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My aim was to produce a statistics book with two characteristics: to assume that 
the reader is using a computer to analyse data and to contain absolutely no 
equations.

This is a handbook for biologists who want to process their data through a 
statistical package on the computer, to select the most appropriate methods and 
extract the important information from the, often confusing, output that is pro-
duced. It is aimed, primarily, at undergraduates and masters students in the 
biological sciences who have to use statistics in practical classes and projects. 
Such users of statistics don’t have to understand exactly how the test works or 
how to do the actual calculations. These things are not covered in this book as 
there are more than enough books providing such information already. What is 
important is that the right statistical test is used and the right inferences made 
from the output of the test. An extensive key to statistical tests is included for 
the former and the bulk of the book is made up of descriptions of how to carry 
out the tests to address the latter.

In several years of teaching statistics to biology students it is clear to me that 
most students don’t really care how or why the test works. They do care a great 
deal that they are using an appropriate test and interpreting the results properly. 
I think that this is a fair aim to have for occasional users of statistics. Of course, 
anyone going on to use statistics frequently should become familiar with the 
way that calculations manipulate the data to produce the output as this will 
give a better understanding of the test.

If this book has a message it is this: think about the statistics before you collect 
the data! So many times I have seen rather distraught students unable to analyse 
their precious data because the experimental design they used was inappropri-
ate. On such occasions I try to find a compromise test that will make the best of 
a bad job but this often leads to a weaker conclusion than might have been 
 possible if more forethought had been applied from the outset. There is no 
doubt that if experiments or sampling strategies are designed with the statistics 
in mind better science will result.

Statistics are often seen by students as the ‘thing you must do to data at the 
end’. Please try to avoid falling into this trap yourself. Thought experiments 
producing dummy data are a good way to try out experimental designs and are 
much less labour-intensive than real ones!

Preface
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xiv Preface

Although there are almost no equations in this book I’m afraid there was no 
way to totally avoid statistical jargon. To ease the pain somewhat, an extensive 
Glossary and key to symbols are included. So when you are navigating your way 
through the key to choosing a test you should look up any words you don’t 
understand.

In this book I have given extensive instructions for the use of four commonly 
encountered software packages: SPSS, R, Excel and MINITAB. However, the 
key to choosing a statistical test is not at all package-specific, so if you use a 
software package other than the four I focus on or if you are using a calculator 
you will still be able to get a good deal out of this book.

If every sample gave the same result there would be no need for statistics. 
However, all aspects of biology are filled with variation. It is statistics that can 
be used to penetrate the haze of experimental error and the inherent variability 
of the natural world to reach the underlying causes and processes at work. So, 
try not to hate statistics, they are merely a tool that, when used wisely and 
 properly, can make the life of a biologist much simpler and give conclusions a 
sound basis.

The third edition

In the 8 years since I wrote the second edition of this book there have, of course, 
been several new versions of the software produced. I have received many 
 comments about the previous editions and I am grateful for the many sugges-
tions on how to improve the text and coverage. Requests to add further statisti-
cal packages have been the most common suggestion for change. There was 
surprisingly little consensus on the packages to add for the second edition, but 
since 2000 the freely available, and very powerful, package R has become 
extremely widely used so I have added that to the mix this time.

How to use this book

This is definitely not a book that should be read from cover to cover. It is a book 
to refer to when you need assistance with statistical analysis, either when choos-
ing an appropriate test or when carrying it out. The basics of statistical analysis 
and experimental design are covered briefly but those sections are intended 
mostly as a revision aid, or to outline of some of the more important concepts. 
The reviews of other statistics books may help you choose those that are most 
appropriate for you if you want or need more details.

The heart of the book is the key. The rest of the book hinges on the key, 
explaining how to carry out the tests, giving assistance with the statistical terms 
in the Glossary or giving tips on the use of computers and packages.
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1Eight steps to 
successful data 
analysis

This is a very simple sequence that, if you follow it, will integrate the statistics 
you use into the process of scientific investigation. As I make clear here, statistical 
tests should be considered very early in the process and not left until the end.
1 Decide what you are interested in.
2 Formulate a hypothesis or several hypotheses (see Chapters 2 and 3 for 
guidance).
3 Design the experiment, manipulation or sampling routine that will allow you 
to test the hypotheses (see Chapters 2 and 4 for some hints on how to go about 
this).
4 Collect dummy data (i.e. make up approximate values based on what you 
expect to obtain). The collection of ‘dummy data’ may seem strange but it will 
convert the proposed experimental design or sampling routine into something 
more tangible. The process can often expose flaws or weaknesses in the data-
collection routine that will save a huge amount of time and effort.
5 Use the key presented in Chapter 3 to guide you towards the appropriate test 
or tests.
6 Carry out the test(s) using the dummy data. (Chapters 6–9 will show you 
how to input the data, use the statistical packages and interpret the output.)
7 If there are problems go back to step 3 (or 2); otherwise, proceed to the col-
lection of real data.
8 Carry out the test(s) using the real data. Report the findings and/or return to 
step 2.
I implore you to use this sequence. I have seen countless students who have 
spent a long time and a lot of effort collecting data only to find that the experi-
mental or sampling design was not quite right. The test they are forced to use is 
much less powerful than one they could have used with only a slight change in 
the experimental design. This sort experience tends to turn people away from 
statistics and become ‘scared’ of them. This is a great shame as statistics are a 
hugely useful and vital tool in science.

The rest of the book follows this eight-step process but you should use it for 
guidance and advice when you become unsure of what to do.

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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The aim of this chapter is to introduce, in rather broad terms, some of the recur-
ring concepts of data collection and analysis. Everything introduced here is cov-
ered at greater length in later chapters and certainly in the many statistics textbooks 
that aim to introduce statistical theory and experimental design to scientists.

The key to statistical tests in the next chapter assumes that you are familiar 
with most of the basic concepts introduced here.

Observations

These are the raw material of statistics and can include anything recorded as 
part of an investigation. They can be on any scale from a simple ‘raining or not 
raining’ dichotomy to a very sophisticated and precise analysis of nutrient con-
centrations. The type of observations recorded will have a great bearing on the 
type of statistical tests that are appropriate.

Observations can be simply divided into three types: categorical where the 
observations can be in a limited number of categories which have no obvious 
scale (e.g. ‘oak’, ‘ash’, ‘elm’); discrete where there is a real scale but not all values 
are possible (e.g. ‘number of eggs in a nest’ or ‘number of species in a sample’) 
and continuous where any value is theoretically possible, only restricted by the 
measuring device (e.g. lengths, concentrations).

Different types of observations are considered in more detail in Chapter 5.

Hypothesis testing

The cornerstone of scientific analysis is hypothesis testing. The concept is rather 
simple: almost every time a statistical test is carried out it is testing the probabil-
ity that a hypothesis is correct. If the probability is small then the hypothesis is 
deemed to be untrue and it is rejected in favour of an alternative. This is done 
in what seems to be a rather upside down way as the test is always of what is 

The basics2

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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The basics 3

called the null hypothesis rather than the more interesting hypothesis. The null 
hypothesis is the hypothesis that nothing is going on (it is often labelled as H0). 
For example, if the weights of bulbs for two cultivars of daffodils were being 
investigated, the null hypothesis would be that there is no weight difference 
between cultivars: ‘the weights of the two groups of bulbs are the same’ or, 
more correctly, ‘the two groups of bulbs are samples from a larger population 
with the same distribution’. A statistical test is carried out to find out how likely 
that null hypothesis is to be true. If we decide to reject the null hypothesis we 
must accept the alternative, more interesting, hypothesis (H1) that: ‘the weights 
of bulbs for the two cultivars are different’ or, more correctly, that ‘the groups 
are samples from populations with different distributions’.

P-values

The P-value is the bottom line of most statistical tests. (Incidentally, you may 
come across it written in upper or lower case, italic or not: e.g. P value, P-value, 
p value or p-value.) It is the probability of seeing data this extreme or more 
extreme if the null hypothesis is true. So if a P-value is given as 0.06 it indicates 
that you have a 6% chance of seeing data like this if the null hypothesis is true. 
In biology it is usual to take a value of 0.05 or 5% as the critical level for the 
rejection of a hypothesis. This means that providing a hypothesis has a less than 
one in 20 chance of being true we reject it. As it is the null hypothesis that is 
nearly always being tested we are always looking for low P-values to reject this 
hypothesis and accept the more interesting alternative hypothesis.

Clearly the smaller the P-value the more confident we can be in the conclu-
sions drawn from it. A P-value of 0.0001 indicates that if the null hypothesis is 
true the chance of seeing data as extreme or more extreme than that being tested 
is one in 10 000. This is much more convincing than a marginal P = 0.049.

P-values and the types of errors that are implicitly accepted by their use are 
considered further in Chapter 4.

Sampling

Observations have to be collected in some way. This process of data acquisition is 
called sampling. Although there are almost as many different methods that can 
be used for sampling as there are possible things to sample, there are some general 
rules. One of the most obvious is that a large number of observations is usually 
better than a small number. Balanced sampling is also important (i.e. when com-
paring two groups take the same number of observations from each group).

Most statistical tests assume that samples are taken at random. This sounds 
easy but is actually quite difficult to achieve. For example, if you are sampling 
beetles from pit-fall traps the sample may seem totally random but in fact is 

9781405198387_4_002.indd   39781405198387_4_002.indd   3 9/16/2010   11:29:05 PM9/16/2010   11:29:05 PM



4 Chapter 2

quite biased towards those species that move around the most and fail to avoid 
the traps. Another common bias is to chose a point at random and then measure 
the nearest individual to that point, assuming that this will produce a random 
sample. It will not be random at all as isolated individuals and those at the edges 
of clumps are more likely to be selected than those in the middle. There are 
methods available to reduce problems associated with non-random sampling 
but the first step is to be aware of the problem.

A further assumption of sampling is that individuals are either only measured 
once or they are all sampled on several occasions. This assumption is often vio-
lated if, for example, the same site is visited on two occasions and the same 
individuals or clones are inadvertently remeasured.

The sets of observations collected are called variables. A variable can be almost 
anything it is possible to record as long as different individuals can be assigned 
different values.

Some of the problems of sampling are considered in Chapter 4.

Experiments

In biology many investigations use experiments of some sort. An experiment 
occurs when anything is altered or controlled by the investigator. For example, 
an investigation into the effect of fertilizer on plant growth will use a control 
plot (or several control plots) where there is no fertilizer added and then one or 
more plots where fertilizer has been added at known concentrations set by the 
investigators. In this way the effect of fertilizer can be determined by compari-
son of the different concentrations of fertilizer. The condition being controlled 
(e.g. fertilizer) is usually called a factor and the different levels used called treat-
ments or factor levels (e.g. concentrations of fertilizer). The design of this exper-
iment will be determined by the hypothesis or hypotheses being investigated. If 
the effect of the fertilizer on a particular plant is of interest then perhaps a range 
of different soil types might be used with and without fertilizer. If the effect on 
plants in general is of interest then an experiment using a variety of plants is 
required, either in isolation or together. If the optimum fertilizer treatment is 
required then a range of concentrations will be applied and a cost-benefit analy-
sis carried out.

More details and strategies for experimental design are considered in Chapter 4.

Statistics

In general, statistics are the results of manipulation of observations to produce 
a single, or small number of results. There are various categories of statistics 
depending on the type of summary required. Here I divide statistics into four 
categories.
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The basics 5

Descriptive statistics
The simplest statistics are summaries of data sets. Simple summary statistics are 
easy to understand but should not be overlooked. These are not usually consid-
ered to be statistics but are in fact extremely useful for data investigation. The 
most widely used are measures of the ‘location’ of a set of numbers such as the 
mean or median. Then there are measures of the ‘spread’ of the data, such as the 
standard deviation. Choice of appropriate descriptive statistic and the best way 
of displaying the results are considered in Chapters 5 and 6.

Tests of difference
A familiar question in any field of investigation is going to be something like ‘is 
this group different from that group?’. A question of this kind can then be 
turned into a null hypothesis with a form: ‘this group and that group are not 
different’. To answer this question, and test the null hypothesis, a statistical test 
of difference is required. There are many tests that all seem to answer the same 
type of question but each is appropriate when certain types of data are being 
considered. After the simple comparison of two groups there are extensions to 
comparisons of more than two groups and then to tests involving more than one 
way of dividing the individuals into groups. For example, individuals could be 
assigned to two groups by sex and also into groups depending on whether they 
had been given a drug or not. This could be considered as four groups or as what 
is known as a factorial test, where there are two factors, ‘sex’ and ‘drug’, with all 
combinations of the levels of the two factors being measured in some way. 
Factorial designs can become very complicated but they are very powerful and 
can expose subtleties in the way the factors interact that can never be found 
though investigation of the data using one factor at a time.

Tests of difference can also be used to compare variables with known distri-
butions. These can be statistical distributions or derived from theory. Chapter 7 
considers tests of difference in detail.

Tests of relationships
Another familiar question that arises in scientific investigation is in the form ‘is 
A associated with B?’. For example, ‘is fat intake related to blood pressure?’. 
This type of question should then be turned into a null hypothesis that ‘A is not 
associated with B’ and then tested using one of a variety of statistical tests. As 
with tests of difference there are a many tests that seem to address the same 
type of problem, but again each is appropriate for different types of data.

Test of relationships fall into two groups, called correlation and regression, 
depending on the type of hypothesis being investigated. Correlation is a test to 
measure the degree to which one set of data varies with another: it does not 
imply that there is any cause-and-effect relationship. Regression is used to fit a 
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relationship between two variables such that one can be predicted from the 
other. This does imply a cause-and-effect relationship or at least an implication 
that one of the variables is a ‘response’ in some way. So in the investigation of 
fat intake and blood pressure a strong positive correlation between the two 
shows an association but does not show cause and effect. If a regression is used 
and there is a significant positive regression line, this would imply that blood 
pressure can be predicted using fat intake or, if the regression uses the fat intake 
as the ‘response’, that fat intake can be predicted from blood pressure.

There are many additional techniques that can be employed to consider the 
relationships between more than two sets of data. Tests of relationships are 
described in Chapter 8.

Tests for data investigation
A whole range of tests is available to help investigators explore large data sets. 
Unlike the tests considered above, data investigation need not have a hypothesis 
for testing. For example, in a study of the morphology of fish there may be many 
fin measures from a range of species and sites that offer far too many potential 
hypotheses for investigation. In this case the application of a multivariate tech-
nique may show up relationships between individuals, help assign unknown 
specimens to categories or just suggest which hypotheses are worth further 
consideration.

A few of the many different techniques available are considered in Chapter 9.
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3Choosing a test: 
a key

I hope that you are not reading this chapter with your data already collected 
and the experiment or sampling programme ‘finished’. If you have finished col-
lecting your data I strongly advise you to approach your next experiment or 
survey in a different way. As you will see below, I hope that you will be using 
this key before you start collecting real data.

Remember: eight steps to successful data analysis

1 Decide what you are interested in.
2 Formulate a hypothesis or hypotheses.
3 Design the experiment or sampling routine.
4 Collect dummy data. Make up approximate values based on what you expect.
5 Use the key here to decide on the appropriate test or tests.
6 Carry out the test(s) using the dummy data.
7 If there are problems go back to step 3 (or 2), otherwise collect the real data.
8 Carry out the test(s) using the real data.

The art of choosing a test

It may be a surprising revelation, but choosing a statistical test is not an exact 
science. There is nearly always scope for considerable choice and many decisions 
will be made based on personal judgements, experience with similar problems 
or just a simple hunch. There are many circumstances under which there are 
several ways that the data could be analysed and yet each of the possible tests 
could be justified.

A common tendency is to force the data from your experiment into a test you 
are familiar with even if it is not the best method. Look around for different tests 
that may be more appropriate to the hypothesis you are testing. In this way you 
will expand your statistical repertoire and add power to your future experiments.

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.

9781405198387_4_003.indd   79781405198387_4_003.indd   7 9/17/2010   6:04:51 PM9/17/2010   6:04:51 PM



8 Chapter 3

A key to assist in your choice of statistical test

Starting at step 1 in the list above move through the key following the path that 
best describes your data. If you are unsure about any of the terms used then 
consult the glossary or the relevant sections of the next two chapters. This is not 
a true dichotomous key and at several points there are more than two routes or 
end points.

There may be several end points appropriate to your data that result from 
this key. For example you may wish to know the correct display method for the 
data and then the correct measure of dispersion to use. If this is the case, go 
through the key twice.

All the tests and techniques mentioned in the key are described in later 
chapters.

Italics indicate instructions about what you should do.
Numbers in brackets indicate that the point in the key is something of a com-

promise destination.
There are several points where rather arbitrary numbers are used to deter-

mine which path you should take. For example, I use 30 different observations 
as the arbitrary level at which to split continuous and discontinuous data. If 
your data set falls close to this level you should not feel constrained to take one 
path if you feel more comfortable with the other.

1 Testing a clear hypothesis and associated null hypothesis (e.g. H1 = 
blood glucose level is related to age and H0 = blood glucose is not 
related to age).

25

Not testing any hypothesis but simply want to present, summarize 
or explore data.

2

2 Methods to summarize and display the data required. 3
Data exploration for the purpose of understanding and getting a 
feel for the data or perhaps to help with formulation of hypotheses. 
For example, you may wish to find possible groups within the data 
(e.g. 10 morphological variables have been taken from a large 
number of carabid beetles; the multivariate test may establish 
whether they can be divided into separate taxa).

60

3 There is only one collected variable under consideration (e.g. the 
only variable measured is brain volume although it may have been 
measured from several different populations).

4

There is more than one measured variable (e.g. you have measured the 
number of algae per millilitre and the water pH in the same sample).

24

4 The data are discrete; there are fewer than 30 different values (e.g. 
number of species in a sample).

5
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Choosing a test: a key 9

The data are continuous; there are more than 29 different values 
(e.g. bee wing length measured to the nearest 0.01 mm).

16

(Note: the distinction between the above is rather arbitrary.)

5 There is only one group or sample (e.g. all measurements taken 
from the same river on the same day).

6

There is more than one group or sample (e.g. you have measured 
the number of antenna segments in a species of beetle and have 
divided the sample according to sex to give two groups).

15

6 A graphical representation of the data is required. 7
A numerical summary or description of the data required. 11

7 A display of the whole distribution is required. 8
Crude display of position and spread of data is required: use a box 
and whisker display to show medians, range and inter-quartile range, 
page 49 (also known as a box plot).

8 Values have real meaning (e.g. number of mammals caught per night). 10
Values are arbitrary labels that have no real sequence (e.g. different 
vegetation-type classifications in an area of forest).

9

9 There are fewer than 10 different values or classifications: draw a 
pie chart, page 52. Ensure that each segment is labelled clearly and 
that adjacent shading patterns are as distinct as possible. Avoid using 
three-dimensional or shadow effects, dark shading or colour. Do not 
add the proportion in figures to the ‘piece’ of the pie as this information 
is redundant.
There are 10 or more different values or classifications: amalgamate 
values until there are fewer than 10 or divide the sample to produce 
two sets each with fewer than 10 values. Ten is a level above which it 
is difficult to distinguish different sections of the pie or to have 
sufficiently distinct shading patterns.

10 There are more than 20 different values: amalgamate values to 
produce around 12 classes (almost certainly done automatically by 
your package) and draw a histogram, page 51. Put classes on the 
x-axis, frequency of occurrence (number of times the value occurs) on 
the y-axis, with no gaps between bars. Do not use three-dimensional or 
shadow effects.
There are 20 or fewer different values: draw a bar chart, page 51. 
Each value should be represented on the x-axis. If there are few classes, 
extend the range to include values not in the data set at either side, 
frequency of occurrence (number of times the value occurs) on y-axis. 
Gaps should appear between bars, unless the variable is clearly 
supposed to be continuous; do not use three-dimensional or shadow 
effects.
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10 Chapter 3

11 You want a measure of position (mean is the one used most 
commonly).

12

You want a measure of dispersion or spread (standard deviation 
and confidence intervals are the most commonly used).

13

You want a measure of symmetry or shape of the distribution. 14
(Note: you will probably want to go for at least one measure of 
position and another of spread in most cases.)

12 Variable is definitely discrete, usually restricted to integer values 
smaller than 30 (e.g. number of eggs in a clutch): calculate the 
median, page 53.
Variable should be continuous but has only a few different values 
due to accuracy of measurement (e.g. bone length measured to the 
nearest centimetre): calculate the mean, page 53.
If you are particularly interested in the most commonly occurring 
response: calculate the mode, page 53, in addition to either the mean 
or median.

13 A very rough measure of spread is required: calculate the range, page 
55 (note that this measure is very biased by sample size and is rarely 
a useful statistic).
You are particularly interested in the highest and/or lowest values: 
calculate the range, page 55.
Variable should be continuous but has only a few values due to 
accuracy of measurement: calculate the standard deviation, page 55.
Variable is discrete or has an unusual distribution: calculate the 
interquartile range, page 55.

14 Variable should be continuous but has only a few values due to 
accuracy of measurement: calculate the skew (g1), page 57.
Observations are discrete or you have already calculated the 
interquartile range and the median: the relative size of the 
interquartile range above and below the median provides a measure of 
the symmetry of the data.

15 You have not established the appropriate technique for a single 
sample: go back to 6 to find the appropriate techniques for each group. 
You should find that the same is correct for each sample or group.

(6)

The samples can be displayed separately: go back to 7 and choose the 
appropriate style. So that direct comparisons can be made, be sure to 
use the same scales (both x-axis and y-axis) for each graph. Be 
warned that packages will often adjust scales for you. If this happens 
you must force the scales to be the same.

(7)

The samples are to be displayed together on the same graph: use a 
chart with a box plot for each sample and the x-axis representing the 
sample number, page 62. Ensure that there is a clear space between 
each box plot.
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Choosing a test: a key 11

16 There is only a data set from one group or sample. 17
The data have been collected from more than one group or sample 
(e.g. you have measured the mass of each individual of a single 
species of vole from one sample and have divided the sample 
according to sex).

23

17 A graphical representation of the data is required. 18
A numerical summary or descriptive statistics are required. 19

18 A display of the whole distribution is required: group to produce 
around 12–20 classes and draw a histogram, page 51 (probably done 
automatically by your package). Put classes on the x-axis, frequency of 
occurrence (number of times the value occurs within the class) on the 
y-axis, with no gaps between bars and no three-dimensional or shadow 
effects. Even-sized classes are much easier for a reader to interpret. 
Data with an unusual distribution (e.g. there are some extremely high 
values well away from most of the observations) may require 
transformation before the histogram is attempted.
A crude display of position and spread of the data is required: the 
‘error bar’ type of display is unusual for a single sample but common 
for several samples. There is a symbol representing the mean and a 
vertical line representing range of either the 95% confidence interval or 
the standard deviation, page 63.

19 You want a measure of position (mean is the most common). 20
You want a measure of dispersion (spread). 21
You want a measure of symmetry or shape of the distribution. 22
You wish to determine whether the data are normally distributed: 
carry out a Kolmogorov–Smirnov test, page 86, an Anderson–Darling 
test, page 89, a Shapiro–Wilk test, page 90, or a chi-square goodness of 
fit, page 75.
(Note: you probably require one of each of the above for a full 
summary of the data.)

20 Unless the variable is definitely discrete or is known to have an odd 
distribution (e.g. not symmetrical): calculate the mean, page 53.
If the data are known to be discrete or the data set is to be 
compared with other, discrete data with fewer possible values: 
calculate the median, page 53.
If you are particularly interested in the most commonly occurring 
value: calculate the mode, page 53, in addition to the mean or median.

21 If the data are continuous and approximately normally distributed 
and you require an estimate of the spread of data: calculate the 
standard deviation (SD), page 55. (Note: standard deviation is the 
square root of variance and is measured in the same units as the 
original data.)
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If you have previously calculated the mean and require an estimate 
of the range of possible values for the mean: calculate 95% confidence 
limits for the mean, page 56 (a.k.a. 95% confidence interval or 95% CI).
A very rough measure of spread required: calculate the range, page 55. 
(Note that this measure is very biased by sample size and is rarely a 
useful statistic in large samples.)
If you have a special interest in the highest and or lowest values in 
the sample: calculate the range, page 55.
If the data are known to be discrete or are to be compared with 
other, discrete, data or if you have previously calculated the 
median: calculate the interquartile range, page 55.
(Note: many people use standard error (SE) as a measure of spread. 
I think that the main reason for this is that it is smaller than either 
SD or 95% CI rather than for any statistical reason. Do not use SE 
for this purpose unless you are making a comparison to previously 
calculated SEs.)

22 If the data are continuous and normally distributed and you 
require an unbiased estimate of the symmetry of the data: calculate 
the skewness/asymmetry of the data (g1), page 57. Skew is only worth 
calculating in samples with more than 30 observations.
If the data are continuous and normally distributed, you have 
calculated skewness and you require an estimate of the ‘shape’ of 
the distribution of the data: calculate the kurtosis (g2), page 57. (This 
is rarely required as a graphical representation will give a better 
understanding of the shape of the data. Kurtosis is only really worth 
calculating in samples with more than 100 observations.)
If you have already calculated the interquartile range and the 
median: re-examine the interquartile range. The relative size of the 
interquartile range above and below the median provides a measure of 
the symmetry of the data.

23 You have not established the appropriate technique for a single 
sample: go back to 16 to find the appropriate techniques for each of the 
groups. You should find the same is appropriate for each sample or group.

(16)

The samples can be displayed separately: go back to 17 and choose 
the appropriate style. So that direct comparisons can be made, be sure 
to use the same scales (both x-axis and y-axis) for each graph. Be 
warned that statistical packages will often adjust scales for you.

(17)

The samples are to be displayed together on the same graph: use a 
chart with an ‘error bar’ (showing the mean and a measure of spread) 
for each sample and the x-axis representing the sample number/site. 
Do not join the means unless intermediate samples would be possible 
(i.e. don’t join means from samples divided by sex or species but do 
join those representing temperature, if the intervals between different 
sample temperatures are even).
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Choosing a test: a key 13

24 If each variable is to be considered separately: go back to 4 and 
consider each variable in turn.

(4)

Two variables only: a two-dimensional scatterplot can be drawn, 
page 64. The choice of variable for x- and y-axes is free but if you 
suspect a possibility of ‘cause’ and ‘effect’ the ‘cause’ should always be 
on the x-axis. Do not draw a line of best fit even if it is offered by the 
package unless the situation is appropriate and you have carried out 
a regression analysis.
Three variables: a three-dimensional scatterplot can be drawn, 
page 68. It is very difficult to represent three dimensions on a 
two-dimensional sheet of paper or computer screen. You must drop 
spikes to the ‘floor’ or ‘origin’ of the graph, otherwise it is impossible to 
visualize the spread in the third dimension. It may be better to use a 
series of two-dimensional scatterplots instead.
More than three variables: use a series of two-, or three-, dimensional 
scatterplots, page 64.

25 (Note: the distinction here will be slightly fuzzy in some cases, but 
essentially there are two basic types of test.)
The hypothesis is investigating differences and the null hypothesis 
is that there is no difference between groups or between data and a 
particular distribution [e.g. H1 (alternative hypothesis) = white-eye 
and carmine-eye flies have different mean development times, H0 
(null hypothesis) = white-eye and carmine-eye flies have the same 
mean development time].

26

The hypothesis is investigating a relationship and the null 
hypothesis is that there is no relationship [e.g. H1 (alternative 
hypothesis) = plant size is related to available phosphorous in the 
soil, H0 (null hypothesis) = plant size is not related to amount of 
available phosphorus].

46

26 Data are collected as individual observations (e.g. height in 
centimetres).

29

Data are in the form of frequencies (e.g. when carrying out a plant 
cross and scoring the number of offspring of each type).

27

27 There are only two possibilities (e.g. white or pink). 28
There are more than two possibilities: carry out a G-test, if your 
package supports it, page 72; otherwise use a chi-square goodness of fit, 
page 75.
There are more than about eight possibilities: a Kolmogorov–
Smirnov test, page 86, may be more convenient than the chi-square 
goodness of fit, page 75.

28 There are more than 200 observations in the sample: carry out a 
G-test, page 72, if your package supports it; otherwise use a chi-square 
goodness of fit, page 75.
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There are 25–200 observations: carry out a G-test if your package 
supports it, page 72; otherwise use a chi-square goodness of fit, page 
75, but add a ‘continuity correction’ by adding 0.5 to the lower 
frequencies and subtracting 0.5 from the higher. This is very 
conservative and may result in a non-significant result when a 
marginally significant one is present (type I error). If your package 
supports the ‘Williams’ correction’ then use that instead of the 
‘continuity correction’.
There are fewer than 25 observations: there are four possible 
solutions (listed in order of preference): use a binomial test if 
supported by your package; carry one out by hand if you are able; get 
a bigger sample; pretend you have 25 observations and use the 
instructions above.

29 There is only one way of classifying the data (e.g. grouped by 
species).

30

There is more than one way of classifying the data (e.g. grouped by 
species and collection site).

38

30 There are only two groups (e.g. male and female or before and after). 31
There are more than two groups (e.g. samples from four different 
fields).
(Note: the null hypothesis is that all groups have the same mean so 
if any two groups have different means you have to reject this null 
hypothesis.)

35

There are more than two groups and several measured variables 
[e.g. individuals divided by species (a grouping variable) and the 
measured variables are various anatomical characters or dimensions 
such as leaf length, stem thickness and petal length]: canonical 
variate analysis, page 251.

31 Two samples are ‘paired’. This means that the same individual, 
location or quadrat has been measured twice. This is the ‘before-
and-after’ design (e.g. river nitrate level is measured at the same 
point before and after a storm).

32

Two samples are independent. There are different groups of 
individuals in the two samples.

34

32 The data are normally distributed, there are at least 30 possible 
values and variances are, at least approximately, homogeneous: 
carry out a paired t-test, page 92. To test for normal distribution use a 
Kolmogorov–Smirnov test, page 86, an Anderson–Darling test, page 
89, a Shapiro–Wilk test, page 90, or a chi-square goodness of fit, page 
75. A test for homogeneity of variance is often an option within the 
t-test in the package (e.g. a Levene test or Bartlett’s test).
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A two-way ANOVA test is a potential alternative here but is more 
difficult to carry out than the paired t-test in most statistical packages, 
page 163 (use one factor of the ANOVA to represent ‘before/after’ and 
the other to represent the different individuals).
Above does not, or might not, apply. 33

33 Data have more than 20 possible values: carry out a Wilcoxon signed 
ranks test, page 96.
Data have 20 or fewer possible values (e.g. questionnaire 
results with a question of ‘how do you feel’ asked before and 
after exercise): carry out a sign test if supported by your package 
(this is a very conservative but fairly low-power test), page 99. 
If this is not available in the package carry out a Wilcoxon signed 
ranks test, page 96.

34 The data set is normally distributed, there are at least 30 
possible values and variances are, at least approximately, 
homogeneous: carry out a one-way ANOVA with one factor having 
two levels (one for each group), page 111, or use a t-test, page 103. 
To test for normal distribution use Kolmogorov–Smirnov tests, 
page 86, Anderson–Darling tests, page 89, a Shapiro–Wilk test, 
page 90, or chi-square goodness of fit, page 75. A test for 
homogeneity of variance is often an option within the t-test or the 
ANOVA in the package (e.g. a Levene test).
The traditional method is to use a t-test for this type of experiment but 
it is no better than ANOVA in this circumstance as both tests give an 
identical result, although many packages have versions of the t-test 
that make an adjustment to the degrees of freedom to account for 
violations of the assumptions of the test.
The data set does not, or might not, fulfil the conditions above: 
carry out a Mann–Whitney U test, page 119 (sometimes called 
Wilcoxon–Mann–Whitney or Wilcoxon two-sample test; not a 
Wilcoxon signed ranks test). (The Kruskal–Wallis test is an alternative 
but is less powerful.)

35 Samples are ‘repeated measures’. This means that the same 
individual or location is measured through time. This is an 
extended ‘before-and-after’ design (e.g. lake turbidity is measured 
at the same point each year for several years).

36

Each sample is independent. There are different groups 
of individuals in each samples. [It is important that no 
individual is present more than once in the data set, otherwise 
problems (of inappropriate replication) reduce the power of the 
statistical test.]

37
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36 The data for each factor combination are normally distributed, 
there are at least 30 possible values and variances are, at least 
approximately, homogeneous: carry out a two-way, repeated-
measures ANOVA with one factor having a different level for each 
sampling repeat and a second factor having a level for each individual 
you are sampling, page 127 (easy if you have only five rivers 
measured each year but very tedious to input and difficult to interpret 
if you have 50). Be aware that if your package does not support 
repeated-measures designs the degrees of freedom in a two-way ANOVA 
should be reduced to compensate for the design. To test for normal 
distributions you can use Kolmogorov–Smirnov tests, page 86, 
Anderson–Darling tests, page 89, a Shapiro–Wilk test, page 90, or a 
chi-square goodness of fit, page 75, although in practice it is usual to 
use experience to determine whether the data are likely to be normally 
distributed. Furthermore, ANOVA is quite robust to small departures 
from a normal distribution.
The data set does not conform to the restrictions above and you 
only have one observation for each repeat of each sample: carry out 
a Friedman test with one factor having a different level for each 
sampling repeat event, page 123, (e.g. before, during, after) and one 
factor having a different level for each individual (e.g. person) you are 
sampling.
Neither of the above apply. This is difficult! It often results from 
poor planning of the experiment: usually it is best to carry out an 
ANOVA, page 163, as if the data conformed to the assumptions of 
distribution and variances but to treat the resulting P-values with 
caution, especially if a P-value is between 0.1 and 0.01.

37 The data for each factor level are normally distributed, there are at 
least 30 possible values and variances are, at least approximately, 
homogeneous: carry out a one-way ANOVA with the one factor having 
one level for each group, page 129. (Note: the t-test can only be used on 
two groups.) If the result is significant then you need to carry out a 
post hoc test to determine which factor levels are significantly different 
from which. If you are cautious, or unsure, use a Kruskal–Wallis test 
instead, page 142.
The data set does not, or might not, fulfil the conditions above: 
carry out a Kruskal–Wallis test with one factor having a level for each 
group, page 142. (Note: the Mann–Whitney U test only works for two 
groups so is not appropriate here.)

38 There are only two factors/ways of classifying the data (e.g. strain 
and location).

39

There are three factors/ways of classifying the data (e.g. sex, region 
and year).

43
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There are more than three factors: use the key as if there are three 
factors and extrapolate. Multifactorial experimental designs become 
increasingly difficult to interpret because there are so many possible 
interactions between factors and it is often easiest to leave out factors 
that you have proved to have no significant effect, page 182.

(43)

39 There is no replication (i.e. only one value assigned to each 
combination of the two factor levels) (e.g. the basal trunk 
diameters after 2 years are collected from four strains of apple tree 
grown under four watering regimes but with only one tree under 
each watering condition).

40

There is replication (i.e. there are two or more values for each 
combination of the two factors).

41

40 The data are likely to be normally distributed within each 
factor combination (it is impossible to test this when there is 
only one observation in each factor combination). Data such as 
lengths and concentrations are likely to be appropriate but 
judgement is required: carry out a two-way ANOVA, page 152, but 
note that you will not be able to look for any interaction between 
the two factors.
You are cautious, or have a data set that is unlikely to be normally 
distributed: carry out a Friedman test, page 146, although be warned 
that this test is quite weak.

41 Factors are fully independent of each other. 42
One factor is ‘nested’ within another (e.g. if there are three 
branches sampled from each of three trees then branch is said to be 
‘nested’ within trees): carry out a nested ANOVA, page 193 (a.k.a. 
hierarchical ANOVA). (Note: there is no non-parametric equivalent (i.e. 
one that makes fewer assumptions about the distribution of the data) 
of this test.)

42 The data set is normally distributed within each factor 
combination, there are at least 30 possible values and variances are 
approximately equal: two-way ANOVA, page 163, measure of the 
interaction between the two factors is possible.
The data set is not as above. Versions of a non-parametric, but 
low-power, equivalent of a two-way ANOVA making fewer 
assumptions about the data (i.e. non-parametric) are a fairly recent 
innovation and are not yet appearing in statistical packages. If the 
experiment is balanced, or nearly so (i.e. there are the same number 
of observations for each combination of factor levels): carry out a 
Scheirer–Ray–Hare test, page 175. This will, almost certainly, not be in 
your statistical package but can still be carried out with a little 
modification of other tests. See the section describing the test for details.
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43 (Note: there are no non-parametric tests available from here on so 
if the data set does not fit the assumptions of the test you have no 
alternatives. ANOVA is quite robust to failure to meet its 
assumptions but be aware, especially if results are close to 
significance thresholds.)
All factors (ways of grouping the data) are independent of each 
other.

44

At least one factor is nested in another (e.g. in an experiment the 
variable is blood sugar level in mice. The factors are litter, female 
and food provided. If there are two litters from each of two 
females then litter will be ‘nested’ within female. Neither litter nor 
female will be ‘nested’ within food).

45

44 There is only one observation for each combination of factor 
levels: carry out a three-way ANOVA, page 183. You will not be able 
to calculate the significance of the three-way interaction but you will 
be able to do this for the interaction between each combination of 
two factors. (Note that any main factors that prove to be non-
significant can be left out of the analysis to reduce the complexity of 
the design.)
There is more than one observation for each combination of factor 
levels: carry out a three-way ANOVA, interaction terms are possible, 
page 184.

45 One factor is ‘nested’ within another the third is independent (as 
in the mouse example in 43): carry out an ANOVA involving both 
hierarchical and crossed factors, page 192. This is often difficult to 
reach in statistics packages although the design is a common one. If you 
only have one observation for each combination of factor levels then an 
interaction term cannot be tested (this is because it has to be used as 
the residual or error term).
One factor is ‘nested’ within another that is itself ‘nested’ within a 
third (e.g. in a water pollution survey the variable is nitrate 
concentration. Several samples have been taken from five streams 
from each of three river systems and this has been done in two 
countries. The factors are stream, river and country. Stream is 
nested within river and river nested within country): carry out a 
nested or hierarchical ANOVA, page 193.

46 (The choice you have here is one that is frequently confused: be 
careful.)
The purpose of the test is to look for an association between 
variables (e.g. is there an association between wing length and 
thorax length?). You have not set (controlled) one of the variables 
in the experiment. There is no reason to assume a ‘cause-and-
effect’ relationship. This is a test of correlation.

47
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One or more of the variables has been set (controlled or selected) 
by the experiment or there is a probable ‘cause’ and ‘effect’ or 
functional relationship between variables. One of the uses of 
regression statistics you are moving to is prediction (e.g. the 
experiment is looking at the effect of temperature on heart rate in 
Daphnia. You are expecting that heart rate is affected by 
temperature but wish to discover the form of the relationship so 
that predictions can be made). This is a regression type of test.

53

47 Data are in the form of frequencies (e.g. number of white flowers 
and orange flowers).

48

There is a value for each observation. Variables should be paired 
etc. (e.g. an observation of two variables, cell count and lung 
capacity, from one individual).

50

48 There are two variables: if you follow this thread further you will 
reach tests that are often awkward to carry out in packages and are 
often easier to calculate by hand. If you do calculate them by hand you 
may have to look up the significance level using a c2 table.

49

There are more than two variables: simultaneous comparisons of 
frequencies for more than two classifications are very difficult to 
interpret. It is best to compare them pairwise.

49 The two variables each have two possible values (e.g. yes/no or 
male/female): calculate a phi coefficient for a 2×2 table, page 209, if 
your package supports it or you can do it by hand. This test is a special 
case of a contingency chi-square calculation, page 199.
At least one of the variables has more than two possible values (e.g. 
a crude land classification, forest/scrub/pasture/arable, is compared 
to an estimate of the density of a small mammal: common/rare/
absent): calculate a contingency chi-square, page 199, and, if your 
statistical package supports it, a Cramér coefficient, page 208.

50 There are two variables. 51
There are more than two variables. 52

51 Both sets of data are continuous (have more than 30 values) and are 
approximately normally distributed (a good way to get a feel for 
this is to produce a scatterplot which should produce a circle or 
ellipse of points): carry out a Pearson’s product-moment correlation, 
page 210 (coefficient is called r). This is the standard correlation 
method.
Data are discrete, or not normally distributed, or you are unsure: 
use a Spearman’s rank-order correlation coefficient, page 214, or a 
Kendall rank-order correlation coefficient, page 218 The marginal 
advantage of the former is that it is slightly easier to compare with the 
Pearson product-moment correlation while the latter can be used in 
partial correlations.
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Data are ranked: use a Kendall rank-order correlation coefficient, page 
218. (The Spearman’s correlation is marginally inferior in this case.)

52 (Note: partial and multiple correlations are difficult to interpret.)
All sets of data are continuous and approximately normally 
distributed, and you are interested in the direct level of association 
between pairs of variables: use pairwise measures of association using 
a Pearson’s correlation, page 210.
All sets of data are continuous and approximately normally 
distributed, and you are interested in the overall pattern of 
association: use partial correlation, page 237, which looks at the 
correlation between two variables while the others are held constant. 
(Multiple correlation is a possibility but is rarely supported in 
packages. Its disadvantage is in interpretation and its inability to 
distinguish positive and negative relationships.)
Above do not apply, or you are cautious: carry out Kendall partial 
rank-order correlation coefficient, page 237, a test that finds the 
correlation between two variables while a third is held constant. This 
may not be supported by your package. If it is not, pairwise testing is 
the only alternative.

53 The dependent variable is discrete, or not normally distributed or 
ranked. Be warned that non-parametric regression is required and 
that this is rarely available in a statistical package.

54

The dependent, or ‘effect’, variable is continuous and at least 
approximately normally distributed with the same variation in 
‘effect’ for any given value of the ‘cause’ variable. [There will often 
be a requirement for a transformation of the data. Proportions and 
percentages can be transformed using the arcsine transformation 
(page 44) or probits. Other distributions may be normalized using 
reciprocal transformations or many other possibilities. It is 
important that efforts are made to fulfil the requirements for 
approximately normal data with equal variance using 
transformations.]

55

The dependent ‘effect’ variable is a proportion or frequency (e.g. 
proportion of population with a disease). The ‘cause’ variable is 
measured without error and chosen or set by the experimenter: use 
logistic regression, page 230.

54 There is one independent ‘cause’ variable and one dependent 
‘effect’ variable: use Kendall robust line-fit method. If this is not 
available consider reframing (usually by simplifying) your hypothesis 
somewhat to fit a non-parametric correlation. The only other 
alternative is to continue to a parametric test (55), being very cautious 
with interpretation of the results.

(55)
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All other designs: there is no satisfactory non-parametric test and 
certainly nothing in a statistical package yet. Either reframe the 
hypothesis or go to 55 and continue with a parametric test. If there are 
two ‘cause’ variables and one ‘effect’ then the ‘cause’ variables might be 
divided into a small number of categories (e.g. low, medium and high) 
and then a Scheirer–Ray–Hare test could be carried out, page 175.

(55)

55 There is one dependent variable (‘effect’) and one independent 
variable (‘cause’).

56

There is one or more dependent variable (‘effect’) and two or more 
independent variables.

58

The data for the dependent variable can be classified into more 
than one group (e.g. by species or sex). There is a variable that may 
affect the dependent variable: analysis of covariance (ANCOVA) is 
required, page 238. This is a technique where the confounding 
variable, known as the covariate, is factored out by the analysis 
allowing comparison of the groups. Complex designs are possible but 
the most common is analogous to a one-way ANOVA with the data (e.g. 
dry weight) in classes (e.g. cultivars) and a variable known to be 
confounding factored out as the covariate (e.g. degree days).

56 The independent ‘cause’ variable is measured without error. 57
There is known to be some measurement error associated with the 
independent variable: a model II regression is required, page 235, or 
Kendall robust line-fit method, page 230. This is a rarely used 
technique and only occasionally appears in statistical packages. It has 
the odd property of always overestimating the slope of the relationship 
compared to the result from a normal (model I) regression, page 221.

57 (As the theoretical shape of the relationship is often unknown the 
usual strategy here is to try both methods and see which gives the 
better fit.)
The relationship is likely to be a straight line or you are not sure of 
the form of the relationship: linear regression, page 221 (a.k.a. 
model I regression). [Note: in many cases the independent variable can 
be transformed to straighten the relationship between cause and effect 
(e.g. if the independent variable is size and is right-skewed then a log 
transformation will often improve a linear fit).]
The relationship is curvilinear or complex: polynomial regression or 
quadratic regression (a special case of polynomial regression), page 235.

58 There is one dependent ‘effect’ variable and two or more 
independent ‘cause’ variables.

59

There are several ‘cause’ and ‘effect’ variables: use path analysis, 
page 243.
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59 Your primary aim is to find the ‘cause’ variable(s) that are the best 
predictors of the ‘effect’ variable: use stepwise regression, page 242.
You want to establish a model using all available ‘cause’ variables: 
use multiple regression, page 242.
(The distinction between these two is rather arbitrary.)

60 You have arrived at principal component analysis, discriminant 
function analysis and other multivariate techniques for exploring 
your data. The usual result of this type of exploration is to identify 
simple relationships hidden in the mass of the data. Some of these 
tests are described in Chapter 9.
There are several observed variables that are approximately 
continuous and you have no preconceived notion about division 
into groups: use principal component analysis, page 244.
There are a variety of variables that may be a combination of 
‘causes’ and ‘effects’: use path analysis, page 244.
There are two or more sets of observations and one or more 
grouping variables: use multivariate analysis of variance (MANOVA), 
page 256.
There are two or more sets of observations, one or more grouping 
variables and a recorded variable that is known to affect the 
observed variables (e.g. temperature): use multivariate analysis of 
covariance (MANCOVA), page 259.
There are several observed variables for each individual that are 
approximately continuous and individuals have already been 
assigned to groups (e.g. species): use canonical variate analysis, 
page 251.
There are several observed variables for each individual that are 
approximately continuous, individuals have already been assigned 
to groups (e.g. species) and the intention is to assign further 
individuals to appropriate groups: use discriminant function analysis, 
page 251.
There are several observed variables for each individual that are 
categorical or nominal, individuals have already been assigned to 
groups (e.g. species) and the intention is to assign further 
individuals to appropriate groups: use logistic regression, page 230.
There are several observed variables for each individual and you 
wish to determine which individuals are most similar to which: use 
cluster analysis, page 259.
You have data on the relative abundance of species from various 
sites and wish to determine similarities between sites: use cluster 
analysis, page 259, or TWINSPAN, page 263.
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4Hypothesis testing, 
sampling and 
experimental design

This chapter expands on some of the ideas introduced in Chapter 2.

Hypothesis testing

Much of scientific investigation is based on the idea of hypothesis testing. The 
idea is that you formalize a hypothesis (H1) into a statement such as ‘male and 
female shrimps are different sizes’, collect appropriate data and then use statis-
tics to determine whether the hypothesis is true or not.

However, it is not quite as simple as that. The statistical tests do not give a 
simple answer of true or not. First you have to realize that every hypothesis will 
have an associated null hypothesis (H0) and most statistical tests use the null 
hypothesis as a starting point.

So, for this example, the hypothesis (H1) is ‘male and female shrimps are dif-
ferent sizes’ and the associated null hypothesis (H0) is ‘male and female shrimps 
are not different sizes’.

What a statistical test determines is the probability that the null hypothesis 
is true (called the P-value). If the probability is low then the null hypothesis is 
rejected and the original hypothesis accepted.

Acceptable errors

In reality, the null hypothesis is either true or false. Unfortunately, we only 
have a sample of all the individuals in a population and the statistical test 
only gives an indication of how likely it is that the null hypothesis is true 
based on the sample available. There are two ways of making the wrong infer-
ence from the test. These two types of error are usually called type I and type 
II errors.

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Null hypothesis 

Accepted Rejected

Null
hypothesis

True Correct Type I error

False Type II error Correct

In a type I error the null hypothesis is really true (male and female shrimps are 
not different sizes) but the statistical test has led you to believe that it is false 
(there is a difference in size). This type of error is potentially very dangerous 
and could be seen as a ‘false positive’.

In a type II error the null hypothesis is really false (male and females are really 
different sizes) but the test has not picked up this difference. Small sample sizes 
will often lead to a type II error. This type of error is less dangerous than the 
type I but should still be avoided if possible.

The ideal statistical test should have an equal, and hopefully very low, chance 
of the two types of errors. A test which increases the chance of getting a type II 
error while decreasing the chance of a type I is said to be ‘conservative’ while 
one that increases the chance of a type I error is said to be ‘liberal’. Although it 
is best to achieve this balance of type I and type II errors, a cautious approach is 
to err towards more ‘conservative’ tests.

P-values

Errors are the inevitable consequence of results based on probability. The lower 
the probability (P-value) the more confident you can be in the rejection of the 
null hypothesis but you can never be totally sure, unless you have measured the 
whole population, that you are correct. It is a usual convention in biology to use 
a critical P-value of 0.05 (often called alpha, α). This means that the probability 
of observing data as extreme as this if the null hypothesis is true is 0.05 (5% or 
1 in 20); in other words, it indicates that the null hypothesis is unlikely to be 
true. In biological sciences it is convention that whenever a statistical test gives 
a result with a P-value less than 0.05 we reject the null hypothesis and accept 
the alternative hypothesis.

There is nothing magical about P < 0.05, it is just a convention. If you use a 
lower critical P-value then the chance of making a type II error is increased. If 
you choose a higher critical P-value then you increase the chance of making a 
type I error.

It is worth pointing out that if a P-value is less than 0.05 it does not prove that 
the null hypothesis is false, it just indicates that it is unlikely to be true. Indeed 
statistics can never prove anything, it can only suggest that a hypothesis is very 
likely to be true or untrue. It is also worth noting that a P-value above 0.05 
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certainly doesn’t prove that the null hypothesis is true: it just indicates that 
there is not enough evidence to reject it.

It is conventional to indicate degrees of significance using asterisks in tables, 
or sometimes on figures. A single asterisk is usually used for P-values between 
0.05 and 0.01, two asterisks for values below 0.01 and then three asterisks for 
results below either 0.005 or 0.001. If asterisks are used in this way they should 
be explained in a figure or table caption.

One final point about P-values is that when more than one test is used the 
critical P-value used should be reduced to retain a critical level of 0.05 across an 
experiment. This makes good sense as any experiment including 20 statistical 
tests should, on average, generate one significant result even when there is no 
biological effect. The two main methods for adjusting P-values to retain the 
experiment-wide threshold are discussed in more detail in the section on cor-
relation (page 199).

Sampling

Nearly all statistical tests make a fundamental assumption that sampling of indi-
viduals will be at random from all the individuals that could possibly be sam-
pled. This sounds simple but achieving a random sample is not always easy. In 
almost all biological studies it will be impossible to account for every individual 
in a population. Therefore it is necessary to examine a subgroup of the total 
population and extrapolate from this to the whole population. The process by 
which the subgroup of the population is selected is called sampling.

If a population is evenly distributed through a habitat then a single small 
sample would be enough to gain a good estimate of whatever it is you are inter-
ested in (e.g. total population size, mean age or weight). However, this is rarely 
the case and most populations have distributions that are either random or 
clumped. In such populations a single sample is unlikely to produce a good 
estimate of population size or mean height or the variance of leaf thickness.

There are a wide variety of sampling strategies in use. It is important to choose 
a strategy that is appropriate to the population being investigated. There are 
several steps in the development of a sampling strategy, as described below.

Choice of sample unit
A sampling unit may either be defined arbitrarily, such as a quadrat, transect or 
pitfall trap, or be defined naturally, such as leaf or individual. Usually, naturally 
defined sample units will be obvious but the choice of an arbitrary unit size may 
be important. If the unit is a quadrat then there will obviously be a trade-off in 
effort between the number of sample units that can be observed and their size, 
simply because it takes more time to get information from a large quadrat.
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A sample unit might also be a length of time (e.g. if you are investigating pol-
lination then number of times a flower is visited in a series of time periods of set 
length might be your data set).

The size of sample unit will usually remain constant but may sometimes be variable, 
especially if the characteristics of a population distribution are being investigated. 
Methods using variable sample unit size to investigate distribution pattern are called 
quadrat-variance methods. These methods allow an observer to gain an insight into pat-
terns of distribution in space or time by analysing the different characteristics of the 
samples (e.g. mean and variance) using different sample units.

Number of sample units
This is nearly always determined by the amount of labour available: the more time 
and people that are available the more information can be collected. However, it 
is possible to calculate the number of sample units required to produce an accu-
rate estimate of the population size. In general more sample units will be preferred 
as the number of sample units increases the accuracy of statistical tests. However, 
quantity should not be increased at the expense of quality. Poor-quality data will 
have more inherent error and therefore make the statistics less powerful.

If you require general advice on the number of observations to make then 
I can only suggest that, as a rule of thumb, you need at least 20 observations for 
a sample using a measured variable and many more than that if the variable is a 
simple categorical one.

Positioning of sample units to achieve a random sample
An unbiased estimate of a population is only possible if the sample units are 
representative of the total population. The easiest way of achieving this is for 
each sample unit to contain a random sample of the population under investiga-
tion. If quadrats are being used then their position within the area under inves-
tigation should be chosen using random numbers to generate two co-ordinates 
that are then used to position a corner of the quadrat. Although this method of 
choosing a position using random numbers often requires an area to be marked 
out, it is to be preferred over the quasi-random techniques, such as throwing a 
quadrat, that are certain to introduce some involuntary observer bias.

Selecting random individuals in an area for study can be difficult. Imagine a 
typical scheme for locating random plants: random coordinates are chosen and the 
nearest plant to the random location is selected for study. This apparently makes a 
random choice of individual plants, but in reality it introduces bias as isolated 
plants are much more likely to be selected than plants in the middle of clumps. 
Indeed the only way to really select individuals at random is, rather impractically, 
to label and number every individual and then select randomly from that list.
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Random walks are another way to sample at random without requiring the 
area to be marked out. The observer walks a number of paces determined by a 
random number and then makes an observation or places a quadrat. Then 
another random walk is taken before the next observation, and so on. The 
advantages of this method are that sampling can be very rapid and that it 
requires little preparation. The drawback is that this type of sampling may be 
severely biased by the observer.

True random samples are ideal in a perfectly homogeneous habitat, but in a het-
erogeneous habitat they are likely to produce a biased sample with an estimated 
variance greater than that of the total population. A simple method used to mini-
mize this problem is to take a stratified random sample. The method is simple: the 
total area is divided into equal plots and an even number of sample units is taken at 
random from each plot. It is possible to divided the total area into plots of different 
sizes if there are known to be different habitats in the total area. In this second case 
the number of sample units from each plot should be proportional to its size.

It might be tempting to conduct systematic sampling with sample units 
placed at regular intervals across a study area. There is a statistical problem with 
this strategy as most statistics require that a sample is taken at random from a 
population. However, some field ecologists suggest that estimates derived from 
systematic sampling are, on average, better than those from random sampling.

Timing of sampling
Most populations will be affected by season, time of day and local weather con-
ditions. It is very important that timing is taken into account either by sampling 
strategy or by later analysis.

What I have been considering here is the problem faced by an ecologist work-
ing in the field and trying to design a suitable sampling strategy. The use of the 
very powerful statistical technique analysis of variance (ANOVA) is more common 
in the situation of a controlled experiment where you are analysing the effects of 
different levels of a treatment (e.g. concentrations of fertilizer or temperature) 
on some measured aspect of a population. Then, to get a true estimate of the 
effect of the treatment, experimental design will be of paramount importance.

Experimental design

I do not intend to say very much about experimental design here as there are 
whole books dedicated to the subject. However, that should not imply that 
experimental design is an uninteresting or unimportant subject. The appropriate 
design of an experiment is the key to successful analysis of a problem for without 
the correct design you will never have the right sort of data. The problems of 
sampling still exist in a designed experiment but the control of the system allows 
the experimenter to ensure that there are sufficient individuals to sample, and 
that all factor combinations have the same number of observations.
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Control
The idea of control in experiments is to remove the effect of all other factors 
apart from the one that is being investigated. The word is often applied to a 
group that has not been altered by an experimental manipulation and is used to 
compare with a group that has. The assumption is that everything apart from 
the manipulation is the same in the two groups so any differences must be the 
result of the manipulation. There are different ways of applying controls and 
different types of control. It is important to consider whether the control used 
in an experiment is adequate to convince a sceptical reader that the effect 
‘proved’ by the statistics is real or not. As a general rule of thumb more control 
is required! It is always tempting to focus on the more interesting manipulated 
groups and not give enough attention to control.

Procedural controls

These are often overlooked in experimental designs. The idea is that everything 
done to the manipulated group, apart from the actual treatment, is done to a 
procedural control group that is the same size as the experimental group and 
the untouched control group. The idea of procedural control groups has been 
widely used in recent medical studies and shown some interesting results. For 
example, a new supplementary treatment for a common disease is being inves-
tigated. Everyone in the study is given the conventional treatment. Each indi-
vidual is then randomly (and secretly) assigned to one of three categories: the 
control group is given nothing else, the experimental group is told about the 
supplementary treatment and given the new drug and the procedural control 
group is treated exactly as the experimental group except they are given a 
dummy drug (e.g. chalk tablet or water injection). In this way the effect of the 
drug can be differentiated from the effect of the procedure.

Procedural controls are especially important if the experimental system 
requires a lot of preparation through building exclosure fences or with repeated 
visits to a site or many interventions in a laboratory population. The technique 
should nearly always be used in conjunction with the ‘untouched’ control.

Temporal control

This is another aspect of experimental design that is worth incorporating. If 
the effect of a long-term manipulation is to be considered and there is only one 
control group and one experimental group available it is better to start the 
manipulation after the monitoring process has been underway for some time. 
The reason for this is that the differences between the two populations without 
any manipulation should be accounted for before the differences following the 
manipulation are tested. The ideal experiment will use half of the time for 
before and half for after manipulation. For example, if there are two lakes avail-
able to study the effect of eutrophication (surplus of nutrients) then the best 
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design for a 2-year study is to monitor the lakes untouched for the first year and 
then to add nutrients to one of the two lakes during the second year.

Experimental control

This is any control of environment imposed by the experimenter. This is the 
classical type of control and is properly employed to remove all possible effects 
on the observations other than that from the experimental manipulation itself. 
The best advice is always to control as many factors as possible. So if the effect 
of CO2 levels on plant growth is being investigated then the experiment should 
control all the factors that may affect growth: light, temperature, humidity, 
water availability, soil organisms, soil type and nutrient availability. The degree 
of environmental control required to isolate the effect of the one factor being 
manipulated often leads to a very artificial situation with organisms being kept 
in isolation in perfect conditions. These controlled environments are often so far 
removed from the real world that the results are not really very informative.

Experimental control can be very expensive, requiring growth cabinets, control-
led-temperature chambers or incubators for even rather simple investigations.

Statistical control

This is an alternative to experimental control. Rather than fixing all the possible 
factors that can affect the observations the factors are measured instead. Careful 
recording of all the environmental conditions, both biotic and abiotic, that are 
known to affect the observations being collected can then be used in statistical 
analysis of the data. Providing the experiment is not confounded (e.g. if all the 
manipulated individuals are in a cold area and all the unmanipulated in the 
warm) it is often possible to unpick the various effects and remove them from 
the analysis to leave only the effect of the manipulation. If statistical control is 
to be attempted then efforts should be made to ensure that adequate monitor-
ing of all the possible effects is carried out and that the individuals in experi-
mental and control groups experience a range of conditions.

Statistical control is usually cheaper than experimental control but requires 
more effort on the part of the researcher.

Some standard experimental designs
The Latin square is a system for placing replicates of treatments so that each of 
the treatment levels experiences each column and row of the experimental area. 
The reason for doing is to avoid confounding the effect of the experimental treat-
ment with any other factor that might be present in the experimental area (e.g. a 
gradient of soil quality). The arrangements for the four treatments suggested here 
is just one of many possible arrangements. Any arrangement of treatments such 
that each appears once in each column and row is OK although it is probably 
best, as here, to have each treatment level only occurring in one corner.
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A B C D

C A D B

D C B A

B D A C

If the experiment is carried out in a series of locations (often called blocks in 
statistical jargon) it is important to ensure that each of the treatment levels is 
equally represented in each of the blocks, otherwise any difference in condi-
tions will be confounded with the treatment levels being investigated. 
Furthermore the position of the treatment levels within the blocks must not 
be repeated.

Block 1

A C

D B
 

Block 2

B A

C D

Block 3

D B

A C  

Block 4

C D

B A

If a large number of samples are to be assigned to different treatment levels 
there are third obvious ways of assigning the levels: first to do all of level one 
then two and so on, second to carry out the assignments entirely at random 
and third to keep cycling through the levels in sequence. Each of these has 
problems. The first method will confound any external changes with the dif-
ferent treatment levels (e.g. if the experimenter becomes more efficient dur-
ing the process). The second method is appealing but often leads to unwanted 
runs of the same treatment or too few replicates of particular treatments. 
The third may also confound the treatment levels with an external influ-
ence. The best strategy is a combination of the second and third methods 
and is called stratified random assignment. The assignments are made in 
batches with each treatment level appearing an equal number of times in 
the batch (usually one or two) but assigned at random. In the example 
shown there are three treatment levels (X, Y and Z) assigned twice each in 
five batches of six.

9781405198387_4_004.indd   309781405198387_4_004.indd   30 9/16/2010   11:30:56 PM9/16/2010   11:30:56 PM



Hypothesis testing, sampling and design 31

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

X Z Y X Z
Z X Y Z X
X Y Z Y X
Y X X Z Z
Y Z Z Y Y
Z Y X X Y
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There are many books available that discuss the history, philosophy and work-
ings of statistics at length. That is not my purpose here, but it is important to 
have at least some idea of what statistics are, how different statistics are appro-
priate in different circumstances and that there are different types of data that 
you might collect. This chapter covers much of the same ground as Chapter 2 
but in much more detail. However, I’m still only scratching the surface here and 
this section should only be used as a set of notes or pointers to further investiga-
tion of these subjects.

What are statistics?

In biology we are often concerned with groups of individuals. These ‘individu-
als’ might be single insects but they could also be, for example, herds, or species, 
or blood cells. In most cases it is totally impractical to measure every individual 
in the group or groups we are interested in. What we are forced to do instead is 
to take measurements from a subset of the group. We call these subsets of the 
whole group samples.

We can ask and answer questions about the groups by formulating hypothe-
ses. A simple question could be ‘is species A bigger than species B?’. If we had 
access to data from all individuals in a group we could answer this type of ques-
tion very easily. However, we only have the sample and from the sample we 
have to extrapolate to the whole group. This is the job of statistics.

For example, if the hypothesis is that the mean sizes of populations of pike in 
two lakes are different we could easily find the answer if we had measured all 
the fish. However, in reality we only have a sample of 20 fish from each lake and 
the means of those samples might not be the same as that of all the fish. We 
carry out statistics on the information we have in the two samples to determine 
the probability that the hypothesis, or more usually its associated null hypoth-
esis, is true. The idea of hypothesis formulation and testing has already been 
discussed in Chapter 4.

5 Statistics, variables 
and distributions

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Types of statistics

I intend to say as little as possible about types of statistics here. However, I feel 
it is important to give a feel for the differences and the way that statistics have 
been traditionally divided.

Descriptive statistics
These are usually the first to be calculated. They give information about the data 
you have collected. This can be a measure of the ‘position’ of the data – that is, 
mean or median – and the ‘dispersion’ – or how variable the data are. Some 
descriptive statistics, such as means (averages), will be familiar to everyone.

There is a division of statistics into two groups that are usually labelled ‘para-
metric’ and ‘non-parametric’. This distinction is very real for statisticians but for 
those of us just using the tests it seems rather artificial.

Parametric statistics
These statistics make assumptions about the form of the data under investiga-
tion. For instance, they usually require variables to follow known distributions, 
usually the normal. If the data do conform to the assumptions then these tests 
are usually more powerful and should therefore be preferred. There are also 
types of questions that can only be answered if assumptions about distributions 
are made.

Non-parametric statistics
These are statistics that require little or no knowledge of the distribution of the 
data. Therefore they are often called ‘distribution-free’, ‘ranked’ or ‘ranking’ 
tests. In general these tests are less powerful but ‘safer’ if you have not tested all 
the assumptions for a parametric test. Non-parametric tests are also somewhat 
restrictive and cannot be used to answer some more complicated questions.

In this book, unlike many other books, the chapters are not ordered according 
to the type of statistics. I have used the type of question you want to ask as the 
method of dividing up the book.

What is a variable?

To carry out any statistics you need some data to work with. First you decide 
what it is you are interested in and then select a suitable variable. The variable is 
the property that you measure. It is the food of the statistics and choosing vari-
ables is something you must get right. For example, if you are interested in the 
occurrence of a scale insect on two strains of citrus trees then a suitable variable 
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might be ‘number of scale insects on a leaf’. However, if the strains differ in leaf 
density or size of leaf then a more appropriate variable could be ‘number of scale 
insects per square centimetre of leaf’. Then the insects may be bigger on one 
strain than the other so perhaps ‘mass of scale insects per square centimetre of 
leaf’. Each time the variable is refined in this example it becomes more difficult 
to obtain, taking more time and effort. There is a trade-off. More effort required 
for each observation leads to fewer data in total so any refinements to the vari-
able collected must be warranted.

Choosing the best variable is something of an art.
It is important to ensure that the variable or variables you choose to measure or 

collect are appropriate to the task.

Types of variables or scales of measurement

There are many types of variable.

Measurement variables
These are variables where a numerical value is assigned. They can be further 
subdivided.

Continuous variables

This type of variable (sometimes called ‘interval’ variables) theoretically has an 
infinite number of values between any two points. Of course in practice the 
accuracy of measurement will not be perfect, as it will be limited by the observer 
and the equipment used. Therefore there will only be a limited number of pos-
sible values between any two points. Obvious examples of continuous variables 
are lengths, weights and areas.

Note: I use the term variable throughout this book as it is the one in common usage 
although the correct term is variate.

Note: accuracy and precision are two words that are often confused.
Accuracy is the closeness to the real value. This is usually set by the observer or the 

equipment and should be chosen as appropriate to the variable. When you write down a 
value it should reflect the accuracy with which the measurement was taken. If you meas-
ure to the nearest 0.1 g then 5 g should be written as 5.0 g, not 5.00 g;

Precision is the closeness of repeated measures to the same value. It is possible to 
have data that are very precise but very inaccurate. For example, your balance gives 
exactly the same value for repeated measures of the same object but they are all over-
weight because the balance was not calibrated properly. The data obtained would be 
precise but inaccurate.
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Discrete variables

Unlike continuous variables this type of variable (also called ‘discontinuous’ or 
occasionally ‘meristic’) has a limited number of possible values. These possibili-
ties are often, but not always, integers. For example, number of live-born off-
spring in a litter of mice can only ever be an integer as there is no possibility of 
recording a fraction of an offspring.

Discrete variables are often produced by questionnaires. Respondents are 
offered choices such as: 1, strongly disagree; 2, slightly disagree; 3, neutral; 4, 
slightly agree; 5, strongly agree. There is clearly a continuous variable (‘agree-
ment’) here and division of responses into categories in this way is rather arbi-
trary. It would be very easy to devise different ways of dividing the responses to 
obtain more or fewer possibilities.

The distinction between discrete and continuous variables can be rather 
blurred.

Example 1: a discrete variable becomes continuous. If you measure the 
number of cells in 1 ml of blood this must be an integer and therefore discrete. 
However, it has so many possible values that it is effectively continuous.

Example 2: a continuous variable becomes discrete. Seed diameter is a con-
tinuous variable but if you measure poppy seed diameter to the nearest 0.05mm 
there will be only a few possible values making it effectively discrete.

How accurate do I need to be?
It is often possible to use better equipment or become more careful when meas-
uring to increase accuracy. However, increased accuracy will take longer and 
result in fewer data being collected: another trade-off. As a rule of thumb there 
should usually be between 30 and 300 possible intervals between the smallest 
and the largest value. If possible, adjust the accuracy of the measurement accord-
ingly. Don’t assume that measuring to as many decimal places as possible will 
make the data any better.

Ranked variables
When data are ordered by magnitude and exact values are not relevant the vari-
able is called ranked. It is not assumed that the difference between 1 and 2 is the 
same as that between 3 and 4. Often it is possible to put observations into rank 
order without measuring at all. For example, plants from six pots could be 
ranked in ‘health’ order by simple observation and assigned values from 1 to 6.

Attributes
These variables (also called ‘categorical’ or ‘nominal’ variables) have few catego-
ries; usually ‘yes’ or ‘no’, ‘male’ and ‘female’ or a small number of possibilities. 
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Distributions of combined variables are often awkward. Be very careful with 
percentage data as percentages will often have rectangular (‘flat’ or ‘uniform’) 
distributions and/or have limits at 0 and 100%. However, percentages are a 
familiar and widely used method for expressing observations and there are a few 
statistical tricks available to help you deal with them.

Ratios can also lead to a loss of information. For example, both 5/10 
and 500/1000 will give a ratio of 0.5, losing all information about the size of 
the sample.

Types of distribution

Why do you need to know about distributions? Just as there are different types 
of variable, there are different types of distribution. All parametric statistics and 
many non-parametric ones are based on features of distributions or on assump-
tions about data following certain distributions.

Discrete distributions

The Poisson distribution
This is a very useful tool to use as a starting point in many biological investiga-
tions. It is a distribution describing the number of times an event occurs in a 
unit of time or space. Usually a sample of time or space is taken and the number 
of events recorded. Examples of typical events are the number of fish-lice on a 
fish or number of influenza cases reported in a week.

For example, you could score flower colours as red, blue or yellow. Attributes or 
categories should not have any obvious sequence.

Derived variables
Derived variables (or ‘computed’ variables) are usually calculated from two (or 
more) other variables; for example, ratios, percentages, indices and rates.

Warning: you lose accuracy by combining variables into ratios.
For example, if we round to 0.1 then 1.2 implies 1.15–1.25, giving a maximum error of 

4.2%, and 1.8 implies 1.75–1.85 with a maximum error of 2.8%. If these two observations 
are combined into a single observation then 1.2/1.8 implies a range from 1.15/1.85–
1.25/1.75 or 0.622–0.714 giving a maximum error of 7%: this is much greater than the error 
in the original data.
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The purpose of fitting to this distribution is to test for randomness or independ-
ence in either space or time. If the number of scale insects on leaves fits the 
Poisson distribution then it can be assumed that the assumptions hold. Therefore 
the occurrence of individual insects is unaffected by the presence of others, so 
we can infer that the scale insects arrive at random and that no leaf is ‘full’ of 
scale. If the distribution is significantly different from a Poisson then not all the 
assumptions hold and further investigation should follow.

Poisson distributions only require knowledge of the mean as mean and vari-
ance are equal. This property is also very useful as simple inspection of the mean 
and variance of observations in a sample will give you some idea of the form of 
a distribution.

If the variance is greater than mean then the population is more clumped 
(aggregated) than random. If the variance is less than the mean then it is 
more ordered (uniform) than random (see Fig. 5.1). Distributions may be 
described by simply quoting their variance/mean ratio, with a value of 1 indi-
cating a random (Poisson) distribution, and higher values indicating 
clumping.

The binomial distribution
This is a discrete distribution of number of events. When there are two possible 
outcomes for each event the probability of each is constant. For example, if the 
probability of each birth producing a female is 0.5 (usually termed p) then the 
probability of a male is 1 minus 0.5 (also 0.5 in this case and often termed q) as 
there are no other possibilities. This means that each individual being born has 
a 50% chance of being female and 50% chance of being male.

If this is expanded to families with more than one offspring then we can 
start to apply probabilities to the proportions of males (M) and females (F). 
For example in a family with two offspring there are four possible outcomes: 
FF, FM, MF and MM (note that there are two routes to get one male and one 
female). As the chance of each event has already been determined as 0.5 
then the chance of each of the four outcomes is 0.5×0.5 or 0.25. In other 
words there is a 25% chance of getting FF, 25% for MM and then 25% for 
each of MF and FM. So 50% of families with two offspring will have one of 
each sex.

Assumptions of the Poisson distribution
1 Mean number of occurrences is small relative to the maximum possible.
2 Occurrences of one event must be independent of others.
3 Occurrences are random.
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This can be expanded further to three offspring where there are four possible 
families (reached through eight different sequences, each with a 0.125 proba-
bility of occurrence):

Fig. 5.1 Two hypothetical distributions of individuals in space. In the first the individuals 
are highly clumped or aggregated. If quadrats were used to sample from this population 
the variance in number of individuals per quadrat would exceed the mean. However, 
in the second distribution the individuals are more ordered than random and the results 
of number of individuals per quadrat would show a variance less than the mean.

Female offspring Male offspring Probability  Sequences

3 0 0.125 (1/8) FFF
2 1 0.375 (3/8) MFF, FMF, FFM
1 2 0.375 (3/8) MMF, MFM, FMM
0 3 0.125 (1/8) MMM
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The expected frequencies from the assumption of a binomial distribution can 
be tested against the observed numbers using a chi-square test or a G-test. In 
this case, despite having fewer broods with three of one sex and two of the other 
than was expected, the difference is not significant and therefore we accept the 
null hypothesis that the sexes of individuals in song thrush broods of five follow 
a binomial distribution with a p of 0.5 (i.e. there is a 50% chance of having a 
female offspring).

The binomial makes a very good starting place for a null hypothesis of even 
chances of events happening in all groups observed. If the binomial distribution 
were not followed then alternative explanations about aggregated or dispersed 
events have to be invoked.

The negative binomial distribution
In many organisms aggregation of individuals in time and/or space is almost 
ubiquitous. The negative binomial distribution is a discrete distribution that can 
be used to describe clumped data (i.e. when there are more very crowded and 
more sparse observations than a Poisson distribution with the same mean). 
There are reasonable assumptions that can be made about the way organisms 
distribute themselves that result in a negative binomial distribution. This allows 
a sensible null hypothesis about aggregated distributions to be made.

The hypergeometric distribution
This is another theoretical, discrete distribution that has some use in biology. 
The hypergeometric distribution is used to describe events where individuals 
are removed from a population and not replaced. It is therefore quite useful in 

There are many uses of this expansion from single events to groups in biological 
investigation. To stay with the male/female example for the moment, an inves-
tigation into 480 broods of song thrushes (Turdus philomelos) where there were 
five eggs surviving to fledging gave frequencies (numbers of observations) for 
each of the six possible categories of families:

Females Males Probability Expected no. Observed no.

5 0 0.03125 15 21
4 1 0.15625 75 76
3 2 0.31250 150 138
2 3 0.31250 150 142
1 4 0.15625 75 80
0 5 0.03125 15 23
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small, closed populations that are being sampled destructively and also in the 
application of mark/recapture techniques.

Continuous distributions

The rectangular distribution
This distribution (also called a ‘flat’, ‘even’ or ‘uniform’ distribution) describes 
any distribution where all values are equally likely to occur. This distribution 
rarely appears in reality but it can sometimes be useful for generating a null 
hypothesis (see Chapter 4).

The normal distribution
This is the most important distribution in statistics and it is often assumed that 
data are distributed in this way. Therefore is it often important to determine 
whether the data set is a good fit to a normal distribution or not. Methods you 
can use to test this are the Kolmogorov–Smirnov test, the Anderson–Darling 
test, the Shapiro–Wilk test or a chi-square goodness of fit (see pages 75 and 
86–92). These methods are not very sensitive when samples are small and 
should not be used if there are fewer than about 50 observations.

The normal distribution is a symmetrical, continuous distribution and is 
described by two parameters: the mean, µ (mu, describing the position), and the 
standard deviation, σ (sigma, describing the spread). These two parameters are 
estimated from samples and assigned the letters m and s.

The normal is sometimes called the Gaussian distribution. A normal distribu-
tion always has a characteristic bell shape.

In a perfect normal distribution (where µ is the mean and σ is the variance):

µ ± σ contains 68.25% of the observations; 50% fall between µ ± 0.674σ;
µ ± 2σ contains 95.45% of the observations; 95% fall between µ ± 1.96σ (see 
Fig. 5.2);
µ ± 3σ contains 99.73% of the observations; 99% fall between µ ± 2.576σ.

The standardized normal distribution

This is a derived distribution where each observation in a normal distribu-
tion is processed by subtracting the mean and dividing by the standard devia-
tion. This gives a normal distribution with a mean of 0 and a variance of 1. 
The purpose of this transformation is to compare distributions that might 
have very different means on the same scale to look at the shapes of the 
distributions.
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Convergence of a Poisson distribution to a normal distribution

Even though a Poisson distribution is discrete (you can only get integers), when 
the mean number of observations is very large a Poisson distribution will 
approximate to a normal distribution. This could arise for example if you 
counted the number of springtails in a group of soil samples and found that they 
fitted to both Poisson and normal.

Note: binomial distribution with more than 100 observations (or fewer if 
p ≈ 0.5) will also approximate to a normal distribution.

Sampling distributions and the ‘central limit theorem’

The means of samples taken from any shape of parent distribution will them-
selves have a normal distribution: that is the central limit theorem. This is the 
basis for the rule that the standard deviation of the sample mean (i.e. standard 
error) of a sample is s/√n, where s is the standard deviation of the observations 
and n is the number of observations.

Describing the normal distribution further
Two types of departure from normality in a data set are skewness and kurtosis.

Skewness

This is another word for asymmetry; skewness means that one tail of the bell-
shaped curve is drawn out more than the other (see Figs 5.3 and 5.4). Skews 
are either to the right or left depending on whether the right or left tails are 

Fig. 5.2 In a normal distribution 95% of the observations will fall within 1.96 standard 
deviations of the mean. This leaves 2.5% of the observations in each of the tails 
of this symmetrical distribution (shaded).

2.5% of observations

–2.75 –2.25 –1.75 –1.25 –0.75 –0.25 0.25 0.75 1.25 1.75 2.25 2.75

95% of observations 2.5% of observations

1.96 ! standard deviation

Mean
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Fig. 5.3 This distribution is clearly right skewed and has a g1 value well above zero. In 
a skewed distribution the mean is always nearer the tail than the mode with the median 
falling between the mean and the mode.

1 3 5 7 9

Mode

Median
Mean

11 13 15 17 19 21 23 25

Fig. 5.4 These two frequency distributions are clearly not symmetrical. The data in 
(a) are right skewed and have a g1 value of 1.53. The data (b) are left skewed and have a 
g1 value of −0.335.

(a)

(b)

drawn out. (i.e. long right tail results in a right-skewed distribution). 
Statisticians label the true skewness parameter γ1 (gamma1) and the estimated 
value g1. A negative g1 indicates skewness to the left and a positive g1 skewness 
to the right.

9781405198387_4_005.indd   429781405198387_4_005.indd   42 9/16/2010   11:31:29 PM9/16/2010   11:31:29 PM



Statistics, variables and distributions 43

Kurtosis

This is a measure of the ‘flatness’ of a distribution. A symmetrical distribu-
tion can differ from the normal in being either leptokurtic or platykurtic. 
A leptokurtic distribution has more observations very close to the mean and 
in the tails. A platykurtic distribution has more observations in the ‘shoul-
ders’ and fewer around the mean and tails. A bimodal distribution is, there-
fore, extremely platykurtic. The kurtosis parameter is γ2 (gamma2) and 
estimated by g2.

In a perfect normal distribution both g1 and g2 are equal to zero. A negative g2 
indicates a platykurtic distribution and a positive g2 leptokurtosis.

Is a distribution normal?
It is extremely unlikely that you will collect a data set that is perfectly normally 
distributed. What you need to know is whether the data set differs significantly 
from a normal distribution. One good way for checking data for departures 
from ‘normality’ is to use the Kolmogorov–Smirnov test, Anderson–Darling test 
or Shapiro–Wilk test. These tests compare two continuous distributions with 
the null hypothesis that they are the same (i.e. it tests the sample data against a 
normal distribution with the same mean and variance as the sample). All these 
tests are usually to be preferred over the chi-square goodness of fit method 
which is another commonly used method of determining whether data set is 
normally distributed. See Chapter 7 for details of the Kolmogorov–Smirnov, 
Anderson–Darling, Shapiro–Wilk and chi-square goodness of fit tests (pages 
75–92).

Transformations
Parametric statistics assume that data set you are using is distributed normally. 
So first of all check that this is true using a statistical test fitting your distribu-
tion to a perfect normal distribution with the same mean and variance. If the 
data set is significantly different from normal try a transformation such as loga-
rithmic, or square root, arcsine square root for percentage or proportion data, or 
probits or logits. There are many standard methods to try but as long as you 
treat each piece of data (datum) in exactly the same way you can do any trans-
formation you like. Be warned that logarithmic (log) transformations require 
you to consider the base of the log. In some packages ‘log’ will give a base 10 log 
transformation, while in others it will give a natural log with base e (approxi-
mately 2.71).

If a distribution is skewed the mean is nearer to the tail than the mode and the median, 
as shown in Fig. 5.3.
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The angular transformation

The angular or arcsine square-root transformation is so routinely applied to 
percentage data that it warrants a description of the method. A percentage 
is converted to a proportion, the square root taken and then the arcsine 
(inverse sine or sin−1) is taken. To make sure you have the calculation cor-
rect, either use the values from the table above or check that 10% converts 
to about 18 after an angular transformation and 100% converts to 90. A com-
mon problem encountered with this transformation is that packages use 
radians rather than degrees and this must be accounted for. Remember that 
if you are converting direct from percentages rather than proportions, the 
variable to be converted should be divided by 100 as part of the 
transformation.

  Assuming the percentages have been converted to proportions and are 
stored in a variable called ‘prop’, from the ‘Transform’ menu select ‘Compute 
Variable’. In the ‘Compute Variable’ box that appears type a name for the target 
variable (say, ‘angular’). Select ‘All’ in the ‘Function group:’ list. Then from the 
list of ‘Functions and Special Variables’, select ‘Arsin’ and click the up arrow to 
add it to the ‘numeric expression’. Next, with the question mark highlighted in 
blue, select ‘Sqrt’ from the functions list. Finally, with the question mark selected 
again, select the variable ‘prop’ and move it across to the ‘numeric expression’ 
(either by double clicking, or by highlighting and clicking the right arrow). 
Finally, the correction for converting radians to degrees needs to be applied and 
the expression multiplied by 57.295.

The ‘numeric expression’ should now read ‘57.295*ARSIN(SQRT(prop) )’. 
Click ‘OK’ and the converted numbers should appear in a new variable.

An example

A study on feeding preferences in a marshland birds counted the number of 
grey herons (Ardea cinerea) seen in creeks and open water at different times of 
the day. The percentage in creeks is converted to a proportion and the angular 
transformation and logit transformations given.

Time
 No. in 

creek
No. in 
open

Percentage in 
creek

Proportion in 
creek

Angular-
transformed

Logit-
transformed

0600 22 25 46.8 0.47 43.2 −0.13
1200 12 19 38.7 0.39 38.5 −0.46
1800 25 8 75.8 0.76 60.5 1.14

SPSS
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 The sin−1 function is ‘asin()’ and the square-root function is ‘sqrt()’. 
Assuming you have percentages in a variable labelled as ‘x’ and you want the 
results in a variable labelled ‘angularx’ type in the following:

> angularx=57.295*asin(sqrt(x/100))

The correction factor of 57.295 converts radians to degrees. Remember that if 
your data are already expressed as a proportion rather than percentage then you 
don’t need to divide by 100.

 This assumes that the percentages have been converted to proportions 
and are in a variable called ‘Prop’. From the ‘Calc’ menu, select ‘Calculator . . .’. In 
the ‘Store results in variable’ box, type an appropriate name, such as ‘Angular’. 
Then from the list of ‘Functions’ highlight ‘Degrees’ and click ‘Select’. Then 
highlight ‘Arcsine’ and click ‘Select’. ‘DEGREES(ASIN(number) )’ should appear 
in the ‘Expression’ box. Then scroll down the ‘Functions’ list to ‘Square root’ and 
click ‘Select’. The ‘Expression’  should   now  be ‘DEGREES(ASIN(SQRT(number) ) )’. 
Double click on ‘Prop’ from the list on the left and the ‘Expression’ becomes 
‘DEGREES(ASIN(SQRT(‘Prop’) ) )’. Click ‘OK’ to run the transformation.

[If you have the ‘commands’ enabled (‘Editor’ menu then ‘Enable commands’), 
and you have already labelled one column as ‘Angular’, you could type ‘Let 
‘Angular’ = DEGREES(ASIN(SQRT(‘Prop’) ) )’ at the MTB> prompt. Or you 
can input commands using the ‘Edit’ menu then ‘Command Line Editor’.]

 Assuming the proportion is in cell A1 the conversion is achieved with 
the formula ‘=DEGREES(ASIN(SQRT(A1) ) )’. DEGREES, ASIN and SQRT 
can either be typed in directly or selected from ‘Paste function’ (fx) under the 
‘Math&Trig’ submenu. The most common error in calculating the angular 
transformation in Excel comes from the conversion of radians into degrees.

The logit transformation

Logits are needed for logistic regression. The advantage of a logit transformation 
is that it converts proportional data limited to 0 and 1 to an unlimited scale by 
using the likelihood of events. The transformation stretches out values that are 
near 0 and 1. The logit of a proportion, p, is the natural log (ln or loge) of p/q 
where q is the proportion that is not p (i.e. p + q = 1). Note that logits for 0 and 
1 are infinite, so will probably give odd results. The logit for 50% should be 0. 
All values below 50% will be negative, and all above 50% will be positive.

 Assuming the data have been converted to proportions and are in a 
variable called ‘prop’, from the ‘Transform’ menu, select ‘Compute Variable’. In 
the ‘Compute Variable’ box that appears type a name for the target variable 
(say, ‘logit’). Select either ‘All’ or ‘Arithmetic’ from the ‘Function group:’ list. 

R
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Then either, from the list of functions, select ‘Ln’ and click the up arrow to add 
it to the ‘numeric expression’, or type directly into the ‘Numeric expression’ 
box. Replace the question mark with ‘prop/(1-prop)’, replacing ‘prop’ with the 
name of your variable. Click ‘OK’ and the logit-transformed numbers should 
appear in a new variable.

If converting direct from percentages, the variable to be converted should be 
divided by 100 as part of the transformation. In this case, assuming your per-
centage values are in a variable called ‘perc’, your transformation would be 
‘LN( (perc/100)/(1 – (perc/100) ) )’.

 This assumes that your data have been converted to proportions and are in a 
variable called ‘prop’ and that you want the transformed data in ‘logit’. The 
function for a natural log is ‘log()’, so the logit for ‘prop’ is simply:

> logit=log(prop/(1-prop))

Be warned that values of 0 and 1 will cause the logit to be infinite, giving the 
error ‘Inf’.

 Assuming the data have been converted to proportions are in column 
C1, from the ‘Calc’ menu select ‘Calculator . . .’. In the ‘Store results in variable’ 
box, type an appropriate name, such as ‘Logit’. From the list of ‘Functions’ 
highlight ‘Natural log’ and click ‘Select’. ‘LN(number)’ will appear in the 
‘Expression:’ box. Replace the text ‘number’ with ‘C1/(1 – C1)’, then click ‘OK’

[If you have the ‘commands’ enabled, you could type ‘Let ‘Logit’=LOGE(C1/
(1 – C1) )’ at the MTB> prompt. Or you can input commands using ‘Edit’ menu 
then ‘Command Line Editor’.]

 Assuming the proportion is in cell A2 the conversion is achieved with the 
formula =LN(A2/(1–A2) ). LN can either be typed directly or selected from the 
‘Insert function’ ( fx) under the ‘Math&Trig’ submenu.

The t-distribution
This symmetrical, continuous distribution is related to the normal distribution 
but is flatter with extended tails. It is the distribution of deviations from the 
mean divided by the sample standard error of a huge number of samples. As 
the sample standard error varies between samples the spread is greater than if 
the deviations were divided by the true standard deviation of the mean (stand-
ard error). t-distributions have degrees of freedom associated with them that 
correspond to the size of the sample. So the smallest degrees of freedom of 1 
from just two observations will give a very flat distribution and when the degrees 
of freedom are infininte (i.e. in a sample with an infinite number of observa-
tions) the t-distribution will recapture the normal distribution.
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Confidence intervals
95% confidence intervals (CI) are calculated for samples using t-distributions. 
(Although when the true σ, standard deviation, is known, or the sample size is 
huge, the normal distribution can be used.) 95% CI should be preferred to the 
more usually quoted mean ± S.E. as the standard error of the mean is only really 
useful if the sample size is known and then it can be converted to a confidence 
interval of the required width.

Be very careful when you see headings such as ‘Means and Standard Deviations’ as this 
wording is slightly ambiguous. It usually translates as mean and standard deviation of the 
observations but is, on occasion, referring to mean and its standard deviation (i.e. stand-
ard error).

The chi-square (χ2) distribution
This is another continuous distribution that is very useful in statistics. Unlike 
the normal and the t distributions it is asymmetric and varies from 0 to positive 
infinity. The chi-square distribution is related to variance.

X 2 is the usual way of expressing sample statistics approximating to χ2.

The exponential distribution
This is a continuous distribution that is occasionally useful as a null model in 
biology. It occurs when there is a constant probability of birth, death, increase 
or decrease. So, for example, if a population of beetles invades a new area 
they may have an exponential increase in numbers as their rate of increase is 
constant. As soon as the population stops following the exponential distribu-
tion the rate of increase has clearly changed. This may indicate that intraspe-
cific competition has reduced the growth rate or a predator is starting to have 
an effect.

Exponential distributions can also be used to examine decreasing observa-
tions. This is usually called the negative exponential distribution. For example, 
the amount of drug in the bloodstream after an injection may have an exponen-
tial decay with 10% being removed every hour. You can test an observed distri-
bution against an expected exponential distribution using a variety of tests of 
difference.
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Non-parametric ‘distributions’

It is sometimes better to ignore distributions totally. This is the case when data 
set is known to be awkward or difficult to transform. The advantages of making 
no assumptions about the distribution of the data are great as it allows greater 
flexibility but there are some limitations in the type of statistical tests that can 
be used and in the power of the tests.

Ranking, quartiles and the interquartile range
In non-parametric tests data sets are usually ranked before they can be exam-
ined statistically (computer packages do this for you). If a set of data is put in 
rank order from the smallest value to the largest then information about the 
position of the data set or the spread can be gained by inspecting values at cer-
tain points in the ranked data set (for example the median is the value of the 
data point (datum) in the middle of the ranked set).

A quartile is simply the value of the data point that lies a quarter of the way 
into a data set and it is commonly used to describe the spread of a non-parametric 
distribution.

The interquartile range is the difference in the values between the data point 
one-quarter of the way down the ranked list to the point three-quarters of the 
way down.

Box and whisker plots
Box and whisker plots (also known as, a.k.a., box plots) summarize data where 
there are no assumptions of distribution. A sample is represented by a box the 
top and bottom of which represent the upper and lower quartiles (i.e. the box 
covers the interquartile range). The box is divided at the median value. A line 
(the whisker) is drawn from the top of the box to the largest value within 1.5 
interquartile ranges of the top and the same from the bottom. Any values out-
side this range are then added as symbols (see Fig. 6.1). These outliers are often 
identified in some way (they certainly are in the statistical package SPSS) so you 
can check them. Outliers are the values most likely to have been mistyped!
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6Descriptive and 
presentational 
techniques

The techniques in this chapter are presented in roughly the same order as they 
appear in the key (see Chapter 3).

General advice

Descriptive and presentational techniques serve two rather different pur-
poses. The first is to summarize and display data in the best way possible for 
a reader to derive information about the data. If this is the intention then 
the techniques used should be a simple as possible and require the minimum 
effort from the reader. The second purpose is for researchers to explore their 
own data. A variety of methods should be employed that show the data from 
different perspectives. In this way you can become familiar with your data 
and may be stimulated to pursue new lines of enquiries or test different 
hypotheses.

This chapter is intended to offer general advice on data presentation and 
although all the examples are generated in the statistical packages featured in 
the next chapters there are no detailed descriptions for navigating the menus to 
generate the figures you see.

Displaying data: summarizing a single variable

Box and whisker plot (box plot)
This is an excellent way of summarizing data, especially if it is not normally 
distributed. The plot shows the median value as a thick bar, the interquartile 
range as a box and the full range as the ‘whiskers’. Some statistics and graph 
drawing packages show outliers (data points well outside the range of others) as 
individuals points. An example is shown in Fig. 6.1.

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Displaying data: showing the distribution of a single variable

It is important that any graphical depiction of data is clear. Usually the easiest 
and clearest way to display a single set of data is to use a histogram or a bar chart 
of frequency of occurrence. If you have discrete data then it may be best to 
display each possible value. However, in most cases it will be necessary to group 
the data into classes. There is often confusion about the difference between a 
histogram and a bar chart.

Bar chart: for discrete data
Each possibility is represented on the horizontal axis (abscissa or x-axis), with 
frequency on the vertical axis (ordinate or y-axis). Gaps between the bars 
 symbolize the discrete nature of the data (see Fig. 6.2 for an example). If there 
are a very large number of possibilities then a bar chart may be  inappropriate as 
clumping the data into groups will give a better picture of the distribution. If 
this happens then you have moved to a histogram.
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Fig. 6.1 This box and whisker plot was created in SPSS. There were 40 observations of 
numbers of bird species seen by a single observer from the same point during a fixed 
time. It shows that the median number was seven and that 50% of the observations 
were between 4 and 8. Note that there were single observations of 14 and 15 (marked 
as crosses) and that the axis extends to −2 even though 0 is clearly a lower limit (it is 
impossible to see fewer than zero species of birds).
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Histogram: for continuous data
Observations are grouped into artificial classes. The mid-point of the class is 
displayed as a label on the x-axis and frequency (number of observations) on the 
y-axis. No gaps should be left between classes to symbolize the continuous 
nature of the data. Shading, especially intense shading, should be used sparingly. 
See Fig. 6.3 for an example.

Number of classes to display in a histogram?

As a rule of thumb use 12–20 classes (categories along the x-axis). However, it is impor-
tant to employ some common sense. Small samples should rarely need to have 12 classes 
and huge samples may be grouped into more than 20 classes.

As an alternative rule of thumb use !n classes (where n is the number of observations 
in your sample).

In the example of the beetle elytra above there are 19 classes of 1.5 mm each although 
only 15 have any observations. This fits with the first rule of thumb. The second rule of 
thumb suggests 24 classes.
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Fig. 6.2 This bar chart is generated using a larger version of the same data set used to 
create the box and whisker plot in Fig. 6.1. This SPSS chart shows the number of bird 
species seen in a garden in a 15-min period. There were 400 observations made. Clearly 
the number of birds can never be below 0 although it might be greater than 15. 
Observations of this kind will always be integers although there is certainly no require-
ment for data to be integers to be suitable for bar charts. Gaps between the bars 
symbolize the discontinuous nature of the data.
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Pie chart: for categorical data or attribute data
A pie chart should only be used if the categories have no logical sequence. For 
example, if the categories are blood groups, species of tree or mutants of 
Drosophila then a pie chart is probably a better method of presentation than a 
bar chart. However, if the categories have a logical sequence, such as five arbi-
trarily defined levels of ripeness, then a bar chart will be more informative. An 
example is shown in Fig. 6.4.

Tip: do not use three-dimensional bars or shadow effects on histograms or bar 
charts (unless it is for a display and then only in exceptional circumstances). 
Such effects obscure the data as it is difficult to see exactly where the top of the 
bar lies. I would also advise against the use of colour unless it is absolutely neces-
sary (although I can’t think of an example where I would advocate its use!).

Descriptive statistics

Statistics of location or position
There are several of ways of defining the ‘location’ of a distribution. It is  tempting 
to focus only on the arithmetic mean as this is the easiest statistic to calculate 
and the most commonly used. However, it is worth considering some of the 
alternatives, especially the median.
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Fig. 6.3 This histogram presents a data set comprising 589 observations of elytron length 
in a population of beetles. The observations are linear measures and clearly continuous. 
All measurements were made to the nearest 0.1 mm. Each bar represents a range of 
values and there are no gaps between the bars. Values on the x-axis show the midpoints 
of the range for half the bars.
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Arithmetic mean

This is the ‘normal’ mean, often called an average and by far the most com-
monly used measure of location; when written it is usually denoted as x-bar 
(i.e. x−), an estimate of the true mean, which is represented by the Greek letter, 
µ (mu), sometimes written as µx.

Geometric mean

This is the antilog of the mean of the logged data; it is always smaller than the 
arithmetic mean. The most commonly encountered use of this statistic is when 
data have been logged or when data sets that are known to be right skewed are 
being compared.

Harmonic mean

This is the reciprocal of the mean of the reciprocals and is always smaller than 
geometric mean. This type of mean is rarely needed.

Median

This is the middle value of a ranked data set. After the arithmetic mean it is the 
next most commonly used measure of location. It is the measure highlighted in 
box and whisker plots. If all the data are put into rank order (arranged in a list 
in from the largest value to the smallest) the median is the value associated with 
the middle ranked item (halfway down the list).

Mode

This is the most ‘fashionable’ value in a set of data; the value that occurs most 
frequently. It can be used with any type of data, even categorical data.

AB

A

O

B

Fig. 6.4 This pie chart, generated in SPSS, shows the blood groups of a sample of 
200  people. A pie chart is appropriate for this sort of data because if it was presented as a 
bar chart the x-axis would have no real meaning. Shading is not required but may be used 
if desired. Slices may be ‘exploded’ for emphasis as with the AB slice in this example.
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(a)

(b)

(c)

Fig. 6.5 Three rather different frequency distributions. (a) There is a clear single mode of 
a unimodal distribution. (b) There are two almost totally distinct distributions, giving a 
bimodal distribution. This might indicate two separate populations, different genders or 
different species. (c) The pattern of the frequency distribution is even more complex. 
There are three distinct modes making a multimodal distribution. This may indicate, for 
example, three cohorts of recruitment into a population.

Variables with one clear mode are said to be unimodal.
Distributions with two peaks are bimodal.
Distributions with more than two peaks are multimodal.
The trough between two modes is sometimes called the antimode (Fig. 6.5).
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One of the problems with the use of the mode is that it is rarely suitable if the 
observations are made with any degree of precision (e.g. femur length to the 
nearest 0.01 mm) as there will be a much lower chance of an observation being 
repeated. Therefore the mode should only be used when there are either a very 
large number of observations or a fairly small number of possible values.

Statistics of distribution, dispersion or spread
There are several ways to display the distribution or spread of a set of observa-
tions. However, it is important that the measure used is appropriate to the data 
and the statistic of location (e.g. median) used.

Range

This is the most basic measure of dispersion and is simply the difference between 
the largest and smallest observations in a sample. It is usually quoted as the 
smallest and largest value (e.g. range = 9.76–15.23 cm).

Interquartile range

This is a non-parametric measure of dispersion that works on the ranked data. 
It is the difference between the value of the data item (datum) 25% of the way 
down a ranked list and the one 75% down. These values are called quartiles. The 
interquartile range is much more useful than the range as it is unaffected by 
outliers. Unlike many other measures of dispersion, the interquartile range is 
not necessarily symmetrical about the median. The quartiles are often given the 
codes ‘Q1’ and ‘Q3’.

Variance

The variance usually refers to the sample variance, s2, which is an estimate of the 
true variance, σ2 (sigma squared). It is the mean of the squared deviations of 
observations from their arithmetic mean. Variance is rarely used as a descriptive 
statistic as it is not in the same units as the original observations. However, many 
statistical tests use variance in their calculations.

Standard deviation (SD)

This is usually an estimate, s, of the true standard deviation, σ (sigma). It is the 
square root of the variance. This is commonly used as a descriptive statistic as it 

Note: in any unimodal, symmetrical distribution (for example, a perfect normal  distribution) 
the mean, median and mode are all the same (see Fig. 5.3 for what  happens in an 
 asymmetric distribution).
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is in the same units as the original measurements or observations. However, 
confidence intervals should be used if comparisons of different sets of observa-
tions are required.

Standard error (SE)

By convention this is short for ‘standard error of the mean’ (i.e. the standard 
deviation of a distribution of means for repeated samples from a population). 
Standard errors are often quoted with means although this is probably because 
they are small rather than for any good statistical reason! If several samples are 
to be compared then the confidence interval should be preferred. If a measure 
of the variation in the sample is required then standard deviation is better.

Confidence intervals (CI) or confidence limits

These are derived from the standard error of the mean. Confidence intervals are 
the most useful measure of the dispersion of a distribution.

If a sample from a population is very large then the true mean of the popula-
tion is 95% likely to lie within 1.96 standard errors of the sample mean. This 
region is called the 95% confidence interval as you are 95% certain that it con-
tains the true mean of a population.

As samples get smaller then the multiplier used gets larger and the confidence 
intervals get wider. (If you have statistical tables it is easy to determine the 
required multiplier as it is derived from the t-distribution.) Confidence intervals 
are always symmetrical about the arithmetic mean. They are to be preferred over 
standard errors if several sets of observations are being compared.

Coefficient of variation

This is used to compare the amount of variation in populations with different 
means where direct comparisons of the standard deviations (s) are difficult to 
make as they are confounded by differences in scale. The coefficient of variation 
is usually denoted V or CV. CV=(100s)/mean and is usually expressed as a 
percentage.

Other summary statistics
There are other components of shape of the distribution of observations that 
can be interpreted easily. Knowledge of the skewness of a data set is particularly 
useful.

In theory there is no difference in calculation between a standard error and a standard 
deviation, just that the former measures the standard deviation of a hypothetical sample 
of means.
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Skewness

This is a measure of the symmetry of a data set. If the data set is symmetrical 
then the value of skewness will be 0. If there is a tail to the right it will be posi-
tive; if there is a tail to the left it will be negative. Meaningful values for  skewness 
are only possible if there are more than 30 (and preferably a lot more) observa-
tions in the data set. Normal distributions are symmetrical and consequently 
have a skewness of 0. Skewness is discussed in Chapter 5, page 41.

Kurtosis

This is a measure of the shape of a distribution. It tells you whether there are 
more observations around the mean or less when compared to a normal distri-
bution. Meaningful values are only possible if there are more than 100 observa-
tions in the data set. Kurtosis is discussed in Chapter 5, page 43.

Using the computer packages

General
All statistical packages will give summary statistics for sets of observations. However, 
generating exactly the set of statistics you are interested in may take several steps. 
The less frequently used statistics, such as kurtosis, may not be available.

       In this package the data may appear to be in the same spreadsheet form 
as a package such as Excel but the approach is rather different, as the  statistics 
are not displayed on the spreadsheet but in a separate window. The data 
should be in a single column with an appropriate label. To change the column 
label simply double click on the column name (‘VAR00001’ by default), or 
click on the ‘Variable View’ tab, and replace the ‘Name’ with something 
more suitable (you are limited to eight characters, spaces are not allowed 
and you should use the ‘Label’ column if you need to add a more descriptive 
name). The screen shot in Fig. 6.6 shows the various measures of dispersion 
that are available under the ‘Descriptives . . .’ options in the ‘Descriptive 
Statistics’ submenu of the ‘Analyze’ menu. The default selections are shown 
which include the rarely useful minimum and maximum (Fig. 6.6). Once 
you have chosen the options you want the statistics are displayed in the 
‘Output’ window. As you proceed through an SPSS session output 
accumulates in this window. This is very useful as you can go back and check 
results of previous tests very easily.

Further descriptive statistics can be accessed. From the ‘Analyze’ menu select 
‘Descriptive Statistics’ then ‘Frequencies . . .’. Select the ‘Statistics . . .’ button in 
the dialogue box and an array of options such as quartiles, skewness, kurtosis, 
variance, mode and median are available. I suggest you uncheck the ‘Display 

SPSS
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frequency tables’ unless you want a list of all the values in your variable and 
how many times they occur.

  Simple descriptive statistics are easy to access in R, although the results are 
displayed in a rather unhelpful way. In the example below the arithmetic mean 
of variable ‘x’ is reported:

 > mean(x)
[1] 1.703862

The functions ‘mean()’ and ‘median()’ are obvious. ‘var()’ gives variance, 
‘sd()’ gives standard deviation, ‘length()’ give the number of values in a 
variable and ‘sum()’ totals the values in the variable, while ‘range(x)’ will 
report the lowest and highest value in variable ‘x’.

The function ‘summary()’ gives the mean, median, maximum, minimum 
and quartiles. Other descriptive statistics are available if packages are installed. 
Search for ‘geometric mean’, or ‘standard error of the mean’ and install the 
 relevant package.

Alternatively you could construct a small script in R to calculate the  summary 
statistic.

The geometric mean is the antilog [the function is called ‘exp()’ in R] of the 
mean of the log values of a set of data that can be very easily written in R. The 
following function calculates the geometric mean of variable ‘x’:

> exp(mean(log(x) ) )

R

Fig. 6.6 A screen shot from SPSS showing the selection of descriptive statistics available.
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Skewness, or asymmetry, of the data in variable ‘x’ can be accessed by:

> boot::k3.linear(x)

There is no function for the harmonic mean, but this can be easily constructed. 
Assuming the data are in a variable ‘x’ the harmonic mean is:

> 1/(mean(1/x) )

Simple charts are very easy to access in R. A pie chart can be drawn with the 
function ‘pie()’, and the data and labels can be passed to the function or set 
within the function, for example:

> pie(c(12,4,25),labels=c(“Ash”,”Oak”,”Elm”) )

The basic plotting function in R is ‘plot()’ and this is extremely versatile. 
Again the data can be passed direct to the function, although that would be 
unusual. A simple demonstration would plot a set of numbers against their 
squares:

> plot(c(1:10),c( (1:10)^2) )

Note that ‘1:10’ gives the numbers 1–10, whereas ‘(1:10)^2’ gives the 
squares of 1–10. Axis labels can be added using the syntax ‘xlab=”label 
text” ’ within the plot function:

> plot(c(1:10),c( (1:10)^2), xlab=”X axis”, ylab=”Y 
axis”)

To get help on the options available simply type:

> ?plot

    The data for a single variable should be in one column in the spreadsheet 
section of the package. The variable should be named appropriately in the cell 
under ‘C1’. Spaces are allowed as part of the label. To get simple descriptive 
statistics go to the ‘Stat’ menu and select ‘Basic statistics’ and then ‘Display 
Descriptive Statistics . . .’. Move the name of the column with the data from the 
list on the left into the ‘Variables:’ box using the ‘Select’ button. Either click 
‘OK’ now or take a detour to either the ‘Graphs . . .’ options first to request some 
graphical output or to the ‘Statistics’ options to add output.

MINITAB
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This is the basic output that is generated:
All the basics are reported here: the number of observations in the data set 

(‘N’), the arithmetic mean (‘Mean’), largest and smallest values (‘Maximum’ 
and ‘Minimum’), standard deviation (‘StDev’) and standard error (‘SE Mean’) 
as well as the ‘non-parametric’ distribution statistics: median and the upper and 
lower quartiles (‘Q3’ and ‘Q1’). Quartiles are explained further elsewhere in 
this chapter. One option in the ‘Statistics’ options is the rather unusual trimmed 
mean ‘TrMean’ where the tails of the distribution, top and bottom 5% in this 
case, are removed before a mean is calculated. This makes the estimate of the 
mean less likely to be affected by outliers.

If the ‘Graphical summary’ is selected as an option in the ‘Graphs . . .’ options 
box, there is considerably more output to assess (shown in Fig. 6.7).

Fig. 6.7 A screen shot from MINITAB when the ‘Graphical summary’ option has been 
chosen to display descriptive statistics.

Descriptive Statistics: Height
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
Height 24 0 12.985 0.253 1.239 11.000 12.043 12.550 13.750
Variable Maximum
Height  15.630                
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This output contains much of the same information as the non-graphical 
 version but with some extras. In the mass of output on the right of the output 
the first thing is the ‘Anderson-Darling Normality Test’. This is a test to  determine 
whether the data in question deviate from a normal distribution. The ‘A-Squared’ 
value is the output from a test and ‘P-Value’ is the probability of seeing data 
that, or more, extreme if they are a sample from a normal distribution. If the 
P-value is less than 0.05 then this means it is unlikely to be normally distributed 
and therefore parametric statistics should not be used.

After this test comes the more usual descriptive statistics of arithmetic mean, 
standard deviation, variance and then the measures of the shape of the 
 distribution – skewness and kurtosis – and the number of observations, ‘N’. 
Next comes some information about the data arranged in rank order. The value 
of the  smallest and largest observations and then observations one-quarter (first 
quartile), half (median) and three-quarters (third quartile) of the way down a 
ranked data list.

The last section gives 95% confidence intervals for three of the descriptive 
statistics: ‘Mean’ (the arithmetic mean), the median and ‘StDev’ (the standard 
deviation). On the left of the output are three graphs. First is a histogram of the 
raw data with a normal distribution superimposed on it (the normal  distribution 
shown has the same mean and standard deviation as the data). Then comes a 
box and whisker plot of the data (described elsewhere in this chapter) using the 
same scale as the histogram and finally graphical representations of the mean 
and median with their 95% confidence intervals.

    In this package you have to assign a cell of the spreadsheet to contain the 
summary statistic you require. Assign a cell by clicking on any empty cell. Then 
you identify the cells that contain the variable (raw data) that you are interested 
in and the statistic appears.

For example: your data, containing 100 observations, has been typed into 
the first column of the spreadsheet (column A). The first cell has the title of the 
variable and the actual observations are in rows 2 to 101. To calculate the 
 arithmetic mean of this variable you go to any cell and declare its contents as 
‘=AVERAGE(A2:A101)’. (As you can see Excel calls the arithmetic mean the 
‘average’.) The median can be calculated as ‘=MEDIAN(A2:A101)’, the 
 geometric mean by ‘=GEOMEAN(A2:A101)’ and the harmonic mean as 
‘=HARMEAN(A2:A101)’.

These and other summary statistics are easily accessed using the ‘Insert  function’ 
( fx) facility of the package, mostly in the ‘Statistical’ submenu. Or, once you have 
learned a few of the function codes you could just type them in. For instance 
‘=STDEV(A2:A101)’ to get the standard deviation reported in an empty cell. 
Most of the summary statistics mentioned in this chapter are readily available in 
Excel, including skewness (SKEW), kurtosis (KURT) and mode (MODE). 
Confidence intervals require more work, but are possible using CONFIDENCE. 
The command ‘=CONFIDENCE(0.05,STDEV(A2:A101),100)’ will give the 

Excel
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95% confidence interval of the 100 items of data in column A, the parameters 
0.05 and 100 set one minus the size of the confidence  interval and the sample 
size respectively.

The interquartile range is not given directly in Excel, but it is easily calcu-
lated. ‘=QUARTILE(A2:A101,1)’ will give the value of the first quartile (i.e. 
the datum 25% up the data set when sorted) and ‘=QUARTILE(A2:A101,3)’ 
will give the third quartile (75%). The interquartile range is the difference 
between these two values, so in Excel that would be ‘=QUARTILE(A2:A101,3) 
– QUARTILE(A2:A101,1)’.

Displaying data: summarizing two or more variables

Box and whisker plots (box plots)
These are a good way of comparing two variables. They allow direct visual 
 comparison of both the location and the dispersion of the data. An example of 
the use of two box plots is shown in Fig. 6.8.

2.0

1.8

1.6

1.4

1.2

1.0

0.8
Male Female

Sex

W
in

g 
le

ng
th

 (
cm

)

Fig. 6.8 In this SPSS-generated figure the sample of observations of wing lengths of a 
moth are divided into two groups by gender. As in most insects, the females are 
considerably larger than the males and although there is some overlap in the whiskers 
there is no overlap of the interquartile range of the two groups. Note that for the males 
the median and lower quartile are superimposed, showing that 25% of the observations 
for males were almost of the same value.
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Error bars and confidence intervals
A similar way of looking at the same data is to display the arithmetic mean and 
some measure of the dispersion of the data. An example of the use of mean and 
confidence interval is given in Fig. 6.9. Note that the interquartile range is not 
symmetrical about the median (Fig. 6.8) whereas the 95% confidence intervals 
(or standard deviation if we had chosen to display that instead) are symmetrical 
about the mean (Fig. 6.9).

You can display more than two groups using these methods. They provide a 
very powerful method of showing differences and similarities between many 
groups. In the example here there is almost no need for any further statistics, as 
the difference between males and females is so striking!

Displaying data: comparing two variables

Associations
If two observations are made from a single individual (e.g. the ‘individual’ is a 
stream, and the water pH and stream flow have been recorded), before any 
statistics are applied it is best to get a ‘feel’ for the observations by a graphical 
representation of the data.
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Fig. 6.9 This figure, also generated in SPSS, uses the same moth wing lengths as Fig. 6.8. 
The means for males and females are represented by filled squares and the whiskers are 
error bars that extend to cover the 95% confidence interval for the mean (i.e. there is a 
95% chance that the true mean of the population lies between the extremes shown). 
There is no overlap between the whiskers, suggesting that the groups are likely to be 
highly significantly different.

9781405198387_4_006.indd   639781405198387_4_006.indd   63 9/16/2010   11:33:37 PM9/16/2010   11:33:37 PM



64 Chapter 6

Scatterplots

The simplest way to display a relationship between two variables is to use a 
plain scatterplot (Fig. 6.10). This assumes that two observations on the same 
row in the package are two measurements from the same ‘individual’. An 
 ‘individual’ can be almost anything: sampling station, greenhouse, pair or single 
bone.

It is important that all figures should have appropriate axis labels on them. 
They should also be accompanied by a figure legend that makes the plot 
 interpretable without reading the relevant section of the text.

Do not add extra information that is not relevant or appropriate. For example, 
many packages offer best-fit lines as a simple option. Do not use these unless 
(1) you believe there is a ‘cause-and-effect’ relationship between the variables, 
(2) you have used regression and you want a graphical accompaniment, (3) you 
intend to use regression and (4) you wish to use one variable to predict the other.

Multiple scatterplots

A good way to compare observations from two sites where the same variables 
have been recorded is to use a multiple scatterplot. The axes will be exactly the 
same as for the single scatterplot but each group will be displayed using a 
 different symbol.

This technique works particularly well for two or three groups and less well 
for more than that. Choose symbols carefully to allow the groups to be easily 
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Fig. 6.10 The scatterplot of pH and rainfall from a range of sites shown here has been 
created in MINITAB using the default options. Clearly there is no obvious relationship 
between the two variables.
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distinguishable and make sure that the figure caption makes it clear which 
 symbol matches which group (Fig. 6.11).

More sophisticated use of symbols can convey a great deal of information 
about several factors on the same scatterplot. For example if the data for two 
morphological variables are collected and the individuals are divided into groups 
by sex and species then all this information can be incorporated in a single plot. 
This can be achieved by using shaded and non-shaded symbols for the two sexes 
and different shapes for the two species (see Fig. 9.1 for an example).

Trends, predictions and time series

Lines

These should only be used to join points if there is a reasonable assumption that 
observations could be made between the points (Fig. 6.12). This is perfectly 
reasonable if the x-axis is temperature with readings made at 15–35°C in steps 
of 5°C as intermediate temperatures are valid. However, if the x-axis is number 
of eggs in a nest and the y-axis egg weight then it is perhaps unwise to draw a 
line linking mean weight at four eggs with mean weight at five as the line will 
pass though impossible points.
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Fig. 6.11 In the example shown here two sets of observations from different study areas are 
identified with different symbols. A quick glance shows that group 1 is associated with a 
higher pH than group 2 but there is no obvious difference between the groups on the 
‘rainfall’ axis. An analysis of variance or t-test could be used to determine the statistical 
probabilities, but the results would only confirm what is obvious from the scatterplot.

9781405198387_4_006.indd   659781405198387_4_006.indd   65 9/16/2010   11:33:38 PM9/16/2010   11:33:38 PM



66 Chapter 6

12

11

10

9

8

7

6

5

4

3

10 20 30

Index

pH

40 50

Fig. 6.12 This MINITAB-generated example of a line graphs shows a set of 50 readings 
of pH made through time at a chemical plant. The time gaps were equal and the 
observer thought it valid to join the reading made with lines, as there is a reasonable 
expectation that the intervening times would have intermediate levels of pH.
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Fig. 6.13 This figure, generated in SPSS, shows a combination of a line graph and the 
mean and confidence interval approach of Fig. 6.9. In this case there are four levels of 
the variable shade that can be said to form a valid sequence from light to dark. 
Observations of leaf shape (a continuous variable) were taken at each of the four shade 
categories and the mean and 95% confidence intervals are plotted here with the means 
joined to emphasize the clear trend.
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If there are several observations for each point on the x-axis then it is usually 
better to plot the mean or median with a measure of the dispersion at each 
point rather than use a scatter of points (Fig. 6.13). The same  guidelines for 
 joining means apply as for joining single observations.

It is very easy to deceive a reader by altering scales. For example, if there is a 
slight but steady increase in the concentration of nitrate in a lake over time then 
this can be made to look like a rapid increase if the scale on the y-axis starts not 
from zero but from a value just below the lowest observed value. This kind of 
manipulation of the reader will work particularly well if there is no measure of 
the variation given.

Fitted lines

The best way to draw the reader’s eye to a relationship between two variables is 
to use a fitted line of some sort. Indeed, an observer can sometimes be fooled 
into seeing a relationship in a scatterplot when there is none (Fig. 6.14). For this 
reason the use of fitted lines should be restricted to circumstances when the line 
is meaningful. The most common use is to illustrate a relationship between two 
variables that has been investigated using regression.

One technique is to plot the scattered observations along with the fitted line and 
then give more information about the regression in the text or the figure legend.

Confidence intervals

These should always be used to show the reliability of a mean value, as shown 
in Figs 6.9 and 6.13. If a regression line has been calculated then it should 
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Fig. 6.14 This MINITAB-generated scatterplot of the recovery of biomass after an 
extreme event against the diversity index before the event shows a slight but 
 non- significant trend. However, the addition of the trend line draws the eye and 
emphasizes the slight trend, convincing the reader that it is real.
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always be displayed with its confidence intervals. This shows the range within 
which the line is 95% likely to lie (Fig. 6.15). If the confidence intervals are wide 
apart then the line is obviously less reliable.

Displaying data: comparing more than two variables

Associations
It may be tempting to use the full capacity of the graphics on the package you 
are using but there is little or nothing to be gained by plotting a multidimen-
sional plot that is impressive to look at but impossible to interpret.

Three-dimensional scatterplots

This type of figure looks impressive but is quite difficult to interpret for several 
reasons associated with representing three dimensions in a two-dimensional 
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Fig. 6.15 Here the raw data, regression line and the 95% confidence intervals of the 
regression line are all shown along with some of the regression output from MINITAB. 
The variable ‘uptake’ measures the amount of drug passed across the stomach lining of 
a rabbit at various experimental pH levels. There is a clear relationship: the regression 
line slope is significantly different from zero and it explains 57.4% of the variation in 
the uptake observations. The 95% confidence intervals are quite close to the best-fit 
line confirming that the relationship is robust. Note that the line, quite properly, does 
not extend beyond the data as predictions can only be safely made within the range of 
the data.
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medium. First, if there are too many points plotted then those nearest the ‘front’ 
will obscure those as the back. Second, as the display medium is two- dimensional 
all the points need to have ‘spikes’ to anchor them to the x = 0, z = 0 plane. 
Without these spikes then a point near to the front but high on the y-axis will 
look identical to one near the back but low on the y-axis. An alternative method 
of spiking is to attach all points to the origin. This occasionally is useful, but 
normally generates a figure that looks like a bunch of flowers. Finally, there is 
often no forced perspective, making the arrangement of the axes seem odd. 
Furthermore points at the back are usually the same size as those at the front 
and this fools the eye (Fig. 6.16).

Multiple trends, time series and predictions

Multiple fitted lines

Further information may be conveyed if two lines are fitted on the same graph. 
The advantage of this approach is that lines may be compared directly but the 
disadvantage is that the message may become confused. I would advise against 
a tactic I have seen used increasingly which is to have different y-axes for the 
same x-axis so that the two lines being compared fit sensibly. There are two 
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Fig. 6.16 Most statistical packages have three-dimensional plotting ability (this one was 
plotted using SPSS). The three-dimensional scatterplot is very difficult to interpret even 
when the relationship is quite strong, and impossible when the relationship is weak. 
The spikes make the figure very cluttered but are vital to place the point accurately.
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problems with this type of graph. First it makes the reader see relationships that 
are not really there and second it is often difficult to see which scale applies to 
which line.

Surfaces

Many statistical packages include the option to have spectacular three- 
dimensional surface plots. I would advise against the use of these in almost all 
situations. The problems of all ‘three-dimensional’ graphs on two-dimensional 
surfaces apply with the additional problem that the solid or apparently solid 
surface totally obscures much of the surface.

The way the points are connected to form the surface is questionable too. For 
example, if one or two of the axes have data that are normally distributed this 
means that these observations are contributing a great deal of information in the 
centre of their range and rather less at the extremes. The surface plot does not 
reflect this in most cases (except it often betrays this by tending to have smoother 
edges where the surface is extrapolated from fewer points). Therefore the edges 
of the surface can be influenced by the extreme points, the very points likely to 
be measured with less accuracy.
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Fig. 6.17 Possibly even more difficult to interpret than the three-dimensional scatterplot 
shown in Fig. 6.16 is the three-dimensional surface plot, such as this one drawn in 
MINITAB. This sort of figure can only be interpreted if relationships are very strong or 
the smoothing algorithm is so strong that all the variation is wiped out of the data. 
Particular problems of three-dimensional surfaces are that the edges tend to be 
extrapolated from far fewer data points than the middle and that peaks can obscure a 
lot of the surface behind them.
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Remember that a surface, like a joined-up line, can only be used if both the 
‘x’ and ‘y’ (or ‘z’) observations can reasonably be expected to have possible 
intermediate values (Fig. 6.17). A problem with the interpolation of missing 
data points is shown in Fig. 6.18.

Fig. 6.18 This three-dimensional scatterplot from Excel shows a common problem with 
interpolation of points. The surface is constructed from an array of 100 values arranged 
in a 10×10 grid. Unfortunately one value is missing at x = 10, y = 9 and this value has 
been interpreted as having a value of zero.
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The tests 1: tests to 
look at differences

7

The tests in this chapter are presented in roughly the order they appear in the 
key (see Chapter 3).

Do frequency distributions differ?

Questions
There are two basic types of question that can be asked.
1 Does one observed set of frequencies differ from another?
2 Do the observed frequencies conform to a standard distribution?
In the first case the test becomes an analogue of a two-sample test of difference, 
such as the t-test. In the second it is a way of testing observations against expected 
frequencies, such as in plant-breeding crosses when particular ratios of pheno-
types are expected or to test whether organisms are occurring at random by 
testing against the Poisson distribution. The G-test, chi-square goodness of fit, 
Kolmogorov–Smirnov, Shapiro–Wilk and Anderson–Darling tests are the most 
commonly employed tests to answer these questions and are described below.

G-test
In situations where you have observed frequencies of various categories and 
expected proportions for those categories that were not derived from the data 
themselves then the G-test should be the preferred statistic to use. However, 
it is not many years since this test was shown to be superior to the traditional 
chi-square goodness of fit approach on theoretical grounds. Consequently it is 
not supported by any of the packages considered in this book.

If your package supports the G-test then use it and its associated correction 
factor, the Williams’ correction.

In the G-test the ratio of the observed and expected frequencies is calcu-
lated. The natural log (ln or loge) of this ratio is calculated and these values are 

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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multiplied by the number observed, summed, then doubled. This value of G is 
then compared to a chi-square distribution with one fewer degrees of freedom 
than the number of categories.

An example

A dihybrid cross of sweet peas has four categories of plant types with an 
expected ratio of 9:3:3:1. This ratio was not generated by the data so when the 
data are collected it should be compared to the expected values using the G-test. 
Two hundred plants were collected. The number of plants in each of the four 
categories is given below.

Tall and pink Tall and white Dwarf and pink Dwarf and white

108 35 46 11

 This test is not available in SPSS.

 This is quite a simple test and can be achieved in a few steps in R.
1 Enter the data into a variable, here called ‘obs’:

> obs<-(c(108,35,46,11))

2 Then enter the expected frequencies into a variable, here called ‘expected’: 

> expected<-(c(9,3,3,1))

3 These expected frequencies need to be converted to expected frequencies 
accounting for the size of the sample, so each value in ‘expected’ is divided by 
the total of the values in ‘expected’ and this is multiplied by the total number 
of observations:

> expected_freq=(expected/sum(expected)*sum(obs))

4 This is then converted to a log ratio stored in a variable called ‘lnratio’:

> lnratio=log(obs/expected_freq)*sum(obs)

5 To check all is well the values held in ‘lnratio’ can be displayed:

> lnratio
[1] –4.408775 –2.414751 9.397821 –1.406167

SPSS

R
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6 The result of the test is the absolute value (i.e. it must be positive) of double 
the sum of the values in ‘lnratio’; here I’ve called it ‘g’:

> g=2*abs(sum(lnratio) )

7 This value is then compared to a chi-square distribution with degrees of free-
dom one fewer than the number of categories. In R the function ‘pchisq()’ is 
used for this. This function requires two values: the value to be compared and 
the degrees of freedom. The result is the P-value:

> 1-pchisq(g,3)

Remember that these instructions only apply when there are four values and 
you should adjust to accommodate different numbers of categories.

 This test is not available in MINITAB.

 As this is a relatively simple calculation it is ideal for a spreadsheet like 
Excel. The most likely source of error when carrying out a G-test is in the 
calculation of the expected frequencies. The total of the expected frequencies 
should be exactly the same as the number observed.
 1 Label five columns as: observed, expected ratios, expected frequencies, ratio 
and ln ratio.
 2 Enter the four observed values in cells A2–A5. (Your data may have more 
than four categories and therefore all references to row five here should be 
adjusted to your data set.)
 3 Enter the values 9, 3, 3 and 1 in cells B2–B5.
 4 In cell A7 use ‘= sum(A2 : A5)’ to sum the number of observations.
 5 Copy cell A7 across to B7: ‘= sum(B2 : B5)’.
 6 In cell C2 the expected frequency of tall and pink plants is needed. This 
should be 9/16 of the total number of observations. Use ‘= B2/B$7*$A$7’, 
which will give 112.5 in this example, and copy this cell down to C5. Note that 
the ‘$’ are important as they hold the row or column or both in place when 
copying. ‘F4’ can be used to cycle through $ options.
 7 Calculate the ratios in D2 as ‘= A2/C2’. Copy this cell down to cell D5.
 8 Calculate the natural logs and multiply by the number of observations (A2) 
in E2 as ‘= A2*ln(D2)’. Copy down to cell E5.
 9 Sum the values in column E in cell E7 and double it: ‘= 2*sum(E2 : E5)’. The 
example should give a value of 2.336. If your data gives a negative value adjust 
the contents of cell E7 to ‘= –2*sum(E2 : E5)’ and the value should become 
positive.
10 The value in E7 should be looked up on a chi-square table. Excel does this 
with ‘= CHIDIST(E7,3)’ (or select CHIDIST from the ‘Paste function’, Statistical 
submenu). In this example there are three degrees of freedom. The result is 

MINITAB

Excel
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P = 0.505611, so the null hypothesis is not rejected (see Fig. 7.1). Your calcula-
tion should have one degree of freedom fewer than the number of categories.
11 Save your Excel sheet as it will be easy to recycle for future G-tests by alter-
ing the values in columns A and B (where necessary). If more categories are 
required remember to adjust all the summing steps to cover the required ranges 
and adjust the degrees of freedom.

Chi-square test (χ2)
Often known as the chi-square goodness of fit, this test is one of the most 
widely used in the whole of biology. It is also the statistical test you are most 
likely to be familiar with. You will usually present the data in a table showing 
the observed and expected frequencies for various categories. These categories 
can be single outcomes or groups of possible outcomes. It is customary to use 
grouping of categories to ensure that none of the expected values is less than 1 
(some authors, erring on the side of caution, suggest 5). The expected values can 
be derived from a distribution such as the Poisson or negative binomial, they can 
assume that all categories are equally likely (a flat or rectangular distribution), 
they can be derived from a specific null hypothesis of ratios or they can be 

Fig. 7.1 Calculating the value of G using Excel.
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derived from another set of data. In all cases the null hypothesis (H0) will be 
that the observed and expected frequencies are not different from each other. 
The chi-square test may also be used as a test of association (see Chapter 8).

An example

A very common starting point for investigations in biology is to determine 
whether events or observations are occurring at random. If events are truly ran-
dom then they should follow a Poisson distribution (see Chapter 5 for more 
details). The chi-square test allows you to compare observed data with the 
expected data if following a Poisson distribution with the same mean. In this 
case the number of lice found on adult char is recorded. All observations were 
taken from a single catch of 98 fish. If the lice attach themselves to the fish at 
random then they will follow a Poisson distribution and the chi-square will not 
be significant (i.e. supporting the null hypothesis that lice attack fish at ran-
dom). If the result is significant this indicates that lice do not attack randomly 
and a new hypothesis should be formulated.

Note that in this instance we are comparing a set of observed frequencies 
against a set of expected frequencies derived from a Poisson distribution that 
has the same mean as the observations. Therefore the expected frequencies are 
not independent of the observed and this loses us a degree of freedom.

No. lice/fish 0 1 2 3 4 5 6 7 8+

No. observations 37 32 16 9 2 0 1 1 0

 First I should point out that processing this type of data for a goodness of 
fit chi-square in SPSS is not easy unless you wish to fit the distribution to a 
uniform one (i.e. all categories are expected to have the same number of 
observations). If you have this sort of data use the Kolmogorov–Smirnov test to 
answer the question in SPSS. However, I will go through the procedure anyway 
assuming you don’t know how to calculate Poisson ‘expecteds’ by hand (perhaps 
the faint hearted should move on to the Kolmogorov–Smirnov test now!).
1 Make sure that the data are in a single column of the actual data, not the 
frequencies. In this case there will be 98 rows in the data set; one for each fish. 
Label this column ‘no_lice’.
2 Determine the mean number of lice per fish using the ‘Analyze’ menu, then 
‘Descriptive Statistics . . .’ and selecting either ‘Descriptives. . .’ or ‘Frequencies. . .’ 
before moving ‘no_lice’ into the ‘Variable(s)’ box. The output will confirm the 
mean as 1.14. The next steps show how to calculate the expected frequencies 
in SPSS. If you can do this by hand or in a spreadsheet I suggest you do so and 
skip directly to step 6.
3 Generate a new column with all the expected frequencies in it (e.g. 0, 1, . . . 7) 
in separate rows. Label this column ‘freq’.

SPSS
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4 Use the ‘Compute Variable. . .’ which is under the ‘Transform’ menu to bring 
up a dialogue box. In the ‘Target variable’ box enter, say ‘exp1’. Select ‘All’ or 
‘PDF & Noncentral PDF’ in the ‘Functions group:’ box. Then scroll down the 
list of functions until you reach ‘Pdf.Poisson’. (Note: PDF stands for probability 
density function.) Select this and move it into the ‘Numeric Expression:’ box 
with the up arrow. Replace the second question mark with the mean you cal-
culated in step 2 (i.e. 1.14 in the example). The first question mark (‘q’) should 
be replaced with the name of the variable you created in step 3 (i.e. ‘freq’). The 
expression should be ‘PDF.POISSON(freq,1.14)’. Click ‘OK’. A new variable 
will appear on the spreadsheet with numbers starting from 0.32. This first 
number is the probability of getting a zero in a Poisson distribution with a 
mean of 1.14.
5 One more calculation step is required. Go to the ‘Transform’ menu and 
select ‘Compute Variable. . .’ again. Insert a new label in the ‘Target variable’, 
say ‘expected’ as this is going to be the true expected value. Select ‘exp1’ from 
the list on the left and move it to the ‘Numeric expression’ box. Then add 
‘* 98’ (or whatever your sample size is if you are not using the example) 
 outside the parentheses. This will multiply the values by the total number 
of observations, turning your expected frequencies into expected numbers 
of lice.
6 You will notice that all expected frequencies for more than four lice per 
fish are less than one and should be grouped together to form a category 
of ‘four and above’. Write down the expected frequencies for the five 
categories.

No. lice per fish 0 1 2 3 4+

No. observations 37 32 16 9 4

Expected no. observations 31.3 35.4 20.4 7.8 2.8

7 As all values above three lice per fish have been grouped for expected fre-
quencies, this must now be done for the actual data. In SPSS you can either do 
it by hand or use the ‘Recode’ option under the ‘Transform’ menu. Selecting 
either ‘Recode into same variables. . .’ (over-writing the original data) or 
‘Recode into different variable. . .’. If you choose the latter, move ‘no_lice’ into 
the ‘Numeric variable → output variable’ box. Then type a name for your new 
variable in the ‘Output variable, Name:’ box and click ‘Change’. Your new 
name appears after the old name in the main box. Then click ‘Old & New 
Values. . .’. This brings up a bewildering set of options that are actually 
extremely useful in SPSS. In the ‘Old value’ section on the left select ‘Range, 
value through highest’. Put a 4 in the box. Then in the ‘New value’ section on 
the right put a 4 in the ‘value’ box and click ‘add’. This will put ‘4 thru Highest 
→ 4’ in the ‘old → new’ section (meaning that all 4s or higher will become 4s). 
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Finally click ‘All other values’ on the left, ‘copy old values’ on the right, and 
‘add’ to keep the rest as they were. ‘ELSE → Copy’ appears in the ‘old → new’ 
box. Click ‘Continue’ here and then ‘OK’ in the next window to create the 
new variable.
8 Finally, choose ‘Analyze’, ‘Nonparametric tests’ and ‘Chi-Square. . .’ to bring 
up the ‘Chi-Square Test’ window. Move the variable you created in step 7 into 
the ‘Test variable list:’ box. Unfortunately you have to enter the expected fre-
quencies one at a time. Click on ‘Values:’ in the ‘Expected Values’ area and enter 
the expected frequencies, starting at the one for zero (i.e. 31.3 in the example) 
and clicking ‘add’ after each one before clicking ‘OK’ to run the test. This is the 
output you should expect.

 Observed N Expected N Residual

.00 37 31.4 5.6
1.00 32 35.5 −3.5
2.00 16 20.5 −4.5
3.00 9 7.8 1.2
4.00 4 2.8 1.2
Total 98

Frequencies

Chi-Square Test

no_lice

Test Statistics

 no_lice

Chi-Square 3.002a

df          4
Asymp. Sig. .557

a.  1 cells (20.0%) have expected frequencies less than
5. The minimum expected cell frequency is 2.8.

The data have been reduced to just five categories and each has an associated 
expected frequency. The residual is the difference between observed and 
expected. At the bottom is the actual chi-square statistic, the associated degrees 
of freedom (4 in this case as, once the categories had been clumped, there were 
five categories) and finally the significance value (P-value).
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Despite the fact that there are more high values and zero values than you 
would expect (indicative of a clumped distribution) the probability is well 
above 0.05. This indicates that the deviation from the Poisson expectations is 
non-significant and therefore we have no reason to reject the null hypothesis 
that lice attack fish at random in this population.

 As with SPSS and MINITAB the default chi-square test in R, ‘chisq.
test()’, assumes that the number of observations per category is equal. There 
are several ways to tell it otherwise, and here I’m going to avoid using a predefined 
chi-square function as it gives more control over the amalgamation of categories. 
To generate the expected values for the table we will make use of the function 
‘dpois()’ that gives the proportion of observations with a given value in a 
Poisson distribution with a given mean. For example, > dpois(1,2.2)will 
return 0.2437699, which is the proportion of values that will be 1 in a Poisson 
distribution with a mean of 2.2.
1 First make a variable that holds the integers from zero to eight representing 
the number of lice: > number<-c(0:8)
2 Then input the numbers of observations. Perhaps these will be held in a text 
file and imported into R, but in this case I’ll assume that the values from the tally 
table need to be input to R manually: > obs<-c(37,32,16,9,2,0,1,1,0)
3 We need to know the total number of observations and the total number of 
lice to calculate the mean number of lice per fish. I’ll do this in one go in R, then 
confirm the correct value:

> meanlice=sum(obs*number)/sum(obs)
> meanlice
[1] 1.142857

4 Now we know the mean number of lice per fish we can calculate the expected 
proportion of fish that will have zero, one, two, etc. lice using ‘dpois()’, which 
assumes that lice attack fish at random leading to a Poisson distribution. As what 
is required is an expected number of fish, the proportions are multiplied by the 
number of observations:

> expected_freq=sum(obs)*dpois(number,meanlice)
> expected

R

Note: as the mean of the distribution we are comparing to our data was calculated from 
the sample we should lose a further degree of freedom to give a total degrees of freedom 
of 3. The package does not account for this as it is calculated before the test is applied 
and therefore SPSS ‘knows’ nothing about it.
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[1] 31.2526 35.7175 20.4100 7.7752 2.2214 0.5078 0.0967
[8] 0.0158 0.0023

5 In this example there are several categories that have very low values. The 
advice given for chi-square tests is that no expected values should be less than 
1 and no more than a quarter of the expected values should be less than 5. This 
means only the first four or five categories should be used in this case. It is 
important that the sum of the values in the observed and expected variables are 
the same, so care should be taken when working out the value in the ‘four and 
above’ category. Here we know that the total number of observations is 98, so 
the value in ‘four and above’ should be the sum of the values in categories 0 to 
3 taken away from 98, or ‘sum(obs)’.

>sum(obs)-sum(expected_freq[1:4] )
[1] 2.8444

This can be inserted as the fifth element in the ‘expected_freq’ variable:

> expected_freq[5]=sum(obs)-sum(expected_freq[1:4] )

6 Now we have five categories of expected values, 0 to 3 and ‘4 and above’. This 
needs to be reflected in the observed data as well. So the value of the fifth ele-
ment of the obs variable should be the sum of all observations of four and above. 
Or, it could be done by subtraction from the total number of observations:

>obs[5]=sum(obs)-sum(obs[1:4] )

This means that the value of the ‘4 and above’ category is now 4.
7 To calculate the value of chi-square the simple formula of the sum of 
(observed–expected) squared over expected is implemented for the first five 
elements of these variables.

>v=(obs-expected_freq)^2/expected_freq
>chisquare=sum(v[1:5] )
>chisquare
[1] 3.059116

8 Finally we need the P-value associated with a chi-square value of 3.059116 
with three degrees of freedom. The degrees of freedom is three rather than four 
because there has been some clumping of categories. ‘pchisq()’ returns the 
cumulative probability of getting a chi-square value of that or lower, so to cal-
culate the P-value we need ‘1-pchisq()’:

> 1-pchisq(chisquare,3)
[1] 0.3862
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Here the P-value is well above 0.05 so we don’t reject the null hypothesis that 
the frequencies of number of lice per fish follows a Poisson distribution.

 Calculating a goodness of fit to a Poisson distribution is surprisingly 
awkward in MINITAB, although not quite as awkward as in SPSS. However, it is 
a test that you will wish to carry out in many circumstances.
1 Make sure that the data are in a single column of the actual data, not the 
frequencies. In this case there will be 98 rows in the data set: one for each fish. 
Label the column ‘No lice’.
2 Determine the mean number of lice per fish using the ‘Stat’ menu, then 
‘Basic statistics’, then ‘Display Descriptive statistics’. Move ‘No lice’ into the 
‘Variables’ box, either by double clicking on the variable name or using the 
‘Select’ button. The output will confirm that there are 98 observations and give 
the mean as 1.143.

(Or, if the command interface is enabled, type ‘Describe ‘No lice’’ or ‘Describe 
C1’ at the MTB> prompt. Or you can input commands using ‘Edit’ menu then 
‘Command Line Editor’.)

The next steps show how to calculate the expected frequencies for a Poisson 
distribution in MINITAB. If you know how to do this by hand or in a spread-
sheet you can skip directly to step 6.
3 First you should generate a table of the tallied observations: Go to the ‘Stat’ 
menu, then ‘Tables’ then ‘Tally individual variables. . .’. Move ‘No lice’ into the 
‘Variables’ box and make sure that the ‘Counts’ box is checked. Click ‘OK’. This 
output will appear in the ‘Session’ window:

MINITAB

Tally for Discrete Variables: No lice

No lice Count
0 37
1 32
2 16
3 9
4 2
6 1
7 1
N= 98

Note that as there were no fish with five lice, there is no count for five in the 
table. Now you can either cut and paste the two columns of figures from the 
‘Session’ window into columns C2 and C3 of your MINITAB spreadsheet 
(remembering to click on the ‘Use spaces as delimiters’ option) or you can type 
the numbers in directly.

(Or type ‘Tally c1;’ at the MTB> prompt, followed by ‘Store c2 c3.’ at the SUBC> 
prompt. Remember to type a semicolon at the end of MTB> command if you want 
to bring up the SUBC> prompt.)
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4 Now we need to generate expected numbers of lice for a Poisson distribution 
with the same mean as the sample. Go to the ‘Calc’ menu, then ‘Probability 
distributions’ and then ‘Poisson. . .’. In the dialogue box type the sample mean in 
the ‘Mean:’ box, type ‘c2’ in the ‘Input column:’ box and ‘c4’ in the ‘Optional 
storage:’ box. If you don’t select a storage column the output only goes to the 
‘Session’ window (Fig. 7.2). Click ‘OK’.

(Or type ‘PDF c2 c4;’ at the MTB > prompt, followed by ‘Poisson 1.143.’ at the 
SUBC > prompt. Replace 1.143 with the mean of your sample. Or you can input 
commands using ‘Edit’ menu then ‘Command Line Editor’.)
5 To convert the probabilities generated into numbers you need to multiply by 
the total number of observations in the sample (98 in this example). Go to the 
‘Calc’ menu, then ‘Calculator. . .’. In the dialogue box type c5 in the ‘Store result 
in variable:’ box. Then type ‘c4 * 98’ in the ‘Expression:’ box (replacing 98 with 
the number of observations in your sample). Click ‘OK’.

(Or type ‘Let c5 = c4 * 98’ at the MTB > prompt.)
6 Chi-square tests should not have expected frequencies that are less than one. 
In the example the expected frequencies for 6 and 7 are both less than one. Also, 
because there were no fish with five lice in the example there is no expected 

Fig. 7.2 Generating expected values using the ‘Tally’ command and Poisson probabilities 
in MINITAB.
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frequency for 5 in the column. In this example the best strategy is to pool all 
observations of 4 or more into a single observed and expected value. You can do 
this in several ways, either on a calculator, by hand or by using the ‘Calculator. . .’ 
from the ‘Calc’ menu, selecting a row and typing the sum required. In this 
example selecting row 5 and typing ‘98–31.248–35.717–20.412–7.777’ in the 
‘Expression box’. The numbers are the expected frequencies of 0, 1, 2 and 3 lice 
per fish respectively. The result should be 2.85, being the expected number of 
times, out of 98, that a Poisson distribution with a mean of 1.143 would pro-
duce a number of 4 or more.

[Or type ‘Let c6(5) = 98–31.248–35.717–20.412–7.777’ at the MTB> prompt. 
Replace c6 and (5) with the column and row you require and the numbers with 
those appropriate for your data.]
7 You must amalgamate the observed frequencies in exactly the same way as 
the expected. In this case there are a total of four observations of 4 or more lice 
per fish. You should now have one column of expected frequencies with no 
values less than one and one of observed.

In the lice and fish example the following columns should result

C6 C7
Expected Observed

31.2484 37
35.7169 32
20.4122 16
7.7771  9
2.8460  4

8 Finally we reach the chi-square test itself. There is no way to reach the 
required test using the menus. You will have to make sure the command line is 
enabled (from the ‘Editor’ menu select ‘Enable commands’). Type at the com-
mand line (MTB>) the following: ‘LET K1 = SUM( (C7 – C6)**2/C6)’ (assum-
ing that your expected values are in C6 and observed in C7) followed by 
‘PRINT K1’ to see the result. For the example this will return the value of 
‘3.059’ (slightly different numbers will be the result of rounding in the 
calculations).
9 Finally, to determine whether this is significant or not (i.e. do we reject the 
null hypothesis that the lice are attacking the fish at random) we need to be sure 
on the degrees of freedom (d.f.). In the example there were five possible values 
(so 4 d.f.) but the mean value of the Poisson distribution we are comparing 
against was taken from the data we are using so we lose a further degree of 
freedom (leaving 3 d.f.). You can either look up the value on a table in a statistics 
book or you can use the command line in MINITAB using the following 
commands:
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MTB > cdf k1 k2;
SUBC> chisquare 3. (replacing 3 with the degrees of freedom required)

MTB > let k3=1-k2
MTB > print k3

This will give you the output:

Data Display
K3 0.382556

This value is well above the critical 0.05 level. Therefore we have no reason to 
reject the null hypothesis that lice attach fish at random in this population. If 
you look up the value in a statistics book you will see that the chi-square value 
required to reach the critical level of 0.05 for 3 d.f. is above 7 and here the Chi-
square value was only just above 3.

 Most of the calculation steps are fairly straightforward and therefore ideal 
for a spreadsheet like Excel. Using the same example as for SPSS (above) I will 
assume that the data are available as a frequency table rather than a column 
containing all 98 observations. If they are not then you can generate a frequency 
table from the raw data using the ‘Frequency’ command (or by hand). The 
number of lice is in column A and the frequencies are in column B.
1 To calculate expected values for a Poisson distribution the only parameter you 
need to know is the mean. To find the mean of data in a frequency table you first 
need to find the product (what you get when you multiply the category value 
by the number of observations). If you have input the categories in column A 
with a title, number of observations in B with a title then go to cell C2 and type 
‘= a2*b2’. In this example this will be zero. Then find all the other products by 
dragging the little square in the bottom right corner of the cell down to the bot-
tom of the list.

Add up the number of observations in the B column by typing ‘SUM(b2 : b9)’ 
in cell B11 and dragging this across to the C column to add up the products. 
Then divide the products by the number of observations to obtain the mean by 
typing ‘= c11/b11’ in cell C13. Always use labels in other cells to make every-
thing clear. In this example the mean should be 1.14.
2 Calculation of the expected number of observations is surprisingly easy in 
Excel. Move to cell D2 (for convenience) and click on ‘Insert function’. Select 
category ‘Statistical’ and then ‘POISSON’ from the very long list of options you 
are offered; click ‘OK’. A window with three lines to fill appears. In the first ‘X’ 
line use the cell number of the category, in this case A2. In the second type in 
the mean (1.143); don’t use the cell number. Type a zero in the bottom line. 
This tells Excel that you do not want the cumulative probabilities. Then click on 
‘OK’. The probability of getting a zero in a Poisson distribution with a mean of 
1.143 appears in the selected cell (just under 0.32).

Excel
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3 Step 2 calculated the probability of getting a particular number of lice. What 
is needed is the expected number of observations. To get this you must multiply 
the probability by the number of observations, 98 in this example. To do this 
make sure that cell D2 is selected and add a ‘*98’ to the end of the formula, 
giving: ‘= POISSON(A2,1.143,0)*98’. Or, to make the calculation more versa-
tile, use the cell where the total number of observations is calculated (b11 in the 
example, so $b$11). Press return and the number in the cell becomes the 
expected number of observations. Remember to replace 1.143 with your mean 
and 98 with the number of observations in your sample or use cell numbers 
anchored with $.
4 Select D2 again and drag its contents down the column (click on the little 
square in the bottom right corner of the cell and hold the mouse button as you 
move mouse to highlight all cells to D9 then let go). The column fills with the 
expected number of observations for each of the categories in column A. Label 
column D ‘expected’. See Fig. 7.3.
5 Some of the expected values are less than one and need to be amalgamated. 
In this case it is best to have a category for lice numbers of 4 and above. Copy 
the observed data into column E but replace the number of times four lice were 

Fig. 7.3 Calculating the mean number of lice per fish from a table of frequencies in 
Excel. (Note: the numbers and letters around the sides of the data are the Excel row and 
column labels.)
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observed with the number of times four or more lice were observed. This is a 
total of four observations in this case. Label column E ‘observed’.
6 You also have to amalgamate the expected frequencies so that cell D6 holds 
not the expected number of fours but the expected number of ‘4 or mores’. 
There are several ways of achieving this but probably the easiest is to start with 
the 98 total and take off the expected numbers of 0, 1, 2 and 3. Type in cell D6 
‘= 98–D2–D3–D4–D5’. This should give you an expected value of 2.845.
7 Chi-square uses the formula: ‘(observed–expected)2/expected’ for each category 
and then sums these to produce the final chi-square statistic. The formula is often 
quoted as (O–E)2/E. In this example the observed values should be in column E 
and the expected in column D. So in cell F2 type in the formula: ‘=(E2–D2)^2/
D2’. Once you have done that copy it down the F column to F6.
8 You should have five numbers in column F. These need to be added up to give 
the final chi-square value. Type in any clear cell: ‘= sum(F2 : F6)’. For conven-
ience I used cell F8. You should get the value: 3.0599. This is the chi-square 
value that you would quote in a report.
9 Finally, what is the probability of getting this value of chi-square (or a higher 
value)? Go to any clear cell. Click on ‘Paste function’ and select ‘CHIDIST’ 
from the list (if it does not appear immediately it can be selected from either 
the ‘Statistical’ list or the ‘All’ list). In the first, ‘X’, box you input the chi-square 
value (or the cell that you used in step 8). In the second box you need to put 
the degrees of freedom. In this case there were five categories, giving four 
degrees of freedom, but the Poisson distribution we are comparing against has 
its mean taken from the frequency data, which loses another degree of freedom 
(Fig. 7.3). Therefore you should have three degrees of freedom. Input three and 
you should get a probability of 0.38. This value is well above 0.05 so you can 
infer that the distribution of lice on fish is not significantly different from ran-
dom (Poisson distribution). We have no reason to reject the null hypothesis that 
lice attack fish at random in this population.

Kolmogorov–Smirnov test
The Kolmogorov–Smirnov test for goodness of fit has a variety of uses for large 
samples of continuous data. There are two main forms, called the one-sample 
test and two-sample test. Both are used to compare two sets of data to deter-
mine whether they come from the same distribution. The one-sample version is 
more commonly used and compares experimental data with expected distribu-
tions. The expected distribution may be derived from the data or may be com-
pletely independent of them. For example, you may use the test to determine 
whether a set of tarsus-length data differs from a normal distribution with the 
same mean and variance as the sample data before you use parametric analysis 
on it. The two-sample test can be used to compare a set of egg-weight data from 
a population of ducks with a set from another site, asking whether the distribu-
tions are the same.
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An example

The weight in grams is recorded for a sample of 48 mice. This sample is part of 
an experiment and the researchers wish to know whether the weights are dis-
tributed normally before they go on to use parametric statistics. The data are 
shown here.

Note: although the Kolmogorov–Smirnov test appears similar to the t-test and the 
Mann–Whitney U test it is not aimed at the same question. The Kolmogorov–Smirnov test 
delivers a probability that two distributions are the same while the t-test is concerned 
with means and the Mann–Whitney U test with medians. Two distributions may have 
identical means and medians and yet have differences elsewhere in their distributions.

12.5 13.5 13.2 12.5 12.1 12.6 12.1 12.8
14.2 13.2 13.8 12.0 12.5 12.1 12.8 12.9
12.6 12.8 12.5 13.1 12.4 13.5 13.4 13.6
13.0 14.1 12.6 13.2 13.8 13.8 13.9 14.0
14.1 12.1 12.9 14.5 13.2 14.1 12.5 12.5
15.0 12.6 13.0 13.5 14.0 12.9 12.4 12.8

 This is a very simple test to access in SPSS. Ensure all the data are in a 
single column. Select the ‘Analyze’ menu, then ‘Nonparametric Tests’, then 
‘1-Sample K–S. . .’. In the dialogue box move the name of the column you are 
testing into the ‘Test Variable List:’ box. Make sure that the ‘Test distribution’ 
has ‘Normal’ selected. Then click ‘OK’. The following output will appear:

SPSS

NPar Tests

One-Sample Kolmogorov-Smirnov Test

  mouse_wt

N 48
Normal Parametersa,b Mean 13.108

Std. Deviation .7178
Most Extreme Differences Absolute .115

Positive .115
Negative −.082

Kolmogorov-Smirnov Z .795
Asymp. Sig. (2-tailed) .552

  a. Test distribution is Normal.
  b. Calculated from data.
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This output confirms the test and variable used, gives statistics: number of 
observations (‘N’), mean and standard deviation. The last two lines of the out-
put table refer to the test itself. The only important bit is the ‘Asymp. Sig. 
(2-tailed)’. If this number is less than 0.05 then the distribution of the data is 
significantly different from normal. In this case the value is 0.552 which is well 
above the critical 0.05 so we have no reason to suppose that the distribution of 
the data is significantly different from a normal distribution.

 The Kolmogorov–Smirnov test function in R is ‘ks.test()’, but as 
the Kolmogorov–Smirnov test has several incarnations available in R it is 
important to specify carefully exactly what test is to be carried out. In this 
example the data is held in ‘var1’ and it is being compared with a normal 
distribution with the same mean and standard deviation. So R is asked to derive 
and use those values:

> ks.test(var1, “pnorm”, mean=mean(var1), 
sd=sqrt(var(var1) ) )

One-sample Kolmogorov–Smirnov test

data: var1
D=0.1147, p-value=0.5523
alternative hypothesis: two-sided

Warning message:
In ks.test(var1, “pnorm”, mean=mean(var1), 
sd=sqrt(var(var1) ) ) : cannot compute correct p-values 
with ties

The output gives the output statistic ‘D’ and then a P-value associated with that 
statistic. Here it is 0.5523 which is well above 0.05, so we accept the null 
hypothesis that there is no difference between the observations and a set of 
random observations drawn from a perfect normal distribution with the same 
mean and variance. There is a warning message that appears often with ranked 
tests when there are tied values (i.e. two or more identical values in the data 
set). You should not be concerned unless there are many tied values, in which 
case the data may not be appropriate for a ranked test, or the P-value is very 
close to 0.05, where you might want to measure with sufficient precision to 
remove the ties.

 The Kolmogorov–Smirnov is a very simple statistic to reach if you are 
testing a single column to see whether it follows a normal distribution or not, 
although the Anderson–Darling test, considered below, is easier to reach.

Ensure all the data you wish to test are in a single column. Select the ‘Stat’ 
menu, then ‘Basic statistics. . .’, the ‘Normality Test. . .’. In the dialogue box move 

R

MINITAB
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the column you wish to test into the ‘Variable:’ box and select the Kolmogorov–
Smirnov test. Then click ‘OK’.

The output is a graph that shows a perfect normal distribution of data as a 
straight line and your data as a series of dots. The test compares the dots with 
the line. A box next to the graph has the basic statistics of the data, a value for 
the Kolmogorov–Smirnov test and then a P-value. If the P-value is less than 
0.05 then the distribution is significantly different from normal. In this case the 
value is given as >0.15 so it is not significantly different from normal.

The Ryan–Joiner test for normality and the Anderson–Darling test are also 
offered in this dialogue box. Be warned that different normality tests will often 
give quite different results.

(Or, if the command interface is enabled, at the MTB> prompt in the session 
window type ‘NormTest C1;’ then at the SUBC> prompt type ‘KSTest.’ Or you can 
input commands using ‘Edit’ menu then ‘Command Line Editor’.)

 There is no direct method for performing the Kolmogorov–Smirnov in 
Excel.

Anderson–Darling test
The Anderson–Darling test is one of many procedures commonly encountered 
to test whether a set of data follows a normal distribution or not. The P-value 
reported is the probability of the data being normally distributed. If P < 0.05 the 
data deviated significantly from a normal distribution and parametric tests 
should not be used without making suitable corrections or transformations.

 The Anderson–Darling test is not available in this package.

 The Anderson–Darling test is not easily available in R.

 There are two routes to the Anderson–Darling in MINITAB. The first 
is described above for the Kolmogorov–Smirnov test. The Anderson–Darling 
test is also part of the extensive ‘Graphical summary’ output for simple variable 
descriptions. The data should be in a single column. From the ‘Stat’ menu select 
‘Basic Statistics’ then ‘Graphical summary’. Move the name of the column 
containing the data into the ‘Variables:’ box. Click ‘OK’.

An output containing several graphs and many descriptive statistics appears. 
The first part of the numerical output give the statistics for the Anderson–
Darling test (‘A-squared’) followed by the P-value associated with the statistic. 
If the P-value is less than 0.05 the data are significantly different from a normal 
distribution and it is inadvisable to use parametric statistics.

 Tests of normality are not available in this package.

Excel

SPSS

R
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Shapiro–Wilk test
This is another commonly encountered normality test.

 The Shapiro–Wilk test is not available in this package.

 This is the easiest-to-access normality test in R, here assuming that the data 
are in a variable ‘V1’:

> shapiro.test(V1)

Shapiro–Wilk normality test

data: V1
W=0.9533, p-value=0.05407

This indicates that the null hypothesis is very close to rejection and caution 
should be taken when proceeding with tests that make an assumption of a nor-
mal distribution. Note that the Kolmogorov–Smirnov test on the same data 
gave a P-value of 0.5523, well away from borderline significance.

 The Shapiro–Wilk test is not available in this package.

 Tests of normality are not available in this package.

Graphical tests for normality
It’s often a good idea to use a visual fit of data to a normal distribution to con-
firm the results of one of the goodness of fit tests described above.

 An easy graphical way to compare a data set to a distribution is to generate 
a histogram and then add the normal curve with the same mean and standard 
deviation as the data. From the ‘Graphs’ menu select ‘Chart Builder. . .’. In the 
‘Gallery’ tab select the ‘Histogram’ option and then drag the simple histogram 
to the ‘Chart preview’ area. Drag the name of the variable you want from the 
‘Variables:’ list to the ‘X-Axis?’ section of the preview chart. Now click the 
‘Element Properties. . .’ button and in the window that appears click ‘Display 
normal curve’ and then the ‘Apply’ button. Close the window and click ‘OK’ in 
the ‘Chart Builder’ window.

Note that if you want a different distribution, SPSS can provide many options. 
Edit the chart in the ‘Output’ window by double clicking on it. Remove the 
existing distribution line, then use the ‘Elements’ menu to select ‘Distribution 
curve’ and you will be offered a choice of lines.

Excel

SPSS

SPSS

R
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 An easy way to visualize a fit is to use a ‘quantile-quantile plot’ with plots the 
proportion of observations of a set distribution on the horizontal axis against 
the observed data on the vertical axis (see Fig. 7.4). In R the function ‘qqline()’ 
takes the mean and standard deviation from the variable stated. In this case the 
mouse-weight data is in variable ‘V1’:

> qqnorm(V1)
> qqline(V1)

Another simple method in R superimposes a normal curve with mean and vari-
ance taken from the data on a histogram of the observations. A cumulative 
density plot of the observations and a normal distribution can be achieved by 
first setting a suitable range of values that will need to be plotted and putting 
them into a variable ‘x’:

> x<-seq(11.5, 15.5, 0.1)

where ‘seq()’ gives the starting point, end point and the spacing. Next make a 
cumulative density plot of the data in V1 and then use ‘lines()’ to add a 

Fig. 7.4 A Q-Q plot produced in R. (Note that where there are several observations 
with the same value this forms a horizontal row of symbols.)
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cumulative normal distribution with the mean and standard deviation taken 
from the observations and plotted at all points of x:

> plot(ecdf(V1))
> lines(x, pnorm(x, mean=mean(V1), sd=sqrt(var(V1))), 
lty=3)

or more tidily as:

> plot(ecdf(x), do.points=FALSE, verticals=TRUE)
> lines(x, pnorm(x, mean=mean(V1), sd=sqrt(var(V1))), 
lty=3)

where ‘lty=3’ simply described the pattern of the line.

 There are several graphical methods available in MINITAB. For a simple 
histogram with a normal distribution superimposed on it go to the ‘Stat’ menu, 
then ‘Basic Statistics. . .’ then ‘Graphical Summary’ and the histogram of the 
data is the first part of the output. To get a window with only the histogram and 
normal curve go to ‘Stat’ menu, then ‘Basic Statistics’, then ‘Display Descriptive 
Statistics. . .’. Move the variable of interest into the ‘Variables:’ box then click on 
‘Graphs’ and select ‘Histogram of data, with normal curve’.

 No simple graphical methods for testing normality are available in Excel.

Do the observations from two groups differ?

The two groups can be paired, repeated or related samples or they can be inde-
pendent. Paired measures are considered first.

Paired data
Paired samples or paired comparisons (paired data; a.k.a. related or matched data) 
occur when a single individual is tested twice (e.g. before and after) or a sampling 
station retested. Another possible use occurs when an individual is, or individuals 
of a clone are, divided and then subjected to two treatments. Three tests are 
 considered below: the paired t-test, Wilcoxon signed ranks test and the sign test.

Paired t-test

The data must be continuous and, at least approximately, normally distributed. 
The variances of the two sets must be homogeneous (this can be tested by the 
Levene test). The null hypothesis is that the there is no difference between the 
two columns and they could come from the same data set.

MINITAB

Excel
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An example It is suggested that the building of a power station will affect the 
amount of particulate matter in the air. However, there are only three readings 
available for the month before the project got underway (measured as parts per 
million, or ppm). The sites where the three readings were taken were  revisited 
once the station was complete.

Site Before After

1 34.6 41.3
2 38.2 39.6
3 37.6 41.0

 Arrange the data into two columns of equal length such that each row 
represents one individual (or site in this case). The columns should be labelled 
‘before’ and ‘after’ as this will make it easier to interpret the output.

Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘Paired-Samples 
T Test. . .’. In the dialogue box that appears move ‘Before’ into ‘Variable1’ and 
‘After’ into ‘Variable2’ in ‘Pair’ row 1. Then click ‘OK’.

The first part of the output gives some information about the data like this:

Paired Samples Statistics

Mean N Std. Deviation
Std. Error 

Mean

Pair Before 36.800 3 1.9287 1.1136
1 After 40.633 3 .9074 .5239

Paired Samples Correlations

N Correlation Sig.

Pair 1  Before & After 3 −.749 .462

It tells you the names of the two variables, means, how many observations there 
were, standard deviation and standard error of the two sets of data. The next 
table refers to a Pearson product moment correlation done on the data, with the 
value of r given as ‘Correlation’ and ‘Sig.’ being the test of the null hypothesis 
that r is 0 (i.e. no correlation).

The second part of the output is the report from the t-test itself:

SPSS
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The first three columns refer to the mean difference between pairs of data, fol-
lowed by the standard deviation and standard error of the differences. Next 
comes the confidence interval of the mean saying it is 95% likely to be between 
the two values given. The 95% CI is very wide because there are only three pairs 
of data. Finally comes the t-test itself with the result of the test (the value given 
can be looked up on a Student’s t-table). Then the degrees of freedom (number 
of pairs minus 1) and the probability of this t value (or larger) occurring if the 
null hypothesis is correct. In this case the probability is 0.131 (or 13.1%) and 
therefore we conclude that there is no significant difference between the two 
columns. However, with such a small set of data, achieving a significant result is 
extremely unlikely.

 In most cases you will read in the data from a file and attach it. Here, as there 
are very small samples, I’m typing the data in directly into variables (vectors) called 
‘before’ and ‘after’, then carrying out a paired t-test, which uses the R function 
‘t.test()’ with the option ‘paired=T’ to indicate that it’s a paired test.

> before=c(34.6,38.2,37.6)
> after=c(41.3,39.6,41.0)
> t.test(before,after,paired=T)

Paired t-test

data: before and after
t=-2.4807, df=2, p-value=0.1313
alternative hypothesis: true difference in means is not 
equal to 0
95 percent confidence interval:
-10.481980 2.815313
sample estimates:
mean of the differences
-3.833333

The output confirms that a paired t-test is carried out and gives the names of the 
two variables. The t statistic, degrees of freedom and P-value are given. The  output 

R

Paired Samples Test

Paired Differences

Mean Std. Deviation
Std. Error 

Mean

95% Confidence 
Interval of the 

Difference

Lower Upper t df Sig. (2-tailed)

Pair 1 Before - After −3.8333 2.6764 1.5452 −10.4820 2.8153 −2.481 2 .131
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then reminds you that what is being tested is whether the difference between 
the two variables is significantly different from zero. It then gives the upper and 
lower values of the 95% CI of the difference. If the 95% confidence values both 
have the same sign, then the mean difference between the two samples is sig-
nificantly different from zero. Here, with such small sample sizes, even with a 
mean difference of –3.83 the confidence intervals straddle zero.

 First input the data into two columns, one for before and the other 
after. There is no need to have a separate column to label the individual sites 
although this might help you interpret the results.
1 From the ‘Stat’ menu, select ‘Basic Statistics’ and then ‘Paired t. . .’. Move the 
two variables into the boxes labelled ‘First sample:’ and ‘Second sample:’. Click 
‘OK’.

You get the following output from the example.

Paired T-Test and CI: Before, After

Paired T for Before - After

 N   Mean StDev SE Mean
Before 3 36.80 1.93 1.11
After 3 40.63 0.91 0.52
Difference 3 −3.83 2.68 1.55

95% CI for mean difference: (−10.48, 2.82)
T-Test of mean difference = 0 (vs not = 0): T-Value = −2.48 P-Value = 0.131

2 The output confirms that you have run a paired t-test of before and after. 
There are three pairs of data in the example giving a value of 3 for N with sum-
mary statistics. A line on the table of ‘Difference’ is important as the test is actu-
ally comparing the values of difference against zero. Finally is shown a t value and 
then the important value, the P-value. If this is less than 0.05 then you must 
reject the null hypothesis that the difference between before and after is zero. In 
this case the value of 0.131 indicates that there is not enough evidence in the 
three pairs of data to reject the null hypothesis. However, with such a small data 
set in the example it is not surprising that you can’t detect a significant effect.
3 The null hypothesis is that the differences are not significantly different from 
zero. If you want to test a difference other than zero, or you want to have a one-
tailed test (i.e. you are only interested in the hypothesis that ‘before’ is greater 
than ‘after’, with the null hypothesis that ‘before’ is not greater than ‘after’) then 
go to ‘Options’ in the ‘Paired-t’ dialogue before running the test.

 The data should be input in two columns of equal length. If the spreadsheet 
were set up using the example exactly as the table above, then the data for 
‘before’ would be in cells b2, b3 and b4, while that for ‘after’ would be in cells 
c2, c3 and c4. In Excel it doesn’t really matter where the data are on the 
spreadsheet as long as you know the cell numbers.

MINITAB
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Select an empty cell where you want the result reported. Then there are two 
ways of achieving the same result.
1 Go to ‘Insert function’, select ‘Statistical’ and then ‘TTEST’. Define Array 1 
as ‘b2 : b4’ and Array 2 as ‘c2 : c4’. Select ‘Tails’ as ‘2’ (you will nearly always 
require a two-tailed test) and the ‘type’ as ‘1’ (this selects a paired test in Excel). 
The probability or P-value of ‘0.131’ will then appear in the cell.
2 Type in ‘= TTEST’ followed by the first and last cell of the first column 
separated by a colon, then the same for the second column. Then the number 
of tails in the test (usually 2) and then a 1 to ask for a paired test. In this case 
you would type ‘= TTEST(b2 : b4,c2 :c 4,2,1)’ and the probability will appear 
in the cell.
This will give you the P-value associated with the paired t-test. To get the value 
of the t statistic you can use the function ‘TINV’. Select a blank cell and type in 
‘= TINV(F8,2)’ replacing ‘F8’ with the cell containing the result in the previous 
step and replacing ‘2’ with the degrees of freedom which is the number of pairs 
of observations minus 1.

Wilcoxon signed ranks test

This test is the non-parametric equivalent of the paired t-test. It has far fewer 
assumptions about the shape of the data although it does assume that the data are 
on a continuous scale of measurement. This means that any type of length, weight, 
etc. will be suitable. The test is somewhat less powerful than the paired t-test. A 
minimum of six pairs of data are required before the test can be  carried out.

An example In this example the ‘individuals’ are sampling stations in a river 
system and the data are measures of flow (in litres per second). The investigator 
wishes to know if the flow is significantly different on the two days. The null 
hypothesis is that there is no difference in flow.

Station Day 1 Day 2

1 268 236
2 260 241
3 243 239
4 290 285
5 294 282
6 270 273
7 268 258

 Arrange the data into two columns of equal length such that each row 
represents one individual. The columns should be labelled.

From the ‘Analyze’ menu choose ‘Nonparametric Tests’ and then ‘2 Related 
Samples. . .’. As a default the ‘Wilcoxon’ test should be checked but ensure this 

SPSS
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is the case. Move the two variables (‘Day_1’ and ‘Day_2’ in this example) to 
the first row in the ‘Test Pairs:’ box with the right arrow then click ‘OK’ to run 
the test.

The output will look like this:

Wilcoxon Signed Ranks Test

Ranks

N Mean Rank Sum of Ranks

Day_2 - Day_1 Negative Ranks 6a 4.50 27.00

Positive Ranks 1b 1.00 1.00

Ties 0c

Total 7

  a. Day_2 < Day_1
  b. Day_2 > Day_1
  c. Day_2 = Day_1

Test Statisticsb

Day_2 -
Day_1

Z

Asymp. Sig. (2-tailed)

−2.197a

.028

a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test.

The test classifies the paired data into three categories: those where ‘Day_2’ is 
less than ‘Day_1’ (‘Negative Ranks’); those where it is greater (‘Positive Ranks’) 
and those where they are the same (‘Ties’). In this case there are six of the 
first, one of the second and no ties. It also ranks the absolute differences (from 
smallest difference as rank one to the largest as rank seven). In this case the 
one pair where the flow is greater on ‘Day_2’ is also the smallest difference, as 
it is ranked ‘1.00’. The output value of ‘Z’ in the second table may be looked 
up in statistical tables but the result is given anyway as a ‘Asymp. Sig. (2-tailed)’. 
In this case P < 0.05 so the null hypothesis must be rejected. The alternative 
hypothesis that the flows were different on the two days is accepted.

 Assuming the data have been input or imported and the two vectors 
containing the data are in ‘Day1’ and ‘Day2’ you can then use ‘wilcox.
test()’. Here we specify ‘paired=TRUE’ and this means the test will be 
comparing the differences between the two observations against a null hypothesis 
that the  differences have a median of zero.

R
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> wilcox.test(Day1, Day2, paired=TRUE)

Wilcoxon signed rank test

data: Day1 and Day2
V=27, p-value=0.03125
alternative hypothesis: true location shift is not 
equal to 0

Here the P-value is less than 0.05, so we reject the null hypothesis that the 
median difference between ‘Day1’ and ‘Day2’ is zero.

Note that R will compute what is called an ‘exact’ version of the test to calculate 
the P-value if there are fewer than 50 pairs of observations. This will have a small 
impact on the P-value in most cases, although to retain consistency between tests 
where some are above 50 and some below, you can use ‘exact=TRUE’ or 
‘exact=FALSE’ as an option within the ‘wilcox.test()’. In this example 
‘exact=F’ will alter the P-value to 0.03461, which is the value given in MINITAB.

 This test is not achievable in a single step. However, if the data are 
arranged in two columns you can carry out an analogous test to the paired t-test.
1 You need to create a new column that contains the difference between the 
first observation and the second. Go to the ‘Calc’, select ‘Calculator. . .’. Type 
‘Diff’ in the ‘Store result in variable:’ and ‘Day 1’ – ‘Day 2’ (either by typing or 
double-clicking) in the ‘Expression:’ box (replacing with the names of your vari-
ables as appropriate).
2 The null hypothesis is that the median of the differences is not significantly 
different from zero. This is tested using a one-sample Wilcoxon test. Go to the 
‘Stat’ menu, then ‘Nonparametrics’, then ‘1-sample Wilcoxon. . ..’. In the dia-
logue box put ‘Diff’ in the ‘Variables:’ box. Select the ‘Test median’ option, 
leave the value as 0.0 and make sure that the ‘not equal’ option is selected from 
the pull-down menu. Click ‘OK’.

You get the following output from the example.

Wilcoxon Signed Rank Test: Diff

Test of median = 0.000000 versus median not = 0.000000

  N for    Wilcoxon  Estimated
 N   Test Statistic      P Median
Diff 7        7        27.0 0.035 10.50

3 The output confirms that you are testing the null hypothesis that the median 
of ‘Diff’ (i.e. the difference between the flows on the two days) is zero (with the 
package deciding to give a ridiculous number of decimal places). The important 
value is the P-value ‘P’, which is 0.035 in this example. This is less than the 
 critical 0.05 and the null hypothesis should be rejected. The alternative hypoth-
esis H1 is that the median of the differences is not equal to zero. This means that 

MINITAB
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the flows on day 1 and day 2 were different. Inspection of the raw data or the 
estimated median shows that flow was greater on day 1.

 There is no easy method for performing the Wilcoxon signed ranks test in 
Excel.

Sign test

This is a very simple test that makes almost no assumptions about the form of 
the data, only that it is possible to compare them in some way to decide which 
is larger. The test is of very low power but very safe (i.e. it is a conservative test 
and type I errors are very unlikely). The sign test should only be used when 
there are large numbers of paired observations.

The test works using the assumption that if two sets of observations are not 
different then there will be the same number of pairs when A is bigger than B 
as there are when B is bigger than A. Therefore the actual values of the data 
points are relatively unimportant as long as they can be compared to see which 
is the larger. This means the test is not very sensitive to poor quality of data.

The sign test uses the binomial distribution (page 37) to calculate significance 
values.

An example The same data as was used as for the Wilcoxon signed ranks test 
will be used in this example.

 Arrange the data into two columns of equal length such that each 
row represents one individual (or site). The columns should be labelled 
appropriately.

From the ‘Analyze’ menu choose ‘Nonparametric Tests’ and then ‘2 Related 
samples’. As a default the ‘Wilcoxon’ test should be checked, uncheck this and 
check ‘Sign’ instead. Select the two variables (‘Day_1’ and ‘Day_2’ in this exam-
ple), move them to the first row of the ‘Test Pairs:’ and click ‘OK’.

The output using the example data (described above for the Wilcoxon signed 
ranks test) will look like this:

Sign Test

Frequencies

N

Day_2 - Day_1 Negative Differencesa 6
Positive Differencesb 1
Tiesc 0
Total 7

a. Day_2 < Day_1
b. Day_2 > Day_1
c. Day_2 = Day_1

Excel

SPSS
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Test Statisticsb

Day_2 - 
Day_1

Exact Sig. (2-tailed) .125a

a. Binomial distribution used.
b. Sign Test

For the seven pairs of observations there are six where ‘Day_2’ is less than 
‘Day_1’ (‘Negative differences’). The probability of this or a more extreme 
result occurring by chance is 0.125 or 12.5% and this is given as the ‘Exact Sig. 
(2-tailed)’. In fact it is giving the probability of getting zero, one, six or seven out 
of seven the same direction, given that we are expecting the chance of getting a 
higher or lower value to be 0.5 (i.e. equal chance of A bigger than B as for B 
bigger than A).

In this case we would not reject the null hypothesis that the two days had 
different flows. This shows clearly that the sign test is of very much lower power 
than the Wilcoxon signed ranks test. In fact, the sign test is really only useful as 
the number of paired observations becomes quite large.

 There is no direct way to carry out this test in R without downloading a 
package. However, it is a very simple test that makes use of the binomial 
distribution. First make sure the data are available in two labelled vectors. Here 
I’ve used the example from the Wilcoxon signed ranks test and have two sets of 
seven observations in vectors labelled ‘Day1’ and ‘Day2’.

We then need to know how many pairs of observations there are (‘length()’) 
and how many times the value in ‘Day1’ is greater than that in ‘Day2’:

> length(Day1)
[1] 7
> sum(Day1>Day2)
[1] 6

The probability of getting a value this extreme or more extreme is calculated in 
a binomial test:

> binom.test(6,7)

Exact binomial test

data: 6 and 7
number of successes=6, number of trials=7, 
p-value=0.125
alternative hypothesis: true probability of success is 
not equal to 0.5

R
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95 percent confidence interval:
0.4212768 0.9963897
sample estimates:
probability of success
0.8571429

Here the P-value is greater than 0.05, so we can’t exclude the null hypothesis 
that there is an equal probability of ‘Day1’ being greater than ’Day2’ and ‘Day1’ 
being less than ‘Day2’. The 95% confidence interval of the prediction crosses 
the null value of 0.5 (i.e. equal probability of the two outcomes). In fact this test 
is very weak and is unlikely to get a significant result with such a small number 
of observations. For a sample size of seven only seven out of seven or zero out 
of seven will give a P-value below 0.05.

In R you can easily combine all the steps above into a single line:

> binom.test(sum(Day1>Day2),length(Day1) )

You must make sure that there are the same number of observations in each 
vector and that they are lined up properly (i.e. each element in a vector is paired 
with the corresponding element in the other vector).

 This test is carried out in a very similar way to the Wilcoxon signed 
ranks test. Arrange the data in two columns. Label the columns appropriately.
1 Create a new column that contains the difference between the first observa-
tion and the second. Go to the ‘Calc’, select ‘Calculator. . .’. Type ‘Diff’ in the 
‘Store result in variable:’ and ‘Day 1’ – ‘Day 2’ (either by typing or double-
clicking) in the ‘Expression:’ box (replacing with the names of your variables as 
appropriate). Obviously, you will have to replace these names with the appro-
priate names for the data columns.
2 The null hypothesis is that there are equal numbers of positive and negative dif-
ferences. This is tested using a one-sample sign test. Go to the ‘Stat’ menu, then 
‘Nonparametrics’, then ‘1-sample Sign. . .’. In the dialogue box put ‘diff’ in the 
‘Variables:’ box. Select the ‘Test median’ option, leave the value as 0.0 and make 
sure that the ‘not equal’ option is selected from the pull-down menu. Click ‘OK’.

You get the following output from the example.

Sign Test for Median: Diff

Sign test of median = 0.00000 versus not = 0.00000

 N Below Equal Above    P Median
Diff 7    1    0      6 0.1250    10.00

3 The output confirms that you are testing the null hypothesis that the median 
of ‘diff’ (the difference between the flows on the two days) is zero. The  important 

MINITAB
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value is the P-value ‘P’, which is 0.1250 in this example (i.e. there is a 12.5% 
chance of getting this result or a more extreme one). This is greater than the 
critical level of P = 0.05 and the null hypothesis should be accepted. This is the 
same data as was used in the Wilcoxon signed ranks test that rejected the null 
hypothesis, thus demonstrating what a conservative test it is.

 There is no direct method for the sign test in Excel. However, if you 
compare each pair of data and count up the number of times the first observation 
is greater then you can use the ‘Binomdist’ function in Excel to work out the 
P-value. The binomial distribution is described in Chapter 5. Here I give two 
methods for the sign test in Excel and a method for counting up the number of 
‘+’ and ‘−’ pairs.

Using the example above, there are seven pairs of data. In six of the seven 
pairs the first column is greater. We are assuming a null hypothesis that there is 
no difference between the two columns. If that is the case then we expect an 
equal number of observations where the first column is greater and when the 
first is smaller.
1 In Excel the probability of getting six plusses out of seven can be determined 
fairly easily. After selecting an empty cell where you want the result to be dis-
played there are two methods.

Either: use ‘Insert Function’, select ‘Statistical’, then ‘BINOMDIST’, click 
‘OK’ and you will be confronted with four boxes. In the first type the number 
of successes (‘Number_s’), in this case 6. In the second the number of ‘Trials’, in 
this case 7. Next the probability of getting a ‘success’, in this case we choose 0.5 
(in other words, we assume an equal chance of getting a plus or a minus). In the 
last box type 0 to indicate that you don’t require the cumulative probability. 
Click ‘OK’ and this will give you the result 0.054.

Or: type in the values described above directly: ‘= BINOMDIST(6,7,0.5,0)’.
This is not the complete answer. It only tells you the chance of getting six out 

of seven. What you need from the sign test is the chance of getting a result as 
extreme as six out of seven or more extreme. For seven trials that means six or 
seven as well as zero or one because the test is two-tailed.
2 In a new empty cell for each possibility, repeat the previous commands but 
replacing the six successes with seven, zero and one. A good way to do this is to 
put the four required numbers into a column then use the cell number instead 
of typing in the number. For example, if cell A1 has a 7 in it, A2 has 6, etc. then 
just type into cell B1 ‘= BINOMDIST(A1,7,0.5,0)’ and then copy this down the 
next four cells by clicking on the small black square in the bottom right corner 
of the cell and dragging it down to cover the cells required.
3 Total up the four probabilities by typing ‘= SUM(B1 : B4)’ in an empty cell. 
This should give you the answer 0.125. This can be interpreted as a 12.5% 
chance of getting a result as extreme as six out of seven or more extreme. We 
have to accept the null hypothesis that there is nothing happening between the 
two sampling events because the value is well above P = 0.05. This demonstrates 

Excel

9781405198387_4_007.indd   1029781405198387_4_007.indd   102 9/16/2010   11:34:32 PM9/16/2010   11:34:32 PM



Tests 1: tests to look at differences 103

the low power of the test. In fact, with a sample size this small you need to get 
seven out of seven or zero out of seven to get a significant result (that has a 
probability of 0.016).
An alternative method in Excel, useful with larger samples, is to use the cumu-
lative probability option. As this is a two-tailed test with a 0.5 chance of plus or 
minus, the probability of getting one out of seven is the same as getting six out 
of seven. So to test the probability of getting six out of seven or more extreme 
is equivalent to testing that of one out of seven. The last number of the 
‘BINOMDIST’ function can be changed from zero to one to give cumulative 
probability (i.e. the chance of getting that number or lower). So the probability 
of getting zero or one is given by ‘= BINOMDIST(1,7,0.5,1)’. Doubling this 
value will give both the probability of getting either six events out of seven or 
one out of seven.

These methods require that the number of ‘+’ and ‘−’ observations are known. 
In Excel it is easy to compare two values and tally the number of times A is 
larger than B using the ‘IF’ function. Return to the data table with paired values 
in columns B and C. Select cell D2. Click on ‘Insert function’, then ‘Logical’ and 
‘IF’. The ‘Logical_test’ is B2 > C2, testing whether the value in column B is 
greater than that in column C. The ‘Value_if_true’ should be 1 and ‘Value_if_
false’ 0. Click ‘OK’ and paste this down the D column. A column of six 1s and 
one 0 should appear. The number of 1 values can be quickly totalled using 
‘SUM(D2:D8)’. A word of caution. Ties cause problems with this method. I 
suggest that they are totally ignored in the sign test. So add up the number of 
times A is bigger than B and then remove all instances when A = B before calcu-
lating the total number of observations.

Unpaired data
Unpaired samples or unpaired comparisons occur when a single individual 
is measured or tested only once. There will, therefore, be two totally sepa-
rate groups of observations making up the two samples. Two groups are 
often obvious; for example males and females, or kudu and eland. However, 
the distinction between the groups may be rather arbitrary, such as eastern 
and western, or large and small. Three tests are considered below: the 
 independent-samples t-test, a one-way analysis of variance and the Mann–
Whitney U-test.

t-test

The independent-samples t-test is the more usual form of the t-test and if the 
term ‘t-test’ is not qualified then this is what is being referred to. The null hypoth-
esis is that the two sets of data are the same. (Actually the null hypothesis is that 
the two sample means come from a population with the same true mean, µ.) 
The t-test assumes that the data are continuous, at least approximately normally 
distributed and that the variances of the two sets are homogeneous (i.e. the 
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same). If possible these assumptions should be tested before the test is carried 
out, although this test is often incorporated into the test in  statistical packages. If 
the two sets of observations do not have the same variance then there are ways 
to adjust the result of the t-test to compensate. It is these adjustments are often 
incorporated into the test in the statistical package.

An example The weights of five grains have been measured from each of two 
experimental cultivars called Premier and Super. Each grain has been weighed to 
the nearest 0.1 mg. The researcher wishes to determine whether the grain weight 
is the same in the two cultivars. The null hypothesis (H0) is that the two culti-
vars have the same mean grain size. The alternative hypothesis (H1) is that the 
two cultivars have different mean grain size.

Premier Super

24.5 26.4
23.4 27.0
22.1 25.2
25.3 25.8
23.4 27.1

  Input all of the observed data into a single column. Use another column 
for the labelling of the groups. This may seem wasteful but it is a much easier 
system when it comes to multiway analysis where each item of data will belong 
to several groups simultaneously.

The five grains from each of two cultivars of crop plant have been placed in the 
second column. The two cultivars have been coded as ‘1’ or ‘2’ in the first column. 
Columns have been labelled in the ‘Variable View’. The package only allows 
restricted labels so the ideal label ‘Grain size (mg)’ has been shortened to ‘Grain_
sz’, although the full label can be added using the ‘label’ column in the ‘Variable 
View’. The names of the groups (cultivars here) can be added using the ‘Values’ 
column of the ‘Variable View’, and the value labels can be shown on the spread-
sheet by choosing the ‘Value Labels’ option under the ‘View’ menu (see Fig. 7.5).

Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘Independent-
Samples T Test. . .’. In the dialogue box that appears move ‘Grain_sz’ into the 
‘Test Variable(s):’ box by first highlighting it and then clicking on the appro-
priate move button (a blue right arrow). Next move ‘Cultivar’ into the 
‘Grouping Variable:’ box. It will appear as ‘Cultivar(? ?)’. You need to click 
the ‘Define Groups. . .’ button and then input ‘1’ in ‘Group 1:’ and ‘2’ in 
‘Group 2:’ before clicking ‘Continue’. This will return you to the first dia-
logue box. You will see that ‘Cultivar(? ?)’ is now ‘Cultivar(1 2). Click ‘OK’ 
to run the test.

SPSS
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The output will come in two parts. The first gives some information about 
the data like this:

➞ T-Test
Group Statistics

Cultivar N Mean Std. Deviation
Std. Error 

Mean

Grain size (mg) Premier 5 23.740 1.2178 .5446

Super 5 26.300 .8062 .3606

This confirms the type of test. Then in the table shows that the variable used 
was ‘Grain size (mg)’ and that there were two groups of ‘Cultivar’ called 
‘Premier’ and ‘Super’ each with ‘N’ of 5 (number of observations). Then come 
some simple descriptive statistics of the two samples: their mean, ‘Std. Deviation’ 
and ‘Std. Error Mean’ (standard error of the mean). (Note that the full name of 
the data variable and the group names for ‘1’ and ‘2’ will only appear if they 
have been added in the ‘Variable View’.)

Fig. 7.5 Arranging the data for a t-test in SPSS. The groups for ‘Cultivar’ have been 
entered as ‘1’ and ‘2’ and then given labels in the ‘Variable view’. The selected cell is 
still filled with the number ‘1’. Also note that the pop-up label for column two gives 
the full name of the variable, rather than ‘Grain_sz’.
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The second part of the output contains the result of the t-test itself:

Independent Samples Test

Levene’s Test for 
Equality of Variances t-test for Equality of Means

F Sig. t df Sig. (2-tailed)
Mean 

Difference
Std. Error 
Difference

95% Confidence Interval 
of the Difference

Lower Upper

Grain 
size (mg)

Equal variances 
assumed
Equal variances 
not assumed

.762 .408 −3.919 8 .004 −2.5600 .6531 −4.0662 −1.0538

−3.919 6.941 .006 −2.5600 .6531 −4.1071 −1.0129

First comes the Levene’s test for equality of variances. As the t-test assumes 
that the two samples have equal variance SPSS sensibly tests this every time 
you carry out a t-test. The important figure is the second one. In this case it 
is ‘Sig.=.408’ (i.e. P > 0.05) so there is no evidence that the variances are 
unequal. If the P-value (‘Sig.’) is lower than 0.05 then you should be wary 
about using the t-test and should consider using the Mann–Whitney U test 
instead.

The remainder of the output appears on two lines. The upper one, ‘Equal 
variances assumed’, is the standard t-test and the lower one ‘Equal variances not 
assumed’ is a more conservative version that compensates for the possible prob-
lems caused by difference in variances by using a reduced value for the degrees 
of freedom in the test. The lower the ‘Sig.’ value in the Levene test, the bigger 
the difference between the two lines. In most cases you should not need to 
worry about the fact that there are two versions of the test because in most 
cases, as in this example, they will tell the same story.

The ‘t’ is the actual result of the test that can be looked up on Student’s 
t-table. ‘df’ is the degrees of freedom of the test. This will be two fewer than the 
total number of observations in the two samples. The result of the Levene’s test 
determines the reduced degrees of freedom used in the lower line.

Next comes the important bit; labelled ‘Sig. (2-tailed)’, it is the probability 
that the null hypothesis is correct. This is the P-value. In this case the P-value is 
much less than 0.05 so it is clear that the null hypothesis is extremely unlikely 
to be true. In fact there is only a 0.4% chance that we would see a t value as large 
as this if the null hypothesis is true using the basic t-test. This value rises to 0.6% 
using the more conservative version (on the lower line).

‘Mean Difference’ gives the value of mean of group 1 minus mean of group 2. 
It will be a negative value if the mean of group 2 is larger than that of group 1. 
‘Std. Error Difference’ gives the standard error for this difference. Finally comes 
a ‘95% Confidence Interval of the Difference’ column. This gives the range of 
difference between the two means within which 95% of samples are likely to 
come. In the example the ‘Lower’ and ‘Upper’ values are both negative which 

9781405198387_4_007.indd   1069781405198387_4_007.indd   106 9/16/2010   11:34:33 PM9/16/2010   11:34:33 PM



Tests 1: tests to look at differences 107

shows that cultivar 2, Super, is very likely to be heavier than cultivar 1, Premier. 
When the t-test result is not significant the upper 95% confidence value will be 
positive and the lower negative.

 There are two routes depending on how the data are arranged. In the first the 
two groups should be in two variables; in the second all the data are in one 
variable and another variable is used to identify the groups. Both use the function 
‘t.test()’ in R.

Method 1 Assuming that the data have been arranged and labelled as in the 
example use the following command, inserting the names of your variables 
instead of mine. Although ‘paired = FALSE’ is the default, so could be removed, 
it does confirm that this isn’t a paired test:

> t.test(Premier,Super,paired=FALSE,var.equal=TRUE)

Two Sample t-test

data: Premier and Super
t=-3.9195, df=8, p-value=0.004422
alternative hypothesis: true difference in means is not 
equal to 0
95 percent confidence interval:
-4.066158 -1.053842
sample estimates:
mean of x mean of y
23.74 26.30

The output confirms the value of t and the degrees of freedom ‘df’. The P-value 
is well below 0.05 so we reject the null hypothesis that the two sets of data 
come from distributions with the same mean. The 95% confidence limits both 
have the same sign here; if they cross zero then the P-value will be above 0.05. 
Finally the mean values of the two variables are given.

The default version of the t-test in R doesn’t assume that variances are equal 
and uses the comparison of variances of the two variables to adjust the degrees 
of freedom. This version of the t-test is here called the ‘Welch t-test’. This 
is more conservative, and therefore more likely to generate a type II error and 
less likely to give a type I error. In the example there is no effect on the conclu-
sions as the P-value is still well below 0.05:

> t.test(Premier,Super,paired=FALSE)
Welch Two Sample t-test

data: Premier and Super
t=-3.9195, df=6.941, p-value=0.005849
alternative hypothesis: true difference in means is not 
equal to 0

R
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Method 2 Here the data are in a single variable (vector) and there is another 
variable that contains the group codes. In the example the data are in ‘Grain’ 
and the grouping variable is ‘Cultivar’. The syntax in R is used in many functions 
and states that the model being used is that ‘Grain’ is a function of ‘Cultivar’:

> t.test(Grain~Cultivar, var.equal=TRUE)

Two Sample t-test

data: Grain by Cultivar
t=-3.9195, df=8, p-value=0.004422
alternative hypothesis: true difference in means is not 
equal to 0
95 percent confidence interval:
-4.066158 -1.053842
sample estimates:
mean in group 1 mean in group 2
23.74 26.30

Here the output is identical to method 1, except that the data are confirmed to 
be arranged in a different way. The output confirms the value of t and the 
degrees of freedom ‘df’. The P-value is well below 0.05 so we reject the null 
hypothesis that the two sets of observations come from distributions with the 
same mean. The 95% confidence limits both have the same sign here; if they 
cross zero then the P-value will be above 0.05. Finally the mean values of the 
two sets of observations are given.

As with method 1, the default method does not assume that variances are 
equal and uses the comparison of variances of the two variables to adjust 
the degrees of freedom. This version of the test is more conservative, and there-
fore more likely to generate a type II error and less likely to give a type I error. 
In the example there is no effect on the conclusions:

> t.test(Grain~Cultivar)

Welch Two Sample t-test

data: Grain by Cultivar
t=-3.9195, df=6.941, p-value=0.005849

 There are two methods. In the first the two groups should be in two 
columns, and in the second all the data are in one column and another column 
is used to identify the groups. The second method appears wasteful but it is a 
required strategy in more complex analysis.

Method 1 Input the data into two columns and label the columns appropri-
ately. From the ‘Stat’ menu select ‘Basic statistics’ and then ‘2-sample t. . .’. In 

MINITAB
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the dialogue box that appears select the ‘Samples in different columns’ option. 
Then place the appropriate column labels (‘Premier’ and ‘Super’ in the example) 
in the two boxes labelled ‘First:’ and ‘Second:’. Make sure the ‘Options. . .’ dia-
logue reads ‘Alternative: not equal’ and the ‘Confidence level:’ is set at 95.0 
(this means that the mean for the difference between the two means will be 
calculated with a 95% confidence interval). Leave the ‘Assume equal variances’ 
box unchecked. Click ‘OK’ to run the test.

(Or, if the command interface is enabled, type ‘twosample c1 c2’ at the MTB> 
prompt in the session window. Or you can input commands using ‘Edit’ menu then 
‘Command Line Editor’.)

The following output appears:

Two-Sample T-Test and CI: Premier, Super

Two-sample T for Premier vs Super

N Mean StDev SE Mean
Premier 5 23.74 1.22 0.54
Super 5 26.300 0.806 0.36

Difference = mu (Premier) − mu (Super)
Estimate for difference: −2.560
95% CI for difference: (−4.158, −0.962)
T-Test of difference = 0 (vs not =): T-Value = −3.92 P-Value = 0.008 DF = 6

This output confirms the test was a t-test and confirms the names of the two 
variables. It then gives summary statistics for the two groups: number of obser-
vations (‘N’), mean, standard deviation and standard error of the mean. The 
next line gives the 95% confidence interval for the mean difference between the 
two groups. The references to ‘mu’ are to the Greek letter, µ, which is used to 
denote a mean. In the last line is the output for the t-test itself, confirming that 
a test of equal means is being made. The value of t is given as −3.92 and the 
important P-value as 0.008. This value is much less than 0.05 so we reject the 
null hypothesis and accept the H1 that the two groups have different means. 
Inspection of the summary statistics shows that Super has larger grain size.

The degrees of freedom (‘DF’) is given as 6. There should be eight degrees of 
freedom for the example but, as the assumption of equality of variance was not 
made, a correction is applied to the degrees of freedom to make the test more 
conservative. If the ‘Assume equal variances’ is checked then the example data 
will give eight degrees of freedom, the same value for t, and a P-value of 0.004.

Method 2 Input all the data into a single column and use a second column to 
label the data. These labels should be integers. In the example is probably best 
to label ‘Premier’ as ‘1’ and ‘Super’ as ‘2’. Label the columns appropriately. In the 
example the data column should be labelled ‘Grain sz’ and the group codes as 
‘Cultivar’.
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From the ‘Stat’ menu select ‘Basic statistics’ and then ‘2-sample t. . .’. In the 
dialogue box that appears select the ‘Samples in one column’ option. Then place 
the column with the data in the ‘Samples:’ box and the one with the group 
codes in the ‘Subscripts:’ box. Make sure the pull down menu in the ‘Options. . .’ 
dialogue reads ‘not equal’ and the ‘Confidence level:’ is set at 0.95. Leave 
‘Assume equal variances’ unchecked. Click ‘OK’ to run the test.

(Or type ‘twot c1 c2’ (assuming data are in c1) at the MTB> prompt in the ses-
sion window. Or you can input commands using ‘Edit’ menu then ‘Command Line 
Editor’.)

You get the following output:

Two-Sample T-Test and CI: Grain sz, Group

Two-sample T for Grain sz

Group N Mean StDev SE Mean
1 5 23.74 1.22 0.54
2 5 26.300 0.806 0.36

Difference = mu (1) − mu (2)
Estimate for difference: −2.560
95% CI for difference: (−4.158, −0.962)
T-Test of difference = 0 (vs not =): T-Value = −3.92 P-Value = 0.008 DF = 6

Apart from the code names ‘1’ and ‘2’ replacing the group names the output is 
identical to that produced in Method 1.

 In this case the data may be anywhere on the spreadsheet. As long as you 
know the cell locations of the two groups there is no problem. However, in 
practice, it is much easier if the data are either input exactly as in the SPSS 
example above, with one column defining the group and another containing the 
actual data, or in two adjacent, and clearly labelled, columns.

Assuming you have input the data in an identical format to the SPSS example 
for the t-test then the data for the first cultivar is in cells b2–b6 and for the sec-
ond cultivar in cells b7–b11. There are now two methods that may be used.

Method 1 Go to ‘Insert function’, select ‘Statistical’ and then ‘TTEST’. Define the 
first array (‘Array 1’) as ‘b2:b6’ and the second array as ‘b7:b11’. These arrays may 
be defined by selecting the box then clicking and dragging over the appropriate 
cells on the spreadsheet. Select ‘tails’ as ‘2’ (you will nearly always require a two-
tailed test) and the ‘type’ as ‘2’ (this selects a standard t-test; ‘1’ gives a paired test). 
Click ‘OK’. The probability or P-value of 0.0044 will then appear in the cell.

Method 2 Type in ‘TTEST’ followed by, in parentheses, the first and last cell of 
the first column separated by a colon, then the same for the second column. 
Then the number of tails in the test (usually 2) and then a 2 to ask for a standard 

Excel
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t-test. In this case you would type ‘=TTEST(B2:B6,B7:B11,2,2)’ and the 
 probability will appear in the cell. Excel does not report the t value.
If you need the value of t for a report, then you can use the function ‘TINV’ to 
convert the P-value and degrees of freedom back into a t value. Using the exam-
ple, inserting ‘=TINV(0.0044,8)’ into a blank cell will give the result 3.92. 
Replace the values with those appropriate for your data, or point at the relevant 
cell on the spreadsheet.

If you are concerned that the variances of the two samples may not be equal, 
or you know it to be the case, then you should not use the standard t-test. Excel 
allows you to carry out a t-test that does not assume homogeneity of variances. 
This is easily accessed by using a type 3 test instead of a type 2. If you use a 
type 3 t-test with this example the probability should be reported as 0.0058.

One-way ANOVA

Using analysis of variance (ANOVA) to determine whether just two groups have 
the same mean may seem like overkill. This may be the simplest use of ANOVA 
but it still works and gives the same answer as the t-test. I am of the opinion that 
the fact that the t-test is restricted to two groups makes the use of ANOVA prefer-
able in this situation because you don’t have to learn a new test when you con-
sider more than two groups.

ANOVA has the same basic assumptions as the t-test: that the data are continu-
ous, at least approximately normally distributed and the variances of the data 
sets are homogeneous. These assumptions should be tested before the test is 
carried out. The null hypothesis is that the sets of data have the same mean. 
(The way that ANOVA actually approaches this is to have a null hypothesis that 
the variation within groups is the same as variation between groups.)

An example In the illustrations of the use of the test for the packages I will be 
using the same example data set as in the t-test. With two samples of five obser-
vations each and each sample coming from a different cultivar of a crop plant.

The ideal ANOVA table that you would include in a write-up or publication 
should appear as something along the lines of the table shown here.

Source d.f. SS MS F  P

Cultivar 1 16.38 16.38 15.36 0.004**
Residual 8  8.53  1.07
Total 9 24.92  2.77

d.f. is degrees of freedom, SS is the sum of squares, MS is the mean square (sum 
of squares divided by degrees of freedom), F is the ratio of within-group varia-
tion to between-group variation (in this case it is the MS for cultivar/residual 
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MS). The P-value is the important one in this case it is less than 0.05 so we 
reject the null hypothesis that the two cultivars have the same mean grain size. 
The two asterisks indicate a highly significant result and are often used when 
P < 0.01. Compare this table with the output obtained using the packages below 
to see where the various numbers have come from. (Note the word ‘residual’ 
often appears as ‘error’.)

If you wish to write this result in the text of a report the standard way would be 
as follows: ‘analysis of variance showed that the grain size of the two cultivars was 
significantly different (F1,8 = 15.36, P < 0.01)’. The two subscripted numbers after F 
indicate the degrees of freedom for the between-group and within-group variance.

 As with the t-test all the data are placed into a single column and another 
column is used for the labelling of the groups (see Fig. 7.5). This may seem 
wasteful but it is a much easier system when it comes to more complicated 
analyses.

There are at least two routes to this test in SPSS. Unfortunately they give 
rather different outputs. I will describe them in detail below. I suggest you try 
both methods as the comparisons may help you understand how ANOVA tables 
work, and especially which parts of the tables to look at.

Method 1 Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘One-
way ANOVA . . .’. In the dialogue box that appears move ‘Grain_sz’ into the 
‘Dependent List:’ box by first highlighting it and then clicking on the appropri-
ate move button (blue arrow). Next move ‘Cultivar’ into the ‘Factor’ box. You 
can run the test now, although clicking ‘Options. . .’ allows you to request a 
‘Means plot’ which is useful for visualization of the data, some ‘Descriptive’ 
statistics of the data and a test for ‘Homogeneity of variance’ (Fig. 7.6). Click 
‘Continue’ to leave the ‘Options’ box, then ‘OK’ to run the test.

This is the minimum output you will get:

ANOVA

Grain size (mg)

Sum of Squares df Mean Square F Sig.

Between Groups 16.384 1 16.384 15.362 .004
Within Groups 8.532 8 1.067
Total 24.916 9

This confirms that the data is ‘Grain size (mg)’ (or ‘Grain_sz’ if the variable has 
not been given an extra label). In the ANOVA table the top line is the important 
one; this is the variation between groups (i.e. between the two cultivars in this 
example). The second line is the variation within the groups that is being used 
as a comparison.

SPSS
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The first column is ‘Sum of Squares’ (often called SS), then ‘df’ or degrees of 
freedom. As there are two groups in this example there is one degree of free-
dom between groups. There were five samples in each group giving two sets of 
four degrees of freedom and therefore eight in total. Next comes a calculation 
column: ‘Mean Square’ (often MS) is the sum of squares divided by the degrees 
of freedom. Both SS and MS are customarily included in ANOVA tables.

Finally comes the important bit; the F-ratio, here labelled ‘F’. This is the 
mean square for between groups divided by that for within groups. If there is 
the same amount of variation between and within groups this will give an 
F-ratio of 1. In this case the F-ratio is over 15. SPSS gives you the P-value for 
this value of F with this degrees of freedom, labelling it as ‘Sig.’. The value is 
0.004, indicating that the two groups are highly significantly different, since 
P < 0.01.

‘Options. . .’: one of the assumptions of a basic ANOVA is that variances are 
equal. In the t-test in SPSS this is tested automatically. In ANOVA it is available 
under the ‘Options. . .’ button. Just check the box labelled ‘Homogeneity- 
of-variance’ and click ‘Continue’ before running the test. If you do this a little 
extra output appears before the ANOVA table.

Fig. 7.6 Using SPSS for one-way ANOVA. The ‘Options’ dialogue box allows selection of 
useful additional output. The Welch or Brown–Forsythe options should only be selected 
if the Levene’s test for homogeneity of variance gives a P-value less than 0.05.
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➞ Oneway

Test of Homogeneity of Variances

Grain size (mg)

Levene Statistic df1 df2 Sig.

.762 1 8 .408

The important value is given the label ‘Sig.’. The critical value is usually 0.05 and 
if the value given here is less than that ANOVA should not be used but a Mann–
Whitney U test used instead. The value in the example is well above 0.05.

Method 2 Under the ‘Analyze’ menu choose ‘General Linear Model’ and then 
‘Univariate. . .’. In the dialogue box that appears move the variable with the 
observations (‘Grain_sz’ in the example) into the ‘Dependent Variable:’ box by 
first highlighting it and then clicking on the appropriate move button. Next 
move the variable with the group codes (‘Cultivar’ in the example) into the 
‘Fixed Factor(s):’ box. Click ‘OK’ to run the test.

➞ Univariate Analysis of Variance

Between-Subjects Factors

Value Label N

Cultivar 1 Premier 5
2 Super 5

Tests of Between-Subjects Effects

  Dependent Variable: Grain size (mg)

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model 16.384a 1 16.384 15.362 .004
Intercept 6260.004 1 6260.004 5869.671 .000
Cultivar 16.384 1 16.384 15.362 .004
Error 8.532 8 1.067
Total 6284.920 10
Corrected Total 24.916 9

  a. R Squared = .658 (Adjusted R Squared = .615)

The first table confirms that the data have been grouped using ‘Cultivar’; it gives 
the group labels (‘Value Label’) and the number of observations (‘N’). Then it 
goes on to a rather less standard ANOVA table. Remember that this output is 
designed to cope with many factors and therefore extra lines, which appear 
totally superfluous here, are useful in more complex experiments. The important 
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line is repeated twice, although you should read along the line labelled ‘Cultivar’. 
This is the variation that was labelled ‘Between Groups’ in the first method. The 
line labelled ‘Error’ corresponds to the one labelled as ‘Within Groups’.

The first column is ‘Type III Sum of Squares’ (don’t worry about type III, just 
report it as SS in a table), then ‘df’ or degrees of freedom, and then ‘Mean 
Square’ (the mean square value is the sum of square value divided by the degrees 
of freedom). As there are two cultivars there is one degree of freedom. There 
were five samples within each cultivar giving two lots of four degrees of free-
dom and therefore eight in total for ‘Error’.

Finally comes the important bit; the F-ratio, labelled ‘F’ here. This is the mean 
square for ‘Cultivar’ divided by that for ‘Error’. The value of F is 15.362. SPSS 
gives you the P-value associated with this value of F and these degrees of free-
dom and labels it ‘Sig.’. In biology we usually look for a value of less than 0.05. 
Here the probability is 0.004 which indicates that the mean grain sizes of the 
two cultivars are significantly different.

The output of this method is certainly not appropriate for inclusion in a write 
up as it stands: instead, create a table in the form I gave earlier in the example.

There are even more options to try in method 2. The ‘Homogeneity tests’ 
option is one that should usually be selected as it tests whether the data are 
appropriate for ANOVA. An output will appear similar to that in the data output 
on page 111. If ‘Compare main effects’ is selected with the variable defining 
groups (‘Cultivar’ here) in the ‘Display Means for:’ box, the following table 
will appear.

Pairwise Comparisons

  Dependent Variable: Grain size (mg)

(I) 
Cultivar

(J) 
Cultivar

Mean 
Difference (I-J) Std. Error Sig.a

95% Confidence Interval 
for Differencea

Lower 
Bound

Upper 
Bound

Premier Super −2.560* .653 .004 −4.066 −1.054

Super Premier 2.560* .653 .004 1.054 4.066

  Based on estimated marginal means

  *. The mean difference is signifi cant at the .05 level.

   a. Adjustment for multiple comparisons: Least Signifi cant Difference (equivalent to no 
adjustments).

This is similar to the mean difference information given at the end of the t-test. 
It shows the differences between the mean values for the two factor levels 
(groups, or ‘Cultivars’ in the example), gives a standard error for the difference, 
a significance for the difference (‘Sig.’) and then 95% confidence intervals for 
the difference. If both ‘Lower Bound’ and ‘Upper Bound’ values have the same 
sign then the two factor levels are significantly different from each other.
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 The observations should be in a single variable (vector) with another 
variable containing the group codes. Using the same data as the t-test example 
(page 104), the observations are in a variable called ‘Grain’ and the groups are 
coded in a variable called ‘Cultivar’. A one-way ANOVA can be achieved in 
several ways in R: the simplest is to use the functions ‘summary()’ and 
‘aov()’:

> summary(aov(Grain ~ Cultivar))

Df Sum Sq Mean Sq F value Pr(>F)
Cultivar 1 16.384 16.384 0.15362 0.004422 **
Residuals 8 8.532 1.0665
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

This uses the R model syntax stating that ‘Grain’ is a function of ‘Cultivar’. The 
output confirms the degrees of freedom, ‘Df’, gives the usual ANOVA calculation 
outputs of sum of squares, ‘Sum Sq’, and mean square, ‘Mean Sq’, which is the 
sum of squares divided by the degrees of freedom. Finally comes the important 
bit: the F-ratio, here called ‘F value’ which is the mean square of the source 
(here ‘Cultivar’) divided by the residual or error mean square. If there is no 
effect of the source the F-ratio with be 1. Here the value is 15.362. Finally the 
P-value is given, here labelled ‘Pr(>F)’, indicating that it is the probability of 
getting an F-ratio this large or larger if the null hypothesis is true. The P-value 
is well below 0.05 so we reject the null hypothesis and would report the result 
as ‘F1,8=15.36, P < 0.01’, giving the effect and error degrees of freedom as a 
subscript. R adds asterisks to highlight significant results and gives a key. Here 
the two asterisks confirm that the P-value is between 0.001 and 0.01.

 As with the t-test, there are two ways of inputting the data. In the first 
the two groups should be in two columns; in the second all the data are in one 
column and another column is used to identify the groups. The second method 
appears wasteful but arranging the data in this way is required in more complex 
analyses.

Method 1 Input the data from the two groups into two separate columns and 
label appropriately. From the ‘Stat’ menu select ‘ANOVA’ then ‘One-way 
(Unstacked)’. In the dialogue box ensure that both columns are in the ‘Responses 
(in separate columns):’ box. Click ‘OK’.

(Or, if the command interface is enabled, type ‘aovo c1 c2’ at the MTB> prompt 
in the session window. Or you can input commands using ‘Edit’ menu then 
‘Command Line Editor’.)

You get this output:

R

MINITAB
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One-way ANOVA: Premier, Super

Source DF SS MS F P
Factor 1 16.38 16.38 15.36 0.004
Error 8 8.53 1.07
Total 9 24.92

S = 1.033  R-Sq = 65.76%  R-Sq(adj) = 61.48%

Individual 95% CIs For Mean Based on Pooled StDev
Level N Mean StDev -+----------+--------+---------+--------
Premier 5 23.740 1.218 (---------*-------)
Super 5 26.300 0.806  (---------*-------)

-+----------+--------+---------+--------
22.8 24.0 25.2 26.4

Pooled StDev = 1.033

The first part of the output gives an ANOVA table in a fairly standard form (see 
the ‘ideal’ version in the example section above). The highly significant P-value 
of 0.004 means we reject the null hypothesis that the two cultivars have the 
same mean. However, it does not help us decide which group has the higher 
mean. The second section provides information about the two groups: number 
of observations (‘N’), mean and standard deviation and then a rather primitive, 
but useful, graphical representation of the two group means and 95% confi-
dence intervals of the means. In this example the confidence intervals of the two 
groups do not overlap (confirming that they are significantly different from 
each other) and clearly Super has the greater mean.

Method 2 Input all the observations into a single column. Use a separate column 
for coded labels for the two groups. In this example you would call the first column 
‘Grain sz’ and the second ‘Cultivar’. You must use integers as codes for groups.

From the ‘Stat’ menu select ‘ANOVA’ then ‘One-way. . .’. Move the observed 
data into the ‘Response:’ box and the group codes into the ‘Factor:’ box. Don’t 
worry about the comparisons button for only two groups, it will become useful 
when you have more than two groups. Click ‘OK’

(Or type ‘onew c1 c2’ at the MTB> prompt in the session window. Or you can 
input commands using ‘Edit’ menu then ‘Command Line Editor’.)

The output is identical to that from method 1 except that the two groups will 
be labelled with numbers rather than names.

 There is no direct method unless you have installed the Analysis ToolPak 
add-in.
1 Put the data into an Excel spreadsheet. This can be done in several ways: 
either exactly as in the example with one column for each cultivar and the 
names in the first row, or with all the data in a single column and an extra col-
umn having the names of the cultivars. (I will assume here that the data are in 
two columns, A and B, with labels in cells A1 and B1.)

Excel
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2 Select the ‘Data’ menu/ribbon and select ‘Data analysis. . ..’, which should 
appear in a section of the ribbon called ‘Analysis’ (if this option does not appear 
you need to run Excel set-up and add the Analysis ToolPak add-in). Select 
‘Anova: Single Factor’ and click ‘OK’.
3 A dialogue box will appear. If the cursor is flashing in the ‘Input range’ box 
you can select the cells you wish to use for the analysis by clicking and drag-
ging in the main sheet. If you select from cell A1 to the end of the data 
‘$A$1:$B$6’ should appear in the box. Alternatively you can just type in 
‘A1:B6’. The option ‘columns’ should be selected because the data are indeed 
in two columns representing different groups. The tick-box ‘Labels in the first 
row’ should be checked as the cultivar names are in the first row. Leave the 
‘Alpha’ at 0.05 as this is the significance level which is chosen and P < 0.05 is 
the usual level (Fig. 7.7).
4 At the bottom of the dialogue box is a section allowing you to determine 
where the output will appear. The default option is ‘New Worksheet Ply’ which 
means that the output will appear in a different sheet. If you want the output 
to appear on the same sheet as the data then you need to put a cell number in 
the ‘Output range’ box that will determine where the top left cell of the output 
will start.
5 Click on ‘OK’ and the following output will appear:

Fig. 7.7 One-way (single-factor) ANOVA using Excel. The area of the spreadsheet has 
been selected and is highlighted with a dashed line. Currently the output options will 
put the output onto a fresh sheet in the same workbook.
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Anova: Single Factor

SUMMARY

Groups  Count  Sum  Average  Variance

Premier 5 118.7 23.74 1.483
Super 5 131.5 26.3 0.65

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 16.384 1 16.384 15.3624 0.004422 5.317655
Within Groups  8.532 8  1.0665

Total 24.916 9

The first section gives summary information about the two groups of observa-
tions confirming the number of observations, sum, mean and variance.

The second section presents a rather standard ANOVA table: ‘SS’ is the sum of 
squares, ‘df’ degrees of freedom (there were 10 observations in all giving nine 
total degrees of freedom and there were two groups giving one degree of free-
dom for the ‘between groups’ variation), ‘MS’ is the mean square (=SS/df ), F is 
the ratio of the variation between groups/within groups, ‘P-value’ is the impor-
tant value as it shows the probability that the two cultivars have the same mean 
grain size. In this case P = 0.0044 so we reject the null hypothesis that the two 
cultivars have the same mean grain size. The final value ‘F-crit’ is not usually 
quoted on an ANOVA table. It is the value of F required to achieve a P = 0.05 with 
the degrees of freedom in this particular test. If alpha had been set at 0.01 in the 
ANOVA dialogue box then the ‘F-crit’ value would be 11.25863.

Mann–Whitney U

This test, also widely known as the Wilcoxon–Mann–Whitney test and less 
widely as the Wilcoxon rank sum W test, is the non-parametric equivalent of 
the independent samples t-test. It can only be used to test two groups. However, 
unlike the t-test and one-way ANOVA it does not make assumptions about homo-
geneity of variances or normal distributions. It is a typical ‘rank’ test, meaning 
that the raw data are converted into ranks before the test is carried out. The 
advantage of this is that it is ideal for situations where the highest value went 
off the scale or if extreme values are making the t-test undesirable.

The Mann–Whitney U test is less powerful than a t-test or one-way ANOVA, 
but you are less likely to find a significant result when there is no real difference. 
However, the lack of assumptions it makes about the distribution of the data 
make it the preferred test in many cases.
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An example In the package illustrations for this test I use the same data set as 
for the t-test and one-way anova (page 104).

 As with the t-test all the data are placed into a single column and another 
column is used for the labelling of the groups using integer code numbers that 
can be labelled as appropriate in the ‘Variable View’, ‘Values’ column. Under 
the ‘Analyze’ menu, choose ‘Nonparametric Tests’ and then select ‘2-Independent 
Samples. . .’. This will bring up a dialogue box for four different non-parametric 
tests. By default the ‘Mann–Whitney U test’ box should be selected. Put the 
variable with the observations (‘Grain_sz’ in the example) into the ‘Test Variable 
List’ box by selecting it and then moving it across. Then select the variable with 
the group codes (‘Cultivar’ in the example) as the ‘Grouping Variable’. It will 
appear as ‘Cultivar(? ?)’. You need to click the ‘Define Groups. . .’ button and 
then input ‘1’ in ‘Group 1’ and ‘2’ in ‘ Group 2’ before clicking ‘Continue’. This 
will return you to the first dialogue box. You will see that ‘Cultivar(? ?)’ is now 
‘Cultivar(1 2)’. Click ‘OK’ to run the test.

The output should appear as follows:

Mann-Whitney Test

Ranks

Cultivar N Mean Rank Sum of Ranks

Grain size (mg) Premier 5 3.20 16.00
Super 5 7.80 39.00
Total 10

Test Statisticsb

Grain size (mg)

Mann-Whitney U 1.000
Wilcoxon W 16.000
Z −2.410
Asymp. Sig. (2-tailed) .016
Exact Sig. [2*(1-tailed Sig.)] .016a

  a. Not corrected for ties.
  b. Grouping Variable: Cultivar.

This confirms the test carried out. It also confirms that in the example the vari-
able ‘Grain size (mg)’ was divided into two groups by the variable ‘Cultivar’ 
labelled as ‘Premier’ and ‘Super’. Next comes some summary information. The 
two groups of ‘Cultivar’ each have five cases (‘N’), giving 10 in total. The mean 
rank position of the two groups, with the smallest value given rank one and the 
largest rank ten, is also given. The ‘Sum of Ranks’ is given as it is an important 
part of the Mann–Whitney calculation, although it is not useful here. Even at 

SPSS
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this point it is clear that there is a difference between the two cultivars as the 
mean ranks are different.

The output from the test itself comes in a separate table labelled ‘Test 
Statistics’. The first two rows are the output values from the Mann–Whitney 
and Wilcoxon versions of the test (U and W respectively). ‘Z’ is the statistic usu-
ally looked up in a table. Finally the rows labelled ‘Asymp. Sig. (2-tailed)’ and 
‘Exact Sig. [2*(1-tailed Sig.)]’ give the crucial P-value. It is this value that you 
are interested in. Is it less than 0.05? In this example it is and we reject the null 
hypothesis that the two groups have the same median.

 The data to be compared should be in two variables. Here I have the example 
data in a dataframe called ‘t’. Just typing ‘t’ at the command line will show the 
data:

> t
 Premier Super
1 24.5 26.4
2 23.4 27.0
3 22.1 25.2
4 25.3 25.8
5 23.4 27.1

The Mann–Whitney test is also known as the Wilcoxon rank sum test and in R 
is reached through the ‘wilcox.test()’ function:

> wilcox.test(Premier,Super)

Wilcoxon rank sum test with continuity correction

data: Premier and Super
W=1, p-value=0.02118
alternative hypothesis: true location shift is not 
equal to 0

Warning message:
In wilcox.test.default(Premier, Super) :
cannot compute exact p-value with ties

The output confirms the test used and that the default of a continuity correc-
tion has been applied (as is the default in MINITAB, but not SPSS). Next comes 
confirmation of the names of the two groups, the output of the test ‘W’ and the 
P-value, here below 0.05, so we reject the null hypothesis that the two sets of 
observations come from a distribution with the same median. Finally there is a 
description of the null hypothesis and then a warning that there are tied values 
in the data set (in the example 23.4 appears twice) and that means the data 
cannot be ranked in such a way to allow an exact version of the test.

R
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To execute the test without the continuity correction (as happens by default 
in SPSS), this option has to be specified:

> wilcox.test(Premier,Super,correct=FALSE)

Wilcoxon rank sum test

data: Premier and Super
W=1, p-value=0.01597

I suggest that you use the default version with the continuity correction unless 
you need to compare results with a test where you know the correction has not 
been applied.

 Unlike the t-test there is only one way of inputting the data. Put the 
data into two columns, one for each group, and label accordingly. From the ‘Stat’ 
menu select ‘Nonparametrics’ then ‘Mann Whitney. . .’. In the dialogue box 
move the two columns into the ‘First sample:’ and ‘Second sample:’ boxes 
(it doesn’t matter which way round they are). Leave the other settings at their 
defaults or ‘95.0’ and ‘not equal’. Click ‘OK’.

(Or, if the command interface is enabled, type ‘Mann c1 c2’ at the MTB> prompt 
in the session window. Or you can input commands using ‘Edit’ menu then 
‘Command Line Editor’.)

You get the following output:

MTB > Mann-Whitney 95.0 ‘Premier’ ‘Super’;
SUBC> Alternative 0.

Mann-Whitney Test and CI: Premier, Super

 N Median
Premier 5 23.400
Super 5 26.400

Point estimate for ETA1-ETA2 is −2.500
96.3 Percent CI for ETA1-ETA2 is (−4.301, −0.701)
W = 16.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0216
The test is significant at 0.0212 (adjusted for ties)

The output confirms the test carried out. Then it gives some summary informa-
tion about the two groups: the number of observations (‘N’) and the median 
value. The next two lines give information about the difference between the 
two groups and quotes a range for the difference. Then comes a value for the 
test statistic ‘W’, given as 16.0 in the example.

The final two lines are the most important. They give the probability of the two 
medians being equal. The first probability (P = 0.0216 in the example) does not 
account for tied data (two or more observations with exactly the same value) while 
the bottom line does. If there are several ties in the data then the second value will 
be higher and the second P-value for the test becomes more conservative.

MINITAB
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In the example both versions give a P < 0.05 so we reject the null hypothesis 
that the two groups have the same median value (i.e. in the example, the grain 
size for the two cultivars is different).

If the two significance results are either side of 0.05 then you will have to 
consider that a marginal result for the test suggests that you need to collect 
more data or measure with more precision to avoid tied data.

 There is no direct method even with the Analysis ToolPak installed.

Do the observations from more than two groups differ?

The groups can be either repeated (related) samples or they can be indepen-
dent. Repeated measures are considered first.

Repeated measures
Repeated measures (a.k.a. related samples, matched samples) is an extension 
from paired data and occurs when a single individual or site is tested three or 
more times. A common example is in a ‘before, during and after’ design. Another 
possible use occurs when an individual is, or individuals of a clone are, divided 
and then subjected to three or more treatments. Two tests are considered below: 
the Friedman test and repeated-measures ANOVA.

Friedman test ( for repeated measures)

The Friedman test is a non-parametric analogue of a two-way ANOVA. It makes no 
assumptions about the distribution of the data, only that they are measured on an 
ordinal scale. The Friedman is appropriate only if there is a single observation 
taken for each combination of factor levels. For repeated measures one of the fac-
tors must represent the repeat level, perhaps minutes, days or a measure of before, 
during and after a procedure. Then a the second grouping variable will be a stand-
ard factor such as region, species or treatment type. The null hypothesis is that 
observations in the same group (factor level) have the same median values. If the 
null hypothesis is rejected it shows that at least two groups have different medi-
ans, although it does not show which groups they are. Inspection will reveal which 
are the likely candidate groups (i.e. those with the highest and lowest medians).

It is the case for SPSS, R and MINITAB that the test has to be carried out 
twice if you wish to test both the conventional factor and whether the different 
sampling events have different median values.

The Friedman test is much less powerful than an equivalent ANOVA test if the 
data are normally distributed but makes fewer assumptions about the data so it 
is ‘safer’.

An example The Friedman test could be used if the data comprise the number 
of cyanobacterial cells in 1 mm3 of water from six ponds, with samples taken on 
four different days and only one sample taken each day from each pond.

Excel
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Day

Pond…

A B C D E F

1 130 125 350 375 225 235
2 115 120 375 200 250 200
3 145 170 235 275 225 155
4 200 230 140 325 275 215

Note: there is only one observation for each pond/day combination.

 Input the data using one column for each factor level (pond) in this 
example, arranged as in the table. Label the columns appropriately (letters A–F 
in the example). Make sure that each row corresponds to a level (group) of the 
repeated measure (e.g. if different times make sure that all the ‘before’ measures 
are in the first row, ‘during’ in the second and so on). However, this doesn’t need 
a label at this point (i.e. you don’t need a column labelled ‘Day’).

From the ‘Analyze’ menu select ‘Nonparametric Tests’ then ‘K Related sam-
ples. . .’. In the dialogue box move all the columns containing data into the ‘Test 
variables:’ box. (Note that you can select the top item, hold shift and select the 
bottom item to select the whole list.) Make sure that the ‘Friedman’ box is 
checked (it should be selected by default). If you want any summary statistics 
about each of the groups you should click the ‘Statistics. . .’ button and check 
‘Descriptives’ and click ‘Continue’ before you click ‘OK’.

You should get the following output:

Friedman Test

Ranks

Mean Rank

A 1.50
B 2.50
C 4.25
D 5.38
E 4.25
F 3.13

Test Statisticsa

N 4
Chi-Square 11.259
df 5
Asymp. Sig. .046

  a. Friedman Test

SPSS
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The output confirms the test. Then it gives some rather unhelpful information 
about the mean rank of the observations in the different samples. The test out-
put appears in the second table. First, the number of repeated or related samples 
is confirmed (four in the example). Then a test statistic is given followed by the 
degrees of freedom (one less than the number of groups being tested, so 5 d.f. 
from six ponds in the example). Finally the P-value is given, labelled as ‘Asymp. 
Sig.’. If this value is less than 0.05 you reject the null hypothesis that the groups 
have the same median. In the example the P-value is 0.046. This value is just 
less than the critical 0.05 level. So we reject the null hypothesis that the ponds 
have the same median concentration of cyanobacteria.

To test another possible null hypothesis that the days all have the same median 
cell concentration would make the test a two-way analysis (see page 146).

 This is a simple test to execute in R using the function ‘friedman.test()’. 
However, it is important to make sure that the data are arranged in a matrix. 
Here I show how the data can be input directly into R before the Friedman test 
is carried out:

> pondcells <-
+ matrix(c(130,125,350,375,225,235,
+ 115,120,375,200,250,200,
+ 145,170,235,275,225,155,
+ 200,230,140,325,275,215),
+ nrow=4,
+ byrow=TRUE,
+ dimnames=list(1:4,
+ c(”A”,”B”,”C”,”D”,”E”,”F”)))

> friedman.test(pondcells)

Friedman rank sum test
data: pondcells
Friedman chi-squared=11.259, df=5, p-value=0.04648

The output from the test first confirms the test used and the name of the data 
matrix. Then it gives the test statistic, here it’s 11.259, then give the degrees of 
freedom ‘df’ and the P-value associated with that value of chi-square and degrees 
of freedom. In the example there are five degrees of freedom (number of ponds 
minus 1) and the P is marginally less than 0.05, so the null hypothesis that the 
ponds have the same median concentration of cyanobacterial cells is rejected, 
although with caution as the value is close to 0.05.

 Put the data into a single column. Then use the next two columns for 
integer codes of the two grouping variables. These codes must be integers but 
need not be consecutive.

R

MINITAB
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From the ‘Stat’ menu select ‘Nonparametric’ then ‘Friedman. . .’. In the dia-
logue box put the data in the ‘Response’ block, the conventional factor into the 
‘Treatment:’ box and the repeated measure (perhaps a time, as in the example) 
into the ‘Block:’ box. Click ‘OK’.

(Or, if the command interface is enabled, and assuming the observations are in 
column 1, the main factor in column 2 and the repeat factor in column 3, type 
‘Friedman c1 c2 c3’ at the MTB> prompt in the session window.)

You get the following output:

Friedman Test: C1 versus Pond blocked by Day

S = 11.18 DF = 5 P = 0.048
S = 11.26 DF = 5 P = 0.046 (adjusted for ties)

Pond N Est Median Sum of Ranks
1 4 150.52 6.0
2 4 166.35 10.0
3 4 295.10 17.0
4 4 293.85 21.5
5 4 240.10 17.0
6 4 192.19 12.5

Grand median = 223.02

Note: I coded the six ponds in the example with the numbers 1–6.
The output first confirms the test carried out. The first two rows give the 

results of the test, first with no correction for tied observations. The sample 
statistic for the test is ‘S’ and the ‘DF.’ is the degrees of freedom (one less 
than the number of factor levels) there were six ponds in the data set 
and therefore five degrees of freedom. Then there is a P-value associated 
with the ‘S’ result. In the example the P-value is just less than 0.05 so we 
reject the null hypothesis that the six ponds have the same median number 
of cells.

After the test results come some summary statistics about the groups giving 
number of observations (‘N’), median and the total rank position of the observa-
tions in the whole data set (‘Sum of Ranks’). The ‘Grand median’ is the median 
value from the whole data set.

By inspection you can determine that at least ponds 1 (A) and 4 (D) have 
significantly different medians as they are the extreme groups.

If you wish to determine whether the different sampling events have an effect 
on the median observations then you should repeat the test reversing the factors 
in the ‘Treatment:’ and ‘Block’ boxes. This makes the test into a ‘two-way’ analy-
sis (see page 146).

(Or type ‘Friedman c1 c3 c2’ at the MTB> prompt in the session window.)

 There is no direct method even with the Analysis ToolPak installed.Excel
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Repeated-measures ANOVA

A two-way ANOVA may also be applied to this sampling design of only one meas-
ure for each combination of factor levels. The problem is that ANOVA makes the 
assumption that each of the factor levels is independent of all others. In a repeat-
ed-measures design, where a measurement is taken from an experiment on days 
1, 2 and 3, the three days cannot be used as factor levels because measurements 
taken on day 2 are not independent of those already taken on day 1. The factor 
levels are also not equally dependent as day 1 is likely to be more similar to day 
2 that it will be to day 3. There are ways around this problem and they usually 
entail a serious reduction in the degrees of freedom applied to the analysis.

ANOVA is a parametric test and therefore makes assumptions about the data. 
The data should be: continuous, normally distributed and with equal variances 
for the data in each factor combination (not the whole data set). In practice it is 
often impossible to test whether this is true because there are so few observa-
tions. Therefore it is usual to make a value judgement about whether the data 
are likely to conform to the assumptions.

In the example used above in the Friedman the data of number of cells per 
cubic millimetre are measured to the nearest 5 and is therefore discontinuous. 
However, there are more than 30 possible values so it would usually be accept-
able to use ANOVA.

This test is only a special case of a two-way ANOVA where one of the factors 
defines the level of repeated sampling and the other the individuals or sampling 
sites. You could treat the analysis as a two-way ANOVA (usually without replica-
tion), see page 152 and below.

 This test is reached from ‘Analyze’, then ‘General Linear Model’ then 
‘Repeated measures’. The package will not carry out the task using ‘Repeated 
measures’ if, as in the example, there is only one observation in each measure 
and only one individual (‘pond’ in the example) for each factor level.

However, if there are two or more individuals in each factor level, say if the 
ponds are grouped into ‘ephemeral’ and ‘permanent’, then the test can be carried 
out. Arrange the data so each measurement event is in a column (e.g. ‘day’) and 
each individual is on a separate row. There should be an additional column for the 
main effect (e.g. ‘pondtype’). Use ‘Analyze’, then ‘General Linear Model’ then 
‘Repeated measures’. In the dialogue box insert the name of the repeated visit (e.g. 
‘day’) and the number of times measured (four in the example) then click define.

In the next dialogue, move the measurement columns into the ‘Within-
Subjects Variables’ box. There should be as many columns selected as you chose 
levels in the first window. Move the main effect to ‘Between-Subjects Factor(s)’. 
Click ‘OK’.

Masses of output is produced, reflecting the debates in the statistical litera-
ture about the most appropriate way to deal with repeated measures designs. 
At the bottom is an ANOVA style table. The row labelled with the name of the 

SPSS
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main effect in the first column (‘Source’) is the important one. Read the ‘Sig.’ 
value in the final column.

 In R, where the user specifies the model that’s being used in the function, 
repeated measures designs can be achieved by specifying a different error from 
the default. Using the example where the dependent variable is ‘Cells’ and the 
independent variable (factor) is ‘Pond’ and the repeated visits are coded in ‘Day’:

> summary(aov(Cells∼Pond*Day + Error(Cells/
(Pond*Day))))

 There is no repeated measure option in MINITAB. Although a two-
way ANOVA (see page 152) can be carried out. In a repeated-measures design the 
F-ratio should be checked for significance with fewer degrees of freedom than 
for a conventional two-way ANOVA. This can be done by looking in statistical 
tables, or by using Excel as detailed below. MINITAB has its own look-up tables 
for many distributions. First put the number you want to look up into a ‘constant’ 
by typing ‘Let K1 = 3.42’, which puts the value 3.42 into the constant K1. Go to 
‘Calc’ then ‘Probability Distributions’ then ‘F. . .’. Select ‘Probability density’, put 
the appropriate main effect degrees of freedom in the ‘Numerator degrees of 
freedom’ and the error (or residual) degrees of freedom in the ‘Denominator . . .’ 
the put K1, or wherever your F value was in the ‘Input constant’ box. In the 
example case 3.42 with five and 15 degrees of freedom is P = 0.029, but with 
fewer degrees of freedom in the numerator to account for the repeated-measures 
design, 3.42 with two and 15 degrees of freedom is P = 0.041.

[Or, if the command interface is enabled, type ‘PDF 3.42;’ at the MTB> prompt 
in the session window, then F 2 15 at the SUBC> prompt (giving the numerator and 
denominator degrees of freedom).]

 A two-way ANOVA (see page 152) can be carried out if the design is fully 
balanced with no missing data, although the F-ratio should be checked for 
significance with fewer degrees of freedom than for a conventional two-way 
ANOVA. This can be done with the function ‘FDIST’. Use the ‘Paste function’ 
button, then ‘Statistical’, or type directly, ‘FDIST(x,y,z)’ where ‘x’ is the F-ratio 
reported in the ANOVA output, ‘y’ is the number of degrees of freedom for the 
main effect (five degrees of freedom from six ponds in the example) and ‘z’ is 
the number of degrees of freedom in the error. It is the value of ‘y’ (degrees of 
freedom of the main effect) that should be reduced.

Independent samples
This is the more usual type of analysis and occurs when a single individual or site is 
measured or tested only once. There will, therefore, be three or more totally sepa-
rate groups of observations. Groups are often obvious; for example, pig, sheep, cow 
and horse. However, the distinction between the groups may be rather arbitrary, 
such as dividing samples by altitude bands or ranges of linear distance from a release 
point. Two tests are considered below: one-way ANOVA and the Kruskal–Wallis test. 

R

MINITAB

Excel
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If you get a significant result from one of these tests that is not the end of the story 
as it will not tell you which groups are different from which. Some kind of post hoc 
test (meaning ‘after this’) is required to allow you to interpret the results. Some of 
the many post hoc tests available are also described.

One-way ANOVA

The t-test is restricted to use with only two samples. When there are more than 
two groups you should use ANOVA. This is still a very simple use of ANOVA but it 
works well and is a test that every biologist should feel comfortable with.

ANOVA for three or more groups makes the same assumptions as for two 
groups: that the data are continuous, and the data within each group are at least 
approximately normally distributed and have equal variance. These assump-
tions should be tested before the test is carried out. The null hypothesis being 
tested is that each group has the same mean. (The way that ANOVA approaches 
this is to have a null hypothesis that the variation within groups is the same as 
variation between groups. The key is the ratio of the within-group variance and 
between-group variance that is termed the F-ratio.)

An example A researcher has grain-size data from three cultivars and wishes to 
determine whether there are any differences between them. The null hypothe-
sis is that all three have the same mean (or that all three samples are taken from 
populations with the same mean). If there is a significant result (i.e. if P < 0.05) 
this indicates that at least one pair has different means; it does not tell you 
which pair. For convenience, in this example I will use the same example data 
set as in the t-test but with an additional third sample of five observations from 
a cultivar called Dupa which is coded as number 3. I would normally code the 
groups in alphabetical order. In this case as a third set of data has been added to 
a previously used set I have retained the labels 1 and 2 for those groups.

Cultivar name Cultivar code Grain size (mg)

Premier 1 24.5
1 23.4
1 22.1
1 25.3
1 23.4

Super 2 26.4
2 27.0
2 25.2
2 25.8
2 27.1

Dupa 3 25.5
3 25.7
3 26.8
3 27.3
3 26.0
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If the data are analysed using ANOVA on a statistics package the output will not 
normally be directly suitable for presentation in a report. The ANOVA table that 
you would include in a write-up or publication should appear as something 
along the lines of the table below:

Source d.f. SS MS F P

Cultivar 2 21.5 10.8 11.9 0.0014
Residual (error) 12 10.9 0.91
Total 14 32.4

Where F is the F-ratio (mean square of the main effect divided by the mean 
square of the error) and P is the P-value associated with the value of F and the 
degrees of freedom. Asterisks can be used to highlight significant levels of P. The 
best way to test that you are reading the output from your package correctly is 
to compare this table with the output obtained using the package.

 As with many statistical tests, all the data are placed into a single column 
and another column is used for the labelling of the groups. This may appear to 
double the effort required but it is a much easier system when it comes to 
multiway analysis. Post hoc tests are important when trying to interpret the 
output from ANOVA. They are considered later.

As with the two-sample tests there is more than one route to this test in SPSS 
that gives the same results but with rather different outputs. I will consider two 
below in detail.

Method 1 Under the ‘Analyze’ menu choose ‘Compare Means’ and then ‘One-
Way ANOVA. . .’. In the dialogue box that appears move the variable with the 
observations (‘Grain_sz’ in the example) into the ‘Dependent List:’ box by first 
highlighting it and then clicking on the appropriate move button (blue arrow). 
Next move the variable with the group codes (in the example that is ‘Cultivar’) 
into the ‘Factor:’ box. (Ignore the ‘Post Hoc’ button for the moment, although 
you should always select a post hoc test when there are more than two groups. 
I will consider post hoc testing on page 138.) Click ‘OK’ to run the test.

The following will appear in the output window:

➞ Oneway
ANOVA

Grain size (mg)

Sum of Squares df Mean Square F Sig.

Between Groups 21.509 2 10.755 11.879 .001
Within Groups 10.864 12 .905
Total 32.373 14

SPSS
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This confirms the test as ‘Oneway’ (i.e. a one-way ANOVA), tells you that the 
observed data is ‘Grain_sz’ and then goes on to a standard ANOVA table. As is 
always the case in one-way ANOVA, the top line of the table is the important one: 
this is the variation between groups (i.e. between the three cultivars in this 
example). The second line is the variation within the groups that is being used 
as a comparison.

The first column is the ‘Sum of Squares’ (often just ‘SS’), then comes ‘df’ or 
degrees of freedom. As there are three groups (cultivars) there are two degrees 
of freedom between groups (i.e. 3−1 = 2). There were five samples within each 
group giving three lots of four degrees of freedom and therefore 12 in total. 
Next come calculation columns ‘Mean Square’ (usually just ‘MS’). The mean 
square value is the sum of squares value divided by the degrees of freedom.

Finally comes the important bit; the ‘F’ (or F-ratio). This is the mean square 
for between groups divided by that for within groups. If there is the same 
amount of variation between and within groups this will give an F-ratio of 
exactly 1. In this case the F-ratio is 11.879. This value could be looked up on an 
F table although SPSS gives you the P-value anyway, labelling it as ‘Sig.’. The 
value is 0.001, indicating that at least two of the groups have means that are 
highly significantly different. There are three possible pairs with three groups: 
1 and 2; 1 and 3; 2 and 3. It is the post hoc test that tells you which pairs are dif-
ferent from which, not the ANOVA test itself.

More complicated ANOVA tests are not possible under the ‘Compare Means’ 
menu so it may be better to become familiar with method 2.

‘Options. . .’: one of the assumptions of basic ANOVA is that variances are equal. 
In the t-test in SPSS this is tested automatically. In ANOVA it is available under 
the ‘Options. . .’ button. Just check the box labelled ‘Homogeneity of variance 
test’ and click ‘Continue’ before running the test. If you do this a little extra 
output appears after the ANOVA table.

Test of Homogeneity of Variances

Grain size (mg)

Levene Statistic df1 df2 Sig.

.679 2 12 .526

The important value is given the label ‘Sig.’. The critical value is usually 0.05 
and if the value given here is less than that, ANOVA should not be used. A 
Kruskal–Wallis test should be considered instead (page 142).

Method 2 Under the ‘Analyze’ menu choose ‘General Linear Model’ and then 
‘Univariate. . .’. In the dialogue box that appears move the data column (‘Grain_
sz’ in the example) into the ‘Dependent Variable:’ box by first  highlighting it 

9781405198387_4_007.indd   1319781405198387_4_007.indd   131 9/16/2010   11:34:36 PM9/16/2010   11:34:36 PM



132 Chapter 7

and then clicking on the appropriate move button. Next move the grouping 
variable (‘Cultivar’ in the example) into the ‘Fixed Factor(s):’ box. Either click 
‘OK’ to run the test now or click on ‘Options. . .’ and select ‘Homogeneity tests’ 
first.

➞ Univariate Analysis of Variance

Between-Subjects Factors

Value Label N

Cultivar 1 Premier 5
2 Super 5
3 Dupa 5

Levene’s Test of Equality of Error Variancesa

Dependent Variable:Grain size (mg)

F df1 df2 Sig.

.679 2 12 .526

 Tests the null hypothesis that the error variance of the dependent variable
 is equal across groups.
  a. Design: Intercept + Cultivar.

Tests of Between-Subjects Effects

Dependent Variable: Grain size (mg)

Source Type III Sum of Squares df Mean Square F Sig.

Corrected 
Model

21.509a 2 10.755 11.879 .001

Intercept 9702.817 1 9702.817 10717.397 .000
Cultivar 21.509 2 10.755 11.879 .001
Error 10.864 12 .905
Total 9735.190 15
Corrected Total 32.373 14

  a. R Squared = .664 (Adjusted R Squared = .608)

This output confirms the test used. Then gives a table containing only the 
number of observations for each factor level. The second table is the output 
requested in ‘Options. . .’ for ‘Homogeneity tests’. A Levene’s test has the null 
hypothesis that each factor level has the same variance. In the example the ‘Sig.’ 
for this test is well above 0.05, so there is no reason to reject this null  hypothesis. 
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If the ‘Sig.’ is below 0.05 then an alternative test, such as the Kruskal–Wallis test 
should be considered (page 142).

Finally comes a rather less standard ANOVA table labelled as ‘Tests of Between-
Subjects Effects’. This output is designed to cope with many factors and there-
fore extra lines, that appear superfluous here, are useful in more complex 
experiments. The important line is repeated twice, although you should read 
along the line labelled ‘Cultivar’ (or whatever your main effect is labelled as). 
This is the test of the null hypothesis that between groups (factor levels) 
 variation is the same as within group variation. The line labelled ‘error’ is the 
residual variation, or within group variation.

The second column is ‘Type III, Sum of Squares’ (don’t worry about type III, 
just report it as SS in a table), then ‘df’ or degrees of freedom, then ‘Mean 
Square’ (the mean square value is the sum of square value divided by the degrees 
of freedom). As there are three cultivars there are two degrees of freedom. 
There were five samples within each cultivar giving three sets of four degrees of 
freedom and therefore twelve in total for ‘Error’.

Finally comes the important bit; the F-ratio, labelled ‘F’ here. This is the 
mean square for ‘Cultivar’ divided by that for ‘Error’. The value of ‘F’ is 11.879. 
SPSS gives you the P-value associated with this value of ‘F’ and these degrees 
of freedom and labels it ‘Sig.’. We look for a value less than 0.05. Here the 
probability is 0.001 and indicates that the mean grain size of a least one pair of 
cultivars is significantly different. The ANOVA does not tell you which groups 
are different from which: a post hoc test is needed to determine that (page 138). 
(Note that SPSS does have a habit of reporting significance of 0.000, as is the 
case for the ‘Intercept’ in the example. This should always be reported as 
P < 0.001.)

The output table should be revised along the lines of the table I gave at the 
top of this section before it is included in a write-up or report.

You have some options at this point (‘Options. . .’). For example, if you select 
the main effect and add it to ‘Display Means for;’ and check ‘Compare main 
effects’ you get output as follows:

Estimates
Dependent Variable: Grain size (mg)

Cultivar Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Premier 23.740 .426 22.813 24.667

Super 26.300 .426 25.373 27.227

Dupa 26.260 .426 25.333 27.187
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Pairwise Comparisons
Dependent Variable: Grain size (mg)

(I) Cultivar (J) Cultivar

Mean 
Difference 

(I-J) Std. Error Sig.a

95% Confidence Interval for 
Differencea

Lower Bound Upper Bound

Premier Super −2.560* .602 .003 −4.227 −.893

Dupa −2.520* .602 .004 −4.187 −.853

Super Premier 2.560* .602 .003 .893 4.227

Dupa .040 .602 1.000 −1.627 1.707

Dupa Premier 2.520* .602 .004 .853 4.187

Super −.040 .602 1.000 −1.707 1.627

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Sidak.

First a table gives the mean values for each level of the main effect (here with 
their group labels displayed). It also gives 95% confidence interval ranges. In the 
example it is clear that the groups Super and Dupa have very similar values, but 
that they are both different from Premier. The second table gives pairwise com-
parisons for each pair of factor levels. The differences in the mean differences 
and the 95% confidence intervals for the differences are also given. In this exam-
ple I have selected the rather conservative Sidak method for pairwise compari-
sons (discussed below in the section on post hoc testing, page 138). In this 
example the differences between groups Premier and Super and between 
Premier and Dupa are significant (P = 0.003 and 0.004 respectively), but the 
difference between groups Super and Dupa is not.

 There are several routes to this test in R. The one which provides the simplest 
output is using ‘summary()’ combined with ‘aov()’ with the tilde ‘~’ to separate 
response variable (dependent variable, ‘Grain’ in the example) from the predictor 
variable (independent variable, or ‘Cultivar’ in the example). Here I have loaded 
the data from the example into R and attached it in a dataframe called ‘oneway’, 
before I run the test I confirm that the data are present and correct:

> oneway
 Grain Cultivar
1 24.5 P
2 23.4 P
3 22.1 P
4 25.3 P

R
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5 23.4 P
6 26.4 S
7 27.0 S
8 25.2 S
9 25.8 S
10 27.1 S
11 25.5 D
12 25.7 D
13 26.8 D
14 27.3 D
15 26.0 D

Here the factor levels were coded by letters. If the factor levels are coded 
by numbers R will treat the model ‘Grain~Cultivar’ as a request for a regres-
sion. The function ‘as.factor()’ is required to inform R that the numbers 
should be treated as labels for factor levels: ‘Cultivar<-as.factor
(Cultivar)’.

> summary(aov(Grain~Cultivar))
 Df Sum Sq Mean Sq F value Pr(>F)
Cultivar 2 21.509 10.7547 11.879 0.001428 **
Residuals 12 10.864 0.9053
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

Here there is no confirmation of the test used, just an ANOVA table laid out in a 
conventional way. The source of the variation, name of the predictor variable or 
independent variable or factor is given, then the degrees of freedom ‘Df’, then 
the sum of squares ‘Sum Sq’ and mean squares ‘Mean Sq’ (which is the sum of 
squares/degrees of freedom), then comes the F-ratio (‘F value’ here) which is 
the mean square of the factor/mean square of the residuals. Finally the P-value 
is given, here labelled ‘Pr(>F)’, indicating that the P is the probability of getting 
a value of F greater than or equal to this if the null hypothesis is true. In the 
example F is well above 1 and the P-value well below 0.01, so the result is 
highly significant. R provides an asterisk code of significance with ‘**’ indicating 
a P-value of between 0.001 and 0.01.

 There are two routes to this test in MINITAB. You can either input all 
the data into a single column with a second column to code the groups (stacked) 
or you can put each group into a separate column (unstacked).

Method 1 Input all the data into a single column and use a second column to 
label the cultivars with integers (as in the example). Label the columns appro-
priately. From the ‘Stat’ menu select ‘ANOVA’ then ‘One-Way. . .’. Move the 
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9781405198387_4_007.indd   1359781405198387_4_007.indd   135 9/16/2010   11:34:36 PM9/16/2010   11:34:36 PM



136 Chapter 7

observed data into the ‘Response:’ box and the group codes into the ‘Factor:’ 
box. The ‘Comparisons. . .’ button gives you access to the post hoc tests that are 
considered separately below. Click ‘OK’ to run the test.

[Or, if the command interface is enabled, type ‘Oneway c1 c2’ (assuming the 
data are in c1 and the group codes in c2) at the MTB> prompt in the session win-
dow. Or you can input commands using ‘Edit’ menu then ‘Command Line 
Editor’.]

You get the following output:

One-way ANOVA: Grain sz versus Group

Source DF SS MS F P
Group  2 21.509 10.755 11.88 0.001
Error 12 10.864  0.905
Total 14 32.373
S = 0.9515  R-Sq = 66.44%  R–Sq(adj) = 60.85%

     Individual 95% CIs For Mean
Based on Pooled StDev

Level N   Mean StDev +––––––+–––––––––+–––––––+––––––––
1 5 23.740 1.218 (––––*––––)
2 5 26.300 0.806    (––––*––––)
3 5 26.260 0.764    (––––*––––)
    +––––––+–––––––––+–––––––+––––––––

 22.8 24.0 25.2 26.4
Pooled StDev = 0.951

The first part of the output confirms the test carried out and gives an ANOVA 
table in standard form (see the ‘ideal’ version in the example section). The 
highly significant P-value (much less than 0.05) means we reject the null 
hypothesis that the cultivars have the same mean. However, it does not help us 
decide which groups are different from which. The second section provides 
information about the three groups: number of observations (‘N’), mean and 
standard deviation and then a rather primitive graphical representation of the 
three group means and 95% confidence intervals of the means. In this example 
the confidence intervals of group (‘Level’) 1 does not overlap with groups 2 and 
3 (confirming that they are significantly different from each other). The post hoc 
test will confirm this conclusion derived from inspection of the data (page 138).

Method 2 Input the data with a separate column for each of the groups (culti-
vars in the example) and label the columns appropriately. From the ‘Stat’ menu 
select ‘ANOVA’ then ‘One-Way (unstacked) . . .’. In the dialogue box move all 
groups into the ‘Responses (in separate columns):’ box. Then click ‘OK’. The 
output is identical to method 1 but with the column names appearing instead 
of the integer codes for the factor levels. A post hoc test can be accessed using 
the ‘Comparisons’ button.
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 There is no direct method unless you have installed the Analysis ToolPak 
add-in. The method is essentially the same as for two groups.
1 Input the data onto an Excel spreadsheet. This can be done in several ways: 
either with one column for each cultivar and the names in the first row, or as in 
the example with the data from one cultivar in one row with an extra column 
having the names of the cultivars. (I will assume here that the data are in three 
columns A, B and C with names of the cultivars in cells A1, B1 and C1).
2 Select the ‘Data’ menu/ribbon and select ‘Data analysis. . ..’ (if this option 
does not appear you need to the Excel options in the home menu and select 
‘Add-Ins’ and add the ‘Analysis ToolPak’). Select ‘Anova: Single Factor’.
3 A dialogue box will appear. If the cursor is flashing in the ‘Input range’ box 
you can select the cells you wish to use for the analysis by clicking and dragging 
in the main sheet. If you select from cell A1 to the end of the data ‘$A$1:$C$6’ 
should appear in the box. Alternatively you can just type in ‘A1 : C6’. The option 
‘Columns’ should be selected because the data are indeed in two columns rep-
resenting different groups. The tick-box ‘Labels in First Row’ should be checked 
as the cultivar names are in the first row. Leave the ‘alpha’ at 0.05 as this is the 
significance level which is chosen and P < 0.05 is the usual level used in biology.
4 At the bottom of the dialogue box is a section allowing you to determine where 
the output will appear. The default option is ‘New Worksheet Ply’ which means 
that the output will appear in a different sheet. If you want the output to appear 
on the same sheet as the data then you need to put a cell number in the ‘Output 
range’ box that will determine where the top left cell of the output will start.
5 Click on ‘OK’ and the following output will appear:

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

Premier 5 118.7 23.74 1.483
Super 5 131.5 26.3 0.65
Dupa 5 131.3 26.26 0.583

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 21.50933  2 10.75467 11.87923 0.001428 3.885294
Within Groups 10.864 12 0.905333

Total 32.37333 14

The usual components of an ANOVA table are all here: mean square and sum of 
square values, F-ratio and degrees of freedom. The important value is the 

Excel
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‘P-value’. If this is less than 0.05 we reject the null hypothesis that all three 
cultivars have grains with the same mean size. In this case the value is well 
below that level at P = 0.0014 so we can say that the result is highly significant. 
However, this just gives the probability that two of the cultivars have different 
means: it does not show which ones. Inspection of the ‘Summary’ table shows 
that Super and Dupa have very similar means but Premier is different from 
them. There is no post hoc test available in Excel. If you need to have a post hoc 
test the easiest method it to carry out t-tests on each pair of factor levels in turn, 
but only when the P-value of the ANOVA is less than 0.05.

Post hoc testing: after one-way ANOVA

One of the commonest errors of omission I see is a one-way ANOVA carried out 
on, say, four groups with a P-value well under 0.05 and then no further investi-
gation of which groups are different from which. It is important to realize that 
a significant result in the ANOVA will only show that at least one pair of the 
groups is significantly different. It does not identify which pair(s). When there 
are three groups that is only three possible pairs, with four groups that rises to 
six pairs and with five groups there are 10. Post hoc tests help you to make sense 
of this large number of possible comparisons by actually identifying which 
groups are significantly different from which.

The only problem is that the number of methods at your disposal for this task 
is overwhelming. For instance in SPSS you are offered a choice of seven differ-
ent methods for answering the same question and these are only a subset of the 
number available.

The two tests I suggest you look for, and they will almost invariably give you 
the same results, are the least significant difference (LSD) test (a.k.a. Fisher’s 
LSD test) and the Student Newman Keuls (SNK) test. The LSD test should 
only be carried out when the ANOVA result is significant. It uses the logic that if 
only significant results are examined there is no need to reduce the critical 
P-value (α) below 0.05 for the pairwise comparisons.

More conservative post hoc tests include the Bonferroni method, which is a 
general method for reducing the critical level required for significance below 
0.05 achieved by dividing this value by the number of comparisons made. The 
Dunn–Sidák method is another general method of setting the critical value 
needed for significance (usually set to 0.05) when many pairwise comparisons 
are carried out at the same time.

It is conventional to show the results of a significant ANOVA by arranging the 
groups into ascending order of mean and then drawing lines under groups that are 
not significantly different. Therefore for the example I have been using here:

Premier Dupa Super
Cultivar 1 Cultivar 3 Cultivar 2
 _______________________
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Another very commonly employed technique for showing the results of a post 
hoc test is to use a bar chart showing the mean values and 95% confidence 
intervals and then add lower case letters to label the bars. Factor levels that 
don’t have significantly different means will have the same letter label. In this 
example, Premier would be labelled ‘a’ and Dupa and Super would both be 
labelled ‘b’. Using this method it is possible to have more than one letter. For 
example, if Premier was only different from Super, then Dupa, which is not 
significantly different from either of the other two, would be labelled with both 
‘a’ and ‘b’.

 If you followed method 1 of ‘Compare means’ then ‘one-way ANOVA’, 
then you must select ‘Post Hoc. . .’ in the dialogue box before you choose ‘OK’. 
This will offer you a choice of 18 post hoc tests, all currently unselected. Select 
‘LSD’ (least significant difference), ‘S-N-K’ (Student Newman Keuls), ‘Sidak’ or 
‘Bonferroni’ then click on ‘Continue’ to return you to the main dialogue box.

The output from each test is similar. I have shown that from the LSD test 
below:

Post Hoc Tests

Multiple Comparisons

Grain size (mg)
LSD

(I) 
Cultivar

(J) 
Cultivar

Mean 
Difference 

(I-J)
Std. 
Error

95% Confidence Interval

Sig. Lower Bound Upper Bound

Premier Super −2.5600* .6018 .001 −3.871 −1.249
Dupa −2.5200* .6018 .001 −3.831 −1.209

Super Premier 2.5600* .6018 .001 1.249 3.871
Dupa .0400 .6018 .948 −1.271 1.351

Dupa Premier 2.5200* .6018 .001 1.209 3.831
Super −.0400 .6018 .948 −1.351 1.271

 *. The mean difference is significant at the 0.05 level.

This output table gives a line for each of the six pairwise comparisons (i.e. there 
is duplication as there are only three comparisons to be made). If a factor had 
four levels there would be 12 comparison lines, while five levels give 20 com-
parisons and 10 levels give 90 comparisons [i.e. number of comparisons = n*(n−1), 
where n is the number of levels, although this should be halved to avoid dupli-
cation as A–B is the same as B–A]. The ‘Mean Difference (I–J)’ gives the differ-
ence between the mean values for the two factor levels (different cultivars in 
this case). Groups that are significantly different from each other are marked in 

SPSS
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this column with an asterisk. ‘Std. Error’ gives an estimate of the reliability of 
mean differences for the whole analysis. ‘Sig.’ gives the probability that the two 
groups have the same mean. The final two columns give confidence intervals for 
the difference. If both lower and upper bounds have the same sign the two 
groups will be significantly different.

A comparison of this output with the Dunn–Sidák method shown above for 
the same data clearly shows that the Dunn–Sidák method is much more 
conservative.

 A visualization of the data divided by the levels in the factor is easily achieved 
through the ‘plot()’ function. Pass the function the name of the factor variable 
with the group codes or labels and the name of the response variable (your 
data). For the example this would be simply:

> plot(Cultivar,Grain)

This can be given suitable axis labels using ‘xlab=’ and ‘ylab=’ a here, although 
the names of the groups remain as ‘P’, ‘S’, ‘D’. If the full names of the groups are 
required they can be added as below:

> labs=c(”Dupa”, “Premier”, “Super”)
> plot(Cultivar,Grain,xlab=”Cultivar”,ylab=”Grain size 
(mg)”,names=labs)

I have first defined ‘labs’ to contain the names of the factor levels, then used 
that with ‘names=’ within the ‘plot()’ function. The output is shown in 
Fig. 7.8.

An easily accessible post hoc test in R is the Tukey’s honestly significant differ-
ence test using the function ‘TukeyHSD()’:

> TukeyHSD(aov(Grain~Cultivar) )
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula=Grain ~ Cultivar)

$Cultivar
 diff lwr upr p adj
P-D -2.52 -4.125454 -0.914546 0.0033324
S-D  0.04 -1.565454  1.645454 0.9975676
S-P  2.56  0.954546  4.165454 0.0029673

Here the test gives the significance of the difference between each of the three 
pairs of groups. In the example that is P-D, S-D and S-P. Here S and D are not 
significantly different from each other – ‘p adj’ is well above 0.05 – whereas P 
is significantly different from both S and D with P < 0.01 in both cases.

R
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 Before you click ‘OK’ to start a one-way test click the ‘Comparisons. . .’ 
button. This takes you to a dialogue box with four different tests. Select the 
‘Fisher’s individual error rate:’ option and make sure that the number in the box 
is a 5, this is the percentage significance level so 5 translates as critical P-value 
(α) of 0.05. This tests corresponds to the protected LSD test and should only be 
run if the P-value of the one-way ANOVA was less than 0.05.

When you run the test you get the following output after the standard ANOVA 
table:

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons among Levels of Group

Simultaneous confidence level = 88.44%

Group = 1 subtracted from:

Group Lower Center Upper ___+________+________+_____________+
2 1.2488 2.5600 3.8712  (_______*_________) 
3 1.2088 2.5200 3.8312  (_______*_________)
    __+_______+_______+_______________+
    0.0 1.5 3.0  4.5

Group = 2 subtracted from:

Group Lower Center Upper ___+________+________+_____________+
3 −1.3512 −0.0400 1.2712 (_______*_________)   
    ___+________+________+_____________+
 0.0 1.5 3.0 4.5

MINITAB

Fig. 7.8 A box-plot produced in R which can be used to visualize the results of a 
one-way ANOVA or a Kruskal–Wallis test.
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The graphical display of the mean and confidence interval for the means by 
groups shows quite clearly in this case that factor level ‘1’ is very different 
from ‘2’ and ‘3’. The ‘Fisher’s pairwise comparisons’ section first confirms 
that 95% confidence intervals are being displayed. Finally comes a set of 
graphical representations of the pairwise comparisons between groups. With 
only three groups there will be two graphics, the first showing the differ-
ences between group 1 and 2, 1 and 3 and the second the difference between 
2 and 3. With more factor levels there will be more output. In the example 
the difference between 1 and 2 and that between 1 and 3 is significant as 
the 95% confidence for the difference does not cross zero. However, for the 
difference between group 2 and 3 the 95% confidence for the difference 
does cross zero. In the example level 1 ‘Premier’ is significantly lower than 
both level 2 (‘Super’) and level 3 (‘Dupa’) while level 2 is not significantly 
different from level 3. If i is the number of groups then there will be i(i−1)/2 
comparisons (i.e. three for three groups, six for four groups, 45 for 10 
groups) so the pairwise comparisons in this form become increasingly dif-
ficult to interpret.

Using the option ‘Boxplots’ of data after the ‘Graphs. . .’ button in the ANOVA 
dialogue will produce a useful graphical representation of the data organized by 
group. The option for ‘Individual value plot’ will plot every individual along 
with the mean values. This is fine when the data set is small, but will be too 
cluttered with a larger number of observations.

 No direct methods are available, although pairwise t-tests can be carried 
out only if the one-way ANOVA has already given a significant result, and this will 
give the same result as an LSD test. Be warned that if there are many factor 
levels there will be a lot of t-tests to be carried out.

Kruskal–Wallis test

This test is the non-parametric equivalent of the one-way ANOVA and has a null 
hypothesis that all samples are taken from populations with the same median. 
It can be used to test any number of groups. However, unlike one-way ANOVA 
it does not make assumptions about homogeneity of variances or normal dis-
tributions. It is a typical ‘rank’ test, meaning that the raw data are converted 
into ranks before the test is carried out. The advantage of this is that it is ideal 
for situations where the highest value went off the scale or if extreme values 
are present as these have a disproportionate influence on the results of para-
metric tests. This test may be used when there are only two samples, but the 
Mann–Whitney U test is more powerful for two samples and should be 
preferred.

This test is somewhat less powerful than one-way ANOVA, but you are less 
likely to find a significant result when there is no real difference (i.e. the prob-
ability of a type I error is decreased).

Excel

9781405198387_4_007.indd   1429781405198387_4_007.indd   142 9/16/2010   11:34:37 PM9/16/2010   11:34:37 PM



Tests 1: tests to look at differences 143

An example I will be using the same data set as for the one-way ANOVA so the 
results from the two tests may be compared.

 Under the ‘Analyze’ menu, choose ‘Nonparametric Tests’ and then select 
‘K Independent Samples. . .’. This will bring up a dialogue box for three non-
parametric tests. By default the Kruskal–Wallis test box should be selected. Put 
the variable containing the observations (‘Grain_sz’ in the example) into the 
‘Test Variable List:’ box by selecting it and then moving it across. Then select 
the variable with the group codes (‘Cultivar’ in the example) as the ‘Grouping 
Variable:’. It will appear as ‘Cultivar(? ?)’. You need to click the ‘Define Range. . .’ 
button and then input ‘1’ in ‘Minimum’ and ‘3’ in ‘Maximum’ (or whatever the 
maximum value is in your data set) before clicking ‘Continue’. This will return 
you to the first dialogue box. You will see that ‘Cultivar(? ?)’ is now ‘Cultivar(1 3)’. 
Click ‘OK’ to run the test.

The output appears as follows:

➞ NPar Tests

Kruskal-Wallis Test

Ranks

Cultivar N Mean Rank

Grain size (mg) Premier 5 3.20

Super 5 10.40

Dupa 5 10.40

Total 15

Test Statisticsa,b

Grain size (mg)

Chi-Square 8.655

df 2

Asymp. Sig. .013

a. Kruskal Wallis Test
b. Grouping Variable: Cultivar

This confirms the test carried out is the Kruskal–Wallis. Next comes a table with 
confirmation that the variable ‘Grain size’ was divided into groups by the vari-
able ‘Cultivar’. Summary information about the three samples follows. In this 
example the groups of ‘Cultivar’ each have ‘N’ of 5 (cases or observations), 

SPSS
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 giving 15 in total. The mean rank position of the groups (the smallest value of 
the 15 is given rank one and the largest rank 15) is also given. Even at this point 
it is clear that there is a difference between the cultivars as the mean rank of 
‘Premier’ is very different to the other groups.

Finally comes the output from the test in a small table. The first row gives 
a ‘Chi-square’ value, degrees of freedom (there are three groups in the 
 example, giving two degrees of freedom) and then a P-value, labelled as 
‘Asymp. Sig.’.

The Kruskal–Wallis test can make adjustments for tied observations (two 
observations with exactly the same value). The output given by SPSS does make 
some correction for ties. A data set with a large number of tied observations will 
be much less likely to give a significant result. See below for appropriate post hoc 
tests.

 The data should be in a single variable and the grouping labels in another 
variable. Using the data from the one way ANOVA example (page 129) the 
variables are named ‘Grain’ and ‘Cultivar’. The ‘kruskal.test()’ is the 
required function in R:

> kruskal.test(Grain~Cultivar)

Kruskal–Wallis rank sum test

data: Grain by Cultivar

Kruskal–Wallis chi-squared=8.6555, df=2, 
p-value=0.01320

This confirms the test being carried out and then the data that are being used. 
Here the dependent variable is ‘Grain’ and the independent or predictor varia-
ble is ‘Cultivar’. The result of the test is given with the test statistic, the degrees 
of freedom (‘df’, being the number of groups minus 1) and then the P-value. In 
this case this value is well below 0.05 so we reject the null hypothesis that all 
three groups some from distributions with the same median. There is no post 
hoc test available, but see below.

 Input all the data into a single column and use a second column to 
label the cultivars with integers (as in the example). Label the columns 
appropriately. From the ‘Stat’ menu select ‘Nonparametrics’ then ‘Kruskal–
Wallis. . .’. In the dialogue box move the observed data into the ‘Response:’ box 
and the group codes into the ‘Factor:’ box. Click ‘OK’ to run the test.

[Or, if the command interface is enabled, type ‘Krus c1 c2’ (assuming the data 
are in c1 and the group codes in c2) at the MTB> prompt in the session window. Or 
you can input commands using ‘Edit’ menu then ‘Command Line Editor’.]

You get the following output:

R
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Kruskal-Wallis Test: Grain sz versus Cultivar

Kruskal-Wallis Test on Grain sz

Cultivar  N Median Ave Rank Z
1  5 23.40 3.2 −2.94
2  5 26.40 10.4 1.47
3  5 26.00 10.4 1.47
Overall 15  8.0 

H = 8.64  DF = 2  P = 0.013
H = 8.66  DF = 2  P = 0.013 (adjusted for ties)

The output confirms the test used. Then gives some summary information for each 
of the groups giving their integer codes. Number of observations is ‘N’ here, the 
median and mean rank are also given. The ‘Z’ value is used in the test calculation.

The last two lines give the test result. There are two versions depending on how 
they treat tied observations in the data. ‘H’ is a test statistic, ‘DF’ is the degrees of 
freedom (the number of groups minus 1). Finally the P-value, labelled ‘P’, is given. 
In the example it is far less than the critical 0.05 level and we reject the null 
hypothesis that the three groups have the same median. There is no post hoc test 
available to determine which group is different from which although this can be 
done by inspection of the summary statistics (and see below).

 No direct method is available for the Kruskal–Wallis test in Excel, 
although it would be possible to carry out the test in the spreadsheet and obtain 
a significance value because the test statistic is distributed as chi-square.

Post hoc testing: after the Kruskal–Wallis test

The Kruskal–Wallis test has the same limitation as the one-way ANOVA in that a 
significant results just indicates that at least one pair of factor levels are signifi-
cantly different from each other. The test does not indicate which pair, although 
inspection of the medians will show the extreme groups. However, there are 
two other pairwise combinations in a three-factor-level test and if there are four 
factor levels there is a total of six comparisons.

In one-way ANOVA a post hoc test will make all the pairwise comparisons and indi-
cate which factor levels are different form which. There is not usually considered to 
be an equivalent for the Kruskal–Wallis test, but I suggest that, if the differences 
between each pair are an important thing to know, pairwise Mann–Whitney U tests 
(page 119) should be carried out. This method has exactly the same logic as the 
LSD test if it is only applied when the Kruskal–Wallis test gives a significant result.

There are two independent ways of classifying the data

If for each observation you have two factors (different ways of subdividing the data 
into groups) and the factors are independent of each other (i.e. there is no way the 
level of one factor can be deemed to be affected by the level of another) then there 

Excel
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are several tests for analysing the null hypothesis that all factor levels have the same 
mean. For example you intend to record the beak widths of house sparrows in sev-
eral different towns: your observations will be the measurement of beak width. One 
factor might be the sex of the bird and the other the town where it was collected.

In addition there may be a further null hypothesis that there is no interaction 
between the two factors under investigation. It is important to realize that inter-
action may only be investigated when there is more than one observation for 
each factor combination.

One observation for each factor combination (no replication)
There will be many circumstances where you wish to test the effect of two fac-
tors but are only able to take a very small number of observations. If you have 
only one observation for each factor combination then there are still tests you 
can perform to test the null hypothesis that each factor level has the same mean 
or median. The main difference in the interpretation of the results of these tests, 
when compared to tests with replication, is that there is no null hypothesis that 
there is no interaction between the two factors.

An example A trial of six different blends of fertilizers (coded with the letters 
U–Z) has been carried out on linseed crops on four different farms (coded 1–4). 
Factor 1 is the fertilizer and factor 2 the farm. On each farm six fields were used 
in the trial so it was only possible to use each of the six fertilizer blends once on 
each farm. The crop yields of the linseed (in kilograms per hectare) are given in 
the table.

Fertilizer blend

Farm U V W X Y Z

1 1130 1125 1350 1375 1225 1235

2 1115 1120 1375 1200 1250 1200

3 1145 1170 1235 1175 1225 1155
4 1200 1230 1140 1325 1275 1215

Friedman test

The Friedman test is a non-parametric analogue of a two-way ANOVA (page 152) 
that can only be used when there is a single observation for each factor 
 combination (as in the data table above). The two null hypotheses are that the 
median values of each factor level are the same between columns and between 
rows. It does not make assumptions about the distribution of the data and can 
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be used in any circumstance when the data are at least on an ordinal scale (can 
be put in a meaningful rank order). However, the test is rather conservative. 
Another problem is that in many packages the test has to be carried out twice: 
once to compare the rows and once for the columns.

 The test compares columns only, so it has to be carried out twice. First 
you test the null hypothesis that there is no difference between the columns 
(fertilizer blends in the example). Input the data into SPSS in exactly the same 
format as it is in the table of raw data. You can either label the columns with the 
code letters U–Z or leave them as the default ‘VAR00001’ etc.

From the ‘Analyze’ menu choose ‘Nonparametric Tests’ and then ‘K related 
samples. . .’. In the dialogue box that appears move all the columns into the ‘test 
variables’ box. Note, if the top item is selected and you hold shift while clicking 
on the bottom item the whole list is selected and can be moved to the ‘Test 
Variables:’ box in one go. Make sure that ‘Friedman’ is checked and click ‘OK’.

This output should appear:

Friedman Test

Ranks

Mean Rank

U 1.50

V 2.50

W 4.50

X 4.88

Y 4.50

Z 3.13

Test Statisticsa

N 4

Chi-Square 10.396

df 5

Asymp. Sig. .065

a. Friedman Test

The first section of the output confirms the test used then shows the mean 
rank position of the yield data for each of the six fertilizer blends (these are 
ranked 1 for the lowest on each farm and 6 for the highest). In the example the 
mean rank of blend ‘U’ is 1.5 on the four farms (it was lowest twice and second 
lowest twice).

SPSS
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The second section of the output (‘Test Statistics’) shows that there were 
four farms or cases (‘N’), that the test output (‘Chi-Square’) was 10.396, there 
are 5 degrees of freedom ‘df’ and that the P-value (‘Asymp. Sig.’) is 0.065. This 
value is very close to the critical significance level of 0.05. So with such a con-
servative test we should seriously consider further trials.

You may wish to stop at this point or continue depending on whether you are 
interested in the differences between farms or not.

To test the null hypothesis that there is no difference between farms the data 
need to be transposed so that each farm is in a different column. This is very 
easy in SPSS: select ‘Data’ then ‘Transpose. . .’. Move the column labels for each 
of the six fertilizer blends in the box labelled ‘Variable(s):’ and click ‘OK’. If 
you had put a column in with the farm names that could be used at this point 
as a ‘Name Variable:’. The data should be rearranged, possibly on a new data 
sheet, so the rows become columns. They are given the default names ‘var001’, 
‘var002’ etc.

Carry out the Friedman test as above, make sure you don’t use the variable 
‘CASE_LBL’, and you get the following output:

Friedman Test

Ranks

Mean Rank

var001 2.75
var002 2.17
var003 1.92
var004 3.17

Test Statisticsa

N 6

Chi-Square 3.508

df 3

Asymp. Sig. .320

a. Friedman Test

The details are as before. The most important number is the ‘Asymp. Sig.’ value 
of P = 0.320. We can therefore accept the null hypothesis that there is no dif-
ference between yields on different farms. In the example the variable names 
were left as the default SPSS names. These can be replaced easily by double-
clicking on the column heading, or selecting the ‘Variable View’ and changing 
the ‘Name’ column.
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 There are several ways of organizing the data, but it will need to be in a matrix 
format and then transposed in R. Assume that the data have been arranged as in 
the example with a column for each fertilizer blend and the data label at the top 
of the column. These data are then read into R. Here I have put the data into a 
text file labelled ‘twowaym.txt’ and imported it into a dataframe called ‘frd’:

> frd<-read.table(”c:\\;temp\\;twowaym.txt”, header=T)
> attach(frd)
> frd
 U V W X Y Z
1 1130 1125 1350 1375 1225 1235
2 1115 1120 1375 1200 1250 1200
3 1145 1170 1235 1175 1225 1155
4 1200 1230 1140 1325 1275 1215

This data set is then put into a matrix called ‘f’; notice the different notation in 
R when the data is in a matrix:

> f<-as.matrix(frd)
> f
 U V W X Y Z
[1,] 1130 1125 1350 1375 1225 1235
[2,] 1115 1120 1375 1200 1250 1200
[3,] 1145 1170 1235 1175 1225 1155
[4,] 1200 1230 1140 1325 1275 1215

And a Friedman test is carried out on the matrix ‘f’:

> friedman.test(f)

Friedman rank sum test

data: f
Friedman chi-squared=10.3957, df=5, p-value=0.06477

This output confirms the test, gives the statistic and a value for degrees of freedom 
(one less than the number of columns) and gives a P-value. In this case the P-value 
is very close to 0.05. As the effect of fertilizer was the key interest in the example 
it might be sensible to stop the analysis now and set about collecting more data. 
However, if you want to look at the effect of the other factor (‘farm’ in the exam-
ple) the data matrix needs to be transposed (so rows become columns). In R this 
is a very easy function called ‘t()’. Here I’ve put the transposed version of matrix 
‘f’ into a new matrix ‘g’, visualized the new matrix to check it looks as I expect it 
to, then carried out another Friedman test on the transposed data:

R
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> g<-t(f)
> g
 [,1] [,2] [,3] [,4]
U 1130 1115 1145 1200
V 1125 1120 1170 1230
W 1350 1375 1235 1140
X 1375 1200 1175 1325
Y 1225 1250 1225 1275
Z 1235 1200 1155 1215
> friedman.test(g)

Friedman rank sum test

data: g
Friedman chi-squared=3.5085, df=3, p-value=0.3197

This time the P-value is well above 0.05, so we have no reason to reject the null 
hypothesis that data in the columns come from a distribution with the same 
median.

 Input the observations into a single column. Use two further columns 
for the two grouping variables (factors) replacing the labels for factor levels 
with integers. Label the columns appropriately.

From the ‘Stat’ menu select ‘Nonparametrics’ then ‘Friedman. . .’. Put the 
observed data column into the ‘Response:’ box. Then put one of the factor col-
umns into the ‘Treatment:’ box and the other into the ‘Block:’ box. If you are 
only really interested in one of the two factors then that should be in the 
‘Treatment:’ box. Click ‘OK’ to run the test.

(Or, assuming the observations are in column 1, and the two factors in columns 2 
and 3, type ‘Friedman c1 c2 c3’ at the MTB> prompt in the session window. Or you 
can input commands using ‘Edit’ menu then ‘Command Line Editor’.)

You get the following output:

Friedman Test: Yields versus Fertilizer blocked by Farm

S = 10.32  DF = 5  P = 0.067
S = 10.40  DF = 5  P = 0.065 (adjusted for ties)

Fertilizer N Est Median Sum of Ranks
1 4 1146.9 6.0
2 4 1161.5 10.0
3 4 1296.5 18.0
4 4 1255.2 19.5
5 4 1243.5 18.0
6 4 1192.7 12.5

Grand median = 1216.0

MINITAB
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The output confirms the test carried out, then the name of the column 
 containing the data with the factor being tested (‘Fertilizer’) in the example 
mentioned next. Then come two lines with the test statistic ‘S’, the degrees of 
freedom ‘DF’ (one fewer than the number of factor levels) and the P-value, ‘P’, 
associated with the test statistic. There are two versions of the test depending 
on how tied (equal) values are dealt with. The P-values will be similar unless 
there a lot of tied observations in the observed data. Use the P-value in the 
second row (adjusted for ties). In this case the P-value is close to the critical 
0.05 level so that although we accept the null hypothesis that there is no dif-
ference in median yield at different fertilizer levels we would consider further 
investigation. After the test comes some summary information about the dif-
ferent factor levels giving number of observations (‘N’), the estimated median 
yield for each factor level and then the mean rank position of the observations 
in each factor level.

This completes investigation of one factor. To investigate the other factor: go 
to the ‘Stat’ menu, select ‘Nonparametrics’ then ‘Friedman. . .’ and swap the 
column names in the ‘Block:’ and ‘Treatment:’ boxes.

(Or, if the command interface is enabled, type ‘Friedman c1 c3 c2’ at the MTB> 
prompt.)

For the example data this gives:

Friedman Test: Yields versus Farm blocked by Fertilizer

S = 3.45  DF = 3  P = 0.327
S = 3.51  DF = 3  P = 0.320 (adjusted for ties)

Farm N Est Median Sum of Ranks
1 6 1232.2 16.5
2 6 1213.4 13.0
3 6 1193.4 11.5
4 6 1259.7 19.0

Grand median = 1224.7

Output is the same as for the first factor. In the example the P-value is well 
above 0.05 so we accept the null hypothesis that farms have the same median 
yield.

There is no way to determine the significance of any interaction between the 
two factors.

  There is no direct method for performing the Friedman test in Excel. It 
would be possible to calculate in this package but this test requires a lot of data 
sorting.

Excel
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Two-way ANOVA (without replication)

It may seem slightly odd that a statistical test that relies on the comparison of 
variation can be used when there is only one observation for each factor level 
combination but the test is perfectly valid. The two grouping variables may be 
set by the experimenter (e.g. different concentrations) or ‘naturally’ occurring 
(e.g. different sites). The assumptions of the test are that the observed data are 
continuous, are approximately normally distributed, that the data would have 
about the same variance in each factor combination and that the grouping vari-
ables have at least two levels each that can be coded into integers. Obviously 
with only one observation in each factor combination there is no scope for test-
ing the data against a normal distribution. Therefore it is up to the tester to use 
common sense or previous knowledge about the data under investigation.

An example The same example data set as for the Friedman test (see above) is 
used in the illustrations below. The data are crop yields that are rounded (there-
fore discontinuous) but there are clearly far more than 30 possible values so the 
assumption of continuous data can be accepted. The normal distribution might 
be more difficult as observations such as crop yields are often skewed to the 
right and would benefit from a log or square-root transformation. However, in 
this case we accept that the raw data are suitable for the ANOVA.

The results of the ANOVA should be presented in table form:

Factor d.f. SS MS F-ratio P-value

Farm  3 11 071 3690 0.797 0.515
Fertilizer blend  5 59 763 11 953 2.58 0.071
Error 15 69 479 4631

Where F is the important statistic (F-ratio = MS factor/MS error). Error is often 
referred to as residual.

Note that there are 23 degrees of freedom in total in this example. There 
were 24 observations in the total data set so that is correct: the two main effects 
have six and four cases to give five and three degrees of freedom, leaving 15 in 
the error. It is always sensible to check the number of degrees of freedom in the 
output to see if it matches your expectations.

There is no possibility of examining the interaction between the two factors 
as there is no replication. The interaction is an important part of the power of 
ANOVA where there is replication (see below).

In the example the P-value associated with the fertilizer blends was quite 
close to the critical 0.05 level. In a report this could be highlighted in the text 
as follows: ‘There was no significant difference in yield between farms 
(F3,15 = 0.797, P > 0.1) but there was an indication that yields varied between 
 fertilizer blends (F5,15 = 2.58, P = 0.071)’. The subscripted numbers quoted with 
the F-ratios are the degrees of freedom.
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 Input the observed data into a single column. Use two separate columns 
to code the observations with integers to represent the factor levels. The integers 
do not have to be in sequence or start at 1. Label all the columns appropriately. 
In the example there will be a ‘Yield’ column, a ‘Farm’ column (containing the 
code numbers 1–4) and ‘Fertiliz’ column with number codes (1–6) replacing 
the letter codes from the original data. It is probably best to reduce the number 
of decimal places to zero at this point in the ‘Variable View’. It is also possible 
to recode the numbers for the factor levels to more useful labels using the 
‘Values’ column, although I have not done that here.

There are now at least two approaches to carrying out the test. They have 
different output so I will consider both. The first method assumes that both 
factors are ‘fixed effects’ (see page 193), the second considers ‘random effects’. 
Fixed effects would be testing the differences between particular fertilizers and 
farms while random effects would be testing the differences between any farms 
and any fertilizers. In this current example it is likely that fertilizer would be a 
fixed effect, while farm would be a random effect although it will make no dif-
ference to the significance values in this scenario.

Method 1 From the ‘Analyze’ menu select ‘General Linear Model’ then 
‘Univariate. . .’. In the dialogue box move the observations (‘Yield’ in the exam-
ple) into the ‘Dependent Variable’ box and the two factors into the ‘Fixed 
Factor(s):’ box. Before you carry out the test you must click on the ‘Model. . .’ 
button and bring up the Model box. Click on ‘Custom’, then select both of the 
factors in the ‘Factors & Covariates:’ list (hold down the Ctrl button while click-
ing on an item to add it to the current selection). From the drop down list under 
‘Build Term(s)’ select ‘Main effects’ and click on the move arrow to move the 
factors to the ‘Model’ box. In the example this gives ‘Fertiliz’ and ‘Farm’ only in 
the ‘Model’ box. If the line ‘Farm*Fertiliz’ appears, then remove it. If you do not 
do this step, the analysis will not provide any significance values. Click ‘Continue’ 
and once back to the original dialogue box click ‘OK’ to run the test.

You will get the following output:

➞ Univariate Analysis of Variance

Between-Subjects Factors

N

Farm 1 6
2 6
3 6
4 6

Fertiliz 1 4
2 4
3 4
4 4
5 4
6 4

SPSS
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Tests of Between-Subjects Effects

Dependent Variable:Yield

Source
Type III Sum 
of Squares df

Mean 
Square F Sig.

Corrected 
Model

70833.333a 8 8854.167 1.912 .133

Intercept 3.550E7 1 3.550E7 7664.673 .000

Farm 11070.833 3 3690.278 .797 .515

Fertiliz 59762.500 5 11952.500 2.580 .071

Error 69479.167 15 4631.944

Total 3.564E7 24

Corrected Total 140312.500 23

a. R Squared = .505 (Adjusted R Squared = .241)

The output first confirms the test and then in a table ‘Between-Subjects Factors’ 
gives the number of observations in each level of the two factors. Then comes the 
ANOVA table itself, labelled as ‘Tests of Between-Subjects Effects’. The name of the 
dependent variable (i.e. the data column) is confirmed. There is more information 
that you actually need in the table (compare this table to the ‘ideal’ output table 
given in the description of the example). The important lines are for the factor 
variables (‘Farm’ and ‘Fertiliz’ in the example) and the ‘error’ or residual. The ‘df’ 
column gives the degrees of freedom which is one less than the number of factor 
levels (in the example there were four farms so the factor ‘Farm’ has 3 d.f.). The 
(type III) sum of squares and mean square are given. Mean square is sum of 
squares/degrees of freedom. The last two columns give the important informa-
tion. The ‘F’ column is the F-ratio (factor mean square/error mean square). The 
P-value is labelled ‘Sig.’ and given in the last column. In the example the P-value 
for ‘Farm’ is well above the critical 0.05 level so we accept the null hypothesis 
that all farms have the same mean yield. However, the P-value for ‘Fertiliz’ is 
0.071, quite close to the critical level. We don’t reject the null hypothesis but in 
any report we should note that the P-value is close to the critical level.

In this output it is best to totally ignore the lines labelled ‘Corrected Model’ 
(a combination of the two main effects), ‘Total’, ‘Corrected Total’ and ‘Intercept’ 
as not relevant to the two null hypotheses we are interested in.

Method 2 This time the test is carried out assuming that ‘Farm’ is a random 
factor and ‘Fertiliz’ is a fixed factor. From the ‘Analyze’ menu select ‘General 
Linear Model’ then ‘Univariate. . .’. In the dialogue box move the observations 
into the ‘Dependent Variable’ box, ‘Farm’ in the ‘Random Factor(s):’ box and 
‘Fertiliz’ into the ‘Fixed Factor(s):’ box. Before you carry out the test you must 
click on the ‘Model. . .’ button and bring up the Model box. Click on ‘Custom’, 
then select both of the factors in the ‘Factors & Covariates’ list. From the drop 
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down list under ‘Build Term(s)’ select ‘Main effects’ and click on the move 
arrow to move the factors to the ‘Model’ box. In the example this gives ‘Fertiliz’ 
and ‘Farm’ only in the ‘Model’ box. If the line ‘Farm*Fertiliz’ appears, then 
remove it. Click ‘Continue’ and back in the main dialogue box you can either 
click ‘OK’ straight away or move first into the ‘Options. . .’ box where you can 
choose to display summary statistics for each of the variables. If you do this it 
can make interpretation of the output easier, although with no replication the 
distribution statistics cannot be calculated. Here I have selected ‘Homogeneity 
tests’.

You get several tables of output. Here are the important ones:

Levene’s Test of Equality of Error 
Variancesa

Dependent Variable: 
Yield

F df1 df2 Sig.

23 0

Tests the null hypothesis that the error variance of the 
dependent variable is equal across groups.
a. Design: Intercept + Fertiliz + Farm

Tests of Between-Subjects Effects

Dependent Variable:Yield

Source
Type III Sum 
of Squares df

Mean 
Square F Sig.

Intercept Hypothesis 3.550E7 1 3.550E7 9620.505 .000

Error 11070.833 3 3690.278a

Fertiliz Hypothesis 59762.500 5 11952.500 2.580 .071

Error 69479.167 15 4631.944b

Farm Hypothesis 11070.833 3 3690.278 .797 .515

Error 69479.167 15 4631.944b

a. MS(Farm)
b. MS(Error)

The first table, ‘Levene’s Test of Equality of Error Variances’, would normally 
contain an estimate of the homogeneity of the variances in each factor combina-
tion. However, as there is only one observation in each, this cannot be calculated.

The second table, ‘Tests of Between-Subjects Effects’, contains the ANOVA 
information. The ‘Dependent Variable’ confirms the variable containing the 
data (‘yield’ in the example). The table is different to the ‘ideal’ table shown 
above as it has some extra lines. The important lines are those with the names 
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of the two factors. The five columns of the table give the ‘Type III sum of 
squares’ (SS), ‘df’ (degrees of freedom), ‘Mean Square’ (MS), ‘F’ (F-ratio) and 
‘Sig.’ (the P-value associated with the F-ratio and degrees of freedom). This is 
the value you compare with the critical level of 0.05. If the P-value is greater 
than 0.05 then you don’t reject the null hypothesis that different levels of the 
factor have the same mean. In this example the P-value for ‘Farm’ is 0.515, well 
above 0.05, but that for ‘Fertiliz’ is, at 0.071, close to the critical level. This sug-
gests that perhaps further investigation is required.

The line labelled as ‘Intercept’ should be ignored, although it might be noted 
that the ‘Sig.’ is given as ‘.000’ when it should be reported as <0.001.

The lines labelled ‘Error’ give the error or residual line for a conventional 
ANOVA table, although the line used as error for the ‘intercept’ is actually the line 
for the random effect (‘Farm’ in this case). The error lines for the main effects 
should be reported in the ANOVA table.

 There are many ways of carrying out this test in R. I use the one that gives 
the easiest output to interpret. This uses the ‘summary()’ function applied 
to the analysis of variance function ‘aov()’. Here I assume that the data 
have been loaded into R with the observations in one variable and the two 
grouping variables in two other columns. In the example I have imported 
this into a dataframe called ‘two’ and confirmed that I have labelled the 
columns:

> names(two)
[1] “Yield” “Blend” “Farm”

If the factor levels are coded as numbers it is important to tell R that the varia-
ble is a factor; otherwise, the variable may be used as a covariate. Use the func-
tion ‘as.factor()’ to do this: ‘Blend<-as.factor(Blend)’.

The syntax for ‘aov()’ requires the response variable (your data) first, then 
the factors. If they are separated by an asterisk this will generate analysis of the 
variable and their interaction. However, in this unreplicated design there is a 
problem in that if the interaction is analysed there will be no degrees of freedom 
in the error (residual) which will result in the F-ratios being impossible to 
calculate:

> summary(aov(Yield~Farm*Blend) )
 Df Sum Sq Mean Sq
Farm 3 11071 3690.3
Blend 5 59762 11952.5
Farm:Blend 15 69479 4631.9

Therefore in the unreplicated design R needs to be told to not use the interac-
tion between the main effects. This is done by adding ‘-Farm:Blend’:

R
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> summary(aov(Yield~Farm*Blend-Farm:Blend) )
 Df Sum Sq Mean Sq F value Pr(>F)
Farm 3 11071 3690.3 0.7967 0.51467
Blend 5 59762 11952.5 2.5804 0.07083.
Residuals 15 69479 4631.9
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

We now have the analysis we require. The table is in the familiar ANOVA style 
with degrees of freedom (‘Df’), sum of squares, mean square and F-ratio (‘F 
value’) and then the P-value (‘Pr(>F)’). In the example the effect of ‘Farm’ is well 
above 0.05, so we accept the null hypothesis, while the effect of ‘Blend’ is close to 
0.05, so as we have a small data set we might consider further data collection. R 
provides a significance key at the end of the output. Here the row for ‘Blend’ is 
marked with a ‘.’ which means the P-value lies between 0.05 and 0.1.

 There are at least two ways of carrying out this test in MINITAB. I will 
only discuss one here as it gives the most useful output.

Input all the data into a single column and then use the next two columns for 
the factors replacing factor level names with integer codes. Label the columns 
appropriately. From the ‘Stat’ menu choose ‘ANOVA’ then ‘General linear 
model. . .’. Move the data column into the ‘Responses:’ box and the two factor 
columns into the ‘Model:’ box. Click ‘OK’ to run the test.

(Or, if the command interface is enabled, type ‘GLM c1 = c2 c3’ at the MTB> 
prompt in the session window. Or you can input commands using ‘Edit’ menu then 
‘Command Line Editor’.)

If you used the example you get the following output:

General Linear Model: Yields versus Fertilizer, Farm

Factor Type Levels Values
Fertilizer fixed 6 1, 2, 3, 4, 5, 6
Farm fixed 4 1, 2, 3, 4

Analysis of Variance for Yields, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Fertilizer 5 59763 59763 11953 2.58 0.071
Farm 3 11071 11071 3690 0.80 0.515
Error 15 69479 69479 4632  
Total 23 140313    

S = 68.0584 R-Sq = 50.48% R-Sq(adj) = 24.07%

Unusual Observations for Yields

Obs  Yields      Fit SE Fit Residual St Resid
 12 1140.00 1289.58  41.68  −149.58  −2.78 R

R denotes an observation with a large standardized residual.

MINITAB
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The output confirms that you have carried out a ‘General linear model’ a 
general term for a family of statistical tests that includes ANOVA. Then it con-
firms the factors that have been used, how many levels there are for each 
factor and then the code numbers used for the factor levels (it pays to check 
these in case you made a mistake typing in the numbers!). Then comes the 
ANOVA table itself, stating the name of the observation variable (Yield in the 
example). The table has the usual columns except that it adds an additional 
SS column (with exactly the same numbers in as the usual SS column). 
‘Source’ refers to the source of variation, ‘DF’ is degrees of freedom, ‘SS’ is 
sum of squares, ‘MS’ is mean square, ‘F’ is the F-ratio and ‘P’ the P-value. 
Compare the output to the ideal table I used in the description of the exam-
ple. In the example the P-value for ‘Farm’ is well above 0.05 so we accept the 
null hypothesis but the P-value for is close to 0.05 so we may consider further 
investigation.

Finally comes a list of unusual observations, these are rows in the data set that 
have a large residual value. ‘Obs.’ tells you which row number is unusual. These 
can often be typing errors so you should check the list against the original 
data set.

 There is no direct method unless you have installed the Analysis ToolPak 
add-in.
1 Put the data into an Excel spreadsheet in exactly the format it is in the exam-
ple (see above) with the appropriate labels or code letters as column and row 
labels.
2 Select the ‘Data’ menu/ribbon and select ‘Data Analysis. . ..’ (if this option 
does not appear you need to go to Excel options in the Home menu, select ‘Add 
Ins’ and add the ‘Analysis ToolPak’ add-in). Select ‘Anova: Two Factor Without 
Replication’.
3 A dialogue box will appear. If the cursor is flashing in the ‘Input Range’ box 
you can select the cells you wish to use for the analysis by clicking and drag-
ging in the main sheet. If you select from cell A1 to the end of the data 
‘$A$1:$G$5’ should appear in the box. Alternatively you can just type in 
‘A1:G5’. The tick-box ‘Labels’ should be checked as these are included. Leave 
the ‘Alpha’ at 0.05 as this is the significance level which is chosen and P < 0.05 
is the usual level.
4 At the bottom of the dialogue box is a section allowing you to determine 
where the output will appear. The default option is ‘New Worksheet Ply’ which 
means that the output will appear in a different sheet. If you want the output 
to appear on the same sheet as the data then you need to put a cell number in 
the ‘Output range’ box that will determine where the top left cell of the output 
will start.
5 Click on ‘OK’ and the following output will appear.

Excel
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Anova: Two-Factor Without Replication

SUMMARY Count Sum Average Variance

1 6 7440 1240 11180

2 6 7260 1210 9230

3 6 7105 1184.167 1384.167

4 6 7385 1230.833 4054.167

U 4 4590 1147.5 1375

V 4 4645 1161.25 2606.25

W 4 5100 1275 11816.67

X 4 5075 1268.75 9322.917

Y 4 4975 1243.75 572.9167

Z 4 4805 1201.25 1156.25

ANOVA

Source of 
Variation

SS df MS F P-value F crit

Rows 11070.83 3 3690.278 0.796702 0.51467 3.287382

Columns 59762.5 5 11952.5 2.58045 0.070826 2.901295

Error 69479.17 15 4631.944

Total 140312.5 23

The first section summarizes the data for each factor level of the two factors in 
turn. ‘Count’ is the number of observations and ‘Average’ the mean.

In the second section of the output there is a conventional ANOVA table. The 
‘Source of Variation’ refers to the two factors. ‘Rows’ are farms and ‘Columns’ 
are fertilizer blends in this example. ‘SS’ is the sum of squares, ‘df’ is the 
degrees of freedom (there were 24 observations in all giving 23 total degrees 
of freedom; there were four farms giving 3 d.f. and six fertilizer blends giving 
5 d.f.), ‘MS’ is the mean square (= SS/df) and F is the ratio of the factor MS/
error MS. ‘P-value’ is the important value as it shows the probability that all 
factor levels (farms or fertilizer blends) have the same mean yield. In this case 
P = 0.51467 for ‘Rows’ (i.e. farms) and P = 0.070826 for ‘Columns’ (i.e. ferti-
lizer) so we accept the null hypothesis that farms have the same mean yields 
and also accept the null hypothesis that the fertilizer blends have the same 
mean yield. However, as the P-value was quite close to 0.05 we may consider 
another trial.
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The final values ‘F crit’ are not usually quoted on an ANOVA table. They are the 
values of F required to achieve a P = 0.05 with the degrees of freedom in this 
particular test.

More than one observation for each factor 
combination (with replication)

The situation where you have two factors and more than one observation for 
each combination of factor levels is a very common one in biology. If there are 
two factors (ways of dividing the data into classes) then there are three hypoth-
eses associated with the test: (1) that all levels of the first factor have the same 
mean, (2) that all levels of the second factor have the same mean and (3) that 
there is no interaction between the two factors. If you have no interest in the 
third null hypothesis then you might consider two separate one-way analyses. 
However, the extra power of the test that comes from investigation of the inter-
action is very great. Two tests are considered here: two-way ANOVA and the much 
less powerful non-parametric equivalent the Scheirer–Ray–Hare test.

Interaction
This concept warrants separate consideration. If the test gives a significant result 
for the interaction term it shows that the effects of the two factors in the test 
are not additive, which means that groups of observations assigned to levels of 
factor 1 do not respond in the same way to those assigned to factor 2. For exam-
ple if you are measuring spiders from two locations you could have ‘sex’ as one 
factor and ‘location’ as the other (each spider can be assigned to one combina-
tion of sex and location). An ANOVA gives a significant result for the factor ‘sex’ 
and for the factor ‘location’ as well as the interaction term. This means that in 
some way the two sexes are responding differently in the two locations. The 
best way to interpret interaction is to plot out the means of the factor combina-
tions roughly and inspect the graphs (Fig. 7.9).

 Interactions can be visualized in SPSS fairly simply. Go to ‘General Linear 
Model’, ‘Univariate. . .’ and select the two factors and dependent variable in the 
usual way. Then click on the ‘Plots. . .’ button. In the ‘Univariate: Profile Plots’ 
dialogue box move one of the factors into the ‘Separate Lines:’ area and the other 
to the ‘Horizontal Axis:’ area. Then click on the ‘Add’ button. If there are no 
‘Factors:’ available in the dialogue box they must be selected first in the main 
‘Univariate’ dialogue box. By default the lines are different colours and different 
patterns might be more useful. The default lines can be changed: go to the ‘Edit’ 
menu and then ‘Options. . .’. Select the ‘Charts’ tab and change the ‘Style Cycle 
Preference’ to ‘Cycle through patterns only’. The exact sequence of patterns or 
markers that are used can also be altered in the ‘Style Cycles’ area (see Fig. 7.10).

SPSS
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 There is a separate plot function in R specifically for visualizing the interac-
tion between factors: ‘interaction.plot()’. Send the independent variable 
(factor) you want as the x-axis first, then the factor you want defined by sepa-
rate lines and finally the dependent variable (response variable). The syntax for 
the unreplicated two-way ANOVA above would be either:

> interaction.plot(Farm,Blend,Yield)

or

> interaction.plot(Blend,Farm,Yield)

depending on whether you wanted ‘Blend’ or ‘Farm’ as the horizontal axis.
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Fig. 7.9 In this figure there are four possible representations of the results of plotting 
mean values by factors after an analysis of variance. There are two factors labelled 
‘factor 1’ and ‘factor 2’. Both have two levels labelled ‘1’ and ‘2’. Graph (a) shows a 
typical plot where both the main factors are significant but there is no interaction (lines 
are parallel). In (b) factor 1 is significant, factor 2 is not and there is no interaction. In 
(c) factor 2 is significant, factor 1 is not and there is no interaction. In (d) both factors 
are significant and there is also a significant interaction term: the lines are not parallel 
(i.e. the effect of factor 2 is different for the two groups of factor 1).
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 There is a very simple way to visualize interactions in MINITAB. Once 
the analysis has been carried out following the instructions below then a plot of 
the means for each factor and the effect of other factors can be produced. From the 
‘Stat’ menu select ‘ANOVA’ and then ‘Interactions plot. . .’ (Fig. 7.11). Move the 
column with the data into the ‘Response:’ box and the grouping variables into 
the ‘Factors:’ box. You can carry out this procedure either before or after an ANOVA.

 Arrange the mean values for each factor combination in a table. Use row 
and column labels. For example:

Subject unwell
0 1

Treated 0 295.66 207.50
1 121.33 154.66

MINITAB
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Fig. 7.10 In this example, produced in SPSS, the two lines are clearly not parallel, 
indicating that there is an interaction between the two factors. Here one factor is having 
an opposite effect on the two groups defined by the other factor. In the example the 
effect of the drug depends on whether the individual is infected or not.
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Select these cells. Then from the ‘Insert’ menu/ribbon select within the ‘Chart’ 
area of the ribbon ‘Line’ and then the first ‘2-D line option’. A chart something 
like that shown in Fig. 7.12 will appear, although the default will be for col-
oured lines.

Two-way ANOVA (with replication)
This is a very powerful statistical test with three null hypotheses: the factor 
levels from the first main effect have the same mean, the factor levels from the 
second main effect have the same mean and the two main effect don’t interact 
(described above). It is suitable when there are two independent ways of assign-
ing the observations into groups and there is more than one observation per 
factor combination. Assumptions are the same as other ANOVA tests: the data are 
continuous (with more than 30 possible values), at least approximately nor-
mally distributed and the variation is the same in each factor combination. The 
assumptions appear restrictive but two-way ANOVA is not very sensitive to slight 
violations of the assumptions. If you have data that clearly don’t fit the assump-
tions you have five choices: don’t do the test at all, try to transform the data to 
make it fit the assumptions, carry out a Scheirer–Ray–Hare test in lieu, use two 
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Fig. 7.11 This example uses the default ‘interaction plot’ option in MINITAB. There 
were two levels of two factors (‘unwell’ coded 0 or 1 and ‘treated’ coded 0 or 1). If 
there were no interaction between the two factors then the lines joining the means 
would be parallel. In this example the lines are not parallel and the treatment is clearly 
having an opposite effect on subjects to the control (i.e. when ‘unwell’ is 0 there is a 
decrease in mean level with treatment whereas when ‘unwell’ is 1 there is an increase).
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separate one way analyses instead or use the test but be very cautious if the 
P-values are anywhere near the critical 0.05 level.

350

300

250

200

150

100

50

0

Subject unwell

0 1

Treated 0

Treated 1

Fig. 7.12 An interaction visualized in Excel. The means have to be calculated first and then 
plotted. The lines are clearly not parallel, indicating that there in an interaction between 
the two factors. In this example when the subject is well (‘unwell’ is 0) there is a decrease 
in mean level with treatment but when ‘unwell’ is 1 there is an increase in the mean.

Note: ‘balanced designs’ have equal numbers of observations in each factor combina-
tion. The statistical calculations are simpler for balanced designs and the tests more 
powerful. Therefore when you design a controlled experiment it is always sensible to 
plan for equal numbers of observations from each factor combination (of course this is 
not always possible when making field collections or when plants die in laboratory 
experiments). However, as you are not calculating the tests by hand I will not consider 
‘unbalanced’ and ‘balanced’ designs separately. Make sure that you avoid factor combi-
nations with no observations at all. Unfortunately Excel will only work with balanced 
designs for two-way analyses.

An example

A biologist is investigating the effect of light on food intake in starlings 
(Sturnus vulgaris). She sets up an experiment where birds are placed in 
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 individual aviaries of identical size with controlled lighting and are given an 
excess of food. Birds are sexed and four male and four female birds are exposed 
to either 16 h or 8 h of light (here termed ‘long’ or ‘short’ days). Each bird is 
monitored for 7 days and its total food intake in grams recorded. Each bird is 
only used once.

Day length

Sex

Female Male

Long (16 h) 78.1 75.5 76.3 81.2 69.5 72.1 73.2 71.1
Short (8 h) 82.4 80.9 83.0 88.2 72.3 73.3 70.0 72.9

There are 16 birds used in total. Four were exposed to each factor combination. 
Therefore, this is a balanced design.

The output from the statistical packages varies somewhat. It is usually not 
sensible to just put the whole output into a report. For a two-way ANOVA there 
is a standard way of displaying the output from the test. For the example here 
the output would be presented in the following way:

Factor d.f. SS MS F-ratio P-value

Day length 1 42.3 42.3 8.00 0.015
Sex 1 316.8 316.8 60.00 <0.001
Interaction 1 27.0 27.0 5.12 0.043
Error 12 63.4 5.28

 Input all the observations in a single column (see Fig. 7.13). Use two 
further columns to input codes for the group labels associated with the two 
factors. The factor levels should be coded as integers. Label the columns 
appropriately (for the example, the factors have been labelled ‘sex’ and ‘day_
len’). I suggest that the number of decimal places is adjusted in the ‘Variable 
View’ so the factors have no decimal places and the data has one. The ‘Values’ 
column of the ‘Variable View’ can be used to label the factor levels as ‘male’ and 
‘female’, or whatever is appropriate.

From the ‘Analyze’ menu select ‘General Linear Model’ then ‘Univariate. . .’. 
In the dialogue box move the observation column into the ‘Dependent Variable:’ 
box and the two coded factor columns into the ‘Fixed Factor(s):’ box. There is 
no need to use any of the options for a straightforward two-way design like this 

SPSS
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one, although selecting a ‘Homogeneity of variance’ test, as I have done in this 
example, might be wise. Click ‘OK’ to run the test.

Using the example you would get the following output:

Between-Subjects Factors

Value Label N

day_len 0 8
1 8

sex 1 female 8
2 male 8

Levene’s Test of Equality of 
Error Variancesa

Dependent Variable:data

F df1 df2 Sig.

.888 3 12 .475

Tests the null hypothesis that the 
error variance of the dependent 
variable is equal across groups.

a.  Design: Intercept + day_len + sex 
+ day_len* sex

Fig. 7.13 Two-way ANOVA in SPSS. The two main effects have been defined as ‘Fixed 
Factors’ and the data have been moved to the ‘Dependent Variable’ box.
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Tests of Between-Subjects Effects

Dependent Variable:data

Source
Type III Sum 
of Squares df Mean Square F Sig.

Corrected Model 386.130a 3 128.710 24.373 .000
Intercept 93025.000 1 93025.000 17615.591 .000
sex 316.840 1 316.840 59.998 .000
day_len 42.250 1 42.250 8.001 .015
day_len* sex 27.040 1 27.040 5.120 .043
Error 63.370 12 5.281
Total 93474.500 16
Corrected Total 449.500 15

The output confirms the test used. Then gives the number of observations for 
each level of both factors. Individuals will be double-counted here (in the exam-
ple there were 16 birds in total: eight female and eight male birds, eight in short 
days and eight in long). This is followed by a homogeneity of variance test. In 
this case there is no reason to reject the null hypothesis of equal variance.

Next comes the ANOVA table itself, labelled as ‘Tests of Between-Subjects 
Effects’. The name of the dependent variable (i.e. the ‘data’ column) is confirmed. 
There is more information that you actually need in the table (compare this table 
to the ‘ideal’ output table given in the description of the example). The impor-
tant lines are for the factor variables (‘sex’ and ‘day_len’ in the  example), the 
interaction term (‘day_len*sex’ in the example) and the ‘Error’ or residual. The 
‘df’ column gives the degrees of freedom which is one less than the number of 
factor levels (in the example there were two sexes and two day lengths so each 
has one degree of freedom). The degrees of freedom for the interaction term is 
the product of the degrees of freedom for the main effects (in this case both are 
one and 1×1 is 1). The (type III) sum of squares and mean square are given. Mean 
square is sum of squares/degrees of freedom. The last two columns give the 
important information. The ‘F’ column is the F-ratio (factor mean square/error 
mean square). The P-value is labelled ‘Sig.’ and given in the last column.

In this output it is best to totally ignore the lines labelled ‘Corrected Model’ 
(a combination of the two main effects), ‘Total’, ‘Corrected Total’ and ‘Intercept’ 
as not relevant to the three null hypotheses we are interested in.

In the example the P-value for ‘sex’ is given as ‘0.000’; this is a highly significant 
result but should always be reported as P < 0.001. We can be sure that the two 
sexes have different food-intake levels although the test does not tell us which sex 
eats more: that must be done by inspection of the data. The P-value for the other 
factor (‘day_len’) is also less than 0.05 but the value of 0.015 indicates that the 
effect is not as strong as that for sex. Finally the interaction of the two factors also 
has a P-value less (albeit marginally) than 0.05, meaning that in this example the 
two sexes respond significantly differently to day length in the amount of food 
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they eat. The direction of this effect can only be revealed by inspection of the 
mean values for each group (see the section on interaction above).

Some of the options that might prove useful for a two-way ANOVA include 
‘Descriptive statistics’ and ‘Homogeneity tests’ in the options dialogue and a 
large range of post hoc tests (although with only two factor levels for each of 
the main effects a post hoc test just generates a warning message in SPSS). In the 
output below a ‘Profile plot’ has been generated in the ‘Plots’ dialogue with the 
two factors as ‘Horizontal Axis’ and ‘Separate Lines’.

Descriptive Statistics

Dependent Variable:data

sex day len Mean Std. Deviation N

female 1 77.775 2.5290 4

2 83.625 3.1753 4
Total 80.700 4.1037 8

male 1 71.475 1.5714 4
2 72.125 1.4751 4
Total 71.800 1.4531 8

Total 1 74.625 3.8909 8
2 77.875 6.5604 8
Total 76.250 5.4742 16
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The ‘Descriptive Statistics’ table usefully summarizes the full data set as well as 
each factor level and factor combination with means, standard deviations and 
number of observations. In the example I used ‘Values’ in the ‘Variable View’ to 
recode ‘sex 1’ as ‘female’ and ‘sex 2’ as ‘male’. I didn’t recode the factor levels in 
‘day_len’ so they remain as ‘1’ and ‘2’.

The ‘Levene’s Test of Equality of Error Variances’ appears when the option 
‘Homogeneity tests’ is selected.

 Make sure all the observations are in a single variable and that the two 
grouping variables (factors) are in two other variables. Import the data into R. 
There are many ways to achieve this test in R. A simple one which produces 
easily interpreted output is to use the ‘summary()’ function with the ANOVA 
function ‘aov()’. Here I show the complete process, importing the data from a 
text file called ‘starling.txt’ into a dataframe I have called ‘star’. This is then 
attached and visualized to check it is formatted correctly before the ANOVA is 
carried out:

> star<-read.table(”c:\;\;temp\;\;starling.txt”, 
header=T)
> attach(star)
> star
 intake sex day
1 78.1 female 16
2 75.5 female 16
3 76.3 female 16
4 81.2 female 16
5 69.5 male 16
6 72.1 male 16
7 73.2 male 16
8 71.1 male 16
9 82.4 female 8
10 80.9 female 8
11 83.0 female 8
12 88.2 female 8
13 72.3 male 8
14 73.3 male 8
15 70.0 male 8
16 72.9 male 8
> summary(aov(intake~sex*day) )
 Df Sum Sq Mean Sq F value Pr(>F)
sex 1 316.84 316.84 59.9981 5.224e-06 ***
day 1  42.25  42.25  8.0006 0.01522 *
sex:day 1  27.04  27.04  5.1204 0.04299 *
Residuals 12  63.37   5.28

R
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

The ANOVA output is limited to the ANOVA table. It is in the usual format with a 
row for each source of variation: the two main effects and their interaction 
(here, ‘sex’, ‘day’ and ‘sex:day’). For each source there is a degree of freedom 
‘Df’. The degrees of freedom for the interaction is reached by multiplication 
(here 1×1=1). The sum of squares and mean square are the usual calculation 
steps in an ANOVA table. When the degrees of freedom is 1 they will have the 
same value as mean square is sum of squares/degrees of freedom. Next comes 
the F-ratio (‘F value’) and finally the P-value (‘Pr(>F)’). After the table there are 
asterisks to indicate the level of significance, with a key explaining the asterisks. 
In this case ‘sex’ is highly significant, P = ‘5.224e–06’, which might be better 
written as P = 0.0000052, or simply P < 0.001. It is marked with three asterisks, 
also indicating P < 0.001. The effect of ‘day’ and the interaction of ‘sex:day’ are 
also significant with values of less than 0.05. This means that the two sexes are 
not responding to day length in the same way.

An interaction plot will visualize this relationship (see Fig. 7.14):

> interaction.plot(sex,day,intake)

Fig. 7.14 An interaction visualized using R.
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 Input all the observations into a single column. Use separate columns 
to input the factor levels, coded as integers. Label the columns appropriately. 
There are then at least two ways of carrying out the test that give rather different 
output. I will consider both methods here.

Method 1 From the ‘Stat’ menu, select ‘ANOVA’ then ‘General Linear Model. . .’. 
In the dialogue box put the column containing the data into the ‘Responses:’ 
box and then the two main effects (factors) into the ‘Model:’ box. To investi-
gate interaction between the two factors the two column labels should be 
moved into the ‘Model:’ box again and an asterisk (*) put between them (in the 
example the ‘Model:’ box contained: sex ‘day length’ sex * ‘day len’ with day 
length appearing in quotes as the label is in two words). Click ‘OK’ to 
continue.

(Or, if the command language has been enabled, type ‘glm c1 = c2 c3 c2*c3.’ at 
the MTB> prompt. Or you can input commands using ‘Edit’ menu then ‘Command 
Line Editor’.)

Using the example the following output appears in the ‘Session’ window:

General Linear Model: Uptake versus Day length, Sex

Factor Type Levels Values
Day length fixed 2 1, 2
Sex fixed 2 0, 1

Analysis of Variance for Uptake, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Day length   1 42.25 42.25 42.25 8.00 0.015
Sex   1 316.84 316.84 316.84 60.00 0.000
Day length*Sex   1 27.04 27.04 27.04 5.12 0.043
Error  12 63.37 63.37 5.28  
Total  15 449.50    

S = 2.29801  R–Sq = 85.90%  R–Sq(adj) = 82.38%

Unusual Observations for Uptake

Obs  Uptake    Fit  SE Fit Residual St Resid
  12 88.2000 83.6250 1.1490   4.5750   2.30 R

R denotes an observation with a large standardized residual.

First comes confirmation of the test (note that ‘General Linear Model’ includes 
ANOVA) and then the factors used, the number of levels (groups) and the integer 
codes assigned to the groups. (In the example there are obviously two levels for 
the factor ‘sex’ and they have been coded, alphabetically, as ‘1’ for female and 
‘2’ for male).

The standard ANOVA table is next. It labels the factors and the interaction. The 
columns give degrees of freedom ‘DF’; two versions of sums of squares ‘Seq SS’ 

MINITAB
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and ‘Adj SS’; the mean square ‘Adj MS’, which is the sum of squares divided by 
the degrees of freedom; the F-ratio ‘F’ which is the mean square divided by the 
error mean square and finally the P-value ‘P’.

In the example the factor ‘sex’ has a P-value of 0.000 which should be 
reported as P < 0.001. We reject the null hypothesis that the two sexes have the 
same food intake confidently although we can’t tell from the table which sex 
has the higher intake. The factor ‘day length’ has a P-value well below 0.05 so 
we also reject the null hypothesis that day length has no effect of food intake. 
The interaction has a P-value slightly less than 0.05 so we reject the null hypoth-
esis that day length has the same effect on both sexes but note that the result is 
not highly significant.

The next part of the output gives a list of unusual observations: it is always 
wise to check that these have been input correctly into the package. This part of 
the output can be suppressed by going to the ‘Results. . .’ dialogue within 
‘General Linear Model’ before running the test and selecting the option ‘Analysis 
of variance table’.

Method 2 From the ‘Stat’ menu, select ‘ANOVA’ then ‘Two way. . .’. In the ‘Two-
way Analysis of Variance’ box that appears move the column with the data to 
the ‘Response:’ box and the two main effects or factors (‘sex’ and ‘day length’ 
in the example) to the ‘Row factor:’ and ‘Column factor:’ boxes. Click ‘Display 
means’ for extra useful information in the output. Click ‘OK’.

(Or, if the command language has been enabled, type ‘twoway c1 c2 c3;’ at the 
MTB> prompt and ‘means c2 c3.’ at the SUBC> prompt.)

The following output appears in the ‘Session’ window:

Two-way ANOVA: Uptake versus Sex, Day length

Source DF SS MS F P
Sex 1 316.84 316.840 60.00 0.000
Day length 1 42.25 42.250 8.00 0.015
Interaction 1 27.04 27.040 5.12 0.043
Error 12 63.37 5.281  
Total 15 449.50   

S = 2.298  R-Sq = 85.90%  R-Sq(adj) = 82.38%

Individual 95% CIs For Mean Based on Pooled StDev
Sex Mean +-------+---------+---------+---------+----
0 80.7 (----*----)
1 71.8 (-----*-----)
 +-------+---------+---------+---------+----
 70.0 73.5 77.0 80.5

 Individual 95% CIs For Mean Based on
Day Pooled StDev
length Mean ------+---------+---------+---------+---
1 77.875 (-------*--------)
2 74.625 (--------*--------)
 ------+---------+---------+---------+---
 74.0 76.0 78.0 80.0
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The ANOVA table is very much as it would appear in a publication or report with 
DF, SS, MS, F and P clearly laid out (see description of data output above for 
more details). The ‘Two-Way. . .’ route allows the differences between factor 
levels to be seen semi-graphically. In the example the 95% confidence intervals 
for food taken for the two groups are very clearly different, reflecting the very 
low P-value. The intakes differ by day length, but the 95% CIs overlap slightly, 
reflecting the much higher, though still significant, P-value. It is also clear which 
groups are higher with females (group 1) eating more than males (group 2) and 
those in short days (group 2) eating more than those in long days.

This test is only possible in Excel if the design is balanced (i.e. each factor 
combination, long/female, short/female, etc., has the same number of 
observations). The data must be input so that one of the factors is separated into 
different columns and the other in sets of rows. The columns must be labelled 
with group labels and the first row of each group likewise.

The example was set up in Excel like this:

Long Short

Female 78.1 82.4
75.5 80.9
76.3 83
81.2 88.2

Male 69.5 72.3
72.1 73.3
73.2 70
71.1 72.9

From the ‘Data’ menu/ribbon select ‘Data Analysis’ then ‘ANOVA: two factor 
with replication’ (the Data Analysis option is not there you have to add the Analysis 
ToolPak through the ‘Excel Options’ in the ‘Home’ menu). In the dialogue box 
that appears you must select the range of cells that contains not only the data but 
also the labels. This can be done either by dragging the mouse over the area of the 
relevant section of the spreadsheet or typing the top left and bottom right cell 
codes with a colon ‘:’ between them (A1:C9 in this case). You must indicate how 
many observations there are in each factor combination (in this case four). Leave 
the ‘Alpha:’ as 0.05 (this determines the critical F-value which is quoted on the 
final table for comparison; i.e. the F-value required to reject the null hypothesis).

Finally, to select where the output will appear select one of the options in the 
bottom half of the box. Beware: the output covers a lot of cells. The output is 
rather extensive:

ExceL
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SUMMARY Long Short Total

Female

Count 4 4 8

Sum 311.1 334.5 645.6

Average 77.775 83.625 80.7

Variance 6.39583 10.0825 16.84

Male

Count 4 4 8

Sum 285.9 288.5 574.4

Average 71.475 72.125 71.8

Variance 2.46917 2.17583 2.11143

Total

Count 8 8

Sum 597 623

Average 74.625 77.875

Variance 15.1393 43.0393

ANOVA

Source of 
Variation

SS df MS F P-value F crit

Sample 316.84 1 316.84 59.9981 5.2E-06 4.74723

Columns 42.25 1 42.25 8.00063 0.01522 4.74723

Interaction 27.04 1 27.04 5.1204 0.04299 4.74723

Within 63.37 12 5.28083

Total 449.5 15

The first part of the output confirms the test carried out and then presents a 
summary table giving number of observations, sum, mean and variance for each 
factor combination, factor level and total. Some of this information is useful, 
especially when trying to interpret a significant result from the interaction term. 
(Note that on some very old versions of Excel, the average and variance num-
bers given were incorrect for column and row totals).

Then comes a rather standard ANOVA table that will require minimum editing 
before it can be included in a report. If you compare it with the ‘ideal’ table in 
the example you see how similar it is. The two factors are, unfortunately, only 

9781405198387_4_007.indd   1749781405198387_4_007.indd   174 9/16/2010   11:34:41 PM9/16/2010   11:34:41 PM



Tests 1: tests to look at differences 175

assigned as ‘columns’ and ‘sample’ although inspection of the original data in 
Excel will quickly determine which factor is which. The residual or error line is 
labelled as ‘within’. The columns of figures are sum of squares (SS), degrees of 
freedom (df), mean square (MS, where MS = SS/df), F-ratio (F, where F = MS/
MSerror), the P-value and then the F-ratio that was required to reach a P–value of 
0.05. The P-values are sometimes given in scientific notation so the ‘5.2E-06’ in 
the example translates as 5.2 × 10−6 or 0.0000052; that is, extremely highly 
significant.

In the example all three P-values are less than 0.05 so all three original null 
hypotheses are rejected.

Scheirer–Ray–Hare test
It is quite easy (especially with fairly small data sets) to calculate a two-way 
ANOVA using ranks in an extension of the Kruskal–Wallis test called the Scheirer–
Ray–Hare test. Non-parametric two-way ANOVA is usually deemed impossible in 
statistics books but the Scheirer–Ray–Hare test is a non-parametric equivalent 
of a two-way ANOVA with replication. It is based on ranks so is suitable for any 
situation where the data can be put into order. It makes few assumptions about 
the distribution of the data. However, the test is not widely available in statisti-
cal packages. This test is conservative and has much lower power than the para-
metric ANOVA. Unfortunately this is an area of considerable debate among 
statisticians and there are some workers who are unconvinced that the Kruskal–
Wallis test can be extended to a two-way analysis in this way. I suggest that if 
you do use it you do so with some caution and perhaps consider a generalized 
linear model with an error structure that doesn’t require normal errors.

An example

We will use the same data of starlings grouped by sex and day length as for the 
two-way ANOVA. Unlike the standard ANOVA which rejects all three null hypoth-
eses, the Scheirer–Ray–Hare test accepts two of the three null hypotheses 
associated with the experiment: there is no interaction between the two  factors 
and birds in different day lengths consume the same amount of food. This 
illustrates how much more conservative the Scheirer–Ray–Hare test is than 
ANOVA.

1 Set out the data in exactly the same way as for parametric ANOVA. Sort the 
data (ascending) using the magnitude of the observations. From the ‘Data’ menu 
select ‘Sort Cases. . .’. In the dialogue box move the data column name into the 
‘Sort by:’ box and select ‘Ascending’ (although it does not matter whether you 
choose ascending or descending). Click ‘OK’ and the rows will be shuffled into 
rank order.

SPSS
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2 Next you should assign ranks to replace the actual data (assign 1 to the small-
est etc.). You can either write over the original data observations or make a new 
column called ‘rank’. Type the row number into this column. This is trivial when 
there are only 16 observations as in the example, but with hundreds of observa-
tions it would be better to import a list of ascending numbers from a 
spreadsheet.
3 Carry out a standard (parametric) ANOVA including the interaction. From the 
‘Analyze’ menu select ‘General Linear Model. then ‘Univariate. . .’. In the dia-
logue box put the ‘rank’ column into the ‘Dependent:’ box and the two coded 
factor columns into the ‘Fixed Factor(s)’ box. Click ‘OK’ to run the test.

You will get this output if you use the example:

Between-Subjects Factors

Value Label N

sex

day_len

0
1
1
2

female

male

8
8
8
8

Tests of Between-Subjects Effects

Dependent Variable: rank

Source
Type III Sum 
of Squares df Mean Square F Sig.

Corrected Model
Intercept
sex
day_len
sex* day_len
Error
Total
Corrected Total

285.000a

1156.000
256.000
25.000
4.000

55.000
1496.000
340.000

3
1
1
1
1

12
16
15

95.000
1156.000
256.000
25.000
4.000
4.583

20.727
252.218
55.855
5.455
.873

.000

.000

.000

.038

.369

a. R Squared = .838 (Adjusted R Squared = .798)

4 This is not the end point for this test. You have to do the next bit by hand. 
Calculate the mean square (MS) value for the ‘Corrected Total’ row. This is not 
done in the SPSS output. It is the value of the ‘Type III Sum of Squares’ divided 
by the degrees of freedom. Call this value MStotal (in the example MStotal is 
340/15 = 22.667).

The test statistic for the three null hypotheses is the value for relevant sum of 
squares (SS) divided by MStotal. Calculate SS/MStotal for each factor and the 
interaction.

Using two new columns in the SPSS spreadsheet, type in the values of SS/
MStotal and degrees of freedom using the same degrees of freedom as in a 
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 conventional ANOVA (i.e. one less than the number of factor levels for the two 
main factors and the degrees of freedom for the main factors multiplied together 
for the interaction). Label the columns ‘out’ and ‘df’.

Then, to get the appropriate P-values for these values, from the ‘Transform’ 
menu select ‘Compute Variable. . .’. In the dialogue box that appears, type the 
name of the column you want the result to go to in the ‘Target Variable’ box 
(e.g. ‘pvalue’). Then in the ‘Numeric expression:’ box type ‘1-’ (i.e. one, minus) 
before selecting ‘CDF & Noncentral CDF’ from the ‘Function group:’ list and 
then ‘Cdf.Chisq’ from the ‘Functions and Special Variables:’ list. Move that into 
the ‘Numeric Expression:’ box. Finally, replace the first question mark with the 
name of the variable where you input the SS/MStotal values and the second ques-
tion mark with the name of the column with the degrees of freedom. If you 
used ‘out’ and ‘df’ as I suggested you should have ‘1-CDF.CHISQ(out.df)’. 
Click ‘OK’ and the new column ‘pvalue’ will appear on the right-hand side of 
the spreadsheet with P-values from a chi-square table appropriate to the SS/
MStotal values and degrees of freedom. (You may need to increase the number of 
decimal places above 2 in the ‘Variable View’.) Note: you could look up the 
number in a chi-square table if you prefer.

So, for the example the Scheirer–Ray–Hare output could be displayed as:

SS SS/MStotal d.f. P-value

Day length (factor)
Sex (factor)
Day length*sex (interaction)

 25
256
  4

 1.10
11.29
 0.176

1
1
1

0.2943
0.0008
0.6748

The results suggest that the only null hypothesis that must be rejected is that 
both sexes consu me the same amount of food, as the P-value is less than 0.001.

There are several routes to achieving this test in R. Here I’m assuming that 
the data have been imported as for the two-way ANOVA with replication. In my 
example that is a dataframe I have called ‘star’.
1 make a new variable called ‘myrank’ that uses the ‘rank()’ function using 
‘intake’ with 1 assigned to the smallest value, etc.

> myrank=rank(star$intake)

This new variable should then be attached to the dataframe which is called ‘star’ 
in this example:

> star$rank=myrank
> attach(star)

R
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You can then visualize the contents of the first few rows of the dataframe to 
check that the new variable ‘rank’ has been added:

> star[1:5,]
 intake sex day rank
1 78.1 female 16 11
2 75.5 female 16 9
3 76.3 female 16 10
4 81.2 female 16 13
5 69.5 male 16 1

2 Carry out an analysis of variance as in the two-way ANOVA with replication 
above, but using the variable ‘rank’ as the response variable:

> summary(aov(rank~sex*day) )
 Df Sum Sq Mean Sq F value Pr(>F)
sex 1 256 256.000 55.8545 7.494e-06 ***
day 1 25 25.000 5.4545 0.03769 *
sex:day 1 4 4.000 0.8727 0.36862
Residuals 12 55 4.583

3 This isn’t the end point. You have to calculate the mean square for the total 
row. This is not visible in this output, but is the sum of the ‘Sum Sq’ values (here 
256 + 25 + 4 + 55 = 340) divided by the total degrees of freedom (here it is 15), 
giving a value of 340/15 = 22.667 in the example.

The test statistic for the Scheirer–Ray–Hare test is the value for the sum of 
squares divided by the MStotal. Calculate the SS/MStotal for each factor and the 
interaction:

> ms_tot=340/15
> sex=256/ms_tot
> day=25/ms_tot
> int=4/ms_tot

You might want to confirm that they hold suitable values:

> sex
[1] 11.29412
> day
[1] 1.102941
> int
[1] 0.1764706

4 Use the function ‘pchisq()’, or actually one minus this value, to give you 
the P-value associated with these values just calculated and the relevant degrees 
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of freedom (all are one in the example, but will always be n−1, one less than the 
number of factor levels):

> 1-pchisq(sex,1)
[1] 0.0007775304
> 1-pchisq(day,1)
[1] 0.2936215
> 1-pchisq(int,1)
[1] 0.6744241

5 The results can be laid out as in the SPSS example above. In this case the effect 
of ‘sex’ is highly significant as P = 0.0007, but the other factor and the interaction 
were not significant. In the parametric version of the test both factors were sig-
nificant as was the interaction, which demonstrates how weak this test is.

There is no way of carrying out this test directly in MINITAB but with 
a little extra work the test is achievable.
1 Put the observations into a single column then the factors in the next two 
columns with the factor levels coded as integers. Label the three columns appro-
priately. From the ‘Data’ menu select ‘Rank. . .’. Move the data observation col-
umn into the ‘Rank data in:’ box and in the ‘Store ranks in:’ type a new name 
(e.g. ‘rank’). Click ‘OK’ and the rank position of the data appears in the new 
column with the smallest value ranked as 1.
2 Carry out a conventional two-way ANOVA using the ‘rank’ rather than the 
original observations. From the ‘Stat’ menu select ‘ANOVA’ then ‘Two-Way. . .’. 
Put the rank column into the ‘Response:’ box and the two factors into the ‘Row 
factor:’ and ‘Column factor:’ boxes. Click ‘OK’

(Or, assuming the ranks are in c4 and the factors in c2 and c3, type ‘twow c4 c2 
c3’ at the MTB> prompt in the session window. Or you can input commands using 
‘Edit’ menu then ‘Command Line Editor’.)

The example will give the following output:

Two-way ANOVA: rank versus Sex, Day length

Source DF SS MS F P
Sex 1 256 256.000 55.85 0.000
Day length 1 25 25.000 5.45 0.038
Interaction 1 4 4.000 0.87 0.369
Error 12 55 4.583  
Total 15 340   

S = 2.141 R-Sq = 83.82% R-Sq(adj) = 79.78%

3 Ignore the last two columns with F- and P-values. Record the sum of squares 
(SS) values for the two factors and the interaction and calculate the total mean 
squares (MS; SStotal/DF). Then calculate values for SS/MStotal either in MINTAB 

MINITAB

9781405198387_4_007.indd   1799781405198387_4_007.indd   179 9/16/2010   11:34:41 PM9/16/2010   11:34:41 PM



180 Chapter 7

using ‘Calc’, then ‘Calculator. . .’, or by using a calculator. Type the calculated 
values into a single column in the spreadsheet (make sure to remember which 
value applies to each factor). Then use MINITAB to look up the values on a chi-
square table: from the ‘Calc’ menu select ‘Probability distributions’ then ‘Chi-
square. . .’. Select the ‘Cumulative probability’ option. Then input the appropriate 
degrees of freedom (if the factors and interaction have different degrees of free-
dom then you will have to repeat this process for each different number of 
degrees of freedom) in the example there is one degree of freedom for all three 
values. Then in the ‘Input column:’ box put the name of the variable containing 
the calculated values and choose an empty column for the output ‘Optional 
storage:’. Click ‘OK’.
4 So far this has generated values for the probability of getting the number 
calculated or lower whereas the number or higher is required for a P-value. So 
from the ‘Calc’ menu select ‘Calculator. . .’. In the dialogue window put the 
name ‘pvalue’ in the ‘Store result in variable:’ box. Finally in the ‘Expression:’ 
box type ‘1-’ (i.e. one minus) then the name of the column where the chi-
square output was sent.

Using the example, this table shows the numbers used:

SS MS SS/MStotal d.f.
Cumulative chi-

square value P-value

Day length (factor)
Sex (factor)
Interaction
Total

 25
256
  4
340 22.67

 1.10
11.29
 0.176

1
1
1

15

0.705734
0.999221
0.325166

0.29427
0.00078
0.67483

In the example the P-values for ‘day length’ and ‘interaction’ are both well 
above 0.05 so the null hypothesis that there is no difference between factor 
levels is accepted. However, the P-value for ‘sex’ is less than 0.001, indicating 
that the null hypothesis should be rejected and the two sexes have highly sig-
nificantly different food intake.

There is no direct way of carrying out this test in Excel although, providing 
the design is balanced (there is the same number of observations in each factor 
combination), it can be done using two-way ANOVA with only a few extra steps 
to rank the data and look up the significance of the test result.
1 First the raw data should be turned into ranks starting with the lowest value 
as 1 and then put into a table with row and column headings. So if the raw data 
were input as before, the observations would be in cells B2–C9. To turn this into 
ranked information the ‘RANK’ function is used. In cell E2 type 
‘=RANK(B2,$B$2:$C$9,1)’. This gives the rank position of the datum in cell B2 
in the set of 16 numbers. The default in Excel is to rank the largest value as 1. To 

Excel
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rank the smallest value as 1, the option ‘1’ is used in the ‘RANK’ function, as 
shown. Copy cell E2 to F2 and add labels. The example data set now becomes:

Long Short

Female 11 14
9 12

10 15
13 16

Male 1 5
4 8
7 2
3 6

2 Carry out a ‘Two way ANOVA with replication’ exactly as described above. 
From the ‘Data’ menu/ribbon select ‘Data analysis. . .’ and then ‘ANOVA: Two-
Factor with Replication’. Define the range to cover the cells with the ranked 
data and the group labels. Indicate how many observations there are for each 
factor combination (four in the example), leave ‘Alpha’ as 0.05 and send the 
output to a clear area of the spreadsheet. Click ‘OK’.
3 Ignore the output except for the ANOVA table at the bottom. Cut out the first 
four columns of the output and paste it into the top left corner of a new sheet. 
For the example the required output is:

Source of Variation SS df MS

Sample 256 1 256
Columns 25 1  25
Interaction 4 1   4
Within 55 12   4.583333
Total 340 15

Moving the output like this is not required by the package but it does remove 
distractions.
4 Calculate the total mean square, MStotal. This is the total sum of squares (SS) 
divided by the total degrees of freedom (df). If you have moved the table so that 
cell ‘A1’ contains the text ‘Source of Variation’ then just type into cell D7 
‘=b7/c7’. The statistic for the Scheirer–Ray–Hare test can now be calculated for 
the two main factors and the interaction as it is SS/MStotal. In column ‘e’ type 
‘=b2/d7’ in row 2, ‘=b3/d7’in row 3 and ‘=b4/d7’ in row 4. This gives three 
numbers that need to be looked up on a chi-square table: very easily done in Excel.
5 In column ‘f’ type ‘P-value’ in row 1 as a label. Then in row 2 type 
‘=CHIDIST(e2,c2)’ and the P-value for the value in column ‘e’ and the degrees 
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of freedom in column ‘c’ is given. Copy this into the two cells below (easily done 
in Excel by selecting cell ‘f2’ then clicking on the small black square in the bot-
tom right corner of the cell and dragging it down to cover the next two cells).

The final table for the example data is as follows:

The P-values for ‘Columns’ (=‘day length’ in the example) and ‘Interaction’ are 
well above 0.05 so the null hypothesis that the factor levels have the same 
median is accepted. The P-value for ‘Sample’ (=‘sex’ in the example) is well 
below 0.05. The null hypothesis is rejected and the alternative hypothesis that 
the two groups (sexes) have different food intakes is accepted. Which level is 
the higher must be determined by inspection.

There are more than two independent ways to classify the data

If each observation can be assigned to groups using more than two different fac-
tors (ways of classifying the data), each of the factors can be divided into groups 
and assigned integers and, most importantly, the factors are all fully independ-
ent of each other, then the data are suitable for multifactorial testing. The big-
gest danger is thinking that factors are independent when they are not. For 
example, say you sample from a variety of woodlands and use wood number as 
a factor then divide the samples into two groups based on whether they were in 
a northern or southern area. The woodland number is not independent of the 
region (e.g. wood number 6 can only be in one or the other). If this is the case 
then a nested design is required rather than a fully factorial one (see below).

Multifactorial testing
If there are more than two factors and they are fully independent of each other 
then the design is said to be factorial. When there are just two factors there is 
scope for only one interaction term: factor A with factor B. As more factors are 
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added to the analysis the number of interaction terms that are possible grows 
rapidly. For three factors there are four interaction terms (A × B, A × C, B × C and 
A × B × C), for four factors there are 11.

Three-way ANOVA (without replication)
If time, space or resources are very limited then this design is quite common. If 
there are three independent ways of classifying the data into groups and there is 
only one observation for each factor combination then it is still possible to carry 
out an ANOVA. Follow the instructions for three-way ANOVA with replication but 
be aware that there is no way of calculating the interaction between the three 
factors (this is used as the ‘error’ by the calculation). This means that only two-
way interactions should be allowed in the model.

 Follow the instructions for three-way ANOVA with replication (see next 
section), but if you have no replication (i.e. there is only one observation for 
each factor combination) when you have arranged the factors and the dependent 
variables you must first go to the ‘Model. . .’ submenu within the ‘Univariate’ 
dialogue. Click on ‘Custom’. Then highlight the three factor names and under 
‘Build terms’ select ‘Main effects’ from the menu before moving the factors 
across to the ‘Model:’ box. Then repeat with ‘All 2-way’ selected. In the example 
this will give six lines in the ‘Model:’ box, each effect and three pairwise 
interactions. Click ‘Continue’ to return to the ‘Univariate’ dialogue and ‘OK’ 
to run.

 Follow the instructions for three-way ANOVA with replication but remember 
to specify that the three-way interaction is not included in the model. This 
means that the three-way ANOVA using ‘aov()’ or ‘lm()’ would need to have 
the model modified by adding a term of ‘-A:B:C’ where A, B and C are factors 
and the colon indicates interaction. Here is an example of a three-way ANOVA 
using ‘aov()’ and then with the three-way interaction removed to allow an 
unreplicated design:

> summary(aov(intake~sex*day*region))
> summary(aov(intake~sex*day*region-sex:day:region))

 Follow the instructions for three-way ANOVA with replication but when 
specifying the ‘Model:’ the three-way interaction (e.g. c2*c3*c4) should be 
omitted. If column names are not used and the grouping variables are in 
columns 2, 3 and 4 this would give a model statement of ‘c2 c3 c4 c2*c3 c2*c4 
c3*c4’.

 Only one-way and balanced two-way ANOVAs are possible in Excel.

SPSS

R

MINITAB

Excel
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Three-way ANOVA (with replication)
If there are three fully independent ways of dividing the data into groups (e.g. 
site of collection, species and sex) and there is more than one observation for 
each factor combination then this design is appropriate. As with all ANOVA 
the test assumes that the data are continuous and approximately normally dis-
tributed and that the variance is approximately equal for each factor level. 
Unfortunately there is no non-parametric equivalent to use if the assumptions 
are not met.

An example

A group of agricultural ecologists are interested in the effect of rabbit graz-
ing on plant communities near to warrens. The observations are carried 
out on two sites on different soils. At each site there are two areas for 
study, one is 10 m from an active warren and one is 100 m from a warren. 
In each study area six quadrats are positioned at random. Two quadrats are 
left untouched as a control, two have caged exclosures placed around them 
that totally exclude rabbits and two are ‘procedural controls’ where the dig-
ging for constructing an exclosure is carried out but the rabbits are not 
excluded with fences. A procedural control is required in this experiment as 
otherwise any effects could be attributed either to the disturbance from con-
struction or the exclusion of rabbits. Procedural controls are often over-
looked when designing experiments (see Chapter 4 for a description of 
procedural control).

The data collected are the standing crop of grass collected 100 days after the 
exclosures were placed. There are three independent factors: site (two levels, 
coded 1 and 2), distance from warren (two distances, 10 and 100 m, coded 1 and 
2) and exclosure type (three levels, coded 0 for control, 1 for procedural control 
and 2 for exclosure). There are two observations for each factor combination, 
giving a total of 24. Here are the data in table format:

Distance from warren

1 2

Exclosure type

0 1 2 0 1 2

Site 1 112 115 187 141 121 189
116 102 175 101 157 186

2 121 145 198 135 141 208
138 124 168 129 133 206
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Output from statistical packages often has more information than is required. 
The ANOVA table included in a report or publication could be presented as 
follows:

Source of variation d.f. SS MS F P

Distance 1 1218.4 1218.4 6.44 0.026 *
Exclosure 2 6841.4 3420.7 18.07 <0.001 ***
Site 1 590.0 590.0 3.12 0.103

Distance × exclosure 2 327.0 163.5 0.864 0.446
Distance × site 1 1.0 1 0.006 0.942
Exclosure × site 2 58.3 29.2 0.154 0.859

Distance × exclosure × site 2 282.3 141.2 0.746 0.495

Error 12 2271.5 189.3
Total 23

This sort of table should always be accompanied with a table caption that 
explains the test used in more detail, so that the reader does not need to refer 
to the main text. The asterisks used to indicate levels of significance should also 
be explained: *=0.01 < P < 0.05 etc.

This example assumes that the factors are all fixed. That is, the factor levels 
are meaningful rather than arbitrary labels (see page 193 for a discussion of fixed 
and random effects). In this example there is no doubt that ‘Distance’ and 
‘Exclosure’ are fixed effects as the groups have clear meanings. The factor ‘Site’ 
is one that might be either fixed or random. If treated as fixed then the analysis 
is considering differences between two specified sites. If treated as random then 
the difference considered is that between any two sites and their location is 
unimportant.

 The test is essentially the same as for two-way ANOVA. Arrange the data 
so that there is one column for the observations and one for each of the three 
factors with the group labels coded as integers. The group labels can be 
decoded in the ‘Variable View’ using the ‘Values’ column, although I have not 
done this in the example. It will be assumed that the three factors are all fixed 
effects.

From the ‘Analyze’ menu select ‘General Linear Model’ then ‘Univariate. . .’. 
Put the observations into the ‘Dependent:’ box and the three factors into the 
‘Fixed Factor(s):’ box. Click ‘OK’ to run the test. Using the example you get the 
following output:

SPSS
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Univariate Analysis of Variance

Between-Subjects Factors

N

Site 1 12
2 12

Exclosure 0 8
1 8
2 8

Distance 1 12
2 12

Tests of Between-Subjects Effects

Dependent Variable: Grass

Source Type III Sum of 
Squares

df Mean 
Square

F Sig.

Corrected Model 23565.333a 11 2142.303 10.349 .000
Intercept 524512.667 1 524512.667 2533.878 .000
Site 864.000 1 864.000 4.174 .064
Exclosure 21085.083 2 10542.542 50.930 .000
Distance 888.167 1 888.167 4.291 .061
Site* Exclosure 6.250 2 3.125 .015 .985
Site* Distance 37.500 1 37.500 .181 .678
Exclosure* Distance 166.583 2 83.292 .402 .677
Site* Exclosure* Distance 517.750 2 258.875 1.251 .321
Error 2484.000 12 207.000
Total 550562.000 24
Corrected Total 26049.333 23

a. R Squared = .905 (Adjusted R Squared = .817)

The output confirms the test and then gives the number of observations in each 
level of the three main effects. It is worth checking this to make sure that the 
data have been input correctly. Note that each datum will be counted three 
times in this table.

Next comes the ANOVA table. First the name of the dependent variable is con-
firmed. Then comes an ANOVA table with some extra lines. The most important 
lines are for the factor variables, called ‘Main Effects’ in SPSS (‘Distance’, 
‘Exclosure’ and ‘Site’ in the example) and their interactions (three possible two-
way interactions and one three-way interaction). The ‘df’ column gives the degrees 
of freedom which is one less than the number of factor levels for main effects and 
calculated by multiplication for interactions (e.g. for ‘Distance * Exclosure’ there 
are 2×1=2 d.f.). The sum of squares and mean square are given; mean square is 
sum of squares/degrees of freedom. The last two columns give the important 
information. The ‘F’ column is the F-ratio (the factor mean square divided by 
the error mean square). The P-value, labelled ‘Sig.’, is in the last column. In the 
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example the P-values for both ‘Site’ and ‘Distance’ are slightly above the critical 
0.05 level so we accept the null hypotheses that there is no difference between 
sites or between distances. However, the P-value for ’Exclosure’ is given as 0.000, 
which should be reported as P < 0.001, much less than 0.05, so we reject the null 
hypotheses and accept the alternative hypotheses that exclosures affect the graz-
ing of rabbits. None of the interaction terms has a P-value even close to 0.05.

In this output it is best to ignore the lines labelled ‘Corrected Model’, 
‘Corrected Total’ and ‘Intercept’.

Post hoc testing in SPSS The ANOVA has indicated that one of the main effects 
is significant. If there were only two factor levels, we could easily determine 
which group was higher by inspecting the means of the data. However, as in the 
example there are three factor levels for the significant effect a post hoc test is 
required. Repeat the method as above but in the ‘Univariate’ box click on ‘Post 
hoc’. This brings up a dialogue box with a bewildering array of options. First 
move the required factor from the ‘Factor(s)’ box to the ‘Post Hoc Tests for:’ 
box. This will activate all the options for post hoc tests. All will tend to give the 
same results, but some will be more conservative than others. I suggest the 
‘Sidak’ method, ‘SNK’ or ‘LSD’ (least conservative) test, although you should 
only conduct an LSD test if the factor is significant.

This is the output from three post hoc tests using the example data:

Post Hoc Tests

Exclosure

Multiple Comparisons

Dependent Variable: Grass

(I) 
Exclosure

(J) 
Exclosure

Mean 
Difference 

(I-J)
Std. 
Error Sig.

95% Confidence Interval

Lower 
Bound

Upper 
Bound

LSD 0 1 −5.6250 7.19375 .449 −21.2988 10.0488

2 −65.5000* 7.19375 .000 −81.1738 −49.8262

1 0 5.6250 7.19375 .449 −10.0488 21.2988

2 −59.8750* 7.19375 .000 −75.5488 −44.2012

2 0 65.5000* 7.19375 .000 49.8262 81.1738

1 59.8750* 7.19375 .000 44.2012 75.5488

Sidak 0 1 −5.6250 7.19375 .833 −25.5538 14.3038

2 −65.5000* 7.19375 .000 −85.4288 −45.5712

1 0 5.6250 7.19375 .833 −14.3038 25.5538

2 −59.8750* 7.19375 .000 −79.8038 −39.9462

2 0 65.5000* 7.19375 .000 45.5712 85.4288

1 59.8750* 7.19375 .000 39.9462 79.8038

 Based on observed means.
 The error term is Mean Square (Error) = 207.000.
 *. The mean difference is significant at the 0.05 level.
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Immediately followed by

Homogeneous Subsets

Grass

Exclosure N

Subset

1 2

Student-Newman-Keulsa,,b 0 8 124.1250
1 8 129.7500
2 8 189.6250

Sig. .449 1.000

 Means for groups in homogeneous subsets are displayed.
 Based on observed means.
 The error term is Mean Square(Error) = 207.000.
 a. Uses Harmonic Mean Sample Size = 8.000.
 b. Alpha = 0.05.

There are two tables. This first gives the LSD and Sidak method results. There 
are six lines for each method giving each pairwise comparison. This means that 
each pair appears on the list twice (e.g. as 0 / 1 and 1 / 0). The table gives the 
difference between the mean observations from the two factor levels, a measure 
of the standard error of the differences and then, most importantly, a ‘Sig.’ col-
umn. In the example, for both LSD and Sidak methods there is no significant 
difference between groups 0 and 1, but there is a highly significant difference 
between groups 0 and 2 and between 1 and 2. This indicates that areas sur-
rounded by exclosure fences have, perhaps unsurprisingly, a much higher mean 
grass weight.

The second table gives the same information in a different format as the 
result of the Student–Newman–Keuls (SNK) test. This post hoc test puts groups 
0 and 1 in a ‘homogeneous subset’ that is different from group 2. This table also, 
usefully, gives the mean values of the observations in each group.

 The data should be in a single variable and there are three other variables 
giving the factor levels of the predictor variables. R will probably need to be told 
that the factors where levels are coded as numbers should be treated as factors 
rather than covariates in the model. This is done with the function ‘as.
factor()’. There are several ways to reach three-way ANOVA, but the functions 
‘aov()’ and ‘lm()’ are the simplest to use. Assuming the response variable is 
‘grass’ and the predictor variables (factors) are ‘exclosure’, ‘distance’ and ‘site’ 
the three-way ANOVA with all interactions is:

> model<-(aov(grass~exclosure*distance*site))

R
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The output of the ‘aov()’ function is now in ‘model’ and the output can be 
seen using ‘summary( )’:

> summary(model)
Df Sum Sq Mean Sq F value Pr(>F)

exclosure 2 21085.1 10542.5 50.9302 1.3e-06 ***
distance 1 888.2 888.2 4.2907 0.06054
site 1 864.0 864.0 4.1739 0.06365
exclosure:distance

2 166.6 83.3 0.4024 0.67742
exclosure:site 2 6.2 3.1 0.0151 0.98504
distance:site 1 37.5 37.5 0.1812 0.67791
exclosure:distance:site

2 517.8 258.9 1.2506 0.32112
Residuals 12 2484.0 207.0
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

The results give for each factor and interaction (interactions are denoted by ‘:’) the 
usual degrees of freedom, sum of squares, mean square, F-ratio and P-value 
(labelled ‘Pr(>F)’). Significant lines are indicated with asterisks and a key is pro-
vided. Here one of the main effects is highly significant, P < 0.001, with three 
asterisks. The other main effects both have P-values close to 0.05, so may warrant 
further investigation. None of the interactions have P-values anywhere near 0.05.

As the significant factor has three levels we need a post hoc test to reveal 
which factor levels are different from which. The function ‘TukeyHSD()’ can 
be used on the same results of the ‘aov()’ from earlier and the factors to be 
analysed are put in quotes:

> TukeyHSD(model, “exclosure”)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula=grass ~ exclosure * distance * site)

$exclosure
 diff lwr upr p adj
1-0 5.625 -13.56694 24.81694 0.7207163
2-0 65.500 46.30806 84.69194 0.0000027
2-1 59.875 40.68306 79.06694 0.0000069

The results show that factor level 2 is significantly different from the other two, 
but that levels 1 and 0 are not significantly different from each other.
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 Put the observations into a single column. Use three further columns 
for the group labels of the three factors (coded as integers). Label the columns 
appropriately.

From the ‘Stat’ menu select ‘ANOVA’ then ‘General Linear Model. . .’. Move 
the observation column into the ‘Responses:’ box and the three factor columns 
into the ‘Model:’ box. Unfortunately if interactions are to be investigated these 
need to be added separately. So, assuming the factors are in columns 2, 3 and 4 
then the following needs to be added to the model box: ‘c2*c3 c2*c4 c3*c4 
c2*c3*c4’. The names of the factors could be used instead of column codes. (If 
there is no replication – i.e. only one observation for each factor combination – 
then the final c2*c3*c4 term should be omitted.)

The following output appears:

General Linear Model: grass versus distance, exclosure, site

Factor Type Levels Values
distance fixed 2 1, 2
exclosure fixed 3 0, 1, 2
site fixed 2 1, 2

Analysis of Variance for grass, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
distance  1 888.2 888.2 888.2 4.29 0.061
exclosure  2 21085.1 21085.1 10542.5 50.93 0.000
site  1 864.0 864.0 864.0 4.17 0.064
distance*exclosure  2 166.6 166.6 83.3 0.40 0.677
distance*site  1 37.5 37.5 37.5 0.18 0.678
exclosure*site  2 6.2 6.2 3.1 0.02 0.985
distance*exclosure*site  2 517.7 517.7 258.9 1.25 0.321
Error 12 2484.0 2484.0 207.0
Total 23 26049.3

S = 14.3875 R-Sq = 90.46% R-Sq(adj) = 81.72%

This is essentially the same as the output for two-way ANOVA only with several more 
lines. I always advise checking that the first part of the output confirming the factor 
names, number of groups and the integer codes. The ANOVA table contains lines for 
each of the factors, then the interactions and finally the error and total. The P-values 
(labelled ‘P’) are less then 0.05 for only one of the factors and none of the interac-
tions. The null hypotheses that grass weight comes from the same distribution for 
all levels of these two factors is rejected and an alternative hypothesis is accepted. 
However, in this case the two non-significant factors both have P-values very near 
to 0.05 and further analysis should be considered. If a post hoc test is required, as it 
would be if there are three or more factor levels and the factor has a P-value less 
than 0.05, go to the ‘Comparisons’ button before running the ANOVA test.

Visualization of which factor level is higher than which is simple to achieve 
in MINITAB. From the ‘Stat’ menu select ‘ANOVA’ then ‘Interactions plot. . .’. 
Put the factor columns into the ‘Factors:’ box (no need for the interaction terms 

MINITAB
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this time) and the raw data in the ‘Raw response data in:’ box. Click ‘OK’ and a 
set of graphs showing the mean values of the raw data for every factor combina-
tion appears (see Fig. 7.15). It is clear that the data from level 2 of the exclosure 
factor is much higher than the other two levels of this factor (see the interaction 
section above for an explanation of how these graphs can be interpreted).

(Or, if the command interface is enabled, and assuming observations in c1, factors 
in c2, c3 and c4 ‘GLM c1=c2 c3 c4 c2*c3 c2*c4 c3*c4 c2*c3*c4’ at the MTB> 
prompt in the session window.)

 There is no direct way to carry out this test in Excel.

Multiway ANOVA

If there are more than three ways of dividing the data into groups and each of 
the classifications is independent of the others then ANOVA may be carried out. 
These multifactorial designs become increasingly difficult to interpret as there 
is an explosive increase in the number of interaction terms as the number of 
factors goes up. Furthermore, unless an experiment is designed to be fully facto-
rial there are likely to be combinations of factors where there are no 
observations.

Excel

Fig. 7.15 Visualizing three-way ANOVA in MINITAB using the ‘Interactions plot’. The 
factor ‘exclosure’ has clearly higher means for level 2 when divided by ‘dist’ or ‘site’.
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Finally, once there are many factors the chance that they are all independent of 
each other diminishes. Each factor should be considered in turn: is it independent 
of all other factors? Can two factors be sensibly combined in some way? Is one 
factor nested within another (see next section)? Is one factor more appropriately 
investigated as a covariate (see section on analysis of covariance, page 238)?

Not all classifications are independent

A very large number of experiments that are treated as if all the factors are 
independent prove to be, on further investigation, nothing of the sort. Therefore 
it is important that the independence of the factors in the analysis is considered 
carefully.

Non-independent factors
Some ways of classifying data are always going to be fixed and therefore main 
factors in an analysis. For example, a commonly used factor in biology is ‘sex’: 
there are two sexes (although in some species there are intermediate ‘inter-
sexes’ or hermaphrodites) and once an individual is labelled as either male or 
female that classification is fixed. Other factors are not so clearly fixed: if a set 
of observations is divided into two equal-sized groups by weight then an indi-
vidual may find itself in the heavy group at the start but later moved into the 
light group. This type of factor is not really fixed although the label ‘heavy’ 
really means something about the observation. Consider a study on blood pres-
sure in humans using the two factors I have described here: ‘sex’ and ‘weight’. 
Human males are heavier than females and therefore there will be more males 
in the heavy group therefore the two factors are not independent of each other. This 
type of independence can be checked using a chi-square test of association con-
sidered in the next chapter (page 199). If the factors are not independent then 
two-way ANOVA is inappropriate. One solution is to apply an analysis of covari-
ance (ANCOVA) using ‘sex’ as a fixed factor and ‘weight’ as a covariate. This 
analysis is considered in the next chapter (page 238).

Nested factors
Nested factors are never ‘fixed’, meaningful factors, they are always factors 
numbered for convenience where the number given does not really mean any-
thing. For example, in a greenhouse experiment there may be plants in num-
bered pots with four pots per numbered tray and three trays per bench with 
two benches in each of two greenhouses. At each level ‘pot’, ‘tray’, ‘bench’ and 
‘greenhouse’ the numbers are only used for convenience. These are called ran-
dom factors. In this example, the factor ‘pot’ is said to be nested within ‘tray’, 
the ‘trays’ nested within ‘bench’ and ‘bench’ within ‘greenhouse’. It is important 
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that the numbering system reflects this nesting: pots should be labelled 1–4 in 
each tray and trays labelled 1–3 in each greenhouse. Nested factors are always 
random but not all random factors need to be nested (e.g. the factor ‘site’ in the 
three-way ANOVA example given above might be a random factor, but it is not 
nested). Post hoc tests may not be carried out on nested factors.

Random or fixed factors
I have touched on the difference between ‘fixed’ or meaningful factors and ‘ran-
dom’ or convenience factors above. There is, however, not a strict distinction 
between the two types of factor and the same factor can be treated as ‘fixed’ or 
‘random’ in different tests. For example, in an analysis of behaviour in Drosophila 
melanogaster mutants the mutants used could be either a fixed or random factor. 
If the mutant is treated as fixed (so that vestigial is coded as 1 and white-eye as 2) 
then this implies that the significance level of any difference is due to the charac-
teristics of the particular named mutants. However, if the factor is random then 
any significance implies differences between any two randomly selected mutants.

The next section considers designs with a simple hierarchy of nested factors. 
More complicated arrangements where it is appropriate to test both nested and 
factorial designs combined are surprisingly common. Such designs are extremely 
widely used in biology but they are often very difficult to achieve in the statisti-
cal packages, although it must be said that in R crossed and nested designs are 
equally easy to implement.

Nested or hierarchical designs

If the experiment or sampling design has only one ‘random’ factor at the top of 
the hierarchy and all other factors are ‘nested’ within it then the design is said 
to be a pure nested one. If the top level is ‘fixed’ and there are other factors 
nested within it the design is often called a ‘mixed model’. There is no limit to 
the number of factors that can be nested in this way. The simplest case of a 
single fixed factor and one nested is considered here.

Two-level nested-design ANOVA

An analysis with two factors. The standard factor in this type of design may be 
‘fixed’ or ‘random’. There should then be a second, ‘random’ factor nested 
within the standard factor.

An example

In an experiment on cholesterol levels in mouse blood two levels of fat intake 
are fixed by the researchers and coded as levels 0 and 1. For each level of ‘intake’ 
there are three populations of mice in separate cages and from each of these 
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cages three individual mice are selected at random for blood testing. The six 
populations of mice are assigned to the factor ‘cage’, which is a random factor 
nested within ‘intake’ with the three cages in each group coded 1, 2 and 3 
(clearly these labels have no real meaning and are only used for convenience). 
There are six cages in all but they must not be coded as 1 to 6.

The data collected are as follows:

Intake

0 1

Cage

Mouse  1  2  3  1  2  3

1 55.6 62.5 58.9 85.6 68.5 65.6

2 62.5 68.3 54.2 98.2 69.3 71.0

3 68.2 58.2 63.5 75.1 88.2 78.3

Note: a common error made when analysing this type of data is that ‘mouse’ is 
treated as a factor. This might seem sensible as the mice are labelled 1–3. 
However, it is inappropriate as there is only one observation per mouse, ANOVA 
would have no variation to work with if it was used as a factor. Therefore ‘mouse’ 
is actually the level of replication within the factor ‘cage’. If there were two 
observations per mouse then mouse could be a further random factor that 
would be nested within ‘cage’.

Using the example data the following ANOVA table should be used in a 
report:

Source of variation df Sum of squares Mean square F-ratio P-value

Intake 1 1215.24 1215.24 18.90 0.001 **
Cage within intake 4 377.42 94.35 1.47 0.272
Error 12 771.68 64.31
Total 17

 Nested analyses are achievable, but slightly awkward, in SPSS. Put the 
observations in a single column. Use further columns for the factors with the 
levels coded as integers. From the ‘Analyze’ menu select ‘General Linear Model’ 
then ‘Univariate. . .’. Put the observations into the ‘Dependent variable:’ box and 
the fixed factor in the ‘Fixed Factor(s):’ box (‘intake’ in the example is a fixed 

SPSS
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effect). Put the nested factor in the ‘Random Factor(s):’ box (‘cage’ in the 
example). (A detour via the ‘Options. . .’ button or the ‘Plots. . .’ button can be 
useful as means by factor levels can be requested allowing an easy comparison 
of groups).

Now the awkward bit. . .click on ‘Paste’. This brings up the command line 
‘Syntax’ window of SPSS. It will probably be called ‘Syntax1’. For the example 
it contains the following:

To carry out a nested ANOVA the ‘/DESIGN’ line must be altered to specifically 
request it. The nested factor must be specified as being within the main factor. 
The nested factor is listed before the factor it is nested within and, rather coun-
terintuitively, the fixed factor has to be in parentheses. In the example the last 
line becomes ‘/DESIGN cage(intake) intake.’. To run this design from the 
‘Syntax’ window click on the ‘play’ button (an icon of a small blue triangle 
pointing to the right).

The following output appears:

Univariate Analysis of Variance

Between-Subjects Factors

N

Intake 0 9
1 9

Cage 1 6
2 6
3 6
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Tests of Between-Subjects Effects

Dependent Variable: Blood

Source Type III 
Sum of 
Squares

df Mean Square F Sig.

Intercept Hypothesis 87041.827 1 87041.827 922.498 .000
Error 377.418 4 94.354a

Intake Hypothesis 1215.245 1 1215.245 12.880 .023
Error 377.418 4 94.354a

Cage(Intake) Hypothesis 377.418 4 94.354 1.467 .272
Error 771.680 12 64.307b

 a. MS(Cage(Intake) )
 b. MS(Error)

First comes a table confirming the number of observations for each factor level. 
This is worth checking to confirm it matches your expectations. It can often 
highlight an error in data entry.

The ANOVA table confirms the name of the dependent variable. Then comes a 
conventional ANOVA table with slightly more information than is needed. The 
important lines are those labelled with the names of the main effect and nested 
factor and the bottom error (or residual) line. In the example the P-values 
(labelled ‘Sig.’) show that there is no effect of ‘cage(intake)’ (i.e. ‘cage’ nested 
within ‘intake’) but there is a significant effect of ‘intake’ as P is less than 0.05. 
The degrees of freedom for nested factors are slightly odd as they have one less 
than the number of levels for each level of the main factor (in the example this 
is number of cages: 1 for each intake or (3−1) × 2 = 4).

The final table gives the expected mean squares. These are very important 
when calculating ANOVA by hand, but are not useful here.

A possible complication: note that in this case SPSS has generated a differ-
ent F-ratio to that shown in the table above. This is because the calculation 
of F-ratios in nested ANOVA is something of an art. In this case SPSS has used 
the mean square of the nested factor as the denominator for the F-ratio while 
the table above, R and Minitab have used the mean square of the error 
instead. There is a convention that the mean square of the nested factor is 
used as the denominator whenever the factor is significant but in other circum-
stances there is debate over the best denominator to use. So, if the nested 
factor has a P-value less than 0.05 it is customary to use the mean square of 
this factor as the denominator to calculate the F-ratio of the main factor 
rather than the error mean square. SPSS 10 appears to conform to this con-
vention, but more recent versions of SPSS do not. It is worth checking the 
F-ratios carefully if you have a different version of the package. With more 
complicated designs selection of the correct denominators can become a 
rather long-winded process.
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 Nested ANOVA designs are very easy to specify in the function ‘aov()’ in R. 
Just use the operator ‘/’ to indicate that a factor is nested in another: 
‘aov(data~A/B)’ indicates that factor ‘B’ is nested in factor ‘A’. The data 
need to be in a single variable and each of the coding variables in separate and 
clearly labelled variables. It is important to realize that although there are six 
cages in this design there will only be three different labels as there are three 
cages in each level of ‘intake’. Using the example data with observations in 
‘cholest’ and ‘cage’ and ‘intake’ as the factors and ANOVA with ‘cage’ nested 
within ‘intake’ is:

> summary(aov(cholest~intake/cage))
 Df Sum Sq Mean Sq F value Pr(>F)
intake 1 1215.24 1215.24 18.8977 0.0009496 ***
intake:cage 4 377.42 94.35 1.4673 0.2724820
Residuals 12 771.68 64.31
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

R indicates in the output that a factor is nested by ‘A:B’ indicating that ‘B’ is 
nested within ‘A’. In this case ‘cage’ is nested within ‘intake’. The output com-
prises a normal ANOVA table with degrees of freedom, sum of squares, mean 
square, F-ratio and P-value given. Asterisks highlight significant lines. Here the 
effect of ‘intake’ is highly significant, P < 0.001.

 Put the observations in a single column. Use additional columns for the 
factors with the levels coded as integers or text labels. From the ‘Stat’ menu, 
select ‘ANOVA’ then ‘General Linear Model. . .’. Move the observation column 
into the ‘Responses:’ box. Then put the main factor and the nested factor 
(‘intake’ and ‘cage’ in the example) into the ‘Model:’ box. To show that the 
nested factor is nested it must be followed by the name of the main factor in 
parentheses (in the example the ‘Model:’ box reads: ‘intake cage(intake)’). Click 
‘OK’. (A detour via the ‘Options. . .’ button can be useful as means by factor 
levels can be requested allowing comparison of groups). You might note that 
there is a ‘Fully Nested ANOVA’ option within the ANOVA model, but I find that 
this is much less controllable than using ‘General Linear Model’ in MINITAB. If 
you use the ‘Fully Nested’ approach you should put the main effect into the 
‘Factors:’ box first then the nested factor. There is no need for the syntax with 
parentheses.

(Or, if the command interface is enabled, and assuming data in c1, main factor 
in c2 and nested factor in c3, type ‘GLM c1=c2 c3(c2)’ at the MTB> prompt in the 
session window.)

R

MINITAB
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You get the following output from the example.

General Linear Model: cholest versus intake, cage

Factor Type Levels Values
cage (intake) fixed 6 a, b, c, a, b, c
intake fixed 2 high, low

Analysis of Variance for cholest, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
cage (intake) 4 377.42 377.42 94.35 1.47 0.272
intake 1 1215.25 1215.25 1215.25 18.90 0.001
Error 12 771.68 771.68 64.31
Total 17 2364.34

S = 8.01914 R-Sq = 67.36% R-Sq(adj) = 53.76%

The output confirms the test used, the names of the factors, how many levels 
there are for each factor and the integer labels used (or text labels as in this 
example). Check these are correct before looking at the ANOVA table. The table 
itself is very similar to the ‘ideal’ table given in the example. The degrees of 
freedom may seem a little odd in a nested analysis. The main factor will have 
one fewer degrees of freedom than the number of factor levels as usual. The 
nested factor will have one less than the number of groups for each level of the 
main factor. In the example there are three cages so there are two degrees of 
freedom for each of two levels of the main factor to give four degrees of free-
dom. The important column of the table is the final one with the P-values (in 
the example there is no significant effect of ‘Cage(Intake)’; that is, cage nested 
within intake, but a highly significant result for ‘Intake’).

 There is no easy way to carry out this type of nested analysis in Excel.Excel
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8The tests 2: tests to 
look at relationships

Is there a correlation or association between two variables?

Observations assigned to categories
If observations are given a qualitative value then the data are said to be categori-
cal (i.e. they have been assigned to categories). There are many occasions when 
it is not possible to express data in any other way (such as when scoring flower 
colours or species). There will be other circumstances when the categories are 
for convenience only, and are achieved by imposing a set of categories on a con-
tinuous scale. This can either be an arbitrary scale (e.g. the effect of an illness 
from ‘well’ through ‘showing symptoms’ to ‘dead’) or a scale that could be 
measured (e.g. dividing tree heights into ‘short’, ‘medium’ and ‘tall’).

However, if the observations are assigned to categories in this way there are 
several tests that can be applied to determine whether the division of the obser-
vations into classes is independent or not. In other words ‘are the observations 
for two categorical variables associated?’. The chi-square test of association, phi 
coefficient and Cramér coefficient are considered here.

Chi-square test of association
This is one of the most widely used statistical tests of all. It is beguilingly simple 
and has few underlying assumptions. In fact, the test is so simple to carry out it is 
often not properly supported in statistical packages leaving the user to do a lot of 
the work. If observations can be assigned to one of two or more categories in two 
variables then chi-square in appropriate. The null hypothesis is that the categories 
in the two variables are independent (i.e. the category an observation is assigned 
to for one variable has no effect on the category it is assigned to for the second 
variable). For example if ‘eye colour’ and ‘sex’ are the two variables and individu-
als are assigned to either ‘blue’ or ‘brown’ and to either ‘male’ or ‘female’ then the 
null hypothesis is that there is no association between sex and eye colour. As 
there are no assumptions made about the form of the data it is a non-parametric 

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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200 Chapter 8

test although it is rarely described as such (probably because there is no paramet-
ric equivalent). (Note: it is important to realize that if a continuous variable is 
forced into a small number of categories then information is lost when the test is 
calculated and another measure of association is probably more appropriate.)

The chi-square test works by adding up the squared differences between the 
expected number of observations in a category combination and the actual 
observed number. The result is then looked up on a chi-square table with a 
number of degrees of freedom equal to one less than the number of rows mul-
tiplied by one less than the number of columns.

Expected values are calculated very simply by putting the data into a table 
then totalling the observations in each row and column. The expected value for 
each category combination is the row total multiplied by the column total 
divided by the total number of observations.

There are complications. If there are expected values lower than one the test 
should not be used (categories should be combined to avoid this problem). No 
more than 20% of the expected values should be less than five. An alternative 
test where it is impractical to raise all the expected values above five is the 
Fisher’s exact test.

Chi-square tests should never be carried out on percentages or data trans-
formed in any way. It must be carried out on frequencies (numbers of observa-
tions). When reporting the results in text it is usual to give the statistic, the degrees 
of freedom and some measure of the P-value (e.g. χ2 = 15.62, d.f. = 4, P < 0.01).

An example

A group of students interested in aquatic invertebrates want to determine, in 
the shortest possible time, whether stream velocity is related to plant growth 
and substrate. A qualitative survey of 50 randomly assigned stream sections in 
the study area was carried out. Stream velocity was scored as ‘slow’ or ‘fast’ (if 
more time were available then an accurate measure of the stream velocity could 
be made, although it might not be very useful as such a measure is very depend-
ent on weather conditions). The stream bed was assigned to one of four catego-
ries: ‘weed-choked’, ‘some weeds’, ‘shingle’ and ‘silt’ (this is one of many possible 
classification systems that could be used).

The data were collected and compiled into a table as follows; numbers indi-
cate the number of sites with each combination of categories.

Stream-bed category

Choked Weeds Shingle Silt

Velocity Slow 10 8  2 7
category Fast  2 6 10 5
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The null hypothesis, H0, is that the proportion of streams in each of the 
stream bed categories is the same for the two velocity categories. The alter-
native hypothesis, H1, is that the proportions vary between the two catego-
ries; that is, there is some association with particular stream-bed categories 
and velocity categories appearing together more often than would be 
expected by chance and others appearing less often. The test will not deter-
mine which category combinations are more or less common than expected 
although this can be investigated by inspection of the table of raw data and 
expected values.

The data table needs to be processed to obtain the expected values. First the 
row and column totals are required.

  Choked  Weeds  Shingle  Silt  Totals

Slow 10  8  2  7 27
Fast  2  6 10  5 23

Totals 12  14  12  12  50

Then the expected value for each of the cells can be calculated. For ‘choked’ 
and ‘slow’ the expected value is the row total (27) multiplied by the column 
total (12) divided by the total number of observations (50). Of course this sort 
of manipulation is very easy to do in a spreadsheet such as Excel.

The expected values are:

  Choked  Weeds  Shingle  Silt

Slow 6.48 7.56 6.48 6.48
Fast  5.52  6.44  5.52  5.52

In this example, the value of the chi-square test is 11.036, there are 3 degrees 
of freedom and the P-value is just over 0.01. This might be reported in the text 
of a results section as ‘a chi-square test showed there was an association 
between stream velocity category and stream bed category (χ2 = 11.036, d.f. = 3, 
P < 0.05 )’.

 The chi-square test of association is not easy to achieve from a table of 
frequencies. However, if the data are arranged so that each individual is repre-
sented by a row with entries in two columns for the two factors then it is very 
easy to carry out.

SPSS
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202 Chapter 8

Arrange the data in two columns with one column for each of the factors. 
Input the categories for each observation on a separate row with each catego-
ries coded with integers starting at 1. The columns should be labelled 
appropriately.

The example data will have 50 rows and two columns set out using the fol-
lowing style:

  Velocity Bed_Cat

 1 1 4
 2 2 2
 3 2 3
 : : :
50  1  2

The integer codes can be used as labels for the category names. This can be done 
by clicking on the ‘Variable View’ and then clicking on the ellipsis (‘…’) in the 
‘Values’ column. In the ‘Value Labels’ box that appears labels can be added for 
each category in turn. After assigning labels for all the categories click ‘OK’ and 
repeat for the other variable. Doing this before running the chi-square test will 
make the output much easier to interpret.

To run the test go to the ‘Analyze’ menu, choose ‘Descriptive statistics’ and 
then ‘Crosstabs…’. Move the column containing the ‘row’ information into 
the ‘Row(s):’ box (in the example this was ‘velocity’) and the other column 
into the ‘Column(s):’ box. Then click on the ‘Statistics…’ button. In the 
options box that appears select ‘Chi-square’ and click ‘Continue’. Then click 
on the ‘Cells…’ button. In the options box select both ‘Observed’ and 
‘Expected’ in the ‘Counts’ area. Click ‘Continue’ then ‘OK’ in the ‘Crosstabs’ 
box. Selecting the ‘Display clustered bar charts’ produces a useful visual sum-
mary of the frequencies in each of the categories, but the default colours are 
quite awful.

The following output will appear in the ‘Output’ window:

Crosstabs

Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

velocity* bed_cat 50 100.0% 0 .0% 50 100.0%
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Velocity* Bed_cat Crosstabulation

Bed_cat

Choked Weeds Shingle Silt Total

velocity Slow Count

Expected Count

10

6.5

8

7.6

2

6.5

7

6.5

27 

27.0

Fast Count

Expected Count

2

5.5

6

6.4

10

5.5

5

5.5

23

23.0

Total Count

Expected Count

12

12.0

14

14.0

12

12.0

12

12.0

50

50.0

Chi-Square Tests

Value df
Asymp. Sig. 

(2-sided)

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear 
Association

N of Valid Cases

11.036a

11.945

3.160

50

3

3

1

.012

.008

.075

a.  0 cells (.0%) have expected count less than 5. The minimum 
expected count is 5.52.

The first table just confirms how many rows of data have been processed by the 
test. The second table gives the data laid out as a contingency table. If labelling 
of the values for each variable has not been carried out there will only be num-
bers for the rows and columns. The table gives the number observed above the 
number expected for each category combination. Row and column totals are 
also given. Then comes a small table of the results of the test itself. The impor-
tant line is that labelled ‘Pearson Chi-Square’. The number in the ‘Value’ col-
umn is the value of the X2 approximation to χ2 (11.036 in the example). Then 
the degrees of freedom are given (labelled ‘df’), equal to the number of rows 
minus one multiplied by the number of columns minus one. The P-value 
(labelled ‘Asymp. Sig. (2-sided)’) appears in the last column. Ignore the other 
lines in this table. In the example the P-value is less than 0.05 so the null hypoth-
esis is rejected. Inspection of the table shows that the biggest difference between 
observed and expected values are in the ‘Shingle’ column, suggesting that there 
is an association of shingle stream beds with fast-flowing water.

The minimum expected frequency, given as 5.52 in the example, is an impor-
tant number to look at because if it is less than one then the chi-square test 
should not be carried out. Caution should also be applied if more than 20% of 
the cells have expected frequencies less than five. As shown below, SPSS gives a 
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warning if there is a problem (although it still reports the results of the test and 
gives a P-value).

N of Valid Cases 50

a.  2 cells (25.0%) have expected count less than 5. The minimum 
expected count is 3.22.

 The chi-square test is very easy to achieve from a table of frequencies in R. 
As there will be few numbers to input it is often quickest to input the data at 
the command line. Here the data from the example are added to dataframe 
labelled ‘stream’ and then visualized. It is important to add the data by going 
down each column in turn (i.e. in the example the second number to be added 
is 2, not 8):

> stream<-matrix(c(10,2,8,6,2,10,7,5),nrow=2)
> stream
 [,1] [,2] [,3] [,4]
[1,] 10 8 2 7
[2,] 2 6 10 5

Note how R defines the elements of the matrix with rows labelled first. Element 
[2,3] would be row 2, column 3. This matrix can then be used in the function 
‘chisq.test()’:

> chisq.test(stream)

Pearson’s Chi-squared test

data: stream
X-squared=11.0363, df=3, p-value=0.01153

The output confirms the test and then the source of the data. The value of chi-
square is labelled ‘X-squared’, the degrees of freedom (‘df’) and the P-value 
associated with these values. Here P<0.05 so the null hypothesis is rejected. 
Inspection of the table suggests that shingle beds are more frequently associated 
with fast-flowing water.

If any of the expected values in a chi-square test are less than five R will gen-
erate a warning, but will still execute the test:

Warning message:
In chisq.test(s) : Chi-squared approximation may be 
incorrect

R
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If the data are not already in frequency table format that is no problem in R. 
Imagine the example data are in a list of observations in a text file called ‘stream.
txt’ which looks like this with the variable labels at the top of the columns:

Bed Flow
choked slow
silt fast
weeds slow
…   …

This can be read into R as ‘str’ and attached:

> str<-read.table(”c:\\temp\\stream.txt”,header=TRUE)
> attach(str)

This can be visualized in a frequency table with the ‘table()’ function:

> table(str)
Flow
Bed fast slow
choked 2 10
shingle 10 2
silt 5 7
weeds 6 8

Or a chi-square test can be done directly on the list of observations by combin-
ing the ‘chisq.test()’ function and the ‘table()’ function:

> chisq.test(table(str) )

Pearson’s Chi-squared test

data: table(str)
X-squared=11.0363, df=3, p-value=0.01153

 The chi-square test is easy to carry out in from a table of counts of 
observations. First input the table exactly as it is laid out in the example. The 
columns can be labelled with the names of the categories but there is no way to 
label the rows. Then from the ‘Stat’ menu, select ‘Tables’ then ‘Chi-Square Test 
(Two-Way Table in Worksheet) …’. In the dialogue box highlight the relevant 
columns and click on ‘Select’ (or double click on the column names). This 
moves the columns into the ‘columns containing the table:’ box. Click ‘OK’.

The example data with column labels gives the following output in the  session 
window:

MINITAB
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Chi-Square Test: Choked, Weeds, Shingle, Silt
Expected counts are printed below observed counts 
Chi-Square contributions are printed below expected counts

 Choked Weeds Shingle Silt Total
 1 10 8 2 7 27
  6.48 7.56 6.48 6.48 
  1.912 0.026 3.097 0.042 

 2 2 6 10 5 23
  5.52 6.44 5.52 5.52 
  2.245 0.030 3.636 0.049 

Total 12 14 12 12 50

Chi-Sq = 11.036, DF = 3, P-Value = 0.012

The output confirms the test then gives a repeat of the table of frequencies but 
with the addition of row and column totals as well as the expected values, and 
gives the value for: (observed–expected)2/expected for each cell in the table. 
The value of ‘Chi-Sq’ gives the total of these values, which is the statistic X2 
(estimating χ2). The degrees of freedom (‘DF’) is given and then the P-value, 
labelled ‘P-Value’. In the example the P-value is less than 0.05 so the null 
hypothesis is rejected. There is some association between stream-bed category 
and velocity category. Inspection of the ‘ChiSq’ values shows that the biggest 
contributors are in column 3 (‘shingle’) and show that a shingle bed is far more 
common in a fast-flowing stream (row 2) and far less common in a slow-flow-
ing one (row 1) than expected if there were no association between the 
factors.

  The spreadsheet capabilities of Excel make the chi-square test quite easy 
to carry out.
1 Input the frequency data (number of observations in each category combina-
tion) as a table with row and column labels exactly as in the example.
2 Add labels for an extra row and column of totals. In the relevant cells type 
‘=SUM’ and the cell numbers required (in the example the row totals column 
is F so the command in cell F2 is ‘=SUM(b2:e2)’ and the first of the column 
totals is in B4 with the command ‘=SUM(b2:b3)’). Once the first cell has been 
calculated for row and column it can be pasted to calculate the other totals. An 
easy way of doing this is to highlight the cell, click and hold the small black 
square in the bottom right corner then drag across to highlight the cells to paste 
into. Make sure the total of row totals is calculated as well, as this is the total 
number of observations (50 in the example).
3 A second table, the same size as the first, should be labelled elsewhere on the 
same sheet. This is for the expected values. Once the row and column labels 
have been created the expected values for each cell can be calculated as ‘=row 
total * column total/number of observations’ inputting the relevant cell  numbers 
as required. In the example the top right cell expected value is calculated as 
‘= b4*f2/f4’.

Excel
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(It is useful to use the $ as an anchor when calculating the expected values. 
Any cell code containing a $ will not alter when the cell contents are pasted 
elsewhere on the spreadsheet. So when inputting the first cell calculation use 
‘=b$4*$f2/$f$4’ and then paste the cell across the whole table. Paste the cell 
across four columns and then, with four cells highlighted, paste down a row. The 
row containing column totals and the column containing the row totals as well 
as the cell containing the total number of observations (F4) all remain fixed.]

This should be on the spreadsheet:

None of the expected values are below five so the test can proceed. If any cell 
had a value less than one or more than 20% have values less than five then cat-
egories should be combined before the test is carried out.
4 Once the observed and expected tables are complete, select an empty cell 
anywhere on the spreadsheet where the two tables are still on the screen. Then 
go to ‘Insert function’ ( fx button), select ‘Statistical’ and then ‘CHITEST’ from 
the list. Click ‘OK’. Then put the cell codes for the observed data (not labels) 
into the ‘Actual_range’ box. This can be done either by typing in the cell codes 
for top left and bottom right directly with a colon (:) between them or by select-
ing the ‘Actual_range’ box and then clicking and dragging over the cells. Do the 
same for the ‘Expected_range’ box selecting the expected values. In the example 
the ‘Actual_range’ was B2:E3 and the ‘Expected_range’ was B7:E8. Then click 
‘OK’. The P-value for the test appears, here the P-value is ‘0.0115’ which is 
lower than the critical ‘0.05’ value so the null hypothesis is rejected. There is an 
association of ‘stream-bed’ category with ‘velocity category’. Comparison of the 
observed and expected values indicate than ‘Slow’ and ‘Choked’ are more com-
mon than would be expected by chance as are ‘Fast’ and ‘Shingle’.
5 It is usual to present the results of a chi-square test giving the degrees of free-
dom and the value of χ2. Degrees of freedom for the test is one less than the 
number of rows multiplied by one less than the number of columns (in the 
example (4−1)*(2−1)=3). Excel provides a simple method for determining the 
χ2 value from a known P-value and degrees of freedom. Select an empty cell. 
Click on the ‘Insert function’, select ‘Statistical’ then ‘CHIINV’. Click on ‘OK’. 
Input the P-value into the ‘probability’ box (or click on the cell used in step 4 
above) and input the degrees of freedom, then click ‘OK’. The χ2 value appears 
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in the cell (11.03 in the example). When reporting the results the chi-square 
value, the degrees of freedom and the P-value should all be given.

Cramér coefficient of association
The Cramér coefficient of association is a test carried out on tables of frequen-
cies in conjunction with a chi-square test that provides additional information 
about the strength of the association. The statistic X2 is used to determine sig-
nificance while the Cramér coefficient (C) is a measure from 0 (no association) 
to 1 (perfect association) that is independent of the sample size. If this statistic 
is available as an option on the package you are using then it will allow direct 
comparison of the degree of association between tables. The Cramér coefficient 
is the same as the phi coefficient for 2×2 tables.

 Follow the instructions as for the Chi-square test of association. In the 
‘Statistics’ dialogue box within ‘Crosstabs’ select ‘Phi and Cramér’s V’ in addi-
tion to ‘Chi-square’. There will be an extra box in the output called ‘Symmetric 
Measures’ which contains both statistics and a P-value labelled ‘Approx. Sig.’.

 For 2×2 tables this can be quite easily calculated using the matrix notation in 
R where ‘[2,1]’ refers to element in row 2, column 1. First the data is entered 
directly as a table of frequencies, this is then visualized, next the elements of the 
array are placed in variables to save space later and finally the phi coefficient is 
calculated and output:

> x<-matrix(c(10,2,8,6),nrow=2)
> x
 [,1] [,2]
[1,] 10 8
[2,] 2 6
> a<-x[1,1]
> b<-x[1,2]
> c<-x[2,1]
> d<-x[2,2]
> e<-x[1,1]+x[1,2]
> f<-x[2,1]+x[2,2]
> g<-x[1,1]+x[2,1]
> h<-x[1,2]+x[2,2]
> phi<-( (a*d)-(b*c) )/(sqrt(e*f*g*h) )
> phi
[1] 0.2828895

 There is no direct method for performing the Cramér coefficient of 
association in MINITAB.

SPSS

R

MINITAB
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 There is no direct method for performing the Cramér coefficient of 
association in Excel.

Phi coefficient of association
This is a special case of the Cramér coefficient for 2×2 tables (i.e. there are only 
two categories for each of the two variables). It is used in combination with the 
chi-square test as it generates a value (rφ) that ranges from 0 to 1, indicating a 
range from no association through to perfect association. It can be calculated 
directly after a chi-square test has been carried out as it is equal to the square 
root of the value of X2 after it has been divided by the number of observations.

 Follow the instructions as for the chi-square test of association. In the 
‘Statistics’ dialogue box within ‘Crosstabs’ select ‘Phi and Cramér’s V’ in 
addition to ‘Chi-square’.

 Follow the instructions for 2×2 tables given above.

 There is no direct method for calculating the Phi coefficient of 
association in MINITAB, but it is a fairly easy calculation to achieve on a 
calculator or in Excel. In MINITAB it is relatively simple to perform the 
calculation. Note down the value of X2 and the number of observations in total. 
Enable the command prompt by selecting the ‘Session’ window, then from the 
‘Editor’ menu select ‘Enable commands’. At the MINITAB prompt type ‘LET 
K1=value1’, where ‘value1’ is the X2 from the test. Then ‘LET K2=value2’, 
where ‘value2’ is the number of observations. To calculate the phi coefficient, 
type ‘LET K3=SQRT(K1/K2)’. To display the result, type ‘Print K3’.

 If the value of X2 is in cell E1 and the number of observations is in C3, 
then the formula ‘=SQRT(E1/C3)’ will give the phi coefficient. Alternatively, if 
the 2×2 contingency table is laid out in cells A1, A2, B1 and B2 then the phi 
coefficient can be calculated directly by the rather horrible-looking formula:

=( (A1*B2)-(A2*B1) )/(SQRT( (A1+B1)*(A2+B2)*(A1+A2)*(B1+B2) ) )

Observations assigned a value
If each individual observation is assigned a meaningful numerical value in two 
variables there are several tests that may be applied to determine whether the 
two sets of observations are associated or correlated, the strength of the correla-
tion and whether it is significant or not. Four tests are considered here: the 
Pearson’s product-moment correlation, the Spearman’s rank-order correlation, 
the Kendall rank-order correlation and regression. The most appropriate test is 
determined by the distribution and quality of the of data.

Excel

SPSS

R

MINITAB

Excel
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‘Standard’ correlation (Pearson’s product-moment correlation)
When a correlation is mentioned it is almost invariably the Pearson product-
moment correlation that is in mind. The statistic, r, to estimate the true correla-
tion, r (rho), produced by the test ranges from −1, through 0, to 1 and describes 
a range of associations between two variables from perfect negative correlation, 
through no correlation to perfect positive correlation. This test is very widely 
applied; perhaps too widely, as it has some rather severe assumptions about the 
distribution of the two variables being investigated. Both variables must be 
measured on a continuous scale and both must be normally distributed (often 
termed a bivariate normal distribution). If these assumptions do not apply the 
Spearman’s rank-order correlation should be used instead.

When quoting the results of this test in a report it is usual to use a scattergraph 
(without a trend line) and the form ‘Pearson product-moment correlation indicates 
a significant positive association between x and y (r = 0.51, d.f. = 22, P < 0.05)’.

Two words of caution:
1 It is quite rare to find two variables that are normally distributed and therefore suitable 
for Pearson’s correlation. Test the data to see if they follow a normal distribution. Consider 
the alternatives.
2 The statistical significance of correlation is not a good guide to the real significance of the 
correlation. With large sample sizes the value of r required to achieve statistical significance 
(i.e. to show that there is some relationship between the two variables) is rather low. It is 
perhaps better to use the value of r 2 as an indicator of the real significance as this value 
shows the amount of variation in one variable explained by the other.

An example

A marine biologist working on Adélie penguins (Pygoscelis adeliae) has meas-
ured the sizes of birds forming pairs. The measure used is the length of a bone 
in the leg which is known, from previous studies, to be a good indication of size. 
It is measured to the nearest 0.1 mm. The null hypothesis is that male size is 
not correlated with female size. Unfortunately data could only be collected 
from six pairs.

Pair Female Male

1 17.1 16.5
2 18.5 17.4
3 19.7 17.3
4 16.2 16.8
5 21.3 19.5
6 19.6 18.3
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It is assumed that both variables are normally distributed. This data set is a little 
small to test this although a larger sample of the population might be more suit-
able (see ‘Do frequency distributions differ?’ in the previous chapter, page 72). 
In this case the null hypothesis is rejected as there is a significant positive cor-
relation between male and female size indicating that there is positive, assorta-
tive mating in this species. The value of r is 0.88 and r 2 is 0.77 indicating that 
77% of the variation in the size of one sex is explained by the size of the other.

 This is one of the easiest tests to carry out in SPSS. Input the data in two 
columns and add appropriate column labels. The cases (pairs in the example) do 
not require a separate column. From the ‘Analyze’ menu, select ‘Correlate’ then 
‘Bivariate…’. In the dialogue box move the names of the two variables into the 
‘Variables:’ box and make sure that the ‘Pearson’ option and ‘Two-tailed’ are 
checked. Click ‘OK’.

The following output appears:

 Correlations

Correlations

 Female Male

Female Pearson Correlation 1 .881*
Sig. (2-tailed) .020
N 6 6

Male Pearson Correlation .881* 1
Sig. (2-tailed) .020

 N 6 6

*Correlation is significant at the 0.05 level (2-tailed).

The output gives a matrix of correlation coefficients, degrees of freedom and 
P-values although only one set is actually useful. The correlations of x with x and 
y with y (e.g. female with female in the example) unsurprisingly report a perfect 
correlation of ‘1.000’. The important section is the correlation of x with y (female 
with male in the example). The statistic is given first (r = 0.881 in the example), 
then the numbers of pairs of observations in brackets and finally a P-value 
(labelled ‘Sig. (2-tailed)’ and 0.020 in the example). As r is positive it shows that 
there is positive size assortment of individuals in pairs in the example (i.e. large 
females tend to be paired with large males) and the association is strong enough 
to allow us to reject the null hypothesis and accept the alternative hypothesis.

 Assuming the data have been imported from a text file that looks exactly like 
the data in the example and then attached, correlation is very easy to achieve 
with the ‘cor()’ function:

> cor(Female,Male)
[1] 0.8813196

SPSS

R
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This gives the value of the Pearson correlation coefficient for comparisons of the 
sizes of males and females in pairs. This is a high value and using r 2 as indication, 
accounts for about 77% of the variation in size:

> 100*cor(Female,Male)^2
[1] 77.67243

If you want to correlate all pairs of variables in one go that can be done with 
‘cor()’ too:

> cor(penguin)
Pair Female Male
Pair 1.0000000 0.4983785 0.7177929
Female 0.4983785 1.0000000 0.8813196
Male 0.7177929 0.8813196 1.0000000

Here my data was in ‘penguin’ and shows all pairwise correlations, twice. In this 
case only the female/male correlation is of interest.

If you need more output, and a P-value, use the function ‘cor.test()’:

> cor.test(Female,Male)

Pearson’s product-moment correlation

data: Female and Male
t=3.7303, df=4, p-value=0.02029
alternative hypothesis: true correlation is not equal   
 to 0
95 percent confidence interval:
0.2449766 0.9869616
sample estimates:
cor
0.8813196

This confirms that the correlation coefficient of 0.88 is indeed significant at P = 0.02 
and that the 95% confidence intervals for the value of r range from 0.24 to 0.98, 
which indicates that it is very likely that there is a positive relationship between 
male and female size in pairs and therefore evidence of assortative mating.

 Input the data in two columns using one row for each pair of 
observations. Label the columns appropriately. From the ‘Stat’ menu select 
‘Basic statistics’ then ‘Correlation…’. Highlight the names of the two variables 
then press the select button (Fig. 8.1). Click ‘OK’. [Or type ‘corr c1 c2’ at the 
MTB> prompt in the session window.]

MINITAB
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The following output appears:

Correlations: Female, Male

Pearson correlation of Female and Male = 0.881 
P-Value = 0.020

The test reports the value of r and the P-value. In the example this indicates that 
there is a strong positive association between the two variables, showing that 
there is positive assortative mating. In the example the value of P is well below 
0.05, indicating that this is a significant association, even with a very small sam-
ple size, and the null hypothesis of no association should be rejected. However, 
as noted above, it is important to be cautious about the significance of correla-
tions, especially with large samples.

 There are two methods for calculating the Pearson’s product-moment 
correlation in Excel: the first requires the Analysis ToolPak to be installed, the 
second does not. To install the Analysis ToolPak go to the ‘Office button’, then 
click the ‘Excel Options’ button. Choose the ‘Add-Ins’ menu and here you will 
be able to add or remove ‘Application Add-ins’.

Method 1 Arrange the data in two columns with appropriate column labels. 
From the ‘Data’ menu/ribbon select ‘Data analysis…’ then ‘Correlation’. Click 
‘OK’. The ‘Input Range:’ box should contain the cell code for the top left and 
bottom right of the area containing the data separated by a colon (‘:’). This can 
be done most easily by selecting the ‘Input Range:’ box then clicking on the top 

Excel

Fig. 8.1 Bivariate correlation in minitab. Each pair of variables should be highlighted and 
selected to move them into the ‘Variables:’ box.
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left cell and dragging to the bottom right. Data in the example are arranged in 
columns, and that option should be selected by default. If the variable labels are 
included in the selected cells, the ‘Labels in first row’ box should be checked, it is 
a good idea to include the labels as it makes the output easier to understand. The 
output can either appear on a separate sheet or elsewhere on the same sheet. If 
on the same sheet the ‘Output range’ option needs to be selected and the cell 
indicating the point at the top left of the output put into the box. Click ‘OK’.

This table appears:

Method 2 Arrange the data in two columns (or two rows). Select an empty cell 
then click on ‘Insert Function’, then ‘Statistical’ and select ‘Correl’. Click ‘OK’. 
Input the range of cells containing the data for the first variable into the ‘array1’ 
box (this can be done by either typing in the first and last cell with ‘:’ between 
them or by clicking on the first cell and dragging the pointer to the last cell). Put 
the range for the second variable in the ‘array2’ box and click ‘OK’. The r value 
appears in the cell.

Either method will produce the same number although the output from 
method 1 appears to be more extensive. The value of the statistic r is given. It is 
0.88132 using the example data, indicating strong positive association of the 
two sets of observations. The r 2 value can be determined by selecting an empty 
cell and typing ‘= 0.88132 ̂  2’ (the ^; symbol is often used to mean ‘to the 
power of’). If the P-value associated with this value of r is required this can be 
determined using regression (regress one variable on the other and inspect the 
P-value reported in the ANOVA table section of the output; see the regression 
section later in this chapter for further details). Be warned that P-values in cor-
relation are highly influenced by sample size and large samples will give low 
P-values even when the effect, as measured by r 2, is quite weak.

Spearman’s rank-order correlation
This is one of two commonly used non-parametric equivalents of the Pearson’s 
product-moment correlation. The statistic it gives is called rs and ranges from −1 
through 0 to 1, indicating perfect negative correlation, no correlation and perfect 
positive correlation, respectively. Although this is superficially the same scale as the 
Pearson r it is not advisable to compare the results from this test directly with values 
of r. As long as there are two observations for each individual and that the observa-
tions are measured on a scale that can be put into a meaningful rank order this test 
is appropriate. Spearman’s correlation is much more conservative than Pearson’s.
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An example

The same penguin example will be used as for the Pearson product-moment 
correlation used above. It is quite possible that a researcher will use the 
Spearman’s rank-order correlation rather than the Pearson if there is a doubt 
about the data set’s appropriateness for the Pearson test.

 Arrange the data in two columns with each row representing an individual 
(in the example the ‘individuals’ being considered are actually pairs of birds). 
Label the columns appropriately. From the ‘Analyze’ menu select ‘Correlate’ 
then ‘Bivariate…’. Highlight the names of the two variables and move them into 
the ‘Variables:’ box. Make sure that ‘Spearman’ is checked (Pearson is checked 
by default) and that ‘Test of Significance’ is ‘Two-tailed’. Click ‘OK’.

The following output appears:

Nonparametric Correlations

Correlations

 Female Male

Spearman’s rho Female Correlation Coefficient 1.000 .771
Sig. (2-tailed) .072
N 6 6

Male Correlation Coefficient .771 1.000
Sig. (2-tailed) .072

 N 6 6

This confirms the test used and then gives the value of rs (labelled ‘Correlation 
Coefficient’), the number of pairs of observations and the P-value associated 
with the rs value (labelled ‘Sig. (2-tailed)’). In the example although the statistic 
is clearly showing a large positive association it is not large enough to be deemed 
significant because the sample size is rather small. However, the P-value is suf-
ficiently close to 0.05 to warrant further investigation.

 The data should be arranged as in the example and imported to R. The same 
functions can be used as for Pearson correlation (‘cor()’ and ‘cor.test()’) 
but with the option ‘method= “spearman” ’ or ‘method= “s” ’ added:

> cor(Female,Male,method=”spearman”)
[1] 0.7714286

> cor.test(Female,Male,method=”s”)

Spearman’s rank correlation rho

data: Female and Male
S=8, p-value=0.1028

SPSS

R
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alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7714286

The output from the Spearman’s correlation is usually called Spearman’s rho, 
Spearman’s ρ or rs. Here the value is 0.77, which is quite a strong positive cor-
relation, but the significance is well above 0.05 because the data set is so small.

Note that Spearman’s correlation is effectively a Pearson correlation on the ranks 
which can be demonstrated using the ‘rank()’ function within ‘cor()’ in R:

> cor(rank(Female),rank(Male) )
[1] 0.7714286

 This test cannot be carried out directly in MINITAB. The data first 
have to be put into rank order and then a Pearson correlation carried out on the 
ranked data.
1 Input the data in two columns. Label the columns appropriately. If there are 
any individuals where one or both of the observations are missing these should 
be omitted from the data set. From the ‘Data’ menu select ‘Rank…’. Put the 
name of the first variable into the ‘Rank data in:’ box and put a new name (e.g. 
‘RankF’) in the ‘Store ranks in:’ box. Click ‘OK’. A new column will appear with 
the original data replaced with integers starting at ‘1’ for the smallest value. 
Repeat for the second variable.
2 Carry out a normal Pearson correlation on the ranked data. From the ‘Stat’ 
menu select ‘Basic statistics’ then ‘Correlation…’. Highlight the two ranked 
variables in the list on the left and click on select to move them into the 
‘Variables:’ box. Click ‘OK’.

This output appears:

Correlations: RankF, RankM

Pearson correlation of RankF and RankM = 0.771
P-Value = 0.072

The test indicates that a Pearson correlation has been carried out (the package 
does not ‘know’ that ranked data are being used). The correlation reported is the 
value of rs. In this case it shows that there is a strong positive association between 
male and female size, but the significance of 0.072 is not small enough for us to 
reject the null hypothesis.

 There is no direct way of carrying out this test in Excel, even with the 
Analysis ToolPak add-in installed. However, it is possible to carry out the test by 
first ranking the data and then performing a normal correlation.

MINITAB

Excel
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1 Input the data in two columns with a pair of observations on each row. Do 
not include any rows where one or both of the observations are missing. Use the 
cells at the top of the columns for appropriate labels. To rank the data first select 
a cell in an empty column in the same row as the first row of data. To use the 
‘rank’ operation it is probably easiest to simply type ‘=RANK(B2,B$2:B$7)’ 
rather than use ‘Insert function’. This command asks that the cell is given the 
rank of cell B2 in the range of cells B2 to B7 (the six cells containing the female 
sizes in the example). The inclusion of the $ symbol makes it very easy to use 
the copy and paste commands to rank the whole data set as it anchors the row 
numbers, thus preserving the correct range during the pasting. First select the 
cell, then click on the small black square in the bottom right and drag to the cell 
in the next column to the right level with the last observation in the data set. 
This will place the appropriate ‘RANK’ syntax in each cell without having to 
type in anything else (in the example it left ‘=RANK(C7,C$2:C$7)’ in the bot-
tom right cell). Label the columns containing the ranks appropriately.
2 Carry out a Pearson correlation on the ranked data. Select an empty cell. 
Click on ‘Paste function’ and select ‘CORREL’ from the ‘Statistical’ section of 
the list. Click ‘OK’. Input the range of cells containing the data for the first vari-
able into the ‘Array1’ box (this can be done by clicking on the first cell and 
dragging the pointer to the last cell). Put the range for the second variable in the 
‘Array2’ box and click ‘OK’ (Fig. 8.2). The rs value appears in the cell.

Fig. 8.2 Spearman’s rank correlation in Excel. The data have to be ranked first and then 
a normal Pearson’s product-moment correlation is carried out on the ranked data.
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In the example the value of rs is 0.771429, indicating a strong positive associa-
tion of ranked female and ranked male size. No value of significance is given.

Kendall rank-order correlation
A second, and slightly less widely used, non-parametric correlation in the 
Kendall rank-order correlation. It is sometimes called Kendall’s tau and the sta-
tistic produced is usually denoted as T. As with the Spearman’s correlation, the 
test can be carried out on any data set where there are two observations for each 
individual and the data can be put into a meaningful rank order. Like other 
measures of association, T ranges from −1 through 0 to 1, indicating the range 
from perfect negative correlation, to no correlation and perfect positive correla-
tion. Although this is the same as the Pearson r and the Spearman rs it is not 
advisable to compare the results from this test directly with either.

The only slight advantage of Kendall correlation over Spearman’s is that T can 
be used in partial correlation whereas rs cannot.

It is advisable to use caution when interpreting the significance of a value of T as when sam-
ple sizes are very large there is likely to be a P-value less than 0.05 even though the associa-
tion is only slight.

An example

The same example as used for the Pearson and Spearman tests is used.

 As for Spearman’s correlation, arrange the data in two columns with a 
row for each ‘individual’. Label the columns appropriately. From the ‘Analyze’ 
menu select ‘Correlate’ then ‘Bivariate…’. Select the two variables and move 
them into the ‘Variables:’ box. Select the ‘Kendall’s tau-b’ option from the 
‘Correlation coefficients:’ list. Make sure ‘Test of Significance’ highlights ‘Two-
tailed’. Click ‘OK’ to run the test.

The following output appears:

Nonparametric Correlations

Correlations

 Female Male

Kendall’s tau_b Female Correlation Coefficient 1.000 .600
Sig. (2-tailed) .091
N 6 6

Male Correlation Coefficient .600 1.000
Sig. (2-tailed) .091

 N 6 6

SPSS
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This confirms the test used and then gives the value of T (here labelled 
‘Correlation Coefficient), the number of pairs of observations and the P-value 
associated with the T value (labelled ‘Sig. (2-tailed)’). In the example, although 
the statistic is clearly showing a large positive association it is not large enough 
to be deemed significant because the sample size is rather small. However, the 
P-value is close enough to 0.05 to be worthy of further investigation.

Note that the value of T is rather less than the value of rs in the Spearman’s 
test although both used the same data. This highlights the fact that the two 
statistics should not be compared directly.

 The data should be arranged as in the example and imported to R. The same 
functions can be used as for Pearson correlation (‘cor()’ and ‘cor.test()’) 
but with the option ‘method= “kendall” ’ or ‘method= “k” ’ added:

> cor(Female,Male,method=”k”)
[1] 0.6

> cor.test(Female,Male,method=”kendall”)

Kendall’s rank correlation tau

data: Female and Male
T=12, p-value=0.1361
alternative hypothesis: true tau is not equal to 0
sample estimates:
tau
0.6

The output from the Kendall rank correlation is usually called Kendall’s tau or τ. 
Here the value is 0.6, which is a fairly strong positive correlation, but the signifi-
cance is well above 0.05 because the data set is so small. Note that although all 
three correlations use the same range (−1 to +1) they cannot be directly 
compared.

 A Kendall rank correlation is not possible in MINITAB: use Spearman’s 
rank correlation instead.

 There is no direct way of carrying out this test in Excel: use Spearman’s 
rank-order correlation instead.

Regression
The use of regression usually implies that a prediction of one value is being 
attempted from another; that is, cause and effect. Regression analysis is consid-
ered in the next section. However, as most regression output gives a P-value and 
an r 2 value, the similarity to the Pearson product-moment correlation is very 
great. The P-value given in a standard linear regression is the probability that the 

R

MINITAB

Excel
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best-fit slope of the relationship between two variables is actually zero. In a 
comparison with the Pearson statistic, this translates to the probability that 
there is no relationship (i.e. r = 0). Regression analysis usually considers a second 
null hypothesis: ‘the value of y is zero when x is zero’. This translates to a test of 
whether the best-fit line through the data set passes through the origin. It is 
often labelled as a test of the intercept.

The advantage of using regression rather than Pearson’s correlation is that the 
assumption that both variables are distributed normally is lifted. The assumptions 
are different, although slightly less restrictive. For example, regression assumes 
that the x (‘cause’) values should be measured without error, that the variation in 
the y (‘effect’) is the same for any value of x, that the y values should be normally 
distributed at any value of x and, for linear regression, that the relationship between 
two variables can be described by a straight line. Of these the assumption that 
variance in y is the same for all values of x is probably the least likely to be true. It 
is usual for variance in y to increase as the x (‘cause’) variable increases.

If you decide to use regression to determine the association between two varia-
bles please use great caution because the implication is that one of the variables in 
some way depends on the other. Also, one of the underlying assumptions of regres-
sion is that the values of the ‘cause’ variable are in some way set, or chosen, by the 
investigator; clearly this is not the case if the observations are taken at random.

An example

Again we consider the penguin pairs used as the example throughout this section. 
The researchers were testing the null hypothesis that male and female birds were 
forming pairs independent of their size. The alternative hypothesis was that there 
was an association (either positive or negative) of male and female sizes in pairs. 
Framed in this way the hypothesis is not suitable for regression. But, if the pen-
guins form pairs by a choice of one sex for another then it might become a more 
like a regression problem. If females actively chose males then the null hypothesis 
can be framed in regression terms as ‘male size does not depend on female size’. 
However, even if male size can be said to depend on female size there is still the 
problem that the female sizes were not set or chosen by the investigator.

Is there a cause-and-effect relationship between two variables?

Questions
There are many circumstances where it is clear that one set of observations in 
some way depends on another. In this section there will be two observations for 
each ‘individual’ with one observation being the ‘cause’, x, ‘predictor’ or ‘inde-
pendent’ variable that is set, or chosen, by the experimenter and the other being 
the ‘effect’, y or ‘dependent’ variable, which is never set by the experimenter. 
There are a variety of methods that can be applied to determine the form and 

9781405198387_4_008.indd   2209781405198387_4_008.indd   220 9/16/2010   11:36:31 PM9/16/2010   11:36:31 PM



Tests 2: tests to look at relationships 221

strength of the relationship between the cause and effect that make different 
assumptions about the variables and the form of the relationship between them. 
Five tests are considered here: linear regression, Kendall robust line-fit method, 
logistic regression, model II regression and polynomial regression.

‘Standard’ linear regression
‘Standard’ linear regression (a.k.a. model I linear regression) is a very widely 
used statistic in biology. It is also, possibly, the most abused statistic in biology 
because the assumptions of the test are often flouted. Linear regression is an 
extremely powerful and useful technique that determines the form and strength 
of a relationship between two variables. It is used if the intent is to be able to 
predict a value for y (effect, response or dependent) from a given value of x 
(cause, predictor or independent). There are several components to any output. 
The ‘slope’ is the slope of a straight line of best fit drawn through the set of 
points with co-ordinates defined by the two variables. Slope can be positive or 
negative indicating an increase or decrease of y with increasing values of x. The 
slope can, theoretically, take any value. A slope of zero indicates no change in y 
with x. The second component of the output is the ‘intercept’ or ‘constant’. This 
is the predicted value of y when x is equal to zero. The slope is often called b or 
m and the intercept a or c or ‘constant’. Both slope and intercept are usually 
quoted with some measure of their variability (e.g. a 95% confidence interval or 
standard deviation). There is often a significance test result given with regres-
sion output. This is a test of whether the slope is zero or not (i.e. testing a null 
hypothesis that b = 0). If the P-value is less than 0.05 this should be interpreted 
as an indication that the slope is significantly different from zero, indicating that 
there is a relationship between the x and y variables.

Linear regression makes many assumptions about the data sets. Important 
assumptions include that the values of x are measured without error, that the 
values of x are chosen or set by the experimenter, that the relationship between 
x and y is best fitted by a straight line (y = a+bx), that the variation in y is the 
same for all values of x and that y is normally distributed for any value of x.

Tip: if you are unsure which of the two variables is the x (‘cause’) variable then linear regres-
sion is almost certainly not appropriate. 

Prediction

Once a best fit-line has been determined then a value for the ‘effect’ can be 
predicted for any value of the ‘cause’. In practice it is unwise to use values of the 
‘cause’ variable that are beyond the range of the data used to fit the line as 
the shape of the relationship is unlikely to be the same across all values of the 
‘cause’. Although it may appear tempting, you should never use an observation 
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of the ‘effect’ to make a prediction of the ‘cause’ by simple rearrangement of the 
algebra of the best-fit line.

Interpreting r 2

One commonly used output from linear regression is the value of r 2. This is 
often expressed as a percentage and described as the amount of variation 
explained by the regression (i.e. how much of the variation in the ‘effect’ can be 
accounted for by using the relationship between ‘cause’ and ‘effect’). Another 
way to interpret r 2 is to consider that a prediction of the ‘effect’ can be made 
from its overall mean and the percentage improvement in prediction in the 
‘effect’ variable that results from the regression is given by r 2.

Comparison of regression and correlation

The assumptions of linear regression are very different to those of correlation. 
‘Standard’ correlation assumes that both x and y are normally distributed. For 
this reason it is tempting to use regression in lieu of correlation when variables 
are not normally distributed. Do not do this: try an alternative correlation 
instead because regression makes different assumptions that are unlikely to be 
true if correlation was the preferred statistical technique.

Residuals

The variation in y not accounted for by the best-fit line relationship between x 
and y is called the residual variation. For each observation of x there is a pre-
dicted value on the line of y. Because y varies, any point is unlikely to lie exactly 
on the fitted line. The vertical distance from the point to the line is the residual 
for that point. It is often helpful to examine the residuals by plotting them 
against x. This is offered as an option in most statistical packages. If the relation-
ship of x and y is really a straight line, or there is no relationship at all, then the 
residuals will be scattered without pattern for all values of x. However, if the 
relationship is really a curve then the residuals of a best-fit straight line will 
show this to be the case: most of the residuals will be negative (or positive) at 
the ends of the line and positive (or negative) in the middle. If this is the case, 
then either a polynomial regression might be a better option than a linear regres-
sion or the data should be transformed.

Also, one of the assumptions of regression is that there is the same variation 
in y for all values of x. If the residuals are all small at one end of the range of x 
values and large at the other this would indicate that this assumption had been 
violated: this situation is another common one in biology.

Confidence intervals

The confidence intervals (CIs) attached to slope and intercept allow a range of 
possible lines to be drawn with boundaries enclosing the range within which 
95% (or 90%, if preferred) of the lines of best fit will appear. As this range of 
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possible lines is, in some way, anchored to the y-axis at the point where x is zero 
and comprises a range of lines of different slope, the 95% confidence limits of 
the lines are not straight lines. They are always curved lines that are closer to the 
best-fit line in the middle of the range of values of x and further away from it at 
the extremes. This indicates that you can be more confident about the predic-
tions of the regression in the middle of the data.

Prediction interval

This is a range within which 95% of the values of y are predicted to occur for 
any given value of x. The 95% prediction intervals (PIs) will always be further 
away from the best-fit line than the 95% confidence interval for the line. They 
do not run parallel to the best-fit line but, like the confidence interval for the 
line, are narrower for mid-range values of x.

An example

A team of researchers is investigating the uptake of an experimental drug 
through the stomach. They suspect that the acidity of the stomach will affect 
uptake and propose an experiment to determine the uptake across a range of 
acidities. Using preparations of sheep stomach and a fixed concentration of the 
drug in solution, a range of pH values is prepared and the passage of the drug 
through the stomach monitored. This is suitable for regression as the acidities 
(‘cause’) are set by the experimenters and we can assume that they are meas-
ured without error.

 pH

 0.6 0.8 1.0 1.2 1.4 1.6

Uptakes
 

11.32 11.29 11.37 11.32 11.32 11.49
11.31 11.22 11.40 11.31 11.36 11.52
11.22 11.18 11.38 11.35 11.40 11.38
11.23 11.21 11.37 11.32 11.35 11.49

It is usually best to plot the data as a scattergraph at this point to get a feel for 
the form of the relationship. This has been done in Excel (Fig. 8.3).

 There are many options that can be applied to enhance the output of the 
standard linear regression in SPSS. First the very minimum output will be 
considered and then options that might be useful to help interpret the form of 
the relationship between the two variables.

Input the data in two columns and label them appropriately. There should be 
one row for each observation (two numbers). From the ‘Analyze’ menu select 
‘Regression’ and ‘Linear…’. Move the column containing the y, ‘response’ or 
‘effect’ variable into the ‘Dependent:’ box. Move the x, ‘predictor’ or ‘cause’ 

SPSS
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variable (the one set or chosen) into the ‘Independent(s):’ box. Ignore all of the 
possible options, just click ‘OK’.

Using the example data the following output appears:

Regression

Variables Entered/Removedb

Model
Variables 
Entered

Variables 
Removed Method

1 pHa Enter

a. All requested variables entered.

b. Dependent Variable: Uptake.

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .758a .574 .555 .05893

a. Predictors: (Constant), pH

11.55

11.50

11.45

11.40

11.35

11.30

U
pt

ak
e 

m
g 

h–1

11.25

11.20

11.15
0.4 0.6 0.8 1 1.2

pH

1.4 1.6 1.8

Fig. 8.3 Visualization of data suitable for regression using Excel. There were six pH 
levels set by the experimenter and four observations of uptake made at each level. This 
sort of plot gives a feel for the variation and trend in the data before any regression 
analysis is undertaken. It is right to plot the data like this before a trend line is added, as 
the line will draw the eye.

9781405198387_4_008.indd   2249781405198387_4_008.indd   224 9/16/2010   11:36:32 PM9/16/2010   11:36:32 PM



Tests 2: tests to look at relationships 225

ANOVAb

Model  
Sum of 
Squares df

Mean 
Square F Sig. 

1 Regression .103 1 .103 29.654 .000a

Residual .076 22 .003
Total .179 23

a. Predictors: (Constant), pH

b. Dependent Variable: Uptake

And

Coefficientsa

  Unstandardized 
Coefficients

Standardized 
Coefficients

Model  B Std. Error Beta t Sig.

1 (Constant) 11.127 .041 274.296 .000
pH .192 .035 .758 5.446 .000

a. Dependent Variable: Uptake

Even this minimum level of output is rather bewildering. First the output con-
firms the test used and then the names of the x variables (just one in most 
cases). Then comes a ‘Model Summary’ that gives the value of r (labelled ‘R’) 
and r 2 (labelled ‘R Square’). The other columns give a more conservative esti-
mate of r 2 and a measure of the confidence in r 2.

Next is an ANOVA table comparing the best-fit line against a null hypothesis of 
no relationship (e.g. slope is zero). In this table the F-ratio (‘F’) and its associ-
ated P-value (labelled ‘Sig.’ here) is given. In the example the P-value is given as 
‘.000’ meaning P<0.001, which is highly significant. There is very little doubt 
that a significant amount of the variation in y is explained by x.

Finally come the estimates for the values of the two ‘coefficients’ (i.e. the 
slope and the intercept). The intercept is given first on a row (labelled ‘(Constant)’) 
here giving a value with standard error and then a t-test of the null hypothesis 
that the intercept is zero. The next line (labelled ‘pH’ in the example) gives a 
value for the slope, and is followed by an estimate of the standard error associ-
ated with the slope and then a t-test of the null hypothesis that the slope is equal 
to zero (this is essentially a repeat of the result of the ANOVA table).

In this example the slope of the relationship between ‘pH’ and ‘uptake’ is 
0.192 and the intercept (value of ‘uptake’ when ‘pH’ is zero) is 11.127. Both 
these values are significantly different from zero. The best-fit line of 
‘uptake = 0.192×pH+11.127’ explains about 57% of the variation (the r 2 value) 
in the observations of ‘uptake’. The best-fit line can be, theoretically, applied to 
any value of x (‘pH’), within the range used in the analysis, to make a prediction 
of y (‘uptake’).
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Useful options to help with the interpretation of the regression relationship 
include a plot of the residuals. From the ‘Linear Regression’ dialogue box 
choose ‘Plots’. Then put the ‘DEPENDNT’ into the ‘X:’ box and ‘*ZRESID’ 
into the ‘Y:’ box. This will generate a plot of the residuals plotted against the 
values of the ‘effect’ variable. If there is a clear pattern in this plot then it is 
likely that one of the assumptions of the regression has been violated. For 
example, if the true relationship is a curve this will show up in this plot as a 
curved shape.

 Executing a simple linear regression in R is very simple in the ‘lm()’ function. 
Assuming that the data have been attached and are two labelled columns, give 
the function the name of the response variable, then a tilde (~) then the name 
of the predictor variable. Use the ‘summary()’ function to provide useful 
output:

> summary(lm(Uptake~pH) )

Call:

lm(formula=Uptake ~ pH)

Residuals:
Min 1Q Median 3Q Max
-0.10038 -0.04586 -0.00956 0.05619 0.08619

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.12695 0.04057 274.296 < 2e-16 ***

pH 0.19179 0.03522 5.446 1.80e-05 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05893 on 22 degrees of 
 freedom
Multiple R-squared: 0.5741, Adjusted R-squared: 0.5547
F-statistic: 29.65 on 1 and 22 DF, p-value: 1.804e-05

The output gives an idea of the model that is being used in the ‘lm()’ function, 
then gives a report of the distribution of the residuals; that is, the vertical dis-
tance of each point from the fitted line. We hope that the residuals are symmetri-
cal and have a median of zero as appears to be the case here. Next comes the 
important estimates of the parameters of the line and the significance of those 
parameters. First is the intercept: this is the value of y when x is zero (or in the 
example the value of ‘Uptake’ when ‘pH’ is zero), this is 11.13 here and highly 
significantly different from zero. However, this significance is of little interest, as 
it is in most regression analyses. The second line is the more important one. 

R
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It gives the value of the slope of the relationship, here 0.19, and provides a sig-
nificance value, here a highly significant 0.000018. This means in the example 
that for each increase of 1 in ‘pH’ we would predict an increase of 0.19 in 
‘Uptake’ and this slope is very significantly different from the null hypothesis 
that the slope is zero.

The r 2 value is 0.574. This indicates that 57% of the variation in the response 
variable (‘Uptake’) can be explained by the predictor variable (‘pH’). This can 
be visualized, as in Fig. 8.3:

> plot(pH,Uptake)

A best-fit line can be added to this plot by taking the intercept and slope values 
from the output and using ‘abline()’:

> abline(11.127,0.192)

A series of plots of the data and residuals can be produced:

> m<-lm(Uptake~pH)
> plot(m)

 Put the data in two columns: one for the x values and one for the y 
values. Label the columns appropriately. From the ‘Stat’ menu select ‘Regression’ 
then ‘Regression…’. In the dialogue box that appears move the column contain-
ing the y values into the ‘Response:’ box and the column of x values into the 
‘Predictors:’ box. Ignore the array of additional options for the moment. Click 
‘OK’. Note that MINITAB calls the y or ‘effect’ variable the ‘response’ and the 
x or ‘cause’ variable the ‘predictor’.

(Or, if the command interface is enabled, and assuming the y values are in c1 and 
the x values in c2, type ‘Regress c1 1 c2’ at the MTB> prompt in the session 
window.)

This output appears:

Regression Analysis: Uptake versus pH

The regression equation is
Uptake = 11.1 + 0.192 pH

Predictor Coef SE Coef T P
Constant 11.1270 0.0406 274.30 0.000
pH 0.19179 0.03522 5.45 0.000

S = 0.0589325 R-Sq = 57.4% R-Sq(adj) = 55.5%

Analysis of Variance    

Source DF SS MS F P
Regression 1 0.10299 0.10299 29.65 0.000
Residual Error 22 0.07641 0.00347  
Total 23 0.17940   

MINITAB
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The output first confirms the test and then gives the best-fit line of the two vari-
ables. This describes both the intercept (11.1 in the example) and the slope 
(0.192 in the example). Then comes a section repeating the two parameters 
where the intercept is labelled as ‘Constant’. A standard deviation is given for 
each along with a t-test with the null hypothesis that the parameters are zero 
and the P-value (labelled ‘P’) associated with the t-test (labelled ‘T’). In the 
example both slope and intercept are highly significantly different from zero, 
although you will rarely be interested in whether the intercept is significantly 
different from zero. Next comes a line that reports the proportion of the vari-
ance in the y values that is explained by the best-fit line. In this case the r 2 value 
(labelled ‘R-sq’) is 57.4%.

Finally comes an ANOVA table that compares the variation explained by the 
best-fit line with the residual variation. The null hypothesis is that none of the 
variation in y is explained by the regression line. In this case the relationship is 
highly significantly different from zero and P is given as ‘0.000’ although this 
should be reported as P < 0.001.

There are many optional extras that can be added to the basic regression 
analysis. Some of these extras are valuable for exploring the relationship between 
the x and y variables. The plot of ‘Residuals versus fits’ can often be revealing 
and is a good way to detect whether the linear relationship would be better fit-
ted to a curve.

 Regression is only possible if the Analysis ToolPak has been installed. 
Put the data into two columns. One for the ‘effect’ and one for the ‘cause’. 
Each row should represent a single observation (i.e. two values). Use the cells 
above the data to label the columns appropriately. From the ‘Data’ menu/
ribbon select ‘Data Analysis’ then select ‘Regression’ from the long list and 
click ‘OK’.

The ‘Input Y Range:’ box should contain the code for the first and last cells 
with the list of y values (including the label). This can be most easily done if 
you click in the box to move the cursor there then click on the top of the list 
of data and drag to the bottom of the list. Repeat this for the ‘Input X Range:’ 
box with the x values (these are the ones set or chosen by the experimenter). 
If the labels have been included then make sure that the ‘Labels’ option is 
checked. Note that Excel asks for the y (‘effect’) values first, although it 
might be easier for graph drawing to have the x values to the left of the 
y values.

To define where the output is to appear choose either ‘Output range:’ and 
point at the top left corner of where the output will appear or leave the selec-
tion as ‘New Worksheet Ply:’, which will put the output in a fresh worksheet. 
Click ‘OK’.

The example data produces this output:

Excel
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SUMMARY OUTPUT 

Regression Statistics 

Multiple R 0.757685706
R Square 0.574087629
Adjusted R Square 0.554727976
Standard Error 0.058932513
Observations 24

ANOVA

 df SS MS F Significance F

Regression 1 0.102988929 0.102988929 29.65381775 1.80402E–05

Residual 22 0.076406905 0.003473041

Total 23 0.179395833    

 Coefficients Standard 
Error

t Stat P-value Lower 
95%

Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 11.12695238 0.040565502 274.2959362 2.24017E-40 11.04282468 11.21108 11.04282 11.21108
pH 0.191785714 0.035218913 5.445531907 1.80402E-05 0.11874616 0.264825 0.118746 0.264825

This output is rather confusing. First the output confirms that ‘Regression 
 statistics’ are being reported. Then come four lines giving the strength of the 
relationship between y and x. This is effectively the r of the Pearson’s cor-
relation. The ‘R Square’ (usually given as ‘r-square’) can be interpreted as 
the proportion of the variation in y explained by the best-fit line. In the 
example just over 57% of the variation in y is explained by the line 
(0.57408).

Next is an ANOVA table comparing the best-fit line against a null hypothesis of 
no relationship (i.e. the slope is zero). In the example the P-value (labelled as 
‘Significance F’) is given as ‘1.80402E-05’ meaning 0.000018 or P < 0.0001, 
which is highly significant. There is very little doubt that a significant amount 
of the variation in y is explained by x.

Finally come the estimates for the two parameters in a separate table (i.e. the 
slope and the intercept). The first row refers to the intercept giving a value with 
standard error and then a t-test of the null hypothesis that the intercept is zero 
with associated P-value (ludicrously small in the example) and then estimates 
of the 95% confidence intervals for the intercept (in the example the intercept 
is 95% likely to lie between 11.04 and 11.21). The slope is given on a row 
labelled ‘pH’ in the example. The estimated value for the slope is given, and is 
followed by an estimate of the standard error associated with the slope and then 
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a t-test of the null hypothesis that the slope is equal to zero with P-value (this 
is essentially a repeat of the result of the ANOVA table) followed by 95% confi-
dence intervals for the slope.

In this example the slope of the relationship between ‘pH’ and ‘uptake’ is 
0.1918 and the intercept (value of ‘uptake’ when ‘pH’ is zero) is 11.13. Both 
these values are significantly different from zero. The results can be interpreted 
as a best-fit line of ‘uptake = 0.1918 × pH + 11.13’ explaining 57% of the varia-
tion in the observations of ‘uptake’. This best-fit line could be, theoretically, 
applied to any value of ‘pH’ to predict ‘uptake’.

Options to try in the Excel regression dialogue box include the residual plot 
and table of residuals, where the residual value (distance from the best-fit line) 
is given for every data point. The residual plot can be used to detect systematic 
deviations from the assumptions of a linear regression: for example, larger devia-
tions at higher values of x, or if the true line is a curve.

Kendall robust line-fit method
This is a simple non-parametric test that can be used instead of normal regres-
sion. It is unlikely to be supported by a statistical package although it should be 
possible to calculate using simple spreadsheet manipulations. The idea is to cal-
culate the slope of the line between every possible pair of x, y points. This will 
potentially generate a large number of slopes (e.g. ten slopes from five points, or 
45 slopes from 10 points). The median slope is then selected as the best esti-
mate of b.

Once the median slope has been determined the intercept can be calculated 
by taking the slope back from every observation to x = 0. This gives an intercept 
for every point. The median intercept value should be used.

This test makes very few assumptions about the data other than it is meas-
ured on a meaningful scale.

Logistic regression
This is a special form of regression analysis that is used when the ‘dependent’ or 
‘effect’ variable can only be classified into groups (many packages limit this to 
two groups). It is a regression analysis that uses the proportions of the two pos-
sibilities of the ‘dependent’ converted to a logit to calculate the relationship 
with the ‘independent’ or ‘cause’ variable and is particularly useful when there 
are proportions near 0 or 1.

Unlike linear regression, the logistic regression does not require the ‘cause’ 
(‘independent’ or x) to be on a meaningful scale. There can be as few as two points 
on the x-axis (e.g. male and female) and a logistic regression is still possible. Logistic 
regression uses logit transformations (see Chapter 5) of the ‘effect’ (‘dependent’ 
or y) values although the packages make this transformation for you.

9781405198387_4_008.indd   2309781405198387_4_008.indd   230 9/16/2010   11:36:32 PM9/16/2010   11:36:32 PM



Tests 2: tests to look at relationships 231

Logistic regression is a very powerful technique and can be used as a classifi-
cation tool in a similar way to discriminant function analysis. The example 
below is a very simple problem for logistic regression. The problem is a similar 
one to a linear regression but is using a ‘response’ or ‘effect’ variable that can 
only be in one of two categories. Logistic regression can also be used as a form 
of multiple regression with many ‘cause’ or ‘predictor’ variables.

An example

The null hypothesis is that the prevalence of a plant virus is unaffected by shad-
ing conditions. Researchers were able to estimate canopy cover and, by using a 
light meter, identified seven shading levels. Within each shade level 10 plants 
were selected at random and the presence or absence of the virus on each plant 
recorded. The results are tabulated below.

Shade category 1 2 3 4 5 6 7

Plants with virus 2 4 4 4 6 6 8
Plants without virus 8 6 6 6 4 4 2

 The data should be entered as 70 rows of data with one row for each 
individual. There should be two columns one for shade category and one for 
virus coded at either 0 or 1. From the ‘Analyze’ menu, select ‘Regression’ then 
‘Binary Logistic…’. In the dialogue box more the ‘effect’ variable (‘Virus’ in the 
example) to the ‘Dependent:’ box. Move the ‘cause’ variable to the ‘Covariates:’ 
box. Click ‘OK’ to continue.

Masses of output is produced. Here is the most important bit:

Classification Tablea

Observed

Predicted

virus

.00 1.00 Percentage Correct

Step 1 virus .00 26 10 72.2
1.00 14 20 58.8

Overall Percentage 65.7

a. The cut value is .500

Variables in the Equation

  B S.E. Wald df Sig. Exp(B)

Step 1a shade .370 .134 7.634 1 .006 1.447
Constant −1.544 .598 6.672 1 .010 .214

a. Variable(s) entered on step 1: shade.

SPSS
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The first table shows how many of the observations are correctly assigned to 
category using the model generated by the logistic regression. In the example 
of the 34 plants without virus there were 26 (or 72%) correctly assigned to 
that category by the model. The second table is very similar to a standard 
regression table. The ‘shade’ line is the test of the ‘slope’ and can be inter-
preted as a test of whether accounting for shade reduces the number of 
observations misclassified. In the example this has a P-value (‘Sig.’) of 0.006, 
indicating that the null hypothesis should be rejected and that shade does 
indeed have a very significant effect on the presence of virus. The second line 
is a test of the ‘intercept’ and is only useful if you are interested in the pro-
portion of plants infected when shade category is zero (i.e. not relevant in 
this case).

 The data can be in 70 rows as for SPSS and MINITAB, or as the proportion 
with virus for each shade category. If the data are in 70 rows and two columns, 
shade category and virus, which has been coded as true/false, then:

Shade Virus
1 T
2 F
3 T
 … 

For logistic regression the ‘glm()’ function is required with the errors set as 
binomial (i.e. two options such as true/false or yes/no). The response variable is 
given first followed by a tilde and then the predictor variable. The ‘summary()’ 
function, as usual, organizes the output in a usable way:

> summary(glm(Virus~Shade,binomial) )

Call:
glm(formula=Virus ~ Shade, family=binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6406 -0.9993 -0.7340 1.0510 1.6990

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.5436 0.5976 -2.583 0.00979 **
Shade 0.3697 0.1338 2.763 0.00573 **
---

R
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to 
be 1)

Null deviance: 96.983 on 69 degrees of freedom
Residual deviance: 88.442 on 68 degrees of freedom
AIC: 92.442

Number of Fisher Scoring iterations: 4

R provides confirmation of the test and the model that is being used then gives 
a summary of the deviations from the best-fit model. Then gives a summary of 
the important results. The line for intercept is only interesting if you want to 
know whether there are no plants with the virus in shade category zero. The 
‘shade’ line is the ‘slope’ of the line and has a P-value well under 0.01 indicating 
that shade has a strong influence on the probability that a plant has the virus. 
Next comes a coding for the number of asterisks, ‘**’ indicates a P-value between 
0.001 and 0.01.

Then comes a comment about the shape of the assumed distribution of 
errors (this can be modified) and then a comparison of the deviance of the 
residuals. If the distribution of errors follows that specified then the residual 
deviance value will be the same as the degrees of freedom. Here the residuals 
are larger than the degrees of freedom which indicates the data are more 
dispersed than is being accounted for. After this comes a value for ‘AIC’. This 
is the Akaike Information Criterion which is a way of accounting for the 
number of parameters used in a model when comparing the ability of models 
to fit the data.

This will provide a visual fit of the line:

> lgt<-glm(Virus~Shade,binomial)
> plot(Shade, fitted(lgt) )

 The data can be entered as 70 rows of data with one row for each 
individual. There should be two columns one for shade category and one for 
virus coded at either 0 or 1. Alternatively the data are entered as a frequency 
table. For this example I assume one row per individual.

From the ‘Stat’ menu, select ‘Regression’ then ‘Binary Logistic Regression…’. 
Move the ‘effect’ variable (‘Virus’ in the example) to the ‘Response:’ box and 
the ‘cause’ variable (‘Shade’ in the example) to the ‘Model:’ box. Click 
‘OK’.

Here is a portion of the output that appears:

MINITAB
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Binary Logistic Regression: Virus versus Shade
Link Function: Logit

Response Information

Variable Value Count
Virus T 34 (Event)
 F 36
 Total 70

Logistic Regression Table

     Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant −1.54361 0.597575 −2.58 0.010   
Shade 0.369703 0.133806  2.76 0.006 1.45 1.11 1.88

Log-Likelihood = −44.221
Test that all slopes are zero: G = 8.541, DF = 1, P-Value = 0.003

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 1.13052 5 0.951
Deviance 1.12489 5 0.952
Hosmer-Lemeshow 1.13052 5 0.951

Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

   Group    
Value 1 2 3 4 5 6 7 Total
T        
 Obs 2 4 4 4 6 6 8 34
 Exp 2.4 3.1 3.9 4.8 5.8 6.6 7.4 
F        
 Obs 8 6 6 6 4 4 2 36
 Exp 7.6 6.9 6.1 5.2 4.2 3.4 2.6 
Total 10 10 10 10 10 10 10 70

The first section gives a frequency table, number of ‘true’ and ‘false’ in the 
example. The next section is very similar to a standard regression table. The 
‘Shade’ line can be interpreted as a test of whether accounting for shade 
reduces the number of observations misclassified. In the example this has a 
P-value (‘Sig.’) of 0.006 indicating that shade does indeed have a very signifi-
cant effect on the presence of virus. The ‘Constant’ line is a test of the ‘inter-
cept’ and is only useful if you are interested in the proportion of plants 
infected when shade category is zero (i.e. not relevant in this case). The next 
section shows a range of ‘goodness of fit’ test results and then the observed 
and expected values generated by the logistic regression for each category of 
the ‘cause’ variable. In the example for shade category 4 the model predicted 
4.8 to be infected and 5.2 not, with observed values of 4 and 6. Of the 34 
plants without virus there were 26 (or 72%) correctly assigned to that cate-
gory by the model.

 There is no direct way of carrying out this test in Excel.Excel
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Model II regression
The model two regression is actually a group of analyses that make far fewer 
assumptions about the data than standard, model I regression. The main cul-
prits are the assumptions in standard regression that the x values are measured 
without error and that the variation in y (effect) is the same for any level of x 
(cause). If these assumptions do not hold then model II regression is appropri-
ate. Unfortunately the statistical manipulations required are still being devel-
oped and there are several techniques that are not wholly satisfactory. Moreover, 
they are unlikely to be supported by computer packages.

One suggested model II regression is the Bartlett’s three-group method. This 
method simply arranges the data by the magnitude of the x values and divides 
into three groups, making sure that there are equal numbers of observations in 
the largest and smallest thirds. The mean values of x and y are calculated for 
these two groups only and the slope of the line between the two mean points is 
calculated.

Another model II regression is the Kendall robust line-fit method described 
above (page 230).

Polynomial, cubic and quadratic regression
One of the assumptions of standard regression is that the form of the relation-
ship between x and y is a straight line. If this is not true then the first option is 
to transform either x or y to make the data better fit a straight line. If this does 
not help then the assumption can be discarded and polynomial regression (of 
which quadratic regression is a special case) can be employed. The only differ-
ence between polynomial and linear regression is that the best-fit line is not 
straight. The advantage is that a curved line is almost always a better fit, allow-
ing a better prediction of y for each value of x. The disadvantage is that extra 
parameters have to be included. There is no longer a single ‘slope’ value but 
rather two or more factors that have to be applied to x, x2, x3 and so on. It is 
usually either a scatterplot or inspection of the residuals from a linear regression 
which indicates that the straight line is not the best fit and that some sort of 
curve should be tried.

It should be noted that each time an extra parameter is added to a regression 
line the best fit should be better than with fewer parameters. It is possible to 
get an almost perfect fit to a scatter of points if enough parameters are used. 
However, the question is: will adding an extra parameter be worth it? This is a 
judgement call, but your judgement can often be guided by considering the 
biology. It might be possible to consider that a biological process should be 
best described by a curved line of some kind, but as the line becomes more 
complicated the biology underlying the relationship also becomes more diffi-
cult to justify.
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There are methods available to determine whether adding more parameters 
is worth it. The Akaike Information Criterion is a commonly used method 
that accounts for the accuracy of the model fit to the data and the number of 
parameters used. It can help with model selection when several are 
suggested.

Tests for more than two variables

Tests of association
Questions

Most test of association assume that there are only two variables being consid-
ered. However, it is often the case that for each ‘individual’ there are three or 
more observations. If all that is required is to investigate associations in pairs to 
examine the strength of associations when other variables are accounted for 
then this section considers briefly correlation, partial correlation and its non-
parametric equivalent Kendall partial rank-order correlation. Once there are 
several variables for each individual then multivariate analyses considered in the 
next chapter will often be more appropriate.

Correlation

Simplest method used to analyse data sets with more than two observations for 
each ‘individual’ or ‘site’ is to consider all the possible two-way comparisons 
that could be made. Statistical packages allow this and will happily produce a 
large matrix of correlation coefficients that can be trawled to find the largest 
positive and negative numbers for further investigation.

Note: if the package reports a significance value for each of the correlation coefficients then 
they should be treated with some caution. Remember that the P-value is just the probability of 
encountering data this extreme or more extreme if the null hypothesis is true and we usually 
reject the null hypothesis when P < 0.05. This implies that 20 correlations will produce, on 
average, one P-value that is less than 0.05 even when there is no association at all. Therefore 
if there are 10 variables for each ‘individual’ giving 45 possible pairwise correlation coeffi-
cients the chances are very high that one or more will report P-values less than 0.05.

There are two commonly used methods for reducing the critical value for P. The Bonferroni 
method simply divides the critical P-value by the number of tests carried out. So three tests 
with an overall critical P of 0.05 would give a critical P of 0.05/3 for each test. The Dunn–Sidák 
reduces the critical P using the formula 0.951/k, where k is the number of tests that have been 
carried out (assuming a critical P-value of 0.05).
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See the section on correlation for the mechanics of using the packages (pages 
210–220).

Partial correlation

A partial correlation coefficient gives a measure of the relationship between two 
variables when one or more other variables have been held constant. A common 
use of this technique is in morphological analysis when several variables all relate 
in some way to size and therefore the bivariate correlation matrix technique 
employed in the previous section merely confirms that all measures are strongly 
correlated with each other. The partial correlation of two variables when ‘size’ is 
held constant will reveal whether they are related in any other way.

Kendall partial rank-order correlation

The Kendall’s rank correlation coefficient is the non-parametric equivalent of 
Pearson’s product-moment correlation coefficient which can be used in partial 
correlation analysis. If variables are known to violate the assumptions of para-
metric correlation then this technique should be employed. Unfortunately, this 
technique is rarely supported in statistical packages.

Cause(s) and effect(s)
Questions

If there are more than two variables which can be labelled ‘cause’ and ‘effect’ 
there are a variety of techniques that can be applied to determine more about the 
relationship between them. Some of these techniques are simple extensions of 
ANOVA, regression or correlation analysis while others point towards techniques 
for data exploration that are covered in the next chapter. Regression is used when 
there are two or more similar ‘effect’ variables matched to the same ‘cause’. 
Analysis of covariance (ANCOVA) when two variables are known to be associated 
and one is used as the dependent variable in an ANOVA analysis. Multiple regres-
sion is used when there are several ‘cause’ variables and a single ‘effect’. Stepwise 
regression also has several ‘cause’ variables and one ‘effect’ but builds the best-fit 
model in stages. Path analysis is more of a data-exploration technique that 
arranges the interrelationships between several ‘causes’ and ‘effects’.

Regression

If regression has been carried out on several different sets of individuals, in dif-
ferent sites or in different years, for example, then it is possible to compare the 
slopes of these different analyses to see if they differ. Most statistical packages 
do not support this type of analysis directly although a visual comparison of 
several analyses can be made by plotting the estimated slopes and their confi-
dence intervals to see if they overlap.
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Analysis of covariance (ANCOVA)

This technique is something of a hybrid between ANOVA and linear regression. 
Imagine that a field experiment has been set up with plots given one of five dif-
ferent levels of additional CO2. Data are collected for sap sugar concentration. 
This appears to be a simple ANOVA type of design. However, the plots have been 
surveyed for a range of physical parameters and are known to differ in the 
amount of organic material in the soil and this affects the sap sugar concentra-
tion. The ANCOVA test will effectively use a regression analysis to remove the 
effect of the organic material level before the standard ANOVA is attempted. The 
factor accounted for by the regression is called the covariate, hence the name 
analysis of covariance. ANCOVA is supported by both MINITAB and SPSS and is 
easily accessed in R.

ANCOVA can be used with any ANOVA design and is a very useful statistic whenever 
something known to affect the data can be quantified accurately. ANCOVA makes all 
the assumptions of ANOVA as well as those of regression. It makes the further 
assumption that all groups have the same linear relationship with the covariate.

An example A laboratory investigation into the physiological differences 
between two species of amphipod (shrimp) has shown that although females of 
both species push water across their developing eggs they do so with different 
beat frequencies. A further investigation has been made using video cameras in 
the field to see if this relationship still holds. The investigators also know that 
beat frequency for both species increases with water temperature and this has 
been recorded.

Species Water temperature, °C Beats/minute

1 10.1 89.0
1 12.2 94.8
1 13.5 99.6
1 11.2 93.8
1 10.2 91.0
1 9.8 89.2
2 14.1 104.5
2 12.3 103.6
2 9.5 91.1
2 11.6 99.6
2 10.1 99.1
2 9.4 88.7

ANOVA or t-test shows that the beats/minute is not significantly different between 
the two species (ANOVA: F1,10 = 2.419, P > 0.1). However, this does not account 
for the effect of temperature on beat frequency. An ANCOVA using species as the 
grouping variable and temperature as a covariate shows that there is a highly 
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significant difference between the two species (F1,9 = 12.436, P = 0.006). Note 
that ANCOVA has one fewer degrees of freedom for each covariate that is used 
than an ANOVA on the same data.

 Input the data in columns as in the example. Label the columns 
appropriately.

From the ‘Analyze’ menu select ‘General Linear Model’ then ‘Univariate…’. 
Move the observed data (‘Beats’ in the example) to the ‘Dependent Variable:’ 
box. Move the grouping variable (‘Species’ in the example) to the ‘Fixed 
Factor(s):’ box. Move the covariate (‘Temp’ in the example) to the ‘Covariate(s):’ 
box. Click ‘OK’ to run the test.

Univariate Analysis of Variance

Between-Subjects Factors

 N

Species 1
 2

6
6

Tests of Between-Subjects Effects

Dependent Variable: Beats

Source
Type III Sum 
of Squares df Mean Square F Sig.

Corrected 
Model

312.262a 2 156.131 27.145 .000

Intercept 842.580 1 842.580 146.494 .000
Temp 241.209 1 241.209 41.937 .000
Species 71.053 1 71.053 12.354 .007
Error 51.765 9 5.752
Total 109425.360 12
Corrected Total 364.027 11

a. R Squared = .858 (Adjusted R Squared = .826)

This confirms the number of observations for each level of the fixed factor 
(‘Species’ in the example). The rest of the output is an ANOVA table designed to 
cope with many factors and therefore has extra lines that appear totally super-
fluous for this simplest possible scenario. The first column, ‘Source’, gives the 
source of the variation. It is the line labelled with the name of the main effect 
that is most important (‘Species’ in the example). The other columns give: 
‘Type III sum of squares’, then ‘df’ or degrees of freedom, then ‘Mean Square’ 
(the mean square value is the sum of square value divided by the degrees of 
freedom). As there are two species there is one degree of freedom for ‘Species’, 
and the covariate has one degree of freedom. There were six observations within 
each species giving 11 degrees of freedom for ‘Corrected Total’.

SPSS
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Finally comes the important bit; the F-ratio, labelled ‘F’ here. This is the mean 
square for ‘Species’ or ‘Temp’ divided by that for ‘Error’ (or residual). SPSS 
gives the P-value associated with this value of ‘F’ and these degrees of freedom 
and labels it ‘Sig.’. In biology we usually look for a value less than 0.05. Here the 
probability is 0.007 for ‘Species’ and indicates that the mean ‘beats/minute’ for 
the two species are significantly different from each other once the effect of 
temperature is accounted for.

 ANCOVA is easily reached using the ‘aov()’ function using the syntax ‘+ 
variable name’ to indicate that the predictor variable is a covariate. The results 
can then be displayed using the ‘summary()’

> summary(aov(BPM~Species+Temp) )
 Df Sum Sq Mean Sq F value Pr(>F)
Species 1 71.053 71.053 12.354 0.0065693 **
Temp 1 241.209 241.209 41.937 0.0001146 ***
Residuals 9 51.765 5.752
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1

This output gives the basic ANOVA table. The covariate ‘Temp’ has one degree of 
freedom and clearly has a highly significant effect on the response variable 
(P << 0.001). With the covariate accounted for the factor ‘Species’ has a signifi-
cant effect (P < 0.01).

You can use the ‘lm()’ function, to generate the same output:

> summary.aov(lm(BPM~Species+Temp) )

and the ‘lm()’ function is better than ‘aov()’ when estimates of the parame-
ters are required:

> summary(lm(BPM~Species+Temp) )

Call:
lm(formula=BPM ~ Species + Temp)

Residuals:
Min 1Q Median 3Q Max
-3.84079 -1.30163 0.07028 0.84091 4.48858

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.8685 5.1938 11.527 1.08e-06 ***
SpeciesB 4.8667 1.3846 3.515 0.006569 **
Temp 2.9580 0.4568 6.476 0.000115 ***
---

R
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

Residual standard error: 2.398 on 9 degrees of freedom
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8262
F-statistic: 27.15 on 2 and 9 DF, p-value: 0.0001542

This output shows that the model (factor and covariate) explains over 80% of 
the variation in the response variable and this is a highly significant fit 
(P = 0.0001542).

 ANCOVA is very simple to carry out in MINITAB. Input the data in 
columns, exactly as in the example, and label appropriately. From the ‘Stat’ 
menu select ‘ANOVA’ then ‘General Linear Model…’. Move the observed data 
(‘BPM’ in the example) into the ‘Responses:’ box, the grouping variable 
(‘Species’ in the example) into the ‘Model:’ box. Click on the ‘Covariates…’ 
button and add the covariate (‘Temp’ in the example) to the ‘Covariates:’ box. 
Click ‘OK’ twice.

(Or, if the command interface is enabled, type ‘GLM c1=c2;’ at the MTB> prompt 
and ‘covariates c3.’ at the SUBC> prompt, assuming that the data is in c1, the 
main effect is in c2 and the covariate is in c3. Or you can input commands using 
‘Edit’ menu then ‘Command Line Editor’.)

General Linear Model: BPM versus Species
Factor Type Levels Values
Species fixed 2 1, 2

Analysis of Variance for BPM, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS    F      P
Temp 1 241.21 241.21 241.21 41.94 0.000
Species 1 71.05 71.05 71.05 12.35 0.007
Error 9 51.76 51.76 5.75  
Total 11 364.03    

S = 2.39826 R-Sq = 85.78% R-Sq(adj) = 82.62%

Term Coef SE Coef T P
Constant 62.302 5.147 12.10 0.000
Temp 2.9580 0.4568 6.48 0.000

Unusual Observations for BPM

Obs   BPM   Fit SE Fit Residual St Resid
 11 99.100 94.611  1.094     4.489    2.10 R

R denotes an observation with a large standardized residual.

The output first confirms that the test is a general linear model. Then lists the 
factor(s) (grouping variables) giving the number of groups (labelled ‘Levels’) 
and the codes assigned to the groups (labelled ‘Values’).

Then comes another confirmation of the test followed by a simple ANOVA 
table with an extra row for the covariate. The table has degrees of freedom 

MINITAB
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(‘DF’), two versions of the sum of squares (‘Seq SS’ and ‘Adj SS’) mean square 
(‘Adj MS’ which is SS/DF), the F-ratio (‘F’, which is factor MS/error MS) and 
finally the P-value (‘P’). If the P-value is less than 0.05 then the null hypothesis 
is rejected. In the example the effect of temperature as a covariate is confirmed 
to be highly significant ‘P’ is given as ‘0.000’ which should be reported as 
P<0.001. The factor ‘species’ has a P-value of ‘0.007’ so the null hypothesis that 
species have the same ‘BPM’ is rejected and the alternative hypothesis that the 
two species differ is accepted. Next comes some of the statistics associated with 
the regression of the covariate, including a value for r 2 (R-Sq).

Finally there is a regression-style analysis of the covariate (‘Temp’ in the 
example). It shows that the relationship has a positive slope (‘Coef’ can be 
thought of as the slope of the relationship and is ‘2.958’ in the example). The 
probability that the slope is zero is very small, given as ‘0.000’ in the example, 
or P < 0.001.

The ‘Unusual Observations’ are observations with very high residuals and 
they should be looked at more closely as they are likely to be mis-typed or mis-
recorded values.

 There is no simple way of carrying out ANCOVA in Excel.

Multiple regression

If there are several ‘cause’ variables set, or chosen, by the experimenter and a 
single ‘effect’ variable then multiple regression may be appropriate. The same 
assumptions as for linear regression apply so each of the ‘cause’ variables must 
be measured without error. There is an additional assumption that each of the 
‘cause’ variables must be independent of each other. Multiple regression works 
in exactly the same way as linear regression only the best-fit line is made up of 
a separate ‘slope’ for each of the ‘cause’ variables. There is still a single ‘inter-
cept’ which is the predicted value of the ‘effect’ variable when all the ‘cause’ 
variables are zero.

A multiple regression using just two ‘predictor’ or ‘cause’ variables can be 
visualized using a three-dimensional scatterplot, but if there are any more ‘pre-
dictors’ there is no way to satisfactorily display the relationship.

The technique of multiple regression is rather overused as it is supported, and 
fairly easily accessible, in most statistical packages. There is the implicit assump-
tion that all the ‘cause’ variables impinge directly on the ‘effect’ variable that 
may appear uncomfortable or unreasonable in certain circumstances. Multiple 
regression can be found in SPSS, R and MINITAB.

Stepwise regression

The assumptions and conditions of stepwise regression are identical to those of 
multiple regression. The difference is in the way the best-fit model is generated. 
In stepwise regression the ‘causes’ are added and subtracted in steps only using 

Excel
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those combinations and slopes that generate a better fit (i.e. smaller residuals). 
This technique is useful as it will help to identify those ‘cause’ variables that are 
most important, which can lead to better experimental design in the future.

There are three strategies for building a regression model from a set of pos-
sible predictor variables. The simplest is the forwards strategy. This picks the 
best of the predictors and then adds the next best and so on until adding a fur-
ther variable does not increase the prediction power of the analysis further. The 
opposite strategy is backwards where the analysis starts with all the variables 
used and then removes the one which has the smallest impact on the predictive 
power and so on.

The problem with these strategies is that once a variable is added (or sub-
tracted) it remains in (or out) for the rest of the analysis. Stepwise regression 
builds a model in the same way as the forward strategy, but each time a variable 
has been added or subtracted all variable are then considered for addition or 
removal. In this way, the best fit from any combination of the variables will be 
made.

The problem for the user of stepwise regression is that decisions have to be 
made before the test is run. The user must decide how much of an improve-
ment to the prediction is required for a variable to be worth adding to the 
model and how little loss in the predictive power is allowed for a variable to be 
dropped.

Stepwise regression is not guaranteed to find the best possible prediction of 
the ‘effect’ from the ‘cause’ variables available. The only way to do this is to try 
every possible combination of ‘causes’ and choose the best one. This strategy 
was once far too time consuming due to the number of calculations required, 
but, with ever faster computing, it is sometimes offered as an option in statisti-
cal packages.

Path analysis

This is a technique related to regression and correlation that removes much of 
the ‘cause’ and ‘effect’ baggage, although it is actually a form of multiple regres-
sion. The idea is to generate a map of the interrelationships between variables 
to visualize the effects and associations within groups of variables. It can be 
considered as an extension to stepwise regression with multiple possible ‘effect’ 
variables. The main difference between path analysis and other techniques with 
multiple ‘causes’ is that it allows variables to be correlated; that is, they don’t 
have to be independent. Unfortunately this analysis is not supported in most 
statistical packages.
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Data exploration can be attempted with almost any type of data, although in 
practice it is most useful where there are a large number of variables and 
 observations. The main aim of data-exploration techniques is to synthesize and 
 process the interrelationships between observations in such a way to make the 
patterns obvious to the experimenter. Of all the areas of statistics covered in 
this book this is the one where there is the most scope for personal choice. 
These techniques are less concerned with P-values and should be treated as 
ways to generate hypotheses rather than test them.

Several of the more commonly employed techniques are considered here. 
This is certainly not an exhaustive list but it does provide a flavour of the sort 
of techniques that are available.

Observation, inspection and plotting

The simplest and perhaps most obvious way to generate new hypotheses or to 
explore relationships between variables is to plot them. Many statistical  packages, 
including SPSS and MINITAB, will produce a matrix of scatterplots with each 
cell of the matrix having a different plot of two variables. This sort of visual aid 
will give a general feel for which variables are related to which as well as for the 
‘shape’ of the data. Don’t be afraid to experiment with different types of plot 
before moving on to more standard methods.

Principal component analysis (PCA) and factor analysis
These are two very similar techniques that weight all the available variables to 
provide the maximum discrimination between individuals. The idea of principal 
component analysis (PCA; a.k.a. factor analysis, principal axes) is very similar, in 
many ways, to correlation and regression. The technique can be applied to any 

9 The tests 3: tests for 
data exploration

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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data set that has two or more observations for each individual (e.g. several  different 
morphometric measurements from the same specimen). There are assumptions 
about the data – that it is continuous and normally distributed – but these can be 
overlooked if the purpose of the test is to generate further hypotheses.

The technique can be visualized well when there are only two observations 
for each individual. First imagine a scatterplot of two variables that are  correlated 
such that the points fall within an oval cloud. PCA will determine the line 
through the points that passes through the long axis of the cloud and will use 
that as the first principal axis or ‘principal component’. A line through the cloud 
of points at right angles to the first axis will generate a second principal 
 component. Of course this process occurs in multidimensional space within the 
 computer with one dimension for each of the variables included in the analysis 
and the ‘lines’ through the clouds of points being formed by weighting each of 
the variables appropriately.

In this way PCA synthesizes the data from a mass of variables into a set of 
compound axes. The first axis will explain the most variation, then the second 
and so on. Therefore inspection of the weightings of the first few axes will show 
which variables contribute most to the differences between individuals.

In morphometric analysis it is usually the case that individual specimens will 
vary in size. The first principal axis will nearly always account for size and it is 
often employed as a method for removing size from the analysis leaving aspects 
of ‘shape’ for the second and subsequent axes.

An example

A typical use of PCA and factor analysis is for exploration of morphometric 
characters. Here there is a very small data set from only 16 individuals of two 
species of fruit fly: Drosophila melanogaster and Drosophila simulans. Five 
 morphological characters have been measured to the nearest 0.01 mm, and the 
sex and species is recorded too. The species are coded 1 and 2 for convenience 
and sex is coded 1 for female and 2 for male.

It is important to realize that there is no requirement for the grouping 
 variables ‘sex’ and ‘species’ as the PCA operates on the measured variables to 
maximize the differences between individuals (i.e. the rows in this data set). 
I have used the coded variables only to illustrate the results of the analysis.

There are three main components to the output. The first is the weighting 
applied to each of the variables to generate the principal axes. The second is the 
set of eigen values that show how important the principal axes are (each axis 
will always explain less of the variation than the last). The third is the position 
of the individuals on the axes: this is used to generate the graphical display of 
the output (Fig. 9.1).

Investigation of the factor weightings will show which characters are being 
used to generate the differences between individuals and which are not (the 
ones with weightings near zero). In the example the first axis (using either PCA 
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Sex Species

 Thorax 
length 
(mm)

Wing 
length 
(mm)

Femur 
length 
(mm)

Eye width 
(mm)

Third antennal 
segment (mm)

1 1 1.01 2.51 0.06 0.52 0.11
1 1 0.98 2.45 0.05 0.53 0.12
1 1 1.02 2.57 0.08 0.55 0.11
1 1 1.05 2.61 0.07 0.52 0.10
2 1 0.98 2.40 0.04 0.54 0.13
2 1 0.89 2.35 0.04 0.50 0.14
2 1 0.89 2.38 0.05 0.50 0.12
2 1 0.95 2.41 0.05 0.49 0.12
1 2 1.20 3.10 0.09 0.48 0.09
1 2 1.15 3.12 0.10 0.52 0.10
1 2 1.18 3.21 0.09 0.52 0.11
1 2 1.21 3.20 0.10 0.55 0.09
2 2 0.95 2.51 0.08 0.56 0.11
2 2 0.94 2.50 0.07 0.49 0.13
2 2 0.96 2.62 0.08 0.51 0.14
2  2  0.91  2.45  0.07  0.52  0.13

2
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Fig. 9.1 Plotting individuals according to their principal components in MINITAB. PCA 
maximizes the difference between individuals rather than groups. The individuals are 
coded by species (shapes) and sex (filled or open shapes). The filled circles are clearly 
different to the other groups on axis 1 but there is no obvious pattern on axis 2. In 
many PCA analyses on morphological data axis 1 is closely related to size and other 
axes to ‘shape’. 
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or factor analysis) is generated by contrasting the three size variables – ‘wing’, 
‘thorax’ and ‘femur’ – against ‘third antennal segment’. This allows the investi-
gator to focus on these characters as the most important.

The position of individuals on the axes can be used in ANOVA to see if the groups 
vary. In the example a two-way ANOVA on the first principal component (PC1) 
using ‘sex’ and ‘species’ as grouping variables proved that both factors were highly 
significant and that they had a significant interaction too. A similar test on PC2 
showed no significant differences at all. This shows that there are morphological 
differences between the sexes and species that are condensed into the first axis.

       Input the data in the same form as the table in the example. Label the 
columns appropriately. From the ‘Analyze’ menu, select ‘Dimension reduction’ 
then ‘Factor…’. In the dialogue box highlight all the measured variables (but 
not any grouping variables) and move them into the ‘Variables:’ box. You can 
click ‘OK’ now although there are two detours that may pay dividends. Clicking 
on ‘Extraction’ will allow you to determine the number of axes (‘Factors:’) that 
are generated (I clicked on ‘Fixed number of factors:’ and selected two ‘Factors 
to extract’ for this example). Clicking on ‘Scores’ allows you to store the scores 
as variables. If you do this then you can generate a figure similar to the one that 
I have generated from the example data by using a scatterplot (Fig. 9.1).

The output generated is as follows:

SPSS

Factor Analysis

Communalities

Initial Extraction

thorax 1.000 .932
wing 1.000 .939
femur 1.000 .794
eye 1.000 .994
ant 1.000 .749

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component

Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.419 68.386 68.386 3.419 68.386 68.386

2 .988 19.765 88.152 .988 19.765 88.152

3 .383 7.658 95.810

4 .193 3.857 99.666

5 .017 .334 100.000

Extraction Method: Principal Component Analysis.
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Of the three output tables, the second and last are useful. In the ‘Total Variance 
Explained’ table the summaries for the extracted principal component axes are 
given. Five ‘Components’ appear on the left of the table and only two are  duplicated 
on the right, because I chose to have only two factors generated. The maximum 
number of components, factors or axes will be the same as the number of variables 
in the data set (five in the example), although that would somewhat defeat the 
object of PCA. The first ‘Component’ has the largest eigenvalue and explains the 
most variance. In the example an eigenvalue of 3.419 translates as nearly 69% of 
the variation between individuals. The first two ‘components’ combined explain 
88% (‘Cumulative %’) of the variation between individuals between them.

The last table gives the ‘Component Matrix’ and is a summary of the 
 weightings assigned to each of the variables for the extracted components or 
factors. In this case factor 1 (‘Component 1’) shows a high positive weighting 
for the first three variables contrasted against a high negative weighting for ‘ant’ 
whereas ‘component 2’ gives a high positive weight to ‘eye’. This suggests that 
the best contrast between individuals is achieved by comparing the ‘size’ 
 variables with the size of ‘ant’. Perhaps individuals with large values for ‘thorax’, 
‘wing’ and ‘femur’ tend to have small ‘ant’ and vice versa.

Sometime weightings are given in unhelpful scientific notation. For example, a 
weighting of ‘1.764E-02’ translates as 1.764×10−2 or 0.01764, a very low weighting.

If the ‘save scores as variables’ option was used, two new variables will have 
appeared in the ‘Data View’ called ‘FAC1_1’ and ‘FAC2_1’. These hold the 
weighted scores for the first two axes and a scatter of these two variables will 
allow the generation of figures such as Fig. 9.1: simply scatter these two varia-
bles against each other and use the species and sex values to set the symbols.

   There are two functions for PCA in R: ‘prcomp()’ and ‘princomp()’. They 
have slightly different options but produce similar results. Here I’m assuming 
that the data have been imported exactly as laid out in the example. It is 
important that the grouping variables are not considered within the PCA, so 
I have defined the variables I want to be used in the PCA with the option 
‘scale=TRUE’ which means the effects will sum to one as in SPSS:

R

Component Matrixa

Component

1 2

thorax .959 −.112

wing .952 −.178

femur .891 .018

eye .229 .970

ant −.864 −.046

Extraction Method: Principal Component Analysis.
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> summary(prcomp(~thorax+wing+femur+eye+ant,scale=TRUE) )

Importance of components:
 PC1 PC2 PC3 PC4 PC5
Standard deviation 1.849 0.994 0.6188 0.4391 0.12914
Proportion of Variance 0.684 0.198 0.0766 0.0386 0.00334
Cumulative Proportion 0.684 0.882 0.9581 0.9967 1.00000

This output shows how much of the variation is described by each of the prin-
cipal components as a proportion. In the example ‘PC1’ explains 68.4%, ‘PC2’ 
explains 19.8% and so on.

Next the function ‘print()’ is used in combination with ‘prcomp()’ to 
reveal the weightings given to each of the measurement variables for each 
 principal component:

> print(prcomp(~thorax+wing+femur+eye+ant,scale=TRUE) )
Standard deviations:
[1] 1.8491400 0.9941184 0.6187849 0.4391321 0.1291438

Rotation:
 PC1 PC2 PC3 PC4
thorax 0.5185966 −0.11303213 0.1408875 −0.5248445
wing 0.5150173 −0.17934884 −0.2514674 −0.3870185
femur 0.4818698 0.01774549 −0.5946408 0.6000820
eye 0.1236216 0.97599696 −0.0548311 −0.1635158
ant −0.4672622 −0.04661295 −0.7485390 −0.4334964

The first principal component ‘PC1’, which explains 68% of the variation, 
weights ‘thorax’, ‘wing’ and ‘femur’ highly positively and ‘ant’ highly negatively, 
which indicates that the best separation of individual is achieved by contrasting 
‘ant’ with ‘thorax’, so animals with a relatively large value of ‘ant’ and low 
‘femur’ will be at one extreme (note the signs are unimportant). The weightings 
for PC2 indicate that ‘eye’ is the most important.

Here the function ‘biplot()’ is used to produce the output shown in Fig. 9.2:

> biplot(prcomp(~thorax+wing+femur+eye+ant,scale=TRUE) )

 Input the data in columns as set out in the example. Label all the 
columns appropriately. From the ‘Stat’ menu choose ‘Multivariate’ then 
‘Principal Components…’. In the dialogue box highlight all the measured 
 variables then click on ‘Select’. The analysis will calculate as many components 
as there are variables (i.e. five in the example) unless you choose a lower number 
in the ‘Number of components to compute:’ box. If you wish to keep the 
position of individuals on each of the axes then you must use the ‘Storage’ 

MINITAB
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button then choose columns for values in the ‘Scores:’ box. In the example I 
selected two components and then stored them in columns c9 and c10 then 
scatterplotted c9 and c10 to produce the figure.

If you click OK this is the output you will get:

5

–4 –2 0 2 4

–0.4

0.4

0.2

0.0

P
C

2
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2

0
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PC1

0.2 0.4

41

2

16

ant

eye

femur
thorax
wing
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12
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3

13

Fig. 9.2 A ‘biplot()’ in R. Here the locations of each individual on the first two 
principal components are indicated by numbers (e.g. ‘10’ indicates the location of the 
tenth individual in the data set). The arrows show the weightings of the variables in the 
first two principal components.

MTB > PCA ‘femur’ ‘thorax’ ‘wing’ ‘eye’ ‘ant’;
SUBC> NComponents 2;
SUBC> Scores c9 c10.

Principal Component Analysis: femur, thorax, wing, eye, ant

Eigenanalysis of the Correlation Matrix

Eigenvalue 3.4193 0.9883 0.3829 0.1928 0.0167
Proportion 0.684 0.198 0.077 0.039 0.003
Cumulative 0.684 0.882 0.958 0.997 1.000

Variable PC1 PC2
femur 0.482 −0.018
thorax 0.519 0.113
wing 0.515 0.179
eye 0.124 −0.976
ant −0.467 0.047
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The output confirms the test. Then it gives the eigenvalues of the principal 
components from one to five. The eigenvalue can be treated as a measure of the 
variation explained by the axis. Each factor will explain less of the variation than 
the previous one. This is converted to a proportion of the variation and cumula-
tive proportion for convenience. So the first axis explains 68.4% (0.684) of the 
variation and the second 19.8%.

In the second part of the output the weightings applied to the five measured 
variables are given. The first principal component can be interpreted as a con-
trast between ‘ant’ and ‘thorax’, ‘wing’ and ‘femur’ while the second is heavily 
influenced by ‘eye’. These weightings maximize the differences between indi-
viduals in the sample.

(Or, if the command interface is enabled, type ‘PCA’ and the list of variables you 
wish to include at the MTB> prompt in the session window.)

 It is not possible to carry out this test in Excel.

Canonical variate analysis
This technique works in very much the same way as PCA but with one crucial 
difference: the individuals must be assigned to groups before the analysis is run. 
The test then calculates the variable weightings that will maximize the differ-
ences between groups rather than individuals, as is the case with PCA.

Canonical variate analysis (or CVA) produces weightings that will allow you 
to identify those variables that are the most different between groups and dis-
card the ones that are the same. It is important to use real classifications rather 
than arbitrary ones to get the maximum benefit from the technique.

Discriminant function analysis
As with canonical variate analysis, this technique also requires that the individu-
als be divided into groups. The idea of discriminant function analysis is to pro-
vide a set of weightings that allow the groups to be distinguished. The weightings 
can then be used on individuals that are not assigned to a group to provide a 
probability of them belonging to each of the possible groups. If the probability 
is high then the ‘unknown’ can be confidently assigned to a group. The power of 
the weightings is often tested by removing a portion (one or more observation) 
from the data set, using the remainder to create the weightings and then to use 
the weightings to assign the removed individuals to groups. The hit rate is a 
measure of the power of the test to discriminate real unknowns.

An example

We will use the same example as for the PCA but with one of the grouping 
 variables as the target discriminator. The analysis will determine how often an 
individual of unknown species or sex would be attributed to the correct group.

Excel
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 Input the data in columns and label appropriately. From the ‘Analyze’ 
menu select ‘Classify’ then ‘Discriminant…’. Move the variable with the group 
codes into the ‘Grouping variable:’ box. Click on ‘Define range…’ to input the 
lowest and highest group code numbers. (In this case I used the variable ‘sex’ 
and defined groups 1 and 2). Click ‘Continue’ to return to the ‘Discriminant 
Analysis’. Next move all the measured variables into the ‘Independents:’ box.

It is often important to visit the ‘Classify’ dialogue before the test is run. There 
the ‘Prior probabilities’ should be changed to ‘Compute from group sizes’ unless 
you are sure that unknown individuals should have an equal chance of being in 
either group (in the example I left ‘All groups equal’ as I was classifying to sex.). 
Also on the ‘Classification’ dialogue the very useful option of ‘ Leave-one-out 
classification’. Output generated with this option selected is shown below.

There is now a range of possible options that can be selected from the buttons 
at the bottom. The most useful is ‘Save…’ where the ‘Predicted group member-
ship’, ‘Probabilities of group membership’ and ‘Discriminant scores’ can be 
stored as separate variables. If you don’t do this then there is no way of checking 
which individuals have been assigned to each group which is what determines 
the accuracy rate of the discriminant analysis. Click ‘OK’ and masses of output 
appears in the ‘Output’ window of which this is an edited section.

Standardized Canonical  Discriminant Function  Coeffi cients

Function

1

thorax 2.076
wing −1.659
femur .170
eye .090
ant −.261

Structure Matrix
Function

1

thorax .770
ant −.744
wing .523
femur .370
eye .139

Functions at Group Centroids

Function

sex 1

1 1.524
2 −1.524

SPSS
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The tables shown are first ‘standardized coefficients’ where the weightings given 
to each of the measured variables to maximize the differences between groups 
are given. Clearly ‘thorax’ and ‘wing’ are the highest weighted in the example. 
The ‘Structure Matrix’ gives a slightly different view of the data as it appears 
that although ‘thorax’ has the highest correlation with the discriminating func-
tion the negative correlation for ‘ant’ is almost as important once the relatively 
small size of the measurements has been accounted for.

Finally comes the ‘group centroids’ for the two groups on the axis of the dis-
criminant function. As there are only two groups and they are of equal size in 
the example it is not surprising that the group centroids (mean position) are the 
same distance either side of zero. In practice this means that any individual that 
has the weightings applied to the measurement variables and scores more than 
zero will be assigned to group 1 and less than zero to group 2.

With the ‘Leave-one-out classification’ selected the following output also 
appears:

Classifi cation Statistics

Prior Probabilities for Groups

sex Prior

Cases Used in Analysis

Unweighted Weighted

1 .500 8 8.000
2 .500 8 8.000
Total 1.000 16 16.000

Classifi cation Resultsb,c

Predicted Group 
Membership

sex 1 2 Total

Original Count 1 8 0 8

2 1 7 8

% 1 100.0 .0 100.0

2 12.5 87.5 100.0

Cross-validateda Count 1 7 1 8

2 2 6 8

% 1 87.5 12.5 100.0

2 25.0 75.0 100.0

a.  Cross validation is done only for those cases in the analysis. 
In cross validation, each case is classifi ed by the functions 
derived from all cases other than that case.

b. 93.8% of original grouped cases correctly classifi ed.
c. 81.3% of cross-validated grouped cases correctly classifi ed.
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Here the ‘Prior Probabilities’ confirms that there was a 0.5 probability of being 
assigned to either group (i.e. 50% female, 50% male). The analysis gives the 
results of running the analysis once for each individual with the target individ-
ual excluded and then reassigned to a group based on the discriminant function 
score. The ‘Classification Results’ table shows that all of group 1 (females) were 
assigned to group 1, but only seven of eight in group 2 were assigned to the cor-
rect group. This gives an overall efficiency of 93.75% (here reported as 93.8%) 
for the discrimination of groups.

The group assignments for each individual are made in a new variable 
(‘dis_1’) in the data window. In the example the one misclassified individual, 
row 5, should have been in group 2 but was assigned to group 1. It has a 
‘dis1_1’ ( discriminant function score) of 0.032 and had a 52% chance of being 
in group 1 and 48% of group 2. All other individuals were assigned to the cor-
rect group.

 To carry out a discriminant function analysis requires an extra library or 
package to be installed in R. There are many, many options available. Here the 
library ‘MASS’ has been used to carry out an analysis using the function ‘lda()’ 
the output of which has been assigned to ‘fit’:

> library(MASS)
> fit<-lda(species~thorax+wing+femur+eye+ant,CV=TRUE)
> fit
$class
[1] mel mel sim mel mel mel mel mel mel sim sim sim mel 
sim sim sim

Levels: mel sim

$posterior
 mel sim
1 9.992298e-01 7.701998e-04
2 9.999105e-01 8.953673e-05
…

There is a lot more output. The most interesting sections are the ‘$class’ 
where the identifications for each individual in the data set are given. The 
‘$posterior’ section gives the probability of membership to each group. In 
this example the first individual is 99.92% likely to be ‘mel’ and 0.077% likely 
to be ‘sim’.

You can make a table of the number of fits to each species and then report 
using ‘diag()’ to make an object I have called ‘ct’. This can be used to display 
what proportion of each species are correctly identified using ‘prop.table()’, 
followed by the proportion of correct identifications overall:

R
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> ct<-table(fly$species,fit$class)
> diag(prop.table(ct,1) )
mel sim
0.875 0.750
> sum(diag(prop.table(ct) ) )
[1] 0.8125

Here 87.5% of ‘mel’ were correctly assigned and 81.25% overall.

 Input the data into columns and label appropriately. From the ‘Stat’ 
menu select ‘Multivariate’ then ‘Discriminant analysis…’. Move the grouping 
variable (‘sex’ or ‘species’ in the example) into the ‘Groups:’ box. Highlight all 
the measured variables and click ‘Select’ to move them into the ‘Predictors:’ 
box. Click ‘OK’. (In the example I chose ‘sex’ as the grouping variable as the 
analysis was 100% accurate when ‘species’ was used.)

You will get the following output:

Discriminant Analysis: sex versus wing, femur, thorax, eye, ant

Linear Method for Response: sex
Predictors: wing, femur, thorax, eye, ant

Group f m
Count 8 8

Summary of classification

      True     Group
Put into Group f m
f 8 1
m 0 7
Total N 8 8
N correct 8 7
Proportion 1.000 0.875

N = 16  N Correct = 15  Proportion Correct = 0.938

Squared Distance Between Groups
 f m
f 0.00000 9.28891
m 9.28891 0.00000

Linear Discriminant Function for Groups
 f m
Constant −795.5 −759.6
wing −117.7 −97.2
femur −264.2 −293.4
thorax 927.6 838.2
eye 1155.6 1143.9
ant 3098.6 3174.4

Summary of Misclassified Observations

Observation True Pred Group Squared 
 Group Group  Distance Probability
5** m f f 9.183 0.524

   m 9.378 0.476

MINITAB
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The output confirms the test and then the variables used for grouping and pre-
diction. It then gives the number of observations in each of the groups (in the 
example, there were eight females and eight males). Next comes a ‘Summary of 
Classification’ where the real group ‘True group’ and the group that each indi-
vidual is put into is compared. In the example all of group ‘f’ were correctly 
assigned to group ‘f’ but one individual from group ‘m’ was incorrectly assigned 
to group ‘f’. A summary of the accuracy comes next giving it as a proportion 
correct of 0.938 in the example (i.e. 93.8% or 15/16 of the individuals were 
assigned to the correct group). The squared difference between the groups is 
not very useful for just two groups but will show which groups are most similar 
to which if there are more than two. Then comes a section labelled ‘Linear 
Discriminant Function for Groups’ which gives weightings to each of the meas-
ured variables that are akin to the slopes in a multiple regression. Finally is a 
summary of the misclassifications. In the example only one of the 16 was mis-
classified. The individual was in row 5. The analysis gave it a 52.4% probability 
of being in group ‘f’ (i.e. wrongly assigned) and 47.6% of group ‘m’ (i.e. cor-
rectly assigned) so it was a borderline case.

The analysis suggests that an unknown individual from this area could be 
assigned to ‘sex’ from analysis of the measured variables alone with an accuracy 
of over 93%.

 You cannot carry out this test in Excel.

Multivariate analysis of variance (MANOVA)
All the ANOVA techniques that are introduced in Chapter 7 have only one 
observed variable although they had one or more classification variables. 
Therefore they can all be called univariate analyses. The statistical analysis 
MANOVA allows more than one observed variable to be analysed at once; 
hence it is a multivariate test. This test often has the effect of combining 
two or more rather borderline significant results into a highly significant 
single result.

An example

Using the data for fly morphology again (see above) a MANOVA is used on two 
response variables – ‘thorax length’ and ‘wing length’ – simultaneously with 
‘species’ being used as the factor. In two univariate ANOVAs on these data ‘tho-
rax’ is not significant, while ‘wing’ is significant at P = 0.01. The MANOVA uses 
information from both variables to give a highly significant result of 
P = 0.001.

 From the ‘Analyze’ menu, select ‘General Linear Model’ then ‘Multivariate’. 
Move the observation data to the ‘Dependent Variables:’ box and the main 
effect (‘Species’ in the example) to the ‘Fixed Factor(s):’ box. Click ‘OK’.

Excel

SPSS
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Multivariate Testsb

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace .992 817.233a 2.000 13.000 .000

Wilks’ Lambda .008 817.233a 2.000 13.000 .000

Hotelling’s 
Trace

125.728 817.233a 2.000 13.000 .000

Roy’s Largest 
Root

125.728 817.233a 2.000 13.000 .000

species Pillai’s Trace .674 13.447a 2.000 13.000 .001

Wilks’ Lambda .326 13.447a 2.000 13.000 .001

Hotelling’s 
Trace

2.069 13.447a 2.000 13.000 .001

Roy’s Largest 
Root

2.069 13.447a 2.000 13.000 .001

a. Exact statistic
b. Design: Intercept + species

Tests of Between-Subjects Effects

Source Dependent Variable
Type III Sum 
of Squares df

Mean 
Square F Sig.

Corrected 
Model

thorax .033a 1 .033 3.163 .097

wing .574b 1 .574 8.933 .010

Intercept thorax 16.545 1 16.545 1570.996 .000

wing 112.307 1 112.307 1748.382 .000

SPECIES thorax .033 1 .033 3.163 .097

wing .574 1 .574 8.933 .010

Error thorax .147 14 .011

wing .899 14 .064

Total thorax 16.725 16

wing 113.780 16

Corrected 
Total

thorax .181 15

wing 1.473 15

a. R Squared = .184 (Adjusted R Squared = .126)
b. R Squared = .390 (Adjusted R Squared = .346)

There are three tables of output. In the first (not shown) the number of 
 observations in each group is confirmed. In the second output comes the results 
of the MANOVA labelled ‘Multivariate Tests’. The section on the ‘intercept’ is not 
very informative; it is the bottom half with the effect labelled as ‘species’ where 

9781405198387_4_009.indd   2579781405198387_4_009.indd   257 9/16/2010   11:37:36 PM9/16/2010   11:37:36 PM



258 Chapter 9

the results come. There are four different MANOVA statistics (Pillai’s Trace etc.) 
and, in this case, they all give the same results. For all four the P-value (labelled 
‘Sig.’) is 0.001 and the F-ratios and degrees of freedom are identical too.

In the final table the univariate ANOVAs on the same data are shown. In this 
case the important lines are with the source labelled ‘species’. One of the ANO-
VAs has a P-value of 0.097 (i.e. not significant) while the other has P = 0.010 
which is significant, but not as conclusive as the result from the MANOVA.

 I am assuming that the data are arranged as for the PCA. This method uses 
very similar syntax to ANOVA, but first combines the response variables. In the 
example the two variables have been combined into an object called ‘Y’:

> Y <- cbind(thorax,wing)

This is then used in an ANOVA model; here the simplest version is used with a 
single variable as a factor. The output from the ‘manova()’ function is put into 
an object ‘fit’:

> fit <- manova(Y ~ species)

The output is then visualized using ‘summary()’. This is done twice, first giving 
a separate ANOVA table for each response variable. The second gives the MANOVA 
version of the output and asks for the ‘Wilks’ version of the test (other options, 
‘Roy’ and ‘Pillai’, will give similar results):

> summary.aov(fit)
Response thorax:
 Df Sum Sq Mean Sq F value Pr(>F)
Species 1 0.033306 0.033306 3.1626 0.09706
Residuals 14 0.147438 0.010531
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1

Response wing:
 Df Sum Sq Mean Sq F value Pr(>F)
species 1 0.57381 0.57381 8.9329 0.009766 **
Residuals 14 0.89929 0.06423
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(fit, test=”Wilks”)
 Df Wilks approx F num Df den Df Pr(>F)
species    1 0.32586 13.447 2 13 0.0006834 ***
Residuals 14
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1

R
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The univariate outputs confirm that ‘thorax’ is not significant with species as a 
factor (P = 0.097) and that ‘wing’ is significant (P < 0.01). The second output 
gives the result when the two variables are combined in the MANOVA. Here the 
significance is greater, with P < 0.001.

 From the ‘Stat’ menu, select ‘ANOVA’ then ‘General MANOVA…’. 
Move two or more variables to the ‘Responses:’ box. Move the main effect 
(‘species’ in the example) to the ‘Model:’ box. Click ‘OK’.

The following output appears:

General Linear Model: thorax, wing versus species
MANOVA for species  s = 1  m = 0.0         n = 5.5

DF
Criterion Test Statistic F Num Denom P
Wilks’ 0.32586 13.447 2 13 0.001
Lawley-Hotelling 2.06883 13.447 2 13 0.001
Pillai’s 0.67414 13.447 2 13 0.001
Roy’s 2.06883

This, rather meagre, output can be augmented by requesting various options. 
A useful option is to run the univariate ANOVAs on all the variables used in the 
MANOVA to see how much better the groups are separated. In the output there 
are three different methods of calculating the significance of a MANOVA. As is 
clear from the output they all provide the same conclusion with identical ‘P’, ‘F’ 
and ‘DF’ values. In each case the P-value is 0.001, indicating that the two spe-
cies are highly significantly different.

 There is no method for carrying out this test in Excel.

Multivariate analysis of covariance (MANCOVA)
This technique is related to MANOVA in the same way that ANCOVA is related to 
ANOVA. If there are more than one observed variables, one or more ways of clas-
sifying the data and furthermore there is a measured observation that is known 
to have an effect on the observations then MANCOVA can be used to remove the 
effect of this confounding variable from the analysis.

To carry out this test in SPSS or MINITAB, follow the MANOVA example and 
add a covariate to the box indicated. In R you can add a covariate to the func-
tion as in the ANCOVA example.

Cluster analysis
This is a general term for a huge range of techniques for the classification of indi-
viduals. These techniques are becoming increasingly important as more detailed 

MINITAB

Excel
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statistical analysis of DNA sequence analysis is being attempted. Cluster analysis 
can be used to generate dendrograms that show putative phylogenetic relation-
ships or at least divide individuals into groups that might have taxonomic meaning. 
However, cluster analysis is certainly not restricted to molecular sequence analysis; 
it has a long history in taxonomy (both cladistics and phenetics) and in community 
ecology (particularly in vegetation classification or ordination) and is now becom-
ing a key technique in the study of gene expression and gene families.

In its simplest form cluster analysis can be imagined as a step-by-step process. 
First the individuals are depicted as a scatter of points. Then the individuals that 
are closest together are identified and their similarity recorded as the distance 
between them. The two points are amalgamated into a single point located half 
way between the two. The next two closest points are then identified and amal-
gamated. This process can be continued until there is only one point.

 There are several methods available. As for discriminant function analysis 
and PCA, input the data in columns so that each individual is represented by a 
row of observations. From the ‘Analyze’ menu select ‘Classify’ and then choose 
‘Hierarchical Cluster’. Simple dendrograms can be generated by selecting the 
sub-menu ‘plots’ and checking the ‘Dendrogram’ option. I suggest that for 
‘Icicle’ you select ‘None’ as this display is very difficult to interpret.

Using the example data and the ‘Method’ of ‘Within-groups linkage’ and 
‘Rescale to 0-1 range’ option I generated the following agglomeration schedule:

Average Linkage (Within Groups)

Agglomeration Schedule

Cluster Combined

Coefficients

Stage Cluster First 
Appears

Next StageStage Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 6 7 .000 0 0 13
2 11 12 .001 0 0 12
3 2 5 .002 0 0 4
4 2 8 .003 3 0 9
5 3 4 .003 0 0 10
6 14 16 .003 0 0 9
7 9 10 .004 0 0 12
8 1 13 .005 0 0 11
9 2 14 .006 4 6 11
10 3 15 .007 5 0 14
11 1 2 .008 8 9 13
12 9 11 .010 7 2 15
13 1 6 .013 11 1 14
14 1 3 .026 13 10 15
15 1 9 .266 14 12 0

SPSS
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This shows that the first pair of individuals to be clustered (i.e. the most similar 
pair) were individuals 6 and 7. These will then form a new group, given the 
number of the lowest representative in the group, that is compared to the 
remaining individuals. The next most similar pair were individuals 11 and 12, 
then 2 and 5 and so on. This process continues until in step 15 a group of 12 
individuals including individual 1 is linked to a group comprising the remaining 
four individuals including individual 9.

The crude dendrogram shows this graphically, but as it uses ASCII symbols 
the resolution is very poor and it is certainly not a chart that can be used in a 
report.

 There are many clustering methods available in R. Here is a very simple one 
that produces output similar to MINITAB. First the variables that are going to 
be used are bound into a single object here called ‘Y’. If you are going to use all 
the data in a dataframe then you can skip this bit:

> Y <- cbind(thorax,wing,eye,femur,ant)

A hierarchical clustering using ‘Ward’s method’ is carried out by first calculating 
the Euclidean distances between individuals in the ‘dist()’ function and 
putting the results into an object ‘d’, then performing the clustering using 
‘hclust()’ on ‘d’ and putting the results into ‘fit’. The output is visualized 
using ‘plot()’:

> d<-dist(Y, method=”euclidean”)
> fit<-hclust(d,method=”ward”)
> plot(fit)

This produces output very like the MINITAB output in Fig. 9.3 (see below). To 
add a flourish, here is some code that will add four red rectangles to the plot. 
Change ‘k = 4’ if you want a different number of groups.

> groups<-cutree(fit, k=4)
> rect.hclust(fit, k=4, border=”red”)

In the example this puts a box around the group 9, 10, 11 and 12, but fails to 
identify the other three groups accurately. However, this is a very small data set 
with rather few morphometric characters measured and this method of cluster-
ing is a very simple one.

 There is a variety of clustering methods available in MINITAB and 
graphical output of reasonable quality can be generated. Input the data in 
columns so that each individual is represented by a single row. From the ‘Stat’ 

R

MINITAB
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menu select ‘Multivariate’ and then one of the three ‘Cluster’ methods. To 
generate the analysis that produced the dendrogram shown in Fig. 9.3, I used 
the ‘Cluster observations…’ method then moved the measured variables from 
the example data for PCA to the ‘Variables or distance matrix:’ box.

(Or, if the command interface is enabled, and assuming data are in columns c1 to 
c7, type ‘CLUO c3 c4 c5 c6 c7’ at the MTB> prompt in the session window.)

Cluster Analysis of Observations: thorax, wing, femur, eye, ant

Euclidean Distance, Single Linkage

Amalgamation Steps

Step
Number of 
clusters

Similarity 
level

Distance 
level

Clusters 
joined

New 
cluster

Number 
of obs. 
in new 
cluster

1 15 95.9016 0.037417 6 7 6 2
2 14 94.6340 0.048990 11 12 11 2
3 13 94.2040 0.052915 2 5 2 2
4 12 93.4280 0.060000 3 4 3 2
5 11 93.3373 0.060828 2 8 2 3
6 10 92.8174 0.065574 14 16 14 2
7 9 92.5711 0.067823 2 14 2 5
8 8 92.5711 0.067823 2 6 2 7
9 7 92.4908 0.068557 9 10 9 2
10 6 92.4113 0.069282 1 2 1 8
11 5 92.2548 0.070711 1 3 1 10
12 4 91.8033 0.074833 1 13 1 11
13 3 89.8423 0.092736 1 15 1 12
14 2 89.4939 0.095917 9 11 9 4
15 1 43.6461 0.514490 1 9 1 16

Final Partition
Number of clusters: 1

Number of 
observations

Within 
cluster 
sum of 
squares

Average 
distance 

from 
centroid

Maximum 
distance 

from 
centroid

Clusterl 16 1.67181 0.274649 0.585678

The output shows how the clusters are constructed and how similar individuals 
are. In the example the two most similar individuals are 6 and 7; they are joined 
to form a cluster which is given the number of the lowest numbered individual 
in the cluster. This cluster is later joined to a group containing individual 2 at 
step 8. Eventually all individuals are joined into a single group; in the example 
the final step is to join a group of four individuals (9, 10, 11 and 12) to the rest. 
This is displayed in the dendrogram in Fig. 9.3.

 No clustering techniques are available in Excel.Excel
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DECORANA and TWINSPAN
DECORANA (detrended correspondence analysis) and TWINSPAN (two-way 
indicator species analysis) are two analyses developed at the Institute for 
Terrestrial Ecology (now the part of the Centre for Ecology and Hydrology, UK) 
that are now widely used in the comparison of communities from species abun-
dance data and in the exploration of ecological data.

TWINSPAN, as suggested by its name, is very useful for comparing list of 
species from sets of sites. For example, in a study of woodland carabids the 
presence and absence data, or measures of abundance, generate a discriminat-
ing function that can group similar woodlands and generate dendrograms. Both 
are available in R.

43.65

Similarity

62.43

81.22

100.00
1 2 5 8 14 16 6 7

Observations

3 4 13 15 9 10 11 12

Fig. 9.3 A typical dendrogram showing the results of a cluster analysis in MINITAB. This 
figure was generated using the 16 individuals used as the example data for PCA. There 
are some clear groupings. For example, individuals 9–12 form a separate group on the 
right of the diagram.
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One of the surest ways of making a statistics book difficult to read is the  tendency 
to use Greek letters, single italicized letters or obscure symbols. As far as  possible 
I have tried to avoid these things in this book. Here are the ones that you are 
most likely to encounter.

Greek letters

These are often used to signify the true values of particular statistics (i.e. the 
value you would get if you were able to measure the entire population rather 
than a sample). The estimates you get of the true values are often then labelled 
with the corresponding normal letter.
Π (pi) product of the terms following it (multiply together)
π (pi) a constant (3.142) used in geometry
Σ (sigma) sum of the terms following it (add up)
α  (alpha) the critical significance level for the rejection of a hypothesis 

(usually 0.05)
β (beta) true regression coefficient (estimated by the statistic, b)
χ (chi) χ2 is a commonly encountered statistical distribution
γ  (gamma) γ1 is the true value of skewness; γ2 is the true value of kurtosis
µ (mu) true mean of a population
ρ (rho) true correlation coefficient (estimated by the statistic, r)
σ (sigma) the true standard deviation of a population
σ2 (sigma squared) the true variance of a population
Τ (tau) the statistic of Kendall rank-order correlation
∆ or δ (delta) increment (tiny difference or change)

Symbols

– (overbar) indicates a mean
√ square root
= is equal to

Symbols and letters 
used in statistics

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Symbols and letters 265

≡ is identically equal to
≠ is not equal to
≈ is approximately equal to
∼ is distributed as
∼ used in R to separate predictor from response in a statistical model
| | absolute value of the number between the bars; e.g. |−6| = 6
! factorial (e.g. 3! = 1 × 2 × 3 = 6)
[ ] used in R for matrix notation
( ) used in R to enclose arguments sent to a function
± plus or minus (so 5 ± 2 means a range from 3 to 7)
≥ is greater than or equal to
< is less than (points to smaller value)
« is much less than
> is greater than (points to smaller value)
» is much greater than
<- used in R to assign the output from a function
^ used in some statistical packages (e.g. Excel, R) to mean ‘raise to 

the power of’
∩; ∪; ⊂; ⊄ symbols used in set work (intersection; union; is a subset of; is not 

a subset of )
: used in R to indicate an interaction term
. used in R to indicate a nearly significant result, P > 0.05 but P < 0.1
* indicating a significant result (usually a P-value is flagged at < 0.05)
* used in statistical packages to mean ‘multiplied by’
* used in R between factors to indicate that main effects and 

interactions are required
** denotes a highly significant result (usually P < 0.01)
** used in some statistical packages (e.g. SPSS) to mean ‘raise to the 

power of’
*** denotes a very highly significant result (usually P < 0.001)
_____ used to underline groups that are not significantly different (see 

Post hoc tests, page 138)
∞ infinity (an infinite number), often used in statistical tables to 

indicate the value of an asymptote
∝ varies directly as, is proportional to
⇒ implies
× or multiply
∴ therefore

Upper-case letters

CI confidence interval
CL confidence limit
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CV coefficient of variation
d.f. degrees of freedom (also DF or df )
F F-value (e.g. the output from ANOVA), the ratio of within- and between-

group variance
F sometimes used to indicate a function
H0 null hypothesis (the uninteresting hypothesis: nothing is happening)
H1 alternative hypothesis (the interesting hypothesis: something is 

happening)
MS mean square (SS/df in an ANOVA table)
P probability (more usually P, p or p)
PI prediction interval
SD standard deviation (also s)
SE standard error
SS sum of squares
X2 estimate of value for χ2 (chi-square)

Lower-case letters

a the intercept of a regression line (where the line crosses the y-axis)
a.k.a. also known as; not statistics used several times in this book
b slope of a regression line
d.f. degrees of freedom (sometimes df or DF)
e a constant (= 2.172) used as the base for natural or Naperian 

logarithms (ln)
g estimate of value of γ (gamma); g1 = skew, g2 = kurtosis
f used to indicate a function
i often used to indicate a sequence of observations (e.g. xi)
j often used to indicate a second sequence of observations (e.g. xij)
m often used to indicate the sample mean
p probability (also P, P or p)
p binomial probability (e.g. 0.5 probability of an individual being female)
r measure of correlation (Pearson product-moment correlation, varies 

from −1 to 1)
rs measure of correlation produced by Spearman’s rank-order correlation
r2 a measure of the amount of variation accounted for by a regression line 

or correlation
s standard deviation of a sample (also SD)
s2 variance of a sample
t value of the statistic resulting from a Student’s t-test
v occasionally used to indicate variance of a sample
x often used to indicate an observation
y often used to indicate a second observation on the same individual as x
z often used to indicate a third observation on the same individual as x and y
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An explanation of commonly encountered words, concepts and acronyms including 
thumbnail description of many statistical tests.

a posteriori A phrase applied when a hypothesis is generated after the data have been 
collected. Sometimes used as a synonym for a post hoc test.

a priori A phrase applied when a hypothesis is generated before the data have been 
collected.

abscissa The x or horizontal axis of a graph.
accuracy The closeness of a measure to its true value (different to precision).
alpha The name usually given to the critical value of P required to reject a null 

hypothesis; i.e. usually 0.05.
ANCOVA The short term for analysis of covariance.
Anderson–Darling test A statistical test used to determine whether a set of data are 

normally distributed.
angular transformation A synonym of arcsine transform. A transformation that is 

often used to ‘normalize’ percentage or proportion data.
ANOVA The short term for analysis of variance; originally coined by Tukey.
ANOVAR The alternative term for analysis of variance.
arcsine square-root transformation see arcsine transform
arcsine transform An operation that is often used to ‘normalize’ percentage data; a 

synonym for arcsine square-root transformation and angular transformation. Note: 
arcsine is sometimes written as arcsin.

arithmetic mean A measure of position: the sum of all values divided by the number 
of observations (synonym of mean).

association The measure of the strength of the relationship between two variables. 
Often used as a synonym of correlation.

assumptions Many statistical tests assume that the underlying distribution of the 
measurements of a whole population is of a particular type or that measurements 
are made without error, etc.

asymptote The value of a line that a curve is approaching but never meets.
attribute When used to describe an observation it usually implies a small number of possi-

ble categories that have no meaningful sequence; for example, ‘blue’, ‘pink’ and ‘white’.

Glossary

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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autocorrelation A common problem with sets of observations is that they are not 
truly random and are more similar to their ‘neighbours’ in space or time than is 
expected by chance.

average A synonym for arithmetic mean (used by Excel for arithmetic mean).
back transformation A process by which observations are transformed back to their 

original units.
balanced design An experiment where the same number of observations are made 

for each factor level (or factor combination in two-way ANOVA).
bar chart A graph to display the distribution of a discrete variable where each 

category on the x-axis represents one possible value.
Bartlett’s test A test for homogeneity of variance.
Bartlett’s three-group method A model II regression technique.
Bayesian statistics A whole branch of statistics based on a different approach to the 

concepts of probability and certainty.
Bernoulli distribution Values can only be one of two possibilities (e.g. 0 or 1).
best fit The statistical model which explains the most variation. The best fit is often 

constrained by the type of statistical test. For example, if the model is a linear 
regression then the ‘best fit’ will be the straight line which accounts for the most 
variation (leaves the smallest residual variation).

between-sample variance A synonym for between-groups sum of squares. In ANOVA 
and regression it is a measure of the variation between factor levels. Comparison 
of the between-sample variance and within-sample variance is how ANOVA works.

bias Any systematic error in measurement.
bimodal A frequency distribution that has two peaks.
binomial distribution A theoretical probability distribution of events that can occur in 

two categories. Can be used as a null hypothesis to determine whether given data 
are random or not.

bivariate Tests which are applied to two variables.
bivariate normal An assumption of many bivariate parametric tests is that the two 

variables are both normally distributed.
Bonferroni method A post hoc test, used after a one-way ANOVA, to determine which 

groups are different from which. More generally a method for reducing the criti-
cal value of alpha (normally 0.05) when many tests are carried out in the same 
experiment: divide 0.05 by the number of tests to get new value of alpha.

bootstrapping A method of analysis that improves many estimated statistics by using 
repeated subsamples of a data set.

box plot A synonym of box and whisker.
box and whisker A method of displaying data where a horizontal line represents the 

median, a box extends to cover the interquartile range and a line may extend away 
from the box to the extreme values.

calibration curve Regression can predict y from any value of x. This can be used to 
generate a calibration curve.

canonical variate analysis A multivariate test where the data are divided into groups 
and the test weights variables to maximize differences between the groups.

caption A small piece of text that should accompany every figure and table used in a 
report, making it interpretable without recourse to the main text (synonym for 
legend).
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categorical A description of data or a variable that is only described by categories. 
This can be as simple as ‘red, blue, green’. Categories are often called attributes.

causation The assumption in statistical tests that the value of the independent 
 variable causes the result in the dependent variable.

chi-square (c2) distribution A distribution widely used in statistics that is based on the 
deviation of sample variance from the true variance of a population. A χ2 distribu-
tion can be generated from a population of standard normal deviates as the prob-
ability density of a very large number of samples scaled thus: ( (n − 1)s2)/σ2.

chi-square goodness of fit A chi-square test where the expected values are taken from 
a particular distribution against which the observed distribution is being 
compared.

chi-square test A contingency-table-based statistical test to explore hypotheses of 
association between variables; expected values are generated by the table.

cluster analysis A number of multivariate tests that group observations by similarity 
and may provide insight into the data.

component A synonym for a factor or axis in a principal components analysis.
confidence interval A measure of spread: it uses the standard error and the t-distribution 

to give a range of values within which there is a percentage probability of the true 
mean occurring (usually using set at 95%). In regression the 95% confidence inter-
vals of slope and intercept are used to generate 95% confidence intervals of the line. 
This zone is not parallel with the best fit line but wider at extreme values of x.

confounded design This often occurs in a multifactorial design when not all combina-
tions have been used or when the effects of one factor cannot be disentangled 
from the effects of another (i.e. they are not independent). Can be due to lack of 
space or resources a poor experimental design.

conservative test A test where the chance of type I error is reduced and that of a type 
II error increased (i.e. the null hypothesis is rejected less often than it should be).

constant Any fixed value. In regression analysis the intercept (value of y when x is 
zero) is sometimes called this.

contingency table A way of displaying data that has been assigned to categories for 
two variables; for example, broadleaf/conifer and insect damage > 10%? yes/no.

continuity correction A method of correcting bias in various contingency tests. Makes 
test results more conservative. Also called Yates’ correction.

continuous A description of data or variables indicating every value is possible (in the-
ory); for example, any linear measurement; > 29 possible values as a rule of thumb.

control A general term given to the section of an experiment which is unmodified by 
the experimenter.

Cook’s distance statistic A useful measure of the influence of single measures on the 
outcome of regression analysis (any value > 1 is large).

correlation A method of measuring the association between two variables (often 
used as a synonym for Pearson product-moment correlation). Warning: large sam-
ples will nearly always produce mathematically ‘significant’ results even when the 
biological is only miniscule.

covariance Technically, this is the sum of the product of the deviations from the 
mean for a set of paired observations (i.e. the variance that remains once the rela-
tionship between two variables is accounted for). Related to variance and useful 
in many statistics.
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Cox regression A type of regression used for assessing hazards (e.g. mortalities) to 
make predictions about the chance of events occurring.

Cramér coefficient The result of a test on contingency tables other than 2 × 2.
Cramér’s V A statistic correcting chi-square values for sample size.
cumulative frequency The number of times an observation takes a particular value or 

less in a data set; for example, if there were 26 zeroes, 22 ones and 15 twos then 
the cumulative frequency for two would be 26 + 22 + 15 = 63.

cumulative probability The probability of achieving a particular value and all values 
greater (or smaller). A type of data display where probabilities are accumulated 
from left to right until all observed values have been included.

data Observations recorded during an experiment or survey (plural).
datum A single observation.
degrees of freedom A number related to the sample size that accounts for the number 

of observations made, number of factor levels and any manipulations carried out. 
Degrees of freedom are lost, for example, when a set of values is constrained to 
total 1 or when a set of data is being compared to a standard distribution with 
mean or other parameters the same as the data.

dependent variable The observed or ‘effect’ variable not set by the experimenter.
derived A value that results from a combination of two or more values; for example, 

ratio, proportion or percentage.
descriptive statistic Anything that summarizes the data; for example, mean or stand-

ard deviation.
dichotomous variable A variable that can only take two possible values (e.g. yes/no).
discontinuous data Only a limited number of values are possible (< 30 as a rule of 

thumb).
discontinuous variable A variable that only has a limited number of values (usually 

but not always integers).
discrete A description of data or variables indicating that not every value is possible; 

for example, the number of children can never be 2.5.
discriminant function analysis A multivariate test that assigns individuals to groups.
dispersion The way in which the data are distributed, often measured by standard 

deviation; a synonym of spread.
distribution The spread of a set of observations.
double-blind An experiment when the experimenter does not know which treatment 

is being applied until labels are decoded. A very good way to avoid inadvertent 
bias by recorders and a requirement of all experiments on humans.

dummy data Made up before the experiment is carried out used for a dry run of the 
statistical tests planned.

Duncan’s method A post hoc test, used after a one-way ANOVA to determine which 
groups are different from which.

Dunn–Sidák method A post hoc test, used after a one-way ANOVA to determine which 
groups are different from which. More generally it is a method of setting the criti-
cal value of alpha (usually set to 0.05) when many experiments or tests are carried 
out at the same time. This method is often considered superior to the Bonferroni 
method (q.v.): new alpha equals 0.951/k, where k is the number of tests that have 
been carried out.
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Dunn test One of many post hoc tests used in ANOVA to determine which groups are 
different from which.

error A word quite widely used in statistics. Can be applied to the degree of accuracy 
with which measurements are made. Can also be used in statistical tests such as 
ANOVA to refer to variation not accounted for by the model being tested.

estimate Any statistics (e.g. mean) calculated from a sample is an estimate of that 
value for the whole population.

expected frequency The occurrence of an event determined from a theoretical distri-
bution or hypothesis based on previous observations.

expected value Values needed in contingency tables when they are calculated using 
the row and column totals or values derived from a theoretical distribution or 
hypothesis.

experiment Random assignment of subjects to controlled ‘experimental’ conditions.
experimental design A process of planning which should always occur before an 

experiment begins to maximize the usefulness of results obtained while minimiz-
ing the effort.

exponential distribution A distribution that arises when there is a constant probability 
of an event occurring; for example, birth rate or radioactive decay rate. Logarithmic 
transformations will turn exponential curves into straight lines.

extrapolation Whenever predictions are made beyond the range of the data available
F-distribution An asymmetric, continuous distribution, used in ANOVA tests with a 

modal value of 1, representing the frequency of occurrence of the ratio of between-
group variance/within-group variance for groups with the same distribution. 
Called F in honour of R.A. Fisher, the originator of ANOVA.

F-ratio A synonym for F-value.
F-test A statistical test with the null hypothesis that groups have the same variance. 

Often offered as a test for homogeneity of variance in a t-test.
F-value The output from an ANOVA test. The ratio of between-group variance and 

within-group variance.
factor A grouping variable or independent variable. For ANOVA factors must be dis-

continuous/categorical or made to appear so.
factor level A number representing different groups; for example, sap flows are 

examined from three species of tree. The species being groups that are arbitrarily 
assigned numbers as factor levels.

factorial (experiment) An experiment or survey where there are two or more factors 
and each possible combination of factor levels is represented in the data.

field experiment A general term given to any experiment where conditions are 
manipulated by the experimenter which occurs outside a controlled laboratory.

figure Any graphical item in a report.
first-order interaction An interaction between two factors in a factorial ANOVA.
Fisher’s exact test A statistic for 2×2 contingency tables used when the total number 

of observations is small.
Fisher’s z transformation A method for transforming the Pearson’s correlation coeffi-

cient to make it more amenable to analysis.
fixed effect This is often applied to describe a factor in ANOVA that is set by the 

experimenter (in contrast to a random effect).
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four-way… An experiment involving four independent factors. Read entry for 
 two-way… and extrapolate.

Friedman test A non-parametric test that is a restrictive version of a two-way ANOVA. 
Only one observation is allowed for each factor combination.

frequency The number of times a value (or range of values) occurs in a sample; for 
example, there were 56 white-eyed flies in the vial.

frequency distribution The number of times each possible value occurs in a sample.
function Some (hidden) R code that carries out a test or transformation etc.
G-test A form of contingency table test; a.k.a. log-likelihood ratio test.
gamma distribution A family of continuous distributions.
general linear model (GLM) A term used to describe a family of analyses that include 

ANOVA and linear regression.
generalized linear model A synonym for general linear model.
Genstat A statistical package (capable of carrying out complicated ANOVA designs).
geometric mean A measure of position: the antilog of the mean of the logs of each 

value.
geometric mean regression A model II regression method.
GLIM A statistical package very capable in general linear models.
goodness of fit Any statistic that compares the actual distribution of a variable with 

a theoretical one.
graphical representation Any method of displaying data visually.
group A set of observations with something in common; for example, all from the 

same tree.
grouping variable A variable by which observations can be divided into groups; for 

example, tree number.
harmonic mean A measure of position: the reciprocal of the mean of the reciprocals 

of each value.
heteroscedasticity When different groups have unequal variance and therefore the 

data violates the assumptions of ANOVA and regression.
hierarchical ANOVA A synonym of nested ANOVA.
highly significant Where the null hypothesis is rejected because the P-value is much 

less than the 0.05 level. The actual level varies with authors but P must be less 
than 0.01.

histogram A graph to display the distribution of a continuous variable where each 
category on the x-axis represents a range of values.

homogeneity of variances An assumption of many parametric tests such as the t-test 
or ANOVA is that the variances in the groups are equal. This can be tested using the 
Levene test.

homoscedasticity When different groups have equal variance and therefore conform 
to the one of the assumptions of ANOVA and regression.

Hotelling’s trace A method for calculating P-values in MANOVA.
hypothesis This is what is being tested when a statistical test is carried out; for exam-

ple, ‘male and female tree frogs have a different mean weight’.
independence An assumption of many statistical tests. The data collected in a sample 

are not affected by whether another event has occurred. Many statistical tests are 
rendered invalid because of lack of independence.
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independent samples No individuals measured in sample A are also measured in 
 sample B. If this is violated, the sin is called pseudoreplication.

independent samples t-test t-test comparing two sets of data that are not paired.
independent variable The ‘cause’ variable set or varied by the experimenter.
individual In statistics an ‘individual’ can be a pair, bone, region, species or any 

number of different things. The ‘individual’ will provide one observation for each 
variable under consideration and in when the data are arranged in the package will 
provide a single row.

integer A whole number.
interaction In ANOVA this is a measure of whether two or more grouping variables 

have an additive (no interaction) effect or not (interaction).
intercept In regression analysis; the point on the y-axis when the value of x is zero.
interquartile range A measure of spread: if the data are in rank order it uses the range 

from the value 25% down the list to that 75% down.
interval data When observations are made on a meaningful measurement scale.
jack-knifing A technique to determine bias in statistics by recalculating using a sub-

set of the data.
Kendall rank correlation A non-parametric test to measure correlation (association).
Kendall robust line fit A non-parametric, model II, version of regression (rarely 

used).
Kolmogorov–Smirnov test A non-parametric test that compares two distributions. 

Very useful for goodness-of-fit tests and more powerful and convenient than a 
chi-square goodness of fit when samples are large.

Kruskal–Wallis test A non-parametric version of a one-way ANOVA that tests the null 
hypothesis that two or more groups come populations with the same median.

kurtosis A measure of the shape of a distribution (sometimes called g2).
latin square An experimental set up that reduces possible bias caused by unquanti-

fied variation in the environment across an experiment.
Lawley–Hotelling test A method for calculating P-values in MANOVA.
least significant difference test The simplest and probably the most widely used post 

hoc test used after a one-way ANOVA to determine which groups differ from 
which.

legend A small section of text that should accompany every figure or table in a 
report, making it interpretable without recourse to the main text (synonym for 
caption).

leptokurtic A distribution that has a lot of observations around the mean and in the 
tails but fewer in the ‘shoulders’.

level A particular treatment; a defined condition for the independent variable (set by 
the experimenter).

Levene test A test for homogeneity of variances. Used for checking data to see if a 
parametric test such as ANOVA is appropriate.

liberal test A statistical test where the null hypothesis is rejected more often than it 
should be.

line chart (graph) A graphical representation of data where points are joined. This 
makes the assumption that values between points are possible and likely to be 
fairly represented by the position of the line.
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linear regression Regression that assumes the ‘cause-and-effect’ relationship is best 
described by a straight line.

log-likelihood test A method of calculating the probability that a particular contin-
gency table will arise; it is the basis of the G-test.

log transformation An operation where each observation is logged (usually to base 10).
logistic curve A distribution, usually with a range from 0 to 1, where the values near 

the extremes are approached with asymptotes.
logistic regression A version of regression where the ‘effect’ variable is transformed 

using logits. Useful when using regression to predict values that have a restricted 
range of possible values (e.g. proportions or percentages).

logit transformation Used to convert values on a scale with limits (e.g. proportions 
have limits at 0 and 1) to a limitless one. Transformation for a proportion, x: Logit 
x = ln(x/(1 − x) ).

LSD test Least significant difference test; a commonly used post hoc test, used after a 
one-way ANOVA to determine which groups are different from which.

main effect In ANOVA a factor (grouping variable) that is at the top of a design (i.e. not 
nested).

MANCOVA A MANOVA that includes a covariate.
Mann–Whitney U test A non-parametric test of a null hypothesis that two groups 

come from the same distribution. A synonym of Wilcoxon–Mann–Whitney test 
and Wilcoxon signed ranks test.

MANOVA An acronym for multivariate analysis of variance. A test where there is more 
than one dependent variable under investigation.

Mantel test A matrix method for determining how two matrices of data are 
associated.

matched samples/data A synonym for paired samples or repeated measures.
mean A measure of position: sum of all values divided by the number of observations 

(synonym of arithmetic mean and average).
mean square (MS) Used in ANOVA; the sum of squares divided by the degrees of 

 freedom (SS/df).
measured variable A variable where the experimenter has to take a reading; for 

example, height, weight, optical transmission.
measurement An observation or single item of data (datum).
meta-analysis A method for combining the results of several tests of the same 

hypothesis. It can be used even when the original data are not available and differ-
ent tests have been used.

median A measure of position: if all the data are put in rank order it is the value of 
the datum in the middle.

MINITAB A statistical package.
mixed model (ANOVA) A test with both fixed and random grouping variables (factors).
mode A crude measure of position: the most commonly occurring value.
Model I ANOVA The basic ANOVA where the grouping variables (factors) are all fixed 

effects.
Model II ANOVA An ANOVA where all the grouping variables (factors) are random effects.
Model I regression The usual parametric regressions that assumes the ‘cause’ variable 

is measured without error.

bgloss.indd   274bgloss.indd   274 9/18/2010   11:27:41 AM9/18/2010   11:27:41 AM



Glossary 275

Model II regression A rarely used version of regression that takes into account the fact 
that the ‘cause’ variable may be measured with error.

multifactorial design There are many variables that can be used to group the data.
multiple correlation Difficult to interpret comparison of more than two variables.
multiple regression A test that establishes the best prediction of an ‘effect’ variable 

using all ‘cause’ variables simultaneously.
multivariate statistics Tests which use more than one dependent variable.
negative binomial distribution A discrete probability distribution which is frequently 

invoked to describe contagious (clumped) distributions.
nested ANOVA Synonym of hierarchical ANOVA. A test where at least one of the group-

ing variables is a subgroup of another; for example, ‘bunch’ as a grouping variable 
within the grouping variable ‘vine’ in an experiment on grapes.

nominal Where the values in a data set cannot be put into any meaningful sequence 
only assigned to categories (e.g. blue and red).

non-parametric test A test where few or no assumptions about the shape of a distri-
bution are made.

normal distribution A unimodal, continuous probability distribution with a character-
istic bell shaped curve. This distribution is often assumed of the data in parametric 
statistics.

null hypothesis Every hypothesis being tested must have a null hypothesis; for exam-
ple, if the hypothesis is that two groups have different mean heights then the null 
hypothesis must be that the two groups do not have different mean heights.

observation A single item of data (datum); a measurement.
observer bias Whenever two, or more, observers have differences in the values 

recorded from the same observations. Can often be a consistent difference that 
can be corrected for.

one-tailed test A test that assumes rejection of the null hypothesis can only come 
from a deviation in one direction rather than either. For example, the hypothesis 
that two groups are different is ‘two-tailed’ while the hypothesis that group ‘A’ is 
larger than group ‘B’ is ‘one-tailed’. The effect of using a one-tailed test is to make 
statistics much less conservative for the same value of P.

one-way ANOVA A parametric test of the null hypothesis that two or more groups 
come from the same population.

ordinal When values in a set of data can be placed in a meaningful order and ranked.
orthogonal Literally means ‘at right angles to’. In statistics it is used to indicate that 

two variables, factors or components are unrelated to each other.
outlier An extreme or aberrant observation lying well away from the rest of the 

data.
P-value The probability of the significance statistic being that extreme or more if the 

null hypothesis is true. In biology the null hypothesis is usually rejected if the 
P-value is <0.05. Often written as p-value.

paired observations Two observations taken from the same individual, perhaps in a 
‘before and after’ design (synonym for repeated measures).

paired samples Sets of data comprising paired observations.
paired t-test To test the null hypothesis that two set of observations on the same 

individuals (e.g. before and after) have the same distribution.
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parametric test One where assumptions about the shape and spread of the data are 
made within the test.

partial correlation A method of examining relationships between more than two 
variables that examines them pairwise while other variables are held constant.

path analysis A complex data-exploration system where there are several simultane-
ous and possibly interacting ‘cause’ and ‘effect’ relationships.

Pearson product-moment correlation coefficient The standard parametric correlation coef-
ficient, r, measuring the association between two variables, that varies from 1 (perfect 
positive correlation), through 0 (no relationship) to −1 (perfect negative correlation).

percentage When the relationship between two values is expressed as a single value 
(usually on a scale from 0 to 100).

phi coefficient The result of a 2 × 2 contingency table.
pie chart A simple representation of frequencies of observations in different catego-

ries as sections (slices) of a circle. Particularly appropriate when the categories do 
not have a logical sequence.

Pillai’s test/Pillai’s trace A method for calculating P-values in MANOVA.
platykurtic A distribution that has a more observations in the ‘shoulders’ and fewer 

around the mean and in the tails than a normal distribution.
Poisson distribution A discrete frequency distribution that results when events occur 

entirely at random.
polynomial regression A regression where the relationship between ‘cause’ and 

‘effect’ is not assumed to be a straight line.
population The pool of possible individuals from which a sample is taken. Do not 

confuse with a biological population which will include additional individuals.
position The position of the sample is its mid-point, which can be defined as a mean, 

median or mode.
post hoc test Meaning a test ‘after this’; there are several tests used after a one-way 

ANOVA to determine which groups are different from which. Common methods 
include LSD, SNK and Bonferroni.

power analysis A method based on the number of observations for determining the 
likelihood of detecting a statistically significant effect.

precision The range of possible values between which a particular observation may 
lie. The repeatability of a measurement (different to accuracy which is a measure 
of the closeness of an measurement to the true value).

prediction interval In regression the range of y values that are expected for a given 
value of x. Usually given as a 95% prediction interval. This range does not fall 
within a zone running parallel to the best-fit line in linear regression but is smaller 
around the mid-range of x.

predictor In regression the ‘cause’ variable is often called the predictor and is always 
plotted on the x-axis.

principal axes A synonym for principal components.
principal axis regression A model II regression technique.
principal component analysis A multivariate test which weights the variables to maxi-

mize the differences between individuals.
probit A transformation of data based on the use of cumulative probabilities and log 

graph paper.
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procedural control A control where all the disturbance associated with applying a 
treatment is carried out, but the treatment itself is not applied.

proportion When the relationship between two values is expressed on a scale from 
0 to 1 (e.g. 30 out of 60 becomes 0.5).

proportional frequency A synonym for relative frequency.
pseudoreplication A problem in statistics when samples that are not independent are 

being treated as such.
q-q plot A q-q or quantile-quantile plot is a graphical method for assessing whether 

a variable follows a normal distribution.
quadrat A square sampling area.
quadratic regression A regression where the relationship between the variables is 

assumed to be best described by a quadratic equation.
qualitative A observation that is assigned to a category that, although it may be coded 

as a number, has no numerical value (e.g. sex: coded 1 for female and 2 for 
male).

quantitative An observation that has a meaningful numerical value. It can be either a 
direct observation or a count.

quartile When the data are ranked the quartiles are the values of the data points 25% 
and 75% down the list. They form the limits for the interquartile range.

r The result of a Pearson product-moment correlation. If r = 0 there is no correlation. 
If r > 0 there is a positive relationship and if r < 0 it is negative, 1 is perfect correla-
tion, −1 is perfect negative correlation.

rs The statistic associated with the Spearman’s rank correlation test.
R A free version of the statistical package S.
random effect A term applied to factors in ANOVA that are not set by the experimenter 

(in contrast to a fixed effect).
random sample A sample where each individual in the population has an equal 

chance of being measured or collected.
randomized block design When sampling units are placed into groups (blocks) and 

the treatment applied to each sample is randomized within the block.
range A crude measure of dispersion: the distance from the lowest to highest value 

in a data set.
ratio When two values are expressed as a single number (e.g. 6:2 becomes 3). Ratios 

lose information and magnify the error associated with measurement.
raw data Observations as they were originally recorded before any transformations 

or other processing is applied.
reduced major-axis regression A model II regression technique where the slope is 

essentially determined by the ratio of the standard deviations of the x and y 
values.

regression A description of the relationship between two variables where the value 
of one is determined by the value of the other (synonym of linear regression). 
More advanced regression can use several ‘cause’ variables.

related measures A synonym for paired samples or repeated measures.
related samples A synonym for paired samples or repeated measures.
relative frequency The proportion of observations having a particular value (or 

range of values). It is the frequency scaled to the sample size (e.g. 45 of 108 nests 
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in a survey had four eggs, the relative frequency of four eggs is 45/108 or 0.417 
or 41.7%).

repeated measures Two or more observations taken from the same individual, same 
site, same transect, etc., at different times (if only two observations then this is a 
synonym for paired samples).

repeated-measures ANOVA ANOVA carried out using repeat observations of the same 
individual. Time of observation (e.g. before and after) will be used as one of the 
factors in the ANOVA but the degrees of freedom will be reduced.

residuals The variation in the data left over after a statistical model has been 
accounted for (often regression or ANOVA). The model with the best fit has the 
smallest residual variation.

response In regression the ‘effect’ variable is often called this and is always plotted 
on the y-axis.

Ryan–Joiner test A method for determining whether a set of data follows a normal 
distribution.

S A statistical package (also comes in S-plus version that has a graphical user 
interface).

sample As all the individuals in a population may rarely be counted a portion of the 
population has to be taken, this is a sample.

sample size The number of observations in a sample.
sample variance The variance of a single sample.
sampling unit The level at which an individual observation is made; for example, a 

quadrat or a given size; a single leaf.
SAS A widely used and powerful statistical package.
scatter (plot) A graphical method for examining two (or possibly three) sets of data 

for possible relationships.
Scheffé-Box test A test for heterogeneity of variance.
Scheffé test One of many post hoc tests used in ANOVA to determine which groups are 

different from which.
Scheirer–Ray–Hare test A weak, non-parametric analogue of a two-way ANOVA, rarely 

supported in packages but quite easy to implement using the usual parametric 
ANOVA on ranked data and simple treatment of the resulting F-value.

second-order interaction An interaction between three factors in ANOVA.
Sidák test A synonym for the Dunn–Sidák test for multiple comparisons.
sign test A very conservative non-parametric test of a null hypothesis that there is no 

difference between two groups.
significance level The probability of achieving a significant result if the null hypoth-

esis is true. In biology this is usually set at 0.05.
significant When the null hypothesis is rejected because the P-value is less than 0.05 

(the usual value in biology), 0.01, or any value set by the tester.
simple factorial (design) None of the grouping variables are subgroups of any others; 

i.e. there is no nesting.
single-classification ANOVA A synonym for one-way ANOVA (there is only one grouping 

variable).
skew(ness) A measure of the symmetry of a data set (sometimes called g1). Positive 

skew indicates that there are more values in the right tail of a distribution than 
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would be expected in a normal distribution. Negative skew indicates more values 
in the left tail.

skewed distribution A distribution that has a value of skewness other than zero.
slope A number (usually b or β) denoting how a trend line deviates from zero (a 

slope of 0).
SNK test Student–Newman–Keuls test, a common post hoc test.
Spearman rank-order correlation A non-parametric measure of correlation.
Spearman’s rank correlation An alternative name for Spearman rank-order correlation.
split-plot design An experimental design technique used to analyse two factors when 

there is only one ‘plot’ for each level of one of the factors.
spread The way in which the data are distributed, often measured by standard devia-

tion (synonym of dispersion).
SPSS A widely used statistical package.
standard deviation A measure of spread: sensitive to shape of distribution.
standard error A measure of spread: the standard deviation of the values of a set of 

means taken from a data set. Sensitive to sample size.
Statistica A statistical package.
stem and leaf chart A method of displaying the data commonly used by computers 

before graphical output was possible. The ‘stem’ would be represented by a series 
of rows and leaf by columns starting from the left. Each observation would be 
assigned to a position on the stem based on its value.

stepwise regression A regression analysis where the best method for predicting the 
‘effect’ from several ‘cause’ variables is sought.

stratified random sample A method of collecting a sample that takes into account a 
feature of the collecting area.

Student A pseudonym used by the statistician William Gossett.
Student’s t-test A synonym for independent samples t-test.
Student–Newman–Keuls (SNK) test A frequently used post hoc test, used after a one-

way ANOVA to determine which groups are different from which.
summary statistic Anything that condenses the information about a variable, such as 

a mean or standard deviation.
symmetry A data set with symmetry has the same shape either side of the mean.
Systat A statistical package.
t-distribution A family of distributions widely used in statistics that is derived from 

the distribution of sample means with respect to the true mean of a population.
t-test To test the null hypothesis that two groups come from the same distribution 

(synonym for Student’s t-test, independent samples t-test).
tally When observations are assigned to categories and marked as ticks in a table.
three-way… An experiment involving three independent factors. Read entry for 

two-way… and extrapolate.
time series A set of data points taken at different points in time.
transect A method of taking a sample of observations. Usually by selecting a straight 

line between two random points, or from one random point in a random direction 
for a set distance.

transformation A mathematical conversion that is applied to every observation in a 
data set. Usually used to make a distribution conform to a normal distribution.
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treatment A level (usually denoted by an integer) of an independent variable, factor 
or grouping variable (i.e. set or defined by the experimenter).

Tukey test One of many post hoc tests used in ANOVA to determine which groups are 
different from which.

Tukey–Kramer method A synonym for Tukey test. A post hoc test, used after a one-way 
ANOVA to determine which groups are different from which.

two-tailed test Applies to most statistical tests and implies that the null hypothesis can be 
rejected by deviations either up or down. For example, if the null hypothesis that two 
groups of bats use the same frequency for echo location is rejected then group ‘A’ may 
use either a significantly higher or significantly lower frequency than group ‘B’. If the 
standard P =0.05 level is used then it implies a P = 0.025 region in each tail.

two-way ANOVA An ANOVA test where there are two independent ways of grouping the 
data (two factors).

two-way interaction In ANOVA this a measure of whether two grouping variables have 
an additive (no interaction) effect or not (interaction).

type I error When a truly non-significant result is deemed significant by a test.
type II error When a truly significant result is deemed non-significant by a test.
unbalanced When there are different numbers of observations in different factor 

combinations. Severely unbalanced designs (i.e. where some of the factor combi-
nations have no observations) should be avoided.

uniform distribution A ‘flat’ distribution where the chance of any value occurring is 
approximately equal, may often be transformed, using the arcsine transformation, 
to an approximately normal distribution.

unimodal A frequency distribution with a single peak at the mode.
univariate statistics Statistical tests using only one dependent variable.
unpaired data A synonym for independent data, stressing that sets of data are not paired.
value A single piece of data (datum).
variable Anything that varies between individuals (e.g. ‘sex’, ‘weight’ or ‘aggressive-

ness’). The term variate is actually correct, but variable is now the widely used 
term for the observed data set.

variance The sum of squared deviations of observations from the mean: a measure of 
spread of the data. Very important in the mechanics of statistics but not very use-
ful as a descriptive statistic.

variance/mean ratio (v/m or s2/m) A commonly quoted descriptive statistic useful for 
determining whether a set of observations fits a Poisson distribution (v/m = 1), is 
more clumped (v/m > 1) or is more ordered (v/m < 1).

variate The correct term for variable. Still retained for terms such as canonical vari-
ate analysis or univariate statistics.

Weibull distribution A family of continuous distributions.
Welch’s approximate t-test A version of the Student’s t-test that can be used when the 

variances of the two samples are known to be unequal.
Welsch step-up procedure A post hoc test, used after a one-way ANOVA to determine 

which groups are different from which; requires equal sample sizes.
Wilcoxon–Mann–Whitney test, Wilcoxon rank sum W test Synonyms for the Mann–

Whitney U test. A non-parametric test of a null hypothesis that two groups come 
from the same distribution.
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Wilcoxon signed rank test A non-parametric test of a null hypothesis that there is no 
difference between two related groups. The non-parametric equivalent of the 
paired t-test.

Wilks’ test A method for calculating P-values in MANOVA.
Williams’ correction A method of correcting bias in various contingency tests such as 

the G-test.
winsorize A method used to reduce the effect of outlying observations by replacing 

them with the next value towards the median.
within Sometimes used as shorthand for ‘within-sample variance’ or ‘within-group 

variance’.
within-sample variance In ANOVA a measurement of the amount of variation within a 

sample; see between-sample variance.
x-axis The horizontal axis of a graph or chart (abscissa).
Yates’ correction Sometimes called the ‘continuity correction’. A method to make 

the results of a 2 × 2 chi-square test more conservative.
y-axis The vertical axis of a graph or chart.
z-axis The axis that goes ‘into’ the paper or computer screen on a three-dimensional 

graph or chart.
z-distribution Occasionally used as a synonym for the normal distribution.
z-test A test used to compare two distributions, or more usually to compare a sample 

with a larger population where the mean and standard deviation are known.
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Most statistical tests make assumptions about the data to which they are being 
applied. If the assumptions are violated it is wise to treat the results with cau-
tion, especially when P-values fall in the range 0.01 to 0.1.

Here is a test-by-test summary of the assumptions.

Test Assumptions

G-test Observations can be assigned to groups or categories
chi-square test Observations can be assigned to groups or categories
Kolmogorov–Smirnov Observations come from a fairly continuous scale
paired t-test Both sets of data are normally distributed and vari-

ance is the same in both samples (although tests are 
often incorporated into statistical packages that make 
corrections by adjusting the degrees of freedom)

Wilcoxon signed ranks 
test

Observations are made on a scale such that the mag-
nitude of differences is meaningful

sign test Observations are made on a scale so that the ques-
tion ‘is A bigger than B?’ can be answered

t-test Both sets of data are normally distributed and vari-
ance is the same in both samples (although there are 
test often incorporated into statistical packages that 
make corrections)

Mann–Whitney U test Observations are made on a continuous scale (i.e. 
they can be put into rank order with very few ties)

Friedman test One observation per factor combination observations 
may be put in meaningful rank order

all ANOVA (analysis of 
variance) tests

Observations are independent both within and 
between samples
Variance is the same in all samples
Data are normally distributed within each factor (or 
factor combination)
Observations are assigned to groups (coded by inte-
gers) using one or more factors

Assumptions of 
the tests

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Kruskal–Wallis test Observations are made on a fairly continuous scale (i.e. 
they can be put into rank order with very few ties)

Scheirer–Ray–Hare test Observations are made on a continuous scale (i.e. 
they can be put into rank order with very few ties)

chi-square test of 
association

Observations can be assigned to categories or groups 
using one or more factors

phi coefficient of 
association

Observations can be assigned to two groups for each 
of two factors

Cramér coefficient of 
association

Observations can be assigned to categories or groups 
using two factors

‘standard’ correlation 
(Pearson product-
moment correlation)

Individuals have observations for two variables meas-
ured on a continuous scale
Two variables are both normally distributed

Spearman’s rank-order 
correlation

Individuals have observations for two variables meas-
ured on an approximately continuous scale

Kendall rank-order 
correlation

Individuals have observations for two variables meas-
ured on an approximately continuous scale

Kendall robust line-fit 
method

‘Effect’ measured on an approximately continuous 
scale ‘cause’ on any meaningful scale

ANCOVA (analysis of 
covariance)

Observations and covariate measured on a continu-
ous scale
Variance the same for all factor levels
Residuals are normally distributed
Observations are independent

‘standard’ regression 
(model I linear 
regression)

‘Cause’ (= independent or x) variable is measured 
without error
Variation in ‘effect’ (= dependent or y) is the same for 
all values of ‘cause’
Relationship between x and y is linear
‘Effect’ is measured on a continuous scale
‘Effect’ should be normally distributed for any value 
of ‘cause’

logistic regression ‘Cause(s)’ (= independent or x) variable(s) 
measured without error, can be categorical 
variable(s)
Variation in ‘effect’ (= dependent or y) the same for 
all values of ‘cause’
Relationship between x and y is linear
‘Effect’ can be expressed as a proportion (and 
then transformed by logits), can be a categorical 
variable

model II regression Individuals have observations for y variable measured 
on an approximately continuous scale

polynomial regression As standard regression but not assuming that the 
relationship between x and y is linear
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284 Assumptions of the tests

stepwise regression/
multiple regression/
path analysis

As standard regression but with several ‘effect’ vari-
ables measured for each individual

discriminant function 
analysis

Individuals have two or more observations assigned 
to them measured on continuous scales

principal component 
analysis or factor 
analysis

Individuals have two or more observations assigned 
to them measured on continuous scales

canonical variate 
analysis

Individuals have two or more observations assigned 
to them
Observations are measured on continuous scales
Individuals can be assigned to groups

MANOVA (multivariate 
analysis of variance)

Two or more observations for each individual
Observations are independent both within and 
between samples
Observations are assigned to groups (coded by inte-
gers) using one or more factors
Variance is the same in all samples
Residuals are normally distributed

MANCOVA (multivariate 
analysis of 
covariance)

Two or more observations for each individual
Observations are independent both within and 
between samples
Variance is the same in all samples
Residuals are normally distributed
Observations are assigned to groups (coded by inte-
gers) using one or more factors
Covariate is measured on a continuous scale

cluster analysis (a 
family of techniques 
that have slightly 
different assumptions)

Each individual has two or more observations 
 as  signed to it
Observations are measured on meaningful scales
Individuals can be assigned to groups

What if the assumptions are violated?

There are several possible courses of action that can be taken (in approximate 
order of preference):
1. data could be transformed to make them suitable for the analysis chosen;
2. an alternative test of the same hypothesis but with different assumptions is 
used instead;
3. the hypothesis is reframed to allow a different test to be used;
4. violation of the assumptions could be ignored totally but the results regarded 
with caution;
5. no test is carried out at all.
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Using a computer

Save frequently: computers crash and storage media of all kinds fail every • 
now and again and you want to make sure you don’t lose data.

Learn a few keyboard shortcuts.• 
An easy way to select a block of text or data in many packages is to place the • 

cursor at the beginning, move the pointer to the end and press Shift as you left-
click the mouse.

Another way to select blocks of text is to hold Shift while moving the down • 
arrow, up arrow, Page Up or Page Down.

Using the underlines: the underlined letters in menus mean that you can access • 
the menu by typing the letter on the keyboard while holding the Alt key.

Use the Tab key to move between boxes: useful in many of the Windows • 
dialogue boxes.

Use Shift and Tab together to move backwards through boxes: useful to • 
 correct mistakes.

Back-up your important files frequently on memory stick, CD, web storage, etc., • 
and keep physical back-ups in a different place to avoid total loss from theft or fire.

Holding Alt and pressing Tab moves you between open packages.• 
Edit in the best editing package, then do the statistics or graph drawing in • 

another: do not feel that you have to use the pathetic spreadsheet capabilities of 
the statistics package.

If you are given data in the format of another package that your package cannot • 
read you can nearly always read it by saving in raw text format from the first 
package.

When converting labels into numbers, using alphabetical order all the time • 
will avoid many problems of converting the numbers back to labels.

Cut and paste is a very powerful facility of most packages: you can usually • 
copy material from one to another using copy and paste.

The keyboard shortcuts for cut, copy and paste are nearly always Ctrl + x, • 
Ctrl + c and Ctrl + v respectively. Using the shortcuts is easier and quicker than 
going to the Edit menu and selecting from there.

Hints and tips

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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286 Hints and tips

Double-clicking or right-clicking often brings up helpful options.• 
In Excel, clicking the plain square on the top left of the spreadsheet between A • 

and 1 selects all cells and allows you to change all fonts or column widths, etc.
If you get stuck try the help file: these are usually extensive and often have • 

examples too.
Alt + F4 will usually close a package.• 
Don’t leave lots of unnecessary windows open: they slow the computer down • 

and clutter the environment.

Sampling

Try to balance sampling designs if you can (i.e. take equal-sized samples).• 
Measure everything you can easily: you never know what is going to be • 

important.
Avoid sampling at regular intervals if possible.• 
Choosing the nearest individual to a random point will • always bias the sam-

ple to individuals on the edge of clumps and against those in the middle.
Don’t carry out repeat sampling in the same sequence.• 
Measure to sensible precision only, not to maximum, but make sure there are • 

at least 30 different possible values wherever possible.
Check the quality of measurements by repeat measuring the same individual • 

after an interval.
Three subsamples from a site are much better than two.• 
When setting up a laboratory experiment make sure it is genuinely factorial • 

(i.e. there should be no confounding factors such as ‘all species x was from the 
sunny site’).

Randomize measurement routines as much as possible (i.e. don’t measure all • 
of group 1 then 2, etc.).

Try double-blind labelling if possible (i.e. when measuring you don’t know • 
what group the individual belongs to).

Don’t design over-elaborate experiments: it is difficult to interpret anything • 
with more than three factors.

Use transects with caution as they can easily produce biased samples.• 
If measurements are taken by several different people check the quality of the • 

data by having everyone blind measure the same individuals.
Always sample with a clear idea of the statistical test you intend to use in mind.• 

Statistics

Try the analysis on dummy data before collecting any real observations.• 
Find a worked example of a design like the one you are doing in a statistics • 

book and try to repeat the result in your statistical package.
Frame null hypotheses very carefully before anything else.• 
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Hints and tips 287

Always consider whether the data violate the assumptions of the test: if they • 
do, be wary of the results.

Transformation of the data can often turn an inappropriate data set into an • 
appropriate one.

One-tailed tests have their place (i.e. the alternative hypothesis is ‘• x is greater 
than y’ rather than ‘x is different to y’) but if in any doubt use two-tailed tests.

If • P-values are close to 0.05 consider resampling to increase sample sizes.
There is nothing ‘special’ about • P = 0.05, so don’t be completely tied to it.
A • P-value of 0.05 means a one-in-20 chance of getting a result this, or more 

significant, even if the null hypothesis is true.
In regression, if you are unsure which variable is the ‘cause’ and which is the • 

‘effect’ then the data are probably not suitable for regression anyway.
If a non-parametric test with reasonable power is available use it.• 
Carry out tests on incomplete data sets to get a feel for the results from the • 

complete set.
Use power analysis to help inform you as to the potential effect of further • 

sampling.
Use 95% confidence intervals rather than standard errors when comparing • 

several means.
The coefficient of variation is a good way to compare data sets with very dif-• 

ferent means.

Displaying the data

Never use three-dimensional effects for bar charts, pie charts, etc. (except, • 
possibly, for posters).

If you must use a three-axis graph make sure that every point is anchored to • 
the ‘floor’ by a spike, otherwise there is no way of determining its position on 
two of the axes.

Use the minimum amount of shading.• 
Use black and white rather than colours (except, possibly, for posters).• 
Avoid putting titles on graphs and figures.• 
Use a figure legend for every graph and make sure that the legend is informative • 

enough to make the graph intelligible without reading the main text of a report.
Use a different font, font size or margins to differentiate figure legends from • 

the main text.
Make sure figures and tables are appropriately numbered and referenced cor-• 

rectly from the text.
Don’t use any more decimal places than you have to and, for raw data, no • 

more than you have measured.
If a graph has a measure of position (e.g. mean) then nearly always display a • 

measure of dispersion as well (e.g. standard deviation or 95% confidence inter-
val); if plotting medians then always plot quartiles too.
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288 Hints and tips

If you want the reader to compare figures make sure they have the same • 
scales if possible.

If you use a line graph it must be possible for intermediate values to exist as • 
they are implied by the line.

Don’t be afraid to use log scales even when the observations are not logged, • 
and remember that log10 is easier for a reader to mentally convert back to the 
original value than natural log.

Never draw best-fit lines unless the data are suitable for regression.• 
Never extend best-fit lines beyond the range of the data.• 
Always have gaps between bars on a bar chart (data are discrete).• 
Never have gaps between bars in a histogram (data are continuous).• 
Only use pie charts for categorical data that have no real scale.• 
Don’t clutter graphs with too much information.• 
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A table of 
statistical tests

Choosing and Using Statistics: A Biologist’s Guide, 3rd Edition. By Calvin Dytham.
Published 2011 by Blackwell Publishing Ltd.
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Tests of difference Tests of relationships
Samples or 
groups Factors Data 

type Fit to known distributions One-sample tests Samples 
or groups

Data 
type

1 – Cat G-test fit to uniform: G-test, 
chi-square test Correlation

D fit to Poisson: chi-square 
test

e.g. median of 0?: 
Wilcoxon’s one-sample test 2 Cat chi-square for association

C
fit to normal: Kolmogorov–
Smirnov test, Anderson–
Darling test

e.g. mean of 0?: one-sample 
t-test D Kendall’s rank correlation, 

Spearman’s rank correlation

Unpaired data Paired data C Pearson product-moment 
correlation

2 1 Cat chi-square test chi-square test Regression

D Mann–Whitney U test Wilcoxon’s signed ranks 
test 1 cause, 1 

effect

D logistic regression, model II 
regression, Kendall’s robust line fit

C t-test, one-way ANOVA paired t-test C linear regression, quadratic or 
polynomial regression

>2 1 Cat chi-square test chi-square test >1 effect, 
1 cause C multiple regression, stepwise 

regression

D Kruskal–Wallis test Friedman test for repeated 
measures (no replication) Multivariate tests

C one-way ANOVA repeated-measures ANOVA
1+ group 
and any 
number of 
factors

many causes, many 
effects to explore path analysis

2+ >1

D

(2 factors only) Friedman 
test (if no replication), 
Scheirer–Ray–Hare (weak 
option)

Friedman test for repeated 
measures (only one factor 
other than repeat and no 
replication)

many variables to 
explore PCA

C two-way ANOVA, or multiway 
ANOVA

repeated-measures ANOVA

groups to 
discriminate with 
many variables

CVA, discriminant 
function analysis, 
MANOVA, multiple 
regression, DCA

Analysis with covariate(s)
groups to 
discriminate with 
discrete variables

TWINSPAN

>1 group, 
1+ factor,
1+ covariate

1 variable

>1 variable

ANCOVA

MANCOVA

many proportion or 
categorical variables
to explore

multiple logistic 
regression

Note: Cat indicates categorical data; D indicates discrete or ordinal data; C indicates continuous data; although many tests will have an assumption that the data is 
normally distributed. CVA, canonical variate analysis; DCA, detrended correspondence analysis; PCA, principal component analysis.
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comparing more than two variables 68–71
comparing two variables 63–8
confidence intervals 67, 68
data exploration 63–5
distribution of single variable 50, 50, 51, 52
error bars 63, 63
fitted lines 67, 67
histogram 51, 52
lines 65, 66
pie chart 52, 53
scatterplots 64, 64
summarizing a single variable 49
summarizing two or more variables 62–3
surface plots 70–1, 70, 71
three-dimensional scatterplots 68–9, 69
times series 65–7

distribution
aggregated 37, 38, 39
antimode 54
bimodal 54, 54
binomial 37–9, 41
chi-square 47
combined variables 54
continuous 40–7
discrete 36–40
display 50–2
exponential 47
hypergeometric 39–40
multimodal 54, 54
negative binomial 39
negative exponential 47
non-parametric 48
normal 40–3, 41
Poisson 36–7
rectangular 40
standardized normal 40
symmetry/shape 41, 57
t-distribution 46
tests of difference 72–92
types 36–44
uniform 40
unimodal 54, 54

dummy data 1, 7
analysis 1, 7

Dunn–Sidák method 138

error bar display 63, 63
Excel

angular (arcsine square root) 
transformations 45

ANOVA

one-way (more than two groups) 137
one-way (two groups) 117–19
repeated measures 128
two-way (with replication) 173–5
two-way (without replication) 158–60

chi-square test
association 206–8

goodness of fit 84–6
descriptive statistics 61–2
G-test 74–5
interaction 162–3, 164
linear regression 228–30
logit transformation 46
paired t-test 95–6
Pearson product-moment correlation 213–14
phi coefficient 209
Scheirer–Ray–Hare test 180–2
sign test 102–3
Spearman rank-order collection 216–18
t-test 110–11

expected frequency 39
experimental controls 29
experimental design 27–31

controls 28–29
experiments 29
exponential distribution 47

factor analysis see principal component analysis
factorial experimental design (multiple 

factors) 30
factors

fixed 193
nested 192–3
non-independent 192
random 193
two independent

balanced designs 164
interaction 160–3
no replication 146
with replication 160

false positive error 24
Fisher’s least significant difference (LSD) 

test 138
fitted lines 67, 67

multiple 69
fixed factors 193
Friedman test 146–51

assumptions 282
MINITAB 150–1
R 149–50
SPSS 147–8

Friedman test for a repeated measures 
design 123–6

assumptions 282
MINITAB 125–6
R 125
SPSS 124–5

G-test 72–5
assumptions 282
continuity correction 14, 72
Excel 74–5
R 73–4
Williams’ correction 14, 72

Gaussian distribution see normal distribution
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geometric mean 53
graphical data representation 49–71
graphical tests for normality 90–2

MINITAB 92
R 91–2, 91
SPSS 90

Greek letters 264
group data, tests of difference 92–198

more than two groups 123–45
paired data 92–103, 123–8
two groups 92–123
unpaired data 103–23

H0 (null hypothesis) 23
H1 (alternative hypothesis) 23
harmonic mean 53
hierachical ANOVA see ANOVA, nested
hierachical (nested) experimental design 193–8
histogram 51, 52
hypergeometric distribution 39–40
hypothesis formulation 32
hypothesis testing 23

independent samples 128–9
post hoc tests 138–42

independent samples t-test see t-test
interaction 160–3, 161

Excel 162–3, 164
MINITAB 162, 163
R 161
SPSS 160, 162

interquartile range 48, 55
interval variables see continuous variables

Kendall partial rank-order correlation 237
Kendall rank-order correlation 218–19

assumptions 283
R 219
SPSS 218–19

Kendall robust line-fit method 230, 235
assumptions 283

Kolmogorov–Smirnov test 86–9
assumptions 282
MINITAB 88–9
R 88
SPSS 87–8

Kruskal–Wallis test 142–5
assumptions 283
MINITAB 144–5
post hoc testing 145
R 144
SPSS 143–4

kurtosis 43, 57

Latin square 29–30
least significant difference (LSD) test 138
leptokurtic distribution 43
Levene test 92, 106, 113, 114

line graphs 65, 66
fitted lines 67, 67

linear regression (model I linear 
regression) 221–30

assumptions 283
confidence intervals 222–3
correlation comparison
Excel 228–30
MINITAB 227–8
prediction 221–2
prediction interval 223
R 226–7
r 2 interpretation 222
residuals 222
SPSS 223–6

logistic regression 230–4
assumptions 283
MINITAB 233–4
R 232–3
SPSS 231–2

logit transformation 45–6
Excel 46
MINITAB 46
R 46
SPSS 45

MANCOVA (multivariate analysis of 
covariance) 259

assumptions 284
Mann–Whitney U test 119–23

assumptions 282
MINITAB 122–3
R 121–2
SPSS 120–1

MANOVA (multivariate analysis of 
variance) 256–9

assumptions 284
MINITAB 259
R 258–9
SPSS 256–8

matched data see paired data
matched samples see repeated measures ANOVA

mean 42, 53
arithmetic 53
confidence limits 53
geometric 53
harmonic 53

median 42, 53
meristic variables see discrete variables
MINITAB

ANCOVA 241–2
Anderson–Darling test 89
angular (arcsine square root) 

transformation 45
ANOVA

one-way (more than two groups) 135–6
one-way (two groups) 116–17
post hoc tests 141–2
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repeated measures 128
three-way (with replication) 190–1
three-way (without replication) 183
two-level nested design 197–8
two-way (with replication) 171–3
two-way (without replication) 157–8

chi-square test
of association 205–6
of goodness of fit 81–4

cluster analysis 261–2, 263
descriptive statistics 59–61
discriminant function analysis 255–6
Friedman test 150–1

repeated measures 125–6
graphical tests for normality 92
interaction 162, 163
Kolmogorov–Smirnov test 88–9
Kruskal–Wallis test 144–5
linear regression 227–8
logistic regression 233–4
logit transformation 46
Mann–Whitney U test 122–3
MANOVA 259
paired t-test 95
Pearson product-moment correlation 212–13
phi coefficient 209
principal component analysis 249–51
Scheirer–Ray–Hare test 179–80
sign test 101–2
Spearman rank-order correlation 216
t-test 108–10
Wilcoxon signed ranks test 98–9

mode 42, 53–5
model I regression see linear regression
model II regression 235

assumptions 283
multifactorial testing 182–3
multimodal distribution 54, 54
multiple correlation 236
multiple regression 242

assumptions 284
multivariate analysis of covariance see MANCOVA

multivariate analysis of variance see MANOVA

multiway ANOVA 191–2

negative binomial distribution 39
negative exponential distribution 47
nested ANOVA see ANOVA, nested design
nested (hierarchical) experimental design 193
nested factors 192–3
nominal variables see categorical variables
non-independent factors 192
non-parametric distributions 48
non-parametric statistics 33
normal distribution 40–3, 41

central limit theorem 41
kurtosis 43, 57
Poisson distribution convergence 41

skewness 41, 42, 57
standardized 40
variance 55

null hypothesis (H0) 23

observation 2
ordinate 50
outliers 49, 55

P-values 24–5
paired data (related; matched data) 92–103

paired t-test 92–6
sign test 99–103
Wilcoxon signed ranks test 96–9

paired t-test 92–6
assumptions 282
Excel 95–6
MINITAB 95
R 94–5
SPSS 93–4

parametric statistics 33
partial correlation 237
path analysis 243

assumptions 284
Pearson product-moment correlation 210–14

assumptions 283
Excel 213–14
MINITAB 212–13
R 211–12
SPSS 211

percentage data 36
phi coefficient of association 209

assumptions 283
Excel 209
MINITAB 209
R 209
SPSS 209

pie chart 52, 53
platykurtic distribution 43
Poisson distribution 36–7

expected values calculation 76, 80, 84
normal distribution convergence 41

polynomial regression 235–6
assumptions 283

position (location) measures 52–5
mean 53
median 53
mode 53–5

precision 34
principal component analysis (PCA) 244–51

assumptions 284
MINITAB 249–51
R 248–9
SPSS 247–8

procedural control group 28

quadratic regression 235–6
quadrats 25–6

9781405198387_6_index.indd   2959781405198387_6_index.indd   295 9/16/2010   11:38:45 PM9/16/2010   11:38:45 PM



296 Index

quartiles 48
questionnaire data 35

R
ANCOVA 240–1
angular (arcsine square root) 

transformations 45
ANOVA

one-way (more than two groups) 134–5
one-way (two groups) 116
post hoc tests 140–1
repeated measures 128
three-way (with replication) 188–9
three-way (without replication) 183
two-level nested design 197
two-level (with replication) 169–70
two-level (without replication) 156–7

chi-square test
of association 204–5
of goodness of fit 79–81

cluster analysis 261
Cramér coefficient 208
descriptive statistics 58–9
discriminant function analysis 254–5
Friedman test 149–50

repeated measures 125
graphical tests for normality 91–2, 91
G-test 73–4
interaction 161
Kendall rank-order correlation 219
Kolmogorov–Smirnov test 88
Kruskal–Wallis test 144
linear regression 226–7
logistic regression 232–3
logit transformations 46
Mann–Whitney U test 121–2
MANOVA 258–9
paired t-test 94–5
Pearson product-moment correlation 

211–12
phi coefficient 209
principal component analysis 248–9
Scheirer–Ray–Hare test 177–9
Shapiro–Wilk test 90
sign test 100–1
Spearman rank-order correlation 215–16
t-test 107–8
Wilcoxon signed ranks test 97–8

R functions
? 59
abline( ) 227
abs( ) 74
aov( ) 116, 128, 134–5, 140, 156–7, 169, 

178, 183, 188–9, 197, 240, 258
attach( ) 149, 169, 177, 205
as.factor( ) 156
as.matrix( ) 149
asin( ) 45

bigplot( ) 249, 250
binom.test( ) 100
cbind( ) 258, 261
chisq.test( ) 79, 204
cor( ) 211–12, 215–16, 219
cor.test( ) 212, 215, 219
cutree( ) 261
diag( ) 254–5
dist( ) 261
dpois( ) 79
exp( ) 58
fitted( ) 233
friedman.test( ) 125, 149–50
glm( ) 232–3
hclust( ) 261
interaction.plot( ) 161, 170
lda( ) 254
length( ) 58, 100
lines( ) 92
lm( ) 183, 226–7, 240
log( ) 46, 73
manova( ) 258
matrix( ) 125, 204, 208
mean( ) 58
median( ) 58
names( ) 156
pchisq( ) 74, 80, 179
pie( ) 59
plot( ) 59, 92, 140, 227, 233, 261
prcomp( ) 248–9
princomp( ) 248
print( ) 249
prop.table( ) 254–5
qqline( ) 91
qqnorm( ) 91
range( ) 58, 88
rank( ) 177
read.table( ) 169, 205
rect.hclust( ) 261
seq( ) 91
shapiro.test( ) 90
sqrt( ) 45, 88
sum( ) 73–4, 79–80, 100
summary( ) 58, 115, 128, 134–5, 156–7, 169, 

178, 183, 189, 197, 226, 232, 240, 
249, 258

t.test( ) 94, 107–8
table( ) 205, 255
tukeyHSD( ) 140, 189
var( ) 58
wilcox.test( ) 97–8, 121–2

random factors 193
random sampling 26–7

stratified 27
random walk 27
range 55
ranked data 35–6
ratio data 36
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rectangular distribution 40
regression 220–1

cubic 235–6
logistic see logistic regression
model I linear see linear regression
model II 235
multiple 242
polynomial 235–6
quadratic 235–6
stepwise 242–3
tests of association 236

related data see paired data; repeated measures 
ANOVA

relationship, tests of 199–243
repeated measures ANOVA 123

Excel 128
MINITAB 128
paired data tests 92–103
R 128
SPSS 127–8

residual variation 222

sample 32
sample unit 25–7

number 26
positioning for random sampling 26–7
selection 25
size 26

sampling 25–7
random 26–7
stratified 27
timing 27

scatterplots 64, 64
three-dimensional 68–9, 69

Scheirer–Ray–Hare test 175–82
assumptions 283
Excel 180–2
MINITAB 179–80
R 177–9
SPSS 175–7

selecting tests 7–22
Shapiro–Wilk test 90

R 90
sign test 99–103

assumptions 282
Excel 102–3
MINITAB 101–2
R 100–1
SPSS 99–100

skewness 41, 42, 57
Spearman rank-order correlation 

214–18
assumptions 283
Excel 216–18
MINITAB 216
R 215–16
SPSS 215

spread see dispersion measures

SPSS
ANCOVA 239–40
angular (arcsine square root) 

transformations 44
ANOVA

one way (more than two groups) 130–4
one-way (two groups) 112–15
post hoc tests 139–40
repeated measures 127–8
three-way (with replication) 185–8
three-way (without replication) 183
two-level nested design 194–6
two-level (with replication) 165–9
two-level (without replication) 153–6

chi-square test
of association 201–4
of goodness of fit 76–9

cluster analysis 260–1
Cramér coefficient 208
descriptive statistics 57–8
discriminant function analysis 252–4
Friedman test 147–8

for repeated measures 124–5
graphical tests for normality 90
interaction 160, 162
Kendall rank-order correlation 218–19
Kolmogorov–Smirnov test 87–88
Kruskal–Wallis test 143–4
linear regression 223–6
logistic regression 231–2
logit transformations 45–6
Mann–Whitney U test 120–1
MANOVA 256–8
paired t-test 93–4
Pearson product-moment 

correlation 211
phi coefficient 209
principal component analysis 247–8
Scheirer–Ray–Hare test 175–7
sign test 99–100
Spearman rank-order correlation 215
t-test 104–7, 105
Wilcoxon signed ranks test 96–7

standard correlation see Pearson 
product-moment correlation

standard deviation (SD) 55–6
standard error (SE) 56
standardized normal distribution 40
statistical controls 29
statistics 32–3

categories 33
data exploration 244–63
descriptive 33, 52–7
non-parametric 33
parametric 33
tests of difference 172–98
tests of relationship 199–243
types of statistics 33
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stepwise regression 242–3
assumptions 284

stratified random assignment 30
stratified random sample 27
Student–Newman–Keuls (SNK) test 

138–9
summary statistics 49–61
surface plots 70–1, 70, 71
symbols 265–6
symmetry of data (skew) 41
systematic sampling 25–6

t-distribution 46
t-test 103–11

assumptions 282
Excel 110–11
MINITAB 108–10
paired 92–6
R 107–8
SPSS 104–7, 105

temporal control group 28–9
test selection 7–22
three-dimensional display 68–71

scatter plots 68–9, 69
surface plots 70–1, 70, 71

times series, graphical display 65–7
transformations 40, 43–6

angular (arcsine square root) 44
logit 45

treatments 27–8
trends, graphical display 67–8
TWINSPAN (two-way indicator species 

analysis) 263
type I errors 23
type II errors 24

uniform distribution 40
unimodal distribution 54, 54

unpaired data
Mann–Whitney U test 119–23
one-way ANOVA (more than two 

groups) 129–37
one-way ANOVA (two groups) 111–19
t-test 103–11

variables 33–6
attributes 35
categorical 35
continuous 34
derived 36
discrete 35
interval 34
measurement 34–5

accuracy 34–6
nominal 35
ranked 35–6
types 34–6

variance 55
homogeneity tests 92, 116

variate 34
variation

coefficient of variation 56
residual 222

Wilcoxon–Mann–Whitney test see 
Mann–Whitney U test

Wilcoxon rank sum W test see Mann–Whitney 
U test

Wilcoxon signed ranks test 96–9
assumptions 282
MINITAB 98–9
R 97–8
SPSS 96–7

Wilcoxon two-sample test see Mann–Whitney 
U test

Williams’ correction 14, 72
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