpopulation, the sum of these values, the mean of these values, and the

adjusted population variance of these values. The population mean is equal to

4.5 and the adjusted population variance is equal to 6.258621.

Subpopulation Values Sum Mean Population Variance

A 1 2 3 6 2 1.0

B 1 3 5 9 3 4.0

C 1 1 1 3 3 3 5 5 5 27 3 3.0

D 7 7 8 8 9 9 48 8 0.8

E 4 4 5 5 6 6 30 5 0.8

F 2 5 8 15 5 9.0

a. Compute the variance of the estimator of the population mean if a simple

random sample of size 6 is selected without replacement.

b. Compute the variance of the estimator if a stratified sample is selected (with

simple random sampling within strata) where one element is drawn from

each subgroup.

c. Explain why it is impossible to compute an estimate for the variance of the

estimator for the sampling design in exercise (b).

d. Suppose a cluster sample is selected for two subpopulations. Selection of

cluster is with equal probabilities and without replacement. Compute the

variance of the estimator for this sampling design.

5.7 Peaches are grown for commercial purposes in one part of Samplonia. The area

consists of 10 small villages. There are a number of peach growers in each

village. There are in total 60 peach growers. A sample survey is carried out to

obtain insight into the yearly production of peaches. The table below contains all

population data. The mean production per grower is measured in bushels

(approximately 35 L).

Village Number of Growers Mean Production Total Production Variance S2

1 3 158 474 25

2 4 149 596 17

3 5 137 685 35

4 6 130 780 24

5 10 112 1120 18

6 3 162 486 33

7 4 151 604 25
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8 5 143 715 26

9 8 119 952 34

10 12 101 1208 26

Total area 60 127 7620 424

a. Suppose a simple random sample of 12 growers is selected without

replacement. Compute the variance of the population mean (mean produc-

tion per grower).

b. A cluster sample could be selected to reduce travel costs. Since the average

cluster size is equal to 60/10¼ 6, a sample of 12 growers requires two

clusters to be drawn with equal probabilities and without replacement.

Compute the variance of the estimator for the mean production per grower

for this sampling design.

c. To reduce the effect of the cluster sizes on the variance, it is also possible to

draw the two clusters with replacement and with probabilities equal to their

size. Compute the variance of the estimator for the mean production per

grower for this sampling design.

5.8 A two-stage sample is selected from a population. A number ofm primary units

are selected with equal probabilities and without replacement. A number of nh
secondary units are selected from each selected primary unit h with equal

probabilities and without replacement.

a. Suppose all values of the target variable are the same within each primary

unit. Write down the variance of the estimator of the population for this

sampling design in this situation.

b. What can be learnt from this formula with respect to the sample size and the

distribution of the sample size over primary and secondary units?

5.9 A two-stage sample is selected from a population. A number ofm primary units

are selected with replacement and with probabilities equal to their size. A

number of nh secondary units are selected from each selected primary unit hwith

equal probabilities and without replacement.

a. Suppose the mean of the target variable is the same in each primary unit.

Write down the variance of the estimator of the population for this sampling

design in this situation.

b. What can be learnt from this formula with respect to the sample size and the

distribution of the sample size over primary and secondary units?
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C H A P T E R 6

Estimators

6.1 USE OF AUXILIARY INFORMATION

Somesamplingdesignswere described inChapters 4 and5 that improved theprecision

of the Horvitz–Thompson estimator by using an auxiliary variable. For example, if

a quantitative auxiliary variable has a strong correlation with the target variable,

sampling with probabilities proportional to the values of the auxiliary variable will

lead to a precise estimator. This will also be the case, if there is a qualitative auxiliary

variable that is highly correlated with the target variable. Such an auxiliary variable

can be used in a stratified sampling design.

Auxiliary information can also be used in a different way. Instead of taking

advantage of auxiliary information in the sampling design, it is possible to improve

the estimation procedure. This will be the topic of this chapter. To keep things simple,

it is assumed that the sample is selected by means of simple random sampling (with

equal probabilities and without replacement).

The theory is also restricted to estimators that incorporate information of one

auxiliary variable only (Fig. 6.1). It is possible to use more auxiliary variables. An

example can be found in Chapter 10, where the generalized regression estimator is

described.

Two estimatorswill be discussed that use a quantitative auxiliary variable: the ratio

estimator and the regression estimator. One estimator will be described that uses a

qualitative auxiliary variable: the poststratification estimator. Similar to sampling

designs, estimators will perform better as the relationship between target variable and

auxiliary variable is stronger.

6.2 A DESCRIPTIVE MODEL

All estimators described in this section are special cases of a model describing the

relationship between the target variable and the auxiliary variable.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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Definition 6.1 A descriptivemodel F assumes that the valueYk of the target variable

for element k can be written as

Yk ¼ FðXk; uÞþRk; ð6:1Þ
whereF is a function that depends only on thevalueXk of the auxiliary variable and the

values of a limited number ofmodel parameters denoted by the vector u. The function
Fmust havebeen chosen such that themeanof the residualsR1,R2, . . .,RN is equal to0:

�R ¼ 1

N

XN
k¼1

Rk ¼ 0: ð6:2Þ

The objective is to estimate the population mean of the target variable Y. By

applying expressions (6.1) and (6.2) this mean can be written as

�Y ¼ 1

N

XN
k¼1

FðXk; uÞþRkð Þ ¼ 1

N

XN
k¼1

FðXk; uÞ: ð6:3Þ

Hence, it is possible to compute the population mean if the exact form of the

function F and the values X1, X2, . . . ,XN of the auxiliary variable are known. The

form of the function F is often known but not the values of the model parameters. An

example of a descriptive model is the linear model

Yk ¼ AþBXk þRk; ð6:4Þ
in which A and B are the model parameters, so u¼ (A, B).

A perfect descriptive model would be able to predict the values of Ywithout error.

All residuals Rkwould be equal to 0. Unfortunately, such models are seldom encoun-

tered in practice.Most models are only partly able to explain the behavior of the target

variable. Nevertheless, they can be useful. To measure the predictive power of a

descriptivemodel, the residual sum of squares SSR is used. This quantity is defined as

SSR ¼
XN
k¼1

ðYk �FðXk; uÞÞ2 ¼
XN
k¼1

R2
k: ð6:5Þ

Figure 6.1 Estimation using auxiliary information. Reprinted by permission of Imre Kortbeek.
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The predictive power of a model is better as the residual sum of squares is smaller.

Themodel parameters of somemodels are alreadyfixedbycondition (6.2). If this is not

the case, the additional condition is imposed that the values of the model parameters

must minimize the residual sum of squares SSR. However, these values can only be

computed if all values of Xk and Yk in the population are known. This is not the case.

The solution is to estimate the model parameters by using the sample data. First, the

condition is imposed that the mean of the sample residuals must be equal to 0:

�r ¼ 1

n

Xn
i¼1

ri ¼ 1

n

Xn
i¼1

ðyi �Fðxi; uÞÞ ¼ 0: ð6:6Þ

If this is not sufficient to obtain estimates of themodel parameters, the residual sum

of squares

SSR ¼
Xn
i¼1

r2i ¼
Xn
i¼1

ðyi �Fðxi; uÞÞ2 ð6:7Þ

in the sample is minimized. Let t be the vector of estimators of the model parameters

u that has been obtained in this way. If the value Xk of the auxiliary variable is known

for every element in the population, the population mean of Y can be estimated by

substituting the function values F(Xk; u) with the estimated function values F(Xk; t)

in expression (6.3). This leads to the estimator

�yF ¼ 1

N

XN
k¼1

FðXk; tÞ: ð6:8Þ

The subscript F indicates that the estimator is based on a descriptive model with

function F. It turns out that estimator (6.8) is unbiased, or approximately unbiased for

large samples, for all specific models described in the next sections:

Eð�yFÞ � �Y: ð6:9Þ
The variance of the model-based estimator is equal to, or approximately equal to,

Vð�yFÞ �
1

n
� 1

N

� �
SSR

N� 1
: ð6:10Þ

This variance can be estimated (approximately) unbiased by

vð�yFÞ ¼
1

n
� 1

N

� �
1

n� 1

Xn
i¼1

ðyi �Fðxi; tÞÞ2: ð6:11Þ

It will be clear from expression (6.10) that there is a close relationship between the

variance of the estimator the predictive power of the descriptivemodel.Amodel that is

able to predict the values of the target variable without much error will result in a

precise estimator.

Use of a model-based estimator will only be effective if it results in a smaller

variance than that of theHorvitz–Thompson estimator. Since simple randomsampling
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is assumed in this chapter, the Horvitz–Thompson estimator is equal to the sample

mean. To measure of the improvement in precision of the model-based estimator,

the efficiency of the estimator, is introduced. It is defined by

Effð�yFÞ ¼
Vð�yÞ
Vð�yFÞ

: ð6:12Þ

Avalue of the efficiency larger than 1 indicates thatmodel-based estimator is better

than the sample mean. A value smaller than 1 means the simple sample mean is

superior to the model-based estimator.

A number of specific estimators will be described in the next sections. They are all

based on some descriptivemodel. In fact, they are all based on the assumption of some

kind of linear relationship between the target variable and the auxiliary variable.

All these estimators will be illustrated using a small example. The objective is to

estimate the mean income of working males in the province of Agria. The population

consists of 58 persons only. The variable age will be used as auxiliary variable.

Figure 6.2 shows a scatter plot of the relation between income and age in this

population. It will be clear that it is not unreasonable to assume some kind of linear

relationship.

6.3 THE DIRECT ESTIMATOR

The simplest estimator that can be based on a descriptive model is the one that uses

no auxiliary variable at all. This comes down to amodel that always predicts the same

value for the target variable. This model can be written as

FðXk;AÞ ¼ A; ð6:13Þ

Figure 6.2 The relationship between income and age for the working males in Agria.
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in which A is the only model parameter. Imposing the condition that the average of

all residuals Rk must be equal to 0 results in

A ¼ �Y : ð6:14Þ
This is exactly the populationmean tobe estimated. Thevalue ofA can be estimated

by the sample mean

a ¼ �y: ð6:15Þ
The sample-based estimator of the descriptive model can now be written as

FðXk; aÞ ¼ �y: ð6:16Þ
Substitution of (6.16) in expression (6.8) results in an estimator that could be called

the direct estimator:

�yD ¼ �y: ð6:17Þ
It can be concluded that application of a descriptive model without an auxiliary

variable produces nothing new. It is the Horvitz–Thompson estimator for the case of

simple random sampling without replacement. This is an unbiased estimator for the

population mean of Y. The variance of this estimator is equal to

Vð�yDÞ ¼
1� f

n
S2Y ; ð6:18Þ

where

S2Y ¼ S2 ¼ 1

N � 1

XN
k¼1

ðYk � �YÞ2 ð6:19Þ

is the (adjusted) populationvariance as defined in Chapter 2. Since the residual sum of

squares is equal to

SSR ¼
XN
k¼1

ðYk �FðXk;AÞÞ2 ¼
XN
k¼1

ðYk � �YÞ2; ð6:20Þ

it is clear that for the direct estimator the expression

Vð�yDÞ ¼
1� f

n

SSR

N� 1
ð6:21Þ

holds exactly. The sample-based estimator for the variance is

vð�yDÞ ¼
1� f

n
s2Y ; ð6:22Þ

where

s2Y ¼ s2 ¼ 1

n� 1

Xn
i¼1

ðyi ��yÞ2 ð6:23Þ

is the sample variance.
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It is possible to show thevariance of the direct estimator graphically. The data about

the incomes of working males in Agria are used for this. The value of the population

mean of the target variable Y is equal to 551. The descriptive model for the direct

estimator is, in fact, the line Y¼F(X;A)¼A. In this case, it is the line Y¼F(X)¼ 551.

It is the horizontal line in the scatter plot in Fig. 6.3.

The residuals can be interpreted as the distances of the points (representing the

values of the elements) to the line. These distances have been drawn in Fig. 6.3 as

vertical line segments. The variance of the estimator can be seen (apart from a

constant) as the average of the squared distances. So the estimator is more precise

as the points are closer to the line. The variance of the estimator in the example of

Fig. 6.3 is equal to 1178. It is clear from the plot that direct estimator is not the best

estimator here. One can think of lines that are much closer to the points.

6.4 THE RATIO ESTIMATOR

Traditionally, the ratio estimator is probably the most used model-based estimator.

Its popularity may be due to the simplicity of computation, while at the same time it

takes advantage of auxiliary information. The ratio estimator is effective in situations

where the ratiosYk/Xkof thevaluesof the target variable and the auxiliaryvariablevary

less than the values Yk of the target variable themselves. If this situation occurs, it is

better to first estimate the population ratio

R ¼ �Y
�X

ð6:24Þ

after whichmultiplication with the (known) populationmean of the auxiliary variable

results in an estimator for the population mean of the target variable. The assumption

Figure 6.3 The direct estimator.
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that the ratios Yk/Xk show little variation can be translated into a descriptive model.

This assumption implies that the points with coordinates (Xk, Yk) lie approximately

in a straight line that goes through the origin of the scatter plot. The corresponding

descriptive model can be written as

FðXk;BÞ ¼ BXk: ð6:25Þ
This model contains only one parameter B. Therefore, the condition that the

populationmean of residualsmust be equal to 0fixes thevalue of themodel parameter:

B ¼ �Y
�X
: ð6:26Þ

In line with the analogy principle, an estimator b for B is obtained by replacing the

population quantities by the corresponding sample quantities:

b ¼ �y

�x
: ð6:27Þ

The estimator of the descriptive model becomes

FðXk; bÞ ¼ bXk ¼ �y

�x
Xk: ð6:28Þ

Substitution of (6.28) in (6.8) produces the ratio estimator:

�yR ¼ �y
�X
�x
: ð6:29Þ

So, the ratio estimator is equal to the samplemeanmultiplied by a correction factor.

This correction factor adjusts the estimator for a difference between the sample mean

and the population mean of the auxiliary variable. For example, if the sample values

ofX are relatively small, the sample values of Y are probably also relatively small. The

correction factor will be larger than 1. In this case, the sample mean will be corrected

in the proper direction; that is, its value will be increased.

The ratio estimator is not an unbiased estimator, but it can be shown (see, for

example, Cochran, 1977) that it is approximately unbiased. There is a small bias

caused by the fact that the expected value of the ratio of two random variables is not

equal to the ratio of the expected values of the random variables. This implies that b is

not an unbiased estimator of B. However, the ratio estimator is asymptotically design

unbiased (ADU),whichmeans that for large sample sizes the bias is so small that it can

be ignored.

There is no exact expression for the variance of the estimator. By using expres-

sion (6.10), an approximation is obtained that works well for large sample sizes.

Working out this expression for model (6.25) leads to

Vð�yRÞ �
1� f

n

SSR

N � 1
¼ 1� f

n

1

N� 1

XN
k¼1

Yk �
�Y
�X
Xk

� �2

: ð6:30Þ
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This variance expression can be rewritten as

Vð�yRÞ �
1� f

n
S2Y � 2RXYSXSY

�Y
�X
þ S2X

�Y
�X

� �2
 !

; ð6:31Þ

where

S2X ¼ 1

N� 1

XN
k¼1

ðXk � �XÞ2 ð6:32Þ

is the adjusted population variance of auxiliary variable X, where

RXY ¼ SXY

SXSY
ð6:33Þ

is the population correlation between the two variables X and Y, and

SXY ¼ 1

N� 1

XN
k¼1

ðXk � �XÞðYk � �YÞ ð6:34Þ

is the adjusted population covariance.

The variance (6.30) is smaller if the values Yk and Xk are better proportional. The

variance can be estimated (approximately unbiased) by using the sample datawith the

expression

vð�yRÞ �
1� f

n

1

n� 1

Xn
i¼1

yi � �y

�x
xi

� �2

ð6:35Þ

In addition, this estimator is ADU. So, the bias vanishes for large sample sizes.

Suppose variance (6.31) is a good approximation of the true variance of the ratio

estimator. By comparing expressions (6.18) and (6.31), a condition can be determined

under which the ratio estimator is more precise than the direct estimator. This is the

case if

RXY >
SX=�X

2SY=�Y
: ð6:36Þ

So, the ratio estimator has a smaller variance than the direct estimator if the

correlation between the target variable Y and the auxiliary variable X is sufficiently

large. The quantity

SX
�X

ð6:37Þ

is called the coefficient of variation. It is an indicator of the relative precision of the

variable. Suppose the auxiliary variable is taken to be the target variable, butmeasured

in a previous survey. Then it is not unlikely to assume the coefficients of variation of

X and Y are approximately equal. Consequently, the ratio estimator is better than the

direct estimator if the value of the correlation coefficient is larger than 0.5. The ratio

estimator only performs worse than the direct estimator if the coefficient of variation

of the auxiliary variable is at least twice as large as that of the target variable.
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The properties of the ratio estimator are shown graphically using the sample of

working males in the Samplonian province of Agria (see Fig. 6.4). The descriptive

model corresponds to a straight line in the scatter plot, where the incomes of the

persons are plotted against their ages. The linegoes through the origin and the center of

gravity (the point with the mean of the auxiliary variable X and the mean of the target

variableY as coordinates). The slope of the line is equal toB. Again, thevariance of the

estimator is determinedby the sumof squaresof thedistancesof thepoint from the line.

By comparing Fig. 6.4 with Fig. 6.3, it will become clear that the ratio estimator is

a better estimator than the direct estimator. The distances to the line are much smaller.

Indeed, the variance of this estimator turns out to be 482. Note that the variance of the

direct estimator is equal to 1178.

The effect of using the ratio estimator is also shown in a simulation experiment.

The target population consists of 200 dairy farms in the rural part of Samplonia. The

objective of the survey is to estimate the average daily milk production per farm.

Two estimators are compared: the direct estimator and the ratio estimator. The ratio

estimator uses the number of cows per farm as the auxiliary variable. This seems

not unreasonable as one may expect milk production per farm to be more or less

proportional to the number of cows per farm.

Selection of a sample of size 40 and computation of the estimator has been repeated

500 times for both estimators. This gives500values of each estimator. The distribution

of these values has been plotted in a histogram in Fig. 6.5. The histogram on the left

shows the distribution of the direct estimator. The distribution of the ratio estimator is

shown on the right.

The ratio estimator performsmuch better than the direct estimator. The distribution

of its values concentrates much more around the true value. The standard error of

the direct estimator here is equal to 35.6, whereas it is 12.5 for the ratio estimator.

Figure 6.4 The ratio estimator.
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So, amuchmore precise estimator can be obtainedwith the same sample size if proper

auxiliary information is available.

6.5 THE REGRESSION ESTIMATOR

The regression estimator is based on a linear descriptive model in its most general

form. It assumes the points in the scatter plot of the target variable against the auxiliary

variable to approximately lie on a straight line. This corresponds to the model

FðXk;A;BÞ ¼ AþBXk: ð6:38Þ
It is assumed that the values of both model parameters A and B are unknown. The

condition that the populationmeanof the residualsmust be 0 does not yet fix thevalues

of the model parameters. So, the second condition comes into play, and that is the

sum of squares of residuals must be minimized. Application of least squares theory

results in

B ¼ RXY

SY

SX
¼ SXY

S2X
¼
PN
k¼1

ðXk � �XÞðYk � �YÞ
PN
k¼1

ðXk � �XÞ2
ð6:39Þ

and

A ¼ �Y �B�X: ð6:40Þ
The quantity RXY is the population correlation coefficient between X and Y (as

defined in (6.33)), and SXY is the population covariance between X and Y (as defined

in (6.34)).

Of course, these optimal values ofA andB cannot be computed in practice. So, they

have to be estimated using the sample data. The model parameter B is estimated by

b ¼
Pn
i¼1

ðxi � �xÞðyi ��yÞ
Pn
i¼1

ðxi � �xÞ2
ð6:41Þ

Figure 6.5 Simulating the sample distribution of the direct and the ratio estimator.
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and the model parameter A is estimated by

a ¼ �y� b�x: ð6:42Þ
The estimator for the descriptive model becomes

FðXk; a; bÞ ¼ �y� bð�x�XkÞ: ð6:43Þ
Substitution of (6.43) in (6.8) produces the regression estimator

�yLR ¼ �y� bð�x� �XÞ: ð6:44Þ

Like the ratio estimator, the regression estimator can be seen as a correction of the

simple sample mean (the direct estimator). The regression estimator corrects the

difference between sample mean and population mean of the auxiliary variable.

The regression estimator is not an unbiased estimator. The reason is that b is not

an unbiased estimator of B and therefore �xb is not an unbiased estimator of �XB.
However, all these estimators are ADU. So, the bias vanishes for a large sample size.

The variance of the regression estimator can be determined by using expres-

sion (6.10). This results in

Vð�yLRÞ �
1� f

n

SSR

N� 1
¼ 1� f

n

1

N� 1

XN
k¼1

ðYk � �Y �BðXk � �XÞÞ2: ð6:45Þ

The variance (6.45) can be rewritten as

Vð�yLRÞ �
1� f

n
S2Yð1�R2

XYÞ: ð6:46Þ

This expression makes clear that a high correlation between target variable and

auxiliary results in a small variance. The stronger the relationship between X and Y,

the closer the correlation will be to þ 1 or �1, and the smaller the factor 1�R2
XY

in (6.46) will be.

As the variance cannot be computed in practice, it is estimated using the sample

data by

vð�yLRÞ ¼
1� f

n

1

n� 1

Xn
i¼1

ðyi ��y� bðxi � �xÞÞ2: ð6:47Þ

Cochran (1977) suggests replacing the denominator n� 1 in (6.47) by n� 2. This

suggestion comes from the theory of linear regression estimation. Assuming the

sample is selected from an infinite population, the quantity

1

n� 2

Xn
i¼1

ðyi ��y� bðxi � �xÞÞ2 ð6:48Þ

is an unbiased estimator of

S2Yð1�R2
XYÞ: ð6:49Þ
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Both expression (6.47) and the adjustment suggested by Cochran lead to asymp-

toticallyunbiasedestimatorof thevariance.Similar to (6.46),varianceestimator (6.47)

can be rewritten as

vð�yLRÞ �
1� f

n
s2Yð1� r2XYÞ; ð6:50Þ

where

rXY ¼ sXY

sXsY
¼

1
n� 1

Pn
i¼1

ðxi � �xÞðyi ��yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Pn
i¼1

ðxi � �xÞ2 1
n� 1

Pn
i¼1

ðyi ��yÞ2
s ð6:51Þ

is the correlation coefficient in the sample.

Assuming that (6.46) is a good approximation of the true variance, it can be

concluded that thevariance of the regression estimator is never larger than thevariance

of the direct estimator. This becomes clear by rewriting the variance of the regression

estimator as

Vð�yLRÞ � Vð�yDÞð1�R2
XYÞ: ð6:52Þ

Therefore, the efficiency of the regression estimator is equal to

Effð�yLRÞ ¼
Vð�yDÞ
Vð�yLRÞ

¼ 1

1�R2
XY

: ð6:53Þ

As soon as there is some linear relationship between X and Y, the correlation

coefficient will differ from 0, resulting in a regression estimator that is more efficient

than the direct estimator. The regression estimator will only be as precise as the direct

estimator if there is no linear relationship at all; that is, the correlation coefficient is 0.

If the variance of the regression estimator is compared with that of the ratio

estimator, it turns out that the regression estimator is more precise if

RXY

SY

SX
� �Y

�X

� �2

> 0: ð6:54Þ

This condition is not satisfied only if

RXY

SY

SX
¼ �Y

�X
: ð6:55Þ

This is the case if the linear descriptive model for the estimator coincides with the

model for the ratio estimator.To say it differently, the regression estimator and the ratio

estimator have the same precision of the regression line that goes through the origin.

The result of comparing the various estimators is that the use of the regression

estimator should always be preferred, as the variance of the regression estimator is

never larger than the variance of the other estimators. However, the ratio estimator is

still often used. The reason is that the computations for the regression estimator are
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muchmore cumbersome. A ratio estimator can be computed by hand or with a simple

hand calculator.

Thepropertiesof theregressionestimatorcanbeshowngraphicallyusingthesample

of working males in the Samplonian province of Agria (see Fig. 6.6). The descriptive

model corresponds to the regression line in the scatter plot, where the incomes of the

persons are plotted against their ages. The slope of the line is equal toB and its intercept

is equal to A.

Again, the distances from the point to the line represent the residuals. By comparing

Figs 6.4 and 6.6, it will become clear that the regression line is the “best” line. The

residuals are very small and there do not seem to be other lines that come “closer” to

the points. The (approximate) variance of the regression estimator is equal to 85.This is

much smaller than thevarianceof ratio estimator (482)or of thedirect estimator (1178).

Section 6.4 contains a second example. It is a description of a simulation experi-

ment in which the performance of the estimator is explored for estimating the mean

milk production of 200 dairy farms.This experiment can be repeated for the regression

estimator. The results would turn out to be comparable to that of the ratio estimator.

The variance of the ratio estimator is 12.5 and the variance of the regression estimator

is 12.4. The reason is that the regression line almost goes through the origin.Hence, the

descriptive models of the ratio estimator and the regression estimator are almost

the same.

6.6 THE POSTSTRATIFICATION ESTIMATOR

The ratio estimator and the regression estimator both use a quantitative auxiliary

variable. Quantitative variables measure a phenomenon at a numerical scale.

Examples are age and income. It is meaningful to carry out computations with its

values, such as calculating totals andmeans. There are also qualitativevariables. They

Figure 6.6 The regression estimator.
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just label elements so that they can be divided into groups. Examples of such variables

are gender, marital status, and province of residence. Computations are not meaning-

ful. Therefore, they cannot be used in the regression or ratio estimator.

The poststratification estimator is an estimator making use of a qualitative

auxiliary variable. A special trick is used to be able to incorporate such a variable

in a descriptive model. The quantitative variable is replaced by a set of dummy

variables. A dummy variable is a variable that can only assume the values 0 and 1.

Suppose, this qualitativevariable hasL categories; that is, it divides the population into

L groups (here called strata). The qualitative variable is now replaced by L dummy

variables. The values of the L dummy variables for element k are denoted by

X
ð1Þ
k ;X

ð2Þ
k ; . . . ;X

ðLÞ
k ; ð6:56Þ

for k¼ 1, 2, . . . ,N. The value of the hth dummy variable is equal to

X
ðhÞ
k ¼ 1; if element k is in stratum h;

0; if element k is not in stratum h:

(
ð6:57Þ

So, always one dummy variable has the value 1 for an element, while all other

dummyvariables are 0.The total numberof elements in a stratumcannowbewrittenas

Nh ¼
XN
k¼1

X
ðhÞ
k : ð6:58Þ

It is assumed that stratum sizes N1, N2, . . ., NL of all L strata are known. To predict

the values of the target variables using the L dummy variables, the following

descriptive model is used:

FðXk; uÞ ¼ FðXð1Þ
k ;X

ð2Þ
k ; . . . ;X

ðLÞ
k ;B1;B2; . . . ;BLÞ ¼

XL
h¼1

BkX
ðhÞ
k ð6:59Þ

in which B1, B2, . . . ,BL are the model parameters, the values of which have to be

determined. If an element k is a member of stratum h, the predicted value of the target

variable is equal to Bh (for h¼ 1, 2, . . . , L). In fact, this model assumes that the target

variable shows no or little variation within strata; that is, the strata are homogeneous

with respect to the target variable. To say it otherwise, elements within a stratum are

similar.

Minimizing the residual sum of squares results in

Bh ¼ �Y
ðhÞ ¼ 1

Nh

XN
k¼1

X
ðhÞ
k Yk: ð6:60Þ

for h¼ 1, 2, . . . ,L. So, the optimal value ofmodel parameterBh is equal to themean of

the target variable in corresponding stratum h.

Application of the optimal model requires knowledge of the stratum means of the

target variable. This will not be the case in practice, as this would enable computation
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of the population mean using the relation

�Y ¼ 1

N

XL
h¼1

Nh
�Y
ðhÞ ð6:61Þ

As usual, the solution is the estimate of the parametersB1,B2, . . . ,BL using the sample

data. Minimizing the residual sum of squares for the sample results in an estimator

bh ¼ �yðhÞ; ð6:62Þ
forBh. This is the samplemeanof the target variable in thecorresponding stratum.Note

that the sampling design does not fix the number of sample elements in each stratum.

So, the sample mean is based on a random number of observations. It is theoretically

possible that no observations at all become available in a stratum. In practical

situations, the probability of empty strata is usually so small that it can be ignored.

By using expression (6.62), the descriptive model can be estimated by

FðXð1Þ
k ;X

ð2Þ
k ; . . . ;X

ðLÞ
k ; b1; b2; . . . ; bLÞ ¼

XL
h¼1

�yðhÞXðhÞ
k : ð6:63Þ

Substitution of (6.63) in (6.8) results in the poststratification estimator for the

population mean

�yPS ¼
1

N

XL
h¼1

Nh�y
ðhÞ: ð6:64Þ

So, the estimator is equal to the weighted mean of the estimators for the stratum

means. This estimator is unbiased provided there is at least one observation in each

stratum. There is no simple, exact analytical expression for the variance of post-

stratification estimator. However, there is a large sample approximation:

Vð�yPSÞ ¼
1� f

n

XL
h¼1

WhS
2
h þ

1

n2

XL
h¼1

ð1�WhÞS2h; ð6:65Þ

where Wh¼Nh/N is the relative size of stratum h and S2h is the (adjusted) population

variance of the target variable in stratum h. Variance (6.65) can be estimated by

replacing the populationvariances in (6.65)with their sample estimates. This results in

vð�yPSÞ ¼
1� f

n

XL
h¼1

Whs
2
h þ

1

n2

XL
h¼1

ð1�WhÞs2h: ð6:66Þ

The poststratification estimator is precise if the strata are homogeneous with

respect to the target variable. This implies that variation in the values of the target

variable is typically caused bydifferences inmeansbetween strata andnot byvariation

within strata (Fig. 6.7).

The use of the poststratification estimator is illustrated by using an example based

on Samplonian data. The objective is to estimate the mean income of the working

148 ESTIMATORS



population of Samplonia (N¼ 341). A large number of samples of size 40 are

simulated. Figure 6.8 contains the results. The histogram on the left contains the

(simulated) distribution of the direct estimator. The histogram on the right contains

the distribution for the poststratification estimator. Province of residence is used

as auxiliary variable. Since Samplonia consists of the two provinces of Agria and

Induston, there are two strata.

The poststratification estimator seems to perform better, although the differences

with the direct estimator are not very spectacular. This is confirmed by comparing the

standard errors,which are 143 for the direct estimator and 105 for the poststratification

estimator. Apparently, the strata are not so homogeneous with respect to income.

EXERCISES

6.1 To be useful as an auxiliary variable in a model-based estimator, at least the

following information must be available for a variable X:

a. The distribution of the variable X in the target population.

b. The regression coefficients of the regression model predicting the target

variable Y from the variable X.

Figure 6.8 Simulating the sample distribution of the direct estimator and the poststratification estimator.

Figure 6.7 The poststratification estimator. Reprinted by permission of Imre Kortbeek.
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c. The value of correlation between target variable Y and the variable X.

d. Both the regression coefficients and the correlation coefficient.

6.2 The efficiency of an estimator �yF based on a descriptive function F is defined as

a. Effð�yFÞ ¼
Vð�yÞ
Vð�yFÞ

:

b. Effð�yFÞ ¼
Vð�yFÞ
Vð�yÞ :

c. Effð�yFÞ ¼ Sð�yÞ
Sð�yFÞ

:

d. Effð�yFÞ ¼ Sð�yFÞ
Sð�yÞ :

6.3 A retail organization wants insight into the amount of shoplifting in the 5000

shops of its members. Target variable is the total value of stolen goods in a shop.

Auxiliary variable is the floor space of the shop. A simple random sample of 100

shops is selectedwithout replacement. The sample results are summarized in the

table below.

Mean value of shoplifting (euro) 500

Standard deviation of shoplifting (euro) 300

Mean floor space (square meters) 4,900

Standard deviation of floor space (square meters) 3,200

Covariance between shoplifting and floor area 770,000

Furthermore, the information is available that the average floor size of all

5000 shops is equal to 5000m2.

a. Estimate the standard error of the sample mean of the shoplifting values.

b. Compute the value of the regression estimator, assuming floor size is used as

auxiliary variable.

c. Estimate the standard error of the regression estimator. To do this, first

compute the correlation coefficient.

d. Compare the standard errors computed under (a) and (c), and explain the

differences.

6.4 An income survey has been carried out in the town of Woodham. A simple

random sample of 100 households has been selected from the total population of

3410 households.Woodham consists of two neighborhoods:OldNorth andNew

South. The number of households in each neighborhood is known. All available

information is summarized in the table below.

Old North New South Woodham

Sample households 25 75 100

Sample mean of income 348 1,692

Sample variance of income 48,218 724,649 895,455
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a. Compute the sample mean of all 100 households.

b. Estimate the standard error of the sample mean.

c. Estimate the 95% confidence interval for themean income in the population.

Interpret this interval in general term.

d. Suppose the additional information is available that there are 1210 house-

holds in the Old North and 2200 households in the New South. Use the

poststratification estimator to compute an estimate of themean income in the

population, using neighborhood as auxiliary variable.

e. Estimate the standard error of the poststratification estimator.

f. Compare thevalues of the estimators computed under (a) and (d). Explain the

differences.

6.5 There isa relationshipbetweenthe incomeofahouseholdand the totalfloorspace

of the home of a household in a certain region of Samplonia. A simple random

sampleof size4hasbeen selectedwithout replacement.The table belowcontains

the sample data.

Household 1 2 3 4

Floor space 116 81 73 99

Income 1200 950 650 1050

The mean floor space of all houses in the population is 103.7m2.

a. Compute the ratio estimator for the mean income using floor space as auxiliary

variable.

b. Compute the regression estimator for the mean income using floor space as

auxiliary variable.

6.6 Local elections will be held in the town of Springfield. There is new political

party, Forward Springfield, that takes part in elections for the first time. To get

some indication of the popularity of this party, an opinion poll is carried out.

The total population of voters consists of 40,000 people. The town consists of

two neighborhoods: Northwood (with 30,000 voters) and Southfield (with

10,000 voters). A simple random sample of 2000 voters is drawn. Each selected

person is asked for which party he or she will vote. The sample results are

summarized in the table below.

Votes for Forward

Springfield Northwood Southfield

Yes 1338 58

No 182 422

a. Estimate the percentage of voters that will vote for Forward Springfield.

Estimate the variance of this estimator and compute the 95% confidence

interval.
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There are substantial differences between the two neighborhoods of

Northwood and Southfield. Typically, poorer people live in Northwood and

richer people in Southfield. It is not unlikely that there is a relationship

between voting behavior and socioeconomic status. So it might be a good

idea to use the poststratification estimator.

b. Estimate the percentage of voters that will vote for Forward Springfield

poststratifying the sample by neighborhood. Also, estimate the variance of

this estimator.

It is very likely that this opinion poll will be repeated in the future. Then, a

stratified sample will be selected. The variable neighborhood will be used as

stratification variable. Costs of interviewing are different in the two neigh-

borhoods. The costs per interview are e16 in Northwood and e 25 in

Southfield. Suppose the variance of the target variable (votes for Forward

Springfield) is 900 in Northwood and 1600 in Southfield.

c. Compute the optimal allocation for this sampling design under the condition

that the total interviewing costs may not exceed e20,000.
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C H A P T E R 7

Data Collection

7.1 TRADITIONAL DATA COLLECTION

Thefirst step in the surveyprocess concentratesondesign issues.The target population

is defined, the population parameters to be estimated are determined, and a question-

naire is designed. In addition, a sampling design is specified and the sample is selected

accordingly from the sampling frame. The next step in the survey process is collecting

the survey data. The questions in the questionnaire have to be answered by the

selected elements. This phase of the survey is sometimes called the fieldwork.

This term refers to the interviewers who go into the “field” to visit the persons

selected in the sample. However, there aremoremeans to collect the data. This section

describes three traditional modes of data collection: face-to-face interviewing,

telephone interviewing, andmail interviewing. Section 7.2 is devoted tomoremodern

ways of data collection.

Mail interviewing is the least expensive of the three data collection modes. Paper

questionnaires are sent by mail to the elements (e.g., persons, households, or

companies) selected in the sample. They are invited to answer the questions and to

return the completed questionnaire to the survey agency. A mail survey does not

involve interviewers. Therefore, it is a cheap mode of data collection. Data collection

costs include only mailing costs (letters, postage, and envelopes). Another advantage

is that the absence of interviewers can be considered less threatening by potential

respondents. As a consequence, respondents are more inclined to answer sensitive

questions.

The absence of interviewer also has a number of disadvantages. They cannot

provide additional explanation or assist the respondents in answering the questions.

Thismay cause respondents tomisinterpret questions, which has a negative impact on

the quality of the data collected. Also, it is not possible to use show cards. Show cards

are typically used for answering closed questions. Such a card contains the list of all

possible answers to a question. It allows respondents to read through the list at their

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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ownpace and select the answer that reflects their situation or opinion.Mail surveys put

high demands on the design of the paper questionnaire. It should be clear to all

respondents how to navigate through the questionnaire and how to answer questions.

Since the persuasive power of the interviewers is absent, response rates of mail

surveys tend to be low.Of course, reminder letters can be sent, but this is often not very

successful. More often survey documents end up in the pile of old newspapers.

In summary, the costs of a mail survey are relatively low, but often a price has to be

paid in terms of data quality: response rates tend to be low, and the quality of the

collected data is also often not very good.However,Dillman (2007) believes that good

results can be obtained by applying his Tailored Design Method. This is a set of

guidelines for designing and formatting mail survey questionnaires. They pay atten-

tion to all aspects of the survey process that may affect response rates or data quality.

Face-to-face interviewing is themost expensive of the three data collectionmodes.

Interviewers visit the homes of the persons selected in the sample. Well-trained

interviewers will be successful in persuading many reluctant persons to participate in

the survey. Therefore, response rates of face-to-face surveys are usually

higher than those of a mail survey. The interviewers can also assist respondents in

giving the right answers to the questions. This often results in better quality data.

However, the presence of interviewers can also be a drawback. Research suggests that

respondents are more inclined to answer sensitive questions if there are no inter-

viewers in the room.

The survey organization may consider sending a letter announcing the visit of the

interviewer. Such a letter can also give additional information about the survey,

explain why it is important to participate, and assure that the collected information is

treated confidentially. As a result, the respondents are not taken by surprise by the

interviewers. Such an announcement letter may also contain the telephone number

of the interviewer. This makes it possible for the respondent to make an appointment

for a more appropriate day and/or time. Of course, the respondent can also use this

telephone number to cancel the interview.

The response rate of a face-to-face survey is higher than that of amail survey, and so

is the quality of the collected data. But a price has to be paid literally: face-to-face

interviewing is much more expensive. A team of interviewers has to be trained and

paid. Also, they have to travel a lot, and this costs time and money.

A third mode of data collection is telephone interviewing. Interviewers are also

needed for thismode, butnot asmanyas needed for face-to-face interviewing.Theydo

not lose time traveling from one respondent to the next. They can remain in the

call center of the survey agency and conduct more interviews in the same amount of

time. Therefore, the interviews cost less. An advantage of telephone interviewing over

face-to-face interviewing is that often respondents are more inclined to answer

sensitive questions because the interviewer is not present in the room.

Telephone interviewing also has some drawbacks. Interviews cannot last too long

and questionsmay not be too complicated. Another complicationmay be the lack of a

proper sampling frame. Telephone directories may suffer from severe undercoverage

because more and more people do not want their phone number to be listed in the

directory. Another development is that increasingly people replace their landline
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phone by a mobile phone. Mobile phone numbers are not listed in directories in many

countries. For example, according to Cobben and Bethlehem (2005) only between

60% and 70% of the Dutch population can be reached through a telephone directory.

Telephone directoriesmay also suffer fromovercoverage. For example, if the target

population of the survey consists of households, then only telephone numbers

of private addresses are required. Telephone numbers of companies must be ignored.

It is not always clear whether a listed number refers to a private address or a company

address (or both).

A way to avoid the undercoverage problems of telephone directories is to apply

random digital dialing (RDD) to generate random phone numbers. A computer

algorithm computes valid random telephone numbers. Such an algorithm is able to

generate both listed and unlisted numbers. So, there is complete coverage. Random

digital dialing also has drawbacks. In some countries, it is not clear what an

unanswered number means. It can mean that the number is not in use. This is a

case of overcoverage. No follow-up is needed. It can also mean that someone simply

does not answer the phone, a case of nonresponse, which has to be followed up.

Another drawback of RDD is that there is no information at all about nonrespondents.

This makes correction for nonresponse very difficult (see also Chapter 9 about

nonresponse and Chapter 10 about weighting adjustment).

The fast rise of the use of mobile phones has not made the task of the telephone

interviewer easier. More and more landline phones are replaced by mobile phones.

A landline phone is a means to contact a household whereas a mobile phone makes

contactwith an individual person. Therefore, the chances of contacting anymember of

the household are higher in case of landline phones. And if persons can only be

contacted through their mobile phones, it is often in a situation not fit for conducting

an interview. In addition, it was already mentioned that sampling frames in many

countries do not contain mobile phone numbers. And a final complication is that in

countries such as The Netherlands, people often switch from one phone company to

another. As a result, they get a different phone number. For more information about

the use of mobile phones for interviewing, see, for example, Kuusela et al. (2006).

The choice of the mode of data collection is not an easy one. It is usually

a compromise between quality and costs. In a large country such as the United

States, it is almost impossible to collect survey data by means of face-to-face

interviewing. It requires so many interviewers to do so much traveling that the costs

wouldbeveryhigh.Therefore, it is not surprising that telephone interviewing emerged

here as a major data collection mode. In a very small and densely populated country

such as TheNetherlands, face-to-face interviewing ismuchmore attractive. Coverage

problems of telephone directories and low response rates also play a role in the choice

for face-to-face interviewing. More about data collection issues can be found in

Couper et al. (1998).

7.2 COMPUTER-ASSISTED INTERVIEWING

Collecting survey data can be a complex, costly, and time-consuming process,

particularly if high-quality data are required. One of the problems of traditional
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data collection is that the completed paper questionnaire forms usually contain many

errors. Therefore, substantial resources must be devoted to make these forms error

free. Extensive data editing is required to obtain data of acceptable quality. Rapid

developments in information technology since the 1970s have made it possible to

use microcomputers for data collection. Thus, computer-assisted interviewing (CAI)

was born. The paper questionnaire was replaced by a computer program containing

the questions to be asked. The computer took control of the interviewing process,

and it also checked answers to questions on the spot.

Like traditional interviewing, computer-assisted interviewing has different

modes of data collection. The first mode of data collection was computer-assisted

telephone interviewing (CATI). Couper and Nicholls (1998) describe how it was

developed in the United States in the early 1970s. The first nationwide telephone

facility for surveys was established in 1966. The driving force was to simplify

sample management. These systems evolved in subsequent years into full-featured

CATI systems. Particularly in the United States, there was a rapid growth in the

use of these systems. However, CATI systems were used little in Europe until the

early 1980s.

Interviewers in a CATI survey operate a computer running interview software.

When instructed soby the software, they attempt to contact a selected personbyphone.

If this is successful and the person iswilling to participate in the survey, the interviewer

starts the interviewing program. The first question appears on the screen. If this is

answered correctly, the software proceeds to the next question on the route through

the questionnaire.

Many CATI systems have a tool for call management. Its main function is to offer

the right phone number at the rightmoment to the right interviewer. This is particularly

important when the interviewer has made an appointment with a respondent for

a specific time and date. Such a call management system also has facilities to deal with

special situations such as a busy number (try again after a short while) or no answer

(try again later). This all helps to increase the response rate as much as possible.

More about the use of CATI in the United States can be found in Nicholls and

Groves (1986). De Bie et al. (1989) give an overview of the available software in the

early stages of development.

The emergence of small portable computers in the 1980s made computer-assisted

personal interviewing (CAPI) possible. It is a form of face-to-face interviewing in

which interviewers take their laptop computer to the home of the respondents. There

they start the interview program and attempt to get answers to the questions.

Statistics Netherlands started experiments with this mode of data collection in

1984. Computers were first tried in a price survey. In this survey, interviewers visit

shops and record prices of products. It turned out that interviewers were able to handle

the hardware and software. Moreover, respondents (shopkeepers) did not object to

this kind of data collection.

The outcome of this experiment provided insight into the conditions laptop

computers had to satisfy to be useful for this kind of work. First, they should not

be too heavy. A weight of 3 kg was considered the maximum (often women)

interviewers could handle. Second, the readability of the screen should always be
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sufficient, even in bad conditions, such as a sunny room.Third, battery capacity should

be sufficient to allow a day of interviewing without recharging. And if this was not

possible, interviewers should have easy-to-replace spare batteries. The situation

should be avoided in which the interviewer has to plug a power cable into wall socket

in the home of the respondent. Finally, the interviewers preferred a full-size keyboard.

They considered small keys too cumbersome and error-prone.

After the success of the first experiment, a second experiment was carried out.

This time, the laptops were tested in a real interview situation in the homes of the

respondents. The aim of this experiment was to test whether respondents accepted

this type of data collection. Respondents were randomly assigned to a group that was

interviewed in the traditional way or a group that was interviewed with laptops.

It turned out there was no effect on response rates. Respondents simply accepted it

as a form of progress in survey taking. At that time, there was some concern about

“big brother” effects. This form of electronic data collection might cause anxiety

among respondents that theymight have become part of a large government operation

to collect large amounts of data about people and that therefore their privacy was at

stake. However, no such “big brother” effects could be observed. Another conclusion

was that interviewers very rapidly became accustomed to using the new technology

for their work.

The success of these experiments convinced Statistics Netherlands that is was

possible to use CAPI in its regular surveys. In 1987, the Dutch Labor Force Survey

(LFS) became a CAPI survey. Approximately, 400 interviewers were equipped with

a laptop computer. It was an EPSONPX-4, running under the operating system CP/M

(see Fig. 7.1). Each month, the interviewers visited 12,000 addresses and conducted

around 30,000 interviews. After the day of work, they returned home and

connected their computers to the power supply to recharge the batteries. They also

connected their laptop to a telephone and modem. At night, when the interviewers

Figure 7.1 The Epson PX-4 laptop computer that was used in the 1987 Labor Force Survey of Statistics

Netherlands.
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were asleep, their computers automatically called StatisticsNetherlands and uploaded

the collected data. New address data were downloaded in the same session. In the

morning, the computer was ready for a new day of interviewing.

It is interesting to compare the old Labor Force Survey with the new one. The old

LFS was carried out each year from 1973 to 1985. During the course of the fieldwork

spanning a number of weeks, approximately 150,000 respondents were visited.

There were no professional interviewers. Interviews were carried by civil servants

of the municipality. They used paper questionnaire forms. The fieldwork for the new

LFS was spread over 12 months and was carried out by professional interviewers

equipped with laptops. So, the old and new LFS differed in several ways. Therefore,

it is not easy to determine to what extent computer-assisted interviewing led to

improvements. Still, some conclusions could be drawn. First, CAPI has considerably

reduced the total data processing time. The period between the completion of the

fieldwork and the publication of the first results could be many months for the old

LFS. For the new LFS, the first tables were published only a few weeks after the

completion of the fieldwork. Of course, these timely statistics were much more

valuable. Second, the quality of the collected data improved. This was to be expected

due to the checks that were incorporated in the interview program. Third, respondents

completely accepted computer-assisted interviewing as a mode of survey data

collection. There was no increase in nonresponse rates. Fourth, interviewers had

no problems using laptops for interviewing. They needed only a moderate amount of

training and supervision. Finally, the conclusion was that, with the exception of the

financial investments required, CAPI had advantages.

The CAPI system of Statistics Netherlands is called Blaise. It was developed

by Statistics Netherlands. It evolved in the course of time in a system running under

MS-DOS and later under Windows. All surveys of this institute, and of many other

national statistical institutes, are now carried out with Blaise. More about the early

years of CAPI at Statistics Netherlands can be found in CBS (1987) and Bethlehem

andHofman (2006). More information about CAPI in general can be found in Couper

et al. (1998).

The computer-assisted mode of mail interviewing also emerged. It is called

computer-assisted self-interviewing (CASI), or sometimes also computer-assisted

self-administered questionnaires (CASAQ). The electronic questionnaire is sent to

the respondents. They answer the questions and send it back to the survey agency.

Early CASI applications used diskettes or a telephone and modem to send the

questionnaire, but nowadays it is common practice to download it from the

Internet. The answers are returned electronically in the same fashion.

ACASI survey is only feasible if all respondents have a computer onwhich they can

run the interview program. Since the use of computers was more widespread

among companies than households in the early days of CASI, the first CASI

applications were business surveys. An example is the production of fire statistics

in The Netherlands. These statistics were collected in the 1980s by means of CASI.

Disketteswere sent to the fire brigades. They ran the questionnaire on their (MS-DOS)

computers. The answerswere stored on diskettes. After completing the questionnaire,

the diskettes were returned to Statistics Netherlands.
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Another early application of CASI was data collection for the foreign trade

statistics of Statistics Netherlands. Traditionally, data for these statistics were

collected through customs at the borders of the country. However, borders have

vanished within the European Union. So, data collection at the borders with

the neighboring countries of The Netherlands came to an end. Now, data are collected

by a survey among the companies exporting and importing goods. To do this as

efficiently as possible, a CASI survey was conducted. The interviewing program was

sent (once) to the companies.Ona regular basis, they ran the programand sent back the

data to Statistics Netherlands.

An early application of CASI in social surveys was the Telepanel (see Saris, 1998).

The Telepanel was founded in 1986. It was a panel of 2000 households that agreed to

regularly fill in questionnaires with the computer equipment provided to them by the

survey organization. A home computer was installed in each household. It was

connected to the telephone with a modem. It was also connected to the television

in the household so that it could be used as amonitor. After a diskettewas inserted into

the home computer, it automatically established a connection with the survey agency

to exchange information (downloading a new questionnaire or uploading answers of

the current questionnaire). Panel members had agreed to fill in a questionnaire each

weekend.

The rapid development of the Internet in 1990s led to a newmode of data collection.

Some call it computer-assisted web interviewing (CAWI). The questionnaire is

offered to respondents through the Internet. Therefore, such a survey is sometimes

also called a web survey or online survey. In fact, such an online survey is a special

type of a CASI survey. At first sight, online surveys have a number of attractive

properties. Now that so many people are connected to the Internet, it is an easy way to

get access to a large group of potential respondents. Furthermore, questionnaires

can be distributed at very low costs. No interviewers are needed, and there are no

mailing and printing costs involved. Finally, surveys can be launched very quickly.

Little time is lost between the moment the questionnaire is ready and the start of the

fieldwork. As a result, it is a cheap and fast means to get access to a large group of

people.

However, online surveys also have some serious drawbacks. These drawbacks are

mainly caused by undercoverage (not everyone has access to Internet) and the lack of

proper sampling designs (often self-selection is applied). Because of the increasing

popularity of online surveys and the associated methodological problems, a special

chapter is devoted to this mode of data collection (Chapter 11).

Application of computer-assisted interviewing for data collection has three major

advantages:

. It simplifies thework of interviewers. They do not have to pay attention anymore

to choosing the correct route through the questionnaire. Therefore, they can

concentrate on asking questions and assisting respondents in getting the answers.

. It improves the quality of the data collected because answers can be checked and

corrected during the interview. This is more effective than having to do it

afterward in the survey agency.
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. Data are entered in the computer during the interview resulting in a clean record,

so no more subsequent data entry and data editing are necessary. This consider-

ably reduces time needed to process the survey data and thus improves the

timeliness of the survey results.

7.3 MIXED-MODE DATA COLLECTION

It is clear that surveys can be conducted by using various data collection modes. This

raises the question which mode to use in a specific survey. Biemer and Lyberg (2003)

discuss optimal designs for data collection using one mode. This is also called single-

mode data collection. Modes differ in various aspects, particularly data quality, costs,

and timeliness. Face-to-face interviewing is expensive. Every household does not

have a telephone or Internet connection and therefore cannot be approached by a

telephone or online survey.Mail surveys have a low response rate and take a lot of time

to process. Thus, each individual data collection mode has its advantages and

disadvantages. Mixing data collection modes provides an opportunity to compensate

for the weakness of each individual mode. This can reduce costs and at the same time

increase response rates and data quality. Sampled elements can be allocated to

a specificmode on the basis of known background characteristics. If there are persons

that do not cooperate in one mode and are willing to participate in another mode,

this can reduce the selectivity of the response.

For example, Dutch statistics show that 90% of the children between 12 and

14 years had access to Internet in 2005. For men over 65 years, this percentage was

much lower, 34%, and for women over 65 years, it was only 21% (source: Statline,

StatisticsNetherlands).Consequently, the elderlywouldbe severelyunderrepresented

in an online survey. However, elderly persons are known to be cooperative

when interviewed face-to-face. So, one might consider approaching the elderly

face-to-face and using online interviewing for young people. This is a form of

what is called mixed-mode data collection.

Mixed-mode data collection consists of a combination of two or more data

collection modes. De Leeuw (2005) describes two mixed-mode approaches. The

first is a concurrent approach. The sample is divided in groups that are approached by

different modes, at the same time (see Fig. 7.2). The concurrent approach aims at

maximizing response rates by selecting the proper mode for each group.

Figure 7.2 A concurrent mixed-mode approach.
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A second mixed-mode approach is the sequential approach. All sample elements

are approached by one mode. The nonrespondents are then followed up by a different

mode than the one used in the first approach. This process can be repeated for several

modes of data collection (see Fig. 7.3).

Another form of a mixed-mode data collection is to let respondents select

their preferred data collection mode. They are given a choice, which is a very flexible

and respondent-friendly alternative. There is a potential drawback though, as this

optionprovides personswith anextraopportunity to refuse participation. For example,

if the choice is presented in the form of a postcard that they have to return to indicate

their preference. This requires an effort from the respondent, and not returning the

postcard can be regarded as refusal.

Longitudinal or panel surveys often use some kind of mixed approach. Persons

fill in a questionnaire a number of times. Often, the first questionnaire is a large one,

in which a lot of information about the respondents is selected. The follow-up

questionnaires are short. They only record possible changes in the situation of the

respondents. It is common practice to use a more expensive mode in the first wave

to maximize response. A less costly mode is used in the follow-up interviews.

For example, most Labor Force Surveys in Europe are panel surveys where the

first wave is conducted face-to-face and the subsequent waves are conducted by

telephone.

The Labor Force Survey approach is different from the sequential approach as

displayed inFig. 7.3. The entire sample is approached in the samemode. In subsequent

waves, a different mode is used, but this is still the same mode for all the sample

persons. In the situation displayed in Fig. 7.3, the nonrespondents of the initial sample

are followed up in a different mode from the one used for the entire sample.

There are some studies into the effects of nonresponse that use the sequential

mixed-mode design. At Statistics Netherlands, a large-scale follow-up of nonrespon-

dents from the Dutch Labor Force Survey has been performed (see Schouten, 2007).

The Social and Cultural Planning Office in The Netherlands also used a mixed-mode

design to follow up nonrespondents in the Dutch Amenities and Services Utilization

Survey (see Stoop, 2005). But these are merely experiments, no regular fieldwork

Response 

Sample 

Nonresponse 

Response Nonresponse 

Mode 1 

Mode 2 

. . . 

Figure 7.3 A sequential mixed-mode approach.
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practices. They serve a methodological purpose: validating the methods that are used

and the assumptions that are made when adjusting for nonresponse.

It is not easy to decide which mixture of modes to use. Several factors need

to be considered before choosing the optimal design. Some of them are discussed

here.

A major concern in mixed-mode data collection is that data quality may get

affected by the occurrence of mode effects, a phenomenon in which asking a

person the same question in different data collection modes would lead to different

answers. An example is asking a closed question with a substantial number of

answer options. The respondent in a face-to-face survey would be presented a show

card with all possible answers. In case of a telephone survey, the interviewer would

read all possibilities to the respondents. Research indicates that this results in a

preference for the last options in the list. Respondents in a web survey have to read

through the list themselves. This seems to lead to a preference for answers early in

the list.

Sequential mixed-mode data collection may help increase response rates.

However, nonresponse is not the only source of errors in surveys. Chapter 8 presents

an overview of possible errors. The effects of these errors may differ for each mode.

For example, a mail survey is affected more by processing errors than a computer-

assisted telephone survey. Generally, data collection modes with the most serious

errors also tend to be the cheapest modes. So, it comes down to a trade-off between

data quality and costs.

The topic of the survey may limit mixed-mode possibilities. Some topics may be

less suited for a survey that is interviewer assisted. Typically, answers to sensitive

questions may be closer to the truth when there are no interviewers involved. A

mail survey or web survey may therefore be more appropriate for this type of

questions.

Time is also an important aspect. The fieldwork of a sequential mixed-mode

approachwill take longer becausemodes followeachother in time.So,much timemay

notbe available.This surveydesignalso requiresdecisionswhen tomoveon to thenext

data collection mode. Should such a decision be time dependent only? Or should it be

based on the response rate of the current mode? The latter strategy will make it

uncertain how long the fieldwork period will be.

Data collection costs also depend on themode chosen. A telephone survey is much

cheaper than a face-to-face survey. A mail survey is even cheaper than a telephone

survey. The cheapest mode is probably a web survey. If there is only a limited budget

available, face-to-face interviewing may be out of question, and a choice has to be

made for one or more less costly modes.

Last but certainly not the least, attention has to be paid to case management.

Sample elements have to be assigned to the proper mode. In the course of the

fieldwork, they may have to be reassigned to another mode. This requires an

effective and reliable case management system. It has to see to it that the cases are

assigned to the proper mode, cases are not assigned to multiple modes, or cases are

not assigned to any mode at all. Unfortunately, there are no general-purpose case

management systems for mixed-mode surveys. This means that tailor-made systems

have to be developed.
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7.4 ELECTRONIC QUESTIONNAIRES

The elements of paper questionnaires were rather straightforward, containing

questions for respondents and instructions for interviewers to jump to other questions

or to the end of the questionnaire. Application of some form of computer-assisted

interviewing requires the questionnaires to be defined. Such questionnaires can have

more elements than paper questionnaires. Here is a nonexhaustive list:

. Questions. Each question may have an identification (number or name), a

question text, a specification of the type of answer that is expected (text, number,

selection from a list, etc.), and a field in which the answer is stored.

. Checks. This is a logical expression describing a condition that must be fulfilled,

and an error message (which is displayed when the condition is not met).

. Computations. They may involve answers to previous questions and other

information. Computations can be used to compute the answer to another

question, as a component in a check, or to compute the route to the following

question.

. Route Instructions. These instructions describe the order in which questions are

processed and also under which conditions they are processed.

Route instructions can take several forms. This is illustrated using a simple

example of a fragment of a questionnaire. Figure 7.4 shows how this fragment could

look like in paper form.

1. Are you male or female?
Male . . . . . . . . . . . . . . . . . . 1   Skip to question 3
Female . . . . . . . . . . . . . . . . . 2

2. Have you ever given birth?
Yes  . . . . . . . . . . . . . . . . . . 1
No . . . . . . . . . . . . . . . . . . . 2

3. How old are you?                 _ _ years

Interviewer: If younger than 17 then goto END

4. What is your marital status?
Never been married . . . . . . . . . . . 1   Skip to question 6
Married  . . . . . . . . . . . . . . . . 2
Separated  . . . . . . . . . . . . . . . 3
Divorced . . . . . . . . . . . . . . . . 4   Skip to question 6
Widowed  . . . . . . . . . . . . . . . . 5   Skip to question 6

5. What is your spouse's age?       _ _ years

6. Are you working for pay or profit?
Yes  . . . . . . . . . . . . . . . . . . 1
No . . . . . . . . . . . . . . . . . . . 2

END OF QUESTIONNAIRE 

Figure 7.4 A paper questionnaire.
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The questionnaire contains two types of routing instructions. First, there are skip

instructions attached to answer codes of closed questions. This is the case for questions

1 and 4. The condition deciding the next question asked depends only on the answer to

the current question. Second, there are instructions for the interviewer that are

included in the questionnaire between questions. These instructions are typically

used when the condition deciding the next question depends on the answers to several

questions, or on the answer to a question that is not the current question. Figure 7.4

contains an example of such an instruction between questions 3 and 4.

Specification languages of CAI systems (so-called authoring languages) usually

do not contain interviewer instructions. Skip instructions appear in different formats.

Figure 7.5 contains a specification of the sample questionnaire of Fig. 7.4 in the

authoring language of the CASES system. This system was developed by the

University of California in Berkeley.

Route instructions are goto oriented in CASES. There are two types:

. Skips attached to answer codes are called unconditional gotos. An example is the

jump to question “Age” if the answer to the question “Sex” is “Male”.

. Interviewer instructions are translated into conditional gotos. An example is the

instruction at the end of the question “Age.” There is a jump to the end of the

questionnaire if answer to the question “Age” is less than 16.

An example of a CAI system with a different authoring language is the Blaise

system developed by Statistics Netherlands. The authoring language of this system

uses IF-THEN-ELSEstructures to specify routing instructions. Figure 7.6 contains the

Blaise code for the sample questionnaire.

There has been an intensive debate on the use of goto instructions in programming

languages. A short paper by Edsger Dijkstra in 1968 (“Go To Statement Considered

Harmful”)was the start of the structured programmingmovement. It has become clear

that this also applies to questionnaires. Use of goto instructions in questionnaires

makes these instruments very hard to test and to document.

The way in which the routing structure is specified is not the only difference

between Figs 7.5 and 7.6. The developers ofBlaise have considered a clear viewon the

routing structure so important that routing is specified in a separate section of the

specification (the rules section).

Note that in the example shown in Fig. 7.6 only questions have been used. It

contains no checks or computations.

Several CAI software systems offer a modular way of specifying electronic

questionnaires. This means the questionnaire is split into a number of subquestion-

naires, eachwith its own question definitions and routing structure. Subquestionnaires

can be developed and tested separately. It is possible to incorporate such modules as a

standard module in several surveys, thereby reducing development time and promot-

ing consistency between surveys.

There can also be routing instructions at the level of subquestionnaires. Answers to

questions in one subquestionnaire may determine whether or not another subques-

tionnaire is executed. Furthermore, subquestionnaires can be used to implement
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hierarchical questionnaires. Such questionnaires allow a subquestionnaire to be

executed a number of times. A good example of a hierarchical questionnaire is a

household questionnaire. There are questions at the household level, and then there is a

set of questions (subquestionnaire) that must be repeated for each eligible member of

the household.

On the one hand, a subquestionnaire can be seen as one of the objects in a

questionnaire. It is part of the routing structure of the questionnaire, and it can be

executed just like a question or a check. On the other hand, a subquestionnaire

contains a questionnaire of its own. By zooming into a subquestionnaire, its

internal part becomes visible, and that is a questionnaire with its objects and routing

conditions.

Interviewing software can have different modes of behavior. The first aspect is

routing behavior. This determines how the software leads interviewers or respondents

>Sex<
Are you male or female?
<1> Male                   [goto Age] 
<2> Female
@

>Birth< 
Have you ever given birth?
<1> Yes
<2> No 
@

>Age< 
How old are you ?
<12-20>
@

[@][if Age lt <16> goto End]     

>MarStat<
What is your marital status?
<1> Never been married    [goto Work]
<2> Married 
<3> Separated 
<4> Divorced              [goto Work]
<5> Widowed               [goto Work]
@

>Spouse<
What is your spouse's age?
<16-20>
@

>Work<
Are you working for pay or profit?
<1> Yes
<2> No 
@

Figure 7.5 The sample questionnaire in CASES.
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through the questionnaire. There are two types of routing: dynamic routing and static

routing.

. Dynamic routing means that one is forced to follow the route through the

questionnaire as defined by the implemented branching and skipping instruc-

tions. One is always on the route as it was programmed by the developer. It is not

possible to go to questions that are off the route. CAPI and CATI almost always

apply dynamic routing.

. Static routingmeans that one has complete freedom to move to any question in

the questionnaire, whether it is on or off the route. This is usually inappropriate

for interviewing systems, but it is often applied when entering or editing data

collected on paper forms (computer-assisted data input, CADI).

CAI software often has the possibility to include checks in interviewing programs.

There can be range errors and consistency errors. A range error occurs if a given

answer is outside the valid set of answers, for example, an age of 348 years.

A consistency error indicates an inconsistency in the answers to a set of questions.

An age of 8 years may be valid, a marital status “married” is not uncommon, but if

the same person gives both answers, there is probably something wrong. To detect

DATAMODEL Example
FIELDS
Sex         "Are you male or female?": (Male, Female)
Birth       "Have you ever given birth?": (Yes, No)
Age         "How old are you?: 0..120
MarStat     "What is your marital status?":

(Never Mar "Never been married",
Married   "Married",
Separate  "Separated",
Divorced  "Divorced",
Widowed  "Widowed")

Spouse     "What is your spouse's age?": 0..120
Work       "Are you working for pay or profit?":(Yes,No)

RULES
Sex
IF Sex = Female THEN 

Birth 
ENDIF
Age
IF Age >= 17 THEN

MarStat
IF MarStat = Married) OR (MarStat = Separate) THEN

Spouse
ENDIF
Work

ENDIF

ENDMODEL

Figure 7.6 The sample questionnaire in Blaise.
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these types of errors, conditions can be specified that have to be satisfied. Checking

behavior determines how these conditions are checked. There are two types of

checking: dynamic checking and static checking.

. Dynamic checking means that all relevant conditions are immediately checked

after an answer has been entered. This is usually appropriate in an interviewing

situation.

. Static checking means that conditions are checked only after the program is

instructed to do so, for example, by pressing a special function key. Static

checkingmay be appropriatewhen entering data from paper forms. First, all data

are copied from the form to the computer and then checks are activated.

Sometimes, it is also possible to set error reporting behavior of an interviewing

program. It determines if and how errors are displayed to the interviewer or

respondent:

. Dynamic error reporting means that a message is displayed on the screen

immediately after an error has been encountered. The interviewer or respondent

cannot continuewith the interview. First, the problem has to be solved. This type

of error reporting is often applied in CAI software.

. Static error reporting means that no immediate action is required when errors

are detected. Questions involved in errors are marked. One can continue

answering questions. Error messages can be viewed at any time by moving

to a specific question and asking for error reports involving this question. This

form of error reporting can be applied in data entry situations.

7.5 DATA COLLECTION WITH BLAISE

7.5.1 What is Blaise?

There are many software packages for survey data collection. One of these packages

has more or less become a de facto standard in the world of data collection for official

statistics. Thenameof this package isBlaise. Thefirst version of theBlaise systemwas

developed in 1986 by Statistics Netherlands. The aim was to tackle the disadvantages

of traditional data collection with paper questionnaire forms. See Bethlehem (1997)

for more background information.

TheBlaise language is thebasis of theBlaise system.This language is used todefine

a questionnaire. The Blaise questionnaire definition contains all possible questions,

route instructions, checks to be carried out on the answers, and computations that may

be needed in the course of the interview. Therefore, this definition can be seen as

metadata definition. It describes the data to be collected. It acts as a knowledge base

from which the system extracts information it needs for its various modules for data

collection or data processing. Therefore, Blaise enforces consistency of data and

metadata in all steps of the survey process.
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Development of a Blaise survey starts with the questionnaire definition in the

Blaise language. Such a definition is called a data model in Blaise. Once the data

model has been entered in the system, it is checked for correctness. If so, it is translated

into a metadata file. The most important module of the system is the data entry

program (DEP). It is used for entering data. The DEP can do this in various ways

depending on the data collection mode selected:

. The DEP can enable easy entry and correction of data that have been collected

by means of traditional paper questionnaire forms. This data collection and

processing mode is called computer-assisted data input in Blaise.

. The DEP can enable computer-assisted interviewing. It supports CAPI, CATI,

and CAWI.

Blaise is not a data analysis package. However, it helps in preparing data and

metadata for existing statistical analysis. The system contains a tool for generating

system files for packages such as SPSS and Stata.

The first version of Blaise was released in 1986. It ran under the operating system

MS-DOS. The first Windows version came on the market in 1999. In 2003, a version

was released allowing online data collection. For more information about Blaise, see

Statistics Netherlands (2002).

BlaisederivesitsnamefromthefamousFrenchtheologianandmathematicianBlaise

Pascal (1623–1662). Pascal is famous not only for his contributions to science but also

for the fact that his name was given to the well-known programming language. The

Blaise language has its roots, for a large part, in this programming language.

7.5.2 A Simple Blaise Questionnaire

Here it is shown how a very simple questionnaire is created in the Blaise system. This

example contains only a few basic features of the Blaise language. Figure 7.7 contains

the questionnaire as it could have been designed in the traditional paper form.

The questionnaire contains only seven questions, and they are about work. There

are a few things in this questionnaire worth mentioning. There are various types of

questions. Questions 1, 2, and 5 are closed questions. An answer has to be selected

from a list. Question 7 is also a closed question, but here more than one answer is

allowed. Such a question is sometimes called a check-all-that-apply question.

Furthermore, questions 3 and 4 are numerical questions. They require a number as

answer. Finally, question6 is anexampleof anopenquestion.Onanopenquestion, any

text is accepted as an answer.

The questionnaire contains route instructions. These instructions are necessary to

prevent respondents from answering irrelevant questions. Route instructions appear in

two forms. First, some questions are followed by jump instructions. For example, if a

respondent is still going to school, no jobdescription is required, sohe skips toquestion

6. Second, there arewritten instructions for the interviewer, for example, “Ifmale, then

skip question 3.”
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Figure 7.8 contains a possible definition of this questionnaire in the Blaise

language. Some words, such as QUESTIONNAIRE and ENDIF, are printed in upper

case. Thesewords have a specialmeaning in theBlaise language. Their use is reserved

for special situations and therefore are called reserved words. To emphasize this

special meaning, they are printed in boldface and capitals. However, reserved words

may also be typed in lowercase and normal face.

The first line of the questionnaire in Fig. 7.8 is the identification of the question-

naire. The end of the specification is indicated by the reserved word ENDQUEST.

The questionnaire definition contains two sections: the fields section and the rules

section. The fields section contains the definition of all questions to be asked (together

with a description of what type of answer is expected). So, it defines the fields in the

database to contain the survey data. The rules section defines what is to be done

with the questions (fields). It contains the order of the questions, checks to be carried

out on the answers, and computations.

THE NATIONAL COMMUTER SURVEY 
 
1. Are you male or female? 
      Male ......................................... 1 
      Female ....................................... 2 
 
2. What is your marital status?  
      Never married ................................ 1 
      Married ...................................... 2 
      Divorced ......................................3 
      Widowed ...................................... 4 
 
Interviewer: If male, then skip question 3. 
 
3. How many children have you had?         …… children 
 
4. What is your age?                          …… years 
 
5. What is your main activity? 
      Going to school .............................. 1   ‡ 7 
      Working ...................................... 2   ‡ 6 
      Keeping house ................................ 3   ‡ Stop 
      Something else ............................... 4   ‡ Stop 
 
6. Give a short description of your job 
      ……………………………………………………………………………………………………………………………… 
 
7. How do you travel to your work or school? 
   (Check at most 3 answers) 
      Public bus, tram or metro .................... 1 
      Train ........................................ 2 
      Car or motor cycle ........................... 3 
      Bicycle ...................................... 4 
      Walked ....................................... 5 
      Other ........................................ 6 

Figure 7.7 A simple paper questionnaire.
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7.5.3 The Fields Section

All questions are defined in thefields section. This section startswith the reservedword

FIELDS. Every question definition follows a simple scheme. It starts with question

name. It identifies the question. The question name is followed by the question text.

This is the text of the question to be presented to the respondents (on screen or

DATAMODEL Commut "The National Commuter Survey"

FIELDS
Gender   "Are you male or female?": (Male, Female)
MarStat  "What is your marital status?":
(NevMarr  "Never married",
Married  "Married",
Divorced "Divorced",
Widowed  "Widowed")

Children "How many children have you had?": 0..25
Age "What is your age?": 0..120
Activity "What is your main activity?":
(School   "Going to school".
Working  "Working",
HousKeep "Keeping house",
Other "Something else")

Descrip "Give a short description of your job": STRING[4O]
Travel "How do you travel to your school or work?":
SET [3] OF
(NoTravel "Do not travel, work at home",
PubTrans "Public bus, tram or metro",
Train    "Train",
Car      "Car or motor cycle",
Bicycle  "Bicycle",
Walk     "Walk",
Other    "Other means of transport")

RULES
Gender MarStat
IF Gender = Female THEN

Children 
ENDIF
Age Activity
IF Activity = Working THEN

Descrip 
ENDIF
IF (Activity = Working) OR (Activity = School) THEN

Travel
ENDIF

IF (Age < 15) "If age less than 15" THEN
MarStat = NevMarr "he/she is too young to be married!"

ENDIF

ENDMODEL

Figure 7.8 A simple Blaise questionnaire.
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on paper). The question text must be placed between quotes and must be followed by

a colon.The last part of thequestiondefinitions is theanswerdefinition. It describes the

valid answers to that question.

The difference with traditional questionnaires is that the question numbers in

Fig. 7.7 are replaced by question names in Fig. 7.8. So one does not talk about question

2but about question “Age”, andone refers to question “Travel” insteadof question6. It

is important to identify questions by names instead of numbers. It improves the

readability of the questionnaire, and problems are avoided in case questions have to be

added or deleted.

The fields section in Fig. 7.8 introduces eight questions. TheBlaise language offers

different types of questions. It is possible to define an open question. For such a

question, any text is accepted as an answer provided the length of the text does not

exceed the specified maximum length. An example is the question Descrip. The

answer may not be longer than 40 characters:

Descrip "Give a short description of your job": STRING [4O]

A numerical question expects a number as an answer. This number must be in the

specified range.The questionAge is an example. The answermust be in the range from

0 to 120:

Age "What is your age?": 0..120

For a closed question, an answer must be picked from a specified list of answer

options. The question Activity in Fig. 7.8 is an example of such a question :

Activity "What is your main activity?":

(School "Going to school".

Working "Working",

HousKeep "Keeping house",

Other "Something else")

Each possible answer is defined by a short answer name (e.g., School) and,

optionally, a longer answer text (e.g., "Going to school"). The answer name is

used internally to identify the answer. The answer text is presented to the respondent.

Note that possible answers are identified by names instead of by numbers. Just like in

the case of question names, using answer names improves readability and maintain-

ability of questionnaire specifications.

Sometimes, the respondent must be allowed to select more than one answer

from a list. For this case, the reserved words SET OF can be added to a closed

question. Then the question becomes a check-all-that-apply question. Optionally, the

maximumnumberof answers tobe selectedmaybe specifiedbetween squarebrackets.
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The question Travel is such a closed question. At most, three options can be selected

to answer this question:

Travel "How do you travel to your school or work?":

SET [3] OF

(NoTravel "Do not travel, work at home",

PubTrans "Public bus, tram or metro",

Train "Train",

Car "Car or motor cycle",

Bicycle "Bicycle",

Walk "Walk",

Other "Other means of transport")

There are two predefined answers that can always be given in response to a

question of any type: DONTKNOW and REFUSAL. These answer possibilities do not

have to be defined because they are implicitly available. They can be entered with

special function keys.

This simple example does not exhaust all possible question types that can be used in

Blaise. More information can be found in Statistics Netherlands (2002).

7.5.4 The Rules Section

The rules section starts with the keyword RULES. This section describes what the

system must do with the questions. There are four types of rules:

. Route instructions. describe the order of the questions and the conditions under

which they will be asked.

. Checks. determine whether a specified statement is true for the answers of the

questions involved. If it is false, the system will generate an error message.

Subsequent action depends on the application at hand. Two kinds of checks are

supported. A check can detect a hard error. This is a real error that must be fixed

before the form can be considered clean. A check can also detect a soft error.

Such an errormay point to a possible problem. Soft errorsmay be suppressed if it

is decided there is nothing wrong.

. Computations. on the values of questions and other data can be used to

determine the proper route through the questionnaire, to carry out complex

checks, or to derive values of questions that are not asked or that are corrected.

. Layout instructions. determine the layout of the questions and the entry fields

displayed on the screen.

The example shown in Fig. 7.8 contains a number of route instructions.

Writing down the name of a question in the rules section means asking the question.
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The rules section of the example starts with the two question names Gender

and MarStat:

RULES

Gender MarStat

The two questions will be processed in this order. Questions can also be asked,

subject to a condition. The questionChildrenwill only be asked in the example if the

answer Female has been given to the question Gender:

IF Sex = Female THEN

Children

ENDIF

Checks are conditions that have to be satisfied. Checks are stated in terms of what

the correct relationship between fields should be. An example from the questionnaire

in Fig. 7.8 is as follows:

MarStat = NevMarr

The specification instructs the system to check whether the field MarStat has the

value NevMarr. If not, an error message will be produced. A label, any text between

double quotes, can be attached to a condition. Such a text will be used as an error

message if the condition is not satisfied.

MarStat = NevMarr "he/she is too you to be married!"

Checks can be subject to conditions:

IF (Age > 15) THEN

MarStat = NevMarr

ENDIF

The check MarStat ¼ NevMarr will only be carried out if the answer to the

question Age has a value less than 15. The application will reject entries in which

people younger than 15 years are married.

The example in Fig. 7.8 does not contain any computation or layout instruction.

7.5.5 Dynamic Question Texts

It is important that respondents always understand the questions in the questionnaire.

Sometimes, it helps to adapt the question text to the situation at hand. For paper
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questionnaires this is, of course, not possible, but computer-assisted interviewing

software usually has this feature.

The Blaise system can adapt all question texts in the data model. This is accom-

plished by including the name of a question in the text of another question. The

question name has to be preceded by a ^. When the system displays the text on the
screen, the question name will be replaced by its answer.

For example, suppose the field section of a data model contains the questions

Travel and Reason as defined below. Note that the name Travel is included both

in the text of the question Reason and in the text of its answer:

FIELDS

Travel

"How do you travel to work?":

(train, bus, metro, car, bicycle)

Reason

"Why do you go by ^Travel and not by car?":

(Jam "By ^Travel no traffic jams",

Comfort "Going by ^Travel is more comfortable",

Environ "Going by ^Travel is better for the

environment",

Health "Going by ^Travel is healthier",

NoCar "Does not have a car")

RULES

Travel

IF NOT (Travel = Car) THEN

Reason

ENDIF

Suppose, a CAPI interview is conducted, and the respondent gives the answer

bicycle to the question Travel. Then the question Reason will be displayed as

follows:

Why do you go by bicycle and not by car?

1: By bicycle no traffic jams

2: Going by bicycle is more comfortable

3: Going by bicycle is better for the environment

4: Going by bicycle is healthier

5: Does not have a car

7.5.6 Subquestionnaires

Simple questionnaires all follow the scheme described above: first a set of questions is

defined in the rules section. Then the order inwhich theywill be asked is defined in the

rules section. Inmany situations, however, questionnaires have amuchmore complex
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structure. First of all, some survey situations call for a hierarchical approach. Suppose

a labor force survey is carried out. The questionnaire starts by asking a few general

questions about the composition of the household. Then, members of the household

are asked about their activities. People who work will be asked about their jobs, and

those looking forworkwill be asked how theygo about looking forwork. In fact, a new

questionnaire is filled in for each relevant household member. And it is not clear in

advance how many of these subquestionnaires are needed.

There is another problem. If a comprehensive survey is to be conducted, the

questionnairewill tend to become large and complex. In such a case, it is wise to take

an approach commonly used in software development: the best way to build a large

program is to analyze it in subproblems and solve each one of them separately.

This approach makes it possible to build modular systems. Blaise is designed to

stimulate such a structured design of large questionnaires. It is possible to distribute

the questions over several subquestionnaires, keeping together questions that

are logically related to each another. A simple questionnaire is designed for every

group of questions. Next, the subquestionnaires are combined into one large

questionnaire.

7.5.7 Integrated Survey Processing

The Blaise system promotes integrated survey processing. The Blaise language is, in

fact, ametadata language. It is used to specify relevant information about the data to be

collected and processed. The system is able to exploit this knowledge. It can

automatically generate various data collection and data editing applications.

Moreover, it can prepare data and metadata for other data processing software, for

example, for adjustment weighting, tabulation, and analysis. This avoids having to

specify the data more than once, each time in a different “language.” It also enforces

data consistency in all data processing steps.

The data model is the knowledge base of the Blaise system. It forms the backbone

of an integrated survey processing system (see Fig. 7.9). The data model is created in

the design phase of the survey. If data are to be collected by means of a paper

questionnaire form, the form and the corresponding data entry and data editing

program (CADI) can be generated from the data model. If data are to be collected

bymeans of some form of computer-assisted interviewing, there is a choice for CAPI,

CATI, CASI, or CAWI. Blaise can also be used for mixed-mode data collection. It can

generate the data collection instruments for several modes simultaneously. Since all

these instruments are generated from the same metadata source, consistency between

modes is guaranteed.

Whatever form of data collection is used, the result will be a “clean” data file.

The next step in the process will often be the computation of adjustment weights to

correct a possible bias due to nonresponse (see also Chapters 9 and 10). The Blaise

tool Bascula can take care of this. It is able to read the Blaise data files directly

and extract the information about the variables (the metadata) from the Blaise

specification. Running Bascula will cause an extra variable to be added to the data

file containing the adjustment weight for each case.

DATA COLLECTION WITH BLAISE 175



Now the data are ready for analysis. There are many packages available for this.

Well-known examples are SAS, SPSS, and Stata. They all require a data file and a

description of the data (metadata). Blaise has tools to put the data in the proper format

(Manipula). Furthermore, there is a tool (Cameleon) to create setup files with data

descriptions for a number of statistical packages.

EXERCISES

7.1 What was the effect on response rates of the introduction of computers for face-

to-face interviewing (CAPI)?

a. The response rates were lower than those of traditional face-to-face

interviewing.

b. The response rates were higher than those of traditional face-to-face

interviewing.

c. No significant changes in response rates were observed.

d. Because of all other advantages of computer-assisted interviewing, effects

on response rates have not been investigated.

7.2 Which of the following effects is not caused by a change from traditional face-

to-face interviewing to CAPI?

a. It is easier to follow the correct route through the questionnaire.

b. Nonresponse rates decrease.

c. Less time is required to process the survey data.

d. It is possible to carry out complex checks on the answers to the questions.

Weighting 

Analysis 

PAPI CAPI CATI CASI CAWI 

CADI 

Data model 

Figure 7.9 Integrated survey processing.
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7.3 To carry out a telephone survey among households, a sample of phone numbers

is selected from a telephone directory. This procedure can lead to

a. overcoverage, but not to undercoverage;

b. undercoverage, but not to overcoverage;

c. both to overcoverage and undercoverage;

d. all kinds of problems (such as nonresponse) but not to overcoverage or

undercoverage.

7.4 Design a small questionnaire in the Blaise language. The questionnaire must

contain four questions:

. Ask whether the respondent has a PC at home.

. If so, ask the respondent whether there is Internet access at home.

. If so, ask whether the Internet is used for e-mail and/or surfing on the World

Wide Web.

. Ask which browser is used (Internet Explorer, Firefox, etc.).

. Pay attention to question texts, question types, and routing.

7.5 Which of the following statements about random digit dialing is not true?

a. Also people with nonlisted phone numbers can be contacted.

b. There are no coverage problems.

c. There is no information about people not answering the call.

d. It may be impossible to distinguish nonexisting numbers from nonresponse

due to “not at home.”
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C H A P T E R 8

The Quality of the Results

8.1 ERRORS IN SURVEYS

When conducting a survey, a researcher is confronted with all kinds of phenomena

that may have a negative impact on the quality, and therefore the reliability, of the

outcomes. Some of these disturbances are almost impossible to prevent. So, efforts

will have to be aimed at reducing their impact asmuch as possible.Notwithstandingall

these efforts, final estimates of population parameters may be distorted. All phenom-

ena causing these distortions are called sources of error. The impact these together

have on the estimates is called the total error.

Sources of errorwill, if present, increase the uncertaintywith respect to the correctness

of estimates. This uncertainty can manifest itself in two ways in the distribution

of an estimator: (1) it can lead to a systematic deviation (bias) from the true

population value or (2) it can increase the variation around the true value of the

population parameter.

Let Z be a population parameter that has to be estimated and let z be an estimator

that is used for this purpose. Chapter 6 discussed the properties of a good estimator.

One was that an estimator must be unbiased. This means its expected value must be

equal to the value of the population parameter to be estimated:

EðzÞ ¼ Z: ð8:1Þ
If an estimator is not unbiased, it is said to have a bias. This bias is denoted by

BðzÞ ¼ EðzÞ� Z: ð8:2Þ
Another desirable property of an estimator is that its variance is as small as possible.

This means that

VðzÞ ¼ Eðz�EðzÞÞ2 ð8:3Þ
must be small. An estimator with a small variance is called precise.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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A precise estimator may still be biased. Therefore, just the value of the variance

itself is not a good indicator of how close estimates are to the true value. A better

indicator is the mean square error. This quantity is defined by

MðzÞ ¼ Eðz� ZÞ2: ð8:4Þ
It is the expected value of the squared difference of the estimator from the value to

be estimated. Writing out this definition leads to a different expression for the mean

square error:

MðzÞ ¼ VðzÞþB2ðzÞ: ð8:5Þ
Now, it is clear that the mean square error contains both sources of uncertainty: a

variance component and a bias component. The mean square error of an estimator is

equal to its variance if it is unbiased. A small mean square error can be achieved only

if both the variance and the bias are small. Figure 8.1 distinguishes four different

situations that may be encountered in practice.

The distribution on the upper left side is the ideal situation of an estimator that is

precise and unbiased. All possible outcomes are close to the true value, and there is no

systematic overestimation or underestimation. The situation in the lower left graph is

less attractive. The estimator is still unbiased but has a substantial variance. Hence,

confidence intervalswill bewider. Reliability is not affected. The confidence level of a

95% confidence interval remains 95%. The situation is completely different for the

graph in the upper right corner. The estimator is precise but has a substantial bias. As a

result, a confidence interval computedusing the surveydatawould almost certainlynot

Figure 8.1 The relation between total error, bias, and precision.
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contain the true value. The confidence level is seriously affected. Estimates will be

unreliable. Wrong conclusions will be drawn. The graph in the lower right corner

offers the highest level of uncertainty. The estimator is biased and moreover it is also

not precise. This is the situation in which the mean square error has its largest value.

Survey estimates will never be exactly equal to the population characteristics they

intend to estimate. There will always be some error. This error can have many causes.

Bethlehem (1999) describes taxonomy of possible causes. It is reproduced in Fig. 8.2.

The taxonomy is a more extended version of one given by Kish (1967).

The ultimate result of all these errors is a discrepancy between the survey estimate

and the population parameter to be estimated. Twobroad categories of phenomena can

be distinguished contributing to this total error: sampling errors and nonsampling

errors.

Sampling errors are introduced by the sampling design. Theyare due to the fact that

estimates are based on a sample and not on a complete enumeration of the population.

Sampling errors vanish if the complete population is observed. Since only a sample is

available for computing population characteristics, and not the complete data set, one

has to rely on estimates. The sampling error can be split into a selection error and an

estimation error.

The estimation errordenotes the effect causedbyusing aprobability sample.Every

new selection of a samplewill result in different elements and thus in a different value

of the estimator. The estimation error can be controlled through the sampling design.

For example, the estimation error can be reduced by increasing the sample size or by

taking selection probabilities proportional to the values of somewell-chosen auxiliary

variable.

Total             
error

Sampling       
error

Estimation     
error

Selection        
error

Nonsampling
error

Observation   
error

Overcoverage 
error

Measurement 
error

Processing    
error

Nonobservation 
error

Undercoverage 
error

Nonresponse 
error

Figure 8.2 Taxonomy of survey errors.
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A selection error occurs when wrong selection probabilities are used in the

computation of the estimator. For example, true selection probabilities may differ

from anticipated selection probabilities if elements have multiple occurrences in the

sampling frame. Selection errors are hard to avoid without thorough investigation of

the sampling frame.

Nonsampling errors may even occur if the whole population is investigated.

They denote errors made during the process of obtaining answers to questions

asked. Nonsampling errors can be divided into observation errors and nonobser-

vation errors.

Observation errors are one form of nonsampling errors. They refer to errors

made during the process of obtaining and recording answers.Anovercoverage error is

caused by elements that are included in the survey but do not belong to the target

population. A measurement error occurs when respondents do not understand a

question or do not want to give the true answer, or if the interviewer makes an error in

recording the answer. In addition, interview effects, question wording effects, and

memoryeffects belong to thisgroupof errors.Ameasurement error causes adifference

between the true value and the value processed in the survey. A processing error

denotes an error made during data processing, for example, data entry.

Nonobservation errors are made because the intended measurements cannot be

carried out.Undercoverage occurswhen elements of the target population do not have

a corresponding entry in the sampling frame. These elements can and will never be

contacted. Another nonobservation error is nonresponse errorwhen elements selected

in the sample do not provide the required information.

The taxonomy discussed above makes it clear that a lot can go wrong during the

process of collecting survey data, and usually it does. Some errors can be avoided by

taking preventive measures at the design stage. However, some errors will remain.

Therefore, it is important to checkcollecteddata for errors, andwhenpossible, to correct

these errors. This activity is called data editing. Data editing procedures are not able to

handle every type of survey error. They are most suitable for detecting and correcting

measurement errors, processing errors, and possibly overcoverage. Phenomena such as

selection errors, undercoverage, and nonresponse require a different approach. This

approach often leads to the use of adjustment weights in estimation procedures, and not

to the correction of individual values in records.

8.2 DETECTION AND CORRECTION OF ERRORS

Asurvey is a fallible instrument, subject tomany formsofbias anderror.Data editing is

onemeans of controlling and reducing survey errors, especially those arising from the

interchange between respondents and interviewers, or between respondents and self-

administered forms, during the data collection process.

Data editing is the process of detecting errors in survey data and correcting the

detected errors, whether these steps take place in the interview or in the survey

office after data collection. Traditionally, statistical organizations, especially those

in government, have devoted substantial amounts of time and major resources to data
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editing in the belief that this was a crucial process in the preparation of accurate

statistics. Current data editing tools have become so powerful that questions are now

raised as to whether too much data editing occurs. A new objective for some is to

minimize the amount of data editing performedwhile guaranteeing a high level of data

quality.

Data editing taking place at the level of individual forms is called microediting.

Questionnaire forms are checked and corrected one at a time. The values of the

variables in a formare checkedwithout using information inother forms.Microediting

typically is an activity that can take place during the interview or during data capture.

Data editing taking place at the level of aggregated quantities, obtained by using all

available cases, is called macroediting. Macroediting requires a file of records. This

means it is typically an activity that takes place after data collection, after data entry,

and possibly after microediting. According to Pierzchala (1990), data editing can be

seen as addressing four principal types of data errors:

. Completeness Errors. The first thing to be done when filled-in forms come

back to the survey agency is to determine whether they are complete enough to

be processed. Forms that are blank or unreadable, or nearly so, are unusable.

They can be treated as cases of unit nonresponse (see Chapter 9), scheduled

for callback, deleted from the completed sample, imputed in some way (see

Section 8.3), depending on the importance of the case.

. Domain Errors. Each question has a domain (or range) of valid answers. An

answer outside this domain is considered an error. Such an error can easily be

detected for numeric questions, since domain errors are defined as any answer

falling outside the allowable range. For questions asking for values or quantities,

it is sometimes possible to specify improbable as well as impossible values. For

example, if the age of respondents is recorded, a value of 199 would certainly be

unacceptable. A value of 110 is unlikely but not impossible. For a closed

question, the answer has to be chosen from a list (or range) of alternatives. The

error may consist of choosing no answer, more answers than allowed, or an

answer outside the allowable range. For open questions, the domain imposes no

restrictions. Any text is accepted as an answer.

. Consistency Errors. Consistency errors occur when the answers to two or

more questions contradict each other. Each question may have an answer in

its valid domain, but a combination of answers may be impossible or unaccept-

able. A completed questionnaire may report a person as being an employee or

less than 5 years of age, but the combination of these answers for the same person

is probably an error. For instance, a firm known to have 10 employees should not

report more than 10,000 person-days worked in the past year. Consistency errors

usually occur for combinations of closed questions and/or numeric questions.

When a consistency error is detected, the answer causing the error is not

always obvious. A correction may be necessary in one, two, or more questions.

Moreover, resolving one inconsistency may produce another. So, it is easier to

detect consistency errors than to solve them.
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. Routing Errors (Skip Pattern Errors). Many questionnaires contain routing

instructions. These instructions specify conditions under which certain ques-

tions must be answered. In most cases, closed and numeric questions are used in

these instructions. In paper questionnaires, routing instructions usually take the

form of skip instructions attached to the answers of questions, or of printed

instructions to the interviewer. Routing instructions ensure that all applicable

questions are asked, while inapplicable questions are omitted.
A routing error occurs when an interviewer or respondent fails to follow a

route instruction, and a wrong path is taken through the questionnaire. Routing

errors are also called skip pattern errors. As a result, the wrong questions are

answered or applicable questions are left unanswered.

When errors are detected in completed questionnaire forms, they have to be

corrected. One obvious way to accomplish this is to recontact the respondents

and confront them with the errors. They may then provide the correct answers.

Unfortunately, this approach is not feasible in daily practice. Respondents consider

completing a questionnaire form already a burden in the first place. Having to

reconsider their answerswould inmost cases lead to a refusal to do so.Moreover, this

approach is time consuming and costly. Therefore, survey agencies rely on other

techniques to deal with errors in the collected data. They start with a survey data file

in which all wrong answers are removed, so that the corresponding questions are

considered to be unanswered.

It should be noted that analyzing a survey data set with missing data items is not

without risks. First, the “holes” in the data setmay not bemissing at random (MAR). If

data are missing in some systematic way, the remaining data may not properly reflect

the situation in the target population. Second, many statistical analysis techniques are

not able to properly cope with missing data and therefore may produce misleading

results. Some techniques even require all data to be there and interpret codes for

missing values as real values.

There are two approaches that ignore missing data in the statistical analysis. The

first one is called list-wise deletion. This approach simply omits all records from the

analysis in which at least one value is missing. So, only complete records are used.

Applicationof list-wise deletion assumes the remaining records to be a randomsample

from all records. So, there are no systematic differences between the records with

missing data and the complete records. Unfortunately, this is often not the case in

practice. It is not uncommon that specific groups in the population have problems

answering a question. Moreover, a consequence of this approach is that a lot of infor-

mation is not used. Thewhole questionnaire form is thrown away if the answer to just

one question is missing.

Another, less drastic approach is pair-wise deletion. To compute a statistical

quantity all records are used for which the relevant variables have a value. This

means that different sets of records may be used for different statistics.

A simple example shows the effects of list-wise deletion and pair-wise deletion.

Table 8.1 contains a small data set, containing the values of three variables X, Y, and Z

for four records.
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The data set contains a missing value in three different records. Suppose, the

objective is to compute the correlation between the two variablesX and Y. Application

of list-wise deletion would lead to omitting three records, including record 4 that

contains values for both X and Y. Since only one record remains, it is not possible to

compute the correlation coefficient.

The correlation coefficient RXY is defined as RXY¼ SXY/(SX� SY), where SXY is the

covariance between X and Y, and SX and SY are the respective standard deviations.

Computation of the covariance requires records with the values of both X and Y.

Records2and4canbeused for this.This results inSXY¼ 2.ComputationofSX requires

recordswith avalue forX. There are three such records (1, 2, and 4), resulting inSX¼ 1.

Likewise, records 1, 3, and 4 can be used for SY. This gives SY¼ 1. Hence, the

correlation coefficient is equal to RXY¼ 2/(1� 1)¼ 2. Since, by definition, the

correlation coefficient is constrained to the interval [�1, þ 1], this value is impossible!

The cause of this inconsistency is that computation of thevarious components is based

on different sets of records.

The approach probably most often applied in practical situations is imputation. A

wrong or missing value is replaced by a synthetic value. This synthetic value is the

outcome of a technique that attempts to predict the unknown value as accurately as

possible using the available information. Imputation techniques are discussed inmore

detail in Section 8.3.

Checks for domain errors involve only one question at the time. In case an error is

detected, it is clear which question is causing this error and therefore which answer

must be corrected. The situation is different with respect to checks for consistency

and routing errors. Several questions are usually involved in such checks. If an error

is detected, it will often not be clear which question caused the error. The answer to

one question can bewrong, but it is also possible that there are errors in the answers to

more questions.Without more information it is often impossible to detect the source

of the error. Fellegi and Holt (1976) have developed a theory to solve this problem.

Their theory is based on the principle that the values of the variables in a record

should be made to satisfy all checks by changing the fewest possible number of

values. The number of synthetic values should be as small as possible. Real data

should be preferred over synthetic data. It is assumed that, generally, errors are rare

and therefore it must be possible to get rid of errors by changing a few data values.

Consequently, a useful rule of thumb is to first locate the variable that is involved in

many errors in a record. Changing the value of just that variable may cause many

errors to disappear.

Table 8.1 A Data Set with Missing Values

Record X Y Z

1 4 4 5

2 5 – 6

3 – 5 4

4 6 6 –
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8.3 IMPUTATION TECHNIQUES

To avoid missing data problems, often some kind of imputation technique is applied.

Imputationmeans that missing values are replaced by synthetic values. This synthetic

value is obtained as the result of some technique that attempts to estimate the missing

values. After applying an imputation technique, there are no more “holes” in the data

set. So, all analysis techniques can be applied without having to worry about missing

values. However, there is a downside to this approach.

There is no guarantee that an imputation technique will reduce a bias that may

have been caused by the missing data. It depends on the type of missing data pattern

and the specific imputation technique that is applied. Three types of missing data

mechanisms can be distinguished. LetX represent a set of auxiliary variables that are

completely observed and let Y be a target variable of which some values aremissing.

The variable Z represents causes of missingness unrelated to X and Y, and the

variable R indicates whether or not a value of Y is missing.

In case of missing completely at random (MCAR), missingness is caused by a

phenomenon Z that is completely unrelated to X and Y. Estimates for parameters

involving Y will not be biased. Imputation techniques will not change this.

In case ofmissing at random (MAR), missingness is caused partly by an indepen-

dent phenomenon Z and partly by the auxiliary variable X. So, there is an indirect

relationship between Y and R. This leads to biased estimates for Y. Fortunately, it is

possible to correct such a bias by using an imputation technique that takes advantage of

the availability of all values of X, both for missing and for nonmissing values of Y.

In case of not missing at random (NMAR), there may be a relationship between Z

and R and between X and R, but there is also a direct relationship between Y andR that

cannot be accounted for X. This situation also leads to biased estimates for Y.

Unfortunately, imputation techniques using X are not able to remove the bias.

There aremany imputation techniques available.Anumberof themaredescribed in

this chapter. These are all single-imputation techniques. This means that a missing

value is replaced by one synthetic value. Another approach is multiple imputation.

This technique replaces a missing value by a set of synthetic values. A summary of

technique is given at the end of this section.

8.3.1 Single-Imputation Techniques

Assuming sampling without replacement, the sample is represented by the set of

indicators a1,a2, . . .,aN. Thevalue of the indicator ak is equal to 1 if element is selected

in the sample, otherwise it is equal to 0.

Let Y be the target variable for which some values are missing in the sample.

Missingness is denoted by the set of indicators R1, R2, . . ., RN. Of course, Rk¼ 0 if

ak¼ 0. A missing value of a sampled element k is indicated by ak¼ 1 and Rk¼ 0.

Let X be an auxiliary variable for which nomissing values occur in the sample. So,

the value Xk is always available if ak¼ 1.

Sometimes, the value of a missing item can be logically deduced with certainty

from the nonmissing values of other variables. This is called deductive imputation.
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If strict rules of logic are followed, this technique has no impact on the properties of the

distribution of estimators.

For example, if we know a girl is 5 years old, we can be certain she has had no

children. Likewise, if a total is missing but the subtotals are not missing the total can

easily be computed.

Although deductive imputation is the ideal form of imputation, it is frequently not

possible to apply it.

Imputation of themean implies that amissing value of a variable is replaced by the

mean �yRof the available values of this variable. Let k be an element in the sample for

which the value Yk is missing. The imputed value is defined by

Ŷk ¼ �yR ¼

PN
k¼1

akRkYk

PN
k¼1

akRk

: ð8:6Þ

Since all imputed values will be equal to the same mean, the distribution of this

variable in the completed data setwill be affected. It will have a peak at themean of the

distribution.

For imputation of the mean within groups, the sample is divided into a number of

nonoverlapping groups.Qualitative auxiliary variables are used for this.Within a group, a

missing value is replaced by the mean of the available observations in that group.

Imputation of the mean within groups will perform better than imputation of the

mean if the groups are homogeneouswith respect to the variable being imputed. Since

all values are close to each other, the imputed group mean will be a good approxima-

tion of the true, but unknown, value.

Random imputation means that a missing value is replaced by a value that is

randomly chosen from the available values for the variable. The set of available values

is equal to

fYkjak ¼ 1 ^ Rk ¼ 1g: ð8:7Þ
This imputation is sometimes also called hot-deck imputation. It is a formof donor

imputation: a value is taken from an existing record where the value is not missing.

The distribution of the values of the variable for the complete data set will look

rather natural. However, this distribution does not necessarily resemble the true

distribution of the variable. Both distributions may differ if the missing values are not

randomly missing.

Random imputation within groups divides the sample into a number of nonover-

lapping groups. Qualitative auxiliary variables are used to create these groups.Within

a group, a missing value is replaced by a randomly chosen value from the set of

available values in that group.

Random imputation within groups will perform better than random imputation

if the groups are homogeneous with respect to the variable being imputed. Since all

values are close to each other, the randomly selected value will be a good approxima-

tion of the true, but unknown, value.
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The idea ofnearest neighbor imputation is that a record is located in thedata set that

resembles as much as possible the record in which a value is missing. Some kind of

distance measure is defined to compare records on the basis of values of auxiliary

variables that are available for all records.

If all auxiliary variables are of a quantitative nature, some kind of Euclidean

distance may be used. Suppose there are p such variables. Let Xkj be the value of

variable Xj for element k, for k¼ 1, 2, . . ., N and j¼ 1, 2, . . ., p. Then, the distance
between the records of two elements i and k could be defined by

Dik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
j¼1

ðXij �XkjÞ2
vuut : ð8:8Þ

Let k be an element in the sample for which the value Yk is missing. The imputed

value is copied from the record of a sampled element iwith the smallest distanceDki,

and for which the value of Y is available.

Ratio imputation assumes a relationship between the target variable Y (with

missing values) and an auxiliary variable X (without missing values). If this relation-

ship is (approximately) of the form Yk¼B�Xk, for some constant B, then a missing

valueofY for elementk canbe estimated byB�Xk. If thevalueofB is not known, it can

be estimated using the available data by

b ¼

PN
k¼1

akRkYk

PN
k¼1

akRkXk

: ð8:9Þ

Let k be an element in the sample for which the value Yk is missing. The imputed

value is defined by

Ŷk ¼ bXk: ð8:10Þ

Ratio estimation is often used when the same variable is measured at two different

moments in time in a longitudinal survey.

Regression imputation assumes a relationship between the target variable Y (with

missing values) and an auxiliary variable X (without missing values). If this relation-

ship is (approximately) of the formYk¼A þ B�Xk, for some constantsA andB, then

a missing value of Y for element k can be estimated by A þ B�Xk.

If the values of A and B are not known, they can be estimated by applying ordinary

least squares on the available data by

b ¼
PN
k¼1

akRkðYk��yrÞðXk��xrÞ
PN
k¼1

akRkðXk��xrÞ2
ð8:11Þ
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and

a ¼ �yr�b�xr: ð8:12Þ
Let k be an element in the sample for which the value Yk is missing. The imputed

value is defined by

Ŷk ¼ aþ bXk: ð8:13Þ
The regression model above contains only one auxiliary variable. Of course it is

possible to include more variables in the regression models. This will often increase

the explanatory power of the model, and therefore imputed values will be closer to the

true (but unknown) values.

At first sight, all single-imputation techniques mentioned above seem rather

different. Nevertheless, almost all of them fit in a general model. Let k be an element

in the sample for which the value Yk is missing. The imputed value is defined by

Ŷk ¼ B0 þ
Xp
j¼1

BjXkj þEk; ð8:14Þ

where Xkj denotes the value of auxiliary variable Xj for element k, B0, B1, . . ., Bp are

regression coefficients, and Ek is a random term the nature of which is determined by

the specific imputation technique.

By taking B0 equal to the mean of the available values of Y, and setting the other

coefficients Bj and Ek equal to 0, the model reduces to imputation of the mean.

If the auxiliary variableX1,X2, . . .,Xp are taken to be dummyvariables that indicate

to which group an element belongs (Xkj¼ 1 if element k is in group j, and otherwise

Xkj¼ 0), B0¼ 0 and Ek¼ 0, then (8.14) is equal to imputation of the group mean.

Model (8.14) reduces to random imputation if themodel for imputation of themean

is used, but a random termEk is added. Its value is obtained by a random drawing from

the set of values

�yR � Yk ð8:15Þ
for which ak¼ 1 and Rk¼ 1.

Random imputation within groups is obtained by adding a random term Ek to the

model for imputation of the group mean. The value of Ek is a random drawing from a

set of values. These values are obtained by subtracting the available values from their

respective group means.

It is clear that ratio imputation and regression imputation also are special cases of

model (8.14). Nearest neighbor imputation does not fit in this model.

8.3.2 Properties of Single Imputation

There are many single-imputation techniques. So, the question may arise which

technique to use in a practical situation. There are several aspects that may play a role

in this decision. A number of these effects are discussed in this section.
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Thefirst aspect is the typeof variable forwhichmissing values have tobe imputed. In

principle all mentioned imputation techniques can be applied for quantitative variables.

However, not every single-imputation technique can be used for qualitative variables.

A potential problem is that the synthetic value produced by the imputation technique

does not necessarily belong to the domain of valid values of the variable. For example,

if the variable gender has to be imputed, mean imputation produces an impossible

value (what is the mean gender?). Therefore, only some form of “donor imputation”

is applicable for qualitative variables. These techniques always produce “real” values.

Single-imputation techniques can be divided into two groups. One contains

deterministic imputation techniques and the other random imputation techniques.

The random term Ek in model (8.14) is zero for deterministic techniques and not for

random techniques.

For some deterministic imputation techniques (e.g., imputation of the mean), the

mean of a variable before imputation is equal to themean after imputation. This shows

that not every imputation technique is capable of reducing a bias caused by miss-

ingness. For random imputation techniques, themean before imputation is never equal

to the mean after imputation. However, expected values before and after imputation

may be equal.

Deterministic imputation may affect the distribution of a variable. It tends to

produce synthetic values that are close to the center of the original distribution. The

imputed distribution is more “peaked.” This may have unwanted consequences.

Estimates of standard errors may turn out to be too small. A researcher using the

imputed data (not knowing that the data set contains imputed values) may get the

impression that his estimates are very precise, while in reality this is not the case.

The possible effects of imputation on estimators are explored by analyzing two

single-imputation techniques in somemore detail: imputation of themean and random

imputation.

8.3.3 Effects of Imputation of the Mean

Imputation of the mean replaces missing values by the mean of the available values.

LetY1,Y2, . . .,YNbe thevalues of thevariable to be imputed.A sample of sizenwithout

replacement is denoted by the set of indicators a1, a2, . . ., aN. Missingness is indicated

by the set of indicators R1, R2, . . ., RN, where Rk¼ 1 only if k is in the sample (ak¼ 1)

and thevalueYk is available. Of course,Rk¼ 0 if ak¼ 0.Amissing value for a sampled

element k is indicated by ak¼ 1 and Rk¼ 0. The number of available observations is

denoted by

m ¼
XN
k¼1

akRk: ð8:16Þ

The mean of the available observations is equal to

�yR ¼ 1

m

XN
k¼1

akRkYk: ð8:17Þ
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In case of imputation of themean, amissing observation is replaced by themean of

the available values. So, if ak¼ 1 and Rk¼ 0 for some element k, the imputed value

Ŷk ¼ �yR ð8:18Þ
is used.Nowanewestimator for the populationmean is obtained by taking the average

of all “real” and all “synthetic” values of Y. Let

�yI ¼
1

n�m

XN
k¼1

akð1�RkÞŶk ð8:19Þ

denotes the mean of all imputed values. Consequently, the mean after imputation can

be written as

�yIMP ¼
m�yR þðn�mÞ�yI

n
: ð8:20Þ

In case of imputation of the mean, expression (8.19) reduces to

�yI ¼
1

n�m

XN
k¼1

akð1�RkÞŶk ¼ 1

n�m

XN
k¼1

akð1�RkÞ�yR ¼ �yR ð8:21Þ

and therefore,

�yIMP ¼ m�yR þðn�mÞ�yI
n

¼ m�yR þðn�mÞ�yR
n

¼ �yR: ð8:22Þ

The conclusion can be drawn that the mean after imputation is equal to the mean

before imputation. Imputation does not affect the mean.

To determine the characteristics of an estimator after imputation, it should be

realized that twodifferent types of probabilitymechanismsmayplay a role.Of course,

there always is the probability mechanism of the sample selection. An extra source of

randomness may be introduced by the imputation technique, for example, if a

randomly selected value is imputed. To take this into account, the expected value

of an estimator (after imputation) is determined with the expression

Eð�yIMPÞ ¼ ESEIð�yIMPjSÞ: ð8:23Þ
EI denotes the expectation over the imputation distribution andES the expectation over

the samplingdistributionS. This is applied to the case of imputationof themean.Given

the sample, the estimator is a constant. So taking the expectation over the imputation

distribution results in the same constant. Hence, the expected values of the estimators

before and after imputation are the same. Imputation of the mean will not be able to

reduce a possibly existing bias due to missingness.

To compute thevarianceof the estimator after imputationof themean, the expression

Vð�yIMPÞ ¼ VSEIð�yIMPjSÞþESVIð�yIMPjSÞ ð8:24Þ
is used.Given the sample, estimator (8.20) is a constant. Thismeans the second term in

expression (8.24) is equal to 0. The first term is equal to the variance of the estimator
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before imputation.Consequently, imputation of themeandoes not change thevariance

of the estimator.

Problems may arise when an unsuspecting researcher attempts to estimate the

variance of estimators, for example, for constructing a confidence interval. To keep

things simple, it is assumed the available observations can be seen as a simple random

sample without replacement, that is, missingness does not cause a bias. Then the

variance after imputation is equal to

Vð�yIMPÞ ¼ Vð�yRÞ ¼
1�ðm=NÞ

m
S2 ð8:25Þ

in which S2 is the population variance.

It is a well-known result from sampling theory that in case of a simple random

sample without replacement, the sample variance s2 is an unbiased estimator of the

population variance S2. This also holds for the situation before imputation: the s2

computed using the m available observations is an unbiased estimator of S2.

What would happen if an attempt would bemade to estimate S2 using the complete

data set, without knowing that some values have been imputed? The sample variance

would be computed, and it would be assumed that this quantity is an unbiased

estimator of the population variance. However, this is not the case. For the sample

variance of the imputed data set, the following expression holds:

s2IMP ¼ 1

n� 1

XN
k¼1

akRkðYk ��yRÞ2 þ
XN
k¼1

akð1�RkÞðŶk ��yRÞ2
 !

¼ 1

n�1

XN
k¼1

akRkðYk ��yRÞ2 þ 0

 !
¼ m�1

n�1
s2:

ð8:26Þ

Hence,

Eðs2IMPÞ ¼
m� 1

n� 1
S2: ð8:27Þ

This is not an unbiased estimator of the population variance. The population

variance is underestimated. One gets the impression that estimators are very precise,

whereas in reality this is not the case. So someone analyzing imputed data runs a

substantial risk of drawingwrong conclusions from the data. This risk is larger as there

are more imputed values.

Imputation has an impact also on the correlation between variables. Suppose the

variable Y is imputed using imputation of the mean. And suppose the variable X is

completely observed for the sample. It can be shown that in this case the correlation

after imputation is equal to

rIMP;X;Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

n� 1

r
rXY ð8:28Þ

where rXY is the correlation in the data set before imputation. So, themoreobservations

aremissing forY, the smaller the correlation coefficient will be. Researchers not aware
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of their data set having been imputed will obtain the impression that relationships

between variables are weaker than they are in reality. In addition, there is a risk of

drawing wrong conclusions.

8.3.4 Effects of Random Imputation

The effects of imputation mentioned in the previous section are less severe when

random imputation is applied. Random imputation means that a missing value is

replaced by a value that is randomly chosen from the available values for the variable.

Usually, synthetic values are selected by means of drawing values without replace-

ment. This is, of course, impossible if there are more missing values than nonmissing

values.

The estimator

�yIMP ¼ m�yR þðn�mÞ�yI
n

ð8:29Þ

is now composed of two random terms: the mean of them “real” observations and the

mean of the n�m “synthetic” observations.

Given the sample, the expected value of the mean of the synthetic values over the

imputation distribution is equal to the mean of the real values. If applied to expres-

sion (8.23), the conclusion can be drawn that the expected value of the mean after

imputation is equal to the expected value of the mean before imputation. Imputation

does not change the expected value of the estimator.

The computation of the variance of the estimator is now a little bit more complex,

because the second term in expression (8.24) is not any more equal to zero. The

variance turns out to be equal to

Vð�yIMPÞ ¼
1�ðm=NÞ

m
S2 þ ðn�mÞð2m� nÞ

n2m
S2: ð8:30Þ

Apparently, random imputation increases the variance of the estimator. The

variance consists of two components: the first one is contributed by the sampling

design and the second one is contributed by the imputation mechanism.

What happens if a researcher is unawareof the fact that random imputation hasbeen

carried out? He computes the sample variance s2 using the complete data set, and

heassumes this is anunbiased estimator of thepopulationvarianceS2.This assumption

is wrong in case of imputation of the mean. In case of random imputation, it can be

shown that

Eðs2Þ ¼ S2 1þ 2m� n

nðn� 1Þ
� �

: ð8:31Þ

So, s2 is not an unbiased estimator of S2, but for large samples the biaswill be small.

Therefore, s2 is an asymptotically unbiased estimator.

It should be noted that random imputation affects the value of correlation co-

efficients. These values will generally be too low when computed using the imputed
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data set. This is caused by the fact that imputed values are randomly selected without

taking into account possibly existing relationships with other variables. This phe-

nomenon can also be encountered when applying other single-imputation techniques.

8.3.5 Multiple Imputation

Single imputation can be seen as a technique that solves the missing data problem by

filling the holes in the data set by plausible values. When analyzing data, one is not

bothered any more by missing data. This is clearly an advantage. However, there are

also disadvantages. When a single-imputation technique is applied in a na€ıve way, it
may create more problems than it solves. It was shown in the previous section that

single imputation may distort the distribution of an estimator. Therefore, there is a

serious risk of drawing wrong conclusions from the data set. More details about this

aspect of imputation can be found in, for example, Little and Rubin (1987).

To address the problems caused by single-imputation techniques, Rubin (1987)

proposedmultiple imputation, a technique inwhich eachmissing value is replaced by

m> 1 synthetic values. Typically,m is small, say 3–10. This leads tom complete data

sets. Each data set is analyzed by using standard analysis techniques. For each data set,

an estimate of a population parameter of interest is obtained. The m estimates for a

parameter are combined to produce estimates and confidence intervals that incorpo-

rate missing data uncertainty.

Rubin (1987) developed his multiple-imputation technique primarily for solving

themissingdataproblem in largepublic use sample surveydatafiles andcensusesfiles.

With the advent of new computational methods and software for multiple imputation,

this technique has become increasingly attractive for researchers in other sciences

confronted by missing data (see also Schafer, 1997).

Multiple imputation assumes some kind of model. This model is used to generate

synthetic values. Let Y be the variable of which some values are missing, and let X1,

X2, . . .,Xp be variables that have been observed completely. The imputationmodel for

a quantitative variable Y will often be some regression model like

Ŷk ¼ B0 þ
Xp
j¼1

BjXkj þEk: ð8:32Þ

Aloglinearmodel canbeused forqualitativevariables. For the sakeof convenience,

this overview will consider only quantitative variables.

The effects of imputation depend on themissing datamechanism that has generated

the missing values. The most convenient situation is missing completely at random.

This means that missingness happens completely at random. It is not related to any

factor, known or unknown. Missingness does not cause a bias in estimates for Y. In

this case, multiple synthetic drawings can be generated bymeans of applying random

imputation a number of times. It is also possible to use imputation of the mean if the

variation is modeled properly. For example, this can be done by adding a random

component to themean that has been drawn froma normal distributionwith the proper

variance.
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MCAR is usually not a very realistic assumption. The next best assumption is that

data are missing at random. This means that missingness depends on one or more

auxiliary variables, but these variables have been observed completely. Amodel such

as (8.32) can be used in this case. Sets of synthetic values are generated using the

regression model to predict the missing values. To give the imputed values the proper

variance, usually a randomcomponent is added to thepredictedvalue.This component

is drawn from a distribution with the proper variance.

The worst case is the situation in which data is not missing at random. Then

missingness depends on unobserved variables, and therefore no valid imputation

model canbebuilt using the available data.The distributionof the estimators cannot be

repaired by applying multiple imputation. There still is a risk of drawing wrong

conclusions from the analysis.

Rubin (1987) describes how estimates for the multiple data sets can be combined

into one proper estimate. This is summarized here, concentrating on estimating the

population mean.

Let �yj denote the estimator of data set j (for j¼ 1, 2, . . ., m), and let Sð�yjÞ be the
associated standard error. The overall estimator for the population mean of Y is now

defined by

�yMI ¼
1

m

Xm
j¼1

�yj: ð8:33Þ

The variance of this estimator is equal to

Vð�yMIÞ ¼
1

m

Xm
j¼1

Vð�yjÞþ 1þ 1

m

� �
1

m� 1

Xm
j¼1

ð�yMI ��yjÞ2: ð8:34Þ

Thefirst term in expression (8.34) canbe seen as thewithin imputationvariance (the

variation within the data sets) and the second one as the between imputation variance

(the variation caused by differences in imputed values).

Rubin (1987) claims that the number of imputations per missing value should not

exceedm¼ 10.He shows that the relative increase invariance of an estimator based on

m imputations to the one based on an infinite number of imputations is approximately

equal to

1þ l

m

� �
ð8:35Þ

wherel is the rate ofmissing information. For example,with50%missing information

(l¼ 0.5), the relative increase in variance of an estimator based onm¼ 5 imputations

equals 1.1. This means that the standard error will only be 5% larger.

Multiple imputation can be a useful tool for handling the problems caused by

missing data, but if it is not done carefully, it is potentially dangerous. If an

imputation does not model the missing data mechanism properly, analysis of the

imputed data sets can be seriously flawed. This means that used models should

always be checked.
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8.4 DATA EDITING STRATEGIES

Data editingwasmainly amanual activity in the days of traditional survey processing.

Domain errors were identified by visually scanning the answers to the questions one at

a time. Consistency errors were typically caught only when they involved a small

number of questions on the same page or on adjacent pages. Route errors were found

by following the route instructions and by noting deviations. In general, manual

editing could identify only a limited number of problems in the data set.

The data editing process was greatly facilitated by the introduction of computers.

Initially, these were mainframe computers, which permitted only batch-wise editing.

Tailor-made editing programs, usually written in COBOL or FORTRAN, were de-

signed for each survey. Later, general-purpose batch editing programswere developed

and extensively used. These programs performed extensive checks on each record

and generated printed lists of error reports by case ID. The error lists were then sent to

subject-matter experts or clerical staff, who attempted to manually reconcile these

errors. This staff then prepared correction forms, which were keyed to update the data

file, and the process was repeated.

Batch computer editing of data sets improved the data editing process because

it permitted a greater number and more complex error checks. Thus, more data errors

could be identified. However, the cycle of batch-wise checking andmanual correction

was proved to be labor-intensive, time consuming, and costly.

Statistics Netherlands carried out a Data Editing Research Project in 1984 (see

Bethlehem, 1997). A careful evaluation of data editing activities was conducted

in a number of different surveys: large and small surveys, and social and economic

surveys. Although considerable differences were observed between surveys, still

somegeneral characteristics could be identified. The traditional data editing process is

summarized in Fig. 8.3.

After collection of the questionnaire forms, subject-matter specialists checked

them for completeness. If necessary and possible, skipped questions were answered

and obvious errors were corrected on the forms. Sometimes, forms were manually

copied to a new form to allow the subsequent step of data entry. Next, the forms were

transferred to the data entry department. Data typists entered the data in the computer

at high speed without error checking. The computer was a dedicated system for data

entry. After data entry, the files were transferred to the mainframe computer system.

On the mainframe, an error detection program was run. Detected errors were printed

on a list. The lists with errors were sent to the subject-matter department. Specialists

investigated the error messages, consulted corresponding forms, and corrected errors

on the lists. Lists with corrections were sent to the data entry department, and data

typists entered the corrections in the data entry computer. Thefilewith correctionswas

transferred to the mainframe computer. Corrected records and already present correct

records were merged. The cycle of batch-wise error detection and manual correction

was repeated until the number of detected errors was considered to be sufficiently

small.

After the last step of the editing process, the result was a “clean” data set, which

could be used for tabulation and analysis. Detailed investigation of this process for the
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four selected surveys leads to a number of conclusions. These conclusions are

summarized below.

First, various people from different departments were involved.Many people dealt

with the information: respondents filled-in forms, subject-matter specialists checked

forms and corrected errors, data typists entereddata in the computer, andprogrammers

from the computer department constructed editing programs. The transfer of material

from one person/department to another could be a source of error, misunderstanding,

and delay.

Second, different computer systemswere involved.Most data entrywas carried out

on Philips P7000 minicomputer systems, and data editing programs ran on a CDC

Cyber 855 mainframe. Furthermore, there was a variety of desktop (running under

MS-DOS) and other systems. About 300 interviewers had been equippedwith laptops

running under CP/M. Transfer of files from one system to another caused delay, and

incorrect specification and documentation could produce errors.

Third, not all activities were aimed at quality improvement. A lot of time was spent

justonpreparing forms fordataentry,notoncorrectingerrors. Subject-matter specialists

had to clean up forms to avoid problems during data entry. The most striking example

was manually assigning a code for “unknown” to unanswered questions.

Another characteristic of the process is that it was going throughmacrocycles. The

whole batch of data was going through cycles: from one department to another, and

from computer system to another. The cycle of data entry, automatic checking, and

manual correction was in many cases repeated three times or more. Due to these

macrocycles, data processing was very time consuming.

Completed forms

Manual check

Data entry

Transfer to mainframe

Batch-wise check

Correct forms Incorrect forms

Clean file

Figure 8.3 The traditional data editing process.

196 THE QUALITY OF THE RESULTS



Finally, the nature of the data (i.e., themetadata) had to be specified in nearly every

step of the data editing process. Although essentially the same, the “metadata

language” was completely different for every department or computer system in-

volved. The questionnaire itself was the first specification. The next one was with

respect to data entry. Then, automatic checking program required another specifica-

tion of the data. For tabulation and analysis, for example, using the statistical package

SPSS, again another specification was needed. All specifications came down to a

description of variables, valid answers, routing, and possibly valid relations.

With the emergence ofmicrocomputers in the early 1980s, completely newmethods

of data editing became possible. One of these approaches has been called computer-

assisted data input (CADI). The same process has also been called computer-assisted

data entry (CADE). CADI provides an interactive and intelligent environment for

combined data entry and data editing of paper forms by subject-matter specialists or

clerical staff.Datacanbeprocessed in twoways:either incombinationwithdataentryor

as a separate step. In the first approach, the subject-matter employees process the survey

forms with a microcomputer one by one. They enter the data “heads up,” which means

that they tend to watch the computer screen as they make entries. After completion of

entry for a form, they activate the check options to test for all kinds of errors (omission,

domain, consistency, and route errors). Detected errors are displayed and explained on

the screen. Staff can then correct the errors by consulting the form or by contacting the

supplier of the information. After the elimination of all visible errors, a “clean” record,

that is, one that satisfies all check edit criteria, is written to file. If staff members do not

succeed in producing a clean record, they can write it to a separate file of problem

records. Specialists can later dealwith these difficult caseswith the sameCADI system.

This approach of combining capture and editing is efficient for surveys with relatively

small samples but complex questionnaires.

In the second approach, clerical staff (data typists or entry specialists) enter data

through the CADI system “heads down,” that is, without much error checking. When

this entry step is complete, the CADI system checks all the records in a batch run and

flags the cases with errors. Then subject-matter specialists take over, examine the

flagged records and fields one by one on the computer screen, and try to reconcile the

detected errors. This approach works best for surveys with large samples and simple

questionnaires.

The second advance in data editing occurred with the development of computer-

assisted interviewing (CAI). It replaced the paper questionnaire with a computer

program that was in control of the interviewing process. It began in the 1970s with

computer-assisted telephone interviewing (CATI) using minicomputers. The emer-

gence of small, portable computers in the 1980s made computer-assisted personal

interviewing (CAPI) possible. Computer-assisted interviewing is being increasingly

used in social and demographic surveys. CAI offers three major advantages over

traditional paper and pencil interviewing (PAPI):

. Computer-assisted interviewing integrates three steps in the survey process: data

collection, data entry, and data editing. Since interviewers use computers to

record the answers to the questions, they take care of data entry during the
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interview. Since most of the data editing is carried out during the interview, a

separate data editing step has become superfluous in many surveys. After all

interviewer files have been combined into one data file, the information is clean

and therefore ready for further processing. Thus, computer-assisted interviewing

reduces the length and the cost of the survey process.

. The interview software takes care of selecting the proper next question to ask and

ensuring that entries are within their domains. Hence, routing and range errors

are largely eliminated during data entry. This also reduces the burden on the

interviewers, since they need not worry about routing from item to item and can

concentrate on getting the answers to the questions.

. With CAI, it becomes possible to carry out consistency checking during the

interview. Since both the interviewer and the respondent are availablewhen data

inconsistencies are detected, they can immediately reconcile them. In this way,

computer-assisted interviewing should produce more consistent and accurate

data, correcting errors in the survey office after the interview is over.

Computer-assisted interviewing has been shown to increase the efficiency of the

survey operations and the quality of the results. For more information about these

aspects, see Couper and Nicholls (1998).

The use of computer-assisted interviewing techniques makes it possible to move

data editing to the front of the statistical process. The interviewers can take over many

of thedata editing tasks.This raises thequestionas towhether all data editing shouldbe

carried out during the interview, thereby avoiding a separate data editing step. There is

much to say in favor of this approach. In his famous book on quality control, Deming

(1986) strongly advises against dependence onmass inspection of the final product. It

is ineffective and costly. Instead, quality control should be built into the production

process and be carried out at the first opportunity. For computer-assisted interviewing,

that first opportunity occurs in the interview itself. Powerful interviewing software,

such as the Blaise system, can perform checks on data as entered and report any

detected errors. Both the interviewer and the respondent are available, so together they

can correct any problem. Experience has shown that many errors are detected and

resolved in this way. Data editing during the interview has been shown to produce

better data than editing after data collection.

Data editing during the interview has also some drawbacks. First, checks built into

the interviewing program can be very complex, resulting in error message that are

difficult for the interviewers and respondents to understand. Correction of some

detected errorsmay prove to be a very difficult task. The developer of the interviewing

program has to recognize that the interviewer is not a subject-matter specialist. Only

errors that the interviewer can easily handle should be made part of the interview.

Second, havingmanychecks in the interviewingprogramwill increase the lengthof

the interview as the interviewer is stopped to correct each detected error. Interviews

should be kept as short as possible. If longer interviews, the respondent may lose

interest, with a possible loss of data quality, and this may offset quality gains from

additional editing.
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Third, not all forms of data editing are possible during the interview. When com-

parisons of entered data are necessary with information from other sources, such

as large database systems, laptop computers used in CAPI may not have sufficient

facilities and capacities to use them.

Fourth, improperly specified checks can completely obstruct the completion of an

interview. The interviewing software will not accept entries that violate programmed

checks, and if the respondent claims that the answers are correct, there can be an

impasse. Fortunately, most interviewing software has ways to avoid these deadlocks.

One solution is to permit both hard checks and soft checks.

Hard checks designate errors thatmust be corrected.The interviewer is permitted to

continue the interview until changes have beenmade that no longer violate the check.

Soft checks result in warnings of situations that are highly unlikely although possible.

If the respondent insists that the answer is correct, the interviewer can accept the

answer and continue. Soft checksmust be usedwherever there is a risk of an impasse in

the interview. It is also possible to combine soft and hard checks. A soft check with

somewhat relaxed conditions is used to detect suspicious cases,whereas the same type

of checkwithmore strict conditions is specified as ahard check todetect the real errors.

Despite the drawbacksmentioned, the possible extra burdenon the interviewer, and

the limitations imposed by hardware, there are time, money, and quality considera-

tions generally encouraging as much data editing as possible in the interview. Only

editing not possible during the interview should be carried out after data collection.

This requires a careful thought during the design stage in the development of both the

interview and the postinterview editing instruments.

Performing data editing during a computer-assisted interview is greatly facilitated

when the interviewing software allows specification of powerful checks in an easy and

user-friendly way. Although checks can be hard coded for each survey in standard

programming languages, this is a costly, time-consuming, and error-prone task.Many

CAI software packages now offer very powerful tools for microediting, permitting

easy specification for a large number of checks, including those involving complex

relationships amongmanyquestions. Editing duringCAI is nowextensively used both

in government and private sector surveys.

Whethermicroediting is carried out during or after the interview, the entire process

may have major disadvantages, especially when carried to extremes. Little and Smith

(1987) havementioned the risk of overediting. Powerful editing software offers ample

means for almost anycheckonecan thinkof, and it is sometimes assumed that themore

checks one carries out, the more errors one will correct. But there are risks and costs.

First, the use of too many checks may cause problems in interviewing or postinter-

view data correction, especially if the checks are not carefully designed and thor-

oughly tested prior to use. Contradictory checks may cause virtually all records to be

rejected, defeating the purposeof editing.Redundant checksmayproduceduplicate or

superfluous error messages slowing the work. And checks for data errors that have

little impact on the quality of published estimates may generate work that does not

contribute to the quality of the finished product.

Second, since data editing activities make up a large part of the total survey costs,

their cost effectiveness has to be carefully evaluated at a time when many survey
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agencies face budget reductions. Large numbers of microedits that require individual

corrections will increase the costs of a survey. Every attempt should be made to

minimize data editing activities so that they do not affect the quality of the survey

results.

Third, it must be recognized that not all data problems can be detected and repaired

with microediting. One such problem is that of outliers. An outlier is a value of a

variable that iswithin the domain of valid answers to a questionbut is highly unusual or

improbablewhen compared with the distribution of all valid values. An outlier can be

detected only if the distribution of all values is available. Macroediting is required

for this.

The remaining sections of this chapter describe three alternative approaches to

editing that address some of the limitations of traditional microediting. In some

situations, they could replace microediting. In other situations, they could be carried

out in combination with traditional microediting or with each other. They are

. Automatic editing attempts to automatemicroediting. Since human intervention

is eliminated, costs are reduced and timeliness is increased.

. Selective editing attempts to minimize the number of edits in microediting. Only

edits having an impact on the survey results are performed.

. Macroediting offers a top–down approach. Edits are carried out on aggregated

cases rather than on individual records. Microediting of individual records is

invoked only if problems are identified by macroedits.

A more detailed description of these data editing approaches can be found in

Bethlehem and Van de Pol (1998).

8.4.1 Automatic Editing

Automatic editing is a process in which records are checked and corrected automati-

cally by a software package. Since no human activities are involved, this approach is

fast and cheap. For automatic editing, the usual two stages of editing, error detection

and error correction, are expanded to three:

. Error Detection. As usual, the software detects errors or inconsistencies by

reviewing each case using the prespecified edit rules.

. Determining the Variables Causing the Error. If an edit detects an error that

involves several variables, the systemmust next determinewhich variable caused

the error. Several strategies have been developed and implemented to solve this

problem.

. Error Correction. Once the variable causing the error has been identified, its

value must be changed so that the new value no longer causes an error message.

There is no straightforward way to determinewhich of the several variables causes

a consistency error. One obvious criterion is the number of inconsistencies in which
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that variable is involved. If variableA is related to three other variablesB,C, andD, an

erroneous value ofAmay generate three inconsistencies withB,C, andD. IfB,C, and

D are involved in no other edit failures,A seems the likely culprit. However, it could be

noted that noother edit rules have been specified forB,C, andD. Then, alsoB,C, andD

could be candidates for correction.

Edit rules have to be specified to be able to detect errors. Such rules are

mathematical expressions that describe relationships between variables. For quanti-

tative variables, such relationships usually take the form of equalities or inequalities.

Suppose, three variables aremeasured in a business survey: turnover, costs, and profit.

By definition, the first two variables only assume nonnegative values. The third vari-

able may be negative. The following edit rules may apply to these variables:

Profit + Costs = Turnover

Costs > 0.6�Turnover

Edit rules for qualitative variables often take the form of IF-THEN-ELSE con-

structions. An example for two variables, age and marital status, is

IF Age < 15 THEN MarStat = Unmarried

If a record satisfies all specified edit rules, it is considered correct. If at least one edit

rule is violated, it is considered incorrect and will need further treatment. As an

example, Table 8.2 contains two records that have to be checked using the quantitative

edit rules mentioned above.

The variables in record 1 satisfy both edit rules. Therefore, the record is considered

correct. There is something wrong with record 2 as profit and costs do not add up to

turnover.Note that the edit ruleswould be satisfied if the value 755 is replacedwith 75.

So, the error may have been caused by a typing error.

The Fellegi–Holt methodology takes a more sophisticated approach (Fellegi and

Holt, 1976; United Nations, 1994). To reduce dependence on the number of checks

defined, the Fellegi–Holt methodology performs for each variable an analysis of the

pertinent edit checks. Logically superfluous checks are removed and all implied

checks that can be logically derived from the checks in question are added.Records are

then processed as awhole, and not on avariable-by-variable basis,with all consistency

Table 8.2 Examples of Two Records to be Checked

Record Profit Costs Turnover

1 30 70 100

2 755 125 200
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checks in place to avoid the introduction of new errors as identified ones are resolved.

The smallest possible set of imputable fields is located, with which a record can be

made consistent with all checks.

In the Fellegi–Holt methodology, erroneous values are often corrected with hot-

deck imputation. Hot-deck imputation employs values copied from a similar donor

record (another case) not violating any edit rules. When the definition of “similar”

is very strict or when the receptor record is unique, it may be impossible to find a

similar donor record. In this situation, a simple default imputation procedure is applied

instead.

The Fellegi–Holt methodology has been programmed and put into practice by

several survey agencies. For an overview of software and algorithms, see Bethlehem

(1997). All these programs identify values that are likely to be incorrect and impute

new values. In practical applications, many ties occur, that is, several variables are

equally likely to be in error.With one check and two inconsistent values, there is a 50%

chance that the wrong variable will be changed, an undesirably high percentage of

erroneous corrections. Ties are less frequent when more edit rules are specified, but

the Fellegi–Holt methodology makes more checks costly as more computing re-

sources are required.When checks are interrelated, there canbe hundreds of thousands

of implied checks, using a vast amount of computing time for their calculation.

Nevertheless, a large number of original checks are advisable to avoid ties.

TheFellegi–Holtmethodology isbasedon the idea that usually thenumberof errors

in a record will be very small. Consequently, as few changes as possible should be

made in a record to remove errors. So, if a record can bemade to satisfy all edit rules by

making either small changes in two values or a large change in one field, the latter

should be preferred. This also ensures that large errors will be detected and corrected.

Suppose, the Fellegi–Holt methodology is applied to record 2 in Table 8.2. To

question is whether the data can be made to satisfy all edit rules by changing just one

value. There are three possibilities:

. Change the Value of the Variable Costs. To satisfy the first edit rule, the value of

Costsmust be equal to�555. However, this is not possible as it would violate the

rule that the value of Costs must be nonnegative.

. Change the Value of the Variable Turnover. To satisfy the first edit rule, the value

of Turnovermust bemade equal to 880. However, this is not possible, as it would

violate the second edit rule that costs must be larger than 60% of the turnover.

. Change the Value of the Variable Profit. To satisfy the first edit rule, the value of

Profit must be made equal to 75. This does not affect the second rule, which was

already satisfied. So, this changewill lead to a situation inwhich all edit rules are

satisfied. This is the preferred correction.

The most likely correct value could be computed in the example above. The

situation is not always that simple in practice. Usually, some imputation technique is

used to compute a new value. See Section 8.3 for an overview of some imputation

techniques. It may happen that after imputation (e.g., imputation of the mean) the
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records still do not satisfy all edit rules. This calls for another round of changes. One

should be careful to change only imputed values and “real” values.

Algorithms for automatic imputation can be very complex. This is because they

have to solve two problems simultaneously. First, the algorithm must see to it that

a situation is created in which all edit rules are satisfied. Second, this must be

accomplished with as few changes as possible.

8.4.2 Selective Editing

The implicit assumption of microediting is that every record receives the same

treatment and the same effort. This approach may not be appropriate or cost-effective

in business surveys, since not every record has the same effect on computed estimates

of the population. Some large firmsmaymake substantially larger contributions to the

value of estimates than others.

Instead of conserving editing resources by fully automating the process, they may

be conserved by focusing the process on correcting only the most necessary errors.

Necessary errors are those that have a noticeable effect on published figures. This

approach is called selective editing.

To establish the effect of data editing on population estimates, one can compare

estimates based on unedited data with estimates based on edited data. Boucher

(1991) and Lindell (1997) did this and found that for each variable studied, 50–80%

of the corrections had virtually no effect on the estimate of the grand total. Similar

results were obtained in an investigation carried out by Van de Pol and Molenaar

(1995) on the effects of editing on the Dutch Annual Construction Survey. Research

in this area shows that only a few edits have a substantial impact on the final figures.

Therefore, data editing efforts can be reduced by identifying those edits. Oneway to

implement this approach is to use a criterion that splits the data set into a critical and a

noncritical stream. The critical stream contains records that have a high risk of

containing influential errors and therefore requires thorough microediting. Records

in the noncritical stream could remain unedited or could be limited to automatic

editing.

The basic question of selective editing is: is it possible to find a criterion to split the

data set into a critical and a noncritical stream? At first sight, one might suggest that

only records of large firms will contain influential errors. However, Van de Pol and

Molenaar (1995) show that this is not the case. Both large and small firms can generate

influential errors.Amore sophisticated criterion is needed than just the size of the firm.

For selective editing to be effective and efficient, powerful and yet practical criteria

must be available. This involves taking account of inclusion probabilities, nonre-

sponse adjustments, size of relevant subpopulations, relative importance of record,

and most important of all, a benchmark to determine whether an observed quantity

may be in error. Examples of such benchmarks could be deviations from the sample

mean (or median) for that quantity.

Hidiroglou and Berthelot (1986) probably were the first to use a score function to

select recordswith influential errors in business surveys. Their approachwas followed

by Lindell (1997) and Engstr€om (1995). Van de Pol and Molenaar (1995) use a
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somewhat modified approach. They concentrate on edits based on ratios. Let

Rijk ¼ Yik=Yij ð8:36Þ
be the ratio of the values of two variables j and k for firm i. This ratio is compared with

the median value Mjk of all the ratios, by computing the distance

Dijk ¼ Max
Rijk

Mjk

;
Mjk

Rijk

� �
ð8:37Þ

or, equivalently,

Dijk ¼ ejlogðRijkÞ� logðMjkÞj: ð8:38Þ
Acutoff criterionmay be used to setDijk to zerowhen it is not suspiciously high.Next,

a risk index is computed as a weighted sum of the distances for all edits in a record:

RIi ¼ Ii

pi

X
eWjk logðDijkÞ�Q

h i
: ð8:39Þ

The number of ratios involved is denoted Q. The quantity Ii denotes the relative

importanceoffirm i. Itmaybe included to ensure thatmore important firmsget ahigher

edit priority than small firms. The inclusion probability pi is determined by the

sampling design. The weightWjk is the reciprocal of the estimated standard deviation

of the log(Dijk).

This risk index can be transformed into an OK index by carrying out the

transformation

OKi ¼ 100� 100 RIi

MedðRIiÞþRIi
: ð8:40Þ

Low values of the OK index indicate a record is not OK and is in need for further

treatment. The transformation causes the values of the OK index to be more or less

uniformly distributed over the interval [0, 100]. This has the advantage of a simple

relationship between the criterion value and the amount of work to be done: the

decision to microedit records with an OK index value below a certain value c means

that approximately c% of the records are in the critical stream.

TheOKindexcanbeused toorder the records from the lowestOK indexvalue to the

highest. If microediting is carried out in this sequence, the most influential errors will

be taken care of first. The question arises when to stop editing records. Latouche and

Berthelot (1992), Engstr€om (1995), and Van de Pol and Molenaar (1995) discuss

several stop criteria. Van de Pol andMolenaar (1995) suggest that editing records with

anOK index value under 50would have little effect on the quality of estimates. Hence,

it would generally be sufficient to edit only half of the records.

8.4.3 Macroediting

Macroediting provides a solution to some of the data problems left unsolved by

microediting. It can address data problems at the aggregate level. The types of edit
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rules employedbymacroediting are similar to those ofmicroediting, but the difference

is that macroedit checks involve aggregated quantities. Two general methods of

macroediting are described here.

Thefirstmethod is sometimes called theaggregationmethod (seeGranquist, 1990;

United Nations, 1994). It formalizes and systematizes what statistical agencies

routinely do before publishing statistical tables. They compare the current figures

with those of the previousperiods to see if theyappear plausible.Onlywhenanunusual

value is observed at the aggregate level, the individual records contributing to the

unusual quantity are edited at the microlevel. The advantage of this form of editing is

that it concentrates on editing activities at those points that have an impact on the final

results of the survey. No superfluous microediting activities are carried out on records

that do not produce unusual values at the aggregate level.A disadvantage is that results

are bent in thedirection ofone’s expectations.There is also a risk that undetectederrors

may introduce undetected biases.

A second method of macroediting is called the distribution method. The distribu-

tion of variables is computed using the available data, and the individual values are

compared with the distribution. Measures of location, spread, and covariation are

computed. Records containing values that appear unusual or atypical in their distri-

butions are candidates for further inspection and possible editing.

Many macroediting techniques analyze the behavior of a single observation in the

distribution of all observations.Exploratory data analysis (EDA) is a field of statistics

for analyzing distributions of variables. Tukey (1977) advocates using graphical

techniques as they provide more insight into the behavior of variables than numerical

techniques do. Many of these techniques can be applied directly to macroediting

and are capable of revealing unusual and unexpected properties that might not be

discovered through numerical inspection and analysis. There are two main groups of

techniques. The first group analyzes the distribution of a single variable and con-

centrates on detection of outliers. This can be done bymeans of one-way scatter plots,

histograms, and box plots.

There are also numerical ways to characterize the distribution and to search for

outliers. Obvious quantities to compute are the mean �y and standard deviation s of the
observations. If the underlying distribution is normal, approximately 95% of the

values must lie in the interval

ð�y� 1:96� s; �yþ 1:96� sÞ: ð8:41Þ
Outliers can now be defined as values outside one of these intervals. This simple

technique has two important drawbacks:

. The assumptions are only satisfied if the underlying distribution is approxi-

mately normal. Hence, this technique should be used only if a graphical method

has shown that this model assumption is not unrealistic.

. Traditional statistical analysis is very sensitive to outliers. A single outlier can

have a large effect on the values of mean and standard deviation, and may

therefore obscure the detection of outliers. Hence, this numeric technique should

be used only after graphical methods have justified assumptions of normality.
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Numeric techniques based on the median and quartiles of the distribution are

less vulnerable to extreme values. For example, the box plot could be applied in a

numerical way. Values smaller than the lower adjacent value or larger than the upper

adjacent value can be identified as outliers. See also the description of the box plot in

Section 12.4.

The second group ofmacroediting techniques analyzes the relationship between two

variables and tries to find records with unusual combinations of values. The obvious

graphical technique to use is the two-dimensional scatter plot. If points in a scatter plot

show a clear pattern, this indicates a certain relationship between the variables. The

simplest form of relationship is a linear relationship. In this case, all points will lie

approximately on a straight line.When such a relationship seems present, it is important

to look for points not following the pattern. They may indicate errors in the data.

EXERCISES

8.1 Which of the sources of error below does not belong to the category of

observation errors?

a. Measurement error

b. Overcoverage

c. Undercoverage

d. Processing error

8.2 Memory effects occur if respondents forget to report certain events or when they

make errors about the date of occurrence of events. Towhich source of errors do

these memory effects belong?

a. Estimation error

b. Undercoverage

c. Measurement error

d. Nonobservation error

8.3 ACADI system reports many errors for a form. It turns out that one variable is

involved in all these errors. What kind of action should be undertaken?

a. The corresponding record should be removed from the data file.

b. The variable should be removed from the data file.

c. Correct the value of this variable in such a way that the error messages

disappear.

d. Impute a value for the variable that makes the error message disappear.

8.4 Which of the sources of error below belongs to the category “sampling error?”

a. Selection error

b. Overcoverage

c. Nonresponse

d. Undercoverage
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8.5 The general imputation model can be written as

Ŷ i ¼ B0 þ
Xp
j¼1

BjXij þEj:

Which values of the parameters have to be used to obtain imputation of the

mean as special case?

a. Take all Bj and Ej equal to 0, except B0.

b. Take all Bj equal to 0, except B0.

c. Take all Bj equal to 0.

d. Just take all Xij equal to 0.

8.6 The ministry of agriculture in a country wants to have more information about

the manure production by pigs on pig farms. The target variable is the yearly

manure production per farm. Among other variables recorded are the number of

pigs per farm and the region of the country (north or south). The table below

contains part of the data:

Farm Manure Production Region Number of Pigs

1 295,260 North 220

2 259,935 North 195

3 294,593 North 221

4 253,604 North 188

5 ? North 208

6 520,534 South 398

7 ? South 435

8 559,855 South 375

9 574,528 South 416

10 561,865 South 405

The value of manure production is missing in two records due to item

nonresponse. Describe six imputation techniques for replacing the missing

value by a synthetic value. Compute for each technique which values are

obtained. Explain the consequences of estimating the mean manure production

per region. Indicate whether these consequences are acceptable.

8.7 It is assumed that there is a relationship between the energy consumption of a

house and its total floor space. A simple random sample (with equal probabili-

ties and without replacement) of four houses has been selected. The table below

contains the collected data:

House

Floor

space (m2)

Gas Consumption

(m3)

Electricity

Consumption

(kWh)

1 116 1200 1715

2 81 950 1465

3 73 650 1020

4 99 1050 –
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It is a known fact that themean floor space of all houses in target population is

equal to 103.7m2.

a. Compute the value of the ratio estimator for themean gas consumption in the

population.

b. Apply regression imputation to compute the missing value of electricity

consumption of house 4.

8.8 Four variables are measured in a business survey: income (I), personnel costs

(PC), other costs (OC), and profit (P). The following there rules are checked in

the data editing process:

. P ¼ I � PC � OC

. PC > 1.5 � OC

. 150 < I < 250

Check the four records in the table below. Determine which rules are satisfied

and which are not. Correct the records using the Fellegi and Holt principle.

Record I PK OK W

1 260 110 70 50

2 180 80 50 50

3 210 160 20 30

4 240 50 40 30

8.9 A town council has carried out an income survey among its inhabitants. A

simple random sample of 1000 persons has been selected. The total size of the

population is 19,000. All selected persons have been asked to reveal their net

monthly income. From previous research it has become clear that the standard

deviation of the net monthly income is always equal to 600.

a. Assuming all sampled persons cooperate and provide their income data,

compute the standard error of the sample mean.

b. Suppose 10% of the sampled persons do not provide their income data. The

researcher solves this problem by imputing the mean.

Compute the standard error of the mean after imputation.

c. Suppose the sample standard deviationbefore imputation happens to be equal to

the population standard deviation (600). The imputed survey data set is made

available to a researcher.He does not know that imputation has been carried out.

If he computes the estimated standard error, what value would he get?

d. Which conclusion can be drawn from comparing the results of (a) and (c)?
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C H A P T E R 9

The Nonresponse Problem

9.1 NONRESPONSE

Nonresponse occurswhen elements in the selected sample that are also eligible for the

survey do not provide the requested information or that the provided information is not

usable. The problem of nonresponse is that the researcher does not have control any

more over the sample selection mechanism. Therefore, it becomes impossible to

compute unbiased estimates of population characteristics. Validity of inference about

the population is at stake.

This chapter gives a general introduction of the phenomenon of nonresponse as

one of the factors affecting the quality of survey based estimates. It is shown that

nonresponse has become an ever more serious problem in course of time. Attention is

paid to two approaches that provide insight in the possible consequences of nonre-

sponse: the follow-up survey and the basic question approach. These techniques can

also be successful in reducing a possible bias of estimates.

Adjustment weighting is one of the most important nonresponse correction

techniques. Chapter 10 will be devoted to adjustment weighting.

There are two types of nonresponse: unit nonresponse and item nonresponse.

Unit nonresponse occurs when a selected element does not provide any information at

all, that is, thequestionnaire form remains empty. Itemnonresponseoccurswhen some

questions have been answered but no answer is obtained for some other, possibly

sensitive, questions. So, the questionnaire form has been partially completed.

In case of unit nonresponse, the realized sample size will be smaller than planned.

Thiswill lead to increased variances of estimates and thuswill lead to a lower precision

of estimates. Valid estimates can still be obtained because computed confidence

intervals still have the proper confidence level.

To avoid the realized sample of being too small, the initial sample size should be

taken larger. For example, if a sample of 1000 elements is required and the expected

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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response rate is in the order of 60%, the initial sample size should be approximately

1000/0.6¼ 1667.

The main problem of nonresponse is that estimates of population characteristics

may be biased. This situation occurs if, due to nonresponse, some groups in the

population are over- or underrepresented in the sample, and these groups behave

differently with respect to the characteristics to be investigated. Then, nonresponse is

said to be selective.

It is likely that survey estimates are biased unless very convincing evidence to the

contrary is provided. Bethlehem and Kersten (1985) mention a number of Dutch

surveys were nonresponse was selective:

. A follow-up study of the Dutch Victimization Survey showed that people who

are afraid to be alone at home during night are less inclined to participate in the

survey.

. In the Dutch Housing Demand Survey, it turned out that people who refused to

participate have lesser housing demands than people who responded.

. For the Survey ofMobility of the Dutch Population, it was obvious that the more

mobile people were underrepresented among the respondents.

It will be shown in Section 9.3 that the amount of nonresponse is one of the factors

determining magnitude of the bias of estimates. The higher the nonresponse rate, the

larger will be the bias.

The effect of nonresponse is shown using a somewhat simplified example that uses

data from the Dutch Housing Demand Survey. Statistics Netherlands carried out this

survey in 1981. The initial sample size was 82,849. The number of respondents was

58,972, which comes down to a response rate of 71.2%.

To obtain more insight in the nonresponse, a follow-up survey was carried out

among the nonrespondents. Among other things they were also asked whether they

intended to move within 2 years. The results are summarized in Table 9.1.

Based on the response, the percentage of people with the intention to move within

2 years is 29.7%. However, for the complete sample (response and nonresponse) a

much lower percentage of 24.8% is obtained. The reason is clear: there is a substantial

difference between respondents and nonrespondents with respect to the intention to

move within 2 years. For nonrespondents, this is only 12.8%.

Nonresponse can have many causes. It is important to distinguish these causes.

To reduce nonresponse in the field, it is important to know what caused it. Moreover,

Table 9.1 Nonresponse in the Dutch Housing Demand Survey 1981

Do You Intend to Move

Within 2 Years? Response Nonresponse Total

Yes 17,515 3056 20,571

No 41,457 20,821 62,278

Total 58,972 23,877 82,849

210 THE NONRESPONSE PROBLEM



different types of nonresponse can have different effects on estimates and therefore

may require different treatment.

Therearenouniqueways toclassifynonresponseby its cause.Thismakes itdifficult

to compare the nonresponse for different surveys. Unfortunately, no standardized

classification exits. There have been some attempts. The American Association for

Public Opinion Research (AAPOR) has published a report with a comprehensive list

of definitions of possible survey outcomes (see AAPOR, 2000). However, these

definitions apply only to household surveys with one respondent per household and

samples selected by means of Random Digit Dialing (RDD). Lynn et al. (2002) have

proposed a more general classification. This classification will be used here.

The classification follows the possible courses of events when selected elements

are approached in an attempt to get cooperation in a survey (see Fig. 9.1).

Contact? 

Eligible? 

Nonresponse: 
Noncontact 

Overcoverage 

Eligible? 

Overcoverage 

Participates? 

Nonresponse: 
Refusal 

Able? 

Nonresponse: 
Not-able 

Response 

No 

No 

No 

No 

No 

 Yes 

 Yes 

 Yes 

 Yes 

Figure 9.1 Possible survey outcomes.
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First, contactmust be establishedwith the selected element. If this is not successful,

there are two possibilities:

. If the selected element belongs to the target population (i.e., it is eligible),

it should have been part of the sample. So, this is nonresponse due to

noncontact.

. If the selected element does not belong to the target population (i.e., it is not

eligible), it should not be included in the sample. This is an example of over-

coverage, and therefore it can be excluded from the survey.

In practical situations, it is often impossible to determine whether a noncontact

belongs to the target population or not. This makes it difficult to calculate response

rates.

If there is contact with a selected element, the next step is to establish whether it

belongs to the target population or not. If not, it can be dismissed as a case of over-

coverage.

In the case of contact with an eligible element, its cooperation is required to get the

answers to the questions. If the selected element refuses to cooperate, this is non-

response due to refusal.

If there is an eligible element, and it cooperates, there may be still problems if

this element is not able to provide the required information. Reasons for this

may be, for example, illness or language problems. This is a case of non-

response due to not-able.

Finally, if an eligible elementwants to cooperate and is able toprovide information,

then the result is response.

Figure 9.1 shows that there are three main causes for nonresponse: noncontact,

refusal, and not-able. Nonresponse need not be permanent. In case of a noncontact,

another contact attempt may be tried at some other moment. Some surveys may

undertake six contact attempts before the case is closed as a noncontact.Also, a refusal

may be temporary. If an interviewer calls at an inconvenient moment, it may be

possible tomake an appointment for some other date. However,many refusals turn out

to be permanent. In case someone is not able to participate because of illness, an

interviewer may be successful after the patient has recovered.

9.2 RESPONSE RATES

Due to the negative impact nonresponse may have on the quality of survey results, the

response rate is considered to be an important indicator of the quality of a survey.

Response rates are frequently used to compare the quality of surveys and also to

explore the quality of a survey that is repeated over time.

Unfortunately, there is no standard definition of a response rate. Here a definition is

used that is similar to the one introduced by Lynn et al. (2002): The response rate is

defined as the proportion of eligible elements in the sample for which a questionnaire

has been completed.
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The initial sample size nI can be written as

nI ¼ nNC þ nOC þ nRF þ nNA þ nR; ð9:1Þ
wherenNCdenotes thenumberofnoncontacts,nOC thenumberofnoneligible elements

among the contacts (i.e., cases of overcoverage), nRF the number of refusers, nNA the

number of not-able elements, and nR the number of respondents.

The response rate is defined as the number of respondents divided by the number of

nE eligible elements in the sample:

Response rate ¼ nR

nE
: ð9:2Þ

There is a problem in computing the number of eligible elements. This problem

arises because the noncontacts consist of eligible noncontacts and noneligible non-

contacts. It is not known how many of these noncontacts are eligible. If it is assumed

that all noncontacts are eligible, then nE¼ nNC þ nRF þ nNA þ nR. Consequently, the

response rate is given as follows:

Response rate ¼ nR

nNC þ nRFþ nNA þ nR
: ð9:3Þ

This might not be a realistic assumption. Another assumption is that the proportion

of eligibles among the noncontacts is equal to the proportion of eligibles among the

contacts. Then, the response rate would be equal to

Response rate ¼ nR

nNC½ðnRF þ nNA þ nRÞ=ðnOC þ nRF þ nNA þ nRÞ� þ nRF þ nNA þ nR
:

ð9:4Þ
Response rate definitions like (9.3) or (9.4) can be used in a straightforwardway for

surveys in which one person per household is selected. The situation is more

complicated when the survey population consists of households for which several

or all of its members have to provide information. Then, partial response may also

occur. It is possible to introduce response rates for households and for persons, and

these response rates would be different.

Another complication concerns self-administered surveys. These are surveys in

which there are no interviewers, like amail surveyor aWeb survey. For such surveys, it

is very difficult to distinguish between different sources of nonresponse and also very

difficult to determine eligibility. The questionnaire is either returned or not returned.

The response rate simplifies to

Response rate ¼ nR

nR þ nNR
: ð9:5Þ

The computation of the response rate is illustrated using data from the Survey on

Well-being of the Population. The results are listed in Table 9.2.

The category “not able” contains nonresponse because of illness, handicap, or

language problems. The extra nonresponse category “other nonresponse” contains
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cases that are not processed by interviewers due to workload problems. Also,

people who had moved and could not be found any more are included in this

category.

If it is assumed that all noncontacts are eligible, the response rate of this survey is

100� 24; 008

24; 008þ 2093þ 8918þ 1151þ 3132
¼ 61:09%:

If it is assumed that the proportion of eligibles among contacts and noncontacts is

the same, the response rate is equal to

100� 24;008

24;008þ2093�½ð39;431�2093�129Þ=ð39;431�2093Þ�þ8918þ1151þ3132

¼61:11%:

The differences in response rates are very small. This is due to small amount of

overcoverage.

Another aspectmaking thedefinitionof response rate difficult is theuseof sampling

designs with unequal selection probabilities. If, on the one hand, the response rate is

used as an indicator of the quality of survey outcomes, the sizes of thevarious outcome

categories should reflect the structure of the population. Consequently, observation

should be weighted with inverse selection probabilities. This leads to a so-called

weighted response rate. If, on theother hand, the response rate is used as an indicator of

the quality of the fieldwork, andmore specifically the performance of interviewers, an

unweighted response rates may be more appropriate.

Response rates have declined over time in many countries. Table 9.2 contains

(unweighted) response rates for a number of surveys of Statistics Netherlands. The

definition of response rates is more or less the same for each survey. It is not easy to

explain differences in response rates between surveys. Response rates are determined

by a large number of factors such as the topic of the survey, the target population,

the time period, the length of the questionnaire, the quality of the interviewers, and the

organization of the fieldwork.

It is clear fromTable 9.3 that nonresponse is a considerable problem. The problem has

become more serious over the years. It also has an impact on the costs of the survey. It

Table 9.2 Fieldwork Results of the Survey onWell-Being

of the Population in 1998

Outcome Frequency

Overcoverage 129

Response 24,008

Noncontact 2,093

Refusal 8,918

Not-able 1,151

Other nonresponse 3,132

Total 39,431
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takesmore andmore effort to obtain estimateswith the precision as specified in the survey

design.

The Labor Force Survey is probably one of the most important surveys of

Statistics Netherlands. We will denote it by its Dutch acronym EBB (Enquête

Beroepsbevolking). It has been exposed to many redesigns, the most important one

taking place in 1987. Then, several things were changed in the design:

Table 9.3 Response Rates of Some Survey of Statistics Netherlands

Year

Labor Force

Survey

Consumer

Sentiments

Survey

Survey on

Well-Being

of the Population

Mobility

Survey

Holiday

Survey

1972 71

1973 88 77

1974 75 72

1975 86 78 86

1976 72 77a 87

1977 88 69 70 81

1978 64 67 78

1979 81 63 65b 69 74

1980 61 61 68 74

1981 83 65 68 74

1982 60 64a 66 71

1983 81 63 58 66 74

1984 65c 64 69

1985 77 69 61 68

1986 71 59 59 66

1987 60c 71 59

1988 59 68 55

1989 61 68 44 58

1990 61 68 47 55

1991 60 69 46 57

1992 58 69 45 57

1993 58 72 46 56

1994 59 70 52c 55

1995 60 67 54 54

1996 58 67 52 52

1997 56 57 63 50

1998 54 64 60

1999 56 62 60

2000 56 61 57

2001 58 64 60

2002 58 65

2003 59 65 62

a Young only.
b Elderly only.
c Change in survey design.
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. Before 1986, data collection was carried out by means of a paper questionnaire

form(PAPI). In1987,StatisticsNetherlands changed to computer-assistedpersonal

interviewing(CAPI).TheBlaiseSystemwasdeveloped for this.TheEBBbecamea

CAPI survey. Each month, approximately 400 interviewers equipped with laptops

visited 12,000 addresses.

. Until 1987, the fieldwork for the EBB was carried out by the municipal

employees. So, they were not professional interviewers. From 1987 onward,

the fieldwork was done by the professional interviewers.

. In 1987, the questionnaire of the EBB was completely redesigned.

Another important survey of Statistics Netherlands is the Survey of Well-being of

the Population, denoted by its Dutch acronym POLS (Permanent Onderzoek

Leefsituatie). It is a continuous survey in which every month a sample of 3000

persons is selected. The survey has a modular structure. There is a base module with

questions for all sampled persons and in addition there are a number of modules about

specific themes (such as employment situation, health, and justice). The sampled

persons are selected for one of the thematic modules; the base module is answered by

everyone. POLS exists only since 1997, before that all the modules were separate

surveys.

The Consumer Sentiments Survey (denoted by CCO) measures consumer confi-

dence (for instance in the economic situation). Since April 1986, it is performed

monthly bymeans of computer-assisted telephone interviewing (CATI). Before 1984,

the interview was conducted by pen and paper (PAPI). Everymonth 1500 households

are selected in a simple random sample. The Dutch telephone company (KPN)

adds telephone numbers to the selected addresses. Only listed numbers of fixed-

line telephones can be added. This is possible for about two-third of the addresses.

These phone numbers are then passed through to the CATI interviewers. Only one

person in every household is interviewed.

The response rates of these three major surveys are also graphically presented in

Fig. 9.2. From 1972 to 1983, response percentages of CCO and POLS show a

similar, falling trend. After 1983, the response percentage for CCO stabilized

whereas for POLS it kept on falling. It seems as though both rates start to converge in

1993 and show a similar pattern in the last 6 years. The two breakpoints coincide

with redesigns these surveys (CCO in 1984 and POLS in 1997). The redesign of

CCO in 1984 caused a temporary increase in response rates. The same is true for the

redesign of POLS in 1997.

The response percentage of the EBB was initially higher than that of the other two

surveys, but during 1983–1984 it decreased and reached the same level as the rates of

CCO and POLS. From 1987, response shows a more or less stable pattern. As

mentioned before, there was a comprehensive redesign of EBB in 1987.

Table 9.4 shows an international comparison of response rates. Stoop (2005) used

data from the European Social Surveys (ESS) for this. The ESS is a biannual survey of

values, attitudes, beliefs, and behavioral patterns in the context of a changing Europe.

Its major aim is to provide data to social scientists for both substantive and
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Figure 9.2 Response percentages for three Dutch surveys (EBB, POLS, and CCO).

Table 9.4 Response and Nonresponse Rates in the European Social Survey

Country Response Rate Noncontact Rate Refusal Rate Not-Able Rate

Austria 60 12 26 2

Belgium 59 8 25 8

Czech Republic 43 12 20 5

Denmark 68 4 24 5

Finland 73 4 19 4

France 43 15 39 4

Germany 57 8 26 8

Greece 80 3 16 1

Hungary 70 7 14 9

Ireland 64 10 20 5

Israel 71 6 22 1

Italy 44 4 44 8

Luxemburg 44 11 45 0

The Netherlands 68 3 24 3

Norway 65 3 25 7

Poland 73 2 20 5

Portugal 69 3 26 1

Slovenia 71 5 17 5

Spain 53 11 32 3

Sweden 69 4 21 6

Switzerland 33 3 55 9

UK 56 5 33 5

Reprinted by permission of Ineke Stoop (2005), The Hunt for the Last Respondent.
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methodological studies and analyses. The first round of the ESS took place in

2002–2003. Data were collected in 22 European countries.

To improve comparability between countries, there was one centrally specified

sampling design for all participating countries. Furthermore, the response target

was 70% and the target for the noncontact rate was 3%. Central fieldwork

specifications saw to it that variations due to different procedures in the field

were minimized. Table 9.4 is taken from Stoop (2005) and shows the differences in

response rates.

There are large differences in response rates. Switzerland has a very low response

rate (33%), followed by theCzech Republic (43%), Italy, and Luxemburg (both 44%).

The highest response rate was obtained in Greece (80%), followed by Finland (73%),

Israel, and Slovenia (both 71%). Note that many countries were not able to reach the

target of 70% response.

The noncontact rates differ substantially across countries. The rates vary from 2%

in Poland to 15% in France.

The refusal rates vary from 14% in Hungary to 55% in Switzerland. The large

differencemay partly be due to the differences in procedures for dealingwith refusers.

For example, refusers were reapproached in Switzerland, United Kingdom, The

Netherlands, Finland, andGreece.This hardly everhappened inLuxemburg,Hungary,

and Italy.

The not-able rates vary from0% inLuxemburg to 9% in Switzerland. These figures

seem to indicate that difference may be caused by differences in reporting than

differences in fieldwork results.

9.3 MODELS FOR NONRESPONSE

To be able to investigate the possible impact of nonresponse on estimators of

population characteristics, this phenomenon should be incorporated in sampling

theory. Two approaches are described. One is the random response model and the

other is the fixed response model. Both approaches are discussed in Lindstr€om et al.

(1979), Kalsbeek (1980), Cassel et al. (1983), and Bethlehem and Kersten (1986).

Both models give insight in conditions under which nonresponse causes estimators to

be biased.

It is also explored in this chapter what the effect of biased estimators will be on the

validity of confidence intervals.

9.3.1 The Fixed Response Model

The fixed response model assumes the population to consist of two mutually

exclusive and exhaustive strata: the response stratum and the nonresponse stratum.

If selected in the sample, elements in the response stratum will participate in the

survey with certainty and elements in the nonresponse stratum will not participate

with certainty.
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A set of response indicators

R1;R2; . . . ;RN ð9:6Þ
is introduced, where Rk¼ 1 if the corresponding element k is part of the response

stratum and Rk¼ 0 if element k belongs to the nonresponse stratum. So, if selected,

Rk¼ 1 means response and Rk¼ 0 means nonresponse.

The size of the response stratum can be denoted by

NR ¼
XN
k¼1

Rk ð9:7Þ

and the size of the nonresponse stratum can be denoted by

NNR ¼
XN
k¼1

ð1�RkÞ; ð9:8Þ

where N¼NR þ NNR. The mean of the target variable Y in the response stratum is

equal to

�YR ¼ 1

NR

XN
k¼1

RkYk: ð9:9Þ

Likewise, the mean of the target variable in the nonresponse stratum can be

written as

�YNR ¼ 1

NNR

XN
k¼1

ð1�RkÞYk: ð9:10Þ

The contrast K is introduced as the difference between the means of the target

variable in response stratum and the nonresponse stratum:

K ¼ �YR��YNR: ð9:11Þ
It as an indicator of the extent to which respondents and nonrespondents differ on

average.

Nowsuppose a simple randomsamplewithout replacementof sizen is selected from

this population. This sample is denoted by the set of indicators a1, a2, . . ., aN, where
ak¼ 1 means that element k is selected in the sample and otherwise ak¼ 0. It is not

known beforehand to which of the two strata selected elements belong. There will be

nR ¼
XN
k¼1

akRk ð9:12Þ

elements from the response stratum and

nNR ¼
XN
k¼1

akð1�RkÞ; ð9:13Þ
where n¼ nR þ nNR.
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Only the values for the nR selected elements in the response stratum become

available. The mean of these values is denoted by

�yR ¼ 1

nR

XN
k¼1

akRkYk: ð9:14Þ

Theoretically, it is possible that no observations at all become available. This

occurs when all sample elements happen to fall in the nonresponse stratum. In

practical situations, this event has a very small probability of happening. Therefore,

it will be ignored. Then, it can be shown that the expected value of the responsemean

is equal to

Eð�yRÞ ¼ �YR: ð9:15Þ
This is not surprising since the responding elements can be seen as a simple random

sample without replacement from the response stratum.

Of course, it is not the objective of the survey to estimate the mean of the response

stratum but the mean in the population. If both means have equal values, there is no

problem, but this is generally not the case. Therefore, estimator (9.14) will be biased

and this bias is given as

Bð�yRÞ ¼ �YR �*
Y ¼ NNR

N
ð�YR � �YNRÞ ¼ QK; ð9:16Þ

whereK is the contrast andQ¼NNR/N is the relative size of the nonresponse stratum.

From expression (9.16), it is clear that the bias is determined by two factors:

. The amount to which respondents and nonrespondents differ, on average, with

respect to the target variable. The more they differ, the larger the bias will be.

. The relative size of the nonresponse stratum. The bigger the group of non-

respondents is, the larger the bias will be.

The fixed response model is applied to data from the Dutch Housing Demand

Survey. Statistics Netherlands carried out this survey in 1981. The sample size was

82,849. The number of respondents was 58,972, which comes down to a response rate

of 71.2%.One of the target variableswaswhether one had the intention tomovewithin

2 years. The population characteristic to be estimated was the percentage of people

with the intention to move within 2 years.

To obtain more insight in the nonresponse, a follow-up survey was carried out

among the nonrespondents. One of the questions asked was the intention to move

within 2 years. The results are summarized in Table 9.5.

The percentage of potential movers in the response stratum can be estimated using

the response data. The estimate is equal to 100� 17,517/58,972¼ 29.7%. The

percentage of potential movers in the nonresponse stratum can be estimated using

the data in the follow-up survey. The estimate is equal to 100� 3056/23,877¼ 12.8%.

Hence, the contrastK is equal to 29.7–12.8¼ 16.9%.Apparently, the intention tomove

is much higher among respondents than under nonrespondents.
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The relative size of the nonresponse stratum is estimated by 23,877/

82,849¼ 0.288. Therefore, the bias of the estimator just based on the response

data is equal to 16.9� 0.288¼ 4.9%.

9.3.2 The Random Response Model

The random response model assumes every element k in the population to have

(an unknown) response probability rk. If element k is selected in the sample, a random

mechanism is activated that results with probability rk in response and with probabil-
ity 1� rk in nonresponse. Under this model, a set of response indicators

R1;R2; . . . ;RN ð9:17Þ
is introduced, where Rk¼ 1 if the corresponding element k responds; Rk¼ 0, other-

wise. So, P(Rk¼ 1)¼ rk and P(Rk¼ 0)¼ 1� rk.
Now, suppose a simple random sample without replacement of size n is selected

from this population. This sample is denoted by the set of indicators a1, a2,. . ., aN,
where ak¼ 1means that elementk is selected in the sample, and otherwise ak¼ 0. The

response only consists of those elements k for which ak¼ 1 and Rk¼ 1. Hence, the

number of available cases is equal to

nR ¼
XN
k¼1

akRk: ð9:18Þ

Note that this realized sample size is a random variable. The number of non-

respondents is equal to

nNR ¼
XN
k¼1

akð1�RkÞ; ð9:19Þ

where n¼ nR þ nNR.

The values of the target variable become available only for the nR responding

elements. The mean of these values is denoted by

�yR ¼ 1

nR

XN
k¼1

akRk: ð9:20Þ

Theoretically, it is possible that no observations at all become available. This happens

when all sample elements do not respond. In practical situations, this event has a very

small probability of happening. Therefore, we will ignore it. It can be shown

Table 9.5 Nonresponse in the 1981 Dutch Housing Demand Survey

Do you Intend to Move

Within 2 Years? Response Nonresponse Total

Yes 17,515 3056 20,571

No 41,457 20,821 62,278

Total 58,972 23,877 82,849
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(see Bethlehem, 1988) that the expected value of the response mean is approximately

equal to

Eð�yRÞ � ~Y ; ð9:21Þ
where

~Y ¼ 1

N

XN
k¼1

rk
�r
Yk ð9:22Þ

and

�r ¼ 1

N

XN
k¼1

rk ð9:23Þ

is themean of all response probabilities in the population. From expression (9.21), it is

clear that, generally, the expected value of the response mean is unequal to the

population mean to be estimated. Therefore, this estimator is biased. This bias is

approximately equal to

Bð�yRÞ ¼ ~Y��Y ¼ SrY

�r
¼ RrYSrSY

�r
; ð9:24Þ

where SrY is the covariance between the values of the target variable and the response

probabilities, RrY is the corresponding correlation coefficient, SY is the standard

deviation of the variable Y, and Sr is the standard deviation of the response probabili-

ties. From this expression of the bias a number of conclusions can be drawn:

. The bias vanishes if there is no relationship between the target variable and

response behavior. Then RrY¼ 0. The stronger the relationship between target

variable and response behavior, the larger the bias will be.

. The bias vanishes if all response probabilities are equal. Then Sr¼ 0. Indeed, in

this situation the nonresponse is not selective. It just leads to a reduced sample

size.

. The magnitude of the bias increases as the mean of the response probabilities

decreases. Translated in practical terms, thismeans that lower response rateswill

lead to larger biases.

The effect of nonresponse is shown bymeans of a simulation experiment. From the

working population of the small country of Samplonia 1000 samples of size 40 were

selected. For each sample, themean incomewas computed as an estimate of the mean

income in the population. The distribution of these 1000 estimates is displayed in

Fig. 9.3. The sampling distribution is symmetric around the population value to be

estimated (indicated by the vertical line). Therefore, the estimator is unbiased.

Now the experiment is repeated, but also nonresponse is generated. Response

probabilities are taken linearly related to income.Peoplewith the lowest incomehavea

response probability of 0.95 and people with the highest income have a response

probability of 0.05.So thehigher the income is, the lower is theprobability of response.
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Again 1000 samples of (initial) size 40 are generated. The resulting sampling

distribution of the estimator is displayed in Fig. 9.4.

The distribution has shifted to the left. Apparently, people with lower incomes

are overrepresented and people with high incomes are underrepresented. The vertical

line representing the populationmean is not in the center of the distribution anymore.

The average of the sample mean of all 1000 samples is equal to 970 whereas the

population mean is equal to 1234. Clearly, the estimator has a substantial bias.

9.3.3 The Effect of Nonresponse on the Confidence Interval

The precision of an estimator is usually quantified by computing the 95% confidence

interval. Suppose, for the time being, that all sampled elements cooperate. Then,

the sample mean can be computed. This is an unbiased estimator for the population

500.00 1250.000 2000.000

Figure 9.3 The distribution of the mean income in 1000 samples from the working population of

Samplonia. There is no nonresponse.

500.000 1250.000 2000.000

Figure 9.4 The distribution of the mean income in 1000 samples from the working population of

Samplonia. Nonresponse increases with income.
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mean. Since the sample mean has (approximately) a normal distribution, the 95%

confidence interval for the population mean is equal to

I ¼ ð�y�1:96� Sð�yÞ; �yþ 1:96� Sð�yÞÞ; ð9:25Þ
where Sð�yÞ is the standard error of the sample mean. The probability that this interval

contains the true value is, by definition (approximately), equal to

Pð�Y 2 IÞ ¼ 0:95: ð9:26Þ
In case of nonresponse, only the response mean �yR can be used to compute the

confidence interval. This confidence interval is denoted by IR. It can be shown that

Pð�Y 2 IRÞ ¼ F 1:96�Bð�yRÞ
Sð�yRÞ

� �
�F �1:96�Bð�yRÞ

Sð�yRÞ
� �

; ð9:27Þ

in which F is the standard normal distribution function. Table 9.6 presents values of

this probability as a function of the relative bias,which is defined as the bias dividedby

the standard error.

It is clear that the confidence level can be much lower than expected. If the bias is

equal to the standard error, that is, the relative bias is 1, the confidence level is only

0.83.As the relativebias increases, the situationbecomesworse. The conclusion is that

due tononresponse the interpretationof theconfidence interval is not correct anymore.

The effect of nonresponse on the confidence interval can also be shownbymeans of

a simulation experiment. From theworking population of Samplonia, samples of size

40 were selected. Again nonresponse was generated. People with the lowest income

had a response probability of 0.95. Nonresponse increased with income. People with

the highest income had a response probability of 0.05.

For each sample, the 95% confidence interval was computed. Figure 9.5 shows the

result of the first 30 samples. Each confidence interval is indicated by a horizontal line.

The vertical line denotes the true population mean to be estimated. Note that only 10

Table 9.6 The Confidence Level of the 95% Confidence

Interval as a Function of the Relative Bias

jBð�yRÞ=Sð�yRÞj Pð�Y 2 IRÞ
0.0 0.95

0.2 0.95

0.4 0.93

0.6 0.91

0.8 0.87

1.0 0.83

1.2 0.78

1.4 0.71

1.6 0.64

1.8 0.56

2.0 0.48

224 THE NONRESPONSE PROBLEM



out of 30 confidence intervals contain the populationmean. This suggests a confidence

level of 33.3% instead of 95%.

9.4 ANALYSIS OF NONRESPONSE

One should always be aware of the potential negative effects of nonresponse. It

is therefore important that a nonresponse analysis is carried out on the data that

have been collected in a survey. Such an analysis should make clear whether or not

response is selective, and if so, which technique should be applied to correct for a

possible bias.

This chapter gives an example of such a nonresponse analysis. Data used here are

the data from the Integrated Survey on Household Living Conditions (POLS) that has

been conducted by Statistics Netherlands in 1998.

9.4.1 How to Detect a Bias?

How can one detect that the nonresponse is selective? The available data with respect

to the target variables will not be of much use. There are data only for the respondents

and not for the nonrespondents. So, it is not possible to establish whether respondents

andnonrespondents differwith respect to thesevariables. Thewayout for this problem

is to use auxiliary variables (see Fig. 9.6).

An auxiliary variable in this context is a variable that has been measured in the

survey and for which the distribution in the population (or in the complete sample) is

available. So, it is possible to establish a relationship between this variable and the

response behavior.

Three different responsemechanismswere introduced inChapter 8. The first one is

missing completely at random (MCAR). The occurrence of nonresponse (R) is

Figure 9.5 Confidence intervals for the mean income in the working population of Samplonia.

Nonresponse increases with income.
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completely independent of both the target variable (Y) and the auxiliary variable (X).

The response is not selective. Estimates are not biased. There is no problem.

In case of MCAR, the response behavior (R) and any auxiliary variable (X) are

unrelated. If it is also known that there is a strong relationship between the target

variable (Y) and the auxiliary variable (X), this is an indication that there is no strong

relationship between target variable (Y) and response behavior (R) and thus the

estimators do not have a severe bias.

It should be noted that if there is no strong relationship between the auxiliary

variable (X) and the target variable (Y), analysis of the relationship between the

auxiliary variable (X) and the response behavior will provide no information about a

possible bias of estimates.

The second response mechanism is missing at random (MAR). This situation

occurs when there is no direct relationship between the target variable (Y) and the

response behavior (R), but there is a relationship between the auxiliary variable (X) and

the response behavior (R). The response will be selective, but this can be cured by

applying a weighting technique using the auxiliary variable. Chapter 10 is devoted to

such weighting techniques.

In case ofMAR, response behavior (R) and the corresponding auxiliary variable (X)

will turn out to be related. If it is also known that there is a strong relationship between

the target variable (Y) and the auxiliary variable (X), this is an indication there is (an

indirect) relationship between target variable (Y) and response behavior (R), and thus

the estimators may be biased.

The third responsemechanism is notmissing at random (NMAR). There is a direct

relationship between the target variable (Y) and the response behavior (R) and this

relationship cannot be accounted for by an auxiliary variable. Estimators are biased.

Correction techniques based on use of auxiliary variables will be able to reduce such a

bias.

All this indicates that the relationship between auxiliary variables and response

behavior should be analyzed. If such a relationship exists and it is known that there is

also a relationship between the target variables and auxiliary variables, there is a

serious the risk of biased estimates. So, application of nonresponse correction

techniques should be considered.

Response behaviour: R

Target variable: Y

Auxiliary variable: X

Figure 9.6 Relationships between target variable, response behavior, and auxiliary variable.
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9.4.2 Where to Find Auxiliary Variables?

To be able to analyze the effects of nonresponse, auxiliary variables are needed. Those

variables have to be measured in the survey and moreover information about

the distribution of these variables in the population (or in the complete sample)

must be available.

One obvious source of auxiliary information is the sampling frame itself. For

example, if the sample is selected from a population register, variables such as age

(computed from date of birth), gender, marital status, household composition, and

geographical location (e.g., neighborhood) are available. Thevalues of thesevariables

can be recorded for both respondents and nonrespondents.

The sample for the 1998 Integrated Survey on Household Living Conditions

(POLS) of Statistics Netherlands was selected from the population register. It was a

stratified two-stage sample. In the first stage municipalities were selected within

regional strata. In the second stage, a samplewas drawn in each selectedmunicipality.

Sampling frames were the population registers of the municipalities. These registers

contain, among other variables, marital status. So, marital status is known for both

respondents and nonrespondents. Figure 9.7 shows the response behavior for the

various categories of marital status.

Married people have the highest response rates (62.6%). Response is also reason-

ably high for unmarried people (61.5%), but response is much lower for divorced

people (51.0%) and widowed people (53.4%).

It is also possible to collect auxiliary information about respondents and non-

respondents by letting interviewers record observations about the location of the

selected persons. Examples are the neighborhood, type of house, and age of house.

Figure 9.8 shows the relationship between response behavior and the building

period of the house. Response is worse in houses that have been built between the two

world wars. Of course, there is no causal relationship between the building period of a

houseand the responsebehaviorof its inhabitants.Thedifferences in response rates are

probably caused by different socioeconomic characteristics of the people living in the

house. This calls for more analysis.
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Figure 9.7 Response by marital status in POLS.
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National statistical institutes and related agencies are a third source of auxiliary

information. The publications (on paper or electronic) of these institutes often contain

population distributions of auxiliary variables.

By comparing the town of residence of respondents in the 1998 Integrated Survey

onHouseholdLivingConditions (POLS) of StatisticsNetherlandswith the population

distribution over towns, the relation between response behavior and town size can be

explored (see Fig. 9.9).

Awell-known phenomenon can be observed in this figure: getting response in big

towns is much harder than getting it in small towns. The response is high in rural

areas (60.3%), but low in urbanized areas (41.1%). Getting response is particularly

difficult in the three big cities in The Netherlands: Amsterdam, Rotterdam, and The

Hague.
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Figure 9.8 Response by building period of house in the Housing Demand Survey 1977–1978.
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Figure 9.9 Response by town size in POLS.
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9.4.3 Nonresponse Analysis of POLS 1998

As an example, nonresponse in the 1998 Integrated Survey on Household Living

Conditions (POLS) is analyzed in this section. A lot of auxiliary information was

available for this survey. POLS is a large continuous survey of Statistics Netherlands.

Every month, a sample is selected. The survey consists of a number of thematic

modules. Persons are selected by means of a stratified two-stage sample. In the first

stage,municipalities are selectedwithin regional stratawith probabilities proportional

to the number of inhabitants. In the second stage, an equal probability sample is drawn

in each selected municipality. Sampling frames are the population registers of the

municipalities.

The fieldwork of POLS 1998 covered a period of two months. In the first month,

selected persons where approached with CAPI. For persons who could not be

contacted or refused and who had a listed phone number, a second attempt was

made in the second month using CATI. Table 9.7 contains the fieldwork results.

The sample size mentioned in Table 9.7 is the final sample size. The initial sample

sizewas larger. It consisted of 39,431 persons. In 129 cases, persons did not belong to

the target population of the survey. So, they were removed from the sample

(overcoverage).

Ultimately, about 61% of the sampled persons responded. Note that almost 60% of

these respondents (14,275 out of 24,008) refused one or more times before they

cooperated.

The composition of the nonresponse is displayed in Fig. 9.10. By far, it is clear that

refusal is the largest cause of nonresponse (58%). In 16%of the cases, no contact could

be establishedwith the sampled persons. Also, 16% of the caseswere not processed in

the field. Reasons for this type of nonresponse are lack of capacity (high workload of

the interviewer) and interviewer not available (illness, holiday). Only 8% of the

Table 9.7 The Fieldwork Results of POLS 1998

Result Frequency Percentage

Sample size 39,302 100.0

Response 24,008 61.1

Immediate response 9,718 24.7

Converted refusers 14,275 36.3

Other response 15 0.0

Nonresponse 15,294 38.9

Unprocessed cases 2,514 6.4

Non contact (not-at-home) 2,093 5.3

Non contact (moved) 376 1.0

Not-able (illness, handicap) 735 1.9

Not-able (language problem) 416 1.1

Refusal 8,918 22.7

Other nonresponse 242 0.6
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nonresponse is caused by the people who are not able to answer the questions due to

illness, handicap, or language problems.

In the early nineties of the last century, Statistics Netherlands started the develop-

ment of an integrated system of social statistics. This system is called the Social

Statistics Database (SSD). The SSD will ultimately contain a wide range of

characteristics on each individual in The Netherlands. There will be data on demog-

raphy, geography, income, labor, education, health, and social protection. These data

are obtained by combining data from registers and administrative data sources.

Moreover, data from surveys are included. These data relate to attitude, behavior,

and soon. Formore informationabout theSSD, seeEveraers andVanDerLaan (2001).

SSD records can be linked to the survey data records using internal personal

identification numbers. This can be done both for respondents and nonrespondents.

Thus, demographic variables such as sex, age, province of residence, and ethnicity

became available for all sampled persons and also socioeconomic variables such as

employment and various types of social security benefits.

The Netherlands is divided in approximately 420,000 postal code areas. A postal

code area contains, on average, 17 addresses. These areas are homogeneous with

respect to social and economic characteristics of its inhabitants. Using information

from the population register, Statistics Netherlands has computed some demographic

characteristics for thesepostal code areas. Sincepostal codes are included in the survey

data file for both respondents and nonrespondents, these characteristics can be linked

to the survey data file. Among the variables used in this analysis are degree of

urbanization, town size, and percentage of people with a foreign background (non-

natives). From another source also the average house value was included.

During the fieldwork period, interviewers kept record of all contact attempts. For

each attempt, its contact result was recorded (contact, or not). In case contact was

No contact
16%

Refusal
58%

Not able
8%

Other
2% Unprocessed

16%

Figure 9.10 The composition of the nonresponse in POLS.
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established, the result of the cooperation request was recorded (response or nonre-

sponse, and in case of nonresponse the reason of nonresponse). Also other information

was included, like the mode of the fieldwork attempt (CAPI or CATI), and whether

there was contact with the person to be interviewed or another member of the

household. All this fieldwork information was included in the analysis data file.

Two other variables were included in the survey data file. The first one was the

interviewer�s district code. Thus, for every respondent and nonrespondent, it is known
which interviewer made the contact attempts. The second variable was an indicator

whether a selected person has a listed telephone number or not.

In the nonresponse analysis, possible relationships between auxiliary variables and

response behavior were explored. The most interesting results are presented here.

Figure 9.11 shows the relationship between response behavior and age. Response is

high for the people younger than the age of 20. Response is much lower for those

between 20 and 30 years of age. There are relatively many unprocessed cases and

noncontacts. Over theyears, response rates tend to increase, but theydrop again for the

elderly. The group of not-able persons is particularly large here.

Figure 9.12 shows the possible effects ofmarital status on thefieldwork results. The

response rate is highest for married people. Both the groups of noncontacts and not-

ables are small. This is a commonphenomenon. These are oftenyoung ormiddle-aged

people with a family. Making contact is relatively easy.

There is a larger number of unprocessed cases and noncontacts for unmarried

people. This group may coincide at least partially with the young people in the

previous graph. For divorced people, it is apparently difficult to make contact. Also,

the number of unprocessed cases is large. Among the widowed people, the group of

not-able is large. This group probably coincides with the elderly in Fig. 9.11.
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Figure 9.11 Bar chart for fieldwork results by age.
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Figure 9.13 shows the relationship between the fieldwork result and the size of

the household. There is a clear trend: response rates increase with the size of the

household. Not surprisingly, nonresponse due to noncontact is less likely as

the household size increases. Also, the refusal rate and the number of unprocessed

cases are smaller for larger households.
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Figure 9.12 Bar chart for fieldwork results by marital status.
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Figure 9.13 Bar chart for fieldwork results by household size.
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The results of this graph confirm an earlier conclusion that it is relatively easy to

obtain response from families with children.

The results in the following four graphs explore relationships between response

behavior and characteristics of the neighborhood in which people live. The first

variable is degree of urbanization. Figure 9.14 shows its relationship with the

fieldwork result.

Response rates are very low in the extremely urbanized areas. These are the four

largest towns in The Netherlands (Amsterdam, Rotterdam, The Hague, and Utrecht).

Also, note the high number of unprocessed cases here. Furthermore, the noncontact

rate is high in densely populated areas. Response rates are high in rural areas.Note that

there is not much variation in refusal rates.

TheNetherlands is divided into 12 provinces. Figure 9.15 shows how the fieldwork

results differ by province. Response rates are low in three provinces: Utrecht, Noord-

Holland, and Zuid-Holland. These are the three most densely populated provinces.

The four largest cities lie in these provinces. So, this confirms the pattern found in

Fig. 9.14 that it is difficult to get a high response rate in big cities.

The Netherlands is divided into approximately 420,000 postal code areas. Each

area contains around 17 houses. The average house value is available in each area.

Since the postal code of each sampled person is known, the relationship between

response behavior and the average housevalue in the area can be explored. Figure 9.16

shows the result.

The graph shows a clear pattern: response is low in areas with cheap housing. Note

that nonresponse is particularly caused by a high noncontact rate and a large number of

unprocessed cases. Refusal rates are somewhat lower here.

Figure 9.14 Bar chart for fieldwork results by degree of urbanization.
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Approximately3millionof the total 16million inhabitants ofTheNetherlandshave

a foreign background. There are substantial ethnic minority groups from Turkey,

Morocco, and the former colonies in the West Indies and South America (Surinam).

The percentage of nonnative people in each of the approximately 420,000 postal code

areas is available. So, apossible relationshipbetween responsebehavior andnonnative

background can be analyzed. The results are displayed in Fig. 9.17.

A clear, almost linear, pattern can be observed: Response rates decrease as the

percentage of nonnatives in the neighborhood increases. In areas with more than 50%

nonnatives, response rate drops to 40%. The high number of unprocessed cases is a

major cause of nonresponse. Also, the noncontact rate is high. The high percentage of

not-able cases is caused by language problems.

It is remarkable that the refusal rate is very low among nonnatives. This seems to

contradict the believe of many natives that nonnatives refuse to integrate in the

population.

Together, Figs 9.16 and 9.17 seem to suggest that response rates are low in areas

with a low socioeconomic status.

One more variable turned out to be interesting. This variable indicates whether a

selected person has a listed phone number or not. For every person selected in the

sample, it is knownwhether he or she has a listed phone number or not. The telephone

company provides phone numbers, but only for those people with a fixed-line

phone that is listed in the directory.

From Fig. 9.18, it becomes clear that people with a listed phone number have a

much higher response rate. Peoplewithout such a number tend to refuse more and are

much harder to contact. Also, there are a larger number of unprocessed cases.

Figure 9.18 seems to confirm the hypothesis sometimes found in the literature that

social isolation may be a factor contributing to nonresponse.
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Figure 9.15 Bar chart for fieldwork results by province.
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Analysis of the POLS data shows that additional auxiliary variables help to explain

what is going onwith respect to response and nonresponse. Not only demographic and

socioeconomic variables are useful in this respect but also fieldwork variables that

describevarious contact attempts.Traditionally, fieldwork reports aremade tomonitor

fieldwork and interviewer performance. Use of this type of information in a nonre-

sponse analysis requires this information to be recorded in a more systematic way in
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Figure 9.16 Bar chart for fieldwork results by average house value.
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the surveydatafile.Also, it is important that fieldwork informationbecomesa standard

part of this file.

It is a good idea to split the response mechanism in two sequential phases. The first

phase is that of the contact attempt. The secondphase is that of the cooperation attempt

once contact has been established. Analysis of both phenomenamay require different

models and different auxiliary variables. However, in practical survey situations it is

not easy to separatebothmechanisms.Future surveydesign should attempt to take care

of this in a better way. Of course, it also remains important to distinguish other groups

of nonrespondents.

9.5 NONRESPONSE CORRECTION TECHNIQUES

There is ample evidence that nonresponse often causes population estimates to be

biased. This means that something has to be done to prevent wrong conclusions to

be drawn from the survey data. There are several correction approaches possible.

A frequently used correction technique is adjustment weighting. It assigns weights

to the observed elements. These weights are computed in such a way that overrepre-

sented groups get a smaller weight than underrepresented groups. Adjustment

weighting has many aspects. Chapter 10 is completely dedicated to this approach.

In the remainder of this chapter, two other approaches are described: the follow-up

survey and the basic question approach. To be able to assess whether nonresponse

causes estimators to be biased, information about nonrespondents is needed. This is

difficult to achieve as nonrespondents by definition do not provide information.

The follow-up surveyand thebasicquestion approach attempt to at least partially solve

this problem.
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9.5.1 The Follow-Up Survey

Hansen and Hurwitz (1946) were among the first to recognize that nonresponse can

lead to biased estimates of population parameters. They proposed investigating

nonresponse in mail surveys by taking a sample of nonrespondents and trying to

obtain the required information by means of a face-to-face interview. If the informa-

tion collected in the second phase is representative for all nonrespondents, an

indication can be obtained of the differences between respondents and nonrespon-

dents. Furthermore, it is possible to correct for a nonresponse bias.

The basic idea of Hansen Hurvitz was to conduct a follow-up survey among

nonrespondents. Such a follow-up survey is also possible if data collection in themain

survey is carried out by means of face-to-face interviews instead of through mail

questionnaires. Then, specially trained interviewers can reapproach the nonrespon-

dents. Of course, this substantially increases the survey costs.

The follow-up survey is described under the fixed responsemodel. Then, the target

population consists of two strata: a stratum of respondents and a stratum of non-

respondents. Suppose a simple random sample of size n is selected without replace-

ment from this population. The sample is denoted by the set of indicatorsa1,a2, . . .,aN,
where ak¼ 1means that elementk is selected in the sample, and otherwise ak¼ 0. The

number of elements selected in the response stratum is denoted by

nR ¼
XN
k¼1

akRk ð9:28Þ

and the number of selected elements in the nonresponse stratum is denoted by

nNR ¼
XN
k¼1

akð1�RkÞ; ð9:29Þ

where n¼ nR þ nNR.

Only thevaluesofYof thenRselected elements in the response stratumare available

for estimation purposes. The mean of these values is denoted by

�yR ¼ 1

nR

XN
k¼1

akRkYk: ð9:30Þ

The bias of this estimator is equal to

Bð�yRÞ ¼ �YR�*
Y ¼ NNR

N
ð�YR��YNRÞ ¼ QK; ð9:31Þ

whereK is the contrast andQ¼NNR/N is the relative size of the nonresponse stratum.

For the follow-up survey, a simple random sample is selected from the nonre-

spondents in the main survey. This comes down to drawing a simple random sample

from the nonresponse stratum.

Formally, this approach contradicts the assumptions underlying the fixed response

model. This model assumes the existence of a subpopulation consisting of elements

who would never respond in a survey. However, the fixed response model should be
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seen as conditional on the survey design. The design of a follow-up survey assumes a

different population (the main survey nonrespondents) with different response and

nonresponse strata. The situation is depicted in Fig. 9.19.

If everybody responds in the follow-up survey, or if the nonresponse in the follow-

up survey is ignorable (i.e., there is no direct correlation with target variables), it is

possible to compute unbiased estimates of the parameters of the nonresponse stratum.

However, one may wonder whether this condition is always fulfilled in practical

situations. It is, for example, possible that the population consists of three strata:

respondents, soft respondents (they cooperate in the follow-up), and hard nonrespon-

dents (they never cooperate).

Suppose a sample of size m is selected for the follow-up survey. The number of

respondents in this survey is denoted by mR.

Let�yNR denote themean of themR values of the responding elements. It is assumed

that thesemR observations constitute a simple random sample from the nonresponse

stratumof themain survey.Thismean is anunbiased estimator of themeanof the target

variable in the nonresponse stratum of the main survey. Consequently,

NR

N
�yR þ

NNR

N
�yNR ð9:32Þ

is an unbiased estimator of the population mean of Y. Unfortunately, the sizes of the

response stratum and the nonresponse stratum are unknown. Therefore, the quantities

NR/N andNNR/N are replaced by their unbiased estimates nR/n and nNR/n. This results

in the estimator

nR

n
�yR þ

nNR

n
�yNR ð9:33Þ

Under the condition mentioned, this is an unbiased estimator.

Main survey 

  Follow-up survey 

Response Non-response 

Non-response Response 

Figure 9.19 The follow-up survey.
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From July 2005 to December 2005, Statistics Netherlands conducted a large-scale

follow-up of nonrespondents in the Dutch Labor Force Survey (LFS). For a detailed

description of this study, see Schouten (2007).

A sample of 775 LFS nonrespondents was approached once more by a small

number of selected interviewers. The interviewers had received additional training in

doorstep interaction, they could offer incentives and they could earn a bonus based on

their response rate. The households that were eligible for the follow-up survey were

former refusals, noncontacts, and nonprocessed households.

An additional response of 43% was obtained, leading to a weighted overall

response rate of 77%. It turned out that the respondents in the follow-up survey

differed from the LFS respondents with respect to geographical variables, having a

listed landline telephone and ethnicity. The follow-up survey respondents

more often lived in the more urbanized, western parts of The Netherlands.

Furthermore, households that did not have a listed landline telephone were overrep-

resented as were Moroccan and non-Western households other than Moroccan and

Turkish households.

Furthermore, the follow-up respondents resembled the follow-up nonrespondents

with respect to demographic and socioeconomic characteristics. So, they were a good

representation of the nonresponse in the LFS.

Besides the differences in background characteristics between follow-up respon-

dents and the LFS respondents, there was no significant difference in job and

employment status. This implies that the survey estimates of employment were

unaffected by the addition of the follow-up response.

9.5.2 The Basic Question Approach

Afollow-up survey such as proposedbyHansen andHurwitz (1946)will be expensive.

The costs per interview in the follow-up survey will be much higher than that in the

main survey. It requires a lot of travel for a relative small amount of interviews.

Another factor is timeliness. Sampling and interviewing nonrespondents will sub-

stantially increase the duration of the fieldwork period.

Kersten and Bethlehem (1984) have proposed the basic question approach as an

alternative to the follow-up survey. It can be applied in situations where a follow-up

survey cannot be carried out due to time and money constraints.

The basic question approach assumes that many survey questionnaires are

composed around a few basic questions. Answers to these questions are required

to be able to formulate the most important conclusions of the survey. If interviewers

face problems in getting cooperation during the fieldwork, they can change their

strategy and attempt to obtain only answers to a few basic questions “with the foot in

the door.” Another approach could be to carry out the basic question approach

afterward by means of telephone or mail follow-up (for example, for the not-at-

homes).

Oneway to apply the basic question approach is to let the interviewers attempt the

basic questions straight away after they have been confronted with a refusal for the

main questionnaire. This may lead to higher nonresponse rates for the main
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questionnaire. Therefore, it is better, but also more expensive, to reapproach the

refusers after a short while with different interviewers.

The main goal of the basic question approach is to gain insight in possible

differences between respondents and nonrespondents with respect to the most

important variables of the survey. If such differences are detected, the approach

also provides information for correcting estimates for other variables.

The basic question approach was born from the observation that peoplewho refuse

to participate, can often be persuaded to answer a few basic questions. Many surveys

have basic questions. Only these questions are asked when it is clear that the further

attempts to get the questionnaire completed will be useless.

It is stressed that these questions can only be a limited approximation of the set of

research variables that have to be measured. Often the values of important research

variables depend on the answers to several questions. If not all these questions can be

asked, the value of the research variable cannot be derived.

Here it is supposed that there is just one basic question. Of course, it is possible to

askmore basic questions. It is advisable to keep the number of basic questions as small

as possible. Themore questions are asked, the higher the risk of getting no information

at all. Here are some examples of basic questions that have been used in surveys of

Statistics Netherlands:

. Housing Demand Survey. Do you intend to move within 2 years?

. Labor Force Survey. How many people in this household have a paid job?

. Holiday Survey. Have you been on holiday during the last 12months?

. Family Planning Survey. Taking into account your present circumstances and

your expectations of the future, howmany children do you think to get from this

moment on?

The basic question approach helps to get as much answers as possible to the

important questions of the survey. The approach seems to have worked well in several

specific surveys. Peoplewho refuse to cooperate can be persuaded to answer just a few

questions if the interviewer states “OK, I accept your refusal, but please help me to fix

my administration,” or “OK, I will not persist any more, but at least answer this

question.”Evenfor refusal ina telephone survey thebasicquestionapproachmaywork.

Considerable insight into the characteristics of nonrespondents can be obtained in

situations where especially the name of the survey causes nonresponse. This may

occur when people think that the survey does not apply to them, that is, if they do not

intend to move (in a housing demand survey), they do not have a job (in a labor force

survey), or they do not visit a doctor (in a health survey).

The large-scale follow-up of nonrespondents to the Dutch LFS also comprised the

basic question approach. A sample out of the nonresponse was reapproached using a

basic questionnaire. The regular LFS was face-to-face. The second wave (with basic

questions) was by telephone for those addresses where a listed landline telephonewas

available. If no telephone numberwas available, householdswere asked tofill in either

a paper orwebquestionnaire. Thequestionnaires usedwere a strongly condensed form
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of the regular questionnaire. The condensed questionnaire contained amaximumof10

questions and took between 1 and 3min to answer. For analytical purposes also a fresh

control group received the same treatment. Table 9.8 shows the response rates of the

various groups.

A response rate of 50% could be obtained by reapproaching nonrespondents by

telephone with basic questions. This is, of course, lower than the 80% of the control

group. This should come as no surprise as the control group also contains households

that would have participated in the regular LFS questionnaire.

To be able to compare respondents and nonrespondents, the basic questionmust be

answered by both respondents and nonrespondents. To avoid all kinds of interviewing

effects, questionnaire effects andmode effects, the basic questionmust be presented to

respondents in a situation that resembles the nonresponse situation as much as

possible. Therefore, the basic questions should be among the first questions in the

questionnaire. It is also important that the answer to the basic question is not changed

when the answers to subsequent questions indicate that the answer to the basic

question may be wrong.

The estimation procedure for the basic question approach is described under the

fixed response model. Then, the population can be divided in a stratum UR of NR

(potential) respondents and a stratum UNR of NNR nonrespondents, with

N¼NR þ NNR.

Suppose, there is some target variable Y with values Y1, Y2, . . ., YN, and a basic

question variable Z with values Z1, Z2, . . ., ZN. A simple random sample of size n is

selected without replacement. There are nR respondents and nNR nonrespondents. Not

every nonrespondent answers the basic question. The number of nonrespondents who

answer the basic question is denoted by mNR.

The response means �yR and �zR are unbiased estimators of the response stratum

means of the target variable and the basic question variable, respectively.

Estimating themeanof the basic questionvariable in the nonresponse stratum is not

so simple. The fundamental question is: May nonrespondents who answer the basic

question be regarded as a simple random sample from all nonrespondents? It is

assumed that this is the case.

Let�zNR be themean of the availablemNR values of the basic questionvariable in the

nonresponse stratum. Then, thismean is an unbiased estimator of themean of the basic

question variable in nonresponse stratum. Consequently,

NR

N
�zR þ NNR

N
�zNR ð9:34Þ

Table 9.8 Results of the Basic Question Approach in the Dutch LFS

Group Mode Sample Size Response Rate (%)

Nonrespondents Telephone 564 50

Paper or Web 378 23

Control group Telephone 667 80

Paper or Web 333 25
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is an unbiased estimator. Unfortunately, the sizes of the response stratum and

the nonresponse stratum are not known. Therefore, the quantities NR/N and

NNR/N are replaced by their unbiased estimates nR/n and nNR/n. This results in the

estimator

�zBQ ¼ nR

n
�zR þ nNR

n
�zNR: ð9:35Þ

This is an unbiased estimator, provided the nonrespondents answering the basic

question are a simple random sample from all nonrespondents.

The basic question approach has been tested in theDutchHousingDemand Survey

1981 (see Kersten and Bethlehem, 1984). Excluding overcoverage, the sample size of

this face-to-face survey was 82,849. The number of respondents was 58,972 and this

amounts to a response percentage of 71%. When contacted people refused to

cooperate, the basic question approach was tried at the door. In total, 8383 refusers

could be persuaded to answer the basic question. This implies that

58,972 þ 8383¼ 67,355 people answered the basic questions, which comes down

to a response percentage of 81% (for this variable).

The basic question in the survey was: “Do you intend to move within two years?”

Table 9.9 shows the results of these questions for two groups: the initial respondents

and the refusers who answered the basic question. It is clear that there is a difference

between the two groups. Initial respondents are much more inclined to move than

refusers answering the basic question.

In the Dutch Housing Demand Survey 1981, also a second wave of fieldwork was

carried out. Callbacksweremade for a sample of nonrespondents including thosewho

answered the basic question. This provided a means to check the answers to the basic

question. For the 1638 refusers in the firstwave, both their answer to the basic question

in the first wave and their answer in the complete interview in the secondwave became

available. The results are presented in Table 9.10.

The same answer was given in 8.6 þ 74.1¼ 82.7% of the cases. So, there is a

reasonable amount (but not complete) of consistency. Note that therewas a time lag of

3months between the twowaves. It is not unlikely that at least some people may have

changed their mind in this period.

It is clear that estimation for basic variables can be improved. But what about the

other variables in the survey? It is also possible to improve estimation for these

Table 9.9 Results of the Basic Question Approach in the Dutch Housing Demand

Survey 1981

Do you Intend to

Move Within 2 Years? Initial Respondents (%)

Refusers Answering the

Basic Question (%)

Yes 29.7 12.8

No 70.3 87.2

Total 100.0 100.0
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variables. To that end, the basic question variable is treated as an auxiliary variable. If

the basic questionvariable is a qualitativevariable, the poststratification estimator can

be used and if the basic question variable is a quantitative variable, the ratio estimator

or regression estimator can be used.

First, the case of a qualitative basic question variable is considered. The

expression for the poststratification estimator for a target variable Y other than a

basic question is

�yPS ¼
1

N

XL
h¼1

Nh�y
ðhÞ: ð9:36Þ

To be able to apply poststratification, the numbersNh of population elements in the

strata corresponding to the categories of the basic questionvariable must be available.

This is not the case, but they can be estimate using the answers to the basic question

(both for the initial respondents and the refusers). Next, the average of the target

variable is computed for everycategoryof thebasic questionvariable.Only thedata for

the initial respondents can be used for this. By substituting these means in expres-

sion 9.36, an estimate is obtained, that is, hopefully, less biased. It has been shown

already that poststratification works better as target variable and auxiliary variable

have a stronger relationship. Since the basic question variable is also a target variable

of the survey and target variables are often correlated, it is not unlikely that the basic

question approach produces better estimates.

Now the case of a quantitative basic question variable is considered. One way to

improve the estimate for a target variable is to use a ratio estimator in which the basic

questionvariable is used as an auxiliary variable. In the case, the ratio estimatorwould

take the form

�yRAT ¼ �yR
�zBQ
�zR

: ð9:37Þ

The more the values of Y and Z are proportional, the more effective the ratio

estimator is.

An even better approach is to use the regression estimator in which the basic

question variable plays the role of auxiliary variable. This estimator would take the

form
�yREG ¼ �yR�bð�zR��zBQÞ: ð9:38Þ

Table 9.10 Checking the Basic Question Approach in the Dutch Housing

Demand Survey 1981

Second Wave

First Wave Intends to Move (%) Does not Intend to Move (%)

Intends to move 8.6 5.1

Does not intend to move 12.1 74.1
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This estimator is effective if there is a more or less linear relationship between the

values of the target variable and the basic question variable.

Voogt (2004) presents an interesting example of a survey inwhich both a follow-up

survey and the basic question approach were applied. His research focused on

nonresponse bias in election research. He selected a simple random sample of 995

voters from the election register of the town of Zaanstad in The Netherlands. There

were two basic questions in this survey:

. Did you vote in the parliamentary election on Wednesday May 6, 1998?

. Are you interested in politics, fairly interested or not interested?

In the first wave of the survey, people were contacted by phone if a phone number

was available. If not, they were send a questionnaire by mail. The basic question

approachwas applied in a separate follow-up. All refuserswere offered the possibility

to answer just the two basic questions (by phone ormail). The follow-up approachwas

applied to thosewho refused to cooperate in the basic question approach. This time the

refusers were visited at home by interviewers. The results of the fieldwork are

summarized in Table 9.11.

One conclusion that can be drawn from this table is that the situation need not be

hopeless if the response is low in the first wave. With additional measures, response

rates can be increased substantially.

Because the researcherhadaccess to thevoting registerof the town,hecouldestablish

with certainty whether all 995 people in the survey had voted or not. In this group,

72.9% had voted. The voting behavior for the various groups is listed in Table 9.12.

Table 9.11 Results of the Follow-Up Survey and the Basic Question

Approach in an Election Survey

Result Cases Percentage

Response in first wave 508 51.1

Response in basic question approach 196 19.7

Response in callback approach 224 22.5

Final nonresponse 67 6.7

Total 995 100.0

Table 9.12 Voting Behavior in the Follow-Up Survey and the Basic

Question Approach of an Election Survey

Group % Voters

Response in first wave 85.4

Response in basic question approach 66.3

Response in follow-up approach 55.8

Final nonresponse 53.7
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The groups are ordered in growing reluctance to participate. There seems to be a

relationship between this reluctance andvotingbehavior: themore reluctant thegroup,

the lower is the percentage of voters. It can be concluded that the response in the basic

question approach is not representative for all nonresponse after the first wave.

Applying estimator (9.35) leads to an estimate of

508

995
� 85:4þ 487

995
66:3 ¼ 76:4: ð9:39Þ

This value is much better than the 85.4% for the initial response, but it is still

too high.

EXERCISES

9.1 A survey is usually carried out to measure the state of a target population at a

specific reference date. The survey outcomes are supposed to describe the status

of the population at that point in time. Ideally, the fieldwork of the survey should

take place at that date. This is not possible in practice, so interviewing

usually takes place in a period of a number of days or weeks around the

reference date.

Suppose, a business survey is carried out. A sample of companies is selected

from the sampling frame (the business register) 2weeks before the reference

date. Interviewing takes place in the period of 4weeks: the 2weeks between

sample selection and reference date and the 2weeks after the reference date.

For each of the situations described below, explainwhether there is a problem

and if so, explain what kind of problem it is: nonresponse, undercoverage,

overcoverage, or an error in the sampling frame (a frame error).

a. The contact attempt takes place between the sample selection date and the

reference date. It turns out the company that went bankrupt (and thus it does

not exist any more) before the sample selection date.

b. The contact attempt takes place between the sample selection date and the

reference date. It turns out the owner whowent out of business (and thus the

company does not exist any more) after the sample selection date.

c. The contact attempt takes place after the reference date. It turns out the

company has moved to a different country before the sample selection date.

d. The contact attempt takes place after the reference date. It turns out the

company went bankrupt (and thus it does not exist any more) between the

sample selection date and the reference date.

e. The contact attempt takes place after the reference date. It turns out the

company that was destroyed by a fire (and thus the company does not exist

any more) after the reference date.
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9.2 A town council wants to do something about the traffic problems in its town

center. There is a plan to turn it into a pedestrian area. So, cars will not be able to

access the center any more. The town council wants to know what companies

think of this plan. A simple random sample of 1000 companies is selected. Each

selected company is invited to participate in the survey. They are asked whether

they are in favor of the plan, or not. Furthermore, the location of the company is

recorded (town center or suburb). The results of the survey are summarized in

the table below:

Suburbs Town Center

In favor 120 80

Not in favor 40 240

a. Compute the response percentage.

b. Compute the percentage of respondents in favor of the plan.

c. Compute a lower bound and an upper bound for the percentage in favor in the

complete sample.

9.3 A survey is carried to measure how much money people spend on health care.

The target population consists of 24,000 people. A sample of 800 persons is

selected. Only 600 people respond.Among the respondents, the average amount

spent on health care per year is D1240. Suppose it is known that the health care

costs of nonrespondents are on average 10% higher. Using this information,

compute a better estimate of average health care costs.

9.4 A researcher wants to find out whether inhabitants of a town are interested in

local politics. To that end, he carries out a survey. Unfortunately, the survey is

affected by nonresponse. The total population of potential voters consists of

38,000 people. Suppose, the fixed response model applies and we have the

following distribution for interest in local politics over response and nonre-

sponse stratum:

Interest in Politics

Response Yes No

Yes 15,200 3,800

No 7,600 11,400

a. Compute the expected fraction of interested people if a simple random

sample is selected and the response mechanism works as described in the

above table.

b. Compute the value of the contrast K.

c. Compute the bias of the estimator.
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9.5 A researcher carries out a time budget survey. Among the things, he wants to

know is the time spent (per week) on surfing the Internet. A simple random

sample of 20 households is selected. Each selected household is asked for its

number of members and the numbers of hours spent on the Internet. The results

are in the table below:

Household Members Internet Hours Household Members Internet Hours

1 1 6 11 1 –

2 2 – 12 2 9

3 3 17 13 4 –

4 4 – 14 5 27

5 4 – 15 6 28

6 1 – 16 1 –

7 2 – 17 3 –

8 4 18 18 4 20

9 5 23 19 5 –

10 6 32 20 7 35

The survey suffers from nonresponse. Therefore, it is not possible to record

time spent on the Internet for some households. The household size can be

retrieved from the sampling frame.

a. Assuming the households for which the Internet variable is available form a

simple random sample, estimate the average hours spent on the Internet.

b. Looking at the available data, explain why the nonresponsewill probably be

selective with respect to hours spent on the Internet.

c. Use the ratio estimator to computer a better estimate. Use household size as

auxiliary variable.

d. Compare the outcomes under (a) and (c). Explain why (or why not) the ratio

estimator produces better estimates.

9.6 A simple random sample of size 2000 is selected from the population of 20,000

potential voters in the town of Harewood. Objective of this opinion poll is to

estimate the percentage of voters for the new political party “Forza Harewood.”

Only 50%of the selected voterswants to participate in the survey. Among those,

300 say that they will vote for the new party.

a. Assuming the response is a simple random sample from the population,

compute an estimate, and also the 95% confidence interval, for the percent-

age of “Forza Harewood.”

b. A simple random sample of size 100 is selected from the nonrespondents.

With a lot of extra efforts and specially trained interviewers, these non-

respondents are reapproached. It turns out that they all want to cooperate in

this follow-up survey and 10 people say they will vote for the new party.
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Use all available information to compute a better estimator.

c. Assuming the margin of the confidence interval computed under (a) is not

affected by nonresponse, what can be said about the confidence level of the

interval computed under (a)?

9.7 The basic question approach can be used to reduce the negative effects of

nonresponse. Assuming there is only one basic question, what should its

position be in the questionnaire for the respondents?

a. At the beginning of the questionnaire.

b. At the end of the questionnaire.

c. The location of the question is not relevant.

d. The question need not be included in the questionnaire.
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C H A P T E R 1 0

Weighting Adjustment

10.1 INTRODUCTION

There is ample evidence that nonresponse often causes estimates to be biased. This

means that something has to be done to correct this bias. A frequently used technique

is adjustment weighting. Adjustment weighting is typically applied in case of unit

nonresponse. Different correction techniques are available for item nonresponse

(see Chapter 8).

Adjustment weighting is based on the use of auxiliary information. Auxiliary

information is defined in this context as a set of variables that have been measured in

the survey and for which information on the population (or the complete sample)

distribution is available. By comparing the population distribution of an auxiliary

variablewith its response distribution, it can be assessedwhether or not the response is

representative for the population (with respect to this variable). If these distributions

differ considerably, one must conclude that nonresponse has resulted in a selective

sample.

As a next step, this auxiliary information can be used to compute adjustment

weights. Weights are assigned to all observed records of observations. Estimates of

population characteristics can now be obtained by using the weighted values instead

of the unweighted values. The weights are defined in such a way that population

characteristics for the auxiliary variables can be computed without error. Then the

weighted sample is said tobe representativewith respect to theauxiliaryvariablesused.

Suppose, the inclusion weight ci¼ 1/pi is introduced as one over the first-order

inclusion probability of selected element i, for i¼ 1, 2, . . . , n. Consequently, the
Horvitz–Thompson estimator can be written as

�yHT ¼ 1

N

Xn
i¼1

ciyi: ð10:1Þ

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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Adjustment weighting replaces this estimator by a new estimator

�yW ¼ 1

N

Xn
i¼1

wiyi; ð10:2Þ

where the weight wi is equal to

wi ¼ ci � di ð10:3Þ
and di is a correction weight produced by an weighting adjustment technique.

If the response can be made representative with respect to several auxiliary

variables, and if all these variables have a strong relationship with the phenomena

to be investigated, then the (weighted) sample will also be (approximately) represen-

tative with respect to these phenomena, and hence estimates of population character-

istics will be more accurate.

Several weighting techniques will be described in this chapter. It starts with the

simplest and most commonly used one: poststratification. Next linear weighting is

described. It is more general than poststratification. This technique can be applied

in situations where the auxiliary information is inadequate for poststratification.

Then multiplicative weighting is discussed as an alternative for linear weighting.

Furthermore, an introduction into calibration is provided. This can be seen as an even

more general theoretical framework for adjustment weighting that includes linear

weighting and multiplication as special cases. Finally, an overview of propensity

weighting is given.

10.2 POSTSTRATIFICATION

Poststratification is a well-known and often used weighting method. Note that

poststratification has already been introduced in Chapter 6 as an estimation technique

that can lead to more precise estimators. In this chapter, it is shown that poststratifica-

tion can also be effective in reducing nonresponse bias. First, the case of complete

response is considered.

To be able to carry out poststratification, one ormore qualitative auxiliary variables

are needed. Suppose, there is an auxiliary variableX having L categories. So it divides

the population U into L strata U1, U2, . . . ,UL. The number of population elements

in stratum Uh is denoted by Nh, for h¼ 1, 2, . . . ,L. So N ¼ N1 þN2 þ � � � þNL.

A sample of size n is selected from the population. If nh denotes the number of

sample elements in stratum Uh (for h¼ 1, 2, . . . , L), then n ¼ n1 þ n2 þ � � � þ nL..
Note that the values of the nh are the result of a random selection process. So, they are

random variables.

Poststratification assigns identical adjustment weights to all elements in the same

stratum. In case of simple random sampling without replacement, the correction

weight di for an observed element i in stratum Uh is equal to

di ¼ Nh=N

nh=n
: ð10:4Þ
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If the values of the inclusion probabilities (ci¼ n/N) and correction weights (10.4) are

substituted in expression (10.2), the result is the poststratification estimator

�yPS ¼
1

N

XL
h¼1

Nh�y
ðhÞ; ð10:5Þ

where �yðhÞ is the mean of the observed elements in stratum h. So, the poststratification

estimator is equal to a weighted sum of sample stratum means.

The computation of adjustment weights is shown in an example. A sample of size

100 is selected from the Samplonian population of size 1000. There are two auxiliary

variables: Sex (with two categories male and female), and AgeClass (with three

categories Young, Middle, and Old). Table 10.1 contains the population and sample

distribution of these variables.

The sample is not representative for the population. For example, the percentage

of young females in the population is 20.9%, whereas the corresponding sample

percentage is 15.0%. The sample contains too few young females.

The correction weights in Table 10.1 have been computed by means of expres-

sion (10.4). For example, the weight for young female is equal to (209/1000)/

(15/100)¼ 1.393. Young females are underrepresented in the sample and therefore

get a weight larger than 1. People in overrepresented strata get a weight less than 1.

The adjustment weights wi are obtained by multiplying the correction weights

di by the inclusion weights ci. Here, all inclusion weights are equal to N/n¼ 10.

Table 10.1 Computation of Adjustment Weights in Case of Poststratification

Population

Male Female Total

Young 226 209 435

Middle 152 144 296

Elderly 133 136 269

Total 511 480 1000

Sample

Male Female Total

Young 23 15 38

Middle 16 17 33

Elderly 13 16 29

Total 52 48 100

Weights

Male Female

Young 0.983 1.393

Middle 0.950 0.847

Elderly 1.023 0.850
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Suppose, these weights are used to estimate the number of young females in the

population. The weighted estimate would be 15� 10� 1.393¼ 209, and this is

exactly the population total. Thus, application of weights to the auxiliary variables

results in perfect estimates. If there is a strong relationship between the auxiliary

variable and the target variable, estimates for the target variable will be improved if

these weights are used.

Now suppose the sample is affected by nonresponse. Then the poststratification

estimator takes the form

�yR;PS ¼
1

N

XL
h¼1

Nh�y
ðhÞ
R ; ð10:6Þ

where �y
ðhÞ
R denotes the mean of the responding elements in stratum h. It can be shown

that the bias of this estimator is equal to

Bð�yR;PSÞ ¼
1

N

XL
h¼1

NhBð�yðhÞR Þ: ð10:7Þ

Apparently, thebias of this estimator is theweighted sumof thebiasesof the stratum

estimators. By applying the random response model, this bias can be written as

Bð�yR;PSÞ ¼
1

N

XL
h¼1

Nhð�YðhÞ � ~Y
ðhÞÞ; ð10:8Þ

where �Y
ðhÞ

is the mean of the target variable in stratum h, and

~Y
ðhÞ ¼ 1

Nh

XNh

k¼1

r
ðhÞ
k

�rðhÞ
Y
ðhÞ
k : ð10:9Þ

Here, Y
ðhÞ
k denotes value of the target value of element k in stratum, r

ðhÞ
k is the

corresponding response probability, and

�rðhÞ ¼ 1

Nh

XNh

k¼1

r
ðhÞ
k ð10:10Þ

is themean of the response probabilities in stratum h. In a fashion similar to expression

(9.24) in Chapter 9, the bias can be rewritten as

Bð�yPS;RÞ ¼
1

N

XL
h¼1

Nh

R
ðhÞ
rY S

ðhÞ
r S

ðhÞ
Y

�rðhÞ
; ð10:11Þ

where R
ðhÞ
rY is the correlation between the Y and r in stratum h. SðhÞr and S

ðhÞ
Y are the

standard errors of r and Y in stratum h, respectively.

The bias of the poststratification estimator is small if the biases within strata are

small. A stratum bias is small in the following situations:

. If there is little or no relationship between the target variable and the response

behavior within all strata, then their correlations are small.
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. If response probabilities within a stratum are more or less equal, then their

standard errors are small.

. If values of the target variable within a stratum are more or less equal, then their

standard errors are small.

These conclusions give some guidance with respect to the construction of strata.

Preferably, strata should be used that are homogeneous with respect to the target

variable, response probabilities, or both. Themore the elements resemble each within

strata, the smaller the bias will be.

Two variables were used for weighting in Table 10.1: AgeClass and Sex. Strata

were formed by crossing these two variables. Therefore, this weighting model is

denoted by

AgeClass � Sex:

The idea of crossing variables can be extended tomore than two variables. As long

as the table with population frequencies is available, and all response frequencies

are greater than 0, weights can be computed. However, if there are no observations

in a stratum, the corresponding weight cannot be computed. This leads to incorrect

estimates. If the sample frequencies in the strata arevery small, say less than 5,weights

can be computed, but estimates will be unstable.

As more variables are used in a weighting model, there will be more strata.

Therefore, the risk of empty strata or strata with too few observations will be larger.

There are two solutions for this problem.One is to use less auxiliary variables, but then

a lot of auxiliary information is thrown away. Another is to use collapse strata. This

means merging a stratum having too few observations with another stratum. It is

important to combine strata that resemble each other as much as possible. Collapsing

strata is not a simple job, particularly if the number of auxiliary variables and strata is

large. It is often a manual job.

Another problemwith the use of several auxiliary variables is the lack of a sufficient

amount of population information. This is shown in Table 10.2. The population

distributions of the two variables AgeClass and Sex are known separately, but the

distribution in the cross-classification is not known. In this case, the poststratification

AgeClass� Sex cannot be carried out because weights cannot be computed for the

strata in the cross-classification.

One way to solve this problem is to use only one variable, but this would mean

ignoring all information with respect to the other variable. What is needed is a

weighting technique that uses both marginal frequency distributions simultaneously.

There are two weighting techniques that can do this: linear weighting and multiplica-

tive weighting. These two techniques are described in the next two sections.

10.3 LINEAR WEIGHTING

The technique of linear weighting is based on the theory of general regression

estimation. The regression estimator was already introduced in Chapter 6. It uses

LINEAR WEIGHTING 253



an auxiliary variable to produce more precise estimates. This estimator is extended

here to the generalized regression estimator. It is shown that this estimator can also

help to reduce a bias due to nonresponse. The theory of linear weighting is described

assuming that data have been collected bymeans of simple random sampling without

replacement. The theory can easily be generalized (Bethlehem, 1988).

First, the case of full response is considered. Suppose there are p auxiliary variables

available. The p vector of values of these variables for element k is denoted by

Xk ¼ ðXk1;Xk2; . . . ;XkpÞ0: ð10:12Þ
The symbol 0 denotes transposition of a matrix or vector. Let Y be the N vector of

all values of the target variable, and let X be the N� p matrix of all values of the

auxiliary variables. The vector of population means of the p auxiliary variables is

defined by

�X ¼ ð�X1; �X2; . . . ; �XpÞ0: ð10:13Þ
If the auxiliary variables are correlated with the target variable, then for a suitably

chosenvectorB¼ (B1,B2, . . . ,Bp)
0 of regression coefficients for a best fit ofYonX, the

residuals E¼ (E1, E2, . . . ,EN)
0 defined by

E ¼ Y �XB ð10:14Þ

Table 10.2 Lack of Population Information

Population

Male Female Total

Young ? ? 435

Middle ? ? 296

Elderly ? ? 269

Total 511 480 1000

Sample

Male Female Total

Young 23 15 38

Middle 16 17 33

Elderly 13 16 29

Total 52 48 100

Weights

Male Female

Young ? ?

Middle ? ?

Elderly ? ?
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vary less than the values of the target variable itself. Application of ordinary least

squares results in

B ¼ ðX0XÞ� 1
XY 0 ¼

XN
k¼1

XkX
0
k

 !� 1 XN
k¼1

XkYk

 !
: ð10:15Þ

For a simple random sample without replacement, the vector B can be estimated by

b ¼
XN
k¼1

akXkX
0
k

 !�1 XN
k¼1

akXkYk

 !
¼

Xn
i¼1

xix
0
i

 !�1 Xn
i¼1

xiyi

 !
; ð10:16Þ

where xi¼ (xi1,xi2, . . . ,xip)
0 denotes the pvector of values of the p auxiliary variables

for sample element i (for i¼ 1, 2, . . . , n). The estimator b is an asymptotically design

unbiased (ADU) estimator of B. It means the bias vanishes for large samples. The

generalized regression estimator is now defined by

�yGR ¼ �yþð�X� �xÞ0b; ð10:17Þ

where �x is the vector of sample means of the auxiliary variables.

The generalized regression estimator is an ADU estimator of the population mean

of the target variable. If there exists a p vector c of fixed numbers such that Xc¼ I,

where I is a vector consisting of 1�s, the generalized regression estimator can also be

written as

�yGR ¼ �X
0
b: ð10:18Þ

It can be shown that the variance of the generalized regression estimator can be

approximated by

Vð�yGRÞ ¼
1� f

n
S2E; ð10:19Þ

where S2E is the population variance of the residuals E1, E2, . . . ,EN.

Expression (10.19) is identical to the variance of the simple sample mean, but with

the values Yk replaced by the residuals Ek. This variance will be small if the residual

valuesEk are small. Hence, the use of auxiliary variables that can explain the behavior

of the target variable will result in a precise estimator.

In case of nonresponse, the following modified version of the general regression

estimator is introduced:

�yGR;R ¼ �yR þð�X� �xRÞ0bR ¼ �X
0
bR; ð10:20Þ

in which bR is defined by

bR ¼
XN
k¼1

akRkXkX
0
k

 !�1 XN
k¼1

akRkXkYk

 !
: ð10:21Þ
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SobR is the analogue ofb, but just based on the response data.Bethlehem (1988) shows

that the bias of estimator (10.20) is approximately equal to

Bð�yGR;RÞ ¼ �XBR � �Y ; ð10:22Þ
where BR is defined by

BR ¼
XN
k¼1

rkXkX
0
k

 !�1 XN
k¼1

rkXkYk

 !
: ð10:23Þ

The bias of this estimator vanishes ifBR¼B. Thus, the regression estimator will be

unbiased if nonresponse does not affect the regression coefficients. Practical experi-

ence (at least in The Netherlands) shows that nonresponse often seriously affects

estimators, such asmeans and totals, but less often causes estimates of relationships to

bebiased. Particularly, if relationships are strong (the regression linefits the datawell),

the risk of finding wrong relationships is small.

By writing

BR ¼ Bþ
XN
k¼1

rkXkX
0
k

 !�1 XN
k¼1

rkXkEk

 !
; ð10:24Þ

the conclusion can be drawn that the bias will be small if the residuals are small.

This theory shows that use of the generalized regression estimator has the potential

of improving the precision and reducing the bias in case of ignorable nonresponse.

Therefore, it forms the basis for linear weighting adjustment techniques.

Bethlehem and Keller (1987) have shown that the generalized regression estima-

tor (10.17) can be rewritten in the form of weighted estimator (10.2). The adjustment

weight wi for observed element i is equal to wi¼ v0Xi, and v is a vector of weight

coefficients that is equal to

v ¼ n
Xn
i¼1

xix
0

 !�1

�X: ð10:25Þ

Poststratification is a special case of linearweighting,where the auxiliary variables

are qualitative variables. To show this, qualitative auxiliary variables are replaced by

sets of dummy variables. Suppose there is one auxiliary variable with L categories.

Then L dummy variables X1, X2, . . . ,XL can be introduced. For an observation in a

certain stratum h, the corresponding dummyvariableXh is assigned thevalue 1, and all

other dummy variables are set to 0. Consequently, the vector of population means of

these dummy variables is equal to

�X ¼ N1

N
;
N2

N
; . . . ;

NL

N

� �
; ð10:26Þ

and

v ¼ n

N

N1

n1
;
N2

n2
; . . . ;

NL

nL

� �0
: ð10:27Þ
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If this form of v is used to compute wi¼ v0Xi and the result is substituted in

expression (10.2) of theweighted estimator, the poststratification estimator is obtained.

Suppose there are two qualitative auxiliary variables: Sex and AgeClass (in three

categories). Crossing these two variables produces a table with 2� 3¼ 6 cells.

A dummy variable is introduced for each cell. So, there are six dummy variables.

The possible values of these dummy variables are shown in Table 10.3.

The table also contains the vector of population means of the auxiliary variables.

These values are equal to the population fractions in the cells of the population

table.

The weight coefficients in the vector v are given in the bottom row of the table.

Theseweight coefficients are used to compute the adjustmentweights for the observed

elements. For example, the weight for a young male is equal to 0.983.

Linear weighting can address the problem of the lack of sufficient population

information. It offers apossibility to includevariables in theweighting schemewithout

having to know the population frequencies in the cells obtained by cross-tabulating

all variables. The trick is to use a different set of dummy variables. Instead of defining

one set of dummy variables corresponding to the cells in the table, a set of dummy

variables is defined for each variable separately. This approach allows the use of all

marginal frequency distributions simultaneously. Of course, the amount of informa-

tion used is less than that for a complete poststratification. However, still information

about all auxiliary variables is used.

Continuing the example in Table 10.3, it is now shown how to use just the marginal

distributions of Sex and AgeClass. Two sets of dummy variables are introduced: one

set of two dummy variables for the categories of Sex, and another set of three dummy

variables for the categories of AgeClass. Then there are 2 þ 3¼ 5 dummy variables.

In each set, always one dummy has the value 1, whereas all other dummies are 0. The

possible values of the dummy variables are shown in Table 10.4.

The first dummy variable X1 represents the constant term in the regression model.

It always has the value 1. The second and third dummy variables relate to the two sex

categories, and the last three dummies represent the three age categories. The vector

of population means is equal to the fractions for all dummy variables separately. Note

that in this weighting model always three dummies in a row have the value 1.

Table 10.3 Weighting by Crossing the Variables Sex and AgeClass

Sex AgeClass X1 X2 X3 X4 X5 X6

Male Young 1 0 0 0 0 0

Male Middle 0 1 0 0 0 0

Male Elderly 0 0 1 0 0 0

Female Young 0 0 0 1 0 0

Female Middle 0 0 0 0 1 0

Female Elderly 0 0 0 0 0 1

Population means 0.226 0.152 0.133 0.209 0.144 0.136

Weight coefficients 0.983 0.950 1.023 1.393 0.847 0.850
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Table 10.4 Weighting by Using the Marginal Distributions of Sex and AgeClass

Sex AgeClass X1 X2 X3 X4 X5 X6

Male Young 1 1 0 1 0 0

Male Middle 1 1 0 0 1 0

Male Elderly 1 1 0 0 0 1

Female Young 1 0 1 1 0 0

Female Middle 1 0 1 0 1 0

Female Elderly 1 0 1 0 0 1

Population means 1.000 0.511 0.489 0.435 0.296 0.269

Weight coefficients 0.991 �0.033 0.033 0.161 �0.095 �0.066

The weight for an observed element is now obtained by summing the appropriate

elements of this vector. Thefirst value corresponds to the dummyX1,which always has

the value 1. So there is always a contribution of 0.991 to the weight. The next two

values correspond to the categories of Sex. Note that their sum equals zero. For males,

an amount 0.033 is subtracted, and for females, the same amount is added. The final

three values correspond to the categories of AgeClass. Depending on the age category

a contribution is added or subtracted. For example, the weight for a young male is

now equal to 0.991� 0.033 þ 0.161¼ 1.119.

No information is used about crossing Sex byAgeClass here, but only themarginal

distributions. Therefore, a different notation is introduced. This weighting model is

denoted by

SexþAgeClass:

Owing to the special structure of the auxiliary variables, the computation of theweight

coefficients v cannot be carried out without imposing extra conditions. Here, for every

qualitativevariable the condition is imposed that the sumof theweight coefficients for

the corresponding dummy variables must equal zero.

The weights obtained by using the model Sex þ AgeClass are not equal to the

weights obtained by complete poststratification. This is not surprising since themodel

Sex þ AgeClass uses less information than the model Sex�AgeClass.

The examples in Tables 10.3 and 10.4 use only two auxiliary variables. More

variables can be used in a weighting model. This makes it possible to define various

weighting models with these variables. Suppose there are three auxiliary variables

Sex, AgeClass, andMarStat (marital status). If the complete population distribution

on the crossing of all three variables is available, then the weighting model

Sex� AgeClass�MarStat

can be applied. If only the bivariate population distributions of every crossing of two

variables are available, the following weighting scheme could be applied:

ðSex� AgeClassÞþ ðAgeClass�MarStatÞþ ðSex�MarStatÞ:
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Note that in this scheme three poststratifications are carried out simultaneously. If

only marginal frequency distributions are available, the model

SexþAgeClassþMarStat

could be considered.More details about the theory of linear weighting can be found in

Bethlehem and Keller (1987).

Until now only linear weightingwith qualitative auxiliary variables was described.

It is also possible to apply linear weighting with quantitative auxiliary variables, or a

combination of qualitative and quantitative variables.

If there is only one quantitative variable, linear weighting comes down to applying

the simple regression estimator that was described in Chapter 6, and if there are more

quantitative auxiliary variables, the generalized regression estimator can be used. It is

also possible to combine qualitative andquantitative auxiliary variables. This is shown

in an example with one quantitative variable Age and one qualitative variable Sex.

Threedifferentweightingmodels aredescribed.Table10.5 contains thefirst fewcases.

The first weightingmodel only uses thevariableAge. If aweightingmodel contains

quantitative variables, always a column of constants must be included in the model.

The matrix X for this model consists of the two columns X1 and X2 in the table.

Note that table also contains the population means. The value 34.369 denotes the

mean age in the population. The row indicated by “weight coefficients 1” contains the

weight coefficients for thismodel. There are only two coefficients: one corresponding

to the constant term and other for Age. The second weight coefficient is negative

(�0.003). This implies that weight decreases with age: younger people have higher

weight than older people. Apparently, young people are underrepresented in the

survey, while older people are overrepresented.

Table 10.5 Weighting by Using a Quantitative and Qualitative Variable

Age Sex X1 X2 X3 X4 X5 X6

65 Male 1 65 1 0 65 0

36 Male 1 36 1 0 36 0

73 Female 1 73 0 1 0 73

6 Male 1 6 1 0 6 0

33 Female 1 33 0 1 0 33

82 Female 1 82 0 1 0 82

2 Male 1 2 1 0 2 0

32 Male 1 32 1 0 32 0

66 Female 1 66 0 1 0 66

2 Female 1 2 0 1 0 2

Population means 1.000 34.369 0.511 0.489 33.509 35.268

Weight coefficients 1 1.101 �0.003

Weight coefficients 2 1.101 �0.003 �0.032 0.032

Weight coefficients 3 1.087 �0.001 �0.004
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The secondweightingmodeluses bothvariablesAgeandSex. Theweightingmodel

is denoted byAge þ Sex. Thismodel uses columnsX1 (the constant term),X2 (age),X3

(dummy for male), and X4 (dummy for female). The rowmarked “weight coefficients

2” contains the weight coefficients for this model. There are four coefficients: one for

the constant term, one for age, one for males, and one for females. The second weight

coefficient is negative. This implies that again weight decreases with age: for males,

an extra amount is subtracted from the weight and for females, the same amount is

added.A look at the adjustmentweightswould reveal that, for example, young females

are underrepresented and that old males are overrepresented. The model Age þ Sex

should be a better model than the one just containing age since more population

information is used.

The third example of aweightingmodel is amodel inwhich the qualitativevariable

Sex and the quantitative variable Age are crossed. This weighting model is denoted

by Age� Sex. The theory allows only one quantitative variable to be crossed with a

number of qualitative variables in each term of the model. Crossing a quantitative

variable with qualitative variables means that no longer the relative sizes of the strata

in the population are required to be known, but rather the population means of the

quantitativevariables in the strata.Hence, for themodelAge� Sexmean ages ofmales

and females are required. For thismodel, columnsX1,X5, andX6 are used.Note that the

ages for males are set to zero in the column for females, and vice versa the ages of

females are set to zero in the column for males. The resulting weights can be found in

the row “weight coefficients 3”. There are three coefficients: one for the constant term,

one for the age of males, and one for the age of females. The weight coefficients for

both strata are negative. This means that for both males and females weights decrease

with age. The weight coefficient for females is more negative than that for males.

So females get a lower weight than males.

10.4 MULTIPLICATIVE WEIGHTING

If linearweighting is applied, correctionweights are obtained that are computed as the

sum of a number of weight coefficients. It is also possible to compute correction

weights in a different way, namely, as the product of a number ofweight factors. This

weighting technique is usually called raking or iterative proportional fitting. Here,

it is denoted bymultiplicative weighting because weights are obtained as the product

of a number of factors contributed by various auxiliary variables.

Multiplicative weighting can be applied in the same situations as linear weighting

as long as only qualitativevariables are used. It computes correctionweights bymeans

of an iterative procedure. The resulting weights are the product of factors contributed

by all cross-classifications.

The iterative proportional fitting technique was already described by Deming and

Stephan (1940). Skinner (1991) discusses application of this technique in multiple

frame surveys. Little andWu (1991) describe the theoretical framework and show that

this technique comes down to fitting a loglinear model for the probabilities of getting

observations in strata of the complete cross-classification given the probabilities for
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marginal distributions. To compute the weight factors, the following scheme must be

carried out:

Step 1. Introduce aweight factor for each stratum in each cross-classification term.

Set the initial values of all factors to 1.

Step 2. Adjust the weight factors for the first cross-classification term so that the

weighted sample becomes representative with respect to the auxiliary variables

included in this cross-classification.

Step 3. Adjust the weight factors for the next cross-classification term so that the

weighted sample is representative for the variables involved. Generally, this will

disturb representativeness with respect to the other cross-classification terms in

the model.

Step 4. Repeat this adjustment process until all cross-classification terms have been

dealt with.

Step 5. Repeat steps 2, 3, and 4 until the weight factors do not change anymore.

Use of multiplicative weighting is illustrated using the same data as in Tables 10.3

and 10.4. The weighting model contains the two qualitative auxiliary variables Sex

and AgeClass.

Suppose only the population distribution of Sex (two categories) and AgeClass

(three categories) are separately available and not the cross-classification. Table 10.6

contains the starting situation. The upper left part of the table contains the weighted

relative frequencies in the sample for each combination of AgeClass and Sex.

The row and column denoted by “weight factor” contain the initial values of the

weight factors (1.000). The values in the row and column denoted by “weighted sum”

are obtained by first computing the weight for each sample cell (by multiplying

the relevant row and column factors) and then summing the weighted cell fractions.

Since the initial values of all factors are equal to 1, theweighted sums in Table 10.6 are

equal to the unweighted sample sums.The rowand the columndenoted by “population

distribution” contain the fractions for AgeClass and Sex in the population.

Table 10.6 Multiplicative Weighting, Starting Situation

Starting Situation

Male Female

Weight

Factor

Weighted

Sum

Population

Distribution

Young 0.230 0.150 1.000 0.380 0.435

Middle 0.160 0.170 1.000 0.330 0.296

Elderly 0.130 0.160 1.000 0.290 0.269

Weight factor 1.000 1.000

Weighted sum 0.520 0.480 1.000

Population distribution 0.511 0.489 1.000
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The iterative process must result in row and column factors with such values that

theweighted sumsmatch the population distribution. This is clearly not the case in the

starting situation. First, the weight factors for the rows are adjusted. This leads to

weight factors 1.145, 0.897, and0.925 forYoung,Middle, andElderly (seeTable 10.7).

Theweighted sums for the rowsare nowcorrect, but theweighted sums for thecolumns

are 0.527 and 0.473 and thus still show a discrepancy.

The next step will be to adjust the weight factors for the columns such that the

weighted column sums match the corresponding population frequencies. Note that

this adjustment for Sex will disturb the adjustment for AgeClass. The weighted sums

for the age categories no longer match the relative population frequencies. However,

the discrepancy is much less than that in the initial situation.

The process of adjusting for AgeClass and Sex is repeated until the weight factors

do not change anymore. The final situation is reached after a few iterations. Table 10.8

shows the final results.

The adjustment weight for a specific sample element is now obtained by multiply-

ing the relevant weight factors. For example, the weight for a young male is equal to

Table 10.8 Multiplicative Weighting, Situation after Convergence

Situation after Convergence

Male Female

Weight

Factor

Weighted

Sum

Population

Distribution

Young 0.230 0.150 1.151 0.435 0.435

Middle 0.160 0.170 0.895 0.296 0.296

Elderly 0.130 0.160 0.923 0.269 0.269

Weight factor 0.968 1.035

Weighted sum 0.511 0.489 1.000

Population distribution 0.511 0.489 1.000

Table 10.7 Multiplicative Weighting, Situation after Adjusting the Rows

Situation after Adjusting for AgeClass

Male Female

Weight

Factor

Weighted

Sum

Population

Distribution

Young 0.230 0.150 1.145 0.435 0.435

Middle 0.160 0.170 0.897 0.296 0.296

Elderly 0.130 0.160 0.928 0.269 0.269

Weight factor 1.000 1.000

Weighted sum 0.527 0.473 1.000

Population distribution 0.511 0.489 1.000
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1.151� 0.968¼ 1.114. For this example, the adjustment weights differ only slightly

from those obtained by linear weighting as described in the previous section.

10.5 CALIBRATION ESTIMATION

Deville and S€arndal (1992) andDeville et al. (1993) have created a general framework

for weighting, of which linear weighting and multiplicative weighting are special

cases. Assuming simple random sampling, their starting point is that adjustment

weights have to satisfy two conditions:

. The adjustment weights wk have to be as close as possible to 1.

. The weighted sample distribution of the auxiliary variables has to match the

population distribution, that is,

�xW ¼ 1

N

Xn
i¼1

wixi ¼ �X: ð10:28Þ

The first condition sees to it that resulting estimators are unbiased, or almost

unbiased, and the second condition guarantees that the weighted sample is

representative with respect to the auxiliary variables used.

Deville and S€arndal (1992) introduce a distance measure D(wi, 1) measuring the

difference between wi and 1 in some way. The problem is now to minimize

Xn
i¼1

Dðwi; 1Þ ð10:29Þ

under the condition (10.28). This problem can be solved by using the method of

Lagrange. By choosing the proper distance function, linear andmultiplicativeweight-

ing can be obtained as special cases of this general approach. For linear weighting,

the distance function is defined by

Dðwi; 1Þ ¼ ðwi � 1Þ2; ð10:30Þ

and for multiplicative weighting the distance

Dðwi; 1Þ ¼ wi logðwiÞ�wi þ 1 ð10:31Þ

must be used.

Deville and S€arndal (1992) andDeville et al. (1993) only consider the full response
situation. They show that estimators based on weights computed within their

frameworkhave asymptotically the sameproperties. Thismeans that for large samples

it does not matter whether linear or multiplicative weighting is applied. Estimators

based on both weighting techniques will behave approximately the same way. Note

that although the estimators behave in the sameway, the individual weights computed

by means of linear or multiplicative weighting may differ substantially.
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The situation is different under nonresponse. Generally, the asymptotic properties

of linear andmultiplicativeweightingwill not be equal under nonresponse. The extent

to which the chosen weighting technique is able to reduce the nonresponse bias

depends on how well the corresponding underlying model can be estimated using

the observed data. Linear weighting assumes a linear model to hold with the target

variable as dependent variable and the auxiliary variables as explanatory variables.

Multiplicative weighting assumes a loglinear model for the cell frequencies. An

attempt to use a correction technique for which the underlying model does not hold

will not help to reduce the bias.

10.6 OTHER WEIGHTING ISSUES

There are several reasons why survey researchers maywant to have some control over

the values of the adjustment weights. One reason is that extremely large weights are

generally considered undesirable. Large weights usually correspond to population

elements with rare characteristics. Use of suchweights may lead to unstable estimates

of population parameters. To reduce the impact of large weights on estimators, a

weighting method is required that is able to keep adjustment weights within pre-

specified boundaries and that at the same time enables valid inference.

Another reason to have some control over the values of the adjustment weights is

that application of linear weightingmight produce negativeweights. Although theory

does not require weights to be positive, negative weights should be avoided, since

they are counterintuitive, they cause problems in subsequent analyses, and they are

an indication that the regression model does not fit the data well.

Negativeweights can be avoided by using a better regressionmodel. However, it is

not always possible to find such models. Another solution is to use the current model

and force weights within certain limits. Several techniques have been proposed for

this. A technique developed by Deville et al. (1993) comes down to repeating the

(linear) weighting process a number of times. First, a lower bound L and an upper

bound U are specified. After the first run, weights smaller than L are set to L and

weights larger thanU are set toU. Then, theweighting process is repeated, but records

from the strata with the fixed weights L and U are excluded. Again, weights may be

produced not satisfying the conditions. Theseweights are also set to the value either L

or U. The weighting process is repeated until all computed weights fall within the

specified limits. Convergence of this iterative process is not guaranteed. Particularly,

if the lower boundL andupper boundU are not far apart, the processmaynot converge.

Huang and Fuller (1978) use a different approach. Their algorithm produces

weights that are a smooth, continuous, monotone increasing function of the original

weights computed from the linear model. The algorithm is iterative. At each step,

the weights are checked against a user supplied criterion valueM. This valueM is the

maximum fraction of the mean weight by which any weight may deviate from

the mean weight. For example, if M is set to 0.75, then all weights are forced into

the interval with lower bound equal to 0.25 times the mean weight and upper bound

equal to 1.75 times the mean weight. Setting the value to 1 implies that all weights are
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forced to be positive.Huang andFuller (1978) proved that the asymptotic properties of

the regression estimator constructed with their algorithm are asymptotically the same

as those of the generalized regression estimator. So, restricting theweights has (at least

asymptotically) no effect on the properties of population estimates computed with

these weights.

Another issue is the computation of weights that are consistent for persons and

households. Some statistical surveys have complex sample designs. One example of

such a complex design is cluster sampling. Many household surveys are based on

cluster samples. First, a sample of households is selected. Next, all persons in the

selected households are interviewed. The collected information can be used to make

estimates for two populations: the population consisting of all households and

the population consisting of all individual persons. In both situations, weighting

can be carried out to correct for nonresponse. This results in two weights assigned to

each record: one for the household and other for the individual. Having twoweights in

each record complicates further analysis.

If the aim of the survey is to make inference on the population of all individual

persons, the process is fairly straightforward. The unit of measurement is the

individual person. The data file must be approached as a file of records with data

on persons. Available population information on the distribution of personal char-

acteristics can be used to compute adjustment weights, and theseweights are assigned

to the individual records.

For making inference on the population of households, the same approach can be

used. However, there is a problem. In The Netherlands, for example, there is no or

limited information available on the population distribution of household variables.

Even information on simple variables, such as size of the household and household

composition, is lacking. This makes it impossible to carry out an efficient weighting

procedure.

Since it is possible to computeweights for the members of the household, one may

wonder whether it is possible to use the individual weights to compute household

weights. Possible approaches couldbe to take (1) theweight of head of the household,

(2) the weight of a randomly selected household member, or (3) to compute some

kind of average weight of the household members. Whatever approach is used, there

are always problems. If household weights are applied to members of the households,

weighted estimates of individual characteristics will not match known population

frequencies. This discrepancy will not occur if the individual weights are used.

Furthermore, inconsistencies may turn up. For example, an estimate of the total

income through the householdswill not be equal to an estimate based on the individual

persons.

Generalized regression estimation offers a solution to these problems. The trick is

to sum thedummyvariables corresponding to the qualitativeauxiliary variables for the

individuals over the household. Thus, quantitative auxiliary variables are created at

the household level.

The resulting weights are assigned to the households. Furthermore, all elements

within a household are assigned the same weight, and this weight is equal to the

householdweight. This approach forces estimates computed using elementweights to
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be consistent with estimates based on cluster weights. For an application of consistent

weighting, see Nieuwenbroek (1993).

10.7 USE OF PROPENSITY SCORES

The weighting techniques described in the previous sections were all based on the

principle of assigning correction weights to observations. These weights were com-

puted in such a way that weighted estimators have better properties than unweighted

estimators. The technique of propensity scores implements a slightly different

approach. Itconcentratesonfirstestimatingresponseprobabilities.Then, theestimated

probabilities are used to improve estimators.

The use of propensity scores is described under the random response model. It is

assumed that whether or not an individual responds is the result of some random

process, where each individual k has a certain, unknown probability rk of responding
when selected, for k¼ 1, 2, . . . ,N. Let R denote an indicator variable, where Rk¼ 1 if

individual k responds, and where Rk¼ 0 otherwise. Then P(Rk¼ 1)¼ rk.
OnlythosevaluesYkbecomeavailableinthesurveyforwhichindividualk isselected

in the sample (ak¼ 1) and responds (Rk¼ 1). Therefore, the first-order inclusion

probability for element k is equal to pkrk. To obtain an unbiased estimator, the

Horvitz–Thompson estimator is replaced by an adaptedHorvitz–Thompson estimator

�y0HT ¼ 1

N

XN
k¼1

akRkYk

pkrk
: ð10:32Þ

The response probabilities rk are unknown quantities. Therefore, they are estimated

using the available data. Rosenbaum and Rubin (1983) introduced the technique of

propensity scores to achieve this.

The propensity score r(X) is the conditional probability that an individual with

observed characteristics X responds in a survey when invited to do so (R¼ 1):

rðXÞ ¼ PðR ¼ 1jXÞ: ð10:33Þ
It is assumed that within subpopulations defined by values of the observed character-

istics X, all individuals have the same response probability. This is the missing at

random (MAR) assumption that was introduced in Chapter 8. Both linear weighting

and the propensity score method rely on this assumption.

Often, the propensity score is modeled by means of a logit model:

log
rðXkÞ

1� rðXkÞ
� �

¼ aþb0Xk: ð10:34Þ

Other models can be used too, but, Dehija and Wahba (1999) for example, conclude

that different models often produce similar results.

The model is fitted with maximum likelihood estimation. The resulting model is

used to predict the propensity scores. These predicted scores can be used in various

ways: the first approach is called propensity score weighting. The response
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probabilities rk in the adapted Horvitz–Thompson estimator (10.32) are replaced by

their estimates r(Xk) from the logit model. Cobben and Bethlehem (2005) show that

this approach does not always performs very well. In an example, estimates of

population parameters turn out to be unstable. This might be caused by the fact that

estimates highly depend on the model used for the propensity scores.

A second approach is propensity score stratification. This is a form of poststra-

tification where strata are formed on the basis of the propensity scores. Suppose

the sample is stratified into L strata by means of the estimated propensity score. The

poststratification estimator is defined by

�yPS ¼
1

N

XL
h¼1

Nh�y
ðhÞ; ð10:35Þ

where Nh is the number of elements in stratum h and �yðhÞ is the mean of the available

observations in stratum h. Bethlehem (1988) shows that the bias of the poststratified

Horvitz–Thompson estimator can be written as

Bð�yPS;RÞ ¼
1

N

XL
h¼1

Nh

R
ðhÞ
rY S

ðhÞ
r S

ðhÞ
Y

�rðhÞ
; ð10:36Þ

whereR
ðhÞ
rY is the correlation betweenY and r in stratum h. SðhÞr and S

ðhÞ
Y are the standard

errors of r and Y in stratum h, respectively. �rh is the average of the response

probabilities in stratum h.

This bias is small if thevariation in responseprobabilities is small. So itmakes sense

to construct strata in such a way that most variation of these probabilities is between

strata and notwithin strata. Cochran (1968) suggests that asmuch as five stratamay be

sufficient to remove a large part of the bias.

Cobben andBethlehem (2005) have tested this approach. It turned out that values of

estimates move in the right direction but are often still far away from the full sample

estimates. So, stratification based on just propensity scores was not able to completely

correct for the bias. They also explored the effects of using a different number of strata.

Estimates based on 25 propensity score strata performed slightly better. This is not

surprising because the strata will be more homogeneous with respect to the values of

the propensity scores.

A third approach to using response propensities is linear weighting with adjusted

inclusion probabilities. In its most general form, the generalized regression estimator

is defined by

�yGR ¼ �yHT þð�X� �xHTÞ0b; ð10:37Þ
where �X is the vector of population means of a set of auxiliary variables, �xHT is the

vector of Horvitz–Thompson estimators for the auxiliary variables, and b is a vector

of regression coefficients defined by

b ¼
XN
k¼1

akXkX
0
k

pk

 !�1 XN
k¼1

akXkYk

pk

 !
: ð10:38Þ
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Linear weighting produces only consistent estimates if the proper inclusion probabil-

ities are used. Therefore, in case of nonresponse, thepk in (10.38) should by replaced

by pkrk. Unfortunately, the rk are unknown, so they are replaced by their estimates

rðXkÞ.
Cobben and Bethlehem (2005) showed that in their example estimates based on

this approach performed better than those based on propensity score stratification.

Estimates were closer to the true values. This could be expected because now the

adjusted inclusion probabilities have been used.

A final approach is linear weighting including propensity score strata. This comes

down to using a normal weighting model but including in it a categorical propensity

score variable.

Cobben and Bethlehem (2005) tested this approach with two versions of a

propensity score variable, one with 5 categories and other with 25 categories. The

weight model with the second variable performed better than the model with the five-

category variable. Again, this is no surprise. Including a categorical propensity score

variable in the model pays.

10.8 A PRACTICAL EXAMPLE

Since 1995, Statistics Netherlands has an integrated system of social surveys. It is

known under its Dutch acronym POLS (Permanent Onderzoek Leefsituatie). POLS

is a continuous survey. Every month a sample is selected. The target population

consists of people of age 12 and older. The samples are stratified two-stage samples.

In the first stage, municipalities are selected within regional strata with probabilities

proportional to the number of inhabitants. In the second stage, an equal probability

sample is drawn in each selected municipality. Sampling frames are the population

registers of the municipalities. The samples are self-weighted samples; that is, all

individuals have the same probability of being selected in the sample.

In this example, the effect of weighting on one social participation variable is

studied. This is the variable recording whether or not a person is doing any volunteer

work. It is to be expected that there is a relationship between social participation and

response behavior: people participating more in social activities will also be more

inclined to respond. The sample size of the thematic module on social participation

was 6672, with a response percentage of 56.6%.

For this example, the only population information used was taken from the

Statistical Yearbook of Statistics Netherlands, see Statistics Netherlands (1998). It

contains frequency distributions with respect to five variables: gender, age, marital

status, province of residence, and degree of urbanization of the area of residence.

The ideal situation would be to have the complete crossing of these five variables.

However, the Statistical Yearbook contains only information with respect to partial

crossings. Table 10.9 contains counts for the distribution of gender by age by marital

status.

With respect to the two variables, province and degree of urbanization, only the

crossing with age is available as displayed in Tables 10.10 and 10.11, respectively.
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Note that in Tables 10.10 and 10.11, the age variable only has five categories,

whereas in Table 10.9 it has eight categories. In a linear weighting model, this causes

no problems. It is possible to use both age variables simultaneously.

Note that poststratification can only be applied if one of these three tables is used.

And even Table 10.9 cannot be used as it is because it contains four empty cells. This

problem could be solved by collapsing strata with other strata, see, for example,

Tremblay (1986), Kalton andMaligalig (1991), Little (1993), and Gelman and Carlin

(2000). For example, the two age categories 12–19 and 20–29 could be merged into

one new age category 12–29.

To select a weightingmodel, the general guideline could be applied to use as much

population information as possible. The more auxiliary variables are used, the better

the regressionmodel will be able to explain the behavior of the target variables, and so

Table 10.10 Population Distribution of Province�Age (�1000)

Age

Province 12–19 20–44 45–64 65–79 80þ
Groningen 49.3 222.1 127.8 48.4 20.8

Friesland 61.5 225.7 144.0 65.7 21.6

Drenthe 43.7 165.9 114.3 53.9 15.3

Overijssel 106.2 404.2 240.2 110.8 31.9

Flevoland 33.8 115.7 53.0 21.8 4.2

Gelderland 183.4 720.6 443.4 195.7 56.9

Utrecht 103.7 439.4 238.6 102.2 32.5

Noord-Holland 220.5 999.9 574.4 254.3 82.1

Zuid-Holland 316.2 1307.9 759.5 347.1 117.7

Zeeland 35.0 130.1 89.2 44.1 15.6

Noord-Brabant 218.7 898.7 562.4 225.2 57.9

Limburg 100.8 429.5 289.8 127.1 30.8

Table 10.9 Population Distribution of Age�Gender�Marital Status (�1000)

Male Female

Age Unmarried Married Widowed Divorced Unmarried Married Widowed Divorced

12–19 752.4 0.4 0.0 0.0 716.5 3.5 0.0 0.0

20–29 981.5 185.7 0.2 10.2 785.0 330.6 0.7 22.7

30–39 445.4 795.1 1.9 72.1 283.5 879.3 5.7 93.8

40–49 164.7 899.0 6.9 113.9 103.1 882.9 21.5 138.4

50–59 67.3 732.9 15.8 86.3 44.4 675.9 56.1 98.8

60–69 42.0 519.2 31.7 42.6 41.4 458.9 140.0 51.5

70–79 21.4 308.4 52.5 16.6 43.0 239.9 254.3 27.9

80þ 8.0 84.0 50.4 4.0 35.0 49.6 243.9 12.4

A PRACTICAL EXAMPLE 269



the smaller the remaining bias will be. On the contrary, auxiliary variables having

no relationshipwith the target variables will not help to reduce the bias.Moreover, use

of many auxiliary variables may inflate variance estimates. Therefore, it is a good

idea to compare population and response distributions for each auxiliary variable

(Table 10.12).

For the variable age, nonresponse is highest for people between 20 and 30 years of

age (mainly not at home) and elderly people (mainly refusal). A look at marital status

shows a relatively high response for married people. Divorced people tend to respond

less than average. Response is particularly high in the provinces Gelderland and

Noord-Brabant. There is a lot of nonresponse in themore densely populated andmore

urbanized provinces of Noord-Holland and Zuid-Holland. This phenomenon is also

reflected in the variable degree of urbanization. Quite striking is the low response rate

in the very strongly urbanized areas.

This analysis indicates that at least thevariablesmarital status, province, anddegree

of urbanization should be included in the weighting model. Note that the last two

variables are partially but not completely confounded.

A number of different weighting models have been computed for this example.

The computations were carried out with the software package Bascula, developed by

Statistics Netherlands (Bethlehem, 1996). Weights obtained in this way have been

used to estimate the percentage of people doing some kind of volunteer work. Since it

is expected that people doing this kind of work are overrepresented, the estimated

percentage should decrease as more effective weighting models are applied.

Table 10.13 contains the results of the computations.

A clear pattern can be distinguished: the more auxiliary information is used, the

lower the estimate of the percentage of people doing volunteer work. Of course, the

effectiveness of a model cannot be judged by just looking at the deviation from

the unadjusted estimate. However, use of more information also leads to a decrease in

standard error, and this is an indication of better fittingmodels.Hence, it is not unlikely

that in this example the number volunteers are overrepresented in the response, and

the weighting models correct for this. Standard errors were computed using the

method of balanced half-samples (Renssen et al., 1997).

If only one auxiliary variable is used for weighting, it turns out that variable gender

has no effect. Weighting using the variable marital status, degree of urbanization, or

age (in eight categories) reduces the estimate by 0.5–0.6%.

Table 10.11 Population Distribution of Degree of Urbanization�Age (�1000)

Age

Urbanization 12–19 20–44 45–64 65–79 80þ
Very strong 223.2 1196.6 565.3 293.4 113.0

Strong 336.5 1468.4 839.0 389.8 114.6

Moderate 317.1 1223.7 766.3 321.7 90.5

Little 333.7 1226.3 820.6 328.8 93.4

None 262.3 944.7 645.4 262.6 75.8
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Modelscontainingthedegreeofurbanizationproducethelargestshift intheestimate.

This suggests that this variable is more effective than the other auxiliary variables.

Poststratification by gender, marital status, and age is not possible due to empty

cells. But evenmerging the age categories 12–19 and 20–29would produce cells with

less than five observations, which could produce unstable weights. Therefore, instead

Table 10.12 Population and Response Distributions of the Auxiliary Variables (%)

Age Response Population Difference

12–19 12.8 11.1 1.7

20–29 15.9 17.5 �1.6

39–39 20.5 19.4 1.1

40–49 17.9 17.6 0.3

50–59 14.0 13.4 0.6

60–69 10.0 10.0 0.0

70–79 6.5 7.3 �0.8

80þ 2.5 3.7 �1.2

Private Response Population Difference

Groningen 2.7 3.5 �0.8

Friesland 4.3 3.9 0.4

Drenthe 2.3 3.0 �0.7

Overijssel 6.8 6.7 0.1

Flevoland 1.8 1.7 0.1

Gelderland 15.4 12.1 3.3

Utrecht 5.4 6.9 �1.5

N-Holland 14.0 16.1 �2.1

Z-Holland 18.0 21.5 �3.5

Zeeland 2.7 2.4 0.3

N-Brabant 17.6 14.8 2.8

Limburg 9.1 7.4 1.7

Marital Status Response Population Difference

Unmarried 32.7 34.2 �1.5

Married 57.2 53.2 4.0

Widowed 5.2 6.0 �0.8

Divorced 4.9 6.7 �2.8

Urbanization Response Population Difference

Very strong 11.8 18.0 �6.2

Strong 24.0 23.8 0.2

Moderate 23.2 20.5 2.7

Little 23.3 21.1 2.2

None 17.7 16.5 1.2

Gender Response Population Difference

Male 48.6 49.1 �0.5

Female 51.4 50.9 0.5
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of attempting to carry out the poststratification Gender�MarStat�Age8, the linear

weighting model (Gender�Age8) þ (Gender�MarStat) was used. Application of

this model produces a decrease in the estimate of 1.1%.

Model 11 in Table 10.13 contains the maximum possible weighting model. The

population informationrequiredfor the term(Gender�Age8) þ (Gender�MarStat)

is takenfromTable10.9and that for the termAge5�Urban fromTable10.10.Note that

only the term Province is used and not Age5�Province because the response table

contains cells with too few observations. Population counts for Province are taken

from Table 10.11. Application of this maximum weighting model shows the greatest

decrease in the estimate, from 43.3 to 42.0.

It is also interesting to look at the result of model 10 in Table 10.9. In this model,

all auxiliary variables are used, but only their marginal distributions. This is a much

smaller model, which can be seen by looking at the number of model parameters in

Table 10.9 (53 for model 11 and 23 for model 10). Still the simpler model 10 performs

almost as well as the maximum model 11. This is an indication that in this example

the main effects of the auxiliary variables play an important role in reducing the bias

of the estimates, whereas all kinds of interaction effects are less important.

EXERCISES

10.1 Which property of an auxiliary variable makes is useful for including in a

weighting adjustment model?

a. The response distribution of the variable is approximately equal to its

population distribution.

b. The sample distribution of the variable is approximately equal to its

population distribution.

Table 10.13 Estimates of the Percentage of People Doing Volunteer Work, Based on

Various Weighting Models

Weighting Model

Number of

Parameters Estimate

Standard

Error

1 No weighting 0 43.4 1.2

2 Gender 2 43.4 1.2

3 Province 12 43.3 1.2

4 MarStat 4 42.9 1.2

5 Urban 5 42.9 1.0

6 Age8 8 42.8 1.2

7 Age5� Province 60 42.9 1.2

8 (Gender�Age8) þ (Gender�MarStat) 22 42.3 1.1

9 Age5�Urban 25 42.5 1.0

10 Gender þ Age8 þ MarStat þ Urban þ Province 23 42.1 1.0

11 (Gender�Age8) þ (Gender�MarStat) þ
(Age5�Urban) þ Province

53 42.0 0.9
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c. The response distribution of the variable differs considerably from its

population distribution.

d. The response distribution of the variable is approximately equal to its

sample distribution.

10.2 A large company has 2500 employees. The management has installed coffee

machines everywhere in the building. After a while, the management wants to

know whether or not the employees are satisfied with the coffee machines.

a. Determine the sample size under the condition that the margin of the 95%

confidence interval may not exceed 4%.

b. It is decided to draw a simple random sample without replacement of 500

employees. It turns out that 380 employees complete the questionnaire

form. Of them, 310 are satisfied with the coffee machines.

Compute the 95%confidence interval of the percentage of the percentage

of employees in the company who are satisfied with the coffee machines.

c. Only 380 out of 500 selected employees responded. So there is a nonre-

sponse problem.

Compute a lower bound and an upper bound for the percentage of

employees in the sample who are satisfied with the coffee machines.

d. Previous research has showed that employees with a higher level of

education are less satisfied with the coffee facilities. The management

knows the level of education of each employee in the company: 21% has a

high education and 79% has a low education. The table below shows the

relationship between coffee machine satisfaction and level of education for

the 380 respondents:

Low Education High Education Total

Satisfied 306 4 310

Not satisfied 40 30 70

Total 346 34 380

Aweighting adjustment procedure is carried out to reduce the nonresponse

bias.

Compute weights for low- and high-educated employees.

e. Compute the weighted estimate of the percentage of employees in the

company satisfied with the coffee facilities.

10.3 There are plans in The Netherlands to introduce a system of road pricing. It

means car drivers are charged for the roads they use. Such a system could lead

to better use of the available road capacity and reduction in traffic congestion.

An automobile association wants to know what the attitude of the Dutch is

toward road pricing. It conducts a survey in which a simple random sample of

1000 people is selected. Selected people are asked two questions:

. Are you in favor of road pricing?
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. Do you have a car?

Unfortunately, not everybody wants to participate in the survey. Due to

nonresponse, only a part of selected people answer the questions. The results

are summarized below:

In Favor of Road Pricing?

Has a Car? Yes No

Yes 128 512

No 60 40

a. Compute the response percentage.

b. Using the available data, compute the percentage in favor of road pricing.

c. Using the available data, compute a lower bound and upper bound for the

percentage in the complete sample in favor of road pricing.

d. From another source, it is known that 80% of the target population owns a

car, and 20% does not have one. Use this additional information to apply

weighting adjustment.

Compute a weight for car owners, and a weight for those without a car.

e. Make a table like the one above, but with weighted frequencies.

f. Compute a weighted estimate for the percentage in favor of road pricing.

g. Explain the difference between the weighted and unweighted estimate.

10.4 A transport company carries out a survey to determine how healthy its truck

drivers are. From the population of all its drivers a simple random sample has

been selected. Of course, there is nonresponse. Therefore, data on only 21

drivers become available. Each respondent has been asked if he has visited a

doctor because of medical problems. Also, experience of the driver (little,

much) and age (young, middle, old) have been recorded. The results are shown

in the table:

No. Age Experience Doctor Visits No. Age Experience Doctor Visits

1 Young Much 2 12 Middle Little 6

2 Young Much 3 13 Middle Little 6

3 Young Much 4 14 Middle Little 7

4 Young Little 3 15 Old Much 8

5 Young Little 4 16 Old Much 10

6 Young Little 4 17 Old Much 10

7 Young Little 5 18 Old Much 8

8 Middle Much 5 19 Old Little 8

9 Middle Much 6 20 Old Little 9

10 Middle Much 7 21 Old Little 10

11 Middle Little 5
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a. Estimate the average number of doctor visits, assuming that the response

can be seen as a simple random sample.

b. Assume that the population distributions of experience and age are

available for the population of all drivers of the company:

Experience Percentage

Much 48%

Little 52%

Age Percentage

Young 22%

Middle 30%

Old 48%

Establish whether or not the response is selective. Explain which of these

two auxiliary variables should be preferred for computing adjustment

weights.

c. For each auxiliary variable separately carry out weighting adjustment.

Compute weights for each of the categories of the auxiliary variable.

d. Compute for both weighting adjustments a weighted estimate of the

average number of doctor visits.

e. Compare the outcomes under (a) and (d). Explain differences and/or

similarities.
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C H A P T E R 1 1

Online Surveys

11.1 THE POPULARITY OF ONLINE RESEARCH

Collecting data using a survey is a complex, costly, and time-consuming process.

Traditionally, surveyswere carried out using paper forms (PAPI). One of the problems

of thismode of data collectionwas that data usually containedmany errors. Therefore,

extensive data editing was required to obtain data of acceptable quality. Data editing

activities often consume a substantial part of the total survey budget. Chapter 7

described how rapid developments in information technology in the last few

decades of the previous century have made it possible to use microcomputers for

computer-assisted interviewing (CAI). This type of data collection has three major

advantages: (1) It simplifies work of the interviewers because they do not have

to pay attention any more to choosing the correct route through the questionnaire,

(2) it improves the quality of the collected data because answers can be checked

and corrected during the interview, and (3) it considerably reduces time needed to

process the survey data. Thus, it improves the timeliness of survey results and

reduces survey costs. More on the benefits of CAI can be found in Chapter 7 and

Couper et al. (1998).

Computer-assisted interviewing comes in various modes. It started in the 1970s

with computer-assisted telephone interviewing (CATI). More recent was computer-

assisted personal interviewing (CAPI), that is, face-to-face interviewing in which

interviewers use a laptop computer to ask the questions. CAPI emerged in the 1980s

when lightweight laptop computers made face-to-face interviewing with a computer

feasible. After more and more companies and households purchased their own

computers, mail surveys could be replaced with their electronic analogue, and thus

computer-assisted self-interviewing (CASI) emerged.

The rapid development of Internet in the last decade has led to computer-assisted

Web interviewing (CAWI), a new type of computer-assisted interviewing.

The questionnaire is designed as a Web site, which is accessed by respondents.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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These online surveys, also called Web surveys, are almost always self-administered:

respondents visit the Web site and complete the questionnaire by answering the

questions. Not surprisingly, survey organizations use, or consider using, online

surveys. At first sight, they seem to have some attractive advantages:

. Now that so many people are connected to Internet, an online survey is a simple

means to get access to a large group of potential respondents.

. Questionnaires can be distributed at very low costs. No interviewers are needed,

and there are no mailing and printing costs involved.

. Surveys can be launched very quickly. Little time is lost between themoment the

questionnaire is ready and the start of the fieldwork.

. Online surveys offer new, attractive possibilities, such as the use of multimedia

(sound, pictures, animation, and movies).

Thus, online surveys seem to be a fast, cheap and attractive means of collecting

large amounts of data. However, there are methodological problems, caused partly by

the use of Internet for selecting respondents and partly by the use of the Web as a

measuring instrument. If these problems are not seriously addressed, online surveys

may result in low-quality data by which no proper inference can bemadewith respect

to the target population of the survey.

This chapter discusses someof themethodological issues that are specific for online

surveys. Particularly, attention is paid to the effects of undercoverage and self-

selection. Some theory is developed, and it is shown what the effects of some

correction techniques can be. Practical implications are explored using data from a

fictitious population.

11.2 ERRORS IN ONLINE SURVEYS

In the process of carrying out a survey, a lot of things can happen that may have an

impact on the quality of the survey outcomes. Chapter 8 presented a systematic

overview of possible problems. Many of these problems can also occur in online

surveys.

Undercoverage occurs when elements of the target population do not have a

corresponding entry in the sampling frame. These elements can and will never be

contacted. Undercoverage is a serious problem if Internet is used as a sampling frame

and the target population contains people without Internet. These people can never be

selected for the survey.

Selection errors can occur in an online survey when the sample is based on self-

selection. The survey questionnaire is simply put on the Web. Respondents are those

peoplewho happen to have Internet access, visit theWeb site, and decide to participate

in the survey. The survey researcher is not in control of the selection process.

Consequently, selection probabilities are unknown, and therefore unbiased estimation

is not possible.
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Nonresponse can also occur in online surveys. An online survey questionnaire is a

self-administered questionnaire. Therefore, online surveys have a potential of high

nonresponse rates. An additional source of nonresponse problems is technical

problems of respondents having to interact with Internet (see, for example,

Couper, 2000; Dillman and Bowker, 2001; Fricker and Schonlau, 2002; Heerwegh

and Loosveldt, 2002). Slow modem speeds, unreliable connections, high connection

costs, low-end browsers, and unclear navigation instructions may frustrate

respondents.

Coverage and selection problems are discussed in more detail in the following

subsections.

11.2.1 Coverage Problems

The collection of all elements that can be contacted through the sampling frame is

called the frame population. Since the sample is selected from the frame population,

conclusions drawn using the survey data will apply to the frame population, and not

necessarily to the target population. Coverage problems can arise when the frame

population differs from the target population.

Undercoverage occurs when elements in the target population do not appear in the

frame population. These elements have zero probability of being selected in the

sample. Undercoverage can be a serious problem for online surveys. If the target

population consists of all people with an Internet connection, there is no problem.

However, usually the target population iswider than that. Then, undercoverage occurs

due to the fact that still many people do not have access to Internet. According to

Eurostat (2007), the statistical office of the European Union, countries differ substan-

tially in Internet coverage of households. Table 11.1 summarizes the extremes.

Internet access is very high in The Netherlands. More than four out of five

households have an Internet connection. Internet coverage is also high in

Scandinavian countries of Sweden and Denmark. Coverage is very low in the

Balkan countries of Romania and Bulgaria. Approximately, only one out of five

households has Internet access.

Table 11.1 Internet Access by Households in Europe in 2007

Country Internet Access Broadband Connection

Netherlands 83% 74%

Sweden 79% 67%

Denmark 78% 70%

� � �
Greece 25% 7%

Romania 22% 8%

Bulgaria 19% 15%

EU 54% 42

Source: Eurostat (2007).
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Table 11.1 also contains information about the percentage of households with a

broadband Internet connection. It is clear that stillmany Internet connections are based

on slowmodems. This may put restrictions on the questionnaires used. They may not

be too long and too complicated, and prohibit advanced features such as the use of

images, video, and animation. Slow questionnaire processing may cause respondents

to break off the session, resulting in only partially completed questionnaires.

In The Netherlands, the percentage of persons having an Internet connection at

home has increased fromyear to year (see Fig. 11.1). In 7 years, the number of Internet

connections increased from 16 to 83%. Still, it is clear that not every household will

have access to Internet in the near future.

An analysis of data on Internet access in The Netherlands in 2005 indicates that

Internet access is unevenly distributed over the population. Figure 11.2 shows the

distribution by gender. Apparently, more males than females have access to the

Internet.

Figure 11.3 contains the percentage of Dutch people having Internet by age group

(in 2005). The percentage of Internet access at home decreases with age. Particularly,

the people of age 55 and olderwill beverymuch underrepresentedwhen the Internet is

used as a selection mechanism.
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Figure 11.2 Having Internet by gender.

16

26

43

61 65 68
73

83

0
10
20

30
40
50
60

70
80
90

1998 1999 2000 2001 2002 2003 2004 2005

Year

Percentage

Figure 11.1 Percentage of persons having Internet (in The Netherlands).
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Figure 11.4 shows the percentage of people in The Netherlands with an access to

Internet by level of education (in 2005). It is clear that people with a higher level of

education tend to have Internet access more frequently than people with a lower level

of education.

According to De Haan and Van�t Hof (2006), Internet access among nonnative

youngpeople ismuch lower inTheNetherlands than amongnativeyoung people: 91%

of the young natives have access to Internet. This access is 80% for young people from

Surinam and Antilles, 68% for young people from Turkey, and only 64% for young

people from Morocco.

The results described above are in line with the findings of many authors in other

countries (see Couper, 2000; Dillman and Bowker, 2001).

It is clear that the use of Internet as a sampling framewill cause problems, because

specificgroups are substantiallyunderrepresented.Even if aproperprobability sample

is selected, the resultwill be a selective sample. Specificgroups in the target population

will not be able to fill in the (electronic) questionnaire form.

Note that there is some similaritywithCATI surveys inwhich telephone directories

are used as a sampling frame. Here, people without a telephone and people with an
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Figure 11.4 Having Internet by level of education.

41

74

88

91

86

93

98

120100806040200

65–74

55–64

45–54

35–44

25–34

15–24

12–14

Percentage

Figure 11.3 Having Internet by age.

280 ONLINE SURVEYS



unlisted number will be excluded from the survey. It is interesting to note that, for

example, in The Netherlands between 60 and 70% of the people have listed fixed-line

telephone number. This implies that by using a telephone directory as a sampling

frame, one out of three householdswill neverbe selected. So Internet coverage ismuch

higher than telephone coverage in The Netherlands (for listed fixed-line telephones).

These numbers speak in favor of online surveys. However, the effects of under-

coverage are also determined by the extent to which the undercovered part of the

population differs from the covered part (with respect to the target variables of the

survey) (see also Section 11.3.2).

11.2.2 Selection Problems

Horvitz and Thompson (1952) show in their seminal paper that unbiased estimates of

population characteristics can be computed only if a real probability sample has been

used, every element in the population has a nonzero probability of selection, and all

probabilities are known to the researcher. Furthermore, only under these conditions

can the accuracy of estimates be computed.

Many online surveys are not based on probability sampling. The survey question-

naire is simply put on the Web. Respondents are those people who happen to have

Internet access, visit the Web site and decide to participate in the survey. The survey

researcher is not in control of the selection process. Selection probabilities are

unknown, and therefore neither can unbiased estimates be computed nor can the

accuracy of estimates be determined. These surveys are called self-selection surveys.

The effects of self-selection can be illustrated by using an example related to the

general elections in The Netherlands in 2003. Various organizations made attempts to

useopinionpolls topredict theoutcomeof these elections.The results of thesepolls are

summarized in Table 11.2.

Table 11.2 Dutch Parliamentary Elections 2003: Outcomes and the Results

of Various Opinion Surveys

Election Kennisnet RTL4 SBS6 Nederland 1

Sample size 17,000 10,000 3,000 1,200

Seats in Parliament

CDA (Christian democrats) 44 29 24 42 42

LPF (populist party) 8 18 12 6 7

VVD (liberals) 28 24 38 28 28

PvdA (social democrats) 42 13 41 45 43

SP (socialists) 9 22 10 11 9

GL (green party) 8 26 9 6 8

D66 (liberal democrats) 6 4 7 5 6

Other parties 5 14 9 7 7

Mean absolute difference 12.5 5.3 1.8 0.8
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A typical example of a self-selection survey was the survey on the DutchWeb site

Kennisnet (Knowledge net). This is a Web site for all those involved in education.

More than 11,000 schools and other educational institutes use this Web site. The

survey was an opinion poll for the general elections held on January 22, 2003.

Everybody, including those not involved in education, could participate in the poll.

Table 11.2 contains both the official results (seats in Parliament) of the election

(column Election) and the results of this poll on the morning of the election day

(column Kennisnet). The survey estimates were based on votes of approximately

17,000 people. No adjustment weighting was carried out. Although this was a large

sample, it is clear that the survey results were no way near the true election results.

Themean absolute difference (MAD) is equal to 12.5, whichmeans that the estimated

number of seats and the true number of seats differ on average by an amount of 12.5.

Another example of a self-selection Web survey was the election site of the Dutch

television channel RTL4. It resembled to some extent the Kennisnet survey but was

targeted at a much wider audience. Again, the survey researcher had no control at all

over whowas voting. Therewas some protection, bymeans of cookies, against voting

more than once. However, this also had a drawback as only one member of the

family could participate. Table 11.2 shows the survey results at noon on the day of the

general elections (column RTL4). Figures were based on slightly over 10,000 votes.

No weighting adjustment procedure was carried out. The results are better than that

of the Kennisnet survey (the MAD decreased from 12.5 to 5.3). However, deviations

between estimates and true figures are still substantial, particularly for the large

parties. Note that even a large sample size of over 10,000 people did not help to get

accurate estimates.

The Dutch commercial television channel SBS6 used an access panel. This is an

Internet panel. Its members are regularly approached to complete a questionnaire on

the Internet. Values of basic demographic variables were available for all panel

members. A sample of size 3000 was selected. Selection was carried out such that

the sample was representative with respect to the social-demographic and voting

characteristics. Table 11.2 shows the results (column SBS6). The survey took place

on the day before the general elections. Although attempts have been made to create

a “representative” sample, the results differ still from the final result. The MAD has

decreased to 1.8 but is still substantial.

Abetter predictionwasobtainedwith a true probability sample.The table shows the

results of a survey based on such a probability sample. It was carried out by the

television channel Nederland 1 in cooperation with the marketing agency Interview-

NSS. A sample of size 1200was selected bymeans of random digit dialing. TheMAD

was reduced to 0.8.

The conclusion from the analysis above is that a probability sample is a vital

prerequisite formaking proper inference about the target population of a survey. Even

with a probability sample only of size 1200, better results can be obtained than with a

nonprobability sample of size 10,000 or more.

Amore recent comparison is presented in Table 11.3.Politieke Barometer, Peil.nl

and De Stemming are opinion polls for the Dutch General Election of 2006. These

polls are based on samples from online panels. To reduce a possible bias, adjustment
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weighting has been carried out.DPES is the Dutch Parliamentary Election Study. The

fieldwork was carried out by Statistics Netherlands. It used a true (two-stage)

probability sample. Respondents were interviewed face-to-face (using CAPI). It is

clear that the DPES outperformed the online polls.

Probability sampling has the additional advantage of providing protection

against certain groups in the population attempting to manipulate the outcomes of

the survey. This may typically play a role in opinion polls. Self-selection does not

have this safeguard. An example of this effect could be observed in the election of the

2005 Book of the Year award (Dutch: NS Publieksprijs), a high-profile literary prize.

Thewinning bookwas determined bymeans of a poll on aWeb site. People could vote

for one of the nominated books or mention another book of their choice. More than

90,000 people participated in the survey. The winner turned out to be the new

interconfessional Bible translation launched by The Netherlands and Flanders

Bible Societies. Although this book was not nominated, an overwhelming majority

of respondents (72%)voted it. Thiswas due to a campaign launched by (amongothers)

Bible societies, aChristian broadcaster andChristian newspaper.Although thiswas all

completely within the rules of the contest, the group of voters could clearly not be

considered representative of the Dutch population.

11.3 THE THEORETICAL FRAMEWORK

11.3.1 The Internet Population

Let the target population of the survey consist of N identifiable elements, which are

labeled 1, 2, . . .,N.Associatedwith each elementk is avalueYkof the target variableY.

Table 11.3 Dutch Parliamentary Elections 2006: Outcomes and the Results

of Various Opinion Surveys

Election

Result

Politieke

Barometer Peil.nl De Stemming

DPES

2006

Sample size 1000 2500 2000 2600

Seats in Parliament

CDA (Christian democrats) 41 41 42 41 41

PvdA (social democrats) 33 37 38 31 32

VVD (liberals) 22 23 22 21 22

SP (socialists) 25 23 23 32 26

GL (green party) 7 7 8 5 7

D66 (liberal democrats) 3 3 2 1 3

ChristenUnie (Christian) 6 6 6 8 6

SGP (Christian) 2 2 2 1 2

PvdD (animal party) 2 2 1 2 2

PvdV (conservative) 9 4 5 6 8

Other parties 0 2 1 2 1

Mean absolute difference 1.27 1.45 2.00 0.36
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The aim of the Web survey is assumed to be an estimation of the population mean

�Y ¼ 1

N

XN
k¼1

Yk ð11:1Þ

of the target variable Y.

The population U is divided into two subpopulations: UI of elements having an

access to Internet andUNI of elements not having an access to the Internet. Associated

with each element k is an indicator Ik, where Ik¼ 1 if element k has access to Internet

(and thus is an element of subpopulationUI), and Ik¼ 0 otherwise. The subpopulation

UI will be called the Internet population and UNI is the non-Internet population. Let

NI ¼
XN
k¼1

Ik ð11:2Þ

denote the size of subpopulationUI. Likewise, NNI denotes the size of the subpopula-

tion UNI, where NI þ NNI¼N.

Themeanof the target variable for the elements in the Internet population is equal to

�Y I ¼ 1

NI

XN
k¼1

IkYk: ð11:3Þ

Likewise, the mean of the target variable for the non-Internet population is

denoted by

�YNI ¼ 1

NNI

XN
k¼1

ð1�IkÞYk: ð11:4Þ

11.3.2 A Random Sample from the Internet Population

Thefirst situation to consider for anonline survey is themoreor less ideal case inwhich

it is possible to select a random sample without replacement from the Internet

population. This would require a sampling frame listing all elements with an access

to Internet. No such list exists, but there are ways to get close to such a situation. One

way to do this is to select a random sample from a larger sampling frame (e.g., a

population or address register), approach the selected people in a classical way (by

mail, telephone, or face-to-face), and filter out only those people having an access to

Internet.Next, selectedpeople are providedwith an Internet addresswhere theycanfill

in the questionnaire form. It is clear that initially such registers suffer from over-

coverage, butwith this approach every element in the Internet populationhas apositive

and known probability of being selected.

A random sample selected without replacement from the Internet population is

represented by a series

a1; a2; . . . ; aN ð11:5Þ
ofN indicators, where the kth indicator ak assumes the value 1 if element k is selected,

otherwise it assumes the value 0, for k¼ 1, 2, . . ., N. Note that always ak¼ 0 for
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elements k in the non-Internet population. The sample size is denoted by

nI ¼ a1 þ a2 þ � � � þ aN .

The expected valuepk¼E(ak) is the first-order inclusion probability of elementk.

Recall that Horvitz and Thompson (1952) have shown that always an unbiased

estimator of the population mean can be defined if all elements in the population

have known positive probability of being selected. The Horvitz–Thompson estimator

for the mean of the Internet population is defined by

�yHT ¼ 1

NI

XN
k¼1

akIk
Yk

pk

; ð11:6Þ

where by definition Yk/pk¼ 0 for all elements outside the Internet population. In case

of a simple random sample from the Internet population, all first-order inclusion

probabilities are equal to n/NI. Therefore, expression (11.6) reduces to

�yI ¼
1

n

XN
k¼1

akIkYk: ð11:7Þ

This estimator is an unbiased estimator of the mean �Y I of the Internet population

but not necessarily of the mean �Yof the target population. The bias is equal to

Bð�yHTÞ ¼ Eð�yHTÞ��Y ¼ �Y I��Y ¼ NNI

N
ð�Y I��YNIÞ: ð11:8Þ

The magnitude of this bias is determined by two factors. The first factor is the

relative size NNI/N of the subpopulation without Internet. The bias will increase as a

larger proportion of the population does not have access to Internet. The second

factor is the contrast �Y I��YNI between the Internet population and the non-Internet

population. The more the mean of the target variable differs for these two subpopula-

tions, the larger the bias will be.

Presently, the size of the non-Internet population cannot be neglected in The

Netherlands. Figure 11.1 shows that although the percentage of people without

Internet is rapidly decreasing, it is still in the order of 17%.

Furthermore, there are substantial differences between these two subpopulations.

The graphs in Section 11.2 show that specific groups are underrepresented in the

Internet population; for example, the elderly, those with a low level of education,

and ethnicminority groups. So, the conclusion is that generally a random sample from

an Internet population will lead to biased estimates for the parameters of the target

population.

11.3.3 Self-Selection from the Internet Population

For many online surveys no proper random sample is selected from the Internet

population. These surveys rely on self-selection of respondents. Participation requires

that respondents are first aware of the existence of a survey (they have to accidentally

visit the Web site or they have to follow up a banner or an e-mail message). Second,

theyhave tomake the decision tofill in thequestionnaire on the Internet.All thismeans
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that each element k in the Internet population has unknown probability rk of

participating in the survey, for k¼ 1, 2, . . ., NI. The responding elements can be

denoted by a series

R1;R2; . . . ;RN ð11:9Þ
of N indicators, where the kth indicator Rk assumes the value 1 if element k

participates, and otherwise it assumes the value 0, for k¼ 1, 2, . . ., N. Not that
selection without replacement is assumed. The expected value rk¼E(Rk) will be

called the responseprobabilityof elementk. For the sakeof convenience also response

probabilities are introduced for the elements in the non-Internet population. By

definition, the values of all these probabilities are 0.

The realized sample size is equal to

nS ¼
XN
k¼1

Rk: ð11:10Þ

A naive researcher assuming that every element in the Internet population has the

same probability of being selected in the sample will use the sample mean

�yS ¼
1

nS

XN
k¼1

RkYk ð11:11Þ

as an estimator for the population mean. The expected value of this estimator is

approximately equal to

Eð�ySÞ � �Y
* ¼ 1

NI�r

XN
k¼1

rkIkYk; ð11:12Þ

where �r is the mean of all response probabilities in the Internet population (see, for

example, Bethlehem, 1988).

By using an approach similar to Cochran (1977, p. 31), it can be shown that the

variance of the sample mean is approximately equal to

Vð�ySÞ �
1

ðNI�rÞ2
XN
k¼1

rkð1�rkÞðYk��Y
*Þ2: ð11:13Þ

Note that this expression for thevariance does not contain a sample size (because no

fixed size sample is drawn) but the expected sample size NI�r. Not surprisingly, the
variance decreases as the expected sample size increases.

In general, the expected value of the sample mean is not equal to the population

mean of the Internet population. The only situation inwhich the bias vanishes is that in

which all response probabilities in the Internet population are equal. In terms of

nonresponse correction theory, this comes down to missing completely at random

(MCAR). See also Section 8.3 on imputation techniques for item nonresponse and

Section 9.4 on the analysis of unit nonresponse.

Indeed, in case of equal selection probabilities, self-selection does not lead to an

unrepresentative sample because all elements have the same selection probability.
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Similar toBethlehem (1988), it can be shown that the bias of the samplemean 11.11

can be written as

Bð�ySÞ ¼ Eð�ySÞ��Y I � �Y
*��Y I ¼ SrY

�r
¼ RrYSrSY

�r
; ð11:14Þ

in which

SrY ¼ 1

NI

XN
k¼1

Ikðrk�*r ÞðYk��YÞ ð11:15Þ

is the covariance between thevalues of target variable and the response probabilities in

the Internet population, and �r is the average response probability. Furthermore, RrY is

the correlation coefficient between target variable and the response behavior, Sr is the

standard deviation of the response probabilities, and SY is the standard deviation of the

target variable.

The bias of the samplemean (as an estimator of themean of the Internet population)

is determined by the following factors:

. The average response probability. Themore likely people are to participate in the

survey, the higher the average response probability will be, and thus the smaller

the bias will be.

. The relationship between the target variable and response behavior. The higher

the correlation between the values of the target variable and the response

probabilities, the higher the bias will be.

. Thevariation in the response probabilities. Themore these probabilities vary, the

larger the bias will be.

Three situations can be distinguished in which this bias vanishes:

(1) All response probabilities are equal. Again, this is the case in which the self-

selection process can be compared with a simple random sample.

(2) All values of the target variable are equal. This situation is very unlikely to

occur. If this were the case, no survey would be necessary. One observation

would be sufficient.

(3) There is no relationship between target variable and response behavior. It

means participation does not depend on the value of the target variable.

Expression (11.14) for the bias of the estimator can be used to compute an upper

bound for the bias. Given the mean response probability �r, there is a maximum value

that the standard deviation Sr of the response probabilities cannot exceed

Sr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rð1��rÞ

p
: ð11:16Þ

This implies that in the worst case (Sr assumes its maximum value and the

correlation coefficient RrY is equal to either þ 1 or �1), the absolute value of the
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bias will be equal to

jBmaxj ¼ SY

ffiffiffiffiffiffiffiffiffiffi
1

�r
�1

s
: ð11:17Þ

This worst-case value of the bias also applies to the situation in which a probability

sample has been drawn and subsequently nonresponse occurs in the fieldwork.

Therefore, expression (11.17) provides ameans to compare potential biases invarious

survey situations.

For example, regular surveys of Statistics Netherlands have response rates of

around 70%. This means the absolute maximum bias is equal to 0.65� SY. One of the

largestWeb surveys in The Netherlands was 21minuten.nl. This surveywas supposed

to provide answers to questions about important problems in the Dutch society.

Within a period of 6weeks in 2006 about 170,000 people completed the questionnaire

(which took about 21min). As everyone could participate in the survey, the target

population was not defined properly. If it is assumed the target population consists of

all Dutch citizens from the age of 18, the average response probability was 170,000/

12,800,000¼ 0.0133. Hence, the absolute maximum bias is equal to 8.61� SY.

The conclusion is that the bias of the large Web survey can be a factor 13 larger

than the bias of the small probability survey.

In many cases, the objective of the survey is not to estimate the mean of the

Internet population but the mean of the total population, the target population. In this

case, the bias of the sample mean is equal to

Bð�ySÞ ¼ Eð�ySÞ��Y ¼ Eð�ySÞ��Y I þ �Y I��Y ¼ NNI

N
ð�Y I��YNIÞþ Cðr; YÞ

�r
: ð11:18Þ

The bias now consists of two terms: a bias caused by interviewing just the Internet

population instead of the complete target population (undercoverage bias) and a bias

caused by self-selection of respondents in the Internet population (self-selection bias).

Theoretically, it is possible that these two biases compensate one another. If people

without Internet resemble people with Internet who are less inclined to participate,

the combined effects will produce a larger bias. Practical experiences suggest that

thismayoften be the case. For example, supposeY is a variablemeasuring the intensity

of some activity on the Internet (surfing, playing online games). Then, a positive

correlation between Y and response propensities is not unlikely. Also, the mean of Y

for the Internet population will be positive whereas the mean of the non-Internet

population will be 0. So, both bias terms have a positive value.

11.4 CORRECTION BY ADJUSTMENT WEIGHTING

Weighting adjustment is a family of techniques that attempt to improve the quality

of survey estimates by using auxiliary information. Auxiliary information is defined

as a set of variables that have been measured in the survey and for which information

on their population distribution is available. By comparing the population distribution
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of an auxiliary variable with its sample distribution, it can be assessed whether or not

the sample is representative for the population (with respect to this variable). If these

distributions differ considerably, one must conclude that the sample is selective.

To correct this, adjustment weights are computed.Weights are assigned to all records

of observed elements. Estimates of population characteristics can now be obtained

by using theweighted values instead of the unweighted values.Weighting adjustment

used to correct surveys that are affected by nonresponse has been described in

Chapter 10 (see also Bethlehem, 2002).

This section explores the possibility of reducing the bias of online survey estimates.

The usefulness of adjustment weighting is described separately for undercoverage and

self-selection.Section11.4.1 showshowpoststratificationmay reduceanundercoverage

bias and Section 11.4.2 is about poststratification to reduce the self-selection bias.

11.4.1 Poststratification to Correct for Undercoverage

Poststratification is a well-known and often-used weighting adjustment method. It is

typically used to correct the negative effects of nonresponse. It is now explored

whether poststratification can also successfully reduce the bias caused by

undercoverage.

To carry out poststratification, one or more qualitative auxiliary variables are

needed. Here, only one such variable is considered. The situation for more variables

is not essentially different. Suppose there is an auxiliary variable X having L

categories. So it divides the target population into L strata. The strata are denoted

by the subsets U1, U2, . . ., UL of the population U. The number of target population

elements in stratum Uh is denoted by Nh, for h¼ 1, 2, . . ., L. The population size N is

equal to N ¼ N1 þN2 þ � � � þNL. This is the population information assumed to be

available.

Suppose a sample of size nI is selected from the Internet population. If nh denotes

the number of sample elements in stratum h, then nI ¼ n1 þ n2 þ � � � þ nL.

The values of the nh are the result of a random selection process, so they are random

variables. Note that since the sample is selected from the Internet population,

only elements in the substrata UI\Uh are observed (for h¼ 1, 2, . . ., L).
Poststratification assigns identical adjustment weights to all elements in the same

stratum. The weight wk for an element k in stratum h is equal to

wk ¼ Nh=N

nh=nI
: ð11:19Þ

The simple sample mean

�yI ¼
1

nI

XN
k¼1

akIkYk ð11:20Þ

is now replaced by the weighted sample mean

�yI;PS ¼ 1

nI

XN
k¼1

akwkIkYk: ð11:21Þ
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Substituting theweights andworking out this expression leads to the poststratifica-

tion estimator

�yI;PS ¼
1

N

XL
h¼1

Nh�y
ðhÞ
I ¼

XL
h¼1

Wh�y
ðhÞ
I ; ð11:22Þ

where�y
ðhÞ
I is the samplemean in stratum h andWh¼Nh/N is the relative size of stratum

h. The expected value of this poststratification estimator is equal to

Eð�yI;PSÞ ¼
1

N

XL
h¼1

NhEð�yðhÞI Þ ¼
XL
h¼1

Wh
�Y
ðhÞ
I ¼ ~YI ; ð11:23Þ

where �Y
ðhÞ
I is the mean of the target variable in stratum h of the Internet population.

Generally, this meanwill not be equal to themean �Y
ðhÞ

of the target variable in stratum

h of the target population. The bias of this estimator is equal to

Bð�yI;PSÞ ¼ Eð�yI;PSÞ��Y ¼ ~Y I��Y ¼
XL
h¼1

Wh
�Y
ðhÞ
I ��Y

ðhÞ� �
¼
XL
h¼1

Wh

NNI;h

Nh

�Y
ðhÞ
I ��Y

ðhÞ
NI

� �
;

ð11:24Þ
where NNI,h is the number of elements in stratum h of the non-Internet population.

The bias will be small if there is (on average) no difference between elements with

and without Internet within the strata. This is the case if there is a strong relationship

between the target variable Y and the stratification variable X. The variation in the

values of Y manifests itself between strata but not within strata. In other words, the

strata are homogeneous with respect to the target variable. In nonresponse correction

terminology, this situation comes down to missing at random (MAR).

It can be concluded that the application of poststratification will successfully

reduce the bias of the estimator if proper auxiliary variables can be found. Such

variables should satisfy three conditions:

. They have to be measured in the survey.

. Their population distribution (N1, N2, . . ., NL) must be known.

. They must be strongly correlated with all target variables.

Unfortunately, such variables are not very often available or there is only a weak

correlation.

The variance of the poststratification estimator is equal to

Vð�yPSÞ ¼
XL
h¼1

W2
hVð�yðhÞÞ: ð11:25Þ

Cochran (1977) shows that in the case of a simple random sampling from the

complete population, this expression is equal to

Vð�yPSÞ ¼
1�f

n

XL
h¼1

WhS
2
h þ

1

n2

XL
h¼1

ð1�WhÞS2h; ð11:26Þ
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where f¼ n/N and S2h is the variance in stratum h. If the strata are homogeneous

with respect to Y, the variance of estimator will be small.

In case of simple random sampling from the Internet population, the variance

of the estimator 11.7 becomes

Vð�yI;PSÞ ¼
XL
h¼1

W2
h

1

nIWI;h
þ 1�WI;h

ðnIWI;hÞ2
� 1

NI;h

 !
S2I;h; ð11:27Þ

where NI,h is the size of stratum h in the Internet population, WI,h¼NI,h/NI and S2I;h
is the variance in stratum h of the Internet population.

11.4.2 Poststratification to Correct for Self-Selection

It is now explored whether poststratification can also successfully reduce

the bias caused by self-selection. Poststratification requires auxiliary variables.

The population of these auxiliary variables must be known. For a probability sample

in which nonresponse has occurred, it is also possible to use the distribution of

the auxiliary variables in the complete sample instead of their population distribution.

Such information can sometimes be retrieved from the sampling frame. This situation

does not apply to self-selection samples as there is no sampling frame.

Suppose a self-selection sample is selected from the Internet population. The total

sample size is denoted by nS. If nh denotes the number of respondents in stratum h,

thennS ¼ n1 þ n2 þ � � � þ nL. Thevaluesof thenhare the result of aPoisson sampling

process, so they are random variables.

Poststratification assigns identical adjustment weights to all elements in the same

stratum. The weight wk for a respondent k in stratum h is equal to

wk ¼ Nh=N

nh=nS
: ð11:28Þ

The simple sample mean

�y ¼ 1

nS

XN
k¼1

RkYk ð11:29Þ

is now replaced by the weighted sample mean

�yPS ¼ 1

nS

XN
k¼1

wkRkYk: ð11:30Þ

Substituting theweights andworking out this expression leads to the poststratifica-

tion estimator

�yPS ¼ 1

N

XL
h¼1

Nh�yh ¼
XL
h¼1

Wh�yh; ð11:31Þ

where�yh is the samplemean in stratumhandWh¼Nh/N is the relative sizeof stratumh.
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The expected value of this poststratification estimator is equal to

Eð�yPSÞ ¼
1

N

XL
h¼1

NhEð�yhÞ ¼
XL
h¼1

Wh
�Y
*
h ¼ ~Y

*
; ð11:32Þ

where

�Y
*
h ¼ 1

NI;h

XNh

k¼1

rk;h
�rh

Yk;h ð11:33Þ

is theweighted mean of the target variable in stratum h. The subscripts k, h denote the

kth element in stratum h, and �rh is the average response probability in stratum h.

Expression 11.33 is the analogue of expression 11.12, but now computed for

stratum h. Generally, this mean will not be equal to the mean of the target variable in

stratum h of the target population. The bias of this estimator is equal to

Bð�yPSÞ ¼ Eð�yPSÞ��Y ¼ ~Y
*��Y ¼

XL
h¼1

Whð�Y*
h��YhÞ ¼

XL
h¼1

Wh

RrY ;hSr;hSY ;h

�rh
; ð11:34Þ

where the subscript h indicates that the respective quantities are computed just for

stratum h and not for the complete population.

This bias will be small if

. the response propensities are similar within strata;

. the values of the target variable are similar within strata;

. there is no correlation between response behavior and the target variable within

strata.

These conditions can be realized if there is a strong relationship between the target

variable Y and the stratification variable X. Then the variation in the values of Y

manifests itself between strata but not within strata. In other words, the strata are

homogeneous with respect to the target variable. Also, if the strata are homogeneous

with respect to the response probabilities, the bias will be reduced. In nonresponse

correction terminology, this situation comes down to missing at random (MAR).

It can be concluded that the application of poststratification will successfully

reduce the bias of the estimator if proper auxiliary variables can be found. Such

variablesmust have beenmeasured in the survey, their population distributionmust be

known, and theymust produce homogeneous strata. Unfortunately, such variables are

rarely available.

In the case of a self-selectionWeb survey, thevarianceVð�yhÞof the samplemean in a

stratum is the analogue of variance 11.13 but restricted to observations in that stratum.

Therefore, the variance of the poststratification estimator is approximately equal to

Vð�yPSÞ ¼
XL
h¼1

W2
h

1

ðNI;h�rhÞ2
XN
k2Uh

rkð1�rkÞðYk��Y
*
hÞ2: ð11:35Þ
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This variance is small if the strata are homogeneous with respect to the target

variable. So, a strong correlation between the target variable Y and the stratification

variable X will reduce both the bias and the variance of the estimator.

11.5 CORRECTION USING A REFERENCE SURVEY

Poststratification can be an effective correction technique provided auxiliary variables

that have a strong correlation with the target variables of the survey are available.

If suchvariables are not available, itmight be considered to conduct a reference survey.

This reference survey is based on a small probability sample, where data collection

takes place with a mode different from the Web, for example, computer-assisted

personal interviewing, with laptops or computer-assisted telephone interviewing.

The reference survey approach has been applied by several market research organiza-

tions (see B€orsch-Supan et al., 2004; Duffy et al., 2005).

Under the assumption of no nonresponse, or ignorable nonresponse, this reference

surveywill produceunbiasedestimatesofquantities that havealsobeenmeasured in the

online survey.Unbiasedestimates for the target variablecanbecomputed, butdue to the

small sample size, these estimateswill have a substantial variance. The question is now

whether estimates can be improved by combining the large sample size of the online

survey with the unbiasedness of the reference survey in improving estimates.

Section 11.5.1 explores the use of a reference survey to correct an undercoverage

bias. Section 11.5.2 does the same for the self-selection bias.

11.5.1 Reducing the Undercoverage Bias with a Reference Survey

It is assumed that one qualitative auxiliary variable is observed both in the online

survey and the reference survey, and that this variable has a strong correlation with

the target variable of the survey.Then, a formofpoststratification canbe appliedwhere

the stratummeans are estimated using online survey data and the stratum weights are

estimated using the reference survey data. This leads to the poststratification estimator

�yI;RS ¼
XL
h¼1

mh

m
�y
ðhÞ
I ; ð11:36Þ

where�y
ðhÞ
I is the online survey-based estimate for themean of stratum h of the Internet

population (for h¼ 1, 2, . . ., L) and mh/m is the relative sample size in stratum h as

estimated in the reference survey sample (for h¼ 1, 2, . . ., L). Under the conditions
described above, the quantity mh/m is an unbiased estimate of Wh¼Nh/N.

Let I denote the probability distribution for the online survey and let P be the

probability distribution for the reference survey. Then, the expected value of the

poststratification estimator is equal to

Eð�yI;RSÞ ¼ EIEPð�yI;RSjIÞ ¼ EI

XL
h¼1

Nh

N
�y
ðhÞ
I

 !
¼
XL
h¼1

Wh
�Y
ðhÞ
I ¼ ~Y I; ð11:37Þ
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where Wh¼Nh/N is the relative size of stratum h in the target population. So, the

expected value of this estimator is identical to that of the poststratification estima-

tor 11.23. The bias of this estimator is equal to

Bð�yI;RSÞ ¼ Eð�yI;RSÞ��Y ¼ ~Y I��Y ¼
XL
h¼1

Whð�Y ðhÞ
I ��Y

ðhÞÞ ¼
XL
h¼1

Wh

NNI;h

Nh

ð�Y ðhÞ
I ��Y

ðhÞ
NI Þ:

ð11:38Þ
If a strong relationship exists between the target variable and the auxiliary variable

used for computing the weights, there is little or no variation of the target variable

within the strata. This implies that if the stratummeans for the Internet population and

for the target population do not differ much, this results in a small bias. So, using a

reference survey with proper auxiliary variables can substantially reduce the bias of

online survey estimates.

Note that the expression for the bias of the reference surveyestimator is equal to that

of the poststratification estimator. An interesting aspect of the reference survey

approach is that any variable can be used for adjustment weighting as long as it is

measured in both surveys. For example, some market research organizations use

“webographic” or “psychographic” variables that divide the population in “mentality

groups.” People in the same groups have more or less the same level of motivation

and interest to participate in such surveys. Deployment of effective weighting

variables resembles the MAR situation. This implies that within weighting strata

there is no relationship between participating in an online survey and the target

variables of the survey.

Bethlehem (2007) shows that if a reference survey is used, the variance of the

poststratification estimator is equal to

Vð�yI;RSÞ ¼
1

m

XL
h¼1

Whð�YðhÞ
I �~Y IÞ2 þ 1

m

XL
h¼1

Whð1�WhÞVð�yðhÞI Þþ
XL
h¼1

W2
hVð�yðhÞI Þ:

ð11:39Þ
The quantity �y

ðhÞ
I is measured in the online survey. Therefore, its variance Vð�yðhÞI Þ

will be of the order 1/nI. This means that the first term in the variance of the

poststratification estimator will be of the order 1/m, the second term of order

1/mnI, and the third term of order 1/nI. Since nI will generally be much larger than

m in practical situations, the first term in the variancewill dominate, that is, the (small)

size of the reference survey will determine the accuracy of the estimates. So, the large

number of observations in the online survey does not help to produce accurate

estimates. One could say that the reference survey approach reduces the bias of

estimates at the cost of a higher variance.

11.5.2 Reducing the Self-Selection Bias with a Reference Survey

This section explores the effects of using a reference survey to reduce the bias in a self-

selection survey. Again, it is assumed that one qualitative auxiliary variable is

observed both in the Web survey and the reference survey, and that this variable
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has a strong correlation with the target variable of the survey. A form of poststratifica-

tion can be applied where the stratum means are estimated using Web survey data

and the stratumweights are estimated using the reference survey data. This leads to the

poststratification estimator

�yRS ¼
XL
h¼1

mh

m
�yh; ð11:40Þ

where �yh is the Web survey-based estimate for the mean of stratum h of the target

population (for h¼ 1, 2, . . ., L) and mh/m is the estimated relative sample size

in stratum h using the reference survey (for h¼ 1, 2, . . ., L). Under the conditions

described above, the quantity mh/m is an unbiased estimate of Wh¼Nh/N.

Let I denote the probability distribution for the Web survey and let P be the

probability distribution for the reference survey. Then the expected value of the

poststratification estimator is equal to

Eð�yRSÞ ¼ EIEPð�yRSjm1;m2; . . . ;mLÞ ¼ EI

XL
h¼1

Nh

N
�yh

 !
¼
XL
h¼1

Wh
�Y
*
h ¼ ~Y

*
:

ð11:41Þ
So, the expected value of this estimator is identical to that of the poststratification

estimator 11.32. The bias of this estimator is equal to

Bð�yRSÞ ¼ Eð�yRSÞ��Y ¼ ~Y
*��Y ¼

XL
h¼1

Whð�Y*
h��YhÞ ¼

XL
h¼1

Wh

RrY ;hSr;hSY ;h

�rh
:

ð11:42Þ
A strong relationship between the target variable and the auxiliary variable used

for computing theweightsmeans that there is little or novariation of the target variable

within the strata. Consequently, the correlation between target variable and response

behavior will be small, and the same applies to the standard deviation of the target

variable. So, using a reference survey with the proper auxiliary variables can

substantially reduce the bias of Web survey estimates.

Bethlehem (2008) shows that if a reference survey is used, the variance of the

poststratification estimator is equal to

Vð�yRSÞ ¼
1

m

XL
h¼1

Whð�Y*
h�~Y

*Þ2 þ 1

m

XL
h¼1

Whð1�WhÞVð�yhÞþ
XL
h¼1

W2
hVð�yhÞ: ð11:43Þ

The quantity �yh is measured in the online survey. Its variance ð�yh) will be at most of

the order 1=EðnSÞ ¼ 1=ðN�rÞ. This means that the first term in the variance of the

poststratification estimator will be of the order 1/m, the second term will be of order

1/(mE(nS)), and the third term of order 1/E(nS). Since E(nS) will generally be much

larger thanm in practical situations, the first term in the variancewill dominate, that is,

the (small) size of the reference survey will determine the accuracy of the estimates.
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Moreover, since strata preferably are based on groups of people with the same

psychographic characteristics, and target variables may very well be related to the

psychographic variables, the stratum means �Y
*
h may vary substantially. This also

contributes to a large value of the first variance component.

The conclusion is that a large number of observations in the online survey do not

help toproduceaccurate estimates.The reference surveyapproachmay reduce thebias

of estimates, but it does so at the cost of a higher variance.

The effectiveness of a survey design is sometimes also indicated by means of the

effective sample size. This is the sample size of a simple random sample of elements

that would produce an estimator with the same precision. Using a reference survey

implies that the effective sample size ismuch lower than the sizeof theWebsurvey.See

Section 11.9 for an example showing this effect.

11.6 SAMPLING THE NON-INTERNET POPULATION

The fundamental problem of online surveys is that persons without Internet are

excluded from the survey. This problem could be solved by selecting a stratified

sample. The target population is assumed to consist of two strata: the Internet

population UI of size NI and the non-Internet population UNI of size NNI.

To be able to compute an unbiased estimate, a simple random sample must be

selected from both strata. The online survey provides the data about the Internet

stratum. If this is a random sample with equal probabilities, the sample mean

�yI ¼
1

n

XN
k¼1

akIkYk ð11:44Þ

is an unbiased estimator of the mean of the Internet population.

Now suppose a random sample (with equal probabilities) of sizem is selected from

the non-Internet stratum. Of course, there is no sampling frame for this population.

This problem could be avoided by selecting a sample from the complete target

population (a reference survey) and by using only people without Internet access.

Selected people with Internet access can be added to the large online sample, but this

will have no substantial effect on estimators. The sample mean of the non-Internet

sample is denoted by

�yNI ¼
1

m

XN
k¼1

bkð1�IkÞYk; ð11:45Þ

where the indicator bk denotes whether or not element k is selected in the reference

survey, and

m ¼
XN
k¼1

bkð1�IkÞ: ð11:46Þ
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The stratification estimator is now defined by

�yST ¼ NI

N
�yI þ

NNI

N
�yNI: ð11:47Þ

This is an unbiased estimator for the mean of the target population. Application of

this estimator assumes the sizeNI of the Internet population and the sizeNNI of the non-

Internet population to be known. The variance of the estimator is equal to

Vð�ySTÞ ¼
NI

N

� �2

Vð�yIÞþ
NNI

N

� �2

Vð�yNIÞ: ð11:48Þ

The variance of the sample mean in the Internet stratum is of order 1/n and the

variance in the non-Internet stratum is of order 1/m. Sincemwill bemuch smaller than

n in practical situation, and the relative sizes of the Internet population and the non-

Internet population do not differ that much, the second term will determine the

magnitude of the variance. So the advantages of the large sample size of the online

survey are for a great part lost by the bias correction.

Note that the sizes of the Internet and non-Internet population are usually unknown.

In this case, they have to be estimated. This can, for example, be done using data from

the reference survey.

11.7 PROPENSITY WEIGHTING

Propensity weighting is used by several market research organizations to correct a

possible bias in their online survey (see B€orsch-Supan et al., 2004; Duffy et al., 2005).
The original idea behind propensity weighting goes back to Rosenbaum and Rubin

(1983,1984). They developed a technique for comparing two populations. They

attempted to make the two populations comparable by simultaneously controlling

for all variables that were thought to explain the differences. Propensityweighting has

already been described in Section 10.7 as a technique to reduce the nonresponse bias.

In the case of an online survey, there are also twopopulations: thosewho participate

in the online survey and those who do not participate.

Propensity scores are obtained bymodeling a variable that indicateswhether or not

someone participates in the survey. Usually, a logistic regression model is used where

the indicator variable is the dependent variable and attitudinal variables are the

explanatory variables. These attitudinal variables are assumed to explain why

someone participates or not. Fitting the logistic regression model comes down to

estimating the probability (propensity) of participation, given the values of the

explanatory variables.

Application of propensity weighting assumes some kind of random process

determining whether or not someone participates in the online survey. Each element

k in the population has a certain, unknown probability rk of participating, for k¼ 1, 2,

. . ., N. Let R1, R2, . . ., RN denote indicator variables, where Rk¼ 1 if person k

participates in the survey, and Rk¼ 0 otherwise. Consequently, P(Rk¼ 1)¼ rk.

PROPENSITY WEIGHTING 297



The propensity score r(X) is the conditional probability that a personwith observed
characteristics X participates, that is,

rðXÞ ¼ PðR ¼ 1jXÞ: ð11:49Þ
It is assumed that within the strata defined by the values of the observed char-

acteristics X, all persons have the same participation propensity. This is themissing at

random assumption. The propensity score is often modeled using a logit model:

log
rðXkÞ

1�rðXkÞ
� �

¼ aþb0Xk: ð11:50Þ

Themodel is fitted usingMaximumLikelihood estimation.Once propensity scores

have been estimated, they are used to stratify the population. Each stratum consists

of elements with (approximately) the same propensity scores. If indeed all elements

within a stratum have the same response propensity, there will be no bias if just the

elements in the Internet population are used for estimation purposes. Cochran (1968)

claims that five strata are usually sufficient to remove a large part of the bias. The

market research agency Harris Interactive was among the first to apply propensity

score weighting in online surveys (see Terhanian et al., 2001).

To be able to apply propensity scoreweighting, two conditions have to be fulfilled.

The first condition is that proper auxiliary variables must be available. These are

variables that are capable of explaining whether or not someone participates in the

online survey. Variables often used measure general attitudes and behavior. They are

sometimes referred to as webographic or psychographic variables. Schonlau et al.

(2004) mention as examples “Do you often feel alone?” and “On how many separate

occasions did you watch news programs on TV during the past 30 days?”

The second condition for this type of adjustment weighting is that the population

distribution of the webographic variables must be available. This is generally not the

case. A possible solution to this problem is to carry out an additional reference survey.

To allow unbiased estimation of the population distribution, the reference surveymust

be based on a true probability sample from the entire target population.

Such a reference survey can be small in terms of the number of questions asked.

It can be limited to the webographic questions. Preferably, the sample size of the

reference survey should be large to allow precise estimation. A small sample size

results in large standard errors of estimates. This is similar to the situations described

in Section 11.5.

Schonlau et al. (2004) describe the reference survey of Harris Interactive.

This is a CATI survey, using random digit dialing. This reference survey is used to

adjust several online surveys. Schonlau et al. (2003) stress that the success of this

approach depends on two assumptions: (1) the webographic variables are capable

of explaining the difference between the online survey respondents and the other

persons in the target population and (2) the reference survey does not suffer from

nonignorable nonresponse. In practical situations, it will not be easy to satisfy these

conditions.

It should be noted that from a theoretical point of viewpropensityweighting should

be sufficient to remove the bias.However, in practice the propensity scorevariablewill
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often be combined with other (demographic) variables in a more extended weighting

procedure (see Schonlau et al., 2004).

11.8 SIMULATING THE EFFECTS OF UNDERCOVERAGE

The possible consequences of undercoverage and the effectiveness of correction

techniques are now illustrated using a simulation experiment. A fictitious population

was constructed. For this population, voting intentions for the next general elections

were simulated and analyzed.

The relationship between variables involved was such that it could resemble more

or less a real-life situation. With respect to the Internet population, both missing at

random (MAR) and not missing at random (NMAR) were introduced. The character-

istics of estimators (before and after correction) were computed based on a large

number of simulations.

First, the distribution of the estimator was determined in the ideal situation of a

simple random sample from the target population. Then, it was explored how the

characteristics of the estimator change if a simple random sample is selected just from

the Internet population. Finally, the affects of weighting (poststratification and

reference survey) were analyzed.

A fictitious population of 30,000 individuals was constructed. There were five

variables:

. Age in Three Categories. Young (with probability 0.40), Middle aged (with

probability 0.35), and Old (with probability 0.25).

. Ethnic Origin in Two Categories. Native (with probability 0.85) and Nonnative

(with probability 0.15).

. Having Access to Internet with Two Categories Yes and No. The probability of

having access to Internet depended on the two variables Age and Ethnic origin.

For natives, the probabilities were 0.90 (for Young), 0.70 (for Middle aged), and

0.50 (for Old). So, Internet access decreases with age. For nonnatives, these

probabilities were 0.20 (for Young), 0.10 (for Middle aged), and 0.00 (for Old).

These probabilities reflect the much lower Internet access among nonnatives.

. Vote for the National Elderly Party. The probability to vote for this party

depended on age. Probabilities were 0.00 (for Young), 0.40 (for Middle aged),

and 0.60 (for Old).

. Vote for the New Internet Party.The probability to vote for this party depended on

both age and having Internet. For peoplewith Internet, the probabilities were 0.80

(forYoung), 0.40(forMiddleaged), and0.20(forOld).Forpeoplewithout Internet,

all probabilities were equal to 0.10. So, for people with Internet voting decreases

with age. Voting probability is low for people without Internet (Fig. 11.5).

In the experiment, the variable NEP (National Elderly Party) suffered from

missingness due to missing at random. There is a direct relationship between voting
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for this party and age, and also there is a direct relationship between age and having

Internet access. This will cause estimates to be biased. It should be possible to correct

this bias by weighting using the variable age.

The variable NIP (New Internet Party) suffers from not missing at random. There

exists (among other relationships) a direct relationship between voting for this party

and having Internet access. Estimates will be biased, and there is no correction

possible.

The distribution of estimators for the percentage of voters for both parties was

determined in various situations by repeating the selection of the sample 800 times. In

all cases, the sample size was n¼ 2000.

Figure 11.6 contains the results for the variable NEP (vote for the National Elderly

Party). The upper-left graph shows the distribution of the estimator for simple random

samples from the complete target population. The vertical line denotes the population

value to be estimated (25.4%). The estimator has a symmetric distribution around this

value. This clearly indicates that the estimator is unbiased.

The upper-right graph shows what happens if samples are not selected from the

complete target population, but just from the Internet population. The shape of the

distribution remains the same, but the distribution as awhole has shifted to the left. All

values of the estimator are systematically too low. The expected value of the estimator

is only 20.3%.The estimator is biased. The explanationof this bias is simple: relatively

few elderly have Internet access. Therefore, they are underrepresented in samples

selected from the Internet. These are typically people who will vote for the NEP.

The lower left graph in Fig. 11.6 shows the distribution of the estimator in case of

poststratification by age. The bias is removed. This was possible because this is a case

of missing at random.

Poststratification by age can be applied only if the distribution of age in the

population is known. If this is not the case, one could consider conducting a small

(m¼ 100) reference survey, in which this population distribution is estimated unbi-

ased. The lower right graph in Fig. 11.6 shows what happens in this case. The bias is

removed but at the cost of a substantial increase in variance.

Figure 11.7 shows the results for the variable NIP (vote for theNew Internet Party).

Theupper left graph shows the distribution of the estimator for simple randomsamples

from the complete target population. The vertical line denotes the population value to

be estimated (39.5%). Since the estimator has a symmetric distribution around this

value, it is clear that the estimator is unbiased.

Age Internet

Ethnic origin

NIP 

Age Internet

Ethnic origin

NEP

Figure 11.5 Relationships between variables.
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The upper right graph shows what happens if samples are not selected from the

complete target population, but just from the Internet population. The distribution has

shifted to the right considerably. All values of the estimator are systematically too

high. The expected value of the estimator is now 56.5%. The estimator is severally

biased. The explanation of this bias is straightforward: voters for the NIP are

overrepresented.

The lower left graph in Fig. 11.7 shows the effect of poststratification by age.Only a

small part of the bias is removed. This is not surprising as there is a direct relationship

between voting for the NIP and having Internet access. This is a case of not missing at

random.

Also in this case, one can consider conducting a small reference survey if the

population distribution of age is not available. The lower right graph inFig. 11.7 shows

what happens in this case. Only a small part of the bias is removed and at the same time

there is a substantial increase in variance.

11.9 SIMULATING THE EFFECTS OF SELF-SELECTION

The possible consequences of self-selection and the effectiveness of correction

techniques are also illustrated using a simulation experiment. A fictitious population

Figure 11.6 Results of the simulations for variable NEP.
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was constructed. Again, voting intentions for the next general elections were

simulated and analyzed. Relationships between variables involved were modeled

somewhat stronger than they probably would be in a real-life situation. Effects are

therefore more pronounced, making it clearer what the pitfalls are.

The characteristics of estimators (before and after correction) were computed

based on a large number of simulations. First, the distribution of the estimator was

determined in the ideal situationof a simple randomsample from the target population.

Then, it was explored how the characteristics of the estimator change if self-selection

is applied. Finally, the effects of weighting (poststratification and reference survey)

were analyzed.

A fictitious population of 100,000 individuals was constructed. There were five

variables:

. The variable Internet indicates how active a person is on the Internet. There are

two categories: very active users andmore passive users. The population consists

of 1% of active users and 99% of passive users. Active users have a response

probability of 0.99 and passive users have a response probability of 0.01.

. The variable Age in three categories young, middle aged, and old. The active

Internet users consist of 60% of young people, of 30% of middle-aged people,

and of 10% of old people. The age distribution for passive Internet users is 40%

Figure 11.7 Results of the simulations for variable NIP.
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young, 35% middle aged, and 25% old. So, typically younger people are more

active Internet users.

. Vote for the NEP. The probability to vote for this party depends only on age.

Probabilities are 0.00 (for Young), 0.30 (for Middle aged), and 0.60 (for Old).

. Vote for the NIP. The probability to vote for this party depends both on the age

and on the use of Internet. The probabilities were 0.80 (for Young), 0.40 (for

Middle aged), and 0.20 (for Old) for active Internet users. The probabilities are

all equal to 0.10 for passive Internet users. So, for active users voting decreases

with age. Voting probability is always low for passive users.

Figure 11.8 shows the relationships between the variables in a graphical way.

The variable NEP suffers from missingness due to MAR. There is direct relationship

between voting for this party and age, and also there is a direct relationship between

age and propensity to participate in the survey. This will cause estimates to be biased.

It should be possible to correct this bias by weighting using the variable age.

The variable NIP suffers from NMAR. There exists a direct relationship between

voting for this party and response probability. Estimates will be biased, and there is no

correction possible.

The distribution of estimators for the percentage of voters for both parties was

determined in various situations by repeating the selection of the sample 500 times.

Theaverage response probability in the population is 0.01971.Therefore, the expected

sample size in a self-selection survey is equal to 1971.

Figure 11.9 shows the results for the variable NEP (votes for National Elderly

Party). The upper left graph shows the distribution of the estimator for simple random

samples of size 1971 from the target population. The vertical line denotes the

population value to be estimated (25.6%). The estimator has a symmetric distribution

around this value. This clearly indicates that the estimator is unbiased.

The upper right graph showswhat happens if samples are selected bymeans of self-

selection. The shape of the distribution remains more or less the same, but

the distribution as a whole has shifted to the left. All values of the estimator are

systematically too low. The expected value of the estimator is only 20.5%. The

estimator is biased. The explanation of this bias is simple: relatively few elderly

are active Internet users. Therefore, they are underrepresented in the samples. These

are typically people who will vote for the NEP.

The lower left graph in Fig. 11.9 shows the distribution of the estimator in case of

poststratification by age. The bias is removed.Weighting works because this is a case

of missing at random.

Age Internet

NIP 

Age Internet 

NEP

Figure 11.8 Relationships between variables.
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Poststratification by age can be applied only if the distribution of age in the

population is known. If this is not the case, one could consider conducting a small

(m¼ 100) reference survey, in which this population distribution is estimated unbi-

ased. The lower right graph in Fig. 11.9 shows what happens in this case. The bias is

removed but at the cost of a substantial increase in variance. The variance is equal to

that of a simple random sample of size of 290. So, the effective sample size is equal to

290. Apparently, an online survey of size 2000 is not more precise than a simple

random sample of size 290 if a reference survey is used to correct the bias caused by

self-selection.

Figure 11.10 shows the results for the variable NIP (vote for New Internet Party).

Theupper left graph shows the distribution of the estimator for simple randomsamples

of size 1971 from the target population. The vertical line denotes the population value

to be estimated (10.5%). Since the estimator has a symmetric distribution around this

value, it is clear that the estimator is unbiased.

The upper right graph showswhat happens if samples are selected bymeans of self-

selection. The distribution has shifted to the right considerably. All values of the

estimator are systematically too high. The expected value of the estimator is now

35.6%. The estimator is severally biased. The explanation of this bias is straightfor-

ward: voters for the NIP are overrepresented in the self-selection samples.

Figure 11.9 Results of the simulations for variable NEP.
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The lower left graph in Fig. 11.10 shows the effect of poststratification by age.Only

a small part of the bias is removed.Weighting is not successful. This is not surprising as

there is a direct relationship between voting for the NIP and use of Internet. This is a

case of NMAR.

Also in this case, one can consider conducting a small reference survey if the

population distribution of age is not available. The lower right graph in Fig. 11.10

shows what happens in this case. Only a small part of the bias is removed, and at the

same time there is a substantial increase in variance. The variance is equal to that of a

simple random sample of size of 288. So, the effective sample size is 288. Apparently,

an online survey of size 2000 is not more precise than a simple random sample of size

288. Moreover, the bias is not removed.

11.10 ABOUT THE USE OF ONLINE SURVEYS

This chapter discussed some of the methodological problems of online surveys. The

underlying question is whether an online survey can be used as a data collection

instrument for making valid inference about a target population. Costs and timeliness

seem to be important arguments in favor of online survey. However, there are

methodological challenges with respect to the properties of estimates.

Figure 11.10 Results of the simulations for variable NIP.
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Selecting a probability sample requires a sampling frame. The Internet is not an

ideal sampling frame. It suffers from undercoverage. Certain groups in the population

are underrepresented, for example, the elderly, low educated, and nonnatives.

Therefore, estimates will often be biased and correction techniques are required to

remove this bias. Unfortunately, correction techniques will be effective only if not

having access to the Internet can be seen as missing at random.

It should be noted that other modes of data collection also have their coverage

problems. For example, a CATI survey requires a sampling frame consisting of

telephone numbers. Statistics Netherlands uses only fixed-line listed telephone

numbers for this, as well as listed mobile numbers. Only between 60 and 70% of

the people in The Netherlands have a listed phone number (see Cobben, 2004). This

implies that only two out of three persons can be reached this way.

The undercoverage problem for CATI surveys will become even more severe over

time. This is due to the popularity of mobile phones and the lack of lists of mobile

phone numbers (see Kuusela, 2003). The situation is improving for surveys using the

Internet as a sampling frame. In many countries, there is a rapid rise in households

having Internet access. For example, the number of households with Internet is now

over 80% in The Netherlands, and it keeps growing. So one might expect that online

survey coverage problems will be less severe in the near future.

Unbiased estimators for population characteristics can be constructed only if all

elements in the population have a known and positive probability of being selected.

This is not always the case for online surveys. Market research agencies in The

Netherlands have carried out an analysis of all their major online panels (see Vonk

et al., 2006). It turned out that most of these panels are based on self-selection of

respondents. The researchers concluded that panel members differ substantially from

other people, and that therefore most of these panels cannot be considered represen-

tative for the population.

Can an online survey be an alternative for a CAPI or CATI survey? Coverage

problemsmay be solved in the future, but there are also other aspects to consider.With

respect to data collection, there is a substantial difference betweenCAPI and CATI on

the one hand and online surveys on the other. Interviewers carry out the fieldwork in

CAPI and CATI surveys. They are important in convincing people to participate in the

survey, and they also can assist in completing the questionnaire. There are no

interviewers in an online survey. It is a self-administered survey. Therefore, quality

of collected data may be lower due to higher nonresponse rates and more errors in

answeringquestions.According toDeLeeuwandCollins (1997) response rates tend to

be higher if interviewers are involved. However, response to sensitive questions is

higher without interviewers. At present, little is known about the quality of the online

survey data compared to CAPI or CATI survey data.

CAPI and CATI are both a form of computer-assisted interviewing. CAI has the

advantage that error checking can be implemented. See also Chapter 7 about data

collection. Answers to questions can be checked for consistency. Errors can be

detected during the interview and therefore corrected during the interview itself. It

has been shown (see Couper et al., 1998) that CAI can improve the quality of the

collected data. The question is nowwhether error checking should be implemented in
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an online survey? What happens when respondents are confronted with error

messages? Maybe they just correct their mistakes, but it may also happen that they

will become annoyed and stop answering questions. There may be a trade-off here

between nonresponse and data quality. Further research should make clear what the

best approach is.

A reference survey is proposed as one way to remove the bias of estimates in an

online survey. One of the advantages of a reference survey is that auxiliary variables

can be used for weighting that are highly correlated with either target variables or

participation probabilities. Therefore, correctionwill be effective.Adisadvantage of a

reference survey is that it results in large standard errors and therefore a small effective

sample size. Soa reference survey reduces thebias at the cost of a loss inprecision.One

attractive characteristic of an online survey is that it is rather easy to collect a large

amount of data. If a reference survey is used, the large sample size of the online survey

does not imply a high precision. So, one may wonder whether it is still worthwhile to

carry out an online survey.

The reference survey only works well if it is a real probability sample without

nonresponse, or with ignorable nonresponse (MCAR). This condition may be hard to

satisfy in practical situations. Almost every survey suffers from nonresponse. If

reference survey estimates are biased due to nonresponse, the online survey bias is

replaced by a reference survey bias. This does not really help to solve the problem.

Reference surveyswill be carried out in amode other thanCAWI. Thismeans there

may bemode effects that have an impact on estimates. Needless to say that a reference

survey will dramatically increase survey costs.

If a reference survey is conducted, stratified estimation may be an option. The

Internet population is one stratumand the non-Internet population is another stratum. In

principle, this results in unbiased estimates. The drawback is that the complete

questionnaire has to be used in the survey of the non-Internet population. If the

reference survey is used just for weighting purposes, only relevant weighting variables

need tobemeasured inboth surveys.This reduces the reference survey in size andcosts,

and also the nonresponsemay be less of a problem if a very short questionnaire is used.

One can say that an online survey based on self-selection and correction by means

of a reference survey is not a reliable and cost-effective data collection instrument.

This does not mean it is completely useless. When given a sound basis, for example,

using probability sampling andmore developed correction techniques, online surveys

hold a promise for producing accurate and reliable information. Thismaymake online

survey an interesting and worthwhile topic for future research.

EXERCISES

11.1 Which of the statements below about an online survey is correct?

a. An online survey always has a higher response rate than other types of

surveys.

b. Due to the large amount of respondents, estimates are always very close to

the true values.
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c. The quality of the results is often lower than those of CAPI or CATI surveys.

d. It is always possible to obtain unbiased estimates by using the

Horvitz–Thompson estimator.

11.2 Why can a reference survey be useful to improve estimates based on data from

an online survey?

a. A reference survey always provided unbiased estimates of population

distributions of auxiliary variables.

b. The estimates after adjustment will be much more precise than the

estimates before adjustment.

c. It is possible to use attitudinal variables for weighting. These variables

suffer less from measurement errors than from factual variables.

d. The researcher can choose the most effective auxiliary variables for

adjustment weighting.

11.3 A researcher wants to estimate the average number of hours per week the adult

inhabitants of Samplonia spend on the Internet? He draws a simple random

sample of Internet users. There is no nonresponse. The sample mean turns out

to be 5 h.

a. Given that only three out of five inhabitants have access to Internet,

compute an estimate of the bias of the sample mean.

b. Compute a better estimate for the average number of hours an inhabitant

spends on the Internet.

11.4 A town council wants to knowwhat percentage of the population is engaged in

some form of voluntary work. Since there is only a limited budget available, it

is decided to conduct an online survey. The target population consists of

1,000,000 persons. Only 70% of these persons have access to the Internet. It

turns out that 10,000 persons participate in the survey. Of these respondents,

60% do some voluntary work.

a. Assuming that the 10,000 respondents are a simple random sample without

replacement from the target population, compute the 95% confidence

interval of the percentage of persons in the population doing voluntarywork.

b. There is a strong suspicion that the survey estimates may be biased because

only people with Internet access can participate. Therefore, a follow-up

survey is conducted among peoplewithout Internet access. It turns out to be

possible to draw a simple random sample of size 100 from this non-Internet

population. The result is that 40% of the respondents in the follow-up

survey do voluntary work.

Compute an improved estimate for the population percentage of people

involved in voluntary work.

c. Compute a new 95% confidence interval of the percentage of persons in the

population doing voluntary work.

d. Compare both confidence intervals and explain any differences.
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11.5 A poll is conducted each year in The Netherlands to elect the best politician of

the year. This poll is a self-selection Web survey. More than 21,000 people

voted in 2006. Participants were also asked for which party they voted at the

last general elections. Part of the results is summarized in the table below.

Vote at Last Elections

Politician CDA VVD SP Other

Jan-Peter Balkenende (CDA) 1980 254 38 218

Jan Marijnissen (SP) 135 97 3006 2080

Rita Verdonk (VVD) 385 1000 183 866

Other politicians 1427 1644 1540 6685

CDA is the party of the Christian democrats, VVD is the liberal party, and

SP is the socialist party. Note that the category Other includes both other

parties and people who did not vote.

a. Compute the percentages of votes for each politician. Determine the rank

order of the three politicians.

b. Due to self-selection, the results will not properly reflect the situation in the

population. Therefore, a weighting adjustment procedure is carried out.

TheCDAobtained 19.4%of the votes in the last general elections, theVVD

got 10.7%, 12.1% voted for the SP, and 57.8% voted for another party or did

not vote at all.

c. Compute adjustment weights for the three parties CDA, VVD, and SP and

the categoryOther. Determine which parties are over- or underrepresented

in the Web survey.

d. Compute a new table with weighted frequencies. Round the frequencies to

integer numbers.

e. Compute weighted percentages of votes for the three politicians. Compare

these percentages with those computed under (a). Explain the differences.
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C H A P T E R 1 2

Analysis and Publication

12.1 ABOUT DATA ANALYSIS

Statistics is a part of science that explains how to set up research, how to collect data,

how to analyze these data, how to interpret the outcomes of the analysis, and how to

publish the results of the analysis. The data are usually obtained by measuring or

observing characteristics of people, objects, and phenomena. Survey research is a part

of statistics in which data are collected by means of asking questions. The measuring

instrument is the survey questionnaire.

Many statistical analysis techniques are available for analysis of the collected data.

Most of these techniques assume a model stating that the data form an independent

identically distributed random sample from some normal distribution. These assump-

tions are almost never satisfied inpractical survey situations.Moreoften, thedirty data

theorem applies. It states that the data come from a dependent sample with unknown

and unequal selection probabilities from a bizarre and unspecified distribution

whereby some values are missing and many other values are subject to substantial

measurement errors.

Analysts of survey data should take into account that their data maybe affected by

measurement errors and nonresponse, that some values may not be observed but

imputed, and that weights have to be used to compensate for a possible nonresponse

bias. Many software packages for statistical data analysis assume the ideal model for

the data, and have no possibilities to account for the effects of dirty data. Therefore,

analysts should bevery careful in their analysis. There are anecdotes about researchers

discovering an interesting structure in the data, which in the end turned out to be the

model used for imputing missing observations.

Survey data analysis will be carried out with some kind of statistical analysis

package. A survey data file has to be prepared for this. Some general characteristics of

such a survey data file are discussed here.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
Copyright � 2009 John Wiley & Sons, Inc.
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Information is collected in a survey by means of asking questions. The questions

correspond to thevariables that have tobemeasured.The answers to thequestions (i.e.,

the values of the variables) are recorded in the form of texts, numbers, and codes. Two

types of variables are distinguished: qualitative variables and quantitative variables. It

is important to also make this distinction in the analysis of the collected data.

Qualitative variables are variables that just divide the elements in groups. Their

values are just labels. Examples of such variables are marital status, ethnic back-

ground, and region of the country. Most computations with these values are not

meaningful. Only frequencies and percentages are relevant. Qualitative variables are

usually measured by means of closed questions.

Quantitative variablesmeasure a size, quantity, or value. Examples are theweight

and length of a person, the profit of a company, and the number of students of a school.

Computations with the values of these variables can bemeaningful. Typical quantities

are totals and averages. Quantitative variables are usually measured by means of

numerical variables.

Many software packages for data analysis require the surveydata to be in the format

of a survey data matrix. This is a table in which each column denotes a variable and

each row represents a record corresponding to an element. For reasons of efficiency,

values of variables are stored in numeric format. This is obvious for quantitative

variables. For qualitative variables, a code number is assigned to each category. These

code numbers are stored instead of the labels of the categories. This requiresmuch less

storage space and moreover problems due to misspelling of labels are avoided.

Table 12.1 shows this approach. It is part of the datamatrixwith data about Samplonia.

Table 12.1 shows the data.But just data aremeaninglesswithout a description of the

data. The description is called metadata. So, there can be no data without metadata.

Software packages for statistical analysis usually have ample facilities for document-

ing the data. It is important to do this properly and extensively, to avoid problemswith

the interpretation of the outcomes of the survey.Metadata are particularly important if

a survey data set is reanalyzed long after the survey has been carried out. Table 12.2

Table 12.1 Part of the Data Matrix for Samplonia

Record District Province Gender Age Employed Income

1 5 2 1 65 2 0

2 6 2 1 36 2 0

3 7 2 2 73 2 0

4 6 2 1 6 2 0

5 3 1 2 33 1 158

6 1 1 2 82 2 0

7 2 1 1 2 2 0

8 1 1 1 32 1 525

9 5 2 2 66 2 0

10 3 1 2 2 2 0

. . . . . . . . . . . . . . . . . . . . .
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contains a simple example of how the metadata of a survey about Samplonia could

look like.

Many survey data sets suffer frommissing values. These “holes” in the data matrix

maybe causedby itemnonresponseorbyerrors in thevalues of variables that couldnot

be corrected. Sometimes, analysis software uses special symbols or codes to indicate

missing values.This facility sees to it thatmissing values are properly documented and

also that missing values can be excluded from the analysis.

Traditionally,missing valueswere often denoted byfilling thevaluefield in the data

matrix by a series of nines. For example, if the field for the variable “income” is four

characters wide, a missing income would be represented by 9999. Of course, the

analysis softwaremust know that 9999means amissing observation. If the software is

not aware of this, something will go wrong in the computation of estimates. If 9999 is

taken as a “real” income, estimates of themean incomewill be systematically too high.

Some software packages allow distinguishing several types of missing values. For

example, there could be special codes for “refusal” and “don’t know.”

Of course, it is possible to remove missing values from the survey data file.

Imputation techniques can be used for this (see Chapter 8).

12.2 THE ANALYSIS OF DIRTY DATA

Many software packages for the analysis of survey data assume that the data can

be seen as an independent identically distributed random sample from some normal

distribution. Often this is not the case. This section describes three issues: sampling

designs with unequal inclusion probabilities, weighting adjustment, and imputation.

Table 12.2 Metadata for Samplonia

Variable Type Description Values

District Qualitative District of residence of the

respondent

1¼Wheaton;

2¼Greenham;

3¼Newbay;

4¼Oakdale;

5¼ Smokeley;

6¼Crowdon;

7¼Mudwater

Province Qualitative Province of residence of the

respondent

1¼Agria;

2¼ Induston

Gender Qualitative Gender of the respondent 1¼Male;

2¼ Female

Age Quantitative Age if respondent (in years) 0 t/m 99

Employed Qualitative Respondent has a paid job for

at least 12 h per week

1¼Yes;

2¼No

Income Quantitative Monthly net income of the

respondent (in Samplonian

dollars)

0 – 4500
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12.2.1 Sampling Design Issues

The Horvitz–Thompson estimator has been introduced in Chapter 2. This estimator

allows for unbiased estimation of population characteristics if all inclusion probabili-

ties or selection probabilities are known and strictly positive. To be able to compute

these estimates, inclusion or selection probabilities have to be included in the survey

data file. Often inclusion weights (the inverse inclusion probabilities) are included.

Failure to include these probabilities in the survey data file, and to rely on standard

estimation procedures implemented in software packages, may lead to biased

estimates. An example illustrates this. Suppose a stratified sample of 50 persons is

selected from the working population of Samplonia. There are two strata: the

provinces of Agria and Induston. A simple random sample of 25 persons is selected

without replacement from both strata. Since the province of Agria contains 121

persons, the inclusion probability here is 25/121¼ 0.207 for all elements. Induston

contains 220 persons, which means the inclusion probability here is equal to

25/220¼ 0.114. So, the inclusion probabilities differ in both strata.

Figure 12.1 contains the results of an experiment in which 1000 samples were

selected using this sampling design. The upper box plot contains the distribution of the

estimator taking into account the inclusion probabilities. Thevertical line corresponds

to the population mean to be estimated. It is clear that the estimator is unbiased.

The lower boxplot inFig. 12.1 showswhat happens if the inclusionprobabilities are

not taken into account and the simple sample mean is computed using some statistical

analysis package. The distribution has shifted to the left. The estimator is clearly

biased. Its values are systematically too low. The explanation is that people in high-

income areas are underrepresented in the samples.

Weighted

Unweighted

18001600140012001000800600

Figure 12.1 Effect of not taking into account inclusion probabilities.
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Of course, it is possible to compute proper estimates with an analysis package. The

trick is to include an extra variable in the survey data value containing the inclusion

weight or similar quantity. One way to do this is to introduce a correction weight. It

corrects for thewrong inclusion probability n/N¼ 50/341. For persons in the province

of Agria, the correction weight is (121/25)/(341/50)¼ 0.710. This value is smaller

than 1, because persons from Agria are overrepresented in the sample. For persons

in the province of Induston, the correction weight is (220/25)/(341/50)¼ 1.290.

This value is larger than 1 because persons from Induston are underrepresented in

the sample. If a software package is instructed to use this correction weight in the

computation of estimates, a weighted estimator is obtained that is identical to the

Horvitz–Thompson estimator in case of stratification. Its distribution corresponds to

the upper box plot.

12.2.2 Weighting Issues

It has alreadybeen said thatmanygeneral software packages for statistical analysis can

handleweights.However, it should be realized there are several types ofweights. Each

statistical package may interpret weights differently. Even weights can be interpreted

differently within the same package. Here the following types of weights are

considered:

. Inclusion weights. These weights are the inverse of the inclusion probabilities.

Inclusion weights are determined by the sampling design. They must be known

and nonzero to compute unbiased estimates (see Horvitz and Thompson, 1952).

. Correction weights. These weights are the result of applying some kind of

weighting adjustment technique.

. (Final) adjustment weights. These weights combine inclusion weights and

correction weights. When applied, they should provide unbiased estimates of

population characteristics.

. Frequency weights. These weights are whole numbers indicating how many

times a record occurs in a sample. It should be seen as a trick to reduce file size.

Problems may arise if weights are interpreted as frequencies weights while in fact

they are inclusion weights. Suppose a sample of size n has been selected from a finite

population of sizeN. The sample values of the target variable are denoted by y1, y2, . . .,
yn. Let pi be the inclusion probability of element i, for i¼ 1, 2,. . ., n. Then, the
inclusion weight for element i is equal to 1/pi. If these inclusion probabilities are used

as frequency weights, the weighted sample mean is equal to

�yW ¼
Pn
i¼1

wiyi

Pn
i¼1

wi

¼
Pn
i¼1

ðyi=piÞ
Pn
i¼1

ð1=piÞ
ð12:1Þ
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According to the theory ofHorvitz andThompson (1952), the unbiased estimator is

equal to

�yHT ¼ 1

N

Xn
i¼1

wiyi ¼ 1

N

Xn
i¼1

yi

pi

ð12:2Þ

Generally, these twoestimatorsarenot thesame.However, in the caseof simple random

sampling with equal probabilities (pi¼ n/N), expression (12.1) reduces to (12.2).

Similar problems occur when computing estimates of variances. Many statistical

packages assume the sample to be an independent random sample selected with equal

probabilities. If theweights are interpreted as frequencyweights, then the sample size

is equal to

wT ¼
Xn
i¼1

wi ð12:3Þ

and the proper estimator for the variance of the sample mean is

vð�yWÞ ¼
Pn
i¼1

wiðyi��yWÞ2

wTðwT�1Þ ð12:4Þ

Usually surveysamples are selectedwithout replacement,whichmeans that theproper

expression for the variance of the estimator is

vð�yWÞ ¼ 1

wT

� 1

N

� �Pn
i¼1

wiðyi��yWÞ2

ðwT�1Þ ð12:5Þ

If the finite population correction factor f¼wT/N is small, expressions (12.4)

and (12.5) are approximately the same.

The situation becomes more problematic if the weights wi represent inclusion

weights. In the simplecaseofanequalprobability sample (wi¼N/n), expression (12.4)

will be equal to

vð�yWÞ ¼
Pn
i¼1

ðyi��yWÞ2

nðN�1Þ ; ð12:6Þ

which is a factor (N� 1)/(n� 1) to small as a variance estimator.

In general, without replacement sampling designs a completely different expres-

sion should be used to estimate the variance of the estimator:

vð�yWÞ ¼
Xn
i¼1

Xn
j¼iþ 1

ðpipj�pijÞ
pij

yi

pi

� yj

pj

� �2

: ð12:7Þ

Note that expression (12.7) involves second-order inclusion probabilities pij,

which do not appear in expression (12.3).

The problems described above also occur in a more in depth analysis of the data.

Many multivariate analysis techniques are based on the assumption of identically
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distributed independent samples. Due to complex sampling designs, adjustment

weighting and imputation (see Section 12.3), estimates for the first and second-order

moments of distributions are likely to be wrong.

12.2.3 Imputation Issues

Some imputation techniques affect the distribution of a variable. They tend to produce

synthetic values that are close to the center of the original distribution. Hence, the

imputed distribution is more “peaked.” This may have undesirable consequences.

Estimates of standard errors may turn out to be too small. Analysts using the imputed

data (not knowing that the data set contains imputed values) may get the impression

that their estimates are very precise while in reality this is not the case.

Possible effects of imputation are illustrated by analyzing one single imputation

technique: imputationof themean.This typeof imputationdoesnot affect the response

mean of the variable: the mean �yIMP after imputation is equal to the mean �yR before

imputation. As a result, the variance of the estimator also does not change.

Problemsmay arisewhen an unsuspecting analyst attempts to estimate thevariance

of an estimator, for example, for constructing a confidence interval. To keep things

simple, it is assumed the available observations can be seen as a simple randomsample

without replacement, that is,missingness does not cause a bias. Then thevariance after

imputation is equal to

Vð�yIMPÞ ¼ Vð�yRÞ ¼
1�ðm=NÞ

m
S2; ð12:8Þ

in whichm� n is the number of “real” observations and S2 is the population variance.

It is known from sampling theory that, in case of a simple random sample without

replacement, the sample variance s2 is an unbiased estimator of the population

variance S2. This also holds for the situation before imputation that the s2 computed

using the m available observations is an unbiased estimator of S2.

What would happen if an analyst attempted to estimate S2 using the complete data

set, without knowing that some values have been imputed? He would compute the

sample variance, and hewould assume this is an unbiased estimator of the population

variance.However, this is not the case. For the sample variance of the imputed data set,

the following expression holds:

s2IMP ¼
m�1

n�1
s2: ð12:9Þ

Hence,

Eðs2IMPÞ ¼
m�1

n�1
S2: ð12:10Þ

This is not an unbiased estimator of the population variance. The population

variance is underestimatedbya factor (m� 1)/(n� 1).This creates the impression that

estimators are very precise whereas in reality this is not the case. So, there is a

substantial risk of drawingwrong conclusions from the data. This risk is larger as there

are more imputed values.
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Imputation also has an impact on the correlation between variables. Suppose the

variable Y is imputed using imputation of the mean. And suppose the variable X is

completely observed for the sample. In this case, it can be shown that the correlation

after imputation is equal to

rIMP;X;Y ¼
ffiffiffiffiffiffiffiffiffiffi
m�1

n�1

r
rXY ð12:11Þ

where rXY is the correlation in the data set before imputation. So, themoreobservations

are missing for Y, the smaller the correlation coefficient will be. Analysts not aware of

their data set having been imputed will get the impression that relationships between

variables areweaker than they are in reality. Also here, there is a risk of drawingwrong

conclusions.

12.3 PREPARING A SURVEY REPORT

Analysis of the survey data will lead to a publication of the results. Form and contents

of such a publication depend on the objective of the survey, the nature of the collected

data and the intended audience. It is important that this audience understands what is

said in the publication. Readers should be able to use the survey results to full

advantage, to assess the reliability of the outcomes, and to be aware of their scope.

Furthermore, the publication should contain sufficient technical documentation

about the survey. This documentation should enable survey researchers to understand

how the survey was set up, how data were collected, what practical problems were

encountered,whatwasdonetocorrectproblems,howaccurate theresultsare,andsoon.

The main purpose of a survey publication is communicating its results. Therefore,

structure and style have to be such that this is accomplished as concisely and

effectively as possible. This section presents some guidelines. Section 12.3.1 is about

general issues. Section 12.3.2 concentrates on the general part of the publication. This

part is intended to describe the results of the survey, usually for a nontechnical

audience. Section 12.3.3 deals with the more technical survey documentation. Since

the intended audience of the general part and the technical part can be very different,

one might consider writing two separate publications.

12.3.1 General Issues

The audience for the general part of the publication can bevery diverse. Therefore, it is

important to use plain language. Technical jargon andmathematical formulasmust be

avoided. The language should be clear and concise. Short and simple sentences should

be preferred.

The text should bewritten in a neutral and objective style. Informal language is not

acceptable.Overfamiliar phrases like “at the endof the day” and “in anutshell” should

be avoided. The text should not contain personal opinions. For example, adjectives in

“painstakingdata collection” and “careful analysis,” and “surprising results”must be

left out.
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It is usually advised towrite the publications text in the passive voice (i.e., the third

person).Use of “I,” “we,” and “you”must be avoided. So, “the datawere collected in a

period of 4 weeks” is better than “We collected the data in a period of 4 weeks.”

However, sometimes the active voice should be preferred, for example, if the passive

voice would mean hiding responsibility for specific activities. A text like

“Interviewers made errors during the fieldwork” is more informative then “errors

were made during the fieldwork.”

Most of the text should be written in the past tense. This particularly holds for the

executive summary of the publication, the methodology section (the description of

how the survey was carried out), and the section with the survey results. The

introduction of the publication and the discussion of the results can be written in

the present tense.

12.3.2 General Part

Most scientific reports have a common structure. This structure can also be used for the

general part of the survey publication. It includes the following elements:

. Title

. Abstract

. Introduction

. Methodology

. Analysis

. Discussion

. References

. Appendices

The titlemust be short and precise. It should inform the reader about what has been

investigated in the survey. Any unnecessary words (e.g., “A study of . . .”) should be

omitted.

The abstract is a self-contained summaryof thewhole report. It should therefore be

written last and it is usually limited to just one paragraph of approximately 150words.

It must at least contain an outline of what has been investigated, the main results, and

the conclusion.

The introduction consists of two parts. The first part describes the problem that has

been addressed in the survey, and how it was addressed. The following topics must at

least be included:

. Definition of the target population. This is the population to which the results

refer.

. Major variables that have been measured.

. A nontechnical summary of the sampling frame and the sampling design.

. Description of the way the data were collected in the field.
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. Initial sample size, the number of respondents, and the response rate.

. Indication of the accuracy of the results, for example, margins of error.

The secondpart of the introductiongives anoverviewof themain conclusions of the

survey. It is just a list of conclusions, without any arguments or underpinning.

Technical jargon and mathematical formulas must be avoided.

The introduction can also be seen as an executive summary of the survey

report. It must be self-contained and readable for all those interested in the survey

results.

The section on methodology must give a detailed description of every step in the

survey process. The information should not be too technical so that a nonexpert can

also get a good idea of how the survey was conducted. The following topics must be

included in this section:

. Adefinition of the target population of the survey.What is exactly the population

to which the survey results refer?

. The population characteristics that were estimated. What were the main survey

questions? How were they translated into questions?

. A description of the questionnaire. How many questions did it contain? How

long did it take to complete a form? Did respondents encounter any problems in

answering the questions? The questionnaire itself could be included in an

appendix of the report.

. A description of the sampling frame. What sampling frame was used? Was the

frame up-to-date? How well covered this sampling frame the target population?

Was there any undercoverage or overcoverage?

. A description of how the sample was selected from the sampling frame. What

was the sampling design? What was the initial sample size?

. A description of the fieldwork. What mode of data collections were used? Were

interviewers involved? If yes, how many and how were they trained?

. A description of data editing techniques. What kind of data editing took place?

Where many errors detected? How were errors corrected?

. A description of the nonresponse. What was the number of respondents? What

was the response rate? Was the nonresponse selective? What has been done to

correct for this? Have any imputation techniques or adjustment weighting been

carried out?

. A description of the accuracy of the survey results. What are the margins of

error? Could anything be said about the magnitude of nonsampling errors?

The analysis section covers the results of the analysis of the survey data (after

editing and nonresponse correction). This section could start with an exploratory

analysis of all relevant survey variables separately. This can be done in the form of

descriptive tables (frequency distributions, means, standard errors, and so on) or

graphs.
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The second part could explore relationships between variables. Also, here a choice

can be made between numerical or graphical display of the results. In case specific

patterns, structures or relationships are discovered, itmust bemade clear whether they

are significant or could be attributed to sampling variation. If possible, artifacts must

be distinguished from discovery of new knowledge that can be explained from the

underlying subject-matter theory.

It should be realized that data cannot be used at the same time to formulate and to

test a hypothesis about the target population. Hypothesis testing should always be

based on new, independent data. It might be a good idea to split the survey data set

randomly in two subsets: one for exporatory analysis, leading to the formulation of

hypotheses, and the other for testing these hypotheses.

In case of hypothesis testing, always specify which tests were carried out

and why they were chosen for this purpose. Also, mention significance levels or

p-values.

There could be a third part with amore in-depth multivariate analysis of the survey

data. It should be kept in mind that many multivariate analysis techniques require the

data to be generated according to some models (e.g., an independent sample form a

normal distribution). The “dirty data” produced by the survey may not always satisfy

the underlying model assumptions.

The discussion section is an important part of the survey report. It places the survey

results in the context of the relevant subject-matter area. It should enable the reader to

understand the relevance of the results, also in relation to other research work in the

area.

The discussion section starts with an overview of all main results of the analysis of

the surveydata. Thenext step is to interpret these results.Does it givenew insight in the

population? How do the results relate to other findings? Are the findings consistent

with an underlying theory? Can this theory explain the findings?

It should be made clear what the implications are of the survey findings. Theymay

suggest future research to obtain insight in specific topics. It may happen that all kinds

of limitations were encountered during the survey process. Such limitations may

restrict generalization of the findings. Were possible recommendations should be

made to improve a possible future repetition of the survey.

The discussion may end with conclusions that summarize the most important

elements of the discussion.

The references section contains a list of references to all literaturementioned in the

survey report. It should include both references to subject-matter literature and

statistical literature.

The appendices containmaterial that is relevant to the survey report, but that would

disrupt its flow if it was contained within the main text. The appendices could contain

the surveyquestionnaire and also the surveydata (if the survey isnot too largeand there

are no confidentiality problems). There could also be a glossary of terms, or other

information that the reader may find useful. All appendices should be clearly labeled

and referred to where appropriate in the main text, for example, “See Appendix A for

the complete questionnaire.”
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12.3.3 Technical Part

Already in 1948, a United Nations commission came with recommendations for the

preparation of survey reports. Such a report should enable users of the survey data and

the survey results to use the survey results to full advantage, to assess their reliability,

and to utilize it in carrying out future surveys (see United Nations, 1964). These

recommendations were updated in 1962.

TheUNguidelines recommendmaking two reports, a general report anda technical

report. The general report was already discussed in the previous subsection. This

subsection is about the technical report. Such a report should be seen as the survey

documentation.

The goal of the technical report is to provide complete, unambiguous information

about all aspects of the survey. It should contain sufficient information to allow other

researcherstoassessthequalityofthesurveyandthesurveyresults.Italsoshouldcontain

sufficient information to carry out an exact copy of the survey at a future point in time.

A detailed description of the sampling frame should be given. It should be made

clearwhether the framewas constructed specifically for this survey. Particulars should

be given of any known or suspected deficiencies, among which undercoverage,

overcoverage errors.

The sampling design should be carefully specified, including details such as the

type of sampling unit, sampling fractions, particulars of stratification, and so on. The

procedure used in selecting sampling units should be described. If no randomselection

was applied, justification should be given for an alternative procedure.

It is desirable to give an account of the organization of the personnel employed in

collecting, processing, and tabulating the primary data, together with information

regarding theirprevious trainingandexperience.Arrangements for training, inspection,

and supervision of the staff should be explained. Also, a description should be given of

applied data editing techniques. A brief mention of the equipment (for example,

hardwareandsoftware)used is frequentlyofvalue toreadersof thereport.Thestatistical

methods used for correcting item and unit nonresponse should be described.

If more elaborate statistical analysis techniques have been used than those for

simple estimation of means and totals, these techniques should be explained, and the

relevant formulas being reproduced where necessary. Where proper application of

these techniques relies on specific conditions to be satisfied, this should be discussed.

A detailed account should be given of how the accuracy of the estimates is

computed, taking into account the sampling design, and possible nonresponse

correction techniques (like adjustment weighting). Where nonsampling errors are

expected to have a substantial impact on the accuracy of the estimates, attempts should

be made to compute at least some indication of the magnitude of these errors.

Every reasonable effort should be made to provide comparisons with other

independent sources of information. Such comparisons should be reported along

with the other results and the significant differences shouldbediscussed.Theobjective

of this is not to throw light on the sampling error since awell-designed survey provides

adequate internal estimates of such errors, but rather to gain knowledge of biases, and

other nonsampling errors. Where disagreement between sample survey results and
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other independent sources may be due, in whole or in part, to differences in concepts

and definitions, this should be reported.

A sample survey can often supply the required information with greater speed and

at lower cost than a complete enumeration. For this reason, information on the costs

involved in sample surveys is of particular value for the development of sample

surveys by other researchers. It is therefore recommended that fairly detailed

information should be given on costs of a survey. Where possible, costs of different

activities should be specified, like planning, fieldwork, supervision, processing,

analysis, publication, and overhead costs.

The results of a survey often provide information that enables investigation of the

efficiency of the sampling design in comparison to other sampling designs that might

have been used in the survey. The results of any such investigations should be reported.

12.4 USE OF GRAPHS

12.4.1 Why Graphs?

Survey results can be communicated in various ways. One obvious way to do this

would be to do it in plain text. If there is a lot of information or if the information is

complex, readersmayeasily lose theirway.More compactwaysofpresenting this type

of information are tables and graphs. Particularly for statistically less educated users,

graphs have a number of advantages over text and tables. These advantages were

already summarized by Schmid (1983).

. A graph can provide a comprehensive picture. This makes it possible to obtain a

more complete and better balanced understanding of the problem.

. Graphs can bring out facts and relationships that otherwisewould remain hidden.

. Use of graphs saves time since the essential meaning of a large amount of data

can be visualized at a glance.

. Relationships betweenvariables as portrayed by graphs aremore clearly grasped

and more easily remembered.

. Well-designed graphs are more appealing and therefore more effective in

creating the interest of the reader.

Graphs can be used in surveys in twoways. One way is to use them as tool for data

analysis. Particularly, graphs can be very effective in an exploratory data analysis, to

explore data sets, to obtain insight, and to detect unexpected patterns and structures.

Users will have a background in statistics. Layout issues play a limited role here.

Another use of graphs is use in survey publications. Most importantly, these graphs

should be able to convey a message to statistically inexperienced readers. Therefore,

the typeofgraph shouldbe carefully selected.Thevisual displayof thegraph shouldbe

such that it reveals the message and not obscures it.

This section is devoted to the use of graphs in survey publications. The use of the

KISS principle is promoted. KISS is an acronym for “Keep it simple, stupid.” The
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principle states that simplicity should be a key design goal. Unnecessary complexity

should be avoided. The KISS principle will be translated into a number of guidelines

for the design of graphs. Furthermore, this section recommendswhich type of graph to

use to display specific aspects of the data.

12.4.2 Some History of Graphs

It is not always simple to convey information inplain text, particularly if themessage to

be conveyed is complex. Therefore, it is not surprising that already, far back in history,

attempts have been made to find different means. Probably the first graphs have been

maps.Maps were already made thousands of years ago in China and Egypt. However,

the idea to add statistical information did not appear until the seventeenth century. The

first known graph of a time-series probably dates back to the tenth century (see

Fig. 12.2). It shows the inclination of the orbits of the planets over time. For more

information, see Tufte (1983).

It took 800 years before this type of graph was really used for statistical purposes.

John Playfair (1759–1823) is seen by many as the inventor of the statistical graph. He

published a book in 1786 that containsmore than 40 graphs. Almost all of these graphs

show time-series of economic variables. Figure 12.3 shows an example, the value of

the trade between England and the East Indies.

Playfair (1786) has oneother type of graph inhis book.This is a bar chart. So, he can

be seen as the inventor of the bar chart.

A classical graph is the map of the campaign of Napoleon in Russia in 1812. The

French engineer Charles Joseph Minard made this graph in 1862. This graph is

discussed in Tufte (1983) and Wainer (1997). It is reproduced in Fig. 12.4.

The graph is a combination of a map and a time-series. Themap shows the route of

Napoleon’s army toMoscowandback.The size of the army is indicatedby thewidth of

the band. As it invades Russia, the army consists of 422,000 men. Only 100,000 men

reach Moscow. The black band describes the retreat of the army. The graph dramati-

cally shows the crossing of the Berezina river. Only 28,000 of the 50,000 reached the

Figure 12.2 The first known time-series graph. Source: Tufte (1983).
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other side of the river. Thegraph also shows daily temperature during the retreat. Itwas

a very cold winter. This was one of the causes of the disaster of the Berezina crossing.

In fact, this graph displays several variables simultaneously as a time-series: geo-

graphical position, sizeof the army, and temperature.Tufte (1983) suggests itmaywell

be one of the best statistical graphs ever drawn. It tells with simplemeans and in a very

clear way, a reasonably complex story.

Figure 12.3 One of the first time-series of an economic variable. From Howard Wainer (1997), Visual

Revelations. Reprinted by kind permission of Springer Science and Business Media.

Figure 12.4 Minard’smap ofNapoleon’s campaign inRussia. Reprinted by permission, EdwardR. Tufte,

The Visual Display of Quantitative Information (Cheshire, Connecticut, Graphics Press LLC, 1983, 2001).
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12.4.3 Guidelines for Designing Graphs

A graph can be a powerful tool to convey a message contained in a survey data set,

particularly for thosewithout experience in statistics. Graphs can bemoremeaningful

and more attractive than tables with numbers. Not surprisingly, graphs are often

used in the popular media like newspapers and television. Use of graphs is, however,

not without problems. Poorly designed graphs may convey thewrongmessage. There

are ample examples of such graphs.Designerswithoutmuch statistical expertise often

make them. They paymuchmore attention to attractiveness of the graphic design than

to its statistical content.

To avoid problems with graphs, a number of design principles should be followed.

Some guidelines are proposed in this section that may help to produce proper graphs.

Also, some examples are given of badly designed graphs.

Rule 1: Show the data. A graph should show the patterns, structures, and relation-

ships that exist in the survey data set. It should do that in a clear way. It should be

easy to see what the specific properties of the variables are. Graphs should be

designed such that they support this principle. Every effort should be made to

avoid graphs that obscure the message to be conveyed.

Graphs can be particularly powerful for displaying large amounts of data in

one picture. Indeed, one picture can tell us more than a thousand words.

Figure 12.5 shows an example of such a graph. Is shows the population density

in Europe in 2004 (source: Eurostat).

The European Union uses the Nomenclature des Unit�es Territoriales

Statistiques (NUTS) classification for dividing up to territory of its member

countries, and other countries. NUTS is a hierarchical classification. It sub-

divides each country into three levels: NUTS 1, NUTS 2, and NUTS 3. Each

classification is a subdivision of a previous level, respectively.NUTS2 is used in

themap. It divides Europe into 313 regions. The population density is shown for

each region. This implies that the graph contains at least 3� 313¼ 939 numbers

(geographical position of the region in longitude and latitude, and population

density for 313 regions). Notwithstanding this large amount of numbers, the

information in the graph is very readable.Not only global trends can be observed

(high density in The Netherlands, Belgium, and the German Ruhr area) but also

details like the relative high population density in the Stockholm area compared

to the rest of Sweden.

Figure 12.5 is a typical example of a graph with a high density. Tufte (1983)

proposed the data density index (DDI) as an indicator of the amount of data in a

graph. It is defined as the number of data points per square inch. Research by

Tufte (1983) showed that the DDI can assume values between 0 (graphs without

data) to over 300.

The DDI of the population density map is around 50 (at this scale), which is

reasonably high. Figure 12.6 shows an example of a graph with a very low

DDI. It is a plot of the labor productivity of Japan versus that of the United

States.
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The graph on the left contains only three numbers: 44.0, 62.3, and 70.0. The

DDI here is about 1.5, which is much lower than the DDI of the population

density map in Fig. 12.5.

The labor productivity graph contains a lot of decoration that does not really

helps to convey the statisticalmessage.On the contrary, it obscures themessage.

It servesnoother purpose thanmaking thepicturemore attractive fromanartistic

point of view. This is what Tufte (1983) calls chart junk. It should be avoided.

Tufte (1983) had introduced the data-ink ratio (DIR) as ameasure of the amount

of chart junk in a graph. It is defined as the ratio of the amount of ink used to draw

to nonredundant parts of the graph (the real data) and the total amount of ink

used. An ideal graph would have a DIR value of 1. Much smaller values of DIR

are an indication that the graph contains toomuch chart junk. It will be clear that

the DIR of the graph on the left in Fig. 12.6 is much smaller than the DIR of the

graph on the right.

Rule 2: Do not mess around with the scales. The scales on the axes should help

the reader interpreting the magnitude of the displayed phenomena correctly.

Where the measurement scale of a variable has a clear interpretation of the

value 0, the axis should start at this value, and not at an arbitrary larger

Figure 12.5 Population density in Europe in 2004. Source: Eurostat.
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value, as this could lead to a wrong interpretation of the graph. Figure 12.7

shows an example.

Both graphs show the average length of adult males in various parts of The

Netherlands.Apparently,males are longer, on average, in the northern part of the

country than in the southern part. TheY-axis in the graph on the left starts not at 0

but at 179. As a consequence, the differences between the regions are exagger-

ated. One almost gets the impression that men in the south are less than half as

long as men in the north.

The graph on the right shows the same data, but now the scale at the Y-axis

starts at thevalue0.Thedifferencebetween the regions turnsout tobevery small.

This picture contains a more realistic message: the average age in the south is

slightly smaller than in the north.

Figure 12.8 contains an example of a graph where two different Y-axes are

used. The graph on the left shows the increase in average length (in centimeters)

over the years for both men and women. It is reproduced version of a graph

published by Statistics Netherlands (Webmagazine, January 17, 2008).

There seems to be a dramatic increase in length in 24 years and at first glance,

the difference in length between men and women are substantial. Without

looking at the vertical scale, one gets the impression that women are only half as

long asmen. By looking are the scale on the left, the difference seem to be a little
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Figure 12.7 A graph with a scale not starting at zero.

Figure 12.6 Labor productivity of the United States versus Japan. Source: Washington Post, 1978. From

HowardWainer (1997), Visual Revelations. Source: Washington Post, 1978. Reprinted by kind permission

of Springer Science and Business Media.
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over 1 cm in 1982. However, a closer look reveals that there is different scale for

women. Its values for women are shown on the Y-axis on the right. So, the

difference in length between men and women in 1982 is more than 11 cm.

Another problem with this graph is that both Y-scales do not start a 0. The

message conveyed by this graph can be confusing if not enough attention is paid

to its details.

The graph on the right in Fig. 12.8 gives a more realistic picture. Now, the

same scale formen andwomen is used and both scales start at zero. The changes

over time are less profound.

A third example of the use of a wrong scale is also taken fromWainer (1997).

The graph on the left in Fig. 12.9 displays the income of physicians from 1939 to

1976. The graph suggests a linear trend in the first part of the period. The yearly

increase seems to slow down a little in the second part of the period.

A closer look at the scale of the X-axes reveals that the time gap between

subsequent values is not the same everywhere. The first gap is 8 years, followed

by periods of 4 years and at the end of the scale there is only a period of 1 year

between subsequent values.Thegraphon the right inFig. 12.9 shows the result in

case of a proper regular scale for the X-axis. Now it becomes clear that the

Figure 12.9 Incomes of doctors versus other professionals. Source: Washington Post, 1979. From

HowardWainer (1997),Visual Revelations. Reprinted by kind permission of Springer Science andBusiness

Media.

Figure 12.8 The increase in length of men and women over time.
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Figure 12.10 Commission payments to travel agents. Source: New York Times, 1978. From Howard

Wainer (1997), Visual Revelations. Reprinted by kind permission of Springer Science and BusinessMedia.

salaries of doctors increasemuchmore than linear.So, themessage is completely

different.

Rule 3: Show the data in the proper context. The graph should promote presenta-

tion of the statistical information in the proper context so that the right

conclusion is drawn by the user. Design and composition of the graph should

be such that the correctmessage is conveyed. Amisleading presentationmust be

avoided.

The graph on the left in Fig. 12.10 contains commission payments to travel

agents by airlines. It seems to suggest that these payments have decreased

dramatically in 1978. However, there is some small print in the graph explaining

that the payments in 1979 only cover a period of 6months and not the complete

year.Amore correct picture of the situationwouldbeobtained if the commission

payments for thewhole year were estimated. This has been done in the graph on

the right. This graph conveys a different, more correct, message: commission

payments are still increasing.

Figure 12.11 shows another example of a misleading graph. The graph on the

left shows the United States export to and import from China. The graph on the

rightdoes the same, but forTaiwan.Atfirst sight, the impression is that there is not

much difference between China and Taiwan with respect to trade.

However, a closer lookwould reveal that the Y-axes of both graphs are not the

same. The scale forChina runs from0 to 3000 and the scale forTaiwan runs from

0 to 6000. To make the two graphs comparable, the graph for Taiwan should be

twice as high.

Also, note that the shades have been interchanged in the graphs. Black

corresponds in the left-hand graph to import and in the right-hand graph to

export. Thismakes the comparison evenmore confusing. Finally, the scale of the

X-axis on the left starts at the year 1972 while it starts on the right at

the year 1970.
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Rule 4:Use the rightmetaphor. Graphs are used to visually display themagnitude

of phenomena. There are many techniques to do this. Examples are bars of the

proper lengths, or points on a scale. Whatever visual metaphor is used to

represent the magnitude, it must be such that it enables correct interpretation.

For example, it should retain the natural order of the values. If a value is twice

as large as another value, the user should interpret the metaphor of the first as

twice as large as the second metaphor. Unfortunately, this is not always the

case. Particularly, graphs in popular printed media tent to violate this

principle.

Figure 12.11 Trade of the United States with China and Taiwan. Source: New York Times, 1980. From

HowardWainer (1997),Visual Revelations. Reprinted by kind permission of Springer Science andBusiness

Media.

Figure 12.12 A bar chart using thewrongmetaphor. Reprinted by permission of JohnWiley& Sons, Inc.
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Figure 12.12 shows a typical example of use of a wrong metaphor. The

graph attempts to show the increase of oil prices in the years from 1970 to

1979. Schmid (1983) also discussed this graph. The price per barrel was $1.80

in 1970. In 1979, this price had increased to $20. Instead of bars, the graph

uses oil barrels to indicate the oil price. The height of the oil barrels is taken

proportional to the oil price. So, if the prices double, the oil barrel becomes

twice as high. Something goes wrong here because the width of the barrel is

also doubled. Consequently, the area of the picture of the oil barrel becomes

four times larger. The visual impression of the value is that it becomes four

times larger. A linear increase would therefore be displayed as a quadratic

increase in the size of the metaphor. In this case, the reader gets the impression

of a much faster increasing oil price.

Tufte (1983) introduced the lie factor for this typeof graphs. It is defined as the

value suggested by the graph divided by the true value. According to Fig. 12.12,

oil prices have risen bya factor 20/1.8¼ 11.1 from1970 to1979.The areas of the

oil barrels have increased by a factor 74.2 in the same period. So, the lie factor

here is equal to 74.2/11.1¼ 6.7.

Note that there is another problem with this graph: the X-axis in not equally

spacedover time. So, one alsogets awrong impressionof the trend in oil prices in

this respect.

Rule 5: Avoid three-dimensional graphs. Graphical designers instead of statisti-

cians sometimes make graphs for popular media. They may find simple graphs

boring and therefore attempt to make them more attractive, for example, by

adding chart junk. Another way to do this is to add a three-dimensional

perspective. Many statistical packages (e.g., Microsoft Excel) support this.

However, three-dimensional graphs are not a good idea froma statistical point of

view because they tend to make correct interpretation more difficult.

Figure 12.13 shows the distribution of the population of Samplonia over

its districts. The three-dimensional shape of the graph on the left makes it

very difficult to compare the size of sectors. For example, it is not clear

whether Wheaton or Crowdon has more inhabitants. The three-dimensional

perspective has been removed in the graph on the right. It is now easier to

compare sectors although the situation is not ideal. It would be better to use a

bar chart for this purpose.

Figure 12.13 Pie charts of the population in the districts of Samplonia.
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Figure 12.14 shows a bar chart of the population of Samplonia in a three-

dimensional perspective. It is not easy to determine the length of the bars. This

caused by the fact that there appears to be space between the bars and the

background. For example, thegraph seems to suggest thatMudwater has exactly

250 inhabitants, which is not correct. The three-dimensional perspective has

been removed on the right. The design of the graph ismuch simpler, but it is also

much easier to determine the lengths of the bars.

12.4.4 Types of Graphs

The available computer software offers ample possibilities of creating graphs.

Generally, it is easy the produce all kinds of graphs. However, not every graph

type is meaningful for every type of variable. Some graph types can only be used for

qualitativevariables and other types only for qualitativevariables.Moreover, different

graph types perform different functions. Some aim at displaying the distribution of

variables and others at portraying relationships. Table 12.3may be helpful in selecting

the proper graph in a specific situation.

It is not only important to choose the proper type of graph but also attention should

bepaid to thegraphic designof thegraph.Chart junk shouldbe avoided.Graphs should

be simple and clear. Therefore, the KISS design principle already mentioned is

advocated.

Table 12.3 Possible Graph Types

Variables Distribution Relationship

Quantitative Histogram Scatter plot

Box plot

Qualitative Bar chart Grouped bar chart

Pie chart Stacked bar chart

Pie charts

Mixed Box plots

Figure 12.14 Bar charts of the population in the districts of Samplonia.
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It should be mentioned that there are more graph types than mentioned in

Table 12.3. The graphs mentioned here are particularly useful in publications for

nonstatisticians. Other graphs can be very meaningful in exploratory data analysis.

12.4.4.1 The Distribution of a Quantitative Variable
The box plot (or box-and-whisker plot) is a graphical summary of the distribution of

the variable. See Fig. 12.15, for an example. The box represents the central part of the

distribution. It stretches from the lower hinge (the first quartile) to the upper hinge (the

third quartile). It contains the middle 50% of the values. The line in the box represents

themedian (the second quartile). Therefore, this is the dividing line between the lower

half and the upper half of the distribution. It is the center of the distribution.

TheH-spread is defined as the length of the box (the distance between the first and

third quartile).Thevalueof the step is equal to 1.5 times theH-spread. The inner fences

are definedasvalues that are adistanceequal to stepoutside thebox (at both sides).The

lower adjacent value is the smallest observation above the lower inner fence and the

upper adjacent value is the largest observation below the upper inner fence. The

whiskers run from the box to the adjacent values. Observations further away than the

adjacent values are displayed as separate points. They should be seen as outliers. It

indicates an element that substantially differs from other elements. An outlying value

could also be caused by a measurement error.

A box plot gives a good impression of the location and spread of the observed

values. Figure 12.15 shows that the incomes in Samplonia vary between 0 and 4500.

The median income is 1000. The central half of the incomes are approximately in the

range between 500 and 1500.

The box plot also provides some indication of the symmetry and skewness of the

distribution. The distribution of incomes in Samplonia is clearly skewed to the right.

Figure 12.15 Box plot of income in the working population of Samplonia.
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The plot shows some outlying values. As they are very close to a whisker, this may be

the result of the skewness of the distribution instead of true outliers.

Thehistogram is another,maybemuchmore used,way to display the distribution of

a quantitative variable. To that end the range of possible values is divided into a number

of intervals. Then the number of observations in each interval is computed. For each

interval, a column is drawn; the length of which is taken proportional to the number of

observations. So, a histogram is graphical analogue of the frequency distribution.

Attention should be paid to the number of intervals used. In case of only a few

intervals, a more global picture of the distribution will be obtained. Details may be

hidden.

Figure 12.16 contains two histograms of the income distribution of the working

population of Samplonia. In case of many intervals, the focus will be more on details

and the global picture may be less clear. Sometimes, a rule of thumb is suggested to

take the number of intervals equal to the square root of the number of observations,

with a minimum of 5.

Both histograms in Fig. 12.16 are based on 341 observations. Applying the rule

of thumbwouldmean 18 intervals. This number has been used in the histogram on the

right.On the one hand, it shows theglobal shapeof the (skewed) distribution, andon the

other, it also shows some detail, like the relatively low number of incomes around 350.

Note that the columns have been drawn adjacent to each other without any space

between them. This is in contrast to bar charts.

12.4.4.2 The Distribution of a Qualitative Variable
The only thing that can be done with a qualitative variable is to count the number of

observations in each category.The resulting frequencydistribution canbedisplayed as

bar chart or a pie chart.

The bar chart consists of a number bars. Each bar represents a category and the

length of the bar is taken proportional to the number of observations in that category.

Figure 12.16 Histograms of income in the working population of Samplonia.
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The bars are drawn separate from each other, with some space between. Thus, the

impression is avoided that the graph displays a quantitative variable. Figure 12.17

contains two examples of a bar chart. The samevariable (District) is shown. So the bars

represent the number of inhabitants in each district.

It is recommended using a bar chart with horizontal bars. This even more avoids

confusionwith a histogram.Moreover, there is ample space for labeling the bars. Note

that there is no need for use of different colors.All bars can get the same color or shade.

Use of different colors could be confusing. Intensive colors may create an impression

that some categories are more important than other.

Usually, the categories of a qualitative variable have no natural order. So, no

meaning can be attached to the order of the bars. If this ismeaningful, one could decide

to order the bars in increasing (or decreasing) order of magnitude. This also may

enhance ease of interpretation.

Popular media often seem the prefer pie charts to bar charts. The pie chart consists

of a circle divided in to sectors. Each sector represents a category. The angle of the

sector (and thus its area) is taken proportional to its frequency. Figure 12.18 shows an

example. It shows again the population distribution in Samplonia.

Maybe a pie chart has a less dull appearance, but its interpretation is more difficult.

Particularly, comparison of the size sectors is not easy if they roughly have the same

order of magnitude. Being aware of this problem, software often offers the possibility

to include frequencies or percentages in the graph.

To be able to distinguish the sectors in the pie chart, different colors are shades have

to be used. Selection of colors or shades should be done carefully. Their intensities

should not differ so much that they suggest some sectors more important than others.

Some software packages offer the possibility to give bar charts or pie charts a

three-dimensional look. Section 12.4.3 suggested avoiding such a three-dimensional

look. It may increase the aesthetic value of a picture, but can seriously hamper correct

interpretation.

Figure 12.17 Bar charts of the population distribution in Samplonia.
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12.4.4.3 The Relationship Between Quantitative Variables
The scatter plot is the obvious graphical tool to display the relationship between two

quantitative variables. For each element i, the values xi and yi of two variables X and Y

are seen as the coordinates of a point in two-dimensional space. Figure 12.19 shows an

example. The incomes of working people is plotted against their ages.

Clear patterns in the cloud of points usually indicate some kind of relationship

between the two variables. For example, it is easy to detect a linear relationship. This

Figure 12.19 The relationship between income and age in Samplonia.

Figure 12.18 Pie chart of the population distribution in Samplonia.
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may be very helpful in explaining the behavior of one variable from another variable.

Also, clustering of observations or outlying points will be clearly visible.

Figure 12.19 shows a number of clusters of points.Within each cluster, there seems

to be a linear relationship between age and income. In several clusters, income

increases with age but there are also cluster in which income seems to be independent

of age.

It would be interesting to showwhat makes up all these different clusters. Oneway

to do this is to introduce a third (qualitative) variable and to use different markers for

different values of this variable. An example is shown in Fig. 12.20. There are two

types of markers: circles for the province of Induston and triangles for Agria. It now

becomes clear that incomes are higher in Induston than in Agria.

12.4.4.4 The Relationship Between Qualitative Variables
For showing the relationship between two qualitativevariables the clustered bar chart

and the stacked bar chart can be used.

The clustered bar chart consists of a number of simple bar charts of one variable.

There is one for each category of the other variable. Figure 12.21 contains an example.

It shows the age distribution for each district in Samplonia. Vertical bars have been

used here, but, aswas suggested earlier, it could have been better to use horizontal bars

to avoid confusion with a histogram. Of course, it is possible to interchange to role of

the two variables and to make bar charts of districts for each age category. This would

show the data from a different perspective.

The clustered bar chart works well for showing some aspects like the absolute size

of each age class. For example, it is clear that there are no old people inNewbay and no

young people inOakdale.Other aspects aremore difficult to observe, like the total size

Figure 12.20 The relationship between income and age in Samplonia.
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of each district or the relative contribution of each age class within each district. For

example, it is hard to answer the question whether the percentage of young people is

larger in Smokeley than in Mudwater.

Anotherway to show the relationship between twoqualitativevariables is tomake a

stacked bar chart. Within a category of one variable, the bars corresponding to the

categories of the other variable are not drawn adjacent to each other, but stacked upon

each other. Figure 12.22 shows two ways to do this.

The stacked bar chart on the left was obtained by stacking the bars of Fig. 12.21. It is

now clearwhich district has themost inhabitants andwhich district the fewest. It is also

possible to see which age class is relatively well represented in each district. For

Figure 12.22 Stacked bar charts of the population distribution in Samplonia by district and age.

Figure 12.21 Clustered bar chart of the population distribution in Samplonia by district and age.
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example, one can observe that there are no elderly inNewbay andnoyoung inOakdale.

However, it is still not easy to compare the age distributions of two districts. The

stacked bar chart on the right in Fig. 12.22 may be better suited for this. Now, all bars

have the same length (100%). There are no absolute numbers, just relative sizes. Age

compositions within districts can be compared. For example, the percentage of elderly

in Smokeley and Mudwater is larger than in Wheaton in Greenham.

12.4.4.5 The Relationship Between Mixed Variables
There are no specific graphic tools to show the relationship between a qualitative and a

quantitative variable. Usually, usemade of graphs for the distribution of a quantitative

variable. These graphs are repeated within each category of the qualitative variable.

The box plot is particularly suited for this. Figure 12.23 shows an example. The graph

contains the income distribution in each district of Samplonia.

The graph clearly shows the substantial differences in the income distributions.

Wheaton, Greenham, and Newbay are poor areas, and Oakdale is a very rich area. Of

course, for each district separately, symmetry and possible outliers can be analyzed.

EXERCISES

12.1 If the sample is selectedwith unequal probabilitieswhereas an analyst assumes

a simple random sample without replacement, then

a. the estimator is biased and also the variance estimator is biased;

b. the estimator is biased, but the variance estimator is unbiased;

c. the estimator is unbiased, but the variance estimator is biased;

d. the estimator is unbiased and also the variance estimator is unbiased.

Figure 12.23 Box plots for the distribution of income in the districts of Samplonia.
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12.2 A simple random sample of size 5 is selected without replacement is selected

form a population of size 20. The sample values of the target variable are: 8, 9,

10, 11, and 12.

a. Compute the estimate for variance of the sample mean.

b. What value would have been obtained if the variance estimate was

computed with a statistical package assuming the data to come from an

independent sample selected with equal probabilities?

c. Explain the difference of the estimates in (a) and (b).

12.3 The newpolitical party “Social Democratic Harewood (SDH)” is taking part in

the upcoming local elections in the town of Harewood. A local radio station

carries out a poll to find out how popular the new party is. There are two

neighborhoods in the town: Rhinegate and Millwood. A stratified sample has

been selected. The sample size in each neighborhood was 500. All sampled

persons were asked whether they would vote for the SDH or not. The table

below summarizes all relevant information.

Neighborhood Population Size Sample Size Percentage for SDH

Rhinegate 15,000 500 40

Millwood 5,000 500 20

a. Compute an estimate of the percentage of voters in Harewoood that will

vote for the SDH. Also, estimate the variance of the estimator and the 95%

confidence interval.

b. A lot of computer software for data analysis assumes the data to come from

an independent equal probability sample. In this case, the proper estimator

for the variance of sample percentage is equal to p (100� p)/(n� 1).

Suppose such a computer programwould have been used to analyze the

Harewood poll data.Whatwould be the estimate of the percentage of voters

for the SDH? And what would be the estimated variance and the 95%

confidence interval of the estimator?

c. Compare the outcomes of (a) and (b). Explain the differences.

12.4 A survey report should at least contain the following three components:

a. Underpinning and derivation of all formulas, summary of the problem and

conclusions, and a detailed description of all steps in the analysis.

b. Underpinning and derivation of all formulas, results in comprehensible

language, and a detailed description of all steps in the analysis.

c. Results in comprehensible language, summary of the problem, and con-

clusions and a detailed description of all steps in the analysis.

d. Underpinning and derivation of all formulas, results in comprehensible

language, summary of the problem, and conclusions.
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12.5 An executive summary of the survey results should at least satisfy the

following three conditions:

a. It contains an extensive description of the target population, it allows the

commissioner of the survey to take policy decisions, and it does not contain

arguments.

b. It contains a concise overview of the conclusions, it allows the commis-

sioner of the survey to take policy decisions, and it does not contain

arguments.

c. It contains a concise overview of the conclusions, it contains an extensive

description of the target population, and it does not contain arguments.

d. It contains a concise overview of the conclusions, it contains an extensive

description of the target population, and it allows the commissioner of the

survey to take policy decisions.

12.6 Which style should be preferred for the text of the survey report?

a. The text should be written in the passive voice.

b. The text should be written in comprehensible spoken language.

c. The text should be written in the imperative voice.

d. The text should be written in the active voice using “we,” “you,” or “I.”

12.7 Describe at least two situations in which graphs with a three-dimensional

perspective cause interpretation problems.

12.8 Describe at least six different ways to mislead readers of a statistical graph.
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C H A P T E R 1 3

Statistical Disclosure Control

13.1 INTRODUCTION

National statistical offices and other data collection agencies meet the increasing

demand for releasing survey data files. These files contain for each respondent the

scores on the variablesmeasured in the survey. Because of this trend and an increasing

public consciousness about the privacy of individuals, the problems involved in

releasing survey data have become more serious over the years. Many national sta-

tistical offices, including Eurostat, the statistical office of the European Union, are

confronted with these problems. For example, the situation in the United States was

discussed by Cox et al. (1986), and CBS (1987) gives an account of a joint seminar of

Sweden and The Netherlands on openness and protection of privacy.

This chapter explains why, at least in some countries, disclosure is a problem. The

basic identification and disclosure problem is described in Section 13.2. In section

13.3 the concept of uniqueness is introduced. Uniqueness plays an important role in

the identification of individuals, and the subsequent disclosure of information.

Concentrating on the concept of identification, a basic, but probably impractical

rule, for identification protection is formulated in this section. Various types of

disclosure are distinguished in Section 13.4. In the analysis of disclosure risks, it

is important to get some indication of the number of individuals who are unique in the

population. Section 13.5 presents a model to estimate uniqueness and lays down two

criteria for determining the disclosure risk. Many users of disseminated survey data

sets are interested only in data relating to a particular subpopulation, for example, a

specific region of the country. So the analysis of disclosure risks has to be extended to

uniqueness in subpopulations, and Section 13.5 proposes a simple method to deter-

mine the critical size of such subpopulations. Section13.5 also contains an exampleof

the analysis of population uniqueness. A procedure that at least is able to cope with

some types of disclosure risk is presented in Section 13.6.

Applied Survey Methods: A Statistical Perspective, Jelke Bethlehem
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13.2 THE BASIC DISCLOSURE PROBLEM

The description of the basic disclosure problem is based on the fundamental assumption

that the statistical agencies collect data from respondents for statistical purposes only

and not for administrative purposes. The difference between statistics and admini-

stration is crucial: statistics deals with information on groups of individuals differenti-

ated by some broad characteristics (income, social class, region, race, etc.), whereas

administration deals with data of designated individuals. More on the difference

between administrative and statistical use of data can be found in Begeer et al. (1986).

The disclosure problem relates to the possibility of identification of individuals in

released statistical information (including publications on paper, tape, CD-ROM,

Internet, etc.) and to the revelation of what these individuals consider to be sensitive

information. Disclosure is a two-step process:

(1) Identification of an Individual. A one-to-one relationship can be established

between a record in a released survey data file and a specific individual. For

example, identification is very easy if the survey data file contains names and

addresses of surveyed persons.

(2) Disclosure of Sensitive Information. This is information in the record of the

identified individual that was not known beforehand and which this individual

does not want to be known. This is the so-called sensitive information.

The definition of disclosure agrees to some extent with the definition of disclosure

as suggested byDalenius (1977) and theU.S.Department ofCommerce (1978),which

states that disclosure takes place if publication of statistical data makes it possible to

determine characteristics of specified individuals more accurately than is possible

without access to this statistical information.

Why is disclosure undesirable? First, it is undesirable for legal reasons. In countries

like The Netherlands, for example, there is a law stating that firms should provide

information to the national statistical office,while the officemaynot publish statistical

information in such a way that information about separate individuals, firms, and

institutions becomes available:

... Data, collected in accordancewith this law,may not be disclosed in such away that returns

and information about a separate person, firm or institution can be observed, unless that

person, the head of the firm, or the management of the institution has no objection.

Second, there is an ethical reason. When collecting data from individuals, the

following statement is made by the Statistics Netherlands:

The data requested from you and other persons by the Statistics Netherlands will be used

exclusively for the preparation of statistical publications. From these publications no

identifiable information concerning separate persons can be derived by others, including

other government services. Statistics Netherlands takes great care to ensure that the

information provided by you can never be used for other than statistical purposes.
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The International Statistical Institute (ISI) Declaration on Professional Ethics, see

ISI (1985), states that

Statisticians should take appropriate measures to prevent their data from being published or

otherwise released in a form that would allow any subject’s identity to be disclosed or

inferred.

Therefore, there is an ethical and legal obligation to avoid disclosure by anymeans.

Third, there is a very practical reason: if respondents do not trust statistical

agencies, they will not respond. Nonresponse rates in household surveys in The

Netherlands have increased over the last decade to a level of, say, 40%. Hence,

confidence is of the utmost importance for the statistical office. The willingness of

respondents to cooperate is a very important condition for the production of reliable

statistical information.

Having stated that disclosure of data concerning individuals is unacceptable, the

question arises to what extent statistical publications are to be protected to achieve this

goal. Too heavy confidentiality protection of the data may violate another right: the

freedom of information. It is the duty of every statistical agency to collect and dis-

seminate statistical information. It is thisdilemma, rightof anonymityversus freedomof

information, that is thecoreof the considerationsaboutdisclosurecontrol of surveydata.

The objective of Statistical Disclosure Control is to develop techniques that avoid

identification of individuals. Often 100% protection is not possible. Therefore, dis-

closure control techniques aim at protecting survey data sets such that the identifica-

tion and disclosure become very unlikely, and in fact can only be accomplished after

disproportionately large efforts.

This chapter focuses on the disclosure problem in survey data files. Such files

contain the individual values of survey variables that have been obtained in a survey. It

should be noted that the disclosure problem can also occur in, for example, published

statistical tables. For more information on this aspect of statistical disclosure control,

see Hundepool et al. (2007) and Willenborg and De Waal (1996).

13.3 THE CONCEPT OF UNIQUENESS

A survey data file consists of records of values of the variablesmeasured in the survey.

The information in the records is considered to consist of two disjointed parts:

identifying information on the one hand and sensitive information on the other.

Identifying information relates to thosevariables in the record (called identification

variables orkey variables) that allowone to identify a record, that is, to establish a one-

to-one correspondence between the record and a specific individual. The well-known

key variables are name and address, but household composition, age, race, gender,

region of residence, occupation, and region of work can also help to identify

individuals. All key variables are assumed to be qualitative variables.

Since identifying information is assumed to be known or accessible to others than

the respondent (neighbors, relatives, friends, colleagues, etc.), this information is not
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considered to be sensitive in the sense of “information not to be revealed by statistical

dissemination.” Therefore, identifying and sensitive information are considered to be

disjoint. However, in practice, a situationmay arisewhere these types of information are

not separable in this way. For example, in many confidentiality laws, no distinction is

made between identifying information and other (sensitive) information. Inmany parts

of the world, membership of an ethnic group may be both identifying and sensitive.

Sensitive information refers to the values of variables that belong to the private

domain of the respondents, and hence to characteristics that they do not like to be

revealed. No exact definition can be given of variables to be considered sensitive.

Some general consensus exists about variables like sexual behavior and criminal past.

For other variables, it may depend on the context and cultural background. A simple

example is income, which in The Netherlands is considered to be sensitivewhereas in

Sweden it would sometimes be characterized as an identification variable.

Having established the distinction between identifying information and sensitive

information, it is now possible to formulate the basic rule for disclosure control: a

disseminated surveydata set shouldbe composed such that it is impossible for others to

correctly link records to individuals byusing the identifying information in the data set

and prior knowledge.

A crucial element is the prior knowledge of the user of the data: if someone has no

information whatsoever about a specific individual, identification and therefore dis-

closure is impossible.Hence, the riskof disclosure depends on the nature andamount of

a priori available knowledge. Particularly, if the data are used by other government

agencies thatmaintain comprehensive data files for administrative purposes such as tax

collection, keeping disclosure risk at an acceptable level will pose severe problems.

Since protection against disclosure is very difficult, the basic rule implies thatmany

survey data sets cannot be published. Therefore, in practice, this rule will have to be

relaxed to continue the release of useful survey data sets.

To protect a survey data set against disclosure, it must be known how identification

takes place in practice. Identification is made possible by uniqueness. To be able to

defineuniqueness, the key is introduced. Thekeydenotes the set of variables to be used

for identification purposes. Knowledge of the key constitutes the identifying infor-

mation. The keywill be taken to haveK different actually occurring values. The score

combinations of the keyare denotedby1, 2, . . .,K. If, for example, thekey is composed

of age (in 6 categories) and gender (in 2 categories), there are 12 different score

combinations; soK¼ 12. The number of elements in the populationwith key value i is

denoted byFi (i¼ 1, 2, . . .,K) and the corresponding number of elements in the sample

is equal to fi (i¼ 1, 2, . . .,K). AllFi are strictly positive, but some of the fimay be equal

to zero.

The value of K need not necessarily be equal to the product of the numbers of

categories of the key variables. If some combinations are impossible (i.e., there are so-

called structural zeros),Kwill be less than theproduct of the categories.Anexample is

a key consisting of age andmarital status: the combination of beingmarried and being

younger than 10 years is impossible.

Let N be the size of the population. Then the probability that a person, selected at

random from this population, has key value i is equal to pi¼Fi/N.
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The resolution of a key is defined by

R ¼ 1

PK
i¼1

p2
i

: ð13:1Þ

The resolution is equal to the reciprocal of the probability that two random

elements, selected with replacement from the population, have the same key value.

The resolution of a key gives some indication of the risk of identification. If, on the one

hand, the resolution of the key is high, the probability of an accidental match is low.

Therefore, there would be many persons whowould differ on the set of key values. In

this sense, there aremany unique persons. So inmany cases, it is possible to establish a

one-to-one relationship between a specific person and a record in the data set. If, one

the other hand, the resolution of the key is low, the probability of an accidentalmatch is

high. There will not be many persons with a unique set of values on the key variables.

Hence, if a link is established between a specific person and a record in the data set,

chances are high that this record contains data on a different person.

From the point of view of disclosure risk, high-resolution keys are dangerous. To

get some feeling of which value of the resolution indicates dangerous keys, two

extreme cases are considered. Disregarding the trivial case of K¼ 1, the risk of

disclosure is least if the keyassumes only twodifferent valueswith equal probability in

a largepopulation. Sincepi¼ 0.5, the resolution is equal toR¼ 2,which is far less than

N. The risk of disclosure is highest if every person is unique. This is the case if the key

assumes as many values as there are elements in the population. Since pi¼ 1/K and

N¼K, the resolution is equal toR¼K¼N. So there are real disclosure problems if the

resolution is of the same order as the population size. Note that ifpi¼ 1/K andK5N,

the resolution is equal to R¼K.

An example of a harmless key is the key that consists only of the variable gender.

Assuming that the probabilities of being male and female are the same, the

resolution is equal to 2, which is generally much lower than the population size.

The resolution will be much higher if more variables are included in the key. For

example, the combination of age (in 17 categories), income (in 13 categories), and

size of town (in 6 categories) produces a resolution of 500. For a specific population

of households, consisting of father, mother, and two children, and a key consisting of

ages of father andmother and the ages and sexes of both children, the resolution was

found to be approximately equal to 500,000. Particularly in small regions, this is a

dangerous key, as illustrated in Section 13.4.

Some individual is unique in the population if this person is the only one in the

population with a particular set of scores on the key, that is, he/she has key value iwith

Fi¼ 1, for some i. Likewise, someone isunique in the sample if he/she is theonlyone in

the sample with that set of scores on the key, that is, he/she has value i with fi¼ 1.

Every unique person in the populationwill also be unique in the sample, if selected.

However, uniqueness in the sample does not imply uniqueness in the population.

Sample uniqueness may also occur if exactly one person out of several with the same

key value is selected. It is clear that a statistical spy, interested in persons who are
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unique in the population andwho have been selected in the sample, can concentrate on

records with a unique key value in the sample.

Uniqueness in the population is vital for disclosure. Suppose some user of a data set

knows that a specific person is unique in awell-defined population. Then there are two

possibilities: either this person is in the sample or he is not. If he is in the sample, hewill

be identified and disclosed with certainty. If he is not in the sample, no harm can be

done. Knowledge of population uniqueness should not be underestimated, in particu-

lar if the data set contains variables thatmake it possible to detect respondents living in

a small area. For example, in many small areas, certain professions are unique (the

doctor, the notary, the dentist). In such subpopulations, many persons are unique on a

key consisting of only one identifier. It is thus clear that from the viewpoint of

disclosure, geographical information is very dangerous identifying information.

13.4 DISCLOSURE SCENARIOS

It is important to know the prevalence of unique persons on a key of current

identification variables. It should be realized that even if the categories of single

identifiers are sufficiently filled, the combination of two such identifiers may still

generate a large number of unique persons. Take, as an example, the two identifiers

profession and region. Persons are certainly not unique if one variable at a time is

considered. Although there are many dentists and many people live in small regions,

often there is only one dentist in a small region. So, usingonly these two identifiers, it is

possible to identify persons in a surveydata set.And if the identifiergender is included,

a female dentist may even be unique in amuch larger area. So, in this example, gender

is no longer a harmless key variable.

The danger of a high-resolution key is illustrated bymeans of an example based on

figures for The Netherlands. The population in a certain region contained 83,799

households. Of these households, 23,485 were composed of father, mother, and two

children. Suppose a key consists of the ages of father andmother and ages and sexes of

the two children (all ages in years). On this key of 6 variables, 16,008 out of the 23,485

households turnedout tobeunique,which is about 68%!So, if a certainhouseholdwith

father, mother, and two children is known to be in a sample from this region, there is a

high probability that this household can be identified.

High-resolution keys are dangerous, but that does not mean that low-resolution

keys are always safe. In a Dutch health survey consisting of a sample of n¼ 3500

persons, about 250 persons (7%) were unique on a key, consisting of the variables age

(17 categories), household income (13 categories), and size of the municipality (6

categories). In this case,Kwas equal to the product of the number of categories (1326)

and the resolution was equal to 500.

Even on a low-resolution key, there will still be exceptional values, for example, a

widow of 18. Disclosure of these “rare persons” happens often by accident. This type

of disclosure will be called disclosure by spontaneous recognition. It is important to

always check for these “rare persons” and do something about them, for example,

remove them from the survey data file.
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Disclosurewith high-resolution keys can be accomplished bymatching the data set

with a register containing the key and also names and addresses. If a register contains a

complete enumeration of the population or of a subpopulation (e.g., all inhabitants of a

large town), nearly every record in the data set can be matched uniquely to a record in

the register. This phenomenon will be called disclosure by matching. This type of

disclosure can only be carried out by a specialized sleuth.

The danger of disclosure by matching was revealed more or less by accident by

StatisticsNetherlands in 1984when, in the contextof aproject on real incomechanges,

a successful exact matching procedure was carried out for statistical purposes on files

with tax data (from the Internal Revenue Service). Subjects could be located and

matched in files from several years,without using their exact names and addresses; see

Van de Stadt et al. (1986). The danger of matching was also discovered by Paass and

Wauschkuhn (1985) in a seminal study on exact and statisticalmatching. They showed

that with information generally available to institutions such as police headquarters,

credit organizations, health bureaus, a large proportion of the records in statistical data

sets could be identified and disclosed.

Knowledge about uniqueness in the population is vital for a successful dis-

closure operation. In many cases, this type of information is limited. However, in

case of complete enumeration of a population, uniqueness can easily be estab-

lished from the data set. Someone who is unique in this data set is also unique in

the population.

Another interesting case of additional knowledge is response knowledge, that is,

knowledge that a person was interviewed for a particular survey. If the statistical spy

knows that a specific individual has participated in a survey and, consequently, that his

datamust be in the data set, identification and disclosure is accomplished very easily if

this individual is unique in the sample (not necessarily in the population!). Even

knowledge of which primary sampling units were selected in a multistage survey

increases the risk of disclosure substantially.

Identification can be established by a simple selection or elimination procedure.No

advanced technology is needed. A computer and some generally available software

(e.g., a statistical package like SPSS or STATA) are sufficient. Experiments have

shown that records with specified key values for, say, 3–20 variables can be found in a

file consisting of 10,000 records within a few minutes.

Response knowledge reduces population uniqueness to sample uniqueness.

Population uniqueness is not always easy to verify, but a simple tabulation program

is sufficient to determine sample uniqueness. Therefore, response knowledge signifi-

cantly increases the dangers of disclosure.

A simple, but realistic, example of disclosure by response knowledge shows the

danger of this scenario. The survey data set used contained all key variables from

a health survey data file consisting of 3500 records. Now suppose it is known that

colleague John is in the data set. John is 42 years old, has an academic degree, and

works for thegovernment. The disclosure attempt startswith all 3500 records. First, all

records with an age outside the interval 40–44 are deleted. This leaves only 164

records.Next, excludingall recordsof personswithout anacademic degree reduces the

number of remaining records to five. Finally, picking out only those people who are
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employed in government institutions results in just one record. This is John! And only

three variables were required to identify him.

From the point of view of disclosure control, a sample is safer than a complete

enumeration of the population. In large surveys, the sampling fraction could be 0.05.

So, only 1 out of each 20 persons is in the sample and not everyone’s private

information can be revealed. Furthermore, a sample does not give information

about uniqueness in the population. Is a sample therefore safe? No, certainly not.

Since a small sample contains more unique persons than a large sample, the risk

of disclosure by response knowledge even becomes larger as the sample size

decreases.

Timemay also be a factor affecting the disclosure risk. If the fieldworkof the survey

was carried out a long time ago, all information necessary for identificationmust refer

to that time. Since people are generally not very good in recalling events and facts from

the past, disclosure based on old data sets may be more difficult than disclosure based

on recent data sets.

13.5 MODELS FOR THE DISCLOSURE RISK

For estimating the number of population uniques using sample survey data, a simple

model is proposed. Themodel is based on the assumption that the cell frequencies in

the population are a realization of a superpopulation distribution. Let the population

consist of N individuals, and suppose the key divides the population into K cells.

Each cell i is assigned a superpopulation parameter pi4 0 (a probability) and a

random variable Fi denoting the population frequency in that cell. It is assumed that

Fi has a Poisson distribution with expected value mi¼Npi. Furthermore, let Up

denote the expected number of population uniques. Under these assumptions, Up is

equal to

Up ¼
XK
i¼1

mie
�mi : ð13:2Þ

The expected number of population uniques can be used as an approximation to the

realized number of unique individuals under the superpopulation model. To estimate

the number of uniques, all expected valuesm1,m2, . . .,mK have to be estimated. Since

the number of cells is usually very large, this can turn out to be a complex problem. To

simplify calculations, a model is assumed that governs the generation of the super-

population parameters m1, m2, . . ., mK. Two possible models are discussed here: the

Constant-Poisson model and the Poisson-Gamma model.

TheConstant-Poissonmodel assumes that all parametersm1,m2, . . .,mK are equal.

Consequently, all Fi have the same Poisson distribution with expected value m. Since
all probabilities have to sum to 1, it follows that

pi ¼ 1

K
ð13:3Þ
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for i¼ 1, 2, . . .,K. Usingmi¼m¼N/K, the expected number of population uniques is

equal to

Up ¼ Ne�N=K : ð13:4Þ

This is a nice and simple expression that can be computed quickly. Unfortunately,

the Constant-Poisson model rarely holds in practical situations. It is too simple.

The idea of the Poisson-Gamma model is to allow variations in the pi by

considering them as realizations of Gamma(a, b) distributed random variables, Gi

say. The first parametera controls themagnitude of thepi and the second parameter b
controls the variation in thepi. This distribution is used because it covers awide range

of possible distributions, and also arithmetic is rather simple. The usefulness of

this model was investigated by Bethlehem et al. (1990), Skinner et al. (1990), and

Greenberg and Zayatz (1992).

Although logically
P

Gi ¼ 1, it is simply assumed that
P

EðGiÞ ¼ 1. Then a¼
1/Kb, so there is only one unknown parameter left in the common distribution of

the Gi’s. This parameter (b) reflects the amount of dispersion of the superpopulation

probabilities Gi around their common mean 1/K.

The Poisson-Gamma model can now be summarized as

Gi � Gammaða; bÞ;
Fi � Poissonðmi ¼ Npijpi ¼ GiÞ;

ð13:5Þ

for i¼ 1, 2, . . ., K. An attractive property of this model is that the marginal distri-

bution of each Fi is the negative-binomial distribution (Johnson and Kotz, 1969).

Consequently, the expected value of Fi is

EðFiÞ ¼ m ¼ Nab ¼ N

K
; ð13:6Þ

and its variance is equal to

VðFiÞ ¼ mð1þNbÞ ¼ N

K
ð1þNbÞ: ð13:7Þ

Note that expressions (13.6) and (13.7) do not contain the parameter a. Due to the
restriction ab¼ 1/K, the choice of a value for b fixes the value of a.

Under the Constant-Poissonmodel, the variance of Fi is equal toN/K. Comparison

with expression (13.7) shows that the Poisson-Gamma model allows more variation.

The expected number of population uniques is under this model that is equal to

Up ¼ Nð1þNbÞ�ð1þaÞ: ð13:8Þ

To estimateUp, estimates of the parameters a and b of the Poisson-Gammamodel

are required. Expressions can be given for the maximum likelihood (ML) estimators,

but the moment estimators can also be used. These can be found by equating the first
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and second sample moments to their expected values. An estimator b for b is obtained
by solving

ð1þ nbÞ n
K

¼ 1

K�1

XK
i¼1

fi� n

K

� �2

: ð13:9Þ

Then an estimator a for a is obtained from the equation

a ¼ 1

bK
: ð13:10Þ

Now the expected number of population uniques Up can be estimated by

Up ¼ Nð1þNbÞ�ð1þ aÞ: ð13:11Þ
Only those records in the survey data file can be identified that are unique in the

population. The expected number of population uniques in the survey data file is

denoted by Ups. Assuming equal selection probabilities, Ups can be estimated by

Ups ¼ n

N
Up: ð13:12Þ

Two criteria can be proposed for establishing the disclosure risk, based on the

available information in the data file. The purpose of these criteria is to determine

whether (additional) measures for disclosure protection should be taken. The first

criterion is an absolute criterion of the form Up5Ca, where Ca, the absolute critical

value, is a constant, small enough to ensure thatUp is negligible. The second, relative

and less stringent, criterion states that the proportion of possibly identifiable records

(Ups/n¼Up/N) must be smaller than some critical value Cr. This is a relative critical

value. The motivation for a relative criterion is that it might be acceptable if just a few

of themany sample elements are identifiable, because it will then be very unlikely that

a specific record will be recognized as being unique.

Geographical variables in a survey data file may lead to even more severe

disclosure control problems, particularly if such variables describe a detailed geo-

graphical classification. There is a dilemma here. On the one hand, researchers often

want a detailed geographical classification for their analysis, and on the other, thismay

cause confidentiality of data to be at stake. This calls for a criterion that helps to

determinewhich level of detail of a geographical variable is still acceptable in terms of

disclosure risk.

One possibility for modeling uniqueness in geographical areas is to use a negative

binomial distribution for each area separately, that is,

Fij � Negative binomial ðNj; aj; bjÞ; ð13:13Þ
whereFij is the frequency in cell i of area j. This model will, in general, give a better fit

than a model that ignores the subpopulation structure by having only one a and b
parameter and one population sizeN. Moreover, separate models for each area enable

estimation of the number of unique elements Upj in each area j. Hence, the number

of unique elements in the entire population can be estimated by summing the Upj.
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However, if the number of areas is large, the computational effort can be considerable.

A simpler model that requires only one a and one b to be estimated is obtained by

assuming all aj and all bj to be equal, that is,

Fij � Negative binomial ðNj ; a; bÞ: ð13:14Þ
Thismodel can be used to choosewhich of themore or less refined several regional

classifications to include in the data set. In such situations, some indication is required

aboutwhich regional classification still satisfies the criterion for a “safe” data file, even

for the smallest region in that classification.Assumingmodel (13.14) is a good enough

approximation for this purpose; the relative criterion

Up

N
¼ ð1þNbÞ�ð1þaÞ ð13:15Þ

can be seen as a function of N. Since a and b are positive, expression (13.15) is a

monotonic decreasing function ofN. Now the critical population size NC is defined as

the population size for which the relative criterion is just satisfied; so,

UpðNCÞ
NC

¼ Cr ð13:16Þ

and

NC ¼ ðC�1=ð1þaÞ
r �1Þ

b
: ð13:17Þ

The estimates a fora and b forb can be used to estimate the critical population size.

And this estimate will indicate how refined the regional classification can be: the

regional classification must be such that the smallest distinguished area has a

population size larger than NC.

The theory discussed in this section is illustrated with an example, using a survey

data file containing data of 8399 individuals. There are four identification variables:

household composition (H) in 24 categories, age (A) in 14 categories, marital status

(M) in 2 categories, and gender (G) in 2 categories.

Four different keys were used. The first key consisted of variable H only. The

second key H�A was obtained by crossing H and A. In the same way, the third and

fourth keys were defined and denoted byH�A�M andH�A�M�G. For each of

these keys, the contingency table containing the sample frequencies for all possible

keyvalueswas formed.Sincenot all combinations are possible, the number of possible

key values was smaller than the product of the categories of the variables involved. In

contingency table terminology, structural zeros were excluded from the analysis but

sampling zeros were not.

The performance of the Constant-Poisson model and the Poisson-Gamma model

was analyzed by estimating the numbers of uniques in the sample (not necessarily also

unique in the population). The estimated number of uniques in the sample could be

compared with the corresponding observed number as a partial check of the model.

The results are summarized in Table 13.1.
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The estimates based on the Constant-Poisson model differ substantially from the

observed number of uniques. Clearly, thismodel does not fit in this example.Although

the Poisson-Gammamodel underestimates the number of sample uniques in all cases,

the order of magnitude is roughly correct.

The critical population sizes were computed by using a relative criterion value

of 0.1%, that is, the number of possibly identifiable records in any subpopulation

must be smaller than 0.1%. At first sight this criterion value seems rather small,

yet in a population of 14,000,000 (the Dutch population at that time), this would

mean that 14,000 people were unique and therefore at the risk of disclosure. The

results show that a data set containing any of the four keys (but no other key

variables) can be released as long as they pertain to subpopulations with more than

63,624 inhabitants.

13.6 PRACTICAL DISCLOSURE PROTECTION

Experiences with the analysis of disclosure risks of real survey data files have led to a

number of observations:

. In every survey data file containing 10 ormore key variables, a large number of

persons can be identified by matching this file with another file containing the

key and names and addresses (disclosure by matching).

. Response knowledge nearly always leads to identification (disclosure by re-

sponse knowledge), even on a low-resolution key.

. On a key consisting of only two or three identifiers, a considerable number of

persons are unique in the sample, someof thembeing “rare persons,” and there-

fore also unique in the population.

If someone is unique in the population, the question may arise: How high is the

risk of identification? This risk depends on the amount of knowledge that is available

to some user of the data. Furthermore, there are many respondents and many

potential users, and the amount of available knowledge may vary substantially. This

makes it difficult, but not impossible, tomodel additional knowledge and to quantify

Table 13.1 Estimating the Number of Uniques and the Critical Population Size

Key

Number of

Key Values

Number of

Uniques in

the Sample

Estimate for

Constant-

Poisson Model

Estimate for

Poisson-

Gamma Model

Critical

Population

Size

H 23 0 50.01 0.1 743

H�A 288 23 50.01 21.6 17,422

H�A�M 554 50 0.002 37.9 32,206

H�A�M�G 1108 108 4.3 80.2 63,624
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the probability that someone has knowledge of certain information; see, for

example, Cassel (1976), Frank (1976, 1979), and Duncan and Lambert (1986,

1987). Sometimes statistical agencies take a different approach by asking the

question: Does a respondent consider his private information in the survey data

file safe? Hence, the risk of disclosure is considered not only from the legal, ethical,

and practical viewpoints of the agency but also from the viewpoint of the single

respondent who might have second thoughts about answering questions in a survey.

A consequence of such a standpoint is that all respondents, who are either unique in

the sample while it might be known that they are in the sample or who are unique in

the population, have the right of protection. In particular, this right is appropriate for

persons who are unique on a low-resolution key, that is, persons with exceptional

characteristics.

In the literature, several techniques can be found that reduce the risk of disclosure.

Spruill (1983), Paass (1985), Kim (1986), andMcGuckin and Nguyen (1988) discuss

adding random noise to the data. However, this works well only for quantitative

variables and not so well for qualitative variables. For example, adding noise to

the variable gender would turn males into females, and vice versa. For qualitative

variables, noisemay affect the structure and nature of the data toomuch. Furthermore,

Paass (1985) has shown that adding noise to data does not significantly reduce the

disclosure risk.

Another disclosure avoidance technique is data swapping, suggested by

Dalenius and Reiss (1982). Data swapping transforms the data set into another

data set by exchanging the values of variables. So the value of a variable in the

record of a respondent is not his own value but the value of some other respondent.

Data swapping affects the internal structure of the data, but knowing how much

swapping has been done does allow one to correct the estimates of second-order

moments.

A third technique to avoid disclosure is called microaggregation (Spruill, 1983;

Cox et al., 1986). The individual data are not published, but aggregated data are. In the

case of quantitative variables, it is often sufficient to publish means, variances, and

covariances only. With these aggregates, many multivariate analyses techniques, for

example, regression analysis, can be carried out (McGuckin and Nguyen, 1988). For

qualitative variables, microaggregationmeans publishing two-dimensional, or higher

dimensional, tables. To satisfy the needs of all users and to make possible all kinds of

analysis techniques for this type of data, for example, loglinear analysis, the released

data set should contain the frequency counts for the crossing of all variables, and this

will come down to the individual data.

A final technique to bementioned here is the reduction of the resolution of the key.

This reduction can be obtained by removing identification variables from the data set

or by collapsing categories of identification variables. This oftenmeans a reduction to

at most 10 identifiers. Removal of so much vital information can make disseminated

data sets useless for scientific research.

The risk of disclosure by response knowledge can be reduced by not publishing the

survey data file immediately after finishing the fieldwork. Still, by allowing a number
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of years to pass between fieldwork and publication, one may wonder whether the

respondent will feel comfortable if he knows that response knowledge will reveal his

private data almost with certainty.

The problem of disclosure by spontaneous recognition of rare persons can be

tackled.This riskwill be diminished if population uniqueness is removed fromall low-

dimensional tables of key variables.

The following procedure is proposed to remove uniqueness in low-dimensional

tables. A disclosure analysis always starts with establishing the key variables. A file is

created that contains the values of only these key variables. Next, it must be decided

what the criterion should pertain to. If the criterion pertains to population uniques, the

Poisson-Gammamodel can be used to estimate the number of uniques. However, it is

also possible to apply the criterion to the sample uniques.On the one hand, this ismuch

simpler and straightforward, but on the other it is a conservative criterion: it causes

more protection measures to be undertaken than really necessary (sample uniques

need not be population uniques). On the file with key variables, an analysis is carried

out that consists of four steps:

Step 1: Univariate Scan. Check the univariate frequency distributions and locate

variables with small frequencies that do not satisfy the criterion.

Step 2: Collapse/Remove. If a variable does not satisfy the criterion, it can be

removed entirely from the data set, but often a better approach is to collapse

categories or to recode a bad (rare) category as “unknown” or “otherwise.”

Step 3: Bivariate Scan. Check the bivariate distributions frequency distributions

and locate the tables that do not satisfy the criterion.

Step4:Collapse/Remove/Recode. If a bivariate table does not satisfy the criterion,

something has to be done about at least one of the two variables concerned. The

choice may depend on the behavior of the variables in other tables. Variables

causing problems can be removed entirely or some categories may be col-

lapsed. If the problems are caused by only a few records, the relevant scores in

these records may be set to “unknown,” thus minimizing the loss of

information.

Of course, the analysis can be extended to trivariate tables, but if the number of key

variables is substantial, this will be very time consuming.

If the data set contains some kind of regional classification, it is recommended to

perform the analysis for each region separately. In fact, this is a trivariate analysis in

which one variable is always equal to region.

It should be noted that this procedurewill not protect the data set against disclosure

by matching, and hardly will it protect against disclosure by response knowledge.

Specifying more stringent criterion values will produce data sets that might to some

extent be protected against these two types of disclosure, but the subsequent loss of

information will generally be unacceptably large.

It turns out that disclosure of sensitive information in survey data files is often

possible, and difficult to prevent, unless the information in the data set is severely
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reduced.Disclosure of “rare persons” can be preventedby taking care of the uniques in

two- or three-dimensional tables. The risk of disclosure by response knowledge can be

limited by advising the respondents not to tell anyone else that they were in a survey.

Furthermore, delaying the release of the survey data may help. The third type of

disclosure, disclosure by matching, requires considerable resources in terms of

methodology, computing power, and manpower. Therefore, if survey data files are

releasedunder the conditions that thedatamaybeused for statistical purposes only and

that no matching procedures would be carried out at the individual level, any huge

effort to identify and to disclose clearly shows malicious intent. In view of the duty of

statistical agencies todisseminate statistical information, disclosureprotection for this

kind ofmalpractice could and should be taken care of by legal arrangements andnot by

restrictions on the data to be released.

EXERCISES

13.1 How is the number of key values K defined?

a. The sum of the numbers of categories for all key variables.

b. The product of the numbers of categories of all key variables.

c. The outcome under (a) minus the number of impossible key combinations.

d. The outcome under (b) minus the number of impossible key combinations.

13.2 What happens to the value of the resolution R if the number of records in a

survey data set is made four times large by adding three copies of the data set to

the data set.

a. The value of the resolution will be four times as large.

b. The value of the resolution will be two times as large.

c. The value of the resolution does not change.

d. The value of the resolution will be half as large.

13.3 A survey data set relates to a province consisting of three districts. The

population sizes in the districts are 40,000, 20,000, and 10,000. Avariable age

has been measured in three categories. The age distribution is the same in each

district: 30% young, 40%middle aged, and 30% elderly. Also gender has been

recorded. It is known that within each combination of district and age, the

number of males is equal to the number of females.

a. Compute the resolution of the key consisting of district, age, and gender.

b. What would have been the resolution of this key if the number of people for

each combination of district, age, and gender was exactly the same?

13.4 A simple key just splits the population into two categories. The number of

persons in the first category isF and the number in the second category isN�F.

Assuming that the value of F can vary, compute the minimum and maximum

values of the resolution. For which values of F are these extreme values

obtained?
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13.5 Which of the following statements is correct?

a. The Constant-Poisson model fits better in practice than the Poisson-

Gamma model because it allows more variation in the frequencies of the

key values.

b. The Constant-Poisson model fits worse in practice than the Poisson-

Gamma model because it allows less variation in the frequencies of the

key values.

c. In most practical applications, the fit of the Constant-Poisson model is as

good as the fit of the Poisson-Gamma model.

d. The Constant-Poisson model fits better in practice than the Poisson-

Gamma model because it contains less parameters.

13.6 A population consists of 100,800 persons. There are 5 key variables: gender

(2 categories), region (12 categories), composition of the household (6

categories), age (10 categories), and education (7 categories). Suppose, the

number of persons Fiwith key value i has a Poisson distribution. Also suppose

that the expected value of all Fi is the same.

a. Compute the expected number of key values i with Fi4 0.

b. Compute the expected number of key values i with Fi¼ 1.

13.7 A research agency intends to disseminate a survey data file, but wants to keep

the disclosure risk to a minimum. The file contains the data of a sample from a

population of 7,000,000 employed persons. The survey agency considers

making available one of the following two files:

. A file with a detailed regional classification, but with less detailed other

variables. The identification variables are municipality (600 categories),

gender (2 categories), age (10 categories), level of education (7 categories),

and function type (12 categories).

. Afilewith a less detailed regional classification, butwithmore detailed other

variables. The identification variables are province (12 categories), gender

(2 categories), age (20 categories), level of education (7 categories), function

type (12 categories), marital status (2 categories), and composition of the

household (13 categories).

The research agency applies a relative criterion value of 0.001 for

disclosure control for all its survey data files.

a. Using the Constant-Poisson model, determine whether or not both survey

data files satisfy this criterion, and thus whether or not they can be

published. It can be assumed that there are no structural zeros among

all possible combinations of the categories of the key variables.

b. There is different survey data set that relates to the same target population.

This file does not contain a regional classification variable. The number of

different key values of the available key variables is equal to 1,000,000.

An analysis shows that the Poisson-Gamma model fits well. The estimate
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for the parameter a is equal to 0.00005 and the estimate for the parameter b
is equal to 0.02.

Estimate the number of uniques in the total population. Can this file be

published if the relative criterion of 0.001 is applied?

c. Compute the critical population size. What conclusion can be drawn from

the result of this computation?

13.8 The town council of a large city has carried out a survey among its inhabitants.

The total population size isN¼ 600,000 and the sample size of the survey was

n¼ 10,000. The town council intends to make the survey data file available to

other organizations. Before making a decision, a disclosure analysis is carried

out. There are 5 key variables in the file: gender (2 categories), marital status (4

categories), age (20 categories), neighborhood (40 categories), and occupation

(15 categories).

a. Compute the number of different key values K. If it is assumed that every

key value appears with the same frequency in the table, compute the

resolution R.

b. Using the Constant-Poisson model, estimate the number of population

uniques. Can this file be disseminated under a relative criterion of 0.001?

Using the sample data, it can be shown that

1

K�1

XK
i¼1

fi� n

K

� �2

¼ 2:1875:

c. Compute estimates a and b for the parameters a and b of the Poisson-

Gamma model. Next, estimate the number of population unique. Can this

survey data set be published under a relative criterion of 0.001?

d. Using the estimates a and b, compute the critical population size. What

conclusion can be drawn with respect to publishing data at the level of a

neighborhood?
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