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Preface

...with its help, debates can be resolved forever, if they can be settled on the basis of
some data; and if one took the pen it would be enough for the two disputing men to
say to one another: Let’s calculate.

Leibniz in a letter to P. J. Spener, 1687

Computational chemistry has reached a high degree of maturity and comprehen
sion making it one of the vivid research areas in modern chemical and physical
research in general. This is true because an accurate simulation of spectroscopic
properties is one of the major challenges and  at the same time a precious benefit
of modern theoretical chemistry. Predictions concerning single molecules, mole
cular clusters, or even the solid state in combination with detailed information from
apparatus based experiments are therefore providing ingredients to an auspicious
revolution in the borderland between theory and experiment: computational spec
troscopy. At first sight, the term seems to contradict itself: from the traditional point
of view, spectroscopy (or spectrometry) belongs to the realm of the experimentalists,
while computational chemistry is allocated to the domain of theory. The frantic
developments in both areas during the last years have nevertheless helped build new
bridges between both worlds.

This is important because until the end of the last millennium theoretical and
experimental chemistry were separated by respectable gaps. Studying chemistry in
the 1990s was yet sometimes accompanied by dialectical training: equipped with the
sanguine knowledge that molecular orbitals are artifacts (learned from an exciting
theoretical chemistry course), one stumbled into an organic chemistry exam being
forced to explain the formation of a covalent bond in terms of those very orbitals.
Those days are history now for several in part ambivalent reasons. The main
cause nevertheless is a simple one: modern computational chemistry deals with
observable properties and this positivistic shift does not leave too much room for
“overinterpretations.” One can always try to find an experiment, which allows either
falsification or confirmation of the computer simulation. This is in sharp contrast to
the second major application area of computational chemistry: the underpinning of
chemical concepts. Led by Coulson’s famous request, “... give us insights, not

Xl
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”

numbers ...,” more and more chemical perceptions as well as new molecular
categories were introduced. It is, however, still unclear whether the addition of
those ad hoc concepts is always helpful in characterizing the huge variety of
chemical phenomena. On the contrary, many of these early chemical concepts
resembled Leibniz’s voces metaphysicae, that means phrases, which we use believing
that we understand entities just by pinning names on them. Or, to quote Wolfgang
Pauli, many of the earlier concepts deduced from approximate quantum chemistry
were so fuzzy that they were not even wrong.

In order to keep pace with new developments in terms of more rigorous solutions
for Schrédinger equation, we anyhow may not demand that ideas from the early days
of numerical theoretical chemistry persist permanently. The decade long debate and
struggle for a unique definition of aromaticity is only one of the many examples of
those fruitless endeavors. The (in part humoristic) suggestion by Heilbronner as
early as 1971 at the famous Jerusalem symposium on “Aromaticity, Pseudo Aroma
ticity, Anti Aromaticity” to introduce the term “schizo aromaticity” for molecules,
which are aromatic by one definition and nonaromatic by another, illuminates this
dilemma quite graphically.

The situation changed dramatically during the last 20 years. Reliable first princi
ple electronic structure calculations on the one hand and sophisticated molecular
dynamic simulations for complex systems on the other hand are nowadays well
established instruments in the toolbox of theoretical chemists, and these rapid
developments are paving the way for the study of increasingly large and chemically
complex systems. At the same time, experimental molecular spectroscopy is also an
extremely active and fast developing field, which is evolving toward the possibility of
performing precise measurements for single molecules and, even more intriguing,
for the hub of chemistry itself, the individual covalent bond. The title of this book
Computational Spectroscopy states its aim: From basic research to commercial appli
cations in the area of environment relevance, we will compile the major develop
ments during the past 5 10 years. A multitude of apparatus driven technologies will
be covered. Nevertheless, the selection of topics is of course a subjective one.
Summarizing the results of so many different disciplines, I hope that this book
will on the one hand attract the attention of newcomers and on the other hand
inform the experts about developments in scientific areas adjacent to their own
expertise.

At Wiley, I would especially like to thank Dr. Elke Maase and Dr. Martin Graf for
their guidance through all phases (from the first concept of the book to the final
cover design) of this challenging and fascinating project.

July 2010 Jorg Grunenberg
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1

Concepts in Computational Spectrometry: the Quantum
and Chemistry

J. F. Ogilvie

1.1
Introduction

During the nineteenth century and most of the first half of the twentieth century, after
Dalton’s recognition of the atomic nature of chemical matter, which is everything
tangible, that matter was regarded by most chemists as a material. Even though
chemists, following Couper, Kekule, van’t Hoff, and others, drew structural formulae
in terms of atoms connected by bonds represented as lines, chemical samples were
generally regarded as materials or “stuff”. When, after 1955, molecular spectra,
particularly of organic compounds, began to be recorded routinely in the mid
infrared region and with nuclear magnetic resonance, the outlook of chemists shifted
from macroscopic properties, such as density, melting point, and refractive index,
to purportedly molecular properties, such as the effect of adjacent moieties on
the characteristic infrared absorption associated with a carbonyl group or on the
chemical shift of a proton. The first “quantum chemical” calculations, on H,' by
Burrau and on H, by Heitler and London, all physicists, had as subjects chemical
species remote from common laboratory experience, but Pauling’s brilliant insight
and evangelical manner stimulated great qualitative interest in a theoretical inter
pretation of chemical properties, even though a large gap existed between the
primitive calculations on methane and other prototypical molecules and molecules
of substances of practical interest. This gap was bridged largely through the efforts
of Pople and his collaborators during the second half of the twentieth century in
developing computer programs that enabled efficient calculation of observable
molecular properties; not coincidentally, Pople was also an early exponent of the
application of nuclear magnetic resonance spectra in the publication in 1959 of an
authoritative monograph [1] that was seminally influential in the general application
of this spectral method [2].

Chemists concerned with quantitative analysis have always understood the dis
tinction between spectroscopy and spectrometry: spectroscopy implies the use of
a human eye as a visual detector with a dispersive optical instrument and hence
necessarily qualitative and imprecise observations, whereas spectrometry pertains to
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an instrument with an electrical detector amenable to quantitative measurement
of both frequency and intensity. For spectra throughout the entire accessible range of
frequencies from 10° Hz, characteristic of nuclear quadrupole or nuclear magnetic
resonance, to radiation in the X ray region sufficiently energetic to cause ionization,
a significant use of the numerical results of computations based nominally on
quantum mechanics, such as of molecular electronic structure and properties, is to
assistthat spectral analysis. Pople’s programs were based, to an increasing extent over
the years, on selected quantum mechanical principles that arose from quantum
theories. During the past century, the practice of chemistry has thus evolved much,
from being a largely empirical science essentially involving operations in a laboratory
and their discussion, to having allegedly an underpinning based on quantum
theories.

During the nineteenth century, a standard paradigm for most chemical operations
was that both matter and energy are continuous; following a philosophical point of
view of Greek savants and concrete ideas of Bacon and Newton, Dalton’s contention
that matter is particulate provided a basis to explain chemical composition, but
Ostwald remained skeptical of the existence of atoms until 1909 [3]. The essence of
the quantum concept is that both energy and matter ultimately comprise small
packets, or chunks, not further divisible retaining the same properties. In Latin,
quantum means how much?. A descriptor more enlightening than quantum is
discrete, so we refer to the ultimate prospective discreteness of matter and energy.
(In a mathematical context, integers take discrete values, even though they number
uncountably, and have a constant unit increment, whereas real numbers 1.1, 1.11,
1.111, ... vary continuously, with an increment between adjacent representatives as
small as desired.) One accordingly distinguishes between the laws of discreteness,
based on experiment, and various theories that have been devised to encompass or to
reproduce those discrete properties. The distinctions between physical laws and
theories or mathematical treatments are poorly appreciated by chemists; our objec
tive is thus to clarify the nature of both quantum laws and quantum theories, thereby
to propose an improved understanding of the purported mathematical and physical
basis of chemistry and the application of computational spectrometry. After distin
guishing between quantum laws and quantum theories, we apply to a prototypical
problem three distinct quantum mechanical methods that nevertheless conform to
the fundamental postulate of quantum mechanics; we then consider molecular
structure in relation to quantum mechanical principles and their implications for the
practice of chemistry aided by computational spectrometry.

For many chemists, the problem so called the particle in a box is the only
purportedly quantum mechanical calculation that they are ever required to undertake
as a manual exercise, but its conventional solution is at least problematic. Any or all
treatments of a harmonic oscillator in Section 1.3 serve as a viable alternative to that
deficient model. The connection between quantum mechanics and chemistry might
be based on a notion that “quantum mechanics governs the behavior of electrons and
atoms in molecules,” which is merely supposition. While Dirac and Einstein had, to
the ends of their lives, grave misgivings about fundamental aspects of quantum
mechanics [4], and even Born was never satisfied with a separate and thereby
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inconsistent  treatment of the motions of electrons and atomic nuclei that
underpins common quantum chemical calculations, almost all chemists accept, as
recipes, these highly mathematical theories, in a mostly qualitative manner
embodied in orbitals “for fools rush in where angels fear to tread” (Pope). For
those chemists who undertake calculations, typically with standard computer pro
grams developed by mathematically knowledgeable specialists who have no qualms
about producing more or less efficient coding but who might refrain from ques
tioning the underlying fundamental aspects, the emphasis is placed on the credibility
of the results. For the molecular structures of stable species that have been
established by essentially experimental methods, although a theoretical component
isinvariably present, the empirical nature of the computer coding its parameters are
invariably set to reproduce, approximately, various selected properties of selected
calibration species reduces its effect to a sophisticated interpolation scheme; for
the molecular structures of such fabulous species as transition states, as these are
inherently impossible to verify, the results of the calculations merely reinforce
preconceived notions of those undertaking such calculations. We trust that recon
sideration of the current paradigm in chemistry that abides such questionable
content will motivate an improved understanding of the mathematical and physical
bases of chemistry and a reorientation of chemistry as an experimental and logical
science of both molecules and materials. For this purpose, computational spectrom
etry has a substantial role to play in a fertile production of information about the
structure and properties of molecules and materials.

1.2
Quantum Laws, or the Laws of Discreteness

The universe comprises matter and energy; as chemists, we might ignore the
possibility of their interconversion. With regard to matter, we classify anything on
or above an atomic scale and that displays a rest mass as either material or molecule.
Molecules exist only in a gaseous state of aggregation under conditions in which
intermolecular interactions are negligible, thus describable as constituting an ideal
gas; an isolated atom is simply a monatomic molecule. Molecules hence exist most
purely in interstellar clouds, but even appropriate gaseous samples in a terrestrial
laboratory that exhibit properties nearly characteristic of a free molecule might, to
a sufficient approximation, be deemed to contain molecular entities. A material is
found in a condensed phase or in a compressed gas, under which conditions
rotational degrees of freedom are much hampered. A few condensed samples, such
as liquid dihydrogen, have properties, such as spectra in the infrared region, that
might resemble those of free molecules. In contrast, a single macroscopic crystal
of diamond or sodium chloride or a sheet of “polyethylene”, for instance, might on
structural grounds be regarded as constituting a single molecule. For H,O, the
smallest internuclear distances in the gaseous phase and in liquid water or solid ice
differ by more than their experimental uncertainties, and their infrared spectra
concomitantly differ. How can we consider H,O to be the same species in the

3
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Table 1.1  Physical properties of molecules and photons.

Property Value for molecule Value for photon
Charge Z 0,+1e,+2e, ... 0

(Rest) mass M>0 0

Energy W = Wy + Wit + Woip + Wa + W hv

Linear momentum Bl >0 Bl  h/A
Angular momentum Q] [JU+1)"h Q| h

molecular vapor and the material solid? For energy, we limit attention to its radiant
form as constituting a free state like an interstellar molecule; a discrete unit of
radiation is called a photon.

We summarize in Table 1.1 some fundamental properties of molecules and
photons [5].

The experiment best known to demonstrate the discreteness of a property
of a particle with rest mass is Millikan’s measurement of the charge of an electron
on a drop of oil suspended in a vertical electric field. Assuming that discreteness of
electric charge, one readily observes the discreteness of mass of molecular ions
with a conventional mass spectrometer. The unit of charge is that on the proton or
the magnitude of charge that an electron carries. Masses of individual atoms are
classified with exact integers, but actual atomic masses, or masses of not too large
molecules of particular isotopic composition, assume nearly integer values in terms
of unified atomic mass unit or dalton. Under appropriate conditions, the total energy
W of a molecule confined to a finite spatial volume might take discrete values, but
even for an unconfined molecule the rotational, vibrational, and electronic contribu
tions to total energy might be observed to alter in discrete increments. The linear
momentum p of a confined molecule is supposed to assume discrete values. Not only
the total angular momentum  of a molecule but also the separate electronic,
nuclear, and rotational contributions thereto appear to assume, in a particular
discrete state, integer or half integer values in terms of Dirac constant h (Planck
constant h divided by 27); these angular momenta likewise alter in unit increments in
various processes.

A photon possesses neither net electric charge nor rest mass, but its energy and
linear momentum are directly related to its wave attributes frequency v = E/h and
wavelength A = h/|p|; their product vA equals the speed ¢ of light. Any photon carries,
independent of frequency, intrinsic angular momentum Q to the extent of one unit in
terms of h, in the direction of propagation if it be circularly polarized in one sense
or opposite the direction of propagation for circular polarization in the other sense.
As a limiting case of elliptical polarization, linearly polarized light as a coherent
superposition of these two circular polarizations lacks net angular momentum and
so imparts no total angular momentum to an absorbing target.

Even when neglecting a distinction between molecules and materials, these laws of
discreteness, or quantum laws, of molecules and photons provide an ample basis for
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the conduct and explanation of chemical operations for almost all practical purposes
beyond which a continuum of properties suffices.

1.3
Quantum Theories of a Harmonic Oscillator

In attempts to explain or to encompass various experimental data interpreted in terms
of discrete properties at a molecular level, scientists have devised various quantum
theories. Planck proposed reluctantly in 1900 the first theory to involve a discrete
quantity, for which he invoked harmonic oscillators; he attempted to explain the
distribution of energy, as a function of wavelength, radiated by a black body [3]. As that
distribution is continuous, the requirement for a discrete quantity in a theoretical
derivationisnotobvious. Thatdistribution has been derived alternatively with classical
statistical thermodynamics [6], although the incorporation therein of the Planck
constantremains enigmatic. The second application of aquantum condition appeared
in Einstein’s treatment of the photoelectric effect in 1905, but in retrospect
a recognition of the quantum laws makes that derivation almost trivial. In relation
to infrared spectra of gaseous hydrogen halides, in 1911 Bjerrum, a Danish chemist,
soughtto develop an explicit quantum theory of molecules for vibrational and rotational
motions; as this treatment preceded Rutherford’s revelation of the structure of the
nuclear atom, this endeavor was bound to fail. Equally incorrect but far better known
is Bohr’s theory, in 1913, of an atom with one electron for which some enhancements
by Sommerfeld and Wilson failed to remedy the fundamental deficiencies [3].

In 1924, Born and Heisenberg recognized that a proper description of an atomic
particle must be concerned with its mechanics and dynamics, hence with equations
of motion in terms of position, momentum, and time. In Heisenberg’s development
of the first enduring quantum theory in 1925 [3], the crucial particular in his paper is
expressible as

pide dkpj = 1hdjk (1.1)

Therein appear symbols to denote a component of momentum p or of position g,
i=+/ 1, Dirac constant h, and Kronecker delta function O;x that equals unity if j=k
or zero otherwise; the left side of this equation contains a commutator, printed as
[pj» qi]- In one dimension, this equation becomes

pq gp=I[p,al= ih (1.2)

From this relation are derivable both de Broglie’s relation, A = h/p, and Heisenberg’s
principle of indeterminacy [5], Ag Ap > 1/2 h, whereas the reverse derivations are less
obvious. One may thus regard this equation, as Dirac recognized directly in 1925, to
constitute the fundamental postulate of quantum mechanics. A parallel postulate in the
form of a commutation relation involving energy and time is less relevant here.
Among quantities that naturally fail to commute are matrices, and a variable with its
differential operator; such quantities to represent p and g might hence form a basis of
quantum mechanical calculations.

5
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To illustrate and to contrast three methods of quantum mechanics in a nonrel
ativistic approximation, we apply this commutator to a canonical linear harmonic
oscillator in one spatial dimension. According to classical mechanics, the frequency
of its oscillation is independent of its amplitude, whereas according to quantum
mechanics a harmonic oscillator has states of discrete energies with equal incre
ments between adjacent states, as we derive below. Because the latter oscillator
possesses no angular momentum, it behaves as a boson. The classical potential
energy V associated with this canonical form is expressed as

V(g) =1/2k ¢ (1.3)

in which Vexhibits a parabolic dependence on displacement coordinate g; coefficient
k. is also the factor of proportionality in Hooke’s law, F(q) = k.q, relating a restoring
force to that displacement.

1.3.1
Matrix Mechanics

According to matrix mechanics, each physical quantity has a representative matrix [7].
For coordinate matrix Q, we accordingly define its elements g,, ,,. Combining the
relation for the restoring force of an oscillator of mass p with Newton'’s second law in
nonrelativistic form, we obtain

F(q) = keq=ud’q/d’ (1.4)

Expressing a ratio k./u of parameters as a square of a radial frequency w,, for which
the units are appropriate, we rewrite this differential equation as

d*q(1)/df* = ofq(1) (15)

For this equation to be applicable to a system described by means of matrix
mechanics, each element of matrix Q must separately obey this equation; we express
this solution in exponential form as

Gnm(t) = qg‘mexp( 10y, t) (1.6)

in which appear two arbitrary constants ¢° ,, and w,, ,,, appropriate to an ordinary
differential equation of second order. Substitution of this solution into that differ
ential equation yields the following condition:

(0f @2,.) g =0 (1.7

Hence, either qum =0 or w,,,, =tw,. Because numbering of matrix elements is
arbitrary, we apply a convention thata condition w,, ,, = + ®¢ corresponds to emission
of a photon as the oscillator passes from a state of energy with index n to another state
with energy with index n 1, whereas a condition ®,,,= ®, corresponds to
absorption of a photon as the oscillator passes from a state of energy with index n
to another state with energy with index n + 1. With numbering of elements
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beginning at zero, the coordinate matrix thus assumes this form,

0 d%. O 0

in which nonzero elements accordingly appear only on the first diagonals above
and below the principal diagonal. As momentum, in a nonrelativistic approxima

tion, is defined as a product of a constant mass and the temporal derivative of
coordinate g, so that p=p dg/dt, we have for each element of the momentum
matrix p, =1 0 Oy mGnm With ©, ,, =+ and m=n=+ 1, we obtain

0 qg,l 0 0

P=iuwe| ‘ (1.9)

which has nonzero elements along diagonals only directly above and below the
principal diagonal.

The total energy W of a state of the oscillator is a sum of kinetic Tand potential V
contributions, which together constitute the Hamiltonian H applicable to this
problem,

W=H=1/2p/u+1/2keq® =1/2P*/u+1/2nwiq* (1.10)

We form accordingly an energy matrix W as a sum of squares of matrices P for
momentum and Q for coordinate with their indicated multiplicands, 1/2u"" and
1/2 p w?, respectively, which yields

qg‘l q(l),o 0 0
5 0 qg,l q(l)‘() + q(l),z q(z),l 0 s
W =pw (1.11)
0 0 4,00 +99543,

Nonzero elements appear therein only along the principal diagonal. Moreover, all
factors dependent on time have vanished, which signifies that the energies of states
are independent of time, thus corresponding to stationary states. Amplitude coeffi
cients ¢, ,,, which originate as constants of integration, remain to be evaluated; for
this purpose, we apply directly the commutation law, which here contains a unit
matrix on the right side.

7
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‘1(1),0 ‘1841 0 0
] 0 ‘1(2),1 q(1)4,2 ‘1(1),0‘18,1 0
[pg ap] = 2ipwo
0 0 q(s),zq(z),3 q(z),lq(l),z

Il
-
=

(1.12)

Therefore,
oo, = ih/( 2ipwo) =h/(2uwo)

(1.13)
qg,l ‘1(1),2 q(l),Oqg,l =h/(2uay),...

Solving successively these equations and consistent with microscopic reversibility,
we obtain

qgﬂ,n q?L,nJrl = q(r);,n+1q(r)t+1,n = ‘qg.n+l‘2 = (n+1)h/(2n wo) (1.14)

We substitute this general relation into the energy matrix. The corresponding
elements gy, ,,, of coordinate matrix Q increase along each diagonal according to
[1/2 (n + 1)]'>. When we replace radial frequency w, by circular frequency
Vo = Wo/(27), we derive a general result

Wo=Wun=(mn+1/2)hwg=(n+1/2)hvg (1.15)

This result signifies that the interval of energy between states characterized with
adjacent integers is constant, equal to h vy, and that the state of least energy,
characterized with n=0, has a residual, or zero point, energy equal to 1/2h v,.
Transitions in absorption or emission, according to type electric dipole of form
charge times distance, e g, are thus governed by the nonzero elements of coordinate
matrix Q; these transitions are hence possible only between states of adjacent
energies.

In principle, the rows and columns of all matrices here number infinitely, but to
form each matrix with a dozen rows and columns suffices for any practical purpose.
Although these calculations by hand with matrices of even such an order are tedious,
calculation with mathematical software [8] such as Maple is readily effected; accord
ing to contemporary methods of teaching mathematics, many students are
introduced to such software in calculus courses, so there is no major impediment
to such use for chemical applications. In the same way, one shows directly that the
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numbering of matrix elements is arbitrary, so that nonzero elements ", of matrix Q
might occur for n=m %k, for instance, with k = 2 or 3 rather than 1 as above; in that
case, the energies still have values (n + 1/2) h v, with nonnegative integer n, and two
or three states have the same energy. Transitions of type electric dipolar still occur
only between states of adjacent distinct energies.

1.3.2
Wave Mechanics

According to wave mechanics, an observable quantity might be represented with
a differential operator. To conform to the fundamental postulate of quantum me
chanics, either coordinate q or momentum p, but not both, might be selected to be
a differential operator. According to a coordinate representation, we choose momen
tum p to become ihd/dg, whereas according to a momentum representation we
choose coordinate g to become ihd/dp; the reason for such choices is simply
to impose conformity with that fundamental postulate. A differential operator
requires an operand, called an amplitude function or wavefunction; for operator
d/dg, we choose 1 to denote its operand, whereas y, for operand of d/dp. Among
properties that ) (q) and x(p) must obey are that these functions must be continuous,
remain everywhere finite and singly valued, and satisfy appropriate boundary con
ditions; the first derivatives of \(q) and y(p) with respect to their specified arguments
must likewise be well behaved except possibly at infinite discontinuities of potential
energy. Amplified discussion of various properties of y(q) is available elsewhere [9].

Also according to wave mechanics, the possible energies W of a system in
a stationary state are obtained upon solution of Schrodinger’s equation independent
of time. For such a system, the coordinate representation is generally preferable to the
momentum representation, because the potential energy is typically expressible
more readily in terms of coordinate than in terms of momentum. For a particle of
mass U subject to displacement g, the kinetic energy according to classical formula T
() =1/2 p?/u becomes operator 12 (h*/u) d’/dq” in the wave mechanical coor
dinate representation. For a canonical linear harmonic oscillator, the potential energy
in terms of coordinate g remains V(q) = 1/2 k.q%, as in matrix mechanics. Inserting
these quantities into Schrodinger’s equation, we obtain

A w(a) = [ 1/2(W/w) &*/dq +1/2ke 4] 9(9) = Wih(q) (1.16)

in which the terms between brackets constitute the Hamiltonian operator H(g) that is
applicable to this particular problem. To solve this differential equation, of type
second order with linear symmetries, we best invoke mathematical software [8], as for
matrix mechanics above: with Maple the direct solution, again with wg substituted for
V/ (ke/u), is directly expressed as

Y(q) = ca Wu(t W/(hwo), 1/4, 2m oo ug’/h)//q
+ 6 Ww(nt W/(hwo), 1/4, 2mwong/h)/\/q (1.17)

9
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With coefficients ¢; and ¢, as constants of integration, two independent solutions
contain Whittaker M, as Wy, and Whittaker W, as Wy, functions, each with three
arguments. For amplitude functions to be well behaved according to a condition
specified above, namely, that 1, (q) — 0 as g — oo, the difference between the first
and second arguments must be equal to half a nonnegative integer: so
7t W/(h wo) 1/4=1/2 n. Replacing radial frequency w, by circular frequency vy,
we hence obtain

W, = (n+1/2) hvo (1.18)

as in the solution according to matrix mechanics.

Plotting the part of the solution above containing the Whittaker M functions shows
that, for even values of integer n, the curves diverge for positive and negative values of
g; for this reason, we set ¢; equal to zero. In terms of Whittaker W functions, the
amplitude function 1 (q) thus becomes

V(@) = & W (n/2+1/4, 1/4, 21 (k)" g2 /h) /2 (1.19)

Integration constant ¢, remains to be evaluated; for this purpose, because Maple is
unable to perform a general integration for symbolic integer n, we integrate
Y,(q)*Pu(q) over g from oo to oo for nfrom 0 to 5, with 1, (q)* as complex conjugate
of ,,(q); as ,(q) here has no imaginary part, Y,,(q)* \n(4) = Vn(g)*. On inspection of
those results of integration, we discern that

¢ = (2" /n)"V? /4 (1.20)

causes each integral to become equal to unity, corresponding to normalization of
amplitude function ,(q). After we test this result by integrating \,,(q)* from oo
to oo for further values of n to verify our deduction, 1,(q) becomes thereby
completely defined for n of arbitrary value. In Figure 1.1, with each function
displaced upward n units for clarity, we plot \,(q) in terms of Whittaker W
functions for n=0...3 and with ¢ in a domain 2.5...2.5; for the purpose of
these plots, we take h = k. = u = 1, but such values affect only the scales on the axes,
not the shapes of the curves.

In Figure 1.2, we plot similarly a product 1,,(q)>. According to Born’s interpre
tation, a product \,(q)*Y.(q) dg represents a probability of a displacement of an
oscillator having a value between g and q + dg; the unit integral for normalization is
consistent with this concept.

We test two properties of these amplitude functions. When we integrate over g
between oo and oo a product of the first two amplitude functions,

j 1 (4) (@) dg = 0 (1.21)

or any other two distinct functions, we obtain zero; this result verifies that these
amplitude functions are orthogonal. When we integrate likewise the same product
with a further multiplicand g within the integrand, for the purpose of calculating
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Figure 1.1 For a canonical linear harmonic ordinate axis versus displacement g or
oscillator according to wave mechanics and momentum p, respectively, on the abscissal axis
either coordinate or momentum forn 0,1,2,3,calculatedwithh ke p 1;

representation, amplitude functions y,(g) or each curve is displaced n units.
%n(p) in terms of Whittaker W functions on the

a transition probability or the intensity of a transition between the two states with
which these amplitude functions are associated, we obtain a real quantity.

| v @ vt da =172 0/ k) (122)
According to further integrals of this type, for two amplitude functions y,(q) and
Y,u(q), only when m=n=1 does this integral differ from zero, and the values of
integrals of \,, | 1(q)*q P,(q) increase with nas[1/2 (n + 1)]'/? inaccordance with the
result from matrix mechanics.

With Mathematica software, the solution of this Schrodinger equation is
expressed directly in terms of parabolic cylinder functions. A conventional approach
to this solution yields a product of an Hermite polynomial and an exponential
function of Gaussian form, to which these Whittaker W functions are equivalent. The
parabolic cylinder functions are in turn related closely to Whittaker functions; both
are related to confluent hypergeometric functions in a product with an exponential
term. Conversion from Whittaker or parabolic cylinder functions to Hermite or
hypergeometric functions is unnecessary, because the former satisfy the pertinent

1
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Figure 1.2 For a canonical linear harmonic ordinate axis versus displacement g or
oscillator according to wave mechanics and momentum p, respectively, on the abscissal axis
either a coordinate or a momentum forn 0,1,2,3,calculatedwithh ke p 1;

representation, probability functions 1,(q)? or  each curve is displaced # units.
%n(p)? in terms of Whittaker W functions on the

differential equation as effectively as the latter functions multiplied by an exponential
term; avoiding that conversion makes this direct solution practicable without prior
knowledge of its form. All these special functions arise in solutions of various
differential equations, and their use in one or other chosen form has comparable
convenience.

We repeat this calculation within the momentum representation, with amplitude
function ¥ (p); this representation is useful for scattering conditions such as chemical
reactions. Converting coordinate g to i hd/dp, we obtain Schrodinger’s equation
accordingly in this form:

H(p)x(p) = [1/2p* /0 1/2ke > &/dp*| x(p) = W x(p) (1.23)

the terms between brackets constitute the Hamiltonian H (p) applicable to this
formulation. With Maple, the solution of this equation appears again in terms of
Whittaker functions,

%(p) = et W[t W/ (h o), 1/4, 27 p* / (h oo W)/ /p
+eWylm W/(hwo), 1/4, 2 p*/(h oo w)]/v/p (1.24)
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With the difference of the first two arguments of these Whittaker functions setequal to
halfanonnegativeinteger, for the samereason as before, the resulting functions satisfy
requisites of an amplitude function (p); with n denoting thatinteger, solving for Wand
replacing the radial frequency w, by circular frequency v, as before, we obtain

W, =(n+1/2)hvy (1.25)

as in the solutions according to both matrix mechanics and wave mechanics in its
alternative coordinate representation. With Mathematica, the solution of
Schrodinger’s equation is again expressed in terms of parabolic cylinder functions.

Plots show again that the Whittaker M functions in y(p) above must be eliminated
because they diverge for |p| > 0 for even n; with the other, Whittaker W, functions we
proceed exactly as above. The amplitude function ¥(p) in terms of momentum thus
becomes

1n(p) = 2Ww(n/2+1/4, 1/4, 2 p* / (hkV/? u1/2)) [p/2 (1.26)

which has no imaginary part. To evaluate integration constant c,, we integrate y,(p)*
over p from oo to oo for particular values of n from 0 to 5, and discern that

¢ = (2"/n)) 2 /ml/4 (1.27)

isrequired for each integral to become equal to unity, corresponding to normalization
of amplitude function y,,(p); after we test this result by integrating y,(p)* from oo to
oo for further values of n to verify our deduction, y,,(p) becomes completely defined.
Taking again h=k.=p=1 for convenience, we plot y,(p) for n=0...3 for p in
adomain 2.5...2.5;theresulting plotappears in Figure 1.1, and the corresponding
functions y,,(p)?, for which a probabilistic interpretation is applicable analogously to
P,(q)% yield a plot in Figure 1.2.

The fact that, with h=k.=p =1, these plots of both y,(p) and y,(p)* for these
functions of momentum p are identical with the corresponding plots of ,(¢) and
P,(q)* for the functions of coordinate g merely reflects the symmetry of the
Hamiltonian: before conversion of either p or g to a differential operator according
to a coordinate or momentum representation, respectively, the Hamiltonian contains
p” and ¢°, with their respective coefficients 1/2 u~ "' and 1/2 k.. If we absorb these
factors into variables p’ and ¢, the Hamiltonian becomes expressed simply as
A = p'* + ¢'*, thus exhibiting an entirely symmetric form. All these curves involving
Y%n(p) that contain Whittaker W functions are likewise identical to the corresponding
curves of products of Hermite polynomials and Gaussian functions according to
a common representation of these amplitude functions for the canonical linear
harmonic oscillator.

To test some properties of these momentum functions, we integrate a product
of two amplitude functions for the first two states, with n=0 and n=1, between

oo and oo:

J %1(p) %o(p) dp =0 (1.28)

13
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As for any other two distinct functions, the result zero verifies that these amplitude
functions y,(p) are orthogonal. To calculate a transition probability or intensity of
a transition between these two states, before we integrate the same product with
a further multiplicand g within the integrand, we convert g to its corresponding
operator, i h (d/dp), appropriate for the momentum representation.

o0

_ o 1/2 1/4

J x1(p)" 1h(dxo(p)/dp) dp =i1/2(h/m)""/(1ke) (1.29)

—00
This integration yields a purely imaginary quantity. Apart from that additional factor
i, this result is equivalent to that for the corresponding integral in the coordinate
representation above, as expected because a transition probability is proportional to
the modulus of this integral; for that reason, the presence of factor i is immaterial.
According to further integrals of this type, for two amplitude functions y,(p) and
Xm(p), only when m=n=+1 does this integral differ from zero; the values of this
integral of y,, ;. 1(p) P %u(p) increase as [1/2 (n + 1)]'/2, in accordance with the results
from both matrix mechanics and the coordinate representation.

According to some authors, an amplitude or wavefunction in a momentum

representation is merely a Fourier transform of the corresponding function in the

coordinate representation; this assertion is incorrect because coordinate and mo
172

mentum are not mutually reciprocal quantities. On incorporating a factor h™ /<, we,
however, proceed with such a transform,

Tn(p) = T V(@) exp ( 2miqp/h)h?dg (1.30)
and its inverse ;:urier transform,

Pu(0) = T % (p)exp (2701 pa/h)h~"*d p (1.31)

We distinguish the results of these transforms as primed quantities because the
calculation in the former case shows that, with y,,(p) defined above, the ratio y,(p)’'/
Yn(p) =1". Such a result is expected because a Fourier transform of a real even
function, such asyy(q), mustyield a real function, o (p)’, whereas a Fourier transform
of a real odd function, such as ;(q), must yield a purely imaginary function, x;(p)’.
This factor i is again immaterial because only the product of an amplitude function
with its complex conjugate might have physical significance: any solution 1(g) or % (p)
of Schrodinger’s equation independent of time, multiplied by i a or exp(i 4), remains
a solution because that equation is homogeneous; if the magnitude of constant
a differ from unity, the normalization might suffer.

In summary of this application of wave mechanics to a canonical linear harmonic
oscillator, with this approach we find the energies of discrete states and the nonzero
values of integrals over amplitude functions for two adjacent states; expressions for
amplitude function y(g) or ¥ (p) according to either a coordinate or a momentum
representation, respectively, arise almost incidentally. With regard to the plots of
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these functions, with the mass of the oscillator taken to be that, m,, of an electron at
rest and with frequency v, taken to be that of blue light, force coefficient k. assumes
a value approximately 13N m™'; the width at half maximum value of yo(q) in
Figure 1.1 is then approximately 3 x 10~° m and the corresponding width of y,(p) in
Figure 1.2 is approximately m.c/180, with speed of light c. The latter value justifies
a nonrelativistic approximation for the purpose of these calculations; the ratio of the
two widths is approximately h~'/2, as expected.

1.3.3
Dirac’s Operators for Creation and Destruction

As both matrix multiplication and the product of a quantity and its differential
operator naturally exhibit in general a failure to commute, the fundamental
postulate of quantum mechanics is readily implemented in their terms. Other
quantities might be defined to conform to this postulate. In 1928, Dirac adapted,
for use in a space of occupation number, two noncommuting operators, a for
destruction and a' for creation, that so conform and that he had previously applied
to treat a radiation field. The state of a system, denoted with index n, is represented
in a dual space of complex vectors of kinds ket, denoted |n), and bra, denoted (n|;
such a ket or bra is supposed to carry complete information about that state. An
observable property of a system is represented by an operator, such as A, that
operates on a ket, as in A |n), to yield another ket. The creation and destruction
operators act on a state through its ket to alter the index, denoting the occupation
number, of that state in favor of an adjacent integer value, either a decrement for
a or an increment for a’. An inner product (m|n) of two kets, defined with one ket
and the bra corresponding to the other ket, is in general a complex number, and
(m|n) = (n|m)*, in which an asterisk denotes, as before, a complex conjugate. Two
kets are orthogonal if an inner product of one ket with the bra corresponding to the
other ket evaluate to zero, so (m|n) =0. A ket is normalized if the corresponding
inner product with itself equal unity: (n|n) =1.

To apply this formalism to a canonical linear harmonic oscillator [10], we define
destruction operator a to have a property such that its operation on a ket,

aln) = V/njn 1) (1.32)

yields a resulting ket with its index decreased by unity and a scalar multiplicand /n,
with a special case a |0) =0. A creation operator a' has analogously a property,

afn) = \/(n+1) [n+1) (1.33)

The resulting ket has its index increased by unity and its scalar multiplicand is
\/(n + 1). An auxiliary operator, N, defined as a'a, is called a number operator
because, consistent with relations above, it operates on a ket to yield the value of its
index like an eigenvalue, as in

N|n) = afaln) = n|n) (1.34)
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For application to a linear harmonic oscillator, we relate these creation and destruc
tion operators to coordinate and momentum, as follows, in conformity with the
fundamental postulate above:

q= (a" +a) \/(h/4m p )
p=i(a" a)\/(uwwoh/4m)

in which the symbols imply the same quantities as in preceding sections. With such

(1.35)

definitions, a' and a are precisely complex conjugates of one another:

a=nq\/(2uvo/h)+ip/\/(2uvoh)
al =ng\/(2uve/h) ip/\/(2uvoh)

(1.36)

We test the commutator of operators p and ¢, acting on a ket, as follows, by
substituting their definitions above in terms of o and a,

[b.qlln) = (pq ap)|n) = ihn) (1.37)

which yields the expected result.

The nonrelativistic Hamiltonian, H= 1/2p?/u+1/2keq?, in which p and g
become expressed simply in terms of operators a' and a according to the above
relations, acts on a ket to generate the energy of its state, either directly,

Hn) = (n+1/2) hvo|n) (1.38)
or in bracket notation,
(n|A[n) = (n+1/2) hv, (1.39)

Another quantity of interest is the bracket for g that is evaluated as

(n+1lgln) = V/[(n+1) h/(2uvo)]/2n (1.40)

Other quantities are generated analogously.

Those who have been shown, in an unbiased manner, these three approaches
in manual form to solve for the energies of a canonical linear harmonic oscillator
according to quantum mechanics have found it easiest to use Dirac’s operators,
and wave mechanics (with Hermite functions) the most difficult and complicated.
The use of Dirac’s operators for this problem has a distinct advantage in yielding
general results in terms of the symbolic designation of states, whereas, with
current software in application of both matrix and wave mechanics, one must at
present solve for particular values of n and attempt to perceive a general relation.
With appropriate general software for computer algebra [8], including operations
involving noncommutative algebra, all three approaches are readily implemen
ted; tedious manipulations are thereby eliminated in favor of both enhanced
understanding of the underlying mathematical operations and greatly extended
results.
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1.3.4
Discussion of Quantum Theories in Relation to an Harmonic Oscillator

What do these results of calculations on a linear harmonic oscillator signify? Matrix
mechanics of Heisenberg, Born, and Jordan and wave mechanics of Schrodinger
together constitute pioneer quantum mechanics [11]. That these two approaches are
equivalent was proved first by Eckart and Schrodinger, then by Pauli, Dirac, and von
Neumann in increasingly sophisticated treatments. The major significance of that
equivalence is that amplitude functions, {(g) and  (p) for instance, remain artifacts of
wave mechanics: they are absent from, and play no part in, our calculations with
either matrix mechanics or Dirac’s operators. After one generates a Hamiltonian
matrix according to matrix mechanical methods, a standard procedure to obtain the
eigenvalues converts that matrix to a diagonal form. In the preceding derivations, all
three approaches to quantum mechanics, each based on the fundamental postulate
of quantum mechanics, yield precisely the same results for the observable properties
of that system of the harmonic oscillator, specifically the energy differences of its
discrete states and the intensities of transitions between those states. The latter are
proportional to the squares of a matrix element g, ,, in matrix mechanics, of an
integral [, (9)"q¥,(q)dq over all space in wave mechanics in the coordinate
representation, and of a bracket (m|q|n) evaluated with Dirac’s operators.

Apart from these three approaches to nonrelativistic quantum mechanics that we
illustrate here, there are relativistic quantum mechanics in various formulations with
which one takes into account the dependence of electronic mass on velocity, quantum
electrodynamics, quantum chromodynamics pertaining to a strong nuclear force,
and higher w algebras [11], among others. With the wave mechanics of Schrodinger,
the only quantum theory with which most chemists become acquainted, one might
calculate the discrete energies and angular momenta of molecules in a nonrelativistic
approximation, and possibly also the discrete linear momentum of a confined
molecule only three of ten properties in Table 1.1. In relation to that entire table,
wave mechanics evidently constitutes a grossly incomplete theory, with thus circum
scribed validity and applicability, which Dirac and Einstein appreciated. The discrete
mass and net charge of a particle or molecule must be treated as parameters wholly
experimental in origin. As matrix mechanics is formally equivalent to wave me
chanics, it provides no improved explanation of these laws of discreteness. To
encompass an interaction of photons with matter such as a treatment of the emission
of a photon by an atom or molecule, one must apply quantum electrodynamics [12],
according to which the radiation field becomes quantized; this theory is applicable
to interactions between molecules [13]. Despite chemists being almost totally
ignorant of quantum mechanics in a form other than nonrelativistic wave mechanics
in a coordinate representation, Schrodinger’s approach applied in quantum elec
trodynamics leads to intractable infinities, whereas Heisenberg’s approach is prac
ticable [14]. On that basis, one might consider matrix mechanics [15, 16], despite little
or no development since 1926 [17], to be more fundamental than wave mechanics.

As an inevitable conclusion from the preceding calculations, quantum mechanics
is not a physical theory, certainly not a chemical theory, but merely a mathematical
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algorithm or rather a collection of mathematical algorithms applicable to problems on
microscopic systems. The unifying property of these disparate approaches is their
conformity to the fundamental postulate of quantum mechanics pgq gp= ihin
onedimension so thatdynamical variables denoting position and momentum fail to
commute with one another. Another and practical formulation of quantum mechanics
has been constructed on the basis of quaternions [18, 19]; these quantities, which are
hypercomplex numbers that commute according to addition but not multiplication,
havenotonlyuseful chemicalapplicationsindescribing, forinstance, the orientational
motions of molecular entities in lattices, butalso common practical applications in the
manipulation of animated figures in computer games. That commutator relation is
mysterious as quantities coordinate g and momentum p, for which symbols on the left
sideappear to be nominallyreal, consistent with our experience of classical mechanics,
whereas the right side is purely imaginary. Such a condition is clearly consistent with a
mathematical formalism, not with a physical theory. One might object to this
conclusion on the basis that the quantities involved are operators: yes, Dirac’s a' and
a are undoubtedly operators, and p — ik d/dqin wave mechanics in its coordinate
representationand g — ihd/dpinits momentum representation undeniably become
differential operators as indicated, but their conjugate variables, g in a coordinate
representation and p in a momentum representation, remain in wave mechanics
simply scalar or vectorial quantities applied with multiplication sign, X, as operator
within those respective calculations. A matrix can certainly act as an operator, for
instance, in operating on an eigenvector to produce an eigenvalue, but one cannot
consider energy matrix W, in the above derivation according to matrix mechanics, to
operate on anything: it is a meaningful quantity that stands on its own. The various
quantities through which this fundamental postulate is applied in the various
methods, implicitly or explicitly, possess, nevertheless, a complex nature sufficient
for that postulate to be properly obeyed. Quantum mechanics is thus a collection of
mathematical methods that one mightapply to calculate a desired quantity. If the latter
quantity be a classical property, such as a molecular structure, a classical method such
as molecular mechanics can yield equivalent results: in either case, apart from tests on
the simplest molecules such as H, and HeH ", the accuracy of those calculations of
equilibrium internuclear distances falls short of an accuracy derived from measure
ments of optical spectra according to the experimental standard errors, cf. HCI for
instance[20]. One mightlabor under a delusion thata typical calculation of amolecular
structure with one or other common computer programs for quantum chemistry is
more fundamental than the unquestionably empirical approach in molecular me
chanics; first of all, in those programs the separate treatment of nuclear and electronic
motions is an empirical concession, and even then, apart from the use of experimental
masses and charges of particles, there is typically no optimization of orbital exponents
that is at least essential for a description ab initio. If and when one undertakes
a calculation, one should simply choose a convenient approach consistent with the
computational resources at hand, and with any approximations or assumptions that
one is prepared to accept to obtain some answer.

Another query that likely springs to a reader’s mind is our application here to
a system described as a canonical linear harmonic oscillator according to potential
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energy expressed as V(q)=1/2 keq” in each case. This description is consistent
with the fact that, for the property of discrete energies at equal intervals that defines
a quantum mechanical linear harmonic oscillator, there exist uncountably many
harmonic functions of potential energy [21]. A Davidson function for potential energy
is expressible as V(q) o (q/do  do/q)’, With qo as a reference coordinate [20, 22]; such
an oscillator might be taken also to constitute a rigid rotor because an integral
I v,(9)" g%y, (9)dq over all space, which enters a calculation of a rotational param

eter, has a constant value for all states n. In contrast, for a linear harmonic oscillator
with potential energy in its canonical form V(q) = 1/2 k.q?, the value of that integral
increases for states with increasing n or energy, contrary to our experience of decreasing
values for rotational parameters B, of real diatomic molecules [20].

An harmonic oscillator, canonical or otherwise, is a convenient model for exercises
in either classical or quantum mechanical methods, convenient for the three deriva
tions above, for instance, but what is its relevance to the distribution of radiant energy
fromablackbody? The experimental measurements on which the empirical curve was
based were best performed with a hohlraum a heated cavity with a small orifice
through which light escapes toward a detector; this device presumably consists of solid
walls of refractory material, which might be heated electrically, and which enclose air.
Where are the harmonic oscillators? Whatis the actual source of the radiation with that
quintessential distribution? The best that one might state is that a field of radiation
appears dynamically equivalent, in some sense, to harmonic oscillators in some set
[12,23]. An harmonic oscillator is clearly a fictitious concept because no real entity has
equally spaced states of infinite number. Moreover, a canonical linear harmonic
oscillator is a boson, possessing no intrinsic angular momentum. According to
Table 1.1, each photon carries angular momentum to the extent of one unit in terms
of h if it be circularly polarized. Like energy, angular momentum is a rigorously
conserved quantity; for that reason, no purely vibrational transition of a free diatomic
molecule in electronic state 'S, such as CO, occurs with absorption or emission of
a single photon involving circularly polarized light: an altered rotational state invari
ably accompanies that vibrational transition under those conditions. For an hypo
thetical system such as a linear harmonic oscillator in one spatial dimension, angular
momentum is irrelevant: the emitted radiation is linearly polarized [12]. For a cavity in
three dimensions, the situation is less clear because of the uncertain nature of the
emitters, but in any case the connection between that hohlraum and an harmonic
oscillator is tenuous, other than a pragmatic success of the model.

Among many facets of quantum mechanics that become discernible through our
preceding calculations on the canonical linear harmonic oscillator, one might pose
a question about the choice of a vehicle for this demonstration. Why have we not
devoted attention, instead, to a particle confined to a segment of a line, sometimes
inelegantly called the particle in a one dimensional box? The answer is that despite its
popular use in demonstrating wave mechanics, even though its quantized energies
are derivable without wave mechanics, the solution fails signally to conform to the
properties of such a system: explicitly, although the amplitude or wavefunction
varies continuously everywhere, its first derivative has major discontinuities at the
boundaries of the confining segment. Such an infinite, positive, potential energy
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except for a small domain is a highly artificial condition, and one for which the
corresponding solution in momentum space is all but impracticable. To avoid
discontinuities of dy,(q)/dq for a particle confined to a line segment that arise from
those infinite discontinuities of potential energy at the boundaries, relaxing that
infinity to a finite difference of V(q) causes the particle to become no longer confined
totheline segment the particle is no longer completely in the box. Even worse, taking
the boundary conditions into account with a finite barrier as the difference between
V(q) within the segment and V(q) outside deprives the solution of its contrived
simplicity. An appropriate solution of this dilemma is to apply a finite barrier at the
boundaries of the segment, and then to suggest that the particle becomes increas

ingly confined as the barrier increases, but this stratagem merely shirks the
fundamental deficiency of this artificial problem. A particle confined to the circum

ference of a circle evokes no such internal inconsistency of the model, but that
example entails other disadvantages. In relation to quantum mechanics, this model
of a particle confined to aline segment with an infinite potential energy becomes thus
totally misleading, but in applications in statistical mechanics this model is less
objectionable. A major problem with quantum theories is that their mathematical
structure is poorly understood by chemists, despite their application of recipes to
chemical systems for which they are obviously inappropriate. For the canonical linear
harmonic oscillator according to wave mechanics, amplitude functions y(g) and x(p)
and their first and second derivatives are everywhere continuous and well behaved.

1.4
Diatomic Molecule as Anharmonic Oscillator

A frequency of light absorbed or emitted by any real molecule of a particular species
depends on the amount of energy that that molecule has; its dissociation requires an
energy of only a finite amount: for these reasons, the properties of that species bear
only a slight resemblance to the properties of a quantum mechanical harmonic
oscillator. A function described as potential energy that is central to a harmonic
oscillator arises, moreover, only indirectly for a real molecular species, as we proceed
to explain. Assuming an assembly comprising two atomic nuclei and N electrons,
N> 1, we consider that those nuclei remain fixed in space with the electrons free to
move in their vicinity. To calculate the possible energies of this system, we postulate
this Hamiltonian operator that takes into account the kinetic energy of the electrons
and their electrostatic interactions with each other and with the nuclei, plus an
electrostatic repulsion between the two nuclei.

H(r;, R) = T(r;, R)+V(r;, R)

N N N N
= D120t fme+ D 11 D (Za/Qu+ Zo/en)

i1 j>i i1

1

+ZaZb/R}ez/(4ﬂ:so) (1.41)
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Here appear symbols denoting distance r;; between two electrons, distance R between
two nuclei of atomic numbers Z, and Z,, distance Q; between an electron and one or
other nucleus, and electronic linear momentum p;; the sums run accordingly. The
energies E(R) possessed by this system that depend on the internuclear distance
become a potential energy V(R) for the motion of the nuclei in the field of the
electrons. If the two atomic centers could be considered to have no internal structure,
their energies would become calculated from this Hamiltonian [20],

H(R) = p*/(2w) + K J(J+1)/2uR) +V(R) (1.42)

which contains terms for the kinetic energy of vibration of those atomic centers along
a line joining them, the kinetic energy of those atomic centers perpendicular to that
line that corresponds to a rotation of the diatomic species about the center of mass,
and the potential energy resulting from E(R) calculated with the preceding Ham
iltonian; reduced mass p is defined as the product of the atomic masses divided by
their sum, M,M,/(M, + My). We assume a bound electronic ground state for this
diatomic system for which the vibration rotational energies [20] become expressible
for a particular isotopic variant i as

E :i im w+1/2 [ (J+1)] (1.43)

ko Lo

for states with vibrational v and rotational | quantum numbers sufficiently small.
Because each atomic center possesses an internal structure comprising an atomic
nucleus and multiple associated electrons, we postulate instead an effective Hamil
tonian for the nuclear motion of this form [20],

Hetr (R) = P [1+ gv(R)me/mp) p/(21)
+[1+g(Ryme/my] h*J(J+1)/(2 0w R?) + V(R) + AV(R) (1.44)

inwhich p/(1 4 g.(R) me/m,) serves as an effective reduced mass W(R) for vibration
and w/(1 + g(R) me/m;) analogously as u(R) for rotation; both are functions of
internuclear distance. These two g factors and AV(R) take into account that the atomic
centers are composite; g,(R) and g,(R) are called vibrational and rotational g factors,
respectively, and conventionally have as coefficient a ratio of electronic and proton
rest masses so that their magnitudes assume order unity. Each g factor is assumed to
have an electronic and a nuclear contribution,

gy =g+ E (1.45)

The electronic contributions take into account that the vibrational and rotational
motions of the nuclei are interpreted formally to induce interactions between the
electronic ground state of interest and electronically excited states. Each g factor is
assumed also to be expressible as a sum of contributions due to each atomic center
separately,

By = v+ (1.46)
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The other term AV(R) is also divisible into contributions from atomic centers A and B
and contains two parts: one takes into account that the internuclear potential energy
V(R) depends slightly on the nuclear masses and includes that dependence as an
adiabatic correction that reflects only the electronic ground state; the other part takes
into account further interactions between the electronic ground and excited states. As
aresult of the terms in this effective Hamiltonian additional to that in the preceding
simplified Hamiltonian, there arise further terms as coefficients of vibrational and
rotational quantum numbers in the vibration rotational energies for particular
isotopic variant i,

i R r b,v b,r k I
By =X X (W + 2+ 2+ 20) 0+ 2 g+l )

Mechanical term coefficients Y}, contain molecular reduced mass | and parameters
in some assumed algebraic form of V(R). Extra mechanical term coefficients depend
also on parameters in some assumed algebraic forms of other terms in the effective
Hamiltonian as follows: Z;;" contains parameters in some assumed algebraic forms
of g2(R) and AV*(R) for atomic center A, whereas Zj;' contains parameters from
g2(R) and g?(R) for atomic center A, and analogously for ZEI‘V + Z}C’l’r for atomic center
B. There hence occur two observable quantities for each set k,l that might in principle
be evaluated from isotopic variants of each atomic type, but three contributors to
them arise in general, specifically radial functions g2(R), g?(R), and AV*(R) for
atomic center of type A and analogous quantities for atomic center of type B. As
spectral lines split upon the imposition of an appropriate magnetic field according to
the Zeeman effect, one can evaluate the rotational g factor separately from the other
contributors, but for no molecular species have such splittings been measured for
many states of vibrational and rotational energies. No comparable magnetic, or other,
property provides direct experimental information about the vibrational g factor, and
the adiabatic corrections, like V(R), are purely artifacts of a separate treatment of
electronic and nuclear motions. Any radial function is fundamentally an artifact of
that separate treatment, but for the rotational and vibrational g factors in principle,
and for the rotational g factor in practice [24], an expectation value of that radial
function in a particular molecular state is an experimentally measurable quantity. The
inversion of such data with both a vibrational and a rotational dependence might
yield a unique representation of that radial function for internuclear distance within
a particular domain; in that sense, the rotational g factor and even its radial function is
a quantity determined from experiment.

A prototypical application of computational spectrometry [25] enables separate
evaluation of parameters for potential energy, vibrational and rotational g factors, and
adiabatic corrections as follows. Methods have been developed for accurate calcula
tions of the rotational g factor that reproduce the few experimental values measured
with various techniques; the results of those calculations are then applied as
constraints in fitting the spectral data of diatomic molecules so as to enable evaluation
of parameters, of number limited by the extent of spectral data according to the range
of quantum numbers vand ] for appropriate isotopic variants, of the other three radial
functions.
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We have applied this approach to a few molecular species H, [26], HeH ™ [27],
LiH [28], and NaCl [29] of diverse types, but in each case not involving atomic
centers of large atomic number Z because further complications would then arise
from the finite and isotopically varying nuclear volume; for small Z, such effects on
the spectra from finite nuclear volume are much smaller than those that might be
considered to arise from finite nuclear mass [20]. This approach has been tested on
comparison of radial functions for potential energy, vibrational g factor, and adiabatic
corrections defined for a small domain of internuclear distance from spectral analysis
with the corresponding functions from separate quantum chemical calculations,
which are not limited to a small domain. These tests have satisfactorily established
the validity of the approach, which has in turn verified the algebraic basis of this
method of spectral analysis [25]. To avoid extended discussion of technical details, we
refer the reader to an application to H, [26] that effectively demonstrates the power of
this computational spectrometry.

The sophistication of theoretical treatment or calculation of a molecular species is
in inverse proportion to the number of atomic centers [30]. For this reason, diatomic
molecules provide a proving ground for theories and algorithms. Like an hypothetical
linear harmonic oscillator, a diatomic molecule is effectively a system of one spatial
dimension in which vibrational motion occurs along the internuclear axis; although
rotational motion occurs perpendicular to this axis, this motion is readily enveloped
in a quantitative treatment because only kinetic, not potential, energy is associated
with this motion, despite its inclusion within an effective potential energy.

1.5
Quantum Mechanics and Molecular Structure

Let us consider, instead of a hypothetical oscillator or even a diatomic molecule as
an anharmonic oscillator, a real polyatomic molecule of which we might seek to
calculate the structure and molecular properties. For this purpose, we choose first
a chemist’s perhaps favorite organic chemical compound, ethanol. On the basis of
a chemical formula C,Hs;OH, we construct a molecular Hamiltonian for use in a
conventional calculation; for this purpose, we take consistently into account the
kinetic energy Tof both nine atomic nuclei, each of mass My, and their 26 associated
electrons, each of mass m,, and the potential energy V of electrostatic interaction
between each two particles.

H(T’,’, Rk) = T(ria_Rk)+ V(L’?—Rk)

26 9
> 1/2p7/me+Y 1/2p; /My
i1 k1

J’_

Zl/rij—i— ZZkZl/Rkl sz/gik 62/(43'580) (1.48)
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This formula exceeds that, 1.41, for a diatomic molecular species in containing a sum
for the kinetic energy of the atomic nuclei and a further sum of terms for repulsion
between nuclei. The additional symbols denote distance Ry, between two nuclei of
atomic numbers Z; and Zj, distance @; between an electron and a nucleus, and
nuclear linear momentum py; the sums run accordingly. According to wave me

chanics in its coordinate representation for which we seek to solve Schrodinger’s
equation independent of time, we replace those squared momenta, p?, with opera

tors, h?V?2, in three dimensions; ignoring any magnetic effects, we form this
expression:

26 9
H(rj, R) = 1/2h*) Vi/me 1/20) Vi/M,
i1 k1

AN U+ > ZeZ/Ra > Zifoy ¢ €/ (4meo) (1.49)

i<j k<l ik

This Hamiltonian requires an operand for its differential operators in laplacian V;
for this purpose, we assume that W(r;, Ry) is an amplitude function of both electronic
and nuclear coordinates with requisite properties. Because, for a system of multiple
bodies, no exact algebraic solution of

H(r;, R,) W(r;, R,) = E¥(r;, R,) (1.50)

is practicable, after eliminating the motion of the center of mass we have recourse to
integration.

E= ”%, R H(r;, R) W(r,, Ry) dr, drk/H W(r, R W(r, Ry)drdn,
(1.51)

Here, dt; and dt; are elements of volume for integration over coordinates of all
electrons and all nuclei, respectively, minus three coordinates to define the center of
mass; each integration is performed over all space, from oo to oo for each Cartesian
coordinate. This integration yields merely a sequence of values of energy E,, some
discrete and some continuous; the state of least energy is discrete because the motion
of the center of mass of this stable molecular system is separated.

Let us contemplate another such calculation, this time on dimethyl ether,
H;COCH;;. For this purpose, we construct the appropriate Hamiltonian and again
prepare to solve Schrodinger’s equation  but this Hamiltonian H(r;, R,)is exactly the
same as the preceding one! The energies E, must perforce be the same, and likewise
the amplitude functions W(r;, R, ) that reflect merely the content of an Hamiltonian
on the basis of which they are evaluated in a particular case. As aresult of this exercise,
either molecule in a quantum state has only indefinite extension in both space and
time[31, 32] no atoms, no association of electrons with particular atomic nuclei, no
conformers, and no electric dipolar moment (with respect to laboratory coordinates);
possessing spherical symmetry, each molecule acts like  so effectively constitutes a
point mass. That same calculation is applicable not only to a molecule of ethanol or
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dimethyl ether but also to methane and methanal together, or to ethene and water
together any combination of the same nine atomic nuclei of C, O, and H and 26
electrons, always avoiding generating magnetic couplings, such as for free radical
species, for which additional terms in the Hamiltonian arise. For the same reason, we
associate neither rotational nor vibrational nor electronic state, nor a combination of
these, with a particular energy the calculation yields just numerical values of
energies, some discrete and some continuous. Selected differences between energies
in that single sequence or manifold might be compared with energies proportional to
the frequencies of spectral lines of any compounds fitting the stoichiometry
C,HsOH or H;COCH; or CH, + H,CO or H,O + C,H,. A calculation of this kind
would not be a fruitful practice of computational spectrometry.

Such a systematic calculation on ethanol or comparable system is still beyond the
capabilities of extant computational resources, but an almost rigorous calculation was
performed on the trihydrogen cation, H;", in a nonrelativistic approximation [33]. As
the simplest polyatomic species, this molecular ion comprises three protons as
separate atomic nuclei and two associated electrons; after separation of variables
pertaining to the origin of coordinates defined at one nucleus, a solution of
Schrodinger’s equation, similar to above, yields energies of internal, or spectrally
pertinent, states of this system. Quantum mechanics requires all identical particles to
be treated as indistinguishable, thus not only indistinguishable electrons but also
indistinguishable protons; because no operator representing distances between
particles commutes with the Coulombic Hamiltonian, particular internuclear dis
tances or bond lengths are immeasurable for this or any other molecule in
a stationary or quantum state. Taking into account the indistinguishability of identical
particles, one might, however, calculate a distribution of probability of a distance
between particles of any two types. Cafiero and Adamowicz reported mean distances,
and their dispersions, for the separations between particles in H;"™ [33]; to decide on
that basis whether H;' is, in a conventional sense, a linear or a triangular molecule
was impossible. Applying isotopic substitution according to a separate calculation on
HDT ", so that these nuclei become distinguishable, these authors deduced that the
equilibrium geometric shape defined by the atomic nuclei of that species corre
sponds to a nearly equilateral triangle. An analogous rigorous calculation on
benzene, C¢Hg, in its stationary state of least energy would yield only a single,
mean, internuclear distance C C=2.09 x 107'° m, a mean distance C H=2.69
x 1071 m, a mean distance H H=3.80 x 10" !° m, and another mean distance
between any two electrons of the 42 associated with each formula unit. According to
such a calculation, there is no indication whatsoever of a molecular structure or
conformation. With regard to isomerism and chirality, Sutcliffe and Woolley dis
cussed classical molecular structure in relation to prospective quantum mechanical
calculations on HCN, C3Hy, and CgHg [34].

Several computer programs, such as those named Gaussian (originating from
Pople’s work) or Dalton, are available for calculating a molecular structure on the
basis of a separate treatment of electronic and nuclear motions, proceeding iteratively
from initially estimated internuclear distances and interbond angles until a local
minimum of energy is attained. On the hypersurface in a hyperspace of 21
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dimensions corresponding to 3 N 6 internal degrees of freedom for a noncollinear
structure with the nine atomic nuclei of C;HO in its electronic ground state, there
would hence exist not only local minima corresponding to those four specified
structures constituting ethanol and its structural isomers but also combinations of
free radicals. One attractive feature of these computer programs is the provision of
not only one or more desired structures, in the form of optimized internuclear
distances and interbond angles in some set, but also wavenumbers of harmonic
nuclear vibrations, at a modest additional computational cost. These wavenumbers
might be based on algebraic second derivatives of energy with respect to displace
ments from the equilibrium structure according to normal coordinates that is,
according to a modeling of the internal vibrational degrees of freedom as if the
molecule were a set of harmonic oscillators with some distinct and some identical
vibrational frequencies. Even though this model is a gross approximation for a real
molecule that has only too finite energies of dissociation into various fragments, the
information is helpful for analytical purposes associating a measured infrared
spectrum with a prospective structure of an unknown compound. To compensate
for the crudeness of the approximation, an empirical factor, such as 0.95 for bond
stretching modes, is typically applied to each calculated harmonic wavenumber to aid
a comparison with experiment. In that sense, despite its purely fictitious nature, the
harmonic oscillator is a valuable armament in a chemist’s arsenal of mathematical
methods that constitute computational spectrometry to attack a dearth of infor
mation about a particular molecular structure. An alternative and accurate calcu
lation of wavenumbers for anharmonic vibrational modes is at present an operation
far from routine, and computationally expensive; when distinguishing among
similar structures, such intensive calculation is necessary. As an instance of this
application, computational spectrometry involved the simulation of the infrared
spectrum of HCs on the basis of extensive calculations of molecular electronic
structure and with anharmonic vibrations; of two absorption lines recorded in
infrared spectra of products of photolysis of methane with vacuum ultraviolet
radiation, their assignment not only to HCs but also to a conformer of a particular
geometry had to be confirmed with such calculations [35] because experimental
data in the form of wavenumbers and relative intensities of lines of isotopic variants
were insufficient to enable a positive identification in the absence of such calcula
tions. As an empirical procedure, a separate treatment of electronic and nuclear motions
might pragmatically preserve molecular structure, but at a loss of quantum mechanical
Justification of its application.

With regard to general molecular structure and electronic structure in particular,
much explanation of chemical phenomena in textbooks of general, inorganic, and
organic chemistry invokes orbitals in an almost invariably qualitative manner. An
atomic orbital is precisely a solution of Schrodinger’s temporally independent
equation for an atom comprising a single atomic nucleus and a single electron;
that solution is a wavefunction or amplitude function of a nature in three spatial
dimensions analogous to amplitude functions 1(q) or ¥(p) that we derived in our
analysis for the canonical linear harmonic oscillator. As we demonstrated above for
that system, the wavefunction is indeterminate within a factor of a complex number
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of modulus unity, which containsi = v/ 1 as one case; such a condition precludes any
possible observation. Despite the fact that chemists have a limited interest in the
properties of isolated atoms, the atomic orbitals that pertain only to atomic hydrogen
or an equivalent species, such as He™ that has only one electron, are almost
invariably cited to explain properties of molecular entities or materials with many
electrons incontestably a non sequitur! Moreover, their application is by no means
limited to H atomic centers because such a H atom is much less interesting than
other atomic centers for which multiple simultaneously directed chemical bonds are
postulated. From our scrutiny of the canonical harmonic oscillator, we recall that
a wavefunction of spatial coordinate, denoted 1(g), arose in only one of the three
approaches that yielded identical solutions of the energies and matrix elements of
transitions of that system, and even then that approach yielded also an alternative
solution y(p) of Schrodinger’s equation in terms of a momentum variable; that either
wavefunction is purely an artifact of that particular approach is hence incontestable,
but the existence of multiple successful approaches might not imply that one
particular approach or its artifact is less viable or fundamental. A Liouville trans

formation [36] enables a conversion of that differential equation into a form
applicable to a nominally disparate problem; such a transformation converts that
equation for a canonical linear harmonic oscillator into a differential equation
applicable to a Morse oscillator, or to a Davidson oscillator, or even to a central
Coulombic system namely, an atom with one electron, H. The implication is that
both matrix mechanics and Dirac’s operators are applicable to the H atom; Pauli
indeed solved the H atom according to matrix mechanics [17] before Schrodinger’s
solution according to wave mechanics, and quaternions have since been applied also
to solve this one electron atom [18]. The consequence of this recognition is that an
atomic orbital is by no means an essential feature of quantum mechanics applied to
the H atom.

Because Schrodinger failed to accommodate the then known requirements of
general relativity in designing his differential equation, wave mechanics is merely an
approximate treatment for the H atom. Dirac’s equation in his relativistic version of
quantum mechanics is also an approximation because it fails to cope, for instance,
with the emission spectrum of H, which was the result of a simple experiment that
eventually launched quantum mechanics [3]; for an acceptable account of that
emission spectrum, quantum electrodynamics [9, 12] is required. Wave mechanics
is clearly a deficient approach for even the simplest atom. An orbital is formally
inapplicable to any other atomic or molecular system because the derivation of such
a wavefunction begins with a Hamiltonian that lacks any term to take into account
repulsion between electrons that comprise part of any such other system. For orbitals
to be applied to describe the hydride anion H™, for instance, would imply
an Hamiltonian in which terms appear for attraction of both electrons to the proton
as atomic nucleus but no term for repulsion between those electrons; as all terms, and
distances between any two particles, have similar magnitudes, this neglect of
repulsion is incontestably a gross approximation. For other atoms, or molecular
systems, in which an attraction exists between an electron and one or other atomic
nucleus of atomic number Z greater than unity, the analogous approximation might
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be less severe but remains appreciable. In any practical application of a quantum

chemical calculation, such as is effected with Dalton or Gaussian, the iterative
process inherent in a self consistent field and further mathematical contortions to
take account of electron correlation accomplish numerically by brute force, to an
extent satisfactory for many purposes such as for a treatment of HCs [35], what is
algebraically unachievable for any system comprising independent particles num

bering more than two. These calculations have traditionally been initiated with trial
atomic wavefunctions that resemble those of H orbitals, even though these functions
are almost invariably decomposed directly into sums of Gaussian functions for ease
of computation of integrals over electronic coordinates. When density functional
theory was first developed, it required a basis set of orbitals, but even thatimpediment
is now overcome [37], allowing a significant and usefully accurate calculation of
molecular structure and molecular properties with no explicit invocation of wave

functions. Despite this advance, it seems inevitable that unenlightened authors of
textbooks and even research papers will blissfully continue to invoke unseen and
unseeable artifacts orbitals in their qualitative discussion of molecular structure
and chemical properties “where ignorance is bliss, 'tis folly to be wise” (Thomas
Gray).

As an atomic orbital is defined as a solution of Schrodinger’s temporally inde
pendent equation according to nonrelativistic wave mechanics applied to an atom
comprising only one electron, such an orbital is accordingly just an artifact of
a particular calculational method; our three detailed treatments of the canonical
linear harmonic oscillator had as motivation just such a proof. One might argue that
even though alternative approaches yield, in the particular instance of that oscillator,
identical results for its observable properties, namely, the frequency and intensity of
its optical spectrum, this condition neither diminishes the validity of the wavefunc
tion nor makes it less important in circumstances in which alternative computational
methods are impracticable. Such a reluctance to accept the fallacy of an orbital
ignores the fact that Schrodinger’s equation is a nonrelativistic approximation that
fails quantitatively even for the hydrogen atom: four quantum numbers, not just
three that result from the solution of Schrodinger’s equation, are required to specify
the state of that atom and to provide a nearly correct account of the spectrum in gross
details. For even an application to the hydrogen atom, this failure entirely under
mines the theoretical credibility of an orbital as being other than an artifact of one
particular approximate calculation.

For any atom with multiple electrons, the applicability of an orbital to explain
any property of that atom is clearly lacking, apart from the indeterminacy because
of factor i clearly illustrated above, because the total wavefunction expressed as
a product, such as 15*2s°2p” for atomic C, of orbitals or functions for the hydrogen
atom ignores the repulsion between electrons. Such a wavefunction or an orbital
has at any point in space both a magnitude and a sign, plus or minus, depending
on whether the numerical value of that wavefunction is greater or less than zero,
but that sign is subject to an arbitrary phase convention; for that reason, such a sign
is fundamentally unobservable even if one might suppose that there exists
a “true” wavefunction of which a calculated result according to Schrodinger’s wave
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mechanics is an approximation. No mathematical function is directly observable in a
chemical or physical experiment. A molecule contains only atomic nuclei and their
associated electrons; the total electronic density in a particular small volume of space
containing tangible matter is an observable and measurable quantity, for instance, on
a solid surface with an appropriate electron microscope, or through a Fourier
transform of a diffraction pattern of X rays for the interior of a small crystal. If one
assume that such a density of electronic charge be proportional to the square of a total
electronic wavefunction, with the proportionality factor again arbitrarily defined, the
corresponding value of a product of that proportionality factor and the square of the
wavefunction might be measurable in a particular small spatial volume. Whatever the
value of that proportionality factor, the product decays exponentially with distance d
away from a particular atomic nucleus, so of form e %, but becomes zero only at an
infinite distance from that nucleus. According to wave mechanics, a single hydrogen
atom occupies the entire universe, but not to the exclusion of other atomic centers!
For comparison, the value of 1 or * for the canonical linear harmonic oscillator in
terms of distance or momentum decays more rapidly away from a maximum,
namely, proportionally to e~%; in that sense, the region of large magnitude of 1
or y” is more localized for that harmonic oscillator than for the corresponding
property with which is associated a density of electronic charge near an atomic center.
For this reason, the shape of that distribution of \* or %* associated with electronic
charge in space depends on some other arbitrary criterion. A partition of a total
assumed wavefunction for the atomic or molecular system into components subject
to the same total energy, like a partition of electronic density in space associated with
multiple atomic centers, is arbitrary because Schrodinger’s temporally independent
wave equation is of homogeneous type, Hp = E1p, as applied to a harmonic oscillator
above.

In the light of this almost universally prevailing indoctrination of chemists about
orbitals, some scientists have claimed even to have observed orbitals. Of two particular
experiments, one involved spectrometry of a sort and the other diffractometry; the
latter has stimulated greater discussion in the literature. On the basis of diffraction
experiments on a crystal of cuprite, Cu,0, authors Zuo et al. [38] three physicists and
a chemist made several novel claims, not the least of which was to have “seen an
orbital,” specifically “an unusual d orbital hole”; pertinent quotations from these
authors have been collected elsewhere [39]. Scrutiny of the original text [38] reveals
that not an orbital was observed but an orbital density, which implies a distribution of
electronic charge, and not even that charge but a “hole” or deficit of that charge. Zuo
et al. [38] plotted the difference between an electronic density in the crystalline unit
cell, fitted rather than reconstructed from measurements independent of phase, and
a model of electronic density of a metallic ion from theoretical atomic densities; the
result of this rather arbitrary difference of electronic densities attained a shape that
might be construed to resemble a d orbital this shape is itself a questionable
quantity, as remarked above. For a few decades, crystallographers have produced such
plots called deformation densities, but have generally refrained from their fallacious
association with orbitals of one or other kind. A question that is impossible to
suppress is whether such a deficit of electronic density might be expected logically to
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resemble an orbital. A deficit, or lack of anything, is clearly not directly observable, but
must arise as a difference between two calculated quantities; in this case, one was
loosely based on experimental measurements of X ray and electron diffraction, after
the requisite Fourier transformation the calculations constitute computational
diffractometry. The basis of the sensational claim by Zuo et al. [38] was an exper

imental measurement of the density of electronic charge in a crystallite about 150 nm
thick selected to be “free from defects” [38]; this density resulted from an analysis of
data obtained with the diffraction of electrons in a convergent beam, supplemented
with measurements of the diffraction of X rays on the same crystal. Despite the claim
of a crystallite selected to be “free from defects,” a significant consequence of the
impact of either electrons or X rays on a sample is the production of defects; as
crystalline Cu,O is a hard mineral and the amplitudes of its atomic vibrations are
small, likely its strength resists such production, but an enduring lesson from
quantum mechanics is that an observation on a microscopic system, or an interaction
with any particle or wave, even if less energetic than electrons or X rays in the case
of these experiments, inevitably alters that system. In any case, the partition of
electronic charge within a particular distribution into components described as
orbital densities is undeniably an operation susceptible to ambiguity. Compounding
the fatuous claim to have “seen an orbital,” which even according to the further
clarification by the authors [38] is a gross embellishment of a purported deficit of
electronic density, is an invocation of hybridization, as some linear combination
of atomic orbitals with desired directional properties, to explain the distribution of
charge, or its lack, between particular atomic centers in the crystal [38, 39]:
hybridization exists only in the mind of the beholder [5]. The density of other than
spherical shape was represented as a multipole expansion of the experimental data
subject to constraints of symmetry [38], as sites of Cu atomic centers lie on threefold
axes. Could some purported deficit really resemble other than a d,» orbital, apart from
an unavoidable ambiguity of direction z in a cubic crystal? Those calculations of
electronic structure on a crystal inevitably involve assumptions and approximations
beyond those practicable on a single small molecule, and in this case involve atomic
center Cu or Cu™ with 29 or 28 electrons per center. Further discussions [40, 41] of
these diffraction experiments [38], which were intrinsically not a spectacular inno

vation but a significant improvement upon the preceding work elsewhere, contain
pertinent references.

As another instance of an audacious claim regarding orbitals from experiments,
Itatani et al. [42] published an incredibly regular and detailed diagram of a “molecular
orbital” obtained through “tomographic imaging”. Their claims are exaggerated and
inaccurate in several ways. First, the authors depicted, and conceded to have
“measured”, only one molecular orbital, rather than the plural in their title. They
asserted that “the electrons that make up molecules are organized by energy in
orbitals”, but electrons are fundamentally indistinguishable. What was claimed to be
“measured” was the so called Dyson orbital, which has physical dimensions different
from those of an atomic (such as for H) or molecular (such as for H;") orbital as
generally defined; on those grounds, a Dyson orbital is not an orbital at all. A Dyson
orbital represents an overlap between the total molecular electronic wavefunction of
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a neutral molecule with N electrons and the total electronic wavefunction of the
corresponding molecular cation with N 1 electrons. In the particular case, the
wavelength of radiation that effects ionization seems indefinite, being described as
harmonics 17 51 of light at 800 nm; there is proffered no explanation of the effect of
that uncertainty on the possible electronic and vibrational states of the molecular ion
and on the concomitant ramifications for the shape of the Dyson orbital. That Dyson
orbital is inconsistent with the definition by the same authors [42] of “orbitals” that
“single electron wavefunctions are the mathematical constructs . ..”. The particular
Dyson orbital was described as the “HOMO” of N,, that is, an acronym for highest
occupied molecular orbital, which the authors mistakenly equate with “the highest
electronic state.” The deduced picture in their Figure 4 [42] that is “reconstructed”
from a tomographic inversion of “high harmonic spectra” results from a Fourier
transform of the measured squares of a transition dipolar moment, which is
a complex tensor, calibrated on the basis of a supposed 2p, orbital of Ar from
computational spectrometry according to calculations of uncertain quality; according
to a standard convention of labeling atomic orbitals, the latter, unlike 3d,. of Cu,
arises necessarily from a real, linear combination of complex 2p,; and 2p_,
wavefunctions of H. Moreover, the “highest occupied atomic orbital” of Ar is 3p,
not 2p. The authors claim that the presence of positive and negative values of
a quantity with symbol “y(X)” proves this quantity to be “a wavefunction, not the
square of the wavefunction, up to an arbitrary phase”, but the authors made
assumptions about the sign of the magnitude of the matrix element and about the
polarization of the emission. As in other spectral experiments, the measured
quantity [42] is an intensity that is proportional to the square of that dipolar moment;
this complex moment itself, rather than its measured square, is stated to be “a spatial
Fourier transform of the [nonexistent] orbital in the x direction” (the relation between
x and X was undefined), so taken as lying along the internuclear axis that is
conventionally designated z. A Fourier transform of a complex quantity cannot yield
a quantity symmetric, according to that figure, with respect to an inversion center
between the two atomic nuclei.

To understand how the dependence of a molecular property on distance might be
derived from experimental data, specifically the intensities of spectral transitions, we
consider briefly the molecular electric dipolar moment of a heteronuclear diatomic
molecule [20], which we assume to be expressible as a radial function, i.e., a function
of internuclear distance. The integrated intensity of the pure rotational spectrum in
absorption is proportional to the square of the total molecular electric dipolar
moment with respect to the internuclear axis, thus producing an ambiguity of sign
of that dipolar moment. The integrated intensities of vibration rotational bands in
absorption are proportional to the squares of transition moments that correspond to
successive derivatives of that radial function with respect to internuclear distance,
which fails to resolve the ambiguity of sign, but the variation of transition moment for
individual lines within a vibration rotational band varies linearly with that function;
in this way, the ambiguity of sign is resolved, relative to a chosen sign for the
permanent electric dipolar moment. The latter sign is in turn unambiguously
determined from the isotopic dependence of the rotational g factor [20]. This

31



32

1 Concepts in Computational Spectrometry: the Quantum and Chemistry

molecular electric dipolar moment, moreover, is not only a physical attribute of a
molecule but also has direct ramifications for a macroscopic sample: the extent to
which the total molar (electric) polarization depends on the reciprocal of temperature
is proportional to the square of that moment averaged over molecular vibration
rotational states occupied at the temperature of the experiment. This situation is in
stark contrast to that of a particular orbital of any kind, which is a mathematical
construct or a function that is based incontestably on an approximation of electrons
being independent particles, that s, each electron not being subject to electrostatic or
other interaction with other electrons even in the same molecule. In view of the
multiple assumptions and approximations in the calculations of multiple stages
between the measured intensities as a function of angle between the internuclear axis
and the polarization axis in the experiment described as “tomographic imaging of an
orbital” and the eventual purported picture of an orbital, this proof [42] of a
wavefunction is clearly nonsensical. As an example of understatement by the same
authors, there appears a remark “Yet single orbitals are difficult to observe experi
mentally”  in truth, not merely difficult but impossible, for manifest reasons
expounded above. As their second reference, these authors cite a book, The Nature
of the Chemical Bond, by an author named “C.P. Linus”! Although one is tempted to
suspect that this paper [42] is a deliberate hoax, the authors merely delude
themselves.

Several claims have been made to have observed or measured orbitals by means of
electron spectroscopy [43], whereby an electron incident on a molecule effects
ionization to yield two electrons plus a molecular cation; the orbitals allegedly
observed are momentum functions related to y(p) of the harmonic oscillator derived
above, rather than to (q) that appears in  mistaken typical discussions of
a qualitative nature about molecular electronic structure. For a molecule, these
quantities y(p)*x(p) representing the density in momentum space have, typically,
small values corresponding to small kinetic energies of electrons in directions along
“chemical bonds,” and large magnitudes in directions between such internuclear
vectors. Although the perpetrators of such experiments on electron or optical spectra
have undoubtedly great expertise in vacuum plumbing, their understanding of
fundamental mathematical and physical concepts that underlie their chemical
interpretations is questionable. Further discussion of the physical and philosophical
aspects of these experiments and their interpretations is available elsewhere [44]. A
claimed “wavefunction for Be” [45] is likewise a result of calculations in several stages
and with various assumptions and approximations, based on fitting 361 independent
parameters from 58 experimental measurements!

An apparent triumph of an application of orbitals to explain a real chemical
reaction was to a stereospecific electrocyclic process the conversion of buta 1,3
diene to cyclobutene. Woodward and Hoffmann [46] postulated that the stereo
chemical course of closure to form a ring of four carbon atoms is set according to the
symmetry of a particular orbital, that of greatest energy with which electrons are
associated in the electronic ground state, in the acyclic precursor. This general
ization was claimed to be supported by calculations based on an extension of
Huckel theory, but Huckel theory is recognized to have a graph theoretical basis,
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not quantum mechanical whatsoever [47]. Longuet Higgins and Abrahamson [48]
developed an alternative and systematic procedure by considering the symmetries
of electronic states, which are observable, thus generating correlations along the
entire course between reactants and products, without involving numerical calcu
lations. The so called conservation of orbital symmetry lacks physical foundation
because it relies on constituents of a basis set that one can in principle select
arbitrarily, without regard for an ultimate energy that might result from a calcu
lation as we have shown above. This triumph [46] of an application of orbitals is yet
another rebuke of the mathematical ignorance of chemists who fail to distinguish
between mathematical artifacts and chemical or physical reality [49].

1.6
Conclusions

Computational spectrometry is an established practice in at least two contexts
analyses of vibration rotational spectra of diatomic molecules [25] and of vibra
tional spectra of polyatomic molecules, such as of CsH [35]. The calculations
involved might have a basis in classical or quantum mechanics, but their appli
cation invariably has as its objective an observable property such as wavenumber or
intensity of spectral lines. As our derivations for the canonical linear harmonic
oscillator demonstrate, such observable properties are amenable to calculations
with varied methods; each method might have its particular artifacts that are hence
of only internal significance. Even that harmonic oscillator is an artifact but a useful
initial approximation upon which perturbation methods or other mechanisms
might yield more realistic anharmonic oscillators for comparison with experimen
tal data [20]. A particular artifact of calculations of atomic or molecular electronic
structure is a wavefunction of an atom or molecule containing only one electron,
which was given the name orbital of either atomic or molecular kind. Such artifacts,
which are legitimate components of appropriate computational procedures, have
long been accorded a far greater importance in the teaching and interpretation of
chemical phenomena than their artifactual nature warrants. The reason for this
unfortunate and unstable condition is that chemists lack mathematical under
standing, so that these artifacts are not recognized as being mere components of
prospective basis sets for calculations in a particular wave mechanical approach but
have become the focus of attention  “the medium is the message” (McLuhan)!
Orbitals are the cancers of chemistry.

As a remedy of this disease, chemists must improve their understanding of
mathematical concepts and principles; one mechanism to achieve this objective that
also greatly enhances the capabilities of chemists to implement mathematics for
chemical applications involves the teaching and learning of mathematics with
software for symbolic computation [8]. Mathematics is not difficult, at least at
a level of the topics in calculus, linear algebra, differential equations, and statistics
on which chemical applications are constructed, but most chemists find tedious or
boring the traditional manipulations that manual operations entail. When powerful
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contemporary mathematical software serves as a vehicle both of teaching and
learning of mathematics and of its implementation, a chemist can attain a sufficient
mastery of the concepts and principles to undertake meaningful calculations that
would never be routinely attempted by hand.

The quintessence of this essay is that a quantum mechanical basis of molecular
structure, and thus of chemistry itself, is absolutely fraudulent [5]. With irrational
exuberance, Dirac proclaimed [50] “The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws
leads to equations too complicated to be soluble”, but the above discussion of their
“exact application” to ethanol proves that the utmost central idea in chemistry since
Couper’s intuition about benzene in 1858 [51], namely, molecular structure, is
fundamentally incompatible [31, 32] with “these laws”. With his relativistic quantum
mechanical wave equation, Dirac predicted the existence of the positron, thus
antimatter, but that equation predicts no bound state for even a helium atom, or
anything chemically more complicated or interesting. Which is more important for
chemistry and chemists quantum mechanics or molecular structure? They are
incompatible.

Dirac recognized [50] that “approximate practical methods of applying quantum
mechanics [needed to] be developed”, although before the computer age he could
scarcely have envisaged the success of present approximate practical methods that,
on a partially empirical basis, enable the geometric structure and infrared absorption
spectra of a molecular species to be predicted almost within experimental error of
their measurement; Dirac alluded to an objective to be an “explanation of the main
features of [complicated] atomic systems without too much computation”. Molecular
structure is a classical concept, which might be introduced into, or imposed upon,
a quantum mechanical calculation by means of a procedure due to Born and
Oppenheimer or as subsequently refined by Born; this procedure has never been
fully justified theoretically. Molecular structure is thus intrinsically foreign to
quantum mechanics; because a molecule in a quantum state has a completely
indefinite structure [31, 32], an attempt to explain a classical molecular structure
with quantum mechanics is a logical fallacy [11]. For the calculation of a classical
property such as molecular structure, one might apply a classical method, such as
molecular mechanics, or one might choose, subject to the preceding proviso,
a quantum mechanical method. In the latter case, an association of details of the
structure with artifacts of the particular method of calculation, such as atomic orbitals
in a basis set for a wave mechanical calculation within a coordinate representation,
would constitute a logical fallacy.

Through the application of symbolic computation for both the teaching of
mathematics and the implementation of mathematical operations, as we have
illustrated here for the harmonic oscillator without the tortuous contortions of
atedious manual approach [52], both the learning and understanding of mathematics
by students of chemistry and their capabilities of undertaking mathematical opera
tions can be significantly enhanced without increased time and effort [8]. An
enhanced mathematical knowledge is not only essential for chemical applications
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of quantum mechanics but also important for other aspects of chemistry in the
undergraduate curriculum. How much content of core curricula is devoted to, for
instance, mesophases [53] applications of fine chemical materials with these
properties in display devices have generated an enormous global industry, but many
chemists are ignorant of these states of aggregation or to atmospheric constituent
molecular species and their reactions in relation to global warming? An improved
understanding of mathematics and of its applications by chemists is applicable to real
problems of our society, thus strongly justifiable, not merely for calculating energies
of a linear harmonic oscillator or as a basis of the practice of computational
spectrometry.

From an appreciation of the distinction between quantum laws and quantum
theories, there is much that one can learn; there is equally much that one can learn on
comparing quantum theories applied to a particular chemical system, but in almost
all such applications quantum theories are much less important than the quantum
laws. The latter, one applies directly to interpret atomic and molecular spectra for
analytical and other purposes, and for other aspects of chemical reactions. Quantum
mechanics might have profound philosophical implications [54], which are poorly
understood and almost invariably ignored in textbooks of chemistry; there is,
nevertheless, subtlety involved in a distinction between quantum laws and quantum
theories that we extenuate here.

Acknowledgment

For helpful comments and discussion, I thank numerous colleagues, in particular
Professors D.P. Craig F.R.S., F.M. Fernandez, W.H.E. Schwarz, and B.T. Sutcliffe.

References

1 Pople, J.A., Schneider, W.G., and Dordrecht, The Netherlands, p. 171, and
Bernstein, H.J. (1959) High Resolution references therein.
Nuclear Magnetic Resonance, McGraw 6 Boyer, TH. (1969) Phys. Rev., 186,
Hill, New York. 1304.

2 Roberts, ].D. (2005) Can. J. Chem., 83, 7 Born, M. (1969) Atomic Physics, 8th edn,
1626 1628. Blackie, Glasgow, UK.

3 Laidler, K.J. (1993) The World of Physical 8 Ogilvie, J.F. and Monagan, M.B. (2007)
Chemistry, Oxford University Press, J. Chem. Educ., 84, 889.
Oxford, UK. 9 Kemble, E.C. (1958) Fundamental

4 Pais, A., Jacob, M., Olive, D.I., and Atiyah, Principles of Quantum Mechanics, Dover,
M.F. (1998) Paul Dirac, The Man and His New York.
Work, Cambridge University Press, 10 Dirac, P.A.M. (1981) Principles of Quantum
Cambridge, UK. Mechanics, 4th revised edn, Oxford

5 Ogilvie, J.F. (1994) The nature of the University Press, Oxford, UK.
chemical bond 1993, in Conceptual Trends 11 Primas, H. (1983) Chemistry, Quantum
in Quantum Chemistry (eds E.S. Mechanics and Reductionism, 2nd edn,

Kryachkoand J.L. Calais), Kluwer, Springer Verlag, Berlin.

35



36

1 Concepts in Computational Spectrometry: the Quantum and Chemistry

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

Craig, D.P. and Thirunamachandran, T.
(1984) Molecular Quantum
Electrodynamics: An Introduction to
Radiation Molecule Interactions, Academic
Press, London.

Craig, D.P. and Thirunamachandran, T.
(1986) Acc. Chem. Res., 19, 10.

Dirac, P.A.M. (1964) Nature, 203, 115.
Aitchison, I.].R., MacManus, D.A., and
Snyder, T.M. (2004) Am. J. Phys., 72,
1370 1379.

Fedak, W.A. and Prentis, J.J. (2009) Am. J.
Phys., 77,128 139.

Jordan, T.F. (2005) Quantum Mechanics in
Simple Matrix Form, Dover, Mineola, USA.
Adler, S.L. (1995) Quaternionic Quantum
Mechanics and Quantum Fields, Oxford
University Press, New York.

Jiang, T. and Chen, L. (2008) Comput. Phys.
Commun., 178, 795.

Ogilvie, J.F. (1998) The Vibrational and
Rotational Spectrometry of Diatomic
Molecules, Academic Press, London.
Nieto, M.M. (1981) Phys. Rev., D24, 1030.
Davidson, P.M. (1932) Proc. Roy. Soc.
London, A135, 459.

Green, H.S. (1965) Matrix Mechanics,
Noordhoff, Groningen, The Netherlands.
Ogilvie, J.F., Oddershede, J., and Sauer,
S.P.A. (2000) Adv. Chem. Phys., 111,

475 536.

Ogilvie, J.F. and Oddershede, J. (2005)
Adv. Quantum Chem., 48, 254 317.

Bak, K.L., Sauer, S.P.A., Oddershede, J.,
and Ogilvie, J.F. (2005) Phys. Chem. Chem.
Phys., 7, 1747 1758.

Sauer, S.P.A,, Jensen, H.J.Aa., and
Ogilvie, J.F. (2005) Adv. Quantum Chem.,
48, 319 334.

Sauer, S.P.A., Paidarova, 1., Oddershede,
J., Bak, K.L., and Ogilvie, J.F. (2010) Int. J.
Quantum Chem., in press.

Ogilvie, J.F., Jensen, H.J.Aa., and Sauer,
S.P.A. (2005) J. Chin. Chem. Soc., 52,
631 639.

Pople, J.A. (1964) J. Chem. Phys., 43,
$229 S230.

Woolley, R.G. (1976) Adv. Phys., 25, 27.
Woolley, R.G. (1985) J. Chem. Ed., 62, 1082.
Cafiero, M. and Adamowicz, L. (2004)
Chem. Phys. Lett., 387, 136.

Sutcliffe, B.T. and Woolley, R.G. (2005)
Chem. Phys. Lett., 408, 445.

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50
51
52
53

54

Wu, Y. J., Chou, H. F., Comacho, C.,
Witek, H.A., Hsu, S. C., Lin, M. Y., Chou,
S. L, Ogilvie, J.F., and Cheng, B. M.
(2009) Astrophys. J., 701, 8 11.
Fernandez, F.M. and Castro, E.A. (1996)
Algebraic Methods in Quantum Chemistry
and Physics, CRC Press, Boca Raton, FL.
Ho, G.S., Ligneres, V.L., and Carter, E.A.
(2008) Comput. Phys. Commun., 179,
839 854.

Zuo, J.M., Kim, M., O’Keeffe, M., and
Spence, J.C.H. (1999) Nature, 401, 49 52.
Wang, S.G. and Schwarz, W.H.E. (2000)
Angew. Chem. Int. Ed., 39, 1757 1762.
Zuo, J.M., Kim, M., O’Keeffe, M., and
Spence, J.C.H. (2000) Angew. Chem. Int.
Ed., 39, 3791 3794.

Wang, S.G. and Schwarz, W.H.E. (2000)
Angew. Chem. Int. Ed., 39, 3794 3796.
Itatani, J., Levesque, |., Zeidler, D.,
Niikura, H., Pepin, H., Kieffer, ].C.,
Corkum, P.B., and Villeneuve, D.M.
(2004) Nature, 432, 867 871.

McCarthy, 1.E. (2001) Z. Phys. Chem., 215,
1303 1313.

Schwarz, W.H.E. (2006) Angew. Chem. Int.
Ed., 45, 1508 1517.

Jaytilaka, D. (2000) A wave function for Be
from X ray diffraction data, Chapter 21, in
Electron, Spin and Momentum Densities and
Chemical Reactivity (eds P.G. Mezey and
B.E. Robertson), Springer, pp. 253 263.
Woodward, R.B. and Hoffmann, R. (1965)
J. Am. Chem. Soc., 87, 395 396.
Trinajstic, N. (1992) Chemical Graph Theory,
2nd edn, CRC Press, Boca Raton, USA.
Longuet Higgins, H.C. and Abrahamson,
E.W. (1965) J. Am. Chem. Soc., 87,

2045 2046.

Ogilvie, J.F. (1997) Aspects of the chemical
bond 1996, in Conceptual Perspectives in
Quantum Chemistry (eds J.L. Calais and
E.S. Kryachko), Kluwer, Dordrecht,

The Netherlands, p. 127, and references
therein.

Dirac, P.A.M. (1929) Proc. Roy. Soc.
London, A123, 714.

Duff, D.G. (1987) Chem. Brit., 23, 354.
Dushman, S. (1935) J. Chem. Educ.,12,381.
Ogilvie, ].F. (1989) J. Chin. Chem. Soc., 36,
375 and 501.

Selinger, B.T. (1982) Chem. Australia, 49,
448.



2
Computational NMR Spectroscopy
Ibon Alkorta and José Elguero

2.1
Introduction

The topic of computational NMR spectroscopy was mostly covered by a multiauthor
book published in 2004, Calculation of NMR and EPR Parameters [1]. With very few
exceptions, the most recent references in this book are from 2003. Therefore, this
chapter will cover essentially the 2004 2009 period. In 2009, an article appeared
entitled “How aromaticity affects the chemical and physicochemical properties of
heterocycles: a computational approach” in Vol. 19 of Topics in Heterocyclic Chem

istry [2], in which chemical shifts and nucleus independent chemical shifts (NICS) of
aromatic heterocycles are discussed. This chapter is not intended to be exhaustive as
far as examples are concerned but rather highlights the general significance of our
contribution to this topic.

2.2
NMR Properties

The two main NMR properties that interest experimentalists are chemical shifts
(relative to a reference and measured in parts per million) and spin spin coupling
constants (SSCC, not needing a reference and measured in hertz but depending on
the magnetogyric ratios). Other properties such as nuclear quadrupole coupling
constants (NQCC, not needing a reference and measured in megahertz [3]), relax
ation times [4], isotope effects [1], and shielding tensors [1] are not included in this
review, in part, because we have not contributed to them.

23
Chemical Shifts

Literature results on the use of theoretical methods to calculate chemical shifts
(8, ppm), via absolute shieldings (o, ppm), are very abundant, mainly due to the
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Scheme 2.1 Six, seven, eight (Troger’s bases), and three membered rings.

fadility to carry outaccurate high level calculations. In 1999, Helgaker, Jaszunski, and
Ruud published a review “Ab initio methods for the calculation of NMR shielding and
indirect spin spin coupling constants” that is still an excellent summary of the
situation [3]. Some illustrative examples include papers devoted to buspirone
analogues [5], five membered aromatic heterocycles [6], indoloquinoline alkaloids [7],
and rhodium(II) complexes with azoles (imidazoles and pyrazoles) [8].

At the beginning of our studies reporting GIAO calculations of absolute shield
ings " [9], we used the B3LYP/6 31G(d) approximation. In recent years, we consider
that more reliable calculations can be obtained at the GIAO/B3LYP/6 311 ++ G(d,p)
level [10]. For particular atoms, such as Xe, we have carried out calculations at the
GIAO/DGDZVP level. Our publications concern mainly heterocycles (Schemes 2.1
and 2.2) and also some aliphatic and aromatic compounds (Scheme 2.3).

In general, the results are highly satisfactory; that is, absolute shieldings and
chemical shifts are highly correlated (see Tables 2.1 and 2.2). To obtain the chemical
shifts, some authors use the absolute shielding of the reference and subtract from it
the calculated . We prefer to scale the o values in a way similar to that Pople used for
IR frequendies [11, 12]. Thus, we assume that o and & values are related by an
equation of the form d =a + b x 0, where a, the intercept, should be as close as
possible to the o of the reference and b, the slope, as close as possible to |1|, close but
not necessarily identical (Table 2.1).

From Scheme 2.1, 1 [25], 2[26], 3 [27), 4[28], 5 [29], 6[30], 7 [31], and 8 [32]. From
Scheme 2.2, 9 [33 36), 10 [37 39], 11 [40 43], 12 [44 46], 13 [47, 48], 14 [24, 40, 49),
15 [40), 16 [50], 17 [49], 18 [51, 52], 19 [53], 20 [54], 21 [43, 55], 22 [56, 57], 23 [58],
24 [17), 25 [22], and also subazaporphyrins [59] and trindoles [60]. From Scheme 2.3,
26 30 [61], 31 [16, 62], 32 [63], 33 [64], 34 [23], 35 [15] as well as azolides (N acyl
azoles) [65], amino acids [66], plumbagin [67], and 2 fluorobenzamide [19].

1) GIAO acronym was initially used for “gauge invariant atomic orbital,” but since it is generally agreed
that this is an unfortunate name, today it means “gauge including atomic orbital” method.
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The equations reported in Table 2.1 cover a wide range of values; in some cases, itis
better to consider a subset, for instance, only aromatic carbon atoms [21]. Although
these equations work extremely well, we have noted some exceptions. The mostnotable
are carbon atoms bearing halogen atoms (mainly Br but also Cl) [26, 30, 35, 43, 55]
and also carbon atoms directly linked to sulfur atoms [17, 30, 58]. For these atoms,
the calculated value overestimates the experimental one by 7 10 ppm (e.g., experi
mental valueis 127.7 ppm and calculated valueis 136.5 ppm for an aromatic carbon
atom). Using methane monosubstituted derivatives CH;3X (X = H, CH3, CN, NH,,
NO,, OH, and F) as a training set, we have found that to reproduce the chemical
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Scheme 2.3 Amines (including cyclic ones) and other structures.
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Table 2.1 Best equations for B3LYP/6 311 ++ G(d,p) calculations.

Equation Nucleus Conditions Intercept Slope ¢ (reference) References
(ppm)

Robust (50 or more points)

1 'H 31.8  1.000 TMS: 31.97 [13 15]

2 'H 31.0 0970 TMS: 31.97 [13, 16 20]

3 B¢ sp, sp sp°C 175.7 0963 TMS: 184.75 [13, 17, 20, 21]
atoms

4 BN Without nitroso 152.0 0946 CH;3NOy: [13, 21]
compounds 154.43

5 BN With nitroso 1540  0.874 CH;3NOy: [13, 21]
compounds 154.43

Not robust (less than 50 points)

6 g 106.5 0.900 BF;OFt;: 101.95 [13, 22]

7 Yo sp%, sp’ 309.7  0.926 H,0:322.27 (13, 23]

8 Y 1640 0970 CFCly: 153.70  [13, 24]

9 31p 2286 0785 PO,H; 29233  [13]%

a) Frideling, A., Faure, R., Galy, ].-P., Kenz, A., Alkorta, L., and Elguero, J. (2004) Eur. ]. Med. Chem.,
39, 37 48.

Table 2.2 Relationships between intercept, slope, and reference compound (all values in ppm).

Equation Nucleus Intercept Slope Reference Calc. Error

1 H 31.8 1.000 31.97 31.80 0.17
2 H 31.0 0.970 31.97 31.96 0.01
3 B¢ 175.7 0.963 184.75 182.45 2.30
4 BN 152.0 0.946 154.43 160.68 6.25
5 BN 154.0 0.874 154.43 176.20 21.77
6 ] 106.5 0.900 101.95 118.33 16.38
7 70 309.7 0.926 322.27 334.45 12.18
8 PE 164.0 0.970 153.70 169.07 15.37
9 31p 228.6 0.785 292.33 291.21 1.12

shifts of derivatives (X = Cl, Br, SH, PH,, and SeH) it is necessary to increase the
level of the calculations to MP2 2.

In general, we have not carried out corrections for the solvent effects (for an
exception, see Ref. [35]) because we are rather skeptical about continuum models
while specific solvation effects (supermolecules) are costly (see Section 2.6). Hetero
cycles bearing nitro groups have been studied by Katritzky et al. at different
theoretical levels including the B3LYP/6 311 ++ G(d,p) [68]. They have carried out
continuum model calculations to simulate the solvent.

2) Alkorta, I. and Elguero, J., unpublished results.
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NICS and Aromaticity

According to Bachrach [69], Schleyer became interested in NMR and its relationship
with aromaticity in the 1980s. This led to the development of nucleus independent
chemical shift [70], where the virtual chemical shift can be computed at any point
of space. Schleyer first advocated using the geometrical center of the ring, and then
a point 1A above the ring center [71]. His more recent paper postulated using just
the component of the chemical shift tensor perpendicular to the ring evaluated at the
center of the ring [72] because it is only this component that is related to aromaticity.
Nevertheless, NICS(0) and NICS(1) continue to be used by most authors.

We use the convention of the Gaussian package (aromatic compounds have
positive NICS) that is the opposite to that of Schleyer (aromatic compounds have
negative NICS).

NICS have been reviewed [73, 74], compared with other aromaticity criteria
[75 77], used in relation with tautomeric equilibrium [78] and with hydrogen
bonds [79], applied to a great variety of heterocydles: all parent azoles, 36 45
(Scheme 2.4), concluding that all of them are aromatic [80], phosphorus hetero
cycles [81], other five membered heterocycles 46 (Scheme 2.5) [82], and substituted
pyridines and pyridinium cations [83].

Of particular interest, in relation to NICS and aromaticity, is the work of Kleinpeter
and Koch who introduced the “through space” NMR shieldings (TSNMRS) visual
ized as isochemical shielding surfaces (ICSS) to study many structural problems.
One of their latest papers reports the visualization of aromaticity in cations, neutral
molecules, and anions by spatial magnetic properties (through space NMR shield
ings) [84], for instance, benzene (Figure 2.1).

Our contribution is mainly related to the application of NICS calculations to the
structure and aromaticity of heterocycles including two reviews where this topic is
analyzed [2, 10]. Besides heterocycles, we have discussed the cases of benzene versus
cyclohexatriene [86], compounds related to the Mills Nixon effect, dehydroannu
lenes, polyacenes, sindacene, and Mobius rings [87], as well as the structure of
homotropylium cation [63] and that of the cation obtained by protonation of 5 [29].

/)
M~ M=0,S, Se, Te, NH, PH, AsH, SbH
46

Scheme 2.5 Furan, thiophene, selenophene, tellurophene, pyrrole, phosphole, arsole, and
stilbole.
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Figure 2.1 An ICSS view of benzene [85].

We have devoted several papers to the aromaticity of azoles (related to those of
Scheme 2.4) and to the effect of their protonation (azolium salts) [88 91]. We
published a paper discussing phosphole (46, M = PH), pyrrole (36), and their
tetrahydro derivatives where NICS were used to assess their aromaticity.

The problem of the structure and aromaticity of heteropentalenes [92] was
examined using NICS as an analytical tool, so we will use this series of compounds
to illustrate our approach. These compounds result formally by replacing C atoms of
the pentalene dianion 47 by heteroatoms X and Y (Scheme 2.6). Since the other
peripheral atoms can be carbon or nitrogen, it results in hundreds of heteropenta
lenes that are called azapentalenes when X and Y = NR. There are three main classes
of heteropentalenes: (i) no nitrogen atom in the junction (3a 6a bond) (48 and 49); (ii)
one nitrogen atom in the junction (50 and 51); and (iii) two nitrogen atoms in the
junction (52) (a zwitterion).

In the first paper, we studied the compounds reported in Scheme 2.7 (all of them
belonging to the 48 and 49 classes) together with some model compounds (36 39,41,
and 46; X = O, S) [93]. Concerning NIST, both (0) and (1), they decrease (the
aromaticity decreases) from the parent compounds to the azapentalenes. 1,2 DiH
derivatives 53, 54, and 55 being nonplanar have NICS(1) above and below the
molecular plane (Figure 2.2).

mm
Qo = Mx@

Pentalene \
dianion 47 N
l:l X,Y =NR, 0, S
O 0=CR,N
52

Scheme 2.6 The different heteropentalenes.
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< 2. 2
IxT =

The next publication deals with a compound of the 52 class, the fully nitrogenated
Ng molecule, pentazolo[1,2 a]pentazole (56) [94]. According to the NICS calculated
values, this molecule is more aromatic than benzene and pyrrole (36). The aroma
ticity of 56 increases by complexation with anions (Figure 2.3).

The third paper [95] described the application of Free Wilson matrices to the
analysis of the tautomerism and aromaticity of azapentalenes of the classes 50 and 51.
A total of 44 neutral and 60 protonated azapentalenes were studied, some examples
being reported in Scheme 2.8. We concluded that aromaticity, as defined by
Schleyer’s NICS(1) values, provides a coherent picture for azapentalenes but this
picture is not consistent with other aromaticity criteria.

The fourth paper concems the simplest example of class 52, 1H pyrazolo[1,2 a]
pyrazol 4 ium hydroxide inner salt (57) (often represented as 57a, Scheme 2.9) [96],
NICS(1) =9.94ppm. In azapentalenes lacking N atoms in positions 3a and 6a,

"1 l;i:: Jflgf ‘J—J 4 ?.

Figure 2.2 NICS(1) above and below the molecular plane for compounds 53, 54, and 55.
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Figure 2.3 Two views of the molecular electrostatic potential of 56 at the +0.02 au isosurface.
Positive regions in dark and negative ones in light.

NICS(1)=9 11 ppm [93], with only one N atom NICS(1) is about 10 ppm [95], and in
the Ng molecule (which has two N atoms in these positions), NICS
(1) =12.8 ppm [94].

The last paper on the heteropentalene series applies the NICS methodology to
bimanes 58 and 59 and related compounds 60 and 61, all of them of the class 52
(Scheme 2.10) [97]. Since the rings are folded, there are two NICS per ring, one above
(the convex part) and the other below (the concave part, see Figure 2.4).

In summary, these five publications concerning the aromaticity of heteropenta
lenes as seen by NICS provide a coherent picture but different from other aromaticity
criteria. A large collection of NICS(1) values is now available to the reader interested
in heteroaromaticity.

A paper on the effect of perfluorination on the aromaticity of benzene and
heterocyclic six membered rings resulted from a collaboration with the Schleyer’s
group [98].
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Scheme 2.8 Tautomerism of azapentalenes with one N atom in the junction.
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Scheme 2.10 Bimanes and related compounds.

25
Spin Spin Coupling Constants

Many other authors and ourselves have carried out theoretical calculations of SSCC.
Our studies mostly refer to a situation like X H - --Y where there are three coupling
constants: a covalent !Jxy, a hydrogen bond '], and a coupling of the heavy
atoms through the hydrogen bond # Jy. Some authors such as Limbach [99] prefer
a phenomenological nomenclature not differentiating the covalent and the hydro

gen bond '] couplings because when the proton moves along X - - - Y the difference
blurs and disappears; this can happen only when X and Y are identical, for instance,
5N nuclei. When comparing SSCC involving different nuclei, it is useful to
transform J into K, the so called reduced CC [100], to avoid the magnetogyric
complication.

J

Figure 2.4 NICS(1) above and below the molecular plane for compound 58.
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At present, the two best methods for calculating SSCC are SOPPA (second order
polarization propagator) and EOM CCSD (equation of motion/coupled cluster
singles and doubles) [101 103]. There exists a SOPPA CCSD version [104]. An
acceptable, although less good, approach consists in using DFT based methods
implemented in Gaussian 03 [11].

In terms of the work we have done, the basis sets we have used are as follows:

Ahlrich qzp [105]:  C,N,O,F
Ahlrich qz2p [105] : P,S,ClL,H

Del Bene has established two Ahlrich like “hybrid” bases for boron (!B) and
lithium (’Li) [106].

The only exception to the above scheme was using the Dunning VDZ basis on H.
When the systems were too large, we replaced the qz2p basis on H by VDZ [107 109].
This reduces the number of basis functions on H from 10 to 5. However, when we did
that, we did not report coupling constants for any H atom that had Dunning’s VDZ
basis set. Note that the presence of VDZ does not change coupling involving other
atoms.

It has been documented in the literature that the use of smaller contracted basis
sets (such as Pople’s and Dunning’s) does not in general perform well for coupling
constants. The Ahlrich basis sets are contracted only for one s function, one p
function, and so on. The remaining functions are primitives. That is part of the
reason why they perform well.

There are results in the literature that suggest that a very large Dunning’s or Pople’s
basis set would be needed [110 113], something perhaps better than cc pVIZ or
maybe aug cc pVTZ [107, 108]. Consider, for instance, cc pVTZ. This basis is not
considered very large, but it already has 30 basis functions for second period
elements such as C, and aug cc pVTZ has 46 basis functions per carbon. The Ahlrich
basis set has 24 basis functions on C (used only as an example). Thus, using
Dunning’s basis set we would not have been able to carry out some of the calculations
we are performing because the number of basis functions would become too large
(these calculations scale something like n’, where n is the number of basis functions).
There are some other basis sets in the literature (e.g., Sadlej J [114, 115]) that have
been constructed for coupling constant calculations.

According to Malkina, the Dirac vector model (DVM, also called Dirac van Vleck
vector model) of SSCC was proposed by Duval and Koide in 1964 [1, 116, 117];
however, there are at least two earlier papers on the DVM: one by McConnell in 1955
“Dirac vector model for electron coupled nuclear spin interactions” [118] and another
by Alexander in 1961 “Spin spin interactions in nuclear magnetic resonance.
Contact contribution” [119]. Subsequently, it has been used so many times that it
has become a classical tool in NMR spectroscopy [120 122]. Nevertheless, it has long
been recognized that the DVM is too simple for an adequate interpretation of the
dependence of the SSCC signs on the number of bonds [123].

In 2003, Del Bene introduced the “nuclear magnetic resonance triplet wavefunc
tion model” (NMRTWM) [124] considering only the Fermi contact (FC) contribu
tion, and we will refer to the sign of ] based on the sign of the Fermi contact term.
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Figure 2.5 Nodal patterns for a four atom system with D, symmetry.

For a linear system with D, symmetry, A; B;---B; A,, the only excited triplet
states that can have nonzero contributions to the coupling constants are those with
3% or T~ symmetry, states that do not have nodes containing the D,y axis
(Figure 2.5).

The model used for discussing the sign of coupling constants arose from the well
known expression for computing ], namely [ = 0°E/Ous-Oug, which indicates that
the energy (E) depends on the nuclear magnetic moments (u) of atoms A and B. This
implies that the wavefunction also depends on these moments. Alternatively, the
nuclear magnetic moments might be sensitive to the wavefunction. How would this
sensitivity be manifested? The sum over states expression for Jap extends over the
entire manifold of triplet states that can interact with the ground state. What in the
triplet wavefunctions might influence the alignment of magnetic nuclei? One
possibility is the phases of these wavefunctions at atoms A and B. The NMRTWM
was introduced as a tool to gain insight into what determines the sign of [, and
employ it to consider the orientation of nuclear spins in *£* and *X~ states by
considering the nodal properties of wavefunctions for these states in a model linear
A; B;---B,; A, system. In this model, it was assumed that the orientation of the
nuclear magnetic moment vector responds to the phase of the excited triplet state
wavefunction, and arbitrarily assigns nuclear spin up (1) when the wavefunction is
positive and down (]) when itis negative. For a four atom system with D}, symmetry,
the nodal patterns for >’<* and *X~ states and the resulting nuclear alignments are
shown in Figure 2.5. This assignment is consistent with the convention adopted for
the sign of ], which states that a positive coupling constant corresponds to a reduction
in the interaction energy when the nuclear spins are antiparallel. We have used
NMRTWM several times [106, 125 132], but the impossibility to make predictions
led us to stop using it in 2006.

In Table 2.3, we have summarized, in chronological order, our publications dealing
with the calculations of SSCC both J and K.

47



Table 2.3 Calculations of SSCC.

System Couplings Method Main conclusions and comments Reference
X H Y[ BCPN, Jxn EC NMRTWM applies to Ks [129]
170, 9]
(HF); clusters JrE EC The Fermi term dominates [125]
H,X YH,[Y “C PN, Uy EC The X Y bond may be a single, double, or [126]
31pP] triple bond
X H Y[Y PN Vo, oy EC Determining the sign of 'Kxy and YK,y [133]
g should allow to determine if the HB is
proton shared or not
X H Y MKy EC All 2Ky, are positive [128]
Scheme 2.11 *Joor " Tax EC Neither the Js nor the 8'H provide evidence [127]
of RAHB [134]
Scheme 2.12 2w DFT Tautomerism. 2Jcy is always positive [135]
H X Y H, an, My FPT Karplus: molecular versus supramolecular [136]
HX H YH
Scheme 2.11 200 P n EC RAHB: we ratify [127] [137]
NH O°FP e 2 e EC Urea/phosphoric and urea/phosphate [138]
AH:XH:YH; [A, X YF, e, "y Py EC The presence of a third molecule (AH) in [130]
By BN, 31P] creases the proton shared character of the
X H YHB
(HCN),,, (HNC), e, P xe SO Complexes n 1 6, cooperativity [139]
NH F HN Ut a2 en EC The HB in the gas phase has more proton [140]
shared character relative to HBs in solution
(FH),  collidine (see Uer, "o 2 en EC The 2: 1 FH:NH; complex as a model. Effect [141]
Figure 2.6) of the proton transfer on the Js
Compound 64 2Jop, 2Jer DFT Error in one exp. J value: see Table 2.4 [142]
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Jral, ]CIN’ Jen

DFT

DFT
EC

EC
EC

EC

EC

EC
DFT
EC
EC

EC
EC
EC
EC
EC
DFT
E Cversus SO

EC

EC

131 exp. coupling constants versus 243
calcd. All agree well save 1 Jec

2Jun (gem) well reproduced

66 complexes, all kind of N atoms; effect of
the NN distance on ], sign

F increases and Li decreases !Jpy
Karplus type equations: (dihedral angle)
orientation of lone pairs is determining
Importance of solvating ammonium salts
such as NH, © with H,0 molecules
Protonation on the heteroatom produces
dramatic changes in the Js

Effect of substituent R on the Js

N(Et), *; only the Me are coupled with ¥N
1]xp is always negative

Essential role of the number of lone pairs in
Xand Y

See Figure 2.7

1] couplings as probes of PA of bases
Also 2], and 2" ], with C=P bonds
1J(1'B 7Li) is very sensitive to solvation
Effect of the proton transfer on Js and Ks
CH, NH, OH tautomers of pyrazolinones
And monomers XY, X Hand H Y pro
tonated and deprotonated

Effect of one or two solvent molecules on
formamide Js

SSCC across halogen bonds

[143]

[53]
[144]

[106]
[145]

[146]

[147]

[148]
[149]
[22]

[150]

[151]
[152]
[153]
[154]
[155]
[47]

[156]

[157]

[158]
(Continued)
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Table 2.3 (Continued)

System Couplings Method Main conclusions and comments Reference
HXH [X from Li to Cl] 2un, Yxn DFT and SO Clearly, SOPPA/sad] yield better values than [159]
SOPPA/aug cc pVTZ
N HT N et " 2 EC Models of proton sponges [160]
All systems - Review Comprehensive data on experimental indi [161]
rect scalar NMR spin spin coupling con
stants across hydrogen bonds
Compound 31 N, Ines Jan DFT SSCC in azines are well reproduced [16]
F C=C F 3er, Yee, Jer E C versus SO 3Jrr strongly depends on the geometry [162]
H,0, H;0™" 200 EC Water and hydronium clusters [163]
Cyclic (FH), e, e 2 e EC Forn 2 6, "]y is always negative [164]
Compound 8 1 Jic DFT 1 Juic is very sensitive to solvent effects [32]
X YV,X=YX,Y CN, Jec Jens Jeos Jer Jans Jnos E Cversus SO And selected F substituted derivatives [165]
0] Ine Jre
N HT N Uty oo 2w DFT and SO Statistical modeling (hybridization of both N [166]
atoms) and charge of the complex
Compound 66 L. DFT Solvent effects [19]
HLB BLH [dibor Tep, JH, JnL EC Jpp and 'Jpy are always positive [167]
enes, 67 and 68; L CO,
NH,, OH,, PH;, SH,,
CIH]
Scheme 2.14 EC 1,2 Dihydro 1,2 azaborine (69) [168]
31 molecules Jec Jens Jan E C versus SO E C underestimates ! Jcyy by ~10 Hz [169]

Methods: E-C=EOM-CCSD; SO = SOPPA; FTP = finite perturbation theory; DFT =B3LYP/6-311++ G(d,p).
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Scheme 2.11  Intramolecular hydrogen bonds in RAHB (resonance assisted hydrogen bond)
structures 62 and 63.
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Scheme 2.12 Geometry of the calculated and measured 2/ coupling constants.
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Figure 2.6 The FH FH collidine complex experimentally studied by Limbach and
coworkers [170]. Deep blue: nitrogen atom; pale blue: fluorine atoms.
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2.6
Solvent Effects

The perturbation of NMR parameters (0 and J) due to solvent effects can be modeled
in computational studies in two ways: with continuum models to simulate dielectric
solvent effects (DSE) [172] and with specific solute solvent interactions
(supermolecules).

a) Continuum models: shielding constants (chemical shifis). Only in a few papers
[14, 35, 36], we carried out GIAO/B3LYP/6 311 ++ G(d,p) calculations on
bromopyrazoles in DMSO using the PCM model. On the other hand, many
authors have used continuum models to calculate shielding constants
[173 176], especially important are those of Ruud and coworkers [177, 178].
A last paper by the same group reports solvent effects on nitrogen NMR
shieldings in 1 methyltriazoles [179].

b) Continuum models: spin spin coupling constants. We have not used PCM type
calculations for SSCC, a field where the most important contributions are those
of Contreras and coworkers. Using HN=CH, as a model molecule, they studied
both dielectric solvation effect and specific solute solvent interactions (H,O and
DMSO); ! Jcr (ansi) increases monotonically with increasing dielectric constant
€ [180]. These authors found that SSCC including PCM effects are in better
agreement with experimental values than those without them for pyridinecar
boxaldehydes [181]. A statistical analysis of their data indicates that this is true for
Jcc (largest differences about 2 Hz) but not for iy (largest differences 9 Hz).
They worked also on amides [182, 183]. Both Ruud [184] and Sauer [185] have
considerably improved the performance of PCM models. For reviews on this
important topic, see Refs [186, 187].

c) Specific solute solvent interactions: shielding constants (chemical shifts). The
subject is very broad since it is difficult to distinguish normal molecules from
solvent molecules in complexes. Others and we have calculated many supra
molecules; when one of these is a classical NMR solvent (water, acetone,
DMSO, etc.), they belong to this category. In the case of benzene as solvent, we
have calculated the aromatic solvent induced shifts (ASIS) with a considerable
success [188]. In the case of fluorobenzamide (66), we have calculated the effect
of water and acetone on the chemical shifts using the 1: 1 and 1: 2 com
plexes [19]. One can consider the solid state as a special case of solvation; only,
instead of solvent there are other molecules in the unit cell. For comparing
experimental CPMAS chemical shifts, we have reported calculations for
dimers [10] and trimers [34].

d) Specific solute solvent interactions: spin spin coupling constants. When discussing
quaternary ammonium salts, such as NH, ", it is fundamental to add water
molecules forming N H*Y...OH, HBs to reproduce the experimental
SSCC [146]. In the case of 2 fluorobenzamide (66), we have calculated its SSCC
in complexes with one water molecule and one and two acetone molecules [19].
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Coupling constants involving “Li are very sensitive to solvation, for instance,
17’1 BC) [32]. To rationalize this observation, we carried out EOM CCSD
calculations using several H,0O and FLi molecules [154].

2.7
Conclusions

We hope that this summary of “computational NMR spectroscopy” will convince the
still skeptical readers that computation of NMR properties is a powerful and reliable
tool. This is so to the point that when there is alarge disagreement between calculated
and experimental data, the experiment should be questioned (see Table 2.4). At this
moment, size and complexity of molecules are not a limitation for calculating
absolute shieldings; on the other hand, some high level calculations of coupling
constants are limited by size, symmetry, and the nature of the atoms involved. For
instance, a compound such as 64 with its 345 basis functions is today out of reach of
EOM CCSD calculations. In not too distant a future, all these limitations will be
overcome and computational and experimental chemists will advance hand in
hand. We recommend least squares fitting (regression) using GIAO/B3LYP/
6 311++G(d,p) for the chemical shifts and SOPPA (without intercept) for the
spin spin coupling constants. Improving the level of the calculations (basis set,
vibrational and thermal corrections, etc.) will not necessarily result in better
correlations because the experimental data that interest the experimental chemist
came from solution or solid state, conditions far from the ideal ones.

Table 2.4 Calculated and experimental coupling constants for hexafluorocyclotriphosphazene
64 in CDCl; at 300 K.

J Caled. Exp.
R F 2Jep +1785 +155.0
\: e 35 249
|}1|‘ SN 3 Jen 0.8
FIn--P\N—, P"—-F l]pp 1252.0 916.6
FI ”F 3 on +6.3 +21.2
64 *Jan 0.8
2Jnr +5.9
*Ine +0.2
2 e 1924 +50.07
* Jee (as) +0.1 2.0
* JBE (trans) +129 +17.0

a) Excluding this value, Exp.=0.735 x Calcd., n =6, R2 =0.998. This equation predicts a value of
137.0 Hz for ?Jg. At 183K in CD,Cl,, Kapicka found 71.4 Hz [171], in much better
agreement with the calculations.



2.8 The Problem of the Error in Theoretical Calculations of Chemical Shifts and Coupling Constants

Progress in any area of physical science requires a combination of experimental
and theoretical investigations. However, in some cases, a theoretical approach may
assume increased importance, particularly if the experimental data are fragmentary
or subject to large experimental errors. In such circumstances, if one wants to
examine a molecular property with only an incomplete set of experimental data
available, a reasonable strategy is to calculate that property in a systematic manner for
an entire collection of related molecules and compare the available experimental
values with the corresponding calculated results. If the comparison shows that theory
and experiment agree, or at least are highly correlated, then the calculated values can
be used as a basis for discussing the property of interest. In addition, theory often has
the advantage of allowing an analysis based on partitioning of the property, which is
not possible with the experimental data. Such is the situation for scalar coupling
constants (spin spin coupling constants) in NMR. In many cases, understanding the
variations in related spin spin coupling constants is difficult without knowing their
components, given in the Ramsay model as the paramagnetic spin orbit (PSO),
diamagnetic spin orbit (DSO), FC, and spin dipole (SD) terms. It is only theory that
can provide this information.

2.3
The Problem of the Error in Theoretical Calculations of Chemical Shifts and Coupling
Constants

Although sensu strictu there is no error in a theoretical calculation, it is used to signify
the difference between the calculated value and the experimental one. Concerning
chemical shifts, the results of the calculations are absolute shieldings 6. Some authors
calculate the reference (e.g., TMS in *C NMR) at the same level and transform the
calculated o to 6 by subtraction. This is equivalent to assuming that d = Gcompd ~ Orer-
We, and many others, prefer to assume thatd =a + b X Gcompa., a being close but not
identical to 0..f and b being close to 1 but not identical. At the GIAO/B3LYP/6
311 ++ G(d,p) level and with the exception of some atoms (e.g., C atoms bearing
Cl, Br, and S substituents), the RMS residuals of the regressions are about 3 ppm for
13C and 9 ppm for 1N [21] (see also Table 2.2). Concerning coupling constants, no
transformation is necessary since the calculations afford directly the coupling in Hz.
Naturally, calculated and experimental values should be identical for [ =0 Hz (or very
small), thus allowing to impose that the trendline goes through the origin (no
intercept). Concerning the more accessible SOPPA calculations, RMS is about
3 4Hz [189], and introducing some dummy variables can reduce it to 2 Hz [190].
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3
Calculation of Magnetic Tensors and EPR Spectra
for Free Radicals in Different Environments

Paola Cimino, Frank Neese, and Vincenco Barone

3.1
Introduction

The tools needed by EPR spectroscopists are from the world of quantum mechanics
(QMs), as far as the parameters of the spin Hamiltonian are concerned, and
molecular dynamics (MDs) and statistical thermodynamics for the simulation of
spectral line shapes. As a matter of fact, data reduction in experimental EPR
spectroscopy is achieved using a powerful device: the phenomenological spin
Hamiltonian (SH). Virtually every EPR spectroscopist is familiar with fitting the
relatively small number of parameters that enter the SH through least square or
eyeball procedures to the experimental spectra. The outcome of the analysis is a
compact description of the information content of the EPR spectrum: numerical
values for the SH parameters. These are the elements (principal values) of the g
matrix, the hyperfine couplings of various magnetic nuclei, and perhaps the nuclear
quadrupole couplings, or if applicable the zero field splitting tensor. Usually only
the principal values of the SH parameters are obtained. However, single crystal and
modern pulse experiments often yield more precise information with respect to the
orientation of the various magnetic coupling tensors in the molecular coordinate
frame. The other challenging experimental theoretical match, EPR spectral shape
versus probe dynamics, has a long history too. The two limits of essentially fixed
molecular orientation as in a crystal, and of rapidly rotating probes in solutions of low
viscosity (Redfield limit) [1], have been overcome by methods based on the stochastic
Liouville equation (SLE), allowing the simulation of spectra in any régime of motion
and in any type of orienting potential [2]. The ongoing integration of the above two
aspects, namely, improved QM methods for the calculation of magnetic tensors and
effective implementations of SLE approaches for increasing numbers of degrees of
freedom, paves the route toward quantitative evaluations of EPR spectra in different
phases and large temperature intervals starting from the chemical formula of the
radical and the physical parameters of the solvent.

In the following sections, we will try to sketch the building blocks of an integrated
computational approach [3] to the EPR spectra of organic free radicals in solution and
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to illustrate the key issues of its application. Besides presenting the main framework
of the proposed general model, special attention will be paid to the computation of
magnetic parameters, whereas the problem of line shapes will be only briefly
illustrated in the last part of the chapter. The selected examples will show that
last generation models rooted in the density functional theory (DFT) provide an
accurate description of molecular structure and values of the magnetic parameters in
quantitative agreement with experiments. Next, we will see that a suitable theoretical
treatment of solvent effects on the magnetic parameters is able to give full account of
the bulk and specific interaction. In particular, the last generation continuum models
perform a remarkable job in reproducing nonspecific solvent effects, whereas in the
presence of specific interactions (e.g., solute solvent H bonds), they have to be
integrated by explicit inclusion of some solvent molecules strongly and specifically
interacting with the solute. The resulting discrete/continuum description represents
a very versatile tool that can be adapted to different structural and spectroscopic
situations. It is noteworthy that recent developments of classical and ab initio
dynamics approaches enforcing proper boundary conditions permit extension of
the same general approach from static to dynamic situations, thus allowing to take
into proper account the averaging effects issuing from solute vibrations and solvent
fluctuations. As mentioned above, longer timescale dynamical effects determining
line shapes require a different approach, whose integration in a consistent general
framework is under active development.

Clearly, the task at hand is a very large one and the chapter cannot serve as a
substitute for a textbook in theoretical chemistry. Therefore, some familiarity with the
concepts of molecular quantum mechanics is assumed. Many books on the theo
retical background are recommended for further reading [4]. We will also not try to
give an extensive coverage of the literature as this has been done several times
earlier [5]. Rather, we will try to provide a clear description of the necessary theoretical
apparatus paving the route from reliable SH parameters to complete spectral shapes
and hint at how to employ the methodology in practical applications. Most of the
discussion as well as the results makes reference to actual implementations in
modern electronic structure program packages, such as ORCA [6] and Gaussian
03 [7], that offer advanced tools for the prediction of SH parameters.

3.2
The General Model

The calculation of ESR observables can be in principle based on a “complete”
Hamiltonian H({r;}, {R;},{q,}), including electronic {r;} and nuclear {R;} co
ordinates of the paramagnetic probe together with solvent coordinates {q,}:

H({r}, {Re}, {a4}) = Hprobe ({1}, {Ri})
+ Hprobe—solvent({ri}7 {Rk}7 {qa}) + Hso]vent({qu})
(3.1)



3.2 The General Model | 65

Any spectroscopic observable can then be linked to the density matrix
o({r;}, {Rk}.{q,},t) governed by the Liouville equation

%@{ri}7{Rk}7{qa}>t): iIH{r}, {Re}, {au ), 0} {Ri} {a, ), )]
L({r}, {Re}, {a. Do}, {Re}, {qq ), 1) (3:2)

Solving Equation 3.2 as a function of time would allow, in principle, a direct
evaluation of 9({r;}, {R¢},{q,},t) and hence calculation of any molecular prop
erty. However, the diverse timescales characterizing different sets of coordinates
allow the introduction of a number of generalized adiabatic approximations. In
particular, the nuclear coordinates R = {R;} can be separated into fast vibrational
coordinates Rpg and slow probe coordinates (e.g., overall probe rotations and, if
required, large amplitude intramolecular degrees of freedom) Ry, relaxing at
least in a picosecond timescale. Then the probe Hamiltonian is averaged on (i)
femtosecond and subpicosecond dynamics, pertaining to probe electronic coordi
nates, and (if) picosecond dynamics, pertaining to fast intraprobe degrees of
freedom. The averaging on the electron coordinates is the usual implicit procedure
for obtaining a spin Hamiltonian from the complete electronic Hamiltonian of the
probe. In the frame of Born Oppenheimer approximation, the averaging on the
picosecond dynamics of nuclear coordinates allows to introduce in the calculation
of magnetic parameters the effect of the vibrational motions, which can be very
relevant in some cases [8]. We end up with an averaged magnetic Hamiltonian

H(Rslowa {qa})

H(Rslow> {(]a}) = I:Iptobe(RS]OW7 {(la}) + Hprobefsolvent(Rslowv {qa})

5 (3.3)

+ Hsolvent({qa})
The last two terms do not affect directly the magnetic properties and account
for probe solvent [H probe—solvent (Rslow, {0, })] and solvent solvent [I:Isolvem({qa})]
interactions. An explicit dependence is left in the magnetic tensor definition from
slow probe coordinates (e.g., geometrical dependence upon rotation) and solvent
coordinates. The averaged density matrix becomes Q(Rgow,{q.}.t) = (0({ri},
{Re}, {9}, 1)) (1} r,.,, and the corresponding Liouville equation, in the hypothesis
of no residual dynamic effect of averaging with respect to subpicosecond processes,
can be simply written as in Equation 3.2 with H(Rgow, {q,}) instead of H({r;},
(R} {q,}):

Finally, the dependence upon solvent or bath coordinates can be treated at a
classical mechanical level, either by solving explicitly the Newtonian dynamics of the
explicit set {q,, } or by adopting the standard statistical thermodynamics arguments
leading to an effective averaging of the density matrix with respect to solvent variables
O(Rgiow: t) = (0(Rslow, {qu}+ 1)) {q,}- One of the most effective ways of dealing with the
modified time evolution equation for 0(Rgw, t) is represented by the SLE, that is, by
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the direct inclusion of motional dynamics in the form of stochastic (Fokker Planck/
diffusive) operators in the Liouvillean governing the time evolution of the system:

Q(R510W7 t) = i[H(Rslow)u é(RSIOW7 t)] f@(RSIOW7 t) = E(RSIOW)@(RSIC)Wu t)
(3.4)

ot

The effective Hamiltonian, averaged with respect to the solvent coordinates, is
made up of probe magnetic tensors averaged with respect to fast intramolecular
motions and solvent coordinates, while I is the stochastic operator modeling the
dependence of the reduced density matrix on relaxation processes described by
stochastic coordinates Rgjoy.

This is a general scheme that allows additional considerations and further
approximations. First, the average with respect to picosecond dynamic processes
is carried on, in practice, together with the average with respect to solvent coordinates
to allow the QM evaluation of magnetic tensors corrected for solvent effects and for
fast vibrational and solvent librational motions. The effective treatment of these
aspects is the core of this chapter.

Dynamics on longer timescales determines spectral line shapes and requires more
“coarse grained” models rooted into a stochastic approach. For semirigid systems,
the relevant set of stochastic coordinates can be restricted to the set of orientational
coordinates Ry = Q, which can be described, in turn, in terms of a simple
formulation for a diffusive rotator, characterized by a diffusion tensor D [9], that is,

F=j(@)-D-jQ) (35)

where J(Q) is the angular momentum operator for body rotation.

Once the effective Liouvillean is defined, the direct calculation of the cw ESR signal
is possible without resorting to a complete solution of the SLE by evaluating the
spectral density from the expression [2, 10]

I(o wo):%Re(v\[i(w 00) + 2] vPeq) (3.6)

where the Liouvillean £ acts on a starting vector, which is defined as proportional to
the x component of the electron spin operator S,.

In the last part of the chapter, we will give a sketch of how this approach can be used
for obtaining line shapes from first principles, a topic that is still under active
development.

33
Spin Hamiltonian, g-Tensor, Hyperfine Coupling Constants, and Zero-Field Splitting

3.3.1
The Spin Hamiltonian

In order to more precisely state the nature of the problem, the leading spin
Hamiltonian parameters are briefly introduced. The SH is an effective Hamiltonian
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and contains only spin variables of a “fictitious” electron spin S and the nuclear spins
I4, Iy, and so on. All references to the spatial part of the many electron wavefunction
and therefore to detailed molecular electronic and geometric structure are implicitly
contained in the well known SH parameters D (zero field splitting), g (g tensor), A
(hyperfine coupling), Q (quadrupole coupling), 6 (chemical shift), and J (spin spin
coupling), which are considered as adjustable parameters in the analysis of experi
ments and which will be explained in detail below. The SH that includes the
interactions covered above is

Flypin = SDS + BBgS + z [sA<A>i<A> +ByBel

SR

A<B
where the sum over A refers to the magnetic nuclei, B is the magnetic flux density,
and P and B are the electronic and nuclear Bohr magnetons, respectively. The SH
acts on a basis of product functions | SMs) ® ‘IW M§A>> ® - ® }I(N) M§N>>. For not

too many spins, this basis is often small enough to allow exact diagonalization of the
SH and therefore exact QM treatments of the spin physics in the SH framework.

332
Electronic Structure Theory

On a fundamental level, the leading interactions between the positively charged
nuclei and the negatively charged electrons are summarized in the (nonrelativistic)
Born Oppenheimer Hamiltonian:

. -»2 ZpZg
Hro = ‘Z Z\r Ry Z\r, 0t Z|RA Ry|

A/B

) (3.8)
= T+ veN + Vee+ VNN
= ’:l“‘ ‘A/ee + VNN
The terms describe the kinetic energy of the electrons, the electron nuclear
attraction, the electron electron repulsion, and the nuclear nuclear repulsion, re
spectively. In Equation 3.8, i and j sum over electrons at positions r;, A, and B over
nuclei with charge Z, at positions R,. The nuclear positions are assumed to be fixed
and the electrons are supposed to readjust immediately to the positions of these
(classical) nuclei. The BO Hamiltonian accounts for the vast amount of the molecular
total energy and most problems of chemical structure and energetics can be satis
factorily discussed in terms of these comparatively simple interactions. Yet, the BO
operator contains the coupled motion of N electrons and to find the exact eigenfunc
tions and eigenvalues of the (time independent) BO Schrédinger equation

HBOIP(Xl,...7XN‘R) = E(R)W(Xl,...7XN‘R) (39)

is a hopelessly complicated task. In Equation 3.9, the many electron wavefunction
W(xy,...,xy|R) has been introduced that depends on the space (r) and spin (0)
variables of the N electrons (x; = (r;, 0;)). R collectively denotes the positions of the
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nuclei on which the many electron wavefunction and the eigenvalues E(R) depend
parametrically. According to the basic quantum theory, all that can be known about
the molecular system in the time independent case are contained in ¥(xy, . . ., xy|R).
Itis also important to note that all measurements always probe the N electron system.
Molecular orbitals (MOs) to be introduced below are never observable and, in fact, the
entire theory of molecular electronic structure can be exactly formulated without any
recourse to orbitals. Yet, MOs are very convenient building blocks in the majority of
approximate methods that have been developed to date.

In the density functional theory approach to the molecular Born Oppenheimer
Schrodinger equation, one does not attempt to approximate the many particle
wavefunction. Rather, one attempts to obtain the correct energy (or at least an energy
thatis sufficiently parallel to the correct energy) as a functional of the electron density.
Owing to the celebrated Hohenberg Kohn theorems, itis known that, in principle, the
knowledge of o(r) is sufficient to deduce the exact ground state energy. This comes at
the price of introducing an unknown exchange correlation functional E,[g]. Since a
systematic procedure to approach the exact E, [0] appears to be unknown, physically
motivated guesses have to be introduced. Over the years, many such approximations
have been suggested and new functionals appear in the literature almost on a weekly
basis. Unfortunately, each functional has its own strengths and weaknesses that need
to be assessed through extensive series of test calculations.

Without going into much detail, it is noted that the so called Kohn Sham
procedure allows one to solve a set of pseudo single particle equations that would
provide the exact ground state energy if the exact Exc[o] is known. This procedure
introduces the so called “noninteracting reference system” that is described by a
single Slater determinant and that shares with the physical system the electron
density calculated through Equation 3.10a:

o(r) = =N (n)? (3.10a)

In order to expand the single particle wavefunctions (orbitals) that occur in the
Slater determinant of the noninteracting reference determinant, one commonly
introduces a set of auxiliary one electron functions {@(x)} (basis functions) that are
used to expand the orbitals as

Pi(%) =D i, (x) (3.10D)
0

The minimization of the energy is then performed with respect to the coefficient
cui» while the basis functions are held fixed. The expansion is exact only in the limit of
a mathematically complete basis set {@(x) }, which is impossible to obtain in practice.
Thus, the results depend on the size and nature of the employed basis functions, but
there is a well defined basis set limit. Since the BO operator is spin free, it is customary
to let the orbitals be eigenfunctions of the single electron spin operator by choosing
them to be either spin up or spin down orbitals y¢ (0 = a, f3). The spin unrestricted
Kohn Sham equations in a finite basis set take on the form (upon dividing the
electron density into its spin components g*(r) and oF(r))
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FSV = hhv + Z P%T(lent) + prt(r)¢v(r) V)(éC [Qaa QB](r)dr (311)
AT

Thus, in place of the exchange term that is familiar from Hartree Fock theory,
there now appears a local exchange correlation potential, which is defined as the
functional derivative of E,[0%, of] with respect to o(r):

Vic[o® 0Pl (r) = 80°(r) (0=a,p) (3.12)

The total Kohn Sham energy is

1
EUKS = Z Puvhpw + EZ Puva(MW%T) + EXC [Qaa QB] + VNN (3-13)
%t

u

The second term consists of the Coulombic self interaction of the electron cloud
and it can be written in a perhaps somewhat more illuminating way as

1 1
E; ZEJJQ(rl)mQ(rZ)drldrz (3.14)

Likewise, the Coulomb contribution to the Kohn Sham matrix is

o = [ [utrn ) otedndn (3.15)
1 12

which emphasizes the local nature of the Coulomb potential V¢ (r). Since this
potential is of long range, its calculation usually dominates the computational effort
of a Hartree Fock (HF) or Kohn Sham (KS) calculation. The precise functional
forms of the various approximations to E,[o%, of] are complicated and involve odd
powers of o(r) such as Q(l’)4/ 3 If the functional also depends on the gradient of
0 (Vo(r)), one obtains functionals from the “generalized gradient approximation”
((jg}A) family. Modern functionals may also depend on the Laplacian of the density
(V' 0(r)) and the kinetic energy density (t(r)), which leads to the family of “meta
GGA” functionals. In recent years, the so called “hybrid functionals” have become
very popular, which involve a fraction of the nonlocal Hartree Fock exchange and this
was found to improve the results for total energies as well as many molecular
properties.

There are many important conceptual and practical subtleties in DFT that
cannot be discussed in the framework of this chapter and the interested reader is
referred to a recent review that also provides pointers to the specialist literature.

333
Additional Terms in the Hamiltonian

Given an approximation to the ground state energy of the BO Hamiltonian by some
method, one needs to introduce the smaller field and spin dependent terms in
the Hamiltonian that give rise to the interactions one actually probes by EPR
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spectroscopy. These terms can be derived through relativistic quantum chemistry,
which is outside the scope of this chapter. Among the many terms that arise, we will
mainly need the following interactions:

a) The spin—orbit coupling. Unlike found in many textbooks, this term in the
Hamiltonian is of a two electron nature and reads within the Breit Pauli

approximation:
- ~ (1 A (2
Hsoc = H(sc))c"‘Hé(;c (3.16)

H(Sgc _ Z I:Lilel-SOC _ Z Alel soc _ —Z Z ZAYIA iLis, (3.17)

i i

F(2) rr(2) £(2) 52el-S0C _
Hsoc:Hsso"‘Hsoo:ZZgU ery j(8i+28)  (3.18)

ioj/i g/

Here, a = ¢! in atomic units is the fine structure constant (~1/137), t;, p;, ands§; are
the position, momentum, and spin operators, respectively, of the ith electron, and
LA = (f; Ra) x P, is the angular momentum of the ith electron relative to nucleus A.
The vector tj4 =1; R, of magnitude r;, is the position of the ith electron relative to
atom A. Likewise, thevectort; =t; t;of magnituder;isthe positionofthe ithelectron
relative to electron j and IU = (& 1) x p; is its angular momentum relative to this
electron. The one electron term is familiar from many phenomenological treatments,
for example, in atomic spectroscopy and ligand field theory. The two electron term has
contributions from the spin same orbit (SSO) and spin other orbit (SOO) terms,
which are both important for a quantitatively correct treatment of SOC. They
essentially provide a screening of the one electron term in much the same way as
the nuclear electron attraction and electron electron repulsion contributions coun
teracteach other inthe Born Oppenheimer Hamiltonian. Since the full SOC operator
isdifficulttohandleinlarge scalemolecularapplications, itis desirable toapproximate
itasaccurately as possible. This is possible through the accurate spin orbit mean field
approximation (SOMF) developed by Hess et al. Without going into the details of the
derivation, we merely state the form of this operator:

M= 3T EOME s i) (3.19)

With the matrix elements of the kth component of the SOMF operator given by

]-
(025 ) = (0,

+ Z Pyy |:<(pp(pv g
nT

o))

S 5S aS

°lo.0.)

3 3
O‘(P%(Pr) E((PH(P" O|(P1:(pv> i((p'[(Pv

(3.20)
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and

~1el-SO o? .
() = > SN Zar sk (3.21)
A

i

so o’
g () = 71;';;”53 (3.22)
Here P is the total charge density matrix calculated by some theoretical method.
Essentially like the HF approximation gives 99% of the total molecular energy, the
SOMEF operator covers around 99% of the two electron SOC operator. It will be
exclusively used below in order to approximate the SOC terms that will arise in the
equations for the SH parameters.
The direct magnetic dipolar spin—spin interaction. This interaction is described
by a genuine two electron operator of the form

22 Q. ot ) (ot
fr = BC z<_ 3w> (.23

) s
i/j

Tij ij

where the free electron g value g. =2.002319. .. appears.
The hyperfine coupling. This term describes the well known dipolar interaction
between the electron and the nuclear spins:

~(A) ~(A)

. a A si1 (sitia) (I 1i4)

Hg = EgeBN Zgl(\l ) Z ( 3 3 5 (3.24)
~ k

i iA iA

Here By is the nuclear magneton, gl(\IA) is the g value of the A’th nucleus, and i
is the spin operator for the nuclear spin of the A’th nucleus. While the isotropic
Fermi contact term is frequently introduced as a separate operator, it arises
naturally as a boundary term in the partial integration of the singular operator in
Equation 3.24.

The nuclear-orbit interaction. The interaction of the nuclear spin with the
orbital angular momentum of the electrons leads to the following term in the
Hamiltonian:

(4)

- a 141
Hy = if)N Zgr(\IA) Z 3 (3.25)
A

i iA

The quadrupole coupling. The quadrupole coupling describes the interaction of
the electric field gradient (EFG) at a given nucleus with the quadrupole moment
of that nucleus (only present for nuclei with spin I > 1/2). The electronic quantity
of interest is the field gradient operator. The quadrupole interaction may be
written as an operator of the following form:

Ho =Y oWi?E ()i (3.26)
Al
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where Q) is the quadrupole moment of the A’th nucleus, ¢ is the elementary
charge, and the field gradient operator is given by

2
~(4) . _riAauv 3riA;uriA;v
="
Tia

(3.27)

f) The electronic Zeeman interaction. The interaction of the electrons with a static
external magnetic field is described by

~ o R
Hyp = EZ B(l; + gesi) (3.28)

From the fully relativistic treatment, there arises a “kinetic energy correction”
(relativistic mass correction) to the spin Zeeman energy that is given by

3

IS o

Ha© = zge 3 Vi, (3.29)
i

334
Linear Response Theory

The equations given in the above sections are important from a conceptual point of
view as they show most clearly the basic physics that is involved in SH parameters.
However, as a basis of actual calculations, they are unfortunately much less useful
owing to the presence of the second order terms. The evaluation of these terms
would require an infinite sum over excited many electron states. In practice, at most
a few dozen many electron states can be calculated. Although quite useful results
have been obtained with this approach, the convergence of the perturbation sum is
uncertain and can, in the general case, hardly be guaranteed. In the case of DFT, the
excited states cannot be obtained explicitly since the Hohenberg Kohn theorems
apply only to the electronic ground state. Hence, it is important to look for an
alternative definition of the various SH parameters. An approach of substantial
generality and elegance is provided by the so called linear response theory (LRT). In
our view, LRT is just one realization of a family of methods that are all formulated in
a similar spirit. If time does not explicitly occur in the equations (which is not
necessary for the formulation of EPR and NMR parameters), these methods can
also be called “analytic derivative approaches.” In the framework of HF and DFT
methods, they are known as “coupled perturbed self consistent field” (CP SCF)
methods and “double perturbation theory” (DPT), respectively. All these acronyms
stand for computational methods that provide identical results and it is a matter of
taste which framework one prefers. These methods have developed to high
sophistication in quantum chemistry and have been proven to be extremely useful
in many contexts, including geometry optimization and frequency calculations
(geometric derivatives), as well as in the precise prediction of many molecular
properties. In fact, the LRT approaches can be shown to implicitly involve an
untruncated sum over excited states of the system that are (implicitly) described at
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the same level of sophistication as the ground state. The key quantities of interest in
LRT are the derivatives of the (approximate) total ground state energy with respect
to external perturbation parameters A, %, ..., where A and » may denote compo
nents of an external field or a nuclear magnetic moment of an electronic magnetic
moment. Formally, we could take the derivative of the perturbation sum and then
make the connection to the response formalism by it with the appropriate derivative
of the approximate total energy calculated with the theoretical method of choice.
Since all SH parameters are bilinear in external perturbations, the desired quantity
is the second partial derivative of the total energy.

In order to appreciate the general concepts that are involved, the linear response
equations for a self consistent field (SCF) ground state will be sketched below. This
description is appropriate if the state of interest is well described by a HF or DFT
single determinant. The ground state energy is written here as

E= Vit 3ot %%;(ii[ﬁ) cur(ijlf) + cor Exclo] (3.30)

The parameters cyp and cpr are scaling parameters for the HF exchange energy

and the XC energy, respectively. Thus, HF theory corresponds to cyr = 1; cpr = 0,

“pure” DFT corresponds to cyr = 0; ¢cpr = 1, while hybrid DFT methods choose

0 < cyr < 1. The energy has been written here in terms of the occupied orbitals
P;(x). They are determined self consistently from the SCF (HF or KS) equations:

{ft—l— J o(x') dx' cyr Zkii-Q—CDF 665;(2:)5@]}%@) = g, (x) (3.31)

x x|

For illustrating the concepts, it is sufficient to consider the case where the basis
functions are chosen to be independent of the external perturbations. To include such
dependence (as is necessary, for example, for geometric or magnetic field perturba
tions) is straightforward, but would lead to more lengthy equations that are not of
interest for the purpose of this chapter. Since the MO coefficients ¢ are determined in
a variational procedure, one has

aE acm‘ _
aCW' oA -

0 (3.32)

And, therefore, the first derivative of the energy with respect to a perturbation A is
OE -
|, = 2 Pladklo, (333)

v

where

an

(0ulhloy), = <<pu Oh <pv> (3.34)

if \ is a one electron perturbation and if the basis functions are independent of A.



74

3 Calculation of Magnetic Tensors and EPR Spectra for Free Radicals in Different Environments

Through an additional differentiation, the second partial derivative becomes

O’E
OAO%

=" Pul@ylhlo,), + Z Puv (@,1hlp, ), (3.35)

A Oxn O uv

This important equation contains two contributions: the first term is referred to as
a first order contribution since it depends only on the ground state density. The
second term is a second order contribution since it requires the knowledge of the first
derivative of the density matrix with respect to an external perturbation and the first
derivative of the Hamiltonian. These two terms substitute the two first and second
order terms in the perturbation sum discussed above. It remains to be shown how the
perturbed density matrix can be calculated.

A simple approach will be followed for the calculation of the perturbed density

matrix. To this end, the perturbed orbitals 14) = |i™) are calculated in terms of the
zeroth order orbitals w ] )). Differentiation of the SCF equations yields
{13(0) 850)}‘i(x)> + {F(k) EEM}“(% -0 (3.36)

The perturbed orbitals [i*)) are expanded as
W) =3 Ui1a®) (3.37)

(here and below, the labels i, j, k, and I refer to occupied orbitals and a, b, ¢, and d to
unoccupied ones). The unitary matrix U has only occupied/virtual blocks in the case
that the basis functions do not depend on the perturbation. In order to determine the
unique elements of U, one uses the perturbed SCF equations:

S U OE 1) + (@O [FY e]i) = 0 (3.38)
b

— UM (@ )4 0 EM 0y _ g 3.39
ar

<
However, F & depends on the perturbed orbitals. Therefore, ones needs to take the
derivative of the SCF operator carefully.

NSO
F =h +J x/ HFZUZJJ K+Ubj

&’ EXC[ } M (¢ /
oo [sgmsoteye” S

~ (L x5bj ~jb x 2 bj ~jb

+oor jfxc[@]d” (x)dx
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+ZUb, 7 ko [Slolul?” 000" 0]

U curk® +cor [felebnl®” i x| (3.40)

Here, the “XC kernel” fi[o] has been defined as the second functional derivative
with respect to ¢ and it has been tacitly assumed that for all functionals in use, this
yields a factor 8(x x’) that reduces the double integral to a single integral. Taken
together, this results in the first order equations:

u® (& g<°>) +(a© " }10))

ar 1

+Z “[(bjlai) cse(balj) + (ailfljb)] (3.41)

+ Ub [(]b|m) cur(jalbi) + (ailfic[jb)) = 0

At this point it is useful to distinguish two different types of perturbatlon First, the
“electric field like perturbations” yield purely real (a(® \h |1 )} and, consequently,
purely real and symmetric U matrices. In this case, one has

ABOU® = y® (3.42)
with

Agfjb = 8i0a (el &) + 2(jblia) + 2cor(ailfic|jb) cur{ (balji) + (jalbi)}
(3.43)

[i©) (3.44)

Note that the A matrix (the “electric Hessian”) is independent of the nature of the
perturbation and that the U and V matrices have been written as vectors with a
compound index (ai).

Second the “magnetic field like perturbations” yield purely Hermitian imaginary
(al® |h [i®)) and, consequently, purely imaginary and Hermitian U matrices. This
leads to

AMy = v® (3.45)
with
A%Z:égéah(sg") el”) + cup{(iblja) (balij)} (3.46)

Thus, the magnetic field like perturbations yield much easier response (or
“coupled perturbed”) equations in which the contributions from any local potential
vanish. In fact, in the absence of HF exchange, the A matrix becomes diagonal and the
linear equation system is trivially solved. This then leads to a “sum over orbital” like
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equation for the second derivative, which resembles in some way a “sum over states”
equation. One should, however, carefully distinguish the sum over states picture
from linear response or analytic derivative techniques since they have a very different
origin. For the electric or magnetic field like perturbations in the presence of HF
exchange, one thus has to solve a linear equation system of the size N (occupied) x N
(virtual) that may amount to dimensions of several hundred thousand coefficients in
large scale applications. However, there are efficient iterative techniques to solve
such large equation systems without ever explicitly constructing the full A matrix.
Once the perturbed orbitals have been determined, the perturbed density is found
from

P Z Uy ey + Uyle el (3.47)

3.35
Linear Response Equations for Spin Hamiltonian Parameters

Using the results of the preceding sections, it is now possible to provide explicit
expressions for all SH parameters.

a) Zero-field splitting. The ZFS is the least well developed SH parameter in EPR
spectroscopy. It is also the most complicated one since the SS contribution is a
genuine two electron property. For this contribution, McWeeny and Mizuno
have shown [11]

2 2
SS g o _
Dz(cl )= 1_665 7S 1 ZZ{PEL(V ﬁpgrﬁ pg%[SPa ﬁ}<w"r125{3"12‘kr12-,1 6klrf2}|%'f>
25 V4F 4=
(3.48)

The integrals appearing in Equation 3.48 look complicated at first glance but are
readily calculated and owing to the factorization of the two particle spin density
matrix, Equation 3.48 can be implemented for the large scale application without
creating storage of computation time bottlenecks.

It is very interesting to look at the physical content of Equation 3.48 in a little
more detail. From the form of the operator and the appearance of the spin density
matrix, it is obvious that it describes the (traceless) direct electron electron
magnetic dipole dipole interaction between unpaired electrons. Such a term is
widely used in modeling the EPR spectra of interacting electron spins within the
“point dipole” approximation. Equation 3.48 consists of two parts. In analogy to
HF theory, the first part should be recognized as a “Coulomb” contribution, while
the second one as an “exchange” contribution. Thus, even the direct dipolar
spin spin interaction contains an exchange contribution that is of fundamentally
different origin than that of the “genuine” exchange interaction used in the
modeling of interacting spins. This point does not appear to be widely recognized.
Nevertheless, assuming an exponential decay of the basis functions, it becomes
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evident that the exchange term is expected to fall off much more quickly with
interspin distance than the Coulomb contribution. The “distributed point dipole”
like equations can be recovered from Equation 3.48 by (a) neglecting the exchange
contribution, (b) assuming that the spin density matrix is diagonal in the chosen
basis, and (c) “compressing” the basis functions to & functions centered at the
atomic positions. One then obtains

2 2
ge o o—B po—P p—5 2
Dy~ Z—1%7i— E P, PPy PR [BRARRABs OuR 3.49
kl 16 S(ZS 1) e~ A B AB[ AB;kINAB;l kl AB] ( )

where A and B sum over nuclei and Piff’ =2 e AP P is the “gross” spin
population on atom A. Equation 3.49 describes the interaction of point dipoles
centered at atomic positions where each atom pair is weighted by the product of
the spin populations that reside on this atom. Note that this gross atomic spin
population differs from the usual numbers that are predicted by Mulliken or
Lowdin analysis and that are part of the output of many electronic structure
programs since the latter contain terms that depend on the basis function
overlap while Pi_ﬁ does not. However, since the approximation leading to the
point dipole formula (Equation 3.49) has been rather crude, large additional
errors may not be expected if Mulliken or Léwdin spin populations are inserted
into Equation 3.49. If the distance between two spin carrying fragments is large
enough, it may even be possible to reduce Equation 3.49 to a single term where
Rp must then refer to an “effective” distance. We propose to calculate it as
follows: First the center of gravity of the spin density of fragments F1 and F2 are
defined as

R = 3" Py PR, (3.50)
A€F1

R = 3" Py PR, (3.51)
BeF2

And then replace the vector Ryp in Equation 3.49 by Ry, = RV R(F2), The
barred quantity Pj_ﬁ refers to a normalized spin population such that the sum
Y oac FlPifﬁ = 1. This appears to be a slightly more rigorous approach than the
commonly used approach in which the intercenter distance is fixed by subjective
plausible choices that may, however, differ between different workers. Note also
thatthe full g tensor does not enter the above equations. We have already criticized
the use of the gtensor in the point dipole approximations for the hyperfine
couplings [12] and a similar situation also applies to the case of the dipolar ZFS
tensor.

The SOC contribution to the ZFS involves the response of the orbitals to the
SOC. The formalism to achieve an analytic derivative formulation of this part of
the SH has been worked out recently by the present author and is somewhat
more involved than the analogous methodology for the g tensor [13]. Without
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going into much detail, the three contributions to the D tensor may be rewritten

as follows:
0P
D)) = 4522 W)~ (3.52)
S
(-1)
(+1) 1 soc 0Py
D R — 3.53
g 2(s+1)(2s+1)u2<“| M) s (3.53)
(+1)
(-1) 1 50y 9P
D e — h 3.54

The components Sl(m) (m=0, £1) are the vector operator components of the
total spin. The spin densities P are the response densities with respect toa SOC
perturbation. They are calculated from a nonstandard set of coupled perturbed
equations analogous to the ones described above for the g tensor as

P oo
as(o) - Z “u‘u W Cva Z uﬁtﬁ pu va (355)
1 la8a ipag
aPW+ b Mo 9
Z aﬁtu m l Z uulﬁ ChiaCvi (3.56)
iqag ipaa
op}y" i
as(+1) = Z ‘l[ﬂu CE“C\’I + Z aqip pu \(fu (357)
1 iqap igaa

With the U coefficients calculated from

m=20:

(e &)U +our Y Uy (buialagja) (aial@aba)} = (aalnfOic)

) o
(3.58)

0) (0))17k(0) k(0) ; : . _ SOC|:
(efy &) Uayy, +cre D Ui {(bpilanip)  Gilanbp)} = (aplhilip)

Jnbp
(3.59)
m= +1
0
(8(02) Slﬁ;) aulﬁ Z Ubﬁ/ 51[5“10\]0. CHF Z UbI*J (]ﬁlima a)
Jaba budﬁ

= (aalB%lip) (3.60)
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0
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CHF Z Ubﬁ] azu\u[»,bﬁ)
bpja
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0)y 71k
(e &) Ui+ ; Uy (buialawp)
. k(=1) SOC1: (3.62)
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0) . (0)y 77k _
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Jaba o

(3.63)

This formalism is the exact analogue of the ones used to compute the g tensor
and the SOC contribution to the HFC tensor and directly follows from the
general equations given above. It is available in the ORCA package and has been
shown to correct some deficiencies of earlier formulation of the ZFS tensor in
the DFT framework. Since the latter procedures are more commonly met in the
literature, they are briefly described. Pederson and Khanna have suggested the
equation [14]

(s00) _ ALl VA el )
Dy 452% SE 81[:’)
1 Q) Cwal oS )
452. eg e}

(W 1O [ ) (B [P0
@Z 0

g &

0|, SOC |y 0| SOC |qyer
SZZ \P1| k |wa><wa| 1 mjl> (3.64)

o € €
which is valid in the case of DFT functionals that do not contain the HF
exchange (cyp=0). It can be shown to be a special case of the more general
treatment outlined above if the prefactors in front of the individual terms in
Equation 3.64 are all set to 1/452. We had previously implemented this equation
and compared it to the following equation that had also been motivated from the
general equations:
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(s00) _ (Wi BEOC [, ) (W, [1FOC ;)
Dy - 4522 SE, 8[5
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In this equation, there enters a set of “quasi restricted” orbitals (QROs), which
are explained in detail in Ref. [13]. It may be appreciated that both formulations
involve the terms that are already apparent in the general treatment. Namely, the
first two terms correspond to the contributions from the spin conserving excita
tions, while the third and fourth term correspond to the contributions from the
excited states of lower and higher multiplicity than the ground state, respectively.
However, this QRO formalism is now superseded by the more general develop
ment in Equations 3.52 3.54.

g Tensor. The g tensor is well studied by now with many implementations and
applications available. One obtains the following expressions for the four con
tributions:

g = g:0u + Ag™MCSdy + AggC + Agoz/ soc (3.66)
gt = 3 ZP“ PloulTloy) (3.67)
Agi© = ZSZ Py B<(Pu ZE(M)(IAT TokT1) <PV> (3.68)

A
6P a—PB)
Ag(0Z/50C) _ v 5SOME .
S =5 S o8, (912" |o,) (3.69)

Here T is the kinetic energy operator. It is noted that the g tensor expressions
make, through the operators r in Equation 3.68 and I (implicit in Equation 3.69),
reference to the global origin of the coordinate system. This would seem to imply
the unphysical and unfortunate situation that the results of the computations
depend on the choice of origin. This is indeed so in g tensor calculations and
would only disappear in the basis set limit that is, in practice, never reached. The
way around this artifact is to employ magnetic field dependent basis functions
(gauge including atomic orbitals (GIAOs)). The GIAOs are an elegant way to solve
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the gauge problem but require some additional computational effort. They have
been very successful in the prediction of NMR chemical shifts where it is essential
to remove the gauge dependence entirely. The alternative “independent gauge for
localized orbitals” (IGLO) that is also popular in chemical shift calculations is not
successful in EPR spectroscopy since the separate localization of spin up and spin
down orbitals introduces artifacts into the results. Fortunately, the gauge problem
in EPR spectroscopy is not large and one obtains meaningful results even if slight
origin dependence persists. In order to make results comparable, a reasonable
choice of origin is still required and is conveniently provided by the center of
electronic charge. The error made by this approximation is much smaller than the
other remaining errors due to the functional, the basis set, and the molecular
model or the treatment of environmental effects.

Hyperfine coupling. One finds for the three parts of the HFC the following

expressions:

87t Py
= du—5=0" PR 3.70
43550 (Ra) (3.70)
Ayd PA _
Al(cl )= 25 PSVB<(Pu|rA5(ri6kl 3rA:er‘K;l)|q)v> (371)
: Pa—0P%P
A}(dA.sO) _ A AL(LA) <(pH’ZlSOMF’(pV> (3.72)
SAv el
uv k

with P4 = gegnPe.Py. Thus, the first two terms are straightforward expectation
values, while the SOC contribution is a response property. In this case, one has to
solve a set of coupled perturbed equations with the nucleus orbit interaction
taken as the perturbing operator. Since the solution of the coupled perturbed
equations becomes time consuming for larger molecules, this should only be
done for a few selected heavier nuclei. For light nuclei, the SOC correction is
usually negligible.
Electric field gradient. The EFG tensor is straightforwardly calculated from

uv ZPM O,y (r3d w 3rauray) ) (3.73)

Once available, the EFG tensor can be diagonalized. The numerically largest
element Vimax (in atomic units) defines the value of g that is in turn used to
calculate the quadrupole splitting parameter as €qQ = 235.28 VjxQ, where Q is
the quadrupole moment of the nucleus in barn. Transformed to its eigensystem,
the quadrupole splitting enters the SH in the following form:

g0 [ @m0 0\
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The asymmetry parameter 1 is defined as

_ ‘Vmid Vmin|

v (3.75)

It is to be noted that this is the only term that involves the total electron density
rather than the spin density. The field gradient tensor is consequently of a nature
quite different from the hyperfine coupling that depends on the same dipolar
interaction integrals, but in the case of the HFC they are contracted with the spin
density instead of the electron density.

It is important to realize that the equations of this section are not only valid in
the case of a SCF ground state description but are also of much wider applicability.
In the case of correlated ab initio methods, the equations to be solved in order to
determine the effective density and its response merely become much more
complicated than the relatively simple CP SCF equations sketched above. The
general line of thought is, however, identical and merely the “mechanics” of the
calculation become more involved.

3.3.6
Computational Aspects: Functionals and Basis Sets

The introduction of methods rooted into the density functional theory represents a
turning point for the calculations of spin dependent properties [15]. Before DFT, QM
calculations of magnetic tensors were either prohibitively expensive for medium
sized radicals [16] or not sufficiently reliable for predictive and interpretative
purposes. Today, the last generation functionals coupled to purposely tailored basis
sets allow to compute magnetic tensors in remarkable agreement with their
experimental counterparts [17, 18]: computed data can take into proper account
both average environmental effects and short time dynamical contributions, for
example, vibrational averaging from intramolecular vibrations and/or solvent libra
tions [19 21], therefore providing a set of tailored parameters that can be confidently
used for further calculations. On the basis of recent studies, the combination of the
new basis set (NO7D) [22 24] with PBEO [25] and B3LYP [26] functionals seems to be
the best choice for the calculation of several properties: geometrical parameters,
dipole moments, and magnetic properties (hyperfine coupling constants and
g tensors). The NO7D is a new polarized split valence basis set for the second and
third row atoms, which add a reduced number of polarization and diffuse functions
to the 631G set, leading to an optimum compromise between reliability and
computer time.

Hydrogen atoms (Table 3.1) require some specific considerations in view of the
lack of inner shells and the overwhelming role of small hec’s in an unbiased statistics.
In general, all DFT methods yield Ay values close to the experimental ones, and the
best results are consistently delivered by the NO7D basis set.

The performances of different basis sets for a large set of radicals containing
second and third row atoms [22 24] are compared in Figure 3.1. The NO7D results
for all atoms are much better than those delivered by other (even significantly larger)
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Table 3.1 Data analysis for hydrogen nuclei obtained with B3LYP functional.

6-31G(d) EPR-II EPR-III NO7D Experimental
Hydrogen: N 29
MAD 2.1 1.8 1.9 1.8
Max Abs. Err. 11.3 6.0 6.0 9.0
Average E% 25.3% 25.4% 25.4% 25.9%
Max E% 113.1% 108.4% 104.6% 113.9%
R, 0.9946 0.9938 0.9934 0.9943
Intercept 1.4936 0.8670 0.5675 1.0527
Slope 0.9097 0.9666 0.9691 0.9051
Max 121.5 128.2 128.7 120.0 132.7
Min 0.1 0.1 0.1 0.1 1.8

MAD (mean absolute deviation in Gauss) = Z|Acaic  Aexpl/N; E% (percenterror) = [Acaic  Aspl/Aexp-
The structures of the selected radicals are in Ref. [23].

basis sets both in terms of MADs and closeness of the slope of the linear regression to
the theoretical value of 1.0.

The NO7D basis set has also been assessed by comparison with EPR III basis set for
the g tensors. The comparison with experimental results shown in Table 3.2 points

12,0

107 10,8
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8.0 6,6 6,5 6,6
5,0
4,0 4.0 3,5 3,5 07
24 ;
15 1.9 15 1,6
0,0
b3lyp/6-31G* b3lyp/EPR-III b3lyp/TVPZ b3lyp/cc-pVQ(T)Z b3lyp/NO7D
=mC BN =0 mF
45,0 40,4
80,0 2! 24,6
15,0 10,3
’ 9,5 72
4,0 2,8 3,8
0,0
b3lyp/TVPZ b3lyp/cc-pVQ(T)Z b3lyp/NO7D

mSigP mS

Figure3.1 MAD (mean absolute deviationin Gauss) X|Acaic  Aexpl/N total nucteiy for the second
and third row nuclei. The structures of the selected radicals and all statistical data are in Ref. [23].
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Table 3.2 Data analysis for structures with second row atoms.

PBEO? B3LYP? PBEO/NO7D B3LYP/NO7D Experimental

60 Molecules®

MAD 0.0006 0.0006 0.0005 0.0005

Max Abs. Err. 0.0050 0.0050 0.0044 0.0048

R, 0.7303 0.7447 0.7403 0.7505

Intercept 0.1046 0.0440 0.2439 0.1470

Slope 0.9478 0.9781 0.8782 0.9266

Max 2.0091 2.0091 2.0085 2.0089 2.0093

Min 1.9993 1.9993 1.9995 1.9994 2.0000

MAD (mean absolute deviation in Gauss) =X |gcaic  Sexpl/N|-
a) Single-point EPR-III calculations on geometries optimized the PBEO/NO7D level.
b) The selected radicals are in Ref. [24].

out the accuracy of the computational approach that seems very promising for
quantitative studies of the large systems.

34
Stereoelectronic, Environmental, and Dynamical Effects

In the following, we will make explicit reference only to organic free radicals so that
only one unpaired electron will be considered and relativistic effects can be neglected.
As a consequence, we will consider only hyperfine and gyromagnetic tensors without
spin orbit contributions.

3.4.1
Structures and Magnetic Parameters

The magnetic properties of a radical are tuned by small modifications of its geometry.
Indeed, small geometry changes can be interpreted in terms of shape of the SOMO
(single occupied molecular orbital), the orbital that directly affects the hyperfine
coupling constants. For example, the deviation from planarity is the most influential
geometric effect for mlike radicals (e.g., the methyl radical); the bond distance
between specific pair of atoms in the radical is another one. In fact, the variation of the
bond distance contributing to the 7 system can modify the shape of the SOMO and
thus the magnetic properties. In the same way, in a o radical (vinyl), the distance
between two atoms modifies the localization of the SOMO.

As an illustration of the effect of the geometry changes on the EPR parameters (A
and g tensors), we have selected the class of nitroxide derivatives. In this case, there
are two critical geometrical parameters of the molecular backbone, namely, the
improper dihedral angle corresponding to the out of plane motion of the NO moiety
and the nitroxide bond length. In order to gain further insight into the dependence of
different molecular properties on these parameters, we have performed a molecular
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Figure 3.2 Structures of dtbn, proxyl, and tempo radicals.

dynamics run for proxyl (2in Figure 3.2) in the gas phase and computed the magnetic
parameters for a significant number of snapshots [15].

As shown in Figure 3.3, the isotropic gtensor shift (Agi,) is almost linearly
dependent on the NO bond length, whereas it does not display any regular trend with
respect to out of plane motion.

In summary, a good geometry is necessary to evaluate in the right way different
effects, for example, the direct and spin polarization contributions to the hyperfine
coupling constant. In this connection, the performance of the N07D basis set coupled
with PBEO and B3LYP functionals is comparable to those of much larger basis sets
with increased computational efficiency.

While structural parameters are generally satisfactory, irrespective of the presence
of diffuse functions on O, F, and Cl atoms, dipole moments are significantly
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Figure 3.3 Computed hyperfine coupling constants (Gauss) and isotropic g tensor (ppm) shift
along Car Parrinello molecular dynamic trajectory of proxyl in the gas phase.
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Figure 3.4 Geometrical parameters for vinyl and phenyl radicals (bond in Angstrom and angles in
degrees) calculated at B3LYP/NO7D and CCSD(T) theory levels.

improved by the addition of diffuse polarization functions, reaching quantitative
agreement with experiment. Thus, the range of application of the B3LYP/NO7D
model is significantly enlarged by addition of diffuse polarization functions on
electronegative atoms. As an illustration, we report in Figure 3.4 some significant
parameters of vinyl and phenyl radicals.

Itis quite apparent that B3LYP/NO7D results are in remarkable agreement with the
highly accurate computational studies at CCSD(T) [27, 28] and multireference [25]
levels with extended basis sets. For C C bond lengths, maximum deviations do not
exceed 0.01 A, and in many cases are as small as 0.002 A. For C  H bond lengths, even
better agreement has been found with a maximum discrepancy of 0.05 A. The same
stands for angles that are predicted by B3LYP/NO7D model with accuracy of 2°. These
findings are particularly encouraging having in mind larger systems for which
expensive coupled cluster studies are still unfeasible.

34.2
Environmental Effects

The most promising general approach to the problem of environmental (e.g., solvent)
effects can be based onasystem bath decomposition. The system includes the part of
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the solute where the essential of the process to be investigated is localized together
with, possibly, the few solvent molecules strongly (and specifically) interacting with it.
This part is treated at the electronic level of resolution and is immersed in a
polarizable continuum, mimicking the macroscopic properties of the solvent. The
solution process can then be dissected into the creation of a cavity in the solute
(spending energy E_.,) and the successive switching on of dispersion repulsion (with
energy Egisrep) and electrostatic (with energy E.) interactions with surrounding
solvent molecules.

The so called polarizable continuum model (PCM) [29] offers a unified and sound
framework for the evaluation of all these contributions both for isotropic and
anisotropic solutions. In the PCM, the solute molecule (possibly supplemented by
some strongly bound solvent molecules to include short range effects like hydrogen
bonds) is embedded in a cavity formed by the envelope of spheres centered on the
solute atoms. The procedures to assign the atomic radii [30] and to form the cavity
have been described in detail together with effective classical approaches for
evaluating E.., and Egis rep [31]. Here we recall that the cavity surface is finely
subdivided into small tiles (tesserae) and that the solvent reaction field determining
the electrostatic contribution is described in terms of apparent point charges
appearing in tesserae and self consistently adjusted with the solute electron densi
ty [32]. The solvation charges () depend, in turn, on the electrostatic potential (V) on
tesserae through a geometrical matrix Q (= QV) related to the position and size of
the surface tesserae, so that the free energy in solution G can be written:

1.
G = Efo] + Van + 7 VIQV (3.76)

where E[g] is the free solute energy, but with the electron density polarized by the
solvent, and Vyy is the repulsion between the solute nuclei. The core of the model is
then the definition of the Q matrix, which in the most recent implementations of
PCM depends only on the electrostatic potentials, takes into the proper account the
part of the solute electron density outside the molecular cavity, and allows the
treatment of conventional, isotropic solutions, ionic strengths, and anisotropic media
like liquid crystals. Furthermore, the analytical first and second derivatives with
respect to geometrical, electric, and magnetic parameters have been coded, thus
giving access to proper evaluation of structural, thermodynamic, kinetic, and
spectroscopic solvent shifts.

Solvent can affect the electronic structure of the solute and, hence, its magnetic
properties either directly (e.g., favoring more polar resonance forms) or indirectly
through geometry changes. Furthermore, it can influence the dynamical behavior of
the molecule: for example, viscous and/or oriented solvents (such as liquid crystals)
can strongly dump the rotational and vibrational motions of the radical. Static aspects
will be treated in the following, whereas the last one will be tackled in the section
devoted to all the dynamical effects.

As an example, we illustrate the role of solvent effects on the EPR parameters of
2,2,6,6 tetramethylpiperidine N oxyl tempo (3 in Figure 3.2). The nitrogen isotropic
hyperfine coupling constant (Ay) is tuned by the polarity of the medium in which the
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Figure 3.5 Main resonance structures of nitroxide radicals.

nitroxide is embedded, as well as by the formation of specific hydrogen bonds to the
oxygen radical center. Both factors contribute to a selective stabilization of the charge
separated resonance form of the NO functional group (Figure 3.5) with a consequent
increase of Ay. Indeed, form b entails a larger spin density on nitrogen, which has a
smaller spin orbit coupling constant than oxygen.

The continuum solvent models (PCM) reproduce satisfactorily solvent effects on
the Ay parameter only for aprotic solvents (bulk effects) [33], whereas there is a
noticeable underestimation of solvent shifts for protic solvents (methanol and water),
as showed in Figure 3.6. In these media, specific solute solventinteractions also have
to be taken into account [34].

In other words, since for solvents with H bonding ability (methanol and water) the
Ay of the nitroxide radical is shifted to higher values due to the influence of one or
more hydrogen bonds between the solute and the solvent, it becomes necessary to
build a model in which nonspecific effects are described in terms of continuum
polarizable medium with a dielectric constant typical of the protic solvent under
study, whereas specific effects are taken into account through an explicit hydrogen
bonded complex between radical and some solvent molecules. Figure 3.7 reports the
Ay values for the complexes formed by tempo with methanol, and water measured
experimentally at room temperature, and computed in the gas phase and in solution.

181 —e— AN calc (PCM)
—X—AN calc (PCM+HB)
17 A —O— experimental 9
15
14 1
12 T T T T T T T T T T T 1

1 2 5 8 9 21 25 33 35 37 47 78
Dielectric constant
Figure 3.6 Experimental and calculated Ay values of tempo choline [4 (N,N dimethyl N (2

hydroxyethyl))ammonium 2,2,6,6 tetramethylpiperidine 1 oxyl chloride] as a function of the solvent
dielectric constant.
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Figure 3.7 Computed and corresponding experimental Ay values (in Gauss) for the
tempo alcohol complexes in gas and in condensed phase. See text for details.

It is quite apparent that the values computed in solution fit well the experimental
data.

From a more general perspective, the example at hand highlights a situation when
PCM alone is unable to fully account for the solvent effects on spectroscopic
properties (e.g., the Ay values in solution computed with PCM are 15.75 and
15.80 Gauss versus experimental values of 16.15 and 16.91 Gauss for methanol
and water, respectively): this is typically related to the presence of strong, specific H
bond interactions. As shown in Figure 3.7, the inclusion of specific hydrogen bond
effects results in a further increase of the computed Ay values, with final results close
to their experimental counterparts (16.15 and 16.51 Gauss).

The accuracy of the cluster/PCM approach is so high that the computed EPR
properties provide valuable indirect information on the nature of the H bond
network around the NO group. In the case of water, computed results in good
agreement with experiment are obtained only when two explicit solvent molecules H
bonded to the nitroxyl moiety are introduced; in contrast, a single explicit solvent
molecule is required for alcohols.

The same approach is able to reproduce the lowering of the isotropic g value
observed experimentally when going from nonprotic to protic solvents in terms of the
reduced spin density on the oxygen atom: as a matter of fact, formation of
intermolecular hydrogen bonds leads to a transfer of spin density from the oxygen
to the nitrogen atom.

3.43
Short-Time Dynamical Effects

In the framework of the Born Oppenheimer approximation, we can speak of a
potential energy surface (PES) and of a “property surface” (PS), which can be obtained
from quantum mechanical computations at different nuclear configurations. In this
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scheme, expectation values of observables (e.g., isotropic hcc’s) are obtained by
averaging the different properties on the nuclear wavefunctions. Semirigid mole
cules are well described in terms of a harmonic model, but a second order pertur
bative inclusion of principal anharmonicities provides much improved results at a
reasonable cost [35]. In perturbative model, the vibrational

1 1 1
E, =&+ Ziw; <ni + E) +ZZi&; (ni + i) (”j + i) (3.77)

where w are the harmonic wave numbers and € are the simple functions of third (Fyx)
and semidiagonal fourth (F;;) energy derivatives with respect to normal modes
Q [33]. Next, the fundamental vibrational frequencies (v;) and the zero point
vibrational energy (E,) are given by

1
A\ (.Ui+2§i+ EZj/iEij (378)

1 1 1
B =8+ 5% (wi+ 7 i +2j>i§§ij) (3.79)

At the same level, the vibrationally averaged value of a property Q is given by
<Q>n = Q. +ZA; <ni + %) (3.80)

where Q. is the value at the equilibrium geometry and

) Feo
A =P zj(af ‘g) (3.81)

w; (JJi(JJj

where a; and f3;; are the first and second derivatives of the property with respect to the
ith normal mode. The first term on the rhs of Equation 3.81 will be referred to in the
following as harmonic and the second one as anharmonic. Also, in this case, methods
rooted in the density functional theory perform well provided that numerical
problems are properly taken into account [36].

Here we just discuss vibrational averaging effects related to inversion at the radical
center of typical & (methyl) and o (vinyl) radicals.

The results shown in Figure 3.8 for vinyl radical point out the effect of harmonic
and anharmonic terms in Equation 3.81 on the final results. The harmonic
contribution is the most important (although anharmonic terms are not negligible)
except for H* and, especially, C®. As a matter of fact, for this latter atom, there is a
nearly exact compensation between harmonic contributions by in plane and out of
plane bendings, which have opposite signs. On the other hand, anharmonic terms
are particularly large for C* and H® since they are not negligible for in plane
bending at the radical center, whereas they vanish (due to symmetry) for out of
plane bendings.

The methyl radical has a planar equilibrium structure with a low frequency out of
plane motion. The behavior of hec’s as a function of the out of plane angle (0) is the
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Figure 3.8 Harmonic and anharmonic contributions to vinyl hyperfine coupling constants from
PBEO/NO7D computations are compared to experimental results.

following: Ac is always positive and increases with 6 due to the progressive
contribution of carbon s orbitals to the SOMO. The effect is similar for Ay, but
since Ay is negative for the planar structure (due to spin polarization), the absolute
value of Ay decreases up to 6 = 10° and then increases due to the direct contribution.
The ground vibrational function is peaked at the planar structure. Vibrational
averaging then changes the coupling constant toward values that would have been
obtained for pyramidal structures in a static description. The wavefunction of the
ground vibrational state being symmetrically spread around the planar reference
configuration introduces contributions of pyramidal configurations. The effect is
even more pronounced in the first excited vibrational state, whose wavefunction has a
node at the planar structure and is more delocalized than the fundamental one, thus
giving increased weight to pyramidal structures.

As a first approximation, the vibrationally averaged value of a property can be
written as

@=0u+(2) ©+3(52) @ (3.82)

For the planar reference structures, the linear term is absent for symmetry reasons
and the key role is played by mean square amplitudes, which, however, can be quite
large and badly described at the harmonic level. From a quantitative point of view,
vibrational averaging changes the equilibrium value of Ay by about 2 G (10%) and
that of Ac by about 10 G (30%): thus, quantitative (and even semiquantitative)
agreement with experiment cannot be obtained by static models, irrespective of the
quality of the electronic model.
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The low frequency motions of vinyl radical correspond to out of plane vibrations
(wagging and torsion) and in plane inversion at the radical center. The out of plane
motions have the same effect as the methyl inversion, albeit with a significantly
smaller strength. On the other hand, in plane inversion is characterized by a double
well potential with a significant barrier. Vibrational averaging now acts in an opposite
direction, bringing the coupling constants to values that would have been obtained
for less bent structures in a static description. The ground state vibrational wave
function is more localized inside the potential well, even under the barrier, than
outside. So itintroduces more contributions of “nearly linear” structures. Vibrational
effects, while still operative, are less apparent in this case since high energy barriers
imply high vibrational frequencies with the consequent negligible population of
excited vibrational states and smaller displacements around the equilibrium posi
tions. Unless Boltzmann averaging gives significant weight to states above the
barrier, this kind of vibration is effectively governed by a single well potential
unsymmetrically rising on the two sides of the reference configuration. Now 0Q/0s
and (s) do not vanish and usually have opposite signs, thus counterbalancing the
positive harmonic term. The resulting correction to €2 is small and can be treated by
perturbative methods. The other large amplitude motions that have a significant
effecton hec’s are internal rotations. However, in most cases, these can be treated by a
simple average of the hec’s of different substituents.

Large amplitude motions and solvent librations cannot be described by the
perturbative approach sketched above, but a classical treatment is usually sufficient.
Then, the computational strategy involves two independent steps: first, MD simula
tions are run for sampling with one or more trajectories the general features of the
solute solvent configurational space; then, observables are computed exploiting the
discrete/continuum approach for supramolecular clusters, made of the solute and its
closest solvent molecules, as averages over a suitable number of snapshots. It is
customary to carry out the same steps also for the molecule in the gas phase just to
have a comparison term for quantifying solvent effects. The a posteriori calculation of
spectroscopic properties, compared to other on the fly approaches, allows us to
exploit different electronic structure methods for the MD simulations and the
calculation of physical chemical properties. In this way, a more accurate treatment
for the more demanding molecular parameters, of both first (hyperfine coupling
constants) and second (electronic g tensor shifts) orders, could be achieved inde
pendent of structural sampling methods: first principles, semiempirical force fields,
as well as combined quantum mechanics/molecular mechanics approaches could be
all exploited to the same extent once the accuracy in reproducing reliable structures
and statistics is proven.

The extension of the discrete/continuum model described above to dynamical
treatment has been recently formulated and validated [37]. In the framework of
formally monoelectronic QM methods (e.g., Hartree Fock or Kohn Sham model),
if Eqmmm(Po, %) is the QM/MM (molecular mechanics) gas phase energy of the
explicit system expressed as a function of the nuclear coordinates, x, and the
unpolarized (no solvent effects) one electron density matrix, Py, then the solvation
free energy, AAqq (%), ata specific molecular configuration can be written as the sum of
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the internal energy plus the so called “mean field” (or potential of mean force)
contribution that accounts for the interactions with the environment (solvent) minus
the gas phase energy:

AAsol(x) = (EQM/MM(P7 x) —+ W(P, x)) EQM/MM(P07 X) (383)

where AAg(x) is the free energy of the system at a given molecular configuration and
W(P, x) is the mean field term. Note that Pis explicitly presentin the first two terms on
the rhs to remark that they are mutually polarized, that is, the mean field response is
always considered at equilibrium and the electronic charge distribution is deter

mined by a self consistent calculations. In particular, we have integrated the mean
field contributions as a modification of the ONIOM scheme for the isolated systems.
The mean field W is the potential experienced by the explicitly treated molecules in a
given configuration {x} due to the average interactions with the environment. A
number of discrete/continuum models have been proposed in the literature that
differ in the way W is approximated. Here, according to the Ben Naim’s definition of
the solvation process, we can conveniently assume that the mean field potential is
composed of conceptually simple terms: a long range electrostatic contribution, due
to the linear response of the polarizable dielectric continuum, and a short range
dispersion repulsion contribution, which accounts effectively for the interactions in
proximity to the cavity boundary, W= Wec + Waisprep- In the following, we
describe the essential features of the GLOB model, a sophisticated and integrated
method recently developed in our group that allows studying efficiently the solvent
effects on generic solute molecules along with a few explicit solvent molecules and
using different levels of theory, from computationally inexpensive, but less accurate,
MM methods to more realistic hybrid QM/MM or full QM methods.

According to the GLOB model, the explicit system (solute + solvent) is embedded
into a suitable cavity of a dielectric continuum possibly with a regular and smooth
shape, such as a sphere, an ellipsoid, or a spherocylinder. In combination with
molecular dynamics techniques, such a cavity could be kept fixed, corresponding to
NVT ensemble conditions, or allowed to change volume, according to NPT ensemble
simulations (see below). The long range electrostatic interactions between the
system and the dielectric continuum are modeled by means of the conductor like
polarizable continuum model (CPCM) [30b]. The continuum medium, which mimics
the response of liquid bulk, is completely specified by a few parameters, for example,
the dielectric permittivity (e,), and does depend on the nature of the solvent and the
physical conditions, such as density and temperature. To be specific, the reaction
field ®gy, that is, the electrostatic potential due to the induced polarization of the
dielectric, is described in terms of apparent surface charges (g) centered on small
tiles, called tesserae, which are the results of a fine subdivision of the cavity surface
into triangular area elements of about equal size, and computed by a self consistent
calculation with respect to the solute electronic density. The computation of g
requires the solution of a system of Ny linear equations, with Ny being the
number of tesserae:

D.q= @ (3.84)
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where q is the array of the “apparent surface charges,” ®; is the electrostatic
potential evaluated at the center of each tessera due only to the charge distribution
ofthe system, and D is a matrix that depends only on the surface topology and on the
dielectric constant.

Hence, for a given molecular configuration of the explicit system, x, q
are determined from Equation 3.84 and the corresponding free energy, Wi, is
given by

1
Welee = z«:I>+c1>—1<1> (3.85)

The dispersion repulsion contribution Waisp rep, Which is related to the short
range solvent (explicit) solvent (implicit) interactions, has been introduced to
remove any possible source of physical anisotropy in proximity to the cavity surface,
that is, deviation from bulk behavior. According to the several other methodologies
developed in the framework of QM continuum models, we have also treated
Waisprep as a classical mean force potential not perturbing the system electronic
density. In particular, Wyisp rep is obtained from an effective empirical procedure
parameterized on structural and thermodynamic properties. Briefly, we have as
sumed that Wgisp rep can be represented by an effective potential acting on each
explicit solvent molecule irrespective of the others, depending only on the molecule
distance and, possibly orientation, with respect to the cavity surface. Further,
Waisprep is €xpanded in a series of terms corresponding to increasing levels of
approximation, as

0 1
Wdisp—rep = Wdisp—rep + Wdisp—rep + o (386)
As an example, the first term ngspirep, which depends only on the distance of the

center of mass of the solvent molecule from the cavity surface, does ensure an
isotropic density distribution of the liquid at the interface with the continuum, thus
avoiding artifacts in the simulations due to the presence of a physical boundary as
observed in other continuum based methodologies. Analogously, higher order terms
are introduced, if needed, to prevent other possible physical deviations from liquid
bulk as the solvent polarization effect that may appear by using discrete/continuum
models. Hence, Wyisprep can be expressed in a simple general form as

Wdisp—rep = Zi)\(ri) (387)

where A(r;) is the potential acting on the ith molecule and the sum is extended over the
total number of explicit solvent molecules. The basic idea that has been followed to
derive the dispersion repulsion free energy term consists in building up such a
potential “on the fly” from a test simulation of a neat liquid by discretizing the
distance from the cavity boundary with a set of equally spaced Gaussian functions,
whose heights are adjusted after a certain time interval on the basis of the local
density. It is worth noting that the so obtained Wyisp rep term is parametrized for a
given solvent at specific physical conditions (e.g., density and temperature), but we
can reasonably assume that it is constant for any solution of the same solvent
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irrespective of the cavity size and shape, provided that the boundary surface is smooth
and the number of explicit solvent molecules sufficiently large.

For purposes of illustration, we consider a prototypical nitroxide spin probe
molecule di tert butyl nitroxide (dtbn in Figure 3.2) analyzing the first principle MD
simulations in aqueous solution and, for comparison, in the gas phase. The results
can be summarized in three main points: the effect of the solvent on the internal
dynamics of the solute, the very flexible structure of the dtbn water H bonding
network, and the rationalization of the solvent effects on the magnetic parameters.
Magnetic parameters are quite sensitive to the configuration of the nitroxide
backbone, and in the particular case of dtbn [38, 39], the out of plane motion of the
nitroxide moiety is strongly affected by the solvent medium. While the average
structure in the gas phase is pyramidal, the behavior of dtbn in solution presents a
maximum probability of finding a planar configuration: this does not mean that the
minimum in solution is planar, but that there is a significant flattening of the
potential energy governing the out of plane motion and that the solute undergoes
repeatedly an interconversion among pyramidal positions. The vibrational averaging
effects of this large amplitude internal motion have been taken into account by
computing the EPR parameters along the trajectories. The H bonding network
embedding the nitroxide moiety in aqueous solution presents a very interesting
result: the dynamics of the system points out the presence of a variable number of H
bonds, from zero to two, with the highest probability of only one genuine H bond.
Such a feature of the dtbn water interaction is actually system dependent, the high
flexibility of the NO moiety and the steric repulsion of the tert butyl groups decrease
the energetically accessible space around the nitroxide oxygen.

As a matter of fact, simulations carried out in the same conditions and with the
same level of theory, for a more rigid five ring nitroxide (proxyl in Figure 3.2), in
aqueous solution provided a different picture with an average of two nitroxide water
H bonds. In this case, the substituents embedding the NO moiety are constrained in
a configuration where methyl groups are never close to the nitroxide oxygen, and also
the backbone of the nitroxide presents an average value of the CNC angle that is lower
than in the case of the dtbn, thus evidencing a better exposition of the NO moiety to
the solvent molecules in the case of the proxyl radical. Nevertheless, the behavior of
the closed ring nitroxide in water could not be generalized to all the protic solvents: a
similar simulation of the proxyl molecule in methanol solutions presents, on average,
only one genuine solute solvent H bond, possibly because the more crammed H
bonded methanol molecule prevents an easy access to the NO moiety for other
solvent molecules. The H bonding picture arising from these simulations is depicted
in Figure 3.9. Once again the reliable description of solvent dynamics plays a crucial
role for an accurate prediction of spectroscopic data. Eventually, the discrete conti
nuum approach allowed the decoupling of the different contributions and also the
quantification of their effect on each of the molecular parameters: the H bonding
interaction and the dielectric contribution of the solvent.

Comparison between experimental and computed EPR properties of
“nonconjugated” nitroxides has been the subject of several studies; on the other
hand, comparatively much less work has been devoted to the corresponding aromatic
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1.0 for CH,OH 2.0 for H,O

Figure 3.9 Average number of solute solvent hydrogen bonds.

systems. This is quite surprising in view of the remarkable thermal and chemical
stability of aromatic nitroxides, in which the NO spin density is delocalized over the
aromatic ring system. These radicals are studied in several fields, as potential DNA
intercalators, in the polymers to protect the material by retarding oxidative damage as
well as generating fluorescent indicator for the degree of degradation to which the
material has been exposed, in the synthesis of aromatic polyradical, or as the building
block for the organic magnetic materials.

The performances of QM methods validated for several classes of organic free
radicals proved till now quite disappointing for aromatic nitroxides. This prompted
us to hypothesize that other effects (in particular, vibrational averaging) could play a
significant role in determining some EPR parameters (especially the nitrogen
isotropic hyperfine coupling). We have thus undertaken a systematic study of 1,2
dihydro 2methyl 2 phenyl 3H indole 3 oxo N oxyl molecule, hereafter referred to as
INDCO (Figure 3.10) [40, 41], a radical often used in organic synthesis in which a
flexible five ring nitroxide is conjugated with an aromatic system responsible for the
spin delocalization. Therefore, accurate results for such a system demands for the
correct evaluation of both factors (flexibility and delocalization), issuing from well
defined physical chemical effects and not by simple parameter optimization.

Let us start from static computations at optimized geometries. The INDCO
nitroxide with R stereochemical configuration is constituted by three rings, labeled
A, B1, and B2, respectively. The A ring is a cyclic five member nitroxide, whereas B1
and B2 are aromatic systems. Geometry optimization (PBEO/N07D) of INDCO gives
an almost flat structure, characterized by an improper CNOC angle of 176.6° and a

INDCO

Figure 3.10  Structure of INDCO.
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Figure3.11 Calculated (PBEO/NO7D) hyperfine coupling constant of nitrogen atom (A in Gauss)
in INDCO subunits.

nitrogen isotropic hyperfine coupling constant (Ay) of 7.90 Gauss. In order to analyze
the role of delocalization and other stereoelectronic effects, we have analyzed several
substructures of INDCO: (1) the ring A with planar and pyramidal nitrogen; (2) the
ring A supplemented by ring B1 or B2; (3) the above moieties in which methyl groups
are replaced by hydrogen atoms. The results collected in Figure 3.11 show that two
effects play a dominant role: out of plane deformation of the nitrogen environment
shifts the Ay value by 2.85 Gauss (10.44 and 13.29 G for planar and pyramidal
structures of ring A, respectively) and the presence of the ring B1 shifts Ay by 2.67
Gauss (10.44 versus 7.77 G for A and AB1 moieties, respectively).

The computed Ay for the planar conformation of INDCO is lower than the value
obtained for the pyramidal structure because a nearly planar environment of nitrogen
leads to the lack of any contribution of nitrogen s orbitals to the SOMO with the
consequent strong reduction of Ay. The second trend points out that the conjugated
aromatic ring is responsible for a significant spin delocalization, with the resulting
decrease of the hyperfine coupling constant. Indeed, the second aromatic ring that is
not conjugated with A does not have significant effects (0.05 Gauss). The effect of the
methyl groups close to the NO moiety is negligible (for ring A, 10.26 versus 10.52 G
with four H and four CHs, respectively).

The magnetic parameters of INDCO collected in Figure 3.12 show a fair agreement
with experiment concerning hydrogen atoms and point out the role of delocalization
in determining the nitrogen hyperfine coupling in aromatic nitroxides, whose final
value is, however, lower than its experimental counterpart by more than 1G.

In order to take vibrational averaging effects into the proper account, we then
resorted to a classical treatment. The analysis of the classical molecular dynamics
simulations reported in Figure 3.12 shows that the average structure of INDCO is
slightly pyramidal with an average CNOC improper dihedral angle of 168.4°. An
analysis of the relationships between structural fluctuations measured along the MD
trajectory and the computed EPR observables shows that the nitrogen hyperfine
coupling constant mainly depends on the out of plane motion of the nitroxide group,
but is apparently uncorrelated to the NO bond length. Conversely, the isotropic g shift
is mainly affected by changes in the nitroxide bond length, but is quite insensitive to
the CN O C improper dihedral. Furthermore, the behavior of the gtensor is
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Figure 3.12 Hyperfine coupling constant (in MM minimum) and in benzene with the PCM
Gauss) of the nitrogen in the INDCO molecule  approach (PCM/PBEO/NO7D) as well as the
calculated on the minimum structure in gas average upon the molecular dynamics trajectory
phase (PBEO/NO7D: Ay calculated on the QM in vacuum (PBE/NO7D/MD) and in benzene
minimum; PBEO/NO7D: Ay calculated on the (PCM/PBEO/NO7D/MD).

dominated by its largest component g, so that Ag;,, and g, show parallel trends. In
all the calculations, the principal axes of the tensor are aligned with the NO bond
(taken by convention x axis) and with the average direction of x orbitals (z axis).

The overall vibrational correction of Ay amounts to 1.2 G (Ay=9.1 Gauss in gas
phase and 9.3 Gauss in benzene). The final result (whose contributions are sum
marized in Figure 3.12) is in remarkable agreement with experiment (9.25 G).

Our results show that a correct evaluation of dynamical and solvent effects is
mandatory for a correct reproduction of the experimental hyperfine coupling
constant of nitrogen. This is the reason why previous attempts have not been able
to correctly describe the EPR features of such kind of radicals. On the other hand,
dynamical effects do not influence the g tensor since the computed values for the
energy minimum and as average upon the MD trajectories are identical (2.00593) and
very close to the experimental value of 2.00598 reported by Stipa [40].

3.5
Line Shapes

The radical species relaxation processes can be modeled as diffusive stochastic
processes, so an important parameter needed is the (generalized) diffusion tensor of
the molecule, which includes translational, rotational, and internal interaction terms,
and depends on the molecular geometry. A reasonable estimate of the diffusion
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tensor can be achieved via a mesoscopic hydrodynamic approach [42]. The molecule
is described as a set of N spheres immersed in a fluid, and it is partitioned into a
number of rigid fragments connected by mobile bonds (torsional angles). While in
the relatively trivial case of a rigid molecule there are only six degrees of freedom,
position of the center of mass, and global orientation to be considered, in the case of
flexible molecules, the torsional (internal) angles also need to be considered. Using
geometrical arguments, it is possible to show that starting from the complete friction
tensor of the unconstrained system of spheres &, which is represented by a 3N x 3N
matrix, and from the “constraints matrix” B, which is a 3N x n matrix, n being the
number of degrees of freedom, the friction tensor for the constrained system
(molecule) is given by

Z—B'EB (3.88)

and the diffusion tensor is obtained from the Einstein’s relation D =kTZ . This is
the total diffusion tensor that is represented by a square symmetric positive definite
matrix having dimension n=06 + Ny, Where Ny is the number of internal
torsional angles. The tensor contains all the translational, rotational, and internal
parts and coupling terms. This methodology showed to have good predictivity for the
evaluation of the diffusion tensor of molecules of any size.

Once magnetic, structural, and dissipative parameters have been estimated, it is
necessary to solve the SLE following, for instance, a standard variational approach, by
spanning the Liouville operator over a proper basis set, obtained as the direct product
of the space of spin transitions and the rotational space defined by stochastic
variables. Details on the definition of the basis can be found elsewhere [43]. The
spectrum is evaluated by standard algebraic methods. Matrix dimensions in a typical
cw ESR simulation can be quite large. As an example, the simplest case of a rigid
nitroxide probe with one electron interacting with a nitrogen nucleus and subject to
free fast rotation needs roughly 1260 basis functions, while adding a second equal
probe the dimension makes this number grow to 45 360, that is, simply adding
another electron and another coupled nitrogen nucleus, the dimension of the basis
grows one order of magnitude. This makes itimpossible to use the simple techniques
for solving algebraic problems, even if the matrix associated with the Liouvillean is
sparse. Symmetry arguments can be taken into account in order to reduce the
dimensions, butin many cases the number of basis functions required remains high.
A powerful numerical tool to deal with such big sparse matrices is the Lanczos
algorithm [1], which is a well known iterative method that at every step builds a
tridiagonal approximation of the Liouvillean matrix. It has been shown that Lanczos
and related algorithms are particularly apt to evaluate efficiently cw ESR since
convergence is usually achieved in a number of steps much smaller than the
dimension of the basis (about 10%) with sufficient accuracy to extract the most
important eigenvalues. Moreover, the diagonal o and subdiagonal 3 elements of the
generated tridiagonal symmetric matrix 8 can be used to directly calculate the spectral
density (i.e., the line shape) as a continued fraction. Handling big matrices does not
imply only large calculation times, a problem that is in part solved by using iterative
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Figure 3.13 3,0 and o helix conformations of the peptide Fmoc (Aib Aib TOAC)2 Aib Ome.

algorithms. It also carries problems with storage. Both time and memory problems
can be solved by proper computational approaches.

Let us consider, for purposes of illustration, a small peptide with structure Fmoc
(Aib Aib TOAC), Aib OMe (Fmoc, fluorenyl 9 methoxycarbonyl; Aib, R aminoiso
butyric acid; TOAC, 2,2,6,6 tetramethylpiperidine 1 oxyl 4 amino, 4 carboxylic acid;
and OMe, methoxy), which is characterized by the presence of two TOAC nitroxide
free radicals at relative positions i, i + 3 (Figure 3.13). Spectra were collected at
several temperatures in four different solvents: acetonitrile, chloroform, methanol,
and toluene. Aib and TOAC are two strongly helicogenic, C” tetrasubstituted
o amino acids. The cw ESR spectra have been compared with their theoretical
counterparts pertaining to the deepest energy minima obtained by QM computations
(310 and a helices) [44]. We found that in specific solvents, the experimental spectra
agree well with those expected for the 3,4 helix, in other solvents with those predicted
for the a helix, while for a final set of solvents with those associated with a mixture of
o and 31 helices with temperature dependent relative percentages.

Modeling was based on the construction of the spin Hamiltonian and on the
definition of the diffusive operator for the motion. We examined the dependence on
both solvent and temperature of the spectra. The effect of temperature on the
experimental observations is substantially reflected in the variation of the diffusion
tensor, through the temperature dependence of the viscosity of the solvents. Note
that a common assumption for all solvents is the presence of a monoradical
impurity that might arise from the reduction of one of the nitroxide functions. The
estimated amount of the impurity is below 4%, a low but still appreciable
percentage. Figure 3.14 collects the theoretical and experimental spectra calculated
for the four solvents. From a chemical point of view, our results provide evidence on
the property of Aib rich peptides changing their conformation from 34, helix to
o helix as a function of increasing polarity and hydrogen bond donor capability of
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Figure 3.14 Spectra of the peptide in different solvents: toluene, chloroform, methanol, and
acetonitrile, respectively. Solid lines: experimental spectra; dashed lines: simulated spectra.

the solvent: a helix in protic solvents and at low temperature, whereas 3, helix in
aprotic solvents.

In summary, feeding of magnetic and diffusion tensors derived from atomistic
modeling in a general computational protocol based on the stochastic Liouville
equation allowed us to reproduce in a remarkable way the ESR spectra in different
solvents and at different temperatures without any adjustable parameter. The
favorable scaling of the computational protocol with the dimensions of the system
and its remarkable performances for both structural and magnetic properties might
pave the route for systematic studies of spin labeled peptides and proteins.

3.6
Concluding Remarks

In the present chapter, we have presented an integrated computational strategy for
the study of structures and magnetic properties of organic free radicals. The first step
has been the development of a new effective basis set (N07D), which coupled with
hybrid density functionals (like B3LYP or PBEO) delivers remarkably accurate
structures and physical chemical properties of open shell species, including mag

netic parameters. Next, bulk solvent effects can be taken into account by continuum
models (COSMO, PCM, etc.), whereas the treatment of the cybotactic region can be
improved, when needed, by explicit consideration of specific first shell solvent
molecules. Finally, solute vibrations and, possibly, solvent libration effects can be
described by classical molecular dynamics employing nonperiodic boundary con

ditions. A number of case studies show that only contemporary consideration of
stereoelectronic, environmental, and dynamical effects allows to obtain magnetic
properties of different classes of organic free radicals in diverse environments,
without the need of any empirical parameter. Next we turned to line shapes and
showed that inclusion of the above magnetic tensors together with diffusion tensors
computed by a coarse graining approach into a formalism rooted into the stochastic
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Liouville equation allows to predict accurate spectra in different motional regimes
without resorting to fitting procedures.

Together with its specific interest, our results point out, in our opinion, the
importance of developing and validating computational approaches able to switch on
and off different effects, including environmental and dynamical ones, in order to
evaluate their specific role in determining the overall observable.
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4
Generalization of the Badger Rule Based
on the Use of Adiabatic Vibrational Modes
Elfi Kraka, John Andreas Larsson, and Dieter Cremer

4.1
Introduction

Empirical relationships relating bond lengths to the corresponding bond stretching
frequencies or bond stretching force constants were first derived in 1920s (see
Table 4.1 for a summary) and have ever since been a topic of research on the nature of
the chemical bond [1 67]. Itis remarkable that in a time of easily accessible quantum
chemical results, there remains a need for empirically based estimates of either
bond lengths or stretching frequencies. There are three primary reasons why such
empirical rules and relationships are still valuable tools for modern research:
(1) Established relationships between bond properties add to our understanding of
the chemical bond, especially if they can be rationalized on a quantum mechanical
basis because bonding between atoms is a quantum mechanical phenomenon.
(2) There are experimental situations in which it is relatively easy to measure one
bond property but difficult to obtain other bond properties. For example, itis easier to
measure the vibrational spectra of a compound than to carry out a structural analysis.
This is especially true for solid materials that do not crystallize, molecules on a
surface, or molecules in some form of aggregation. If quantum chemical calculations
are feasible only for model systems rather than the actual targets of chemical
research, then vibrational spectroscopy may be the only tool for obtaining informa

tion that provides an insight into bond properties. (3) In the realm of computational
chemistry, there is also a need for empirical relationships. They may be used to
determine suitable bonding force fields for molecular mechanics utilizing force
constant bond length relationships. For quantum chemical geometry optimization,
there is the need to set up a guess matrix of energy second derivatives (the Hessian
matrix corresponding to the force constant matrix of a molecule), which is best done
with the help of available geometry information and a suitable force constant bond
length relationship. For example, the standard procedure to calculate the geometry
of a molecule is based on an initial guess of the energy Hessian derived with the
help of the Badger rule [42, 55]. It is due to these three reasons that there is ongoing
research exploring the relationships between bond length r, bond stretching
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Table 4.1 Relationships between spectroscopic and geometrical constants of a bond in diatomic, quasidiatomic, and polyatomic molecules.
No Year Authors Equation Molecules Comment Ref.
1 1920 A. Kratzer 0?1 const. D I: moment of inertia, valid for 1]
ker?  const. hydrogen halides
1925 R. T. Birge wer?  const. D Differentelectronic states of a given D 2]
1925 R. Mecke ®er?  const. D Differentelectronic states of a given D 13]
1929 P.M. Morse wer?  const. D Different D of similar kind [4]
5 1934 C.H.D. Clark 2 cm(u/ nke)'’? D w: reduced mass; m,n: group numbers (5]
wern'/2  const. for hydrides and nonhydrides
6 1934 R.M. Badger ke (e dij)3 const. D dy; is typical of AB with A in period i (6]
and B in period j; 7. dj: effective
bond length
7 1935 R.M. Badger te  (Cum/ k)l/ 3t dum D Constants typical of AB with A in 7]
group m and B in group n
8 1935 H.S. Allen, A.K. Longair r2 cij/ k3 D Constant typical of AB from a given 8]
ker®  const. period
9 1935 R.M. Badger Same as 7 QD Bonds in small symmetric polyatomic [9]
molecules
10 1935 M.L. Huggins Equations for D, Te, ®e, ke D Derived from modified Morse [10]
potential
11 1936 M.L. Huggins te a blog(cke) D Constants derived for periods, rule 6 [11]
explained
12 1938 G.B.B.M. Sutherland ker®n3/2  const. D Related to 5 [12]
13 1940 G.B.B.M. Sutherland D. krZ/nm D 1 ar~™ +br~" (double [13]

ke  ma(n m)re

—(m+2)

reciprocal V)
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14

15
16

17
18
19

20

21

22

23

24

25
26

27

28

1940

1940
1941

1942
1944
1945

1946

1946

1950

1947

1950

1951
1953

1955

1957

R.A. Newing

J.W. Linnett
C.D. Clark, K.R. Webb

J.W. Linnett
C.K. Wu, C.T. Yang
J.W. Linnett

W. Gordy

K.M. Guggenheimer
K.M. Guggenheimer
C.K. Wu, S.C. Chao

G. Herzberg

G. Lovera

H. Siebert

E.R. Lippincott,
R. Schroeder
H.O. Jenkins

Te re(w67 Xe, De, M)

ke rg’ const.

ke rf n  const.

ke(re dy)’n'/?  const.
ker>  const.

ke —(m+2

are ) 4 prg D

ker®  const.
ke aN(xaxp/r2)"*

k aN(zAzB)l/Zre’b

logk. are+Db
Various formulas

ke a(re+1)77

kcx aZX/nf(
15 a(ny/Zx)
N a(kn/k1)+b

General formulas

ke ar;?2 b

D

P, c mode

P (AX,)c mode
D

D

P, c mode

P(XMe,)

Quantum mechanical arguments for
existence of relationships
Testing of V ar™™ be ™

Valid for molecules with similar
modification of Badger rule; nas in 5
Same Vas in 15

Constants typical of period

For molecules with NH bond; for
CH bonds 15 is better

N: bond order; x4, xg: electronega
tivity of A, B

N: bond order; za, zg: valence
electrons

b 2.46,1.84, 2.06, and so on typical
of bond polarity

Simplified version of 11

Discussion of empirical rules, r. and
ke changes over periods are shown for
HX and OX bonds

Molecules of groups 4b 6b

Zx: atomic number; ny principal
quantum number of valence elec
trons for X; formula for kxy

rx: covalent radius of X; N: bond order
Use of a modified Morse potential

Homonuclear D

(14]

(15]
(16]

(17]
(18]
(19]

[20]
21]
2]
23]

(24]

(25]
(26]

(27]

(28]
(Continued)
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Table 4.1  (Continued)
No Year Authors Equation Molecules Comment Ref.
29 1958 Y.P. Varshni Equations for ke, De, Xe D Derived from [29]
Vo oa(r d)"+b(r d)7"
30 1958 Y.P. Varshni ke(re d)f  const D Review; p 2 turns out to be best [30]
re  ake 12 1y
31 1961 D.R. Hershbach, ke 10~ (re=as)/by D Constants derived for seven formulas [31]
V.W. Laurie Te dig + (ay  dy)ke 13 for cubic and quartic force constants
32 1964 H.S. Johnston re ay Dbijlog(k) P, c mode Taken from 31 [32]
33 1964 J.A. Ladd, W.]. Orville k ar?bor P, c mode k  35.5r7>79 for CO bonds [33]
Thomas, B.C. Cox log(k) blog(r)+¢
34 1966 J.A. Ladd, W.]. Orville ko oar? P, c mode k  34.4r>% for NO bonds [34]
Thomas
35 1966 M.].S. Dewar, ko oarl24+br;*+or® P, c mode Assumed; used in PPP [35]
G.J. Gleicher
36 1966 J.C. Decius k ar® P, ¢ mode k  38.5r7° for NN bonds (GS and ES [36]
of P)
37 1966 J. Goubeau Review of formulas P, c mode Comparison of Badger, Gordy, and [37]
Siebert formulas
38 1968 R.F. Borkman, 2w const. D Use of virial theorem; quantum me [38]
R.G. Parr chanical analysis k related to overlap
population, re, De, and AO
39 1968 R.S. Roy & ammyn 2kt D n: group number; m;, my: atomic [39]
masses; a is considered a universal
constant
40 1970 J. Stals k r formulas reviewed P, ¢ mode Material on CC, CN, CO, NN, NO, OO [40]
bonds
41 1978 D.C. McKean r(CH) aw(CH)+b P isolated w Isolated stretching frequencies as [41]

bond descriptors
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42

43

44

45

46

47

48
49

50
51
52
53

54

55

56

1984

1987

1987

1987

1987

1987

1989
1990

1992
1992
1993
1995

1996

1997

1999

H.B. Schlegel

D.M. Byler, H. Susi, W.C.
Damert
H.B. Burgi, ].D. Dunitz

D.J. Swanton, B.R. Henry

A.A. Zavitsas

V.M. Miskowski et al.

J.C. Weisshaar
P.K. Mallick et al.

T.H. Fischer, J. Almlof
A. Rutkowski et al.
R.G. Pearson

R. Lindh et al.

P.D. Harvey

J-M. Wittbrodt,
H. B. Schlegel

M. Stichler, D. Menzel

Badger rule 6

33 tested

r a bln(k)

ke(re d,})n Cij

k aw(D b)
ra+bete

Badger rule 6
Test of 31

kAB ae*b("AB*fref)

Are(rel) o< Ak(rel)
kete  aN(xx,) +b

kag ae*h(’AB*Yrsf)z

r aln(k)+b

Badger rule 6
kas  a/(ras b)’

o d(r b)~3/?

P, ¢ mode

P, c mode

P, ¢ mode

D, P

P, c mode
P, ¢ mode

D
P

D

P

P, c mode

P, c mode

P, c mode

Ab initio calculations; use of ¢ vectors
prediction of Hessian for geometry
optimization

k  37.3r7>3 for CN bonds

Rationalized with modified Morse
potential used in connection with
reaction rates

Justification of Badger type rules with
modified Morse potential; local mode
approximation for overtones

For CC and other bonds tested

For M M bonds in transition metal
compounds

Third row diatomics

Extended to frequency shifts and
bond length changes

Assumed; estimates of Hessian for
geometry optimization

Relativistic changes in 7. and k

N: bond order; x: electronegativity
Assumed; estimates of Hessian for
geometry optimization
Reparameterization of 31 for M M
bonds in transition metals
Estimates of Hessian for geometry
optimization, relationships for b
established

Badger rule tested for NO on

Ru surface

[42]

[43]

[44]

[45]

[46]

(47]

(48]
[49]

[50]
[51]
[52]
[53]
[54]

[55]

[56]

uoIINpOIU| |

(Continued)
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Table 4.1  (Continued)

No Year Authors Equation Molecules Comment Ref.

57 1999 J.A. Larsson, D. Cremer r aw+b P, a mode 41 tested for 66 CH bonds, extension [57]

r aw’+bw+c to 40 CC bonds, requires quadratic

relationship

58 2000 J. Cioslowski et al. k A(r b)™° D Badger type rules are not universally [58]
shown for 108 diatomics

59 2001 P. Schwerdtfeger and Test of 31 P, ¢ mode Applied to Cu Cu bonds [59]

coworkers

60 2003 J. Jules, J.R. Lombardi Test of 6, 31 D N, 1, and k related for M M bond in [60]
metal dimers

61 2004 K. Ohno and coworkers k aR3 P, c mode For 74 molecules with CX bonds R: [61]
effective bond length

62 2006 T. Green and coworkers rooco 3 4 dy P, c mode Badger rule applied to FeO bonds [62, 63]

64 2008 Y.W. Lin et al. rooco P 4 d; P, c mode Badger rule tested for CO interacting [64]
with amino acids

65 2008 U. Das, K. Raghavachari r aw+b P, isolated Isolated stretching frequencies used [65]
to predict r(PH) for molecules on
surface

66 2008 T.H. Morton and o a(r b)? P, amode CF™ bonds [66]

coworkers
67 2009 E. Kraka, D. Cremer r,m, k, n, BDE related P, a mode Relationships for CO and CF ¥ bonds [67]

generalized Badger

Abond AB of a D (diatomic), QD (quasidiatomic), P (polyatomic molecule) is considered where A is located in period i or group m and B in period j or group n of the periodic
table. The derivation of force constants for polyatomic molecules has been based on c-modes, adiabatic modes, isolated stretching modes, local modes from overtone
spectroscopy, or simply assumed. De: bond dissociation energy; r.: equilibrium bond length; w.: equilibrium bond stretching frequency; k.: equilibrium bond stretching force

constant; N: bond order; x.: equilibrium anharmonicity constant; u: reduced mass.
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4.1 Introduction

frequency w or force constant k, bond order N, and bond dissociation energy D as is
documented by a significant number of research papers on this topic (for recent
work, see Refs [56 67]).

Investigations focusing on relationships between bond properties such as r, k, o,
N, and D are summarized in Table 4.1. Originally, such relationships were estab
lished for diatomic molecules and later extended to polyatomic molecules. Attempts
have been made to verify and rationalize these relationships via model potentials for
diatomics as, for example, Morse potentials, modified Morse potentials, double
reciprocal potentials (see entry 13, Table 4.1), single reciprocal exponential potentials
(entry 15, Table 4.1), or more complex forms of the potential (entry 29, Table 4.1).
These relationships eventually led to the formulation of universal diatomic poten
tials [68, 69] that attempt to define energy and spectroscopic properties of a universal
bond, which can be considered the equivalent of “the hydrogen atom in atom
spectroscopy” [70]. Clearly, the derivation and rationalization of fundamental rela
tionships between various bond properties led to a better understanding of the
chemical bond. Therefore, it is appropriate to sketch the major steps in this
development stretching now over almost 90 years.

After preliminary work by Kratzer [1], Birge [2], and Mecke [3], Morse [4] was the
first to derive an empirical relationship between bond length and bond stretching
frequency in 1929 (entry 4, Table 4.1) for diatomic molecules. Badger criticized
the Morse relationship as being too limited in its practical application [6]. In 1934, he
proposed a new relationship (entry 6) for diatomic molecules that relates the
stretching force constant k to an effective bond length R obtained as the difference
between equilibrium bond length r. and an empirical parameter dj; characteristic of
the distance of closest contact between the bonded atoms. The experimental data
available to Badger suggested that dj; is the same for all atoms of period i bonded to
atoms of periodj. In 1935, Badger [9] generalized the relationship between k. and r, to
polyatomic molecules by introducing an additional parameter (entry 7, c;j Or Cum),
which also depends on the location of the bonded atoms in the periodic table. Despite
numerous alternative relationships suggested by various authors (entries 8 30;
interesting extensions by Huggins (11), Linnett (15), Gordy (20), Guggenheimer
(22)), the Badger rule was widely used until the early 1960s. In 1961, Herschbach
and Laurie [31] pointed out that the Badger rule was not providing reliable predictions
for heavier elements. Therefore, they suggested two major extensions of the Badger
rule (see entry 31), one of which expresses the bond length r. as a logarithmic
function of the stretching force constant again using parameters that depend just on
the periods i and j of the bonded atoms rather than the properties of these atoms
themselves. The other extends Badger’s rule also to cubic and quartic force constants
thus confirming that both harmonic and fundamental stretching frequencies can be
related to effective bond lengths. A cautious extension to polyatomic molecules
was also discussed for bonds of similar type, that is, which do not suffer “an abrupt
change” [31] in their properties when compared in a series of molecules.

The extension of the Badger Herschbach Laurie equations to metal metal bonds
required extensive reparameterization as carried out by Harvey in 1996 (entry 54) or
the use of more elaborate exponential functions (Miskowski et al., entry 47). In 2000,
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4 Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes

Cioslowski and coworkers [58] investigated the applicability of Badger type equations
to a test set of 108 diatomic molecules. They found that in a large number of cases the
Badger rule does not lead to satisfactory predictions of stretching force constants and
therefore cannot be considered a reliable tool for setting up the initial guess Hessian
matrix in quantum chemical geometry optimizations. This result was contrasted by
an investigation of Ohno and coworkers (entry 61), who could derive a simplified
Badger type equation by using effective bond lengths in the study of 74 CX bonds
(X=C, Si, Ge, N, P, As, O, S, Se, F, Cl, Br) contained in polyatomic molecules. Kraka
and Cremer [67] made a similar observation when investigating some 46 isoelec

tronic CO and CF * bonds. For the purpose of resolving these contradictory claims on
the applicability of the Badger Herschbach Laurie equations between bond length
and bond stretching force constant, there is the need to reinvestigate the physical
basis of Badger type relationships and to obtain a reliable assessment of their
predictive value. We will approach this problem in two steps by first considering
diatomic and then polyatomic molecules. We will identify those physical effects
that influence the length of a chemical bond and, by doing so, clarify whether a
relationship between bond length and stretching force constant exists. Then, we will
determine those vibrational properties that lead to a description of chemical bonds in
polyatomic molecules. Clearly, these cannot be the normal modes measured in
infrared or Raman spectroscopy because they are in most cases delocalized, that is,
they reflect the movement of larger structural units of the molecule (if not to say the
whole molecule) rather than that of a specific bond within the molecule. In view of
the limited usefulness of measured vibrational data, it is questionable whether an
extension of the Badger rule to polyatomic molecules, as it was attempted in the past,
can be successful on a larger scale. To solve this problem, we will discuss the
difference between localized and delocalized vibrational modes, how the former can
be derived from the latter, and how they lead to an extension of the Badger rule
applicable to molecules.

4.2
Applicability of Badger-Type Relationships in the Case of Diatomic Molecules

A more general type of the Badger rule is given by Equation 4.1 [41, 71, 87]
ke(re df =c¢ (4.1)

where the quantity (r. d) is the effective bond length R, d and ¢ are constants
depending on the nature of atoms A and B, and the exponent p can take values
between 2 and 8 thus embedding the original Badger rule (Table 4.1: entries 6, 7, 9)
with p = 3. Alternative relationships with p = 2 (Table 4.1: entries 1,28 30),p = 4 (2,
3,38),p=5(17),p=6(4,5,8,12,15, 16, 36, 39), or noninteger values of p between
2 and 6 (e.g., 21, 22, 25, 33, 34, 43) are summarized in Table 4.1. Apart from
Equation 4.1, relationships in the form of a power series (35), a logarithmic (11, 23,
31, 33, 44) or exponential dependence (50, 53) of 7. on ke or vice versa were also
used as already mentioned in the introduction. Previous research could not clarify
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Figure4.1 Experimental bond stretching force constants k in mdyne/A are given in dependence of
the bond length r in A for diatomic molecules AB where atoms A and B belong to the first three
periods. Symbol k[i j] denotes that an atom A from period i is bonded to atom B from period j.

which of the relationships (4.1) or their extensions in the form of logarithmic or
exponential functions is the most reliable and useful one.

In Figure 4.1, measured stretching force constants of 120 diatomic molecules in
their ground state composed of atoms out of the first three rows of the periodic table
and taken from the compilation of Huber and Herzberg [71] are plotted against the
corresponding experimental bond lengths. The essence of the Badger rule becomes
obvious from the diagram since it reveals that the data points cluster into six groups,
each of which can be connected by a function according to Equation 4.1. The six
groups correspond to the six possible ij combinations of periods (1 1,2 1,2 2,3 1,
3 2,and 3 3). The corresponding bond lengths and stretching force constants are
listed in Table 4.2.

In all cases, exponent p is a fractional quantity, which increases from 3.18 (1 1) to
7.44 (3 3), thus revealing a strong dependence on the number of electron shells of
A and B in molecule AB, that is, on indices i, j and i + j. Clearly, by choosing
appropriate effective bond lengths with the help of close contact parameters, it will be
possible to merge the six curves of Figure 4.1 into one. This, however, could become
problematic because of a large variation in the prefactor increasing from 2.8 to 602.
Testing various sets of Badger parameters given in the literature confirms that it
is not possible to obtain one generally applicable form of the Badger rule, the
Herschbach Laurie variation, or any of the other forms suggested in the literature
(Table 4.1). There is the general trend that with the number of data points in a group
scattering increases and the reliability of any Badger type relationship to predict
either bond length or force constant, once the other quantity has been determined,
decreases. Closer inspection reveals that especially cations and anions deviate from
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Table 4.2 Experimental bond lengths r and bond stretching force constants k of diatomic
molecules AB?.

No. Molecule r(A)  k(mdyneA ') No. Molecule r ()  k(mdyneA ")
1 m(Y) 0.741 5.75 61 SiH(’[],) 1.520 2.39
2 H+((Y,) 1052 1.60 62 SIH (’Y7) 1474 271
3 He+(*Y,) 1081 3.40 63 SiH*('Y.') 1504 2.67
4 He+ ('Y, ) 0704 12.80 64 PH(’Y") 1.422 3.22
5 HeH+ (') 0774 4.94 65 PH™(*I],) 1.407 2.86
6 LH('ZT) 1.596 1.03 66 PH*(T],) 1.435 3.04
7 BeH(’YL ™) 1.343 227 67 SH(II,) 1.341 243
8 BeH"('YF) 1312 2.64 68 HC('ST) 1.275 5.16
9  BH('LY) 1.232 3.05 69 HCI™(’[I;) 1315 413
10 cH(TI,) 1.120 4.48 70 LiNa('Y)) 2.810 0.21
11 cH (’Y) 1.089 4.48 71 Nao(’[]) 2.050 1.54
12 cHY('S') 1131 4.11 72 NafF('™ ") 1.926 1.76
13 NH(Y) 1.036 5.97 73 Mgo('Y.F) 1749 3.48
14 NH*(*[],) 1.070 4.73 74 MgF(’Y ") 1.750 3.16
15 OH(’[])) 0.970 7.80 75 AINCITY) 1.768 3.03
16 OH ('™7) 0.970 7.65 76 AlO(*Y.") 1.618 5.67
17 OH* (%)) 1.029 5.41 77 AIE('ST) 1.654 4.23
18 HF('Y.) 0.917 9.66 78 SiL(*Y7) 2.246 2.15
19  HF (1) 1.001 5.38 79 SINCYT) 1.571 7.29
20 NeH™('S7) 0989 481 80 sio('SH) 1.510 9.24
21 HeNet*('SST) 1300 3.36 81 SiF(’[])) 1.601 4.90
2 1LY, 2.67 0.26 82 CcP(’y") 1.562 7.83
23 Lio(’[],) 1.695 2.08 83 PN('YLY) 1.491 10.16
24 LF('ST) 1.564 2.50 84 PO(’[I,) 1.476 9.45
25 BeO(’LY) 1.331 7.51 85 PO (*%) 1.540 6.21
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Table 4.2 (Continued)

No. Molecule r(A)  k(mdyneA ') No. Molecule r ()  k(mdyneA ")
26 BeF(’Z7T) 1.361 5.60 86 PE(’Y) 1.590 4.97
27 B,(’Y,) 1.590 3.38 87 PFT(*[],) 1.500 7.70
28 BN(T]) 1.281 8.33 88 NS(’[I,) 1494 852

29 BO(’Z") 1.205 13.66 89 NSY('ST) 1440 11.49
30 BOT('YD) 1.205 12.27 90 BeS('S.") 1.742 4.13
31 BE('ST) 1.263 8.07 91 BS(’YL™) 1.609 6.72
32 G('%,) 1243 12.16 92 cs(’yY) 1.535 8.49
33 G (%, 1.268 11.21 93 CST(’LT) 1495 9.85
34 G ([1.) 1.301 6.44 94 SO(Y) 1.481 8.30
35 CN(’LT) 1.172 16.29 95 so* (I, 1.424 11.62
36 CNT('Y) 1.173 15.74 96 Licl('ST) 2.021 1.42
37 co('S) 1.115 19.80 97 Licl *=1)  2.180 0.79
38 COT(PYLt) 1115 19.80 98 BeCI’TT) 1797 3.03
39 CE('SY) 1.272 7.42 99 BCl('ST) 1.716 3.47
40 N('Y,) 1.098 22.95 100 CCI(*[T,,)  1.645 3.95
41 N, (*[1,) 1.193 15.98 101 NCI(’Y) 1.614 4.03
2 N(Z,) 1.116 20.09 102 clo(*T])) 1.570 4.71
43 N('Y2,) 1.132 15.85 103 CIF(’[T,) 1.638 448
44 NO(TI,) 1.151 15.95 104 BeArt(*X7)  2.085 0.59
45 No (’%) 1.063 8.17 105 Na('S°7) 3.079 0.17
46 NOT('LM) 1116 24.84 106 NaCl('SSF) 2361 1.09
47 NE(CY) 1.317 6.19 107 Mg (') 3.8% 0.02
48 0,(’%7) 1.208 11.76 108 Mgs('>"") 2142 226
49 0, (I1,) 1.350 5.60 109 MgCl(*:F) 2119 1.79
50 0. (*1,) 1.116 17.09 110 ALCY,) 2466 0.97

(Continued)
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Table 4.2 (Continued)

No. Molecule r(A)  k(mdyneA ') No. Molecule r(A)  k(mdyneA ")
51 B('YS,) 1.412 4.70 111 AlS(*Y") 2.029 3.28
52 K2 1.880 1.46 112 AlCI('YY) 2130 2.08
53 F (CIl,) 1.322 6.45 113 Sicl(’[],) 2.058 2.63
54 FO(’IT) 1.326 5.41 114 sis('S ) 1.929 4.94
55 Ney (*%2)) 1.750 1.53 115 Py ([l.p) 1986 4.12
56 NaH('YZ ") 1.887 0.78 116 PS(’T],) 1.900 5.06
57 MgH(’Y™) 1.730 1.27 17 s,(%,) 1.889 4.96
58 MgH*('SST)  1.652 1.65 18 s (*1,,) 1.825 5.88
59 AH('ST) 1.648 1.62 119 cL('y,) 1.988 3.23
60 AHT(YT) 1602 1.50 120 CL ([1s) 1891 429

a) Experimental values from Ref. [71].
Molecules AB are listed according to A(period i) B(periodj) combinations in theorder1 1,2 1,2 2,
31,3233.

the Badger type relationships obtained in the least squares sense. This is most
obvious for the 1 1 group that consists of just five data points, four of which belong
to cations (Figure 4.1, Table 4.2). Scattering is in this case so strong that the k r
function given is no longer meaningful although it largely parallels those obtained
for the five other groups.

Henry and Swanton [45, 72] provided some evidence suggesting the existence of
a relationship between the bond length r.(AB) of bond AB and its associated
stretching force constant k. (AB). They used a modified Morse potential that fulfilled
in the case of diatomic molecules the following conditions:

1) The potential energy V must approach infinity for r — 0, which is not the case for
the general form of the Morse potential. Therefore, a hard sphere distance r, is
introduced, which leads to V(r < r,) = co.

2) Vmeasured relative to the separated atoms A and B must approach zero for r — cc.

3) V must approach the value of D, for r — re.

The potential (4.2) fulfills conditions (1), (2), and (3).
V(r>r) =Dl e %) p, (4.2a)
V(ry) = Vo = Do(1 e %7y p (4.2b)

Henry and Swanton used Equation 4.2 to derive relationship (4.3) between the
harmonic frequency w. of a diatomic molecule and its bond length . [72]:
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(e ra)we = 2h(De/2)"*In[1 + (Va/De +1)"*) (43)
Taking the derivative with regard to k. leads to

Ofe 7a)  O(fe 1a)0we e O(Te Ta)

ke dw. 0Oke 2k. Owe

(4.42)

o(re 1) _ (Va/h) (2p)"? (4.4b)

Oke 2 {(4Vaxen/Hoke) + 1} {1+ [(4Vexen/WPke) + 1]}

where u is the reduced mass and x, the anharmonicity constant. For the case where
ke is large, the derivative (4.4) varies with k2, whereas for a small value of the force
constant variation takes place with k_! and otherwise with k.” for 1 < p < 2. By this,
all possibilities of Equation 4.1 are accounted for, as becomes obvious when
calculating the derivative of Equation 4.1 leading to

o(re d)

= ok (4.5)

where the exponent is between 1and 2 depending on the value of p. The Badger
rule for diatomic molecules will be obtained if the hard sphere distance r, and the
associated potential V, do not change within a period, which would also require that
the bond dissociation energy D. varies only slightly within a period of the periodic
table. This, however, is generally not the case and therefore Badger type rules will
hold only for closely related bonding situations in the case of diatomic molecules.

Next, we consider the physical effects determining the length of a chemical bond
and its associated bond stretching force constant. The latter reflects the strength of
the chemical bond, which in the general case is the result of a covalent contribution
(depending on the overlap of the atomic orbitals forming the bonding and anti
bonding diatomic orbitals, their electron occupation, and the energy splitting
between them) and an ionic (polar) contribution (depending on the electronegativity
difference between A and B and the charge transfer resulting therefrom). Covalent
and ionic contributions also impact bond length. However, contrary to the bond
strength and the stretching force constant, the bond length depends on a third
quantity that can be related to the size of the atomic core or, alternatively, its
hard sphere size, which is related to the core size and also includes the effects of
the valence electrons. It is this third quantity that determines the magnitude of the
Badger parameter d;. Badger’s assumption that d;; is constant for all bonds formed
from period i atoms and period j atoms is not justified. The hard sphere size of an
atom depends on its charge and, accordingly, will be smaller for the cation and larger
for the anion compared to the size of the neutral atom. This fact is reflected in
Figure 4.1 where some of the strongly scattered data points correspond to charged
molecules. Smaller variations will also result if open and closed shell systems of the
same bond type are compared. In general, positively or negatively charged AB bonds
and excited states of a given molecule AB should involve atoms A and B with different
hard sphere sizes than those of the neutral ground state of AB.

17
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In the set of diatomic molecules investigated in this work (Table 4.2), there are 20
molecules for which, besides the neutral state, there is also a charged state. Some of
them do notlead to a significant change in the hard sphere size because an electron is
added to a lone pair (or ) orbital not involved in bonding (see, for example, entries
15 and 16 in Table 4.2: HO and HO; also 10 and 11). Therefore, the variations found
for a bond AB in polyatomic molecules cannot be reflected by the limited number
of diatomic molecules investigated in this and previous studies. This would be given
only if, besides the ground state molecules, a large body of data would also be
available for charged and excited states. Therefore, it is necessary to extend the
investigation of the Badger rule to polyatomic molecules and verify the following
two predictions based on the investigation of the diatomic molecules.

1) Badger type relationships depending simply on period characteristic parameters
such as ¢;j and dy, as is the case with diatomic molecules, are no longer applicable
to polyatomic molecules. They split up in AB bond specific relationships that are
fulfilled for AB bonds with closely related electronic structure. AB bonds with
different hard sphere sizes will have to be described with other relationships.

2) In special cases, bond specific Badger rules can collapse to a single rule. This is
likely to occur for bond types that share a common atom, for example, AB and
AC, provided the electronic structures of these bonds are related in such a way
that the hard sphere sizes of atoms B and C can be described with just one
parameter. In the following chapters, we will investigate these predictions in
detail. For this purpose, we have to clarify first how to determine bond stretching
vibrations for polyatomic molecules that are localized in a bond and are not
contaminated due to the coupling with other vibrational modes.

4.3
Dissection of a Polyatomic Molecule into a Collection of Quasi-Diatomic
Molecules: Local Vibrational Modes

Vibrational modes are in most cases delocalized within a molecule. The properties
of these modes (frequencies or force constants) are not suitable for investigating
Badger type relationships. Instead, there is the need for local mode information
that provides bond stretching frequencies or force constants, which are no longer
contaminated by contributions from other vibrational modes. For the purpose of
clarifying the relationship between delocalized normal and local internal coordinate
modes, we present here the theory of the adiabatic internal coordinate modes
(AICoMs), recently used to set up bond length bond stretching force constant
relationships by Kraka and Cremer [67].

The standard method for calculating the vibrational spectra of polyatomic mole
cules with K atoms is based on two major approximations [73, 74]. First, the
Born Oppenheimer approximation is used, which leads to the separation of the
nuclear motion from the electronic motion and by this to the concept of the potential
energy surface (PES). The assumption is made that the nuclei of the molecule move
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as classical particles on the PES. Second, the vicinity of the minimum occupied by
the vibrating molecule in question is described by a Taylor expansion of V(x)

oV %3V
V(x) = V(0)+ ( ) ( )xx
Xi: 2'2 0x;0x; ) J

In Equation 4.6, x describes the displacements of the nuclei from the equilibrium
positions at the minimum of the PES in the form of Cartesian displacement
coordinates (i.e., x =r . in case of a diatomic molecule)

X = (%1, Y1, 21, - - - X35, V3K 23K) | (4.7)

The Taylor series is truncated after the quadratic term and since the first order term
is zero at the minimum,

<a_v) =0 for i=1,...,3K (4.8)
ax,' 0

one obtains Equation 4.9

13K /7 v 13K
09 =33 (gt =1, o 4
i,j i,j
which forms the basis of the harmonic (mechanical) approximation for describing
vibrational modes. In Equation 4.9, the constants f;; represent the force constants,
which are collected in the Cartesian force constant matrix f.
If the molecule behaves as a classical particle on the PES, Newton’s second law
applies:

d% d, . d

G = 3 (i) = P (4.10)

K1 =my

where K, is the x component of the force exerted on a nucleus I with mass my, t the
time, %; the velocity, and p, the corresponding momentum. Newton’s second law
can be expressed in terms of kinetic energy T'and potential energy V

av_d (0T
671—3(6761) (4.11)

Using mass weighted coordinates,
g =m'? (4.12)

Equation 4.11 can be simplified via (4.13) (4.15)

d (oT\ av .
d<a§i>+6£i_0 for i=1,...,3K (4.13)
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Q2 3K
dju%zjﬁgzo (4.15)
J

Equation 4.15 represents the vibrational equations, which can be solved by using
standard mathematical procedures.

It is advantageous to revert to Equation 4.11 and to consider two simplifications.
First, the representation of the harmonic potential is changed by a coordinate
transformation, which leads from the bilinear form (4.9) to a linear form depending
on a new set of coordinates, the so called normal coordinates. Second, the vibrational
equations resulting from Equation 4.11 are rewritten in matrix notation using
the vector of Cartesian displacements x, the mass matrix M, and the force constant
matrix f. For example, the kinetic energy T of the vibrating molecule and the
harmonic potential V are expressed in this notation as

T(X) = %XTMX (4.16)
1.
V(x) = EleX (4.17)

Using the matrix notation and the normal coordinates, the vibrational problem can be
written in the form of the pseudoeigenvalue problem

fL = MLA (4.18)

in which A is the eigenvalue matrix with the Ny, = 3K L vibrational eigenvalues
A, on the diagonal

My = 47%c*(0,)” for w=1,...,3K L= Ny (4.19)

where ), is the harmonic vibrational frequency. The eigenvector matrix L contains
Nyi,, normal mode eigenvectors 1, as column vectors. In Land A, L eigenvectors and
eigenvalues correspond to overall translation and rotation of the molecule (L =5
for linear and L = 6 for nonlinear molecules), respectively. These eigenvalues are
equal to zero provided translational and rotational motions are completely inde
pendent of the vibrational modes. This is true for the translational motions, but not
for the rotational motions, which couple with the vibrational motions because of
cubic terms in the potential energy function (4.6). Consequently, one finds
eigenvalues close to zero, which correspond to the overall rotation of the molecule.
The columns that correspond to translational and rotational modes are omitted
from matrix L.

Equation 4.18 reveals that the mass matrix represents a metric, which has to be
eliminated to convert Equation 4.18 to an eigenvalue problem. This leads to using



4.3 Dissection of a Polyatomic Molecule into a Collection of Quasi Diatomic Molecules

mass weighted Cartesian displacement coordinates as shown in Equations4.12 4.15.
Normal coordinates Q are related to Cartesian coordinates according to

x=1Q (4.20)

The vibrational equations can also be formulated in an analogous way using internal
displacement coordinates g, which describe changes of internal coordinates (bond
length, bond angle, dihedral angle, etc.) instead of changes in atomic positions as
expressed by x.

q=(d,--,qn,)" (4.21)

For the transformation from internal to Cartesian coordinates, L additional coordi
nates corresponding to external motions (rotations and translations) are derived,
which possess eigenvalues A; close to or equal to zero. The transformation from
Cartesian to internal coordinates is done with the matrix C

C=M'B'G™ (4.22)

where B is defined by Equation 4.23
0g,(x
- (%) 2

and G is the Wilson matrix [75].
G =BM !BT (4.24)

The dynamics of the nuclear motions can be made independent of translations
and rotations and the vibrational problem is solved in the internal coordinates only.
The internal kinetic energy is given by

N U
T(@)=54"Gq (4.25)

and the potential energy is approximated in accordance with Equation 4.9 by

1

V(g) =5q'Fq (4.26)

where F is the internal force constant matrix, given by
F = CfC (4.27)
The vibrational equation in internal coordinates is given in Equation 4.28.
FD = G DA (4.28)

where D contains the normal mode vectors d,(u =1,..., Nyjp) given as column
vectors and expressed in internal coordinates. Equation 4.27 no longer contains the
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translational and rotational solutions and, consequently, D directly gives the trans
formation from normal coordinates to internal coordinates.

q=DQ (4.29)

The relationship between eigenvectors 1, and eigenvectors d,, is provided by matrix
C according to

I, = Cd, (4.30)

The vibrational equations presented above show that the normal modes associated
with the normal mode frequencies w, are delocalized modes since each normal
coordinate is a linear combination of internal coordinate displacements. In the
following section, it has to be discussed under which circumstances one can expect
normal modes to be localized within a given molecular fragment associated with
a specific internal coordinate.

4.3.1
Localized Vibrational Modes

The degree of delocalization of a normal mode is primarily determined by the
amount of coupling between the internal modes contained in the normal mode. In
this way, the off diagonal elements of the force constant matrix represent the
coupling force constants. This becomes clear when realizing that the “c vectors” of
the transformation matrix C, each of which are associated with a given internal
coordinate, can be used as internal localized modes [76]. Hence, a normal mode
would be strictly localized if

(dy), = Om (4.31)
with dy, being the Kronecker delta. Equation 4.31 leads to
Li=c (4.32)

where itis assumed thaty = n. Equation 4.32 will be fulfilled only if all displacements
along vectors ¢, and ¢, (m # n) do not couple and a diagonal force constant matrix F
is obtained with all coupling force constants Fy, = 0. This implies that electronic
coupling between the internal localized modes is zero. Second, there is always mass
coupling (due to the kinetic energy) between the c vectors because the G matrix of
Equation 4.28 is nondiagonal. Mass coupling can be suppressed to some extent if, for
example, the reduced mass of a diatomic fragment is dominated by the mass of one of
the atoms as in the case of a CH bond. However, if the two masses are comparable
neither Equation 4.31 nor Equation 4.32 is true. Often, vibrational spectroscopists
assume diagonal character of the G matrix provided there is a large mass difference
between the atoms participating in the molecular motions since this assumption
provides the only basis to discuss measured frequencies in terms of local mode
frequencies.
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Apart from mass coupling (coupling due to the kinetic energy), which is always
present, there is electronic coupling (coupling due to the potential energy) as
indicated by finite off diagonal elements of the force constant matrix expressed
in internal coordinates. Coupling constants are particularly large in the case of
bond bond interactions as they occur in delocalized nt systems or in strained cyclic or
polycyclic ring compounds. One observes that stretching force constants are the
largest constants in a molecular force field and that these force constants also show
the largest variation. Bending force constants are smaller than stretching force
constants and torsional force constants are in turn smaller than bending force
constants, at least as long as a torsional mode at a single bond is concerned. This
qualitative ordering of the magnitude of the diagonal force constants provides an
estimate of the coupling between stretching, bending, and torsional modes only if
the stretching and torsional modes couple only weakly [75, 77, 78].

The various forms of stretch stretch couplings can be described in the following
way. (a) a coupling between symmetry equivalent stretching modes, (b) coupling
between stretching modes involving the same atom combinations, and (c) coupling
between stretching modes involving different atom combinations. Only case (c)
causes coupling when the internal force constant reduced mass ratio of the different
bond types are compatible, whereas cases (a) and (b) will always be present to some
extent if there exist several bonds of the same type in a molecule. Case (b) coupling
will be small if the internal force constants of two bonds are very different as in the
case of AB bonds of different bond order (e.g., C C versus C=C). One internal
stretching mode can be decoupled from other stretching modes of the same type by
a change in mass as a consequence of isotope substitution so that the force
constant mass ratio considerably varies.

Localization of vibrational normal modes occurs in favorable cases with small
electronic and mass coupling effects between the internal motions, for example, for a
triatomic molecule such as HOCI where one internal stretching (OH stretching) is
largely decoupled from the other stretching mode (OCl stretching) and the bending
mode (HOCl bending). It is also reasonable to say that the bending vibration in HOCI
is decoupled from both stretching modes, that is, in HOCI there are three normal
modes, each of which is a largely localized vibrational mode associated with one of
the three internal parameters.

For a general polyatomic molecule, localization of a normal mode within a
particular molecular fragment is uncommon. For example, in aldehydes or ketones
the normal mode that is dominated by the C=0 stretching vibration is measured as
a strong band in the area 1600 1800 cm ' where the exact position of the band
depends not only on the bond strength but also on the fact that the corresponding
normal mode is not localized in the C=0 group. In formaldehyde, acetaldehyde, and
acetone, the internal C=0 stretching mode contributes 89, 85, and 84%, respectively,
to the normal mode considered to represent C=0 stretching.

The discussion shows the dilemma of using normal mode properties to unravel
geometric or electronic details of a molecule without being able to separate effects
associated with different molecular fragments so that reliable information is gained.
Because of these reasons, AICoMs [79] were introduced to obtain local modes that
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are associated with a specific structural unit of a molecule without being contam
inated by coupling with other vibrational modes.

4.3.2
The Adiabatic Internal Coordinate Modes

Each AICoM of a molecule is associated with just one internal coordinate g, that is,
itis independent of all other internal coordinates gy, (m # n). The construction of an
AICoM is based on how an internal coordinate mode v, would vibrate if the
associated internal coordinate were to be displaced by an amount g, in such a way
that the increase in the potential energy becomes minimal. To accomplish this
objective, mode v, led by g, (leading parameter principle [79]), must be constrained
to the molecular fragment associated with g, that is, the rest of the molecule is
allowed to relax upon applying a perturbation g;;. This is equivalent to minimizing the
potential energy given in normal coordinates Q under the constraint that the internal
coordinate displacement g, is kept constant (Equation 4.33a):

V(Q) = min. (4.33a)
g, = const. = g, (4.33b)

The potential energy V and the internal coordinate g, depend on the normal
coordinates according to Equations 4.34 and 4.35.

Nty

V(Q) = %Z ku O} (4.34)
w1
qn(Q) = zwé Danu (4.35)
w1

(see Equation 3.29) where k,, is the force constant for normal mode d,, and D, is an
element of matrix D of Equation 4.28. Equation 4.33a is solved with the help of the
method of Lagrange multipliers,

0

50, V(@ A@(Q q)] =0 (4.36)

where A is the Lagrange multiplier. Equation 4.36 leads to (4.37) and (4.38):

ovV(Q) ok o 0@ (Q) 4,
30, 30, (4+(Q) 4,) ’liagu =0 (4.37)
V(Q) _ ,(94:.(Q) g,
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where in Equation 4.38 it is considered that g,(Q) = ¢}, is a constant. When the
expression (4.34) for V(Q) and (4.35) for ¢,(Q) is inserted into (4.38), the result is

Noiy

ile‘kaZ—/liZD 0 (4.39)

anlzvl e aQUQl e .
which leads to

k,Qy = 2Dy, (4.40)

The solution of Equation 4.36 (which concerns internal parameter gy) for the uth
normal coordinate is

ol — (4.41)

where the superscript (n) of Q denotes a solution obtained under constraint (4.33b)
for g,. There is one such solution for each normal coordinate. When these solutions
are used to express the displaced internal parameter g, one gets

Nuip Ny D2
Q= Z DyQ " = Zk_* 2 (4.42)
w1 w1 M
which leads to expression (4.43) for the Lagrange multiplier
A L.
= N pr (4.43)
nu
n 1 k”

Equation 4.41 can be rewritten as

Doy

n k *
Q) = ﬁqn (4.44)

ky

v 1

which means that the constraint for internal coordinate g, leads to a change in the
normal coordinates. The adiabatic internal mode anQ for internal coordinate g,
expressed in terms of normal coordinates follows from (4.45):

The AICoM ag can be transformed into an AICoM expressed in Cartesian coordi
nates, a,,, with the help of the L matrix.

a, = Lay? (446)

Hence, Equations 4.45 and 4.46 completely specify the form of an AICoM.
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433
Properties of Adiabatic Internal Coordinate Modes

Once an AICoM vector is known, one can define a force constant that corresponds to
the AICoM motion.

k* =alfa, (4.47)

For deriving an AICoM frequency with the help of k%, one has to define the mass m?
that is associated with the AICoM. The latter has to fulfill two criteria. First, the
AICoM mass m¢ has to be extractable from the functional form of the internal
coordinate g,. Second, m$ has to be directly connected to the vibrational motion a,
caused by a change in g,. While the potential energy has already been used to derive
the AICoM vectors, so far nothing has been said with regard to the kinetic energy T.
It has been shown that upon perturbation of the equilibrium geometry caused by a
change in the leading parameter, g}, the atoms of the molecule move in such a way
that the kinetic energy adopts a minimum and the generalized velocity g, becomes
identical to g;,. Again, this leads to a constrained minimization problem, the solution
of which is found with the help of another Lagrange multiplier [79]. The results of
the derivation are

- % 1 af*
T(d;) = S me(a)’ (4.48)
and
a (bj‘an)z
=1 4.49
" pTM b, (449)

where vector b, corresponds to the nth column of the B matrix and where
bla, =1 (4.50)

since the AICoMs are properly normalized. Hence, the AICoM mass can be
recognized to be identical to a diagonal element G,, of the G matrix, which is a
generalization of the reduced mass to internal parameters connecting more than two
atoms. This is an indirect proof that the constraints puton Vand Tto get the AICoMs
are well chosen. With the AICoM force constant and the AICoM mass, it is
straightforward to obtain the AICoM frequency
Ko\ /2
of = (a, fa,Gy)"* = (Z) (4.51)
n

The force constant, frequency, and mass associated with a given AICoM for internal
coordinate g, provide the most important properties for its characterization. This
information can be used to investigate normal modes by considering them as being
composed of AICoMs. If one knows the decomposition of a normal mode in terms of
AICoMs, then one can clarify whether the normal modes are more or less delocalized
and what electronic or geometric information they contain.
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4.3.4
Characterization of Normal Modes in Terms of AICoMs

A chemist investigates and understands the molecular geometry and conformation
in terms of internal coordinates rather than in terms of Cartesian or normal
coordinates. All molecular structure information is detailed by listing the corre
sponding internal coordinates. Therefore, it is justified to add to the static
representation of a molecule provided by the internal coordinates, a dynamic
representation provided by the AICoMs. Accordingly, the AICoMs can be used as
the dynamic counterparts of the internal coordinates to describe the normal modes
and by this the dynamic behavior of a molecule. The problem is that there are no rules
to define an amplitude that specifies to what extent a particular adiabatic mode a, is
active in normal mode 1. Therefore, criteria were set up that should be fulfilled
by a given definition of an amplitude, A,,, to guarantee a physically meaningful
characterization of normal modes (CNM ) in terms of AICoMs. These criteria are (1) the
symmetry criterion, (2) the stability criterion, and (3) the dynamic criterion.

1) The symmetry criterion expresses the necessity that symmetry equivalent
adiabatic modes have to have the same amplitude in a normal mode provided
the normal mode retains this symmetry.

2) The stability of results concerns the independence of the AICoM amplitudes
from the choice of the internal coordinate set. The amplitudes should not change
significantly for a normal mode if they are calculated with different redundant
internal coordinate sets and the differences in the parameter sets only concern
coordinates irrelevant to the normal mode.

3) There must be a relationship between the amplitude A, of an AICoM contained
in a normal mode to the difference Aw,, = w, , in the way that a small
difference implies large amplitudes while large differences lead to very small
amplitudes. In other words, the scattering of points Ay, versus Aw,, = w,
should be enveloped by a Lorentzian curve. If this is the case, one can say that the
dynamical origin of the normal mode principle (dynamical origin of normal mode
concept) is fulfilled.

The amplitude that fulfills the above three criteria and performs best is defined in
Equation 4.52

(1, [f[a,)”

Ay = el
"t L) (anflan)

(4.52)

Amplitude A, of Equation 4.52 can be considered an absolute amplitude, but itis
common practice to renormalize A,, and to express it in percentage:

A% _ Anu
M A

It should be noted that the renormalized amplitudes of Equations 4.52 and 4.53 lead
to a description of the normal modes as it is often performed with the help of the

100 (4.53)
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CC, adiabatic mode C-C, c-vector mode

Figure 4.2 Two internal vibrational modes of  indicated by solid arrows (strong movements)
bicyclobutane as described by adiabatic (left) or dashed arrows (weak movements). (All CH
and c vector modes (right). Top: Folding motion  stretches on the left) Very small displacements
of the ring (C C). Bottom: Stretching of the  are not shown for the sake of clarity (B3LYP/6
bridge bond CCpigge. Atom movements are 31G(d,p) calculations).

potential energy distribution(PED) analysis [80 83]. However, the PED analysis suffers
from several deficiencies that can lead to nonphysical results as is demonstrated
by the following example.

PED and the CNM analyses with adiabatic amplitudes were carried out for
bicyclobutane (Figure 4.2), for which the normal modes had been calculated at the
B3LYP/6 31G(d,p) level of theory. For this purpose, a parameter set containing all CC
and CH stretches, the nonbonded “C - - - C stretching” interaction (see Figure 4.2) for
the description of the ring bending (puckering), and two HCC bends for each
hydrogen (in total 24 parameters) was constructed. If one compares the results of the
PED and the CNM analyses, a major difference in the description of the ring folding
and the bridge stretching motion is observed.

Figure 4.2 shows that the adiabatic modes for the ring folding (C - - - C stretching)
and the CCiyigge stretching are localized in the corresponding molecular fragments.
The movements of the hydrogen atoms follow that of the C atoms in the energetically
optimal way without carrying out a coupled CH stretching motion. In Figure 4.2, this
is indicated by dashed arrows giving the direction of the H atom movements. The
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CClrigge stretching motion is similarly described by the c vector motions even though
the movement of the H atoms is now stronger since it has to comply with fixed CH
bond distances, that is, all relaxations in the geometry because of CCpyjgge stretching
are suppressed for those internal coordinates defined in the parameter set for
bicyclobutane. However, ¢ vector motion for ring folding (C - - - C stretching) differs
considerably from the corresponding AICoM in the way that the CH, carbons hardly
move. Instead, the hydrogens at the bridging carbons strongly move keeping the
CClyigge distance and those CCH bending angles defined in the parameter set
constant, while changing the angle HCCj,igge (not contained in the parameter set),
which is of course a consequence of the construction of ¢ vector modes. Clearly, the
folding motion is not correctly described and this has serious consequences for the
PED analysis.

Both methods predict that for normal mode 1, the dominant contribution is the
folding motion of the ring (C - - - C stretching): It amounts to 34.8% according to the
CNM analysis and to 48.3% according to the PED analysis. However, for the latter
description ring folding is also dominant for normal mode 5. Actually, normal mode 5
consists of a vibration of the CCpyigge and C - - - C fragments in such a way that when
the CCyigge bond becomes longer, the C--- C distance becomes shorter, and the
hydrogens follow the vibration of the carbon atoms to which they are attached. The
CNM analysis based on adiabatic amplitudes describes mode 5 as being composed
of 40.1% stretching of the CC bridge bond and 28.5% of ring folding as reflected by
a vibration of the C- - - C unit. Hence, mode 1 possesses more ring folding character
whereas mode 5 is dominated by a vibration of the CC bridge. However, the PED
amplitudes suggest a contribution of 60% of ring folding C---C and 17.8% of
CClrigge stretching simply because the ¢ vectors provide a misleading description of
the folding motion as shown in Figure 4.2. Hence, the PED analysis suggests that
there is more than one ring folding motion in bicyclobutane, which makes little sense
and indicates that PED can lead to physically unreasonable descriptions due to the
mechanical behavior of ¢ vectors. This is confirmed by the CNM analysis based on
the AICoM amplitudes.

The example given (many more examples are found for mono and polycyclic
molecules) reveals the deficiencies of the PED analysis, which primarily result from
the use of ¢ vectors. The disadvantages of the latter have explicitly been discussed in
the literature [76]. The CNM analysis based on the amplitude A, of Equation 4.52 has
been applied with success in various investigations [84].

4.35
Advantages of AICoMs

AICoMs have the advantage that they are derived from a clear dynamic principle,
namely, the leading parameter principle, which points out that a single internal
coordinate g, (in general, a single internal parameter) defines the displacements of
the nuclei from their equilibrium positions and, by this, leads the internal mode a,.
The leading parameter principle [79] implies a new set of Euler Lagrange equations
because the generalized momenta for all other internal coordinates g, (m # n)
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become zero [79], which can be pictured in the way that all atomic masses outside the
molecular fragment are considered as massless points. Hence, the derivation of the
AICoMs follows the same procedure as the derivation of normal modes and it
has been shown that the solutions of the Euler Lagrange equations for the AICoMs
are obtained by requiring that the potential energy V is minimized for a geometric
perturbation under the constraint that the perturbation is defined by g}, [79].

The second advantage of the AICoMs is that their properties, namely, adiabatic
force constant, adiabatic mass, and adiabatic frequency, are clearly defined and easy to
calculate. The adiabatic mass is a generalization of the reduced mass for diatomic
molecules and corresponds to G, which adds credibility to the physical basis of
the AICoMs.

The third advantage of the AICoMs is that they lead to the CNM analysis of
normal modes in a more sound and physically meaningful way than, for example,
provided by the PED analysis. This is due to a clear definition of the amplitudes
Ay [85]. The CNM analysis provides an easy way of analyzing vibrational spectra
and quantitatively specifying the degree of delocalization of each vibrational mode.

As the fourth advantage, it has to be mentioned that the CNM analysis simplifies
the correlation of the vibrational spectra of different molecules.

The fifth advantage is that an AICoM intensity can be derived that can be used to
investigate the charge distribution within a molecule.

AICoMs are discussed in this chapter for the equilibrium geometry of a molecule.
However, they can also be defined and applied to a reacting molecule. In this case,
the AICoMs are based on generalized modes and are separately discussed in a one
dimensional subspace, the reaction path, and a 3K (L+ 1) dimensional subspace
orthogonal to the reaction path. As has been shown by Konkoli, Kraka, and
Cremer [86, 87], the AICoMs lead in this case to a wealth of information and help
describe the reaction mechanism in great detail.

An important advantage of AICoMs is that they can also be derived from
experimental vibrational spectra and establish in this way a solid connection
between theory and experiment. This is pointed out in the following.

Calculated AICoM frequencies and force constants suffer in the same way as the
frequencies and force constants of normal vibrational modes from the deficiencies of
the quantum chemical method used and the harmonic approximation employed in
standard calculations of vibrational spectra. Even when applying efficient scaling
procedures, there is no guarantee that ab initio frequencies accurately reproduce the
fundamental frequencies of the experiment. In view of this, it seems to be much more
useful to calculate the adiabatic frequencies in such a way that the experimental
frequencies of the fundamental vibrations are exactly reproduced. In this way, each
adiabatic internal frequency is the exact local mode counterpart of the measured
vibrational frequency.

Since an experimental vibrational spectrum can only provide the frequencies of the
fundamentals, it raises the question how the vibrational modes are to be obtained. In
principle, this is achieved by setting up a force field from available experimental
information and then using the theory described above. Alternatively, the force field
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can be calculated by correlation corrected ab initio or DFT methods. Combining the
two sources of information, namely, experimental frequencies and calculated normal
modes, it is possible to determine that force constant matrix that in the harmonic
approximation would reproduce fundamental frequencies exactly. Clearly, the force
field obtained in this way is made up by effective force constants rather than pure
quadratic force constants since the elements of the force field not only have absorbed
all deficiencies of the quantum chemical calculation (correlation errors, basis set
errors) but also cover all anharmonicity effects, normally described by cubic and
quartic force constants. The use of this force field in the AICoM calculation leads to
adiabatic force constants and adiabatic frequencies, which directly correspond to
the measured vibrational spectrum and, therefore, can be used for analysis of the
vibrational spectrum and for the description of bond properties.

The theory needed to obtain experimentally based AICoM properties is described
in standard books on vibrational spectroscopy and can be summarized in the
following way [88]. If one considers the difference between experimental funda
mental frequencies " and calculated harmonic frequencies w,, as a relatively small
error caused by a similarly small error in the force constant matrix, then one can
assume the changes in the normal mode vectors to be negligible and use first order
perturbation theory to set up the corrected vibrational secular Equation 4.54

D(Fo+AF)D" = A +AA (4.54)

where Fy, D, and A correspond to the force constant matrix, the eigenvector matrix,
and the eigenvalue matrix, respectively, of the ab initio or DFT calculation. It
holds that

D'F,D = A (4.55)

because the eigenvectors D are normalized with regard to G, that is, DDT = G.
Accordingly, one can write the equation for the first order correction as

DTAFD = AA (4.56)
from which the correction for the force constant matrix results as
AF = (D 1)TAA(D) ' = G 'DAADTG™! (4.57)

Hence, diagonalization of the experimentally determined correction matrix AA
leads to AF and the force constant matrix Fy+ AF, which correctly reproduces
experimental frequencies. Once the force constant matrix Fy + AF is determined,
one can apply the adiabatic mode analysis in the same way as it is applied to calculated
vibrational spectra.

Equation 4.54 can also be used if only part of a vibrational spectrum of a given
molecule has been measured. Those frequencies, which have not been experimen
tally observed, can be taken from calculated spectra after appropriate scaling. In this
way, experimental adiabatic frequencies can be determined for any molecule, for
which sufficient infrared and/or Raman information is available.
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4.4
Local Mode Properties Obtained from Experiment

As was shown in the previous section, both the mass and the electronic coupling are
responsible for the delocalized nature of the normal vibrational modes. Apart from
this, there is the problem of Fermi resonances. The transformation that leads to a
separation of the quadratic terms in Equation 4.9 does not separate the cubic and
quartic terms of expansion (4.6). These anharmonic terms are responsible for the fact
thatan overtone or a combination band can mix with the fundamental of a vibrational
mode. This phenomenon is called Fermi resonance and plays an important role in
vibrational spectroscopy [77, 78]. For example, the CH stretching modes undergo
Fermi resonances with the first overtone of the CH; and CH, bending modes
(both CCH and HCH bending). This leads to a shift in the CH stretching frequency
that makes the determination of a localized CH stretching frequency rather uncer
tain [41, 89 94].

Actually, the CH stretching motion and other XH stretching motions might be
considered as being ideally suited to represent localized modes. For example, the
stretching of a terminal bond couples always less than the motion of a bond in a
central position of the molecule. Second, the mass ratio of a heavy atom X and H is
optimal to reduce mass coupling. Finally, there are little electronic coupling effects
between XH bonds with other bonds (with the exception of hyperconjugation and
anomeric effects). If one compares the coupling between symmetry equivalent
stretching modes with the coupling between stretching modes involving the same
atom combinations, and the coupling between stretching modes involving different
atom combinations, then the first will always be present in symmetric molecules and,
therefore, it will be the most important coupling effect for CH bonds whereas the
second and third effects have smaller importance. Considering also Fermi reso
nances, the chance of observing a localized CH or XH stretching motion in a
molecule is much smaller than might be expected. However, in certain situations
one can obtain local mode information nevertheless, which will be discussed in the
following section.

4.4.1
Isolated Stretching Modes

McKean considered the problem of deriving isolated CH stretching motions and
provided a simple solution by replacing in a given molecule all H atoms but the target
H by their D isotope thus yielding CD,H and CDH groups [41,89 94]. The change in
mass decouples the remaining CH stretching mode from all CD stretching modes
and particularly those that previously (as CH stretching modes) coupled strongly
because of symmetry. In addition, one can make three other assumptions:

1) Due to isotope substitution, the CH stretching mode is largely isolated, which
means that it is decoupled not only from the CD stretching vibrations but also
from other stretching, bending, or torsional modes.
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2) For transition from asymmetrical/symmetrical CH,, vibrations to an isolated CH
stretching mode, all anharmonicity effects stay the same.

3) After D isotope substitution, all Fermi resonances for the CH stretching mode
are suppressed.

As a result, the CH stretching mode is largely localized and the corresponding
mode frequency, that is, the isolated stretching frequency wjs(cr), can be considered
to accurately reflect the value of a local mode frequency.

McKean prepared a large number of isotopomers to measure isolated CH
stretching frequencies and to investigate their dependence on geometric and
electronic features of a given molecule [41, 89 94]. He showed that in this way CH
bonds can be used as sensitive antennae or probes testing the properties of
molecules. While his first work just focused on CH bonds, he and his coworkers
studied later also other XH bonds (X: Si, Ge). In addition, other authors used
McKean'’s approach to describe local XH stretching modes [95 97].

Investigations involving other than CH bonds revealed the large difficulties an
experiment faces when a generalization of McKean’s approach is attempted. For the
purpose of decoupling one internal stretching mode from other stretching modes
of the same type, the change in mass by isotope substitution must be so large that it
significantly modifies the mass ratio. Replacement of H by deuterium results in a
doubling of the mass and a satisfactory suppression of coupling and Fermi reso
nances so that any residual coupling for the isolated CH stretching modes is
estimated to be less than 5 cm ™. For a CC bond, one would obtain a very small
effect if 2C is replaced by *C or even '*C since the change in the mass ratio is
too small in these cases to play any significant role in the localization of the CC
stretching motion. Hence, this example demonstrates that the isolated stretching
frequencies are very useful quantities for the description of XH bonding in terms of
local modes. However, a generalization of this approach faces too many difficulties to
play any important role in the description of general AB bonds or when trying to verify
the applicability and limitations of the Badger rule. In this situation, theory has made
an important contribution.

Isolated stretching modes can be calculated for a given molecule containing a CH,,
group by simply replacing for the calculation of the G matrix the masses of the
H atoms by those of the D isotopes but keeping for the isotopomer the force field of
the parent molecule. In this way, harmonic isolated CH stretching modes wi* are
calculated, which can easily be compared with both McKean’s experimental w'$
values for CH stretchings and AICoM CH stretchings. B3LYP/6 31G(d,p) calcula
tions produce isolated CH stretching frequencies, which correlate well
(R*=0.985 [57]) with McKean’s experimental ones. Calculating also the correspond
ing AICoM CH frequencies reveals that AICoMs are the theoretical equivalences
of McKean'’s isolated stretching modes:

a) There is a linear relationship between isolated CH stretching frequencies and
AICoM CH stretching frequencies with a correlation coefficient of 0.997.

b) Sincetheisolated CH stretching modes can also be calculated, the equivalence of
AICoMs and isolated stretching modes can be quantified by the CNM analysis.
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With just a few exceptions discussed in the following, the overlap between
AICoM and isolated modes is above 99% (in two cases 98%).

c) Theisolated CH stretching modes are local modes that imply a relaxation of the
electron density distribution upon perturbation of the CH equilibrium bond
length. We find very similar relaxation effects for calculated stretching modes
and AICoM stretching modes.

Exceptions are found for alkines for which a residual coupling between CH
stretching and triple bond stretching is observed. Acetylenic hydrogens are not
completely isolated from the C=C stretching as reflected by an adiabatic overlap
amplitude A,,, which is smaller than 96% when the CH stretching AICoM of
H CXis compared with the normal mode representing an isolated CH stretching
vibration. This explains why isolated CH frequencies ws?, ata triply bonded C deviate
from the linear relation between CH(AICoM) and isolated CH stretching frequen
cies [41]. Coupling leads to an error of 45 cm™' in the isolated CH stretching
frequency of acetylene. Similar, but much smaller, residual mass and electronic
couplings probably exist for other CH couplings and explain the small scattering of
isolated stretching frequencies (errors about 5 cm ™) relative to the corresponding
AICoM frequencies. Hence, one has to consider the residual coupling when one uses
isolated stretching frequencies as a tool for structural analysis.

The fact that the isolated stretching frequencies can be replaced by AICoM
stretching frequencies as their theoretical counterparts leads to a number of
advantages: (1) The linear relationship between isolated CH stretching frequencies
and CH bond lengths found by McKean and used to predict unknown CH bond
lengths with an accuracy of +0.001 A, once the isolated CH stretching frequency is
measured, is confirmed for AICoM CH stretching frequencies [57] where both
experimental or calculated values can be used. (2) Contrary to the determination of
isolating stretching frequencies, which so far could be carried out only for XH
bonds [41, 89 94], AICoM stretching frequencies can be easily determined for each
bond of a molecule and McKean relationships can be established for all types of
bonds. For example, it could be demonstrated that a quadratic relationship between
the AICoM CC stretching frequencies and the CC bond length exists [57].

4.42
Local Mode Frequencies from Overtone Spectroscopy

Another way of obtaining information on localized XH stretching modes is to record
overtone spectra of these vibrational modes [98]. Henry has pioneered this work by
showing that the higher overtones of an XH mode can be reasonably well described
with an anharmonic potential of a quasidiatomic molecule [98, 99]. Higher overtones
(Av > 3) of XH stretching modes reveal considerable local mode character. For
overtones with Av = 5, 6, one observes mostly one band for each unique XH bond,
even if there are several symmetry equivalent XH bonds in the molecule. In
fundamental and lower overtone modes, there is always a splitting of the frequency
into, for example, a symmetric and an antisymmetric mode frequency of two
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symmetry equivalent XH stretching modes, but this splitting virtually disappears for
overtones with Av > 5. In general, the different linear combinations of symmetry
equivalent XH stretchings become effectively degenerate for the higher overtones.

Since the overtone intensity decreases for each higher overtone level, conventional
spectroscopy cannot be used for overtones with Av larger than 4. In gas phase
investigations, the higher overtones are recorded by intracavity dye laser photoacustic
spectroscopy, which uses sophisticated techniques to enhance the signal to noise
ratio in the overtone spectra [98]. The local XH stretching modes are highly
anharmonic. The very presence of overtones indicates that XH modes are anhar
monic where the more the anharmonicity increases the higher the overtone is.

The local mode behavior of the fifth overtone (v = 6) of CH stretching modes can
be verified by comparison with the corresponding AICoM frequency. In Table 4.3,
frequencies for the fifth overtone of CH stretchings of alkane, alkenes, and aromatic
molecules are listed [100 102]. The values for thiophene are taken from liquid phase
spectra whereas all other spectra were measured for the gas phase at room temper
ature. For isoxazole, there are only two overtone frequencies for the fifth overtone,
which suggests that the difference between the overtones of the stretching motions
of the C(4)H and C(5)H bonds are too small to be detected in the spectra. Similarly
for toluene, the overtone spectra cannot resolve any difference between the overtones
of the meta and para CH stretchings.

In Figure 4.3, AICoM frequencies w%(CH) are correlated with frequencies taken
from overtone spectroscopy (see Table 4.3). There is a linear relationship between the
two quantities (correlation coefficient R? = 0.990), which again confirms that
AICoMs are suitable local vibrational modes that are related to the local modes of
overtone spectroscopy.

The use of overtone spectroscopy as a means of obtaining information on local
vibrational modes and their properties is limited to terminal bonds, of which so far
only XH (X=C, N, O, S, and so on [103, 104]) bonds were investigated. Although
coupling due to the potential energy (electronic coupling) is significant only for
delocalized bonds, there is always coupling between local modes due to the kinetic
energy (mass coupling). This coupling will be weak in the overtone spectra if the mass
ratio between the two atoms of the bond considered is small as in the case of XH
bonds. The investigation of isotopomers improves the situation, but these improve
ments are limited to XH bonds where the D,H mass ratio is favorable. Hence, a
generalization of the local mode description by overtone spectroscopy is not possible.

443
Local Mode Information via an Averaging of Frequencies: Intrinsic Frequencies

Spectroscopists have often tried to assess the properties of local modes by simple
averaging methods. For example, if two CH stretching modes in a CH; group interact
to give a symmetric and an antisymmetric stretching mode, one can estimate the
frequency of the corresponding local CH mode by taking the arithmetic mean of the
frequencies of the symmetric and antisymmetric CH stretching vibration. A theo
retical approach based on this idea was suggested by Boatz and Gordon [105], who

135



136

4 Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes

Table 43 Comparison of measured overtone frequencies for CH stretching (Av  6) with the
corresponding B3LYP/6 31G(d,p) AICoM frequencies for various organic molecules.”

Molecule Bond (03 Av 6
Methane 3129 16150
Fluoromethane 3074 15972
Chloromethane 3152 16216
Ethane 3085 15824
Ethene 3188 16550
Ethyne 3437 18430
Propane CHs, ip 3085 15845
CHs, op 3074 15746
CH, 3047 15562
Cyclopropane 3180 16504
Benzene 3186 16550
Furan CO) H 3285 17223
C(C) H 3261 17121
Isoxazole Cc(0) H 3273 17143Y
Cc(C) H 3284 17143
C(N) H 3248 16911
Thiophene C(S) H 3260 168907
c(c) H 3218 167007
Propene C Htrans) 3195 16569
C Hcis) 3175 16395
H (Me)C 3138 16236
CHs, ip 3099 15895
CHs, op 3055 15681
n Butane CHs, ip 3086 15829
CHs, op 3074 15751
CH, 3036 15473
Isobutene CH, 3186 16474
CH,, ip 3107 15978
CHs, op 3050 15628
Isobutane CH 3015 15305
CHs, ip 3065 15683
CHs, op 3079 15804
Toluene C(ortho) H 3170 16430
C(meta) H 3184 16543
C(para) H 3188 16543
CH, ip 3055
CH;, op 3062

999 Measured frequencies from Refs [100 102].ip and op denote in-plane and out-of-plane hydrogen
atoms. All frequencies in cm *

derived the intrinsic frequencies wEC as representatives of local mode frequencies

associated with an internal coordinate gy,.

Ny Nparm
=D P o) (4.58)
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Figure 4.3 Correlation of measured overtone frequencies Av 6 for CH stretching modes with
the corresponding calculated adiabatic CH stretching frequencies. For details, see Table 4.3.

where P! leads to the PED amplitudes [105] and Npam defines the number of
internal parameters used in the set of internal coordinates. Npayy, will be equal to Ny,
ifanonredundant parameter setis used; however, in general, Np,,y, can be larger than
Nyip for the calculation of the intrinsic frequencies.

Equation 4.58 reveals that the intrinsic frequencies wB¢ are constructed as an
average of those normal mode frequencies that have nonzero PED amplitudes for
the internal parameters g,. This averaging approach leads to problems when trying to
obtain reliable local mode information, which becomes obvious when comparing
intrinsic modes with AICoMs.

1) Theintrinsic frequency is a frequency without a vibrational mode. This has to do
with the fact that the derivation of ®2¢ does not explicitly revert to a dynamic
principle. AICoM frequencies correspond to AICoM vectors, which in turn are
based on the leading parameter principle (the dynamic principle [79]) and the
modified Euler Lagrange equations for the vibrational problem expressed in
terms of local modes.

2) The intrinsic frequencies are parameter set dependent whereas the AICoM
frequencies are completely independent of the size and the composition of the
set of internal coordinates used for the description of the molecular geometry.

3) Intrinsic frequencies can become negative for a true equilibrium geometry,
which is not the case for AICoMs.

4) Intrinsic frequencies reflect the molecular symmetry only when redundant
coordinate sets are used. AICoM frequencies comply with the molecular
symmetry, no matter whether redundant or nonredundant parameter sets are
used to describe the internal vibrations.

5) For the intrinsic frequencies, electronic and mass effects are not correctly
separated, which is a problem when discussing electronic effects in terms of
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Table 4.4 Intrinsic frequencies wE® and AICoM frequencies ®? in cm ' given for 10 different
parameter sets of CH, as calculated at the HF/6 31G(d,p) level of theory.?).

1 2 3 4 5 6 7 8 9 10
56
CH,; 3461 3452 3421 3322 3306 3286 3261 3261 3261 3261
CH, 3452 3421 3322 3306 3293 3276 3272 3261 3261
CH; 3421 3322 3306 3293 3276 3272 3261 3261
CH,4 3322 3306 3286 3276 3261 3261 32061
H,CH; 1570 1563 1551 1529 1577 1419
H5;CH, 1563 1551 1529 1460 1419
H,CH; 1551 1577 1577 1419
H,CH; 1577 1577 1419
H;CH,4 1577 1419
H,CH, 1419
o
All CH 3255 3255 3255 3255 3255 3255 3255 3255 3255 3255
All HCH 1560 1560 1560 1560 1560 1560

a) The composition of parameter sets 1 10 (top line) is obtained by adding internal coordinates in
the first column, that is, parameter set 1 contains just the CH,; bond length, parameter set 2 the
bond lengths CH;, CH,, and so on.

intrinsic frequencies. However, for the AICoM frequencies electronic and mass
effects are clearly separated.

6) As a consequence of (5), intrinsic frequencies do not only lack an intrinsic mode
but also an intrinsic force constant, which are both defined for AICoMs.

For the purpose of showing some of the deficiencies of the intrinsic frequencies,
in Table 4.4 intrinsic and AICoM frequencies for methane are listed employing
HF/6 31G(d,p) theory and using eight incomplete (nonredundant) parameter sets
(1 8 internal coordinates), one complete, nonredundant parameter set 3K L=9
internal coordinates), and one overcomplete, redundant parameter set with 10
internal coordinates. From Table 4.4, it can be seen that the intrinsic frequencies
adopt different values for different numbers of coordinates in the parameter set. Even
worse, for a given parameter set the intrinsic frequencies can take different values
for symmetry equivalent stretching and bending modes. Even for the complete,
nonredundant parameter set with nine parameters, the intrinsic frequencies for the
bending motions are different. When this is remedied in the way suggested by Boatz
and Gordon [105], the bending frequencies w2¢ become identical. Upon increasing
the parameter set, the intrinsic frequencies decrease toward the values of the
redundant set.

For the AICoM frequencies of methane, just two values are obtained, namely,
3255 cm ™! for CH stretchings and 1560 cm ™' for HCH bendings, no matter how
many coordinates are used in the parameter set (see Table 4.4). It is obvious that the
intrinsic frequencies of the redundant parameter set are the only one that should be
compared with the AICoM frequencies and used for the discussion of electronic
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structure. However, it is by no means clear how intrinsic frequencies of similar
reliability are obtained for a larger molecule with no symmetry at all. We have found
in this work that for normal acyclic molecules using complete, nonredundant basis
sets the intrinsic frequencies of stretching modes may agree well with the adiabatic
frequencies. Problems arise with bending frequencies and even more with torsional
frequencies, which can become negative.

444
Compliance Force Constants

A way of obtaining local mode information, although it does not appear so on first
sight, is to use compliance force constants. The latter are obtained when expressing
the potential energy of a molecule in terms of generalized displacement forces rather
than internal displacement coordinates (see Equation 4.26) [106, 107]:

V(g) = %gch (4.59)

where the elements of the compliance matrix C are given as the partial second
derivatives of the potential energy V with regard to forces i = giand fj = g

v
0fidfy

The gradient vector g, of Equation 4.59 can be obtained by differentiation of
Equation 4.26:

Cj= (4.60)

g, = Fq (4.61)
thus yielding
1 . .
V(g) = Eq' F'CFq (4.62)

Comparing Equation 4.62 with Equation 4.26 clarifies that the compliance matrix
C is identical with the inverse of the force constant matrix:

C=F"! (4.63)
From Equation 4.61, one sees that
q= F_lg (4.64)

Hence, the diagonal compliance force constant Cj; gives the displacement of internal
coordinate g; under the impact of a unit force while all other forces are allowed to
relax [107]. This leads to the fact that off diagonal elements of C are largely reduced.
Although the compliance force constants are force constants without a vibrational
mode, there seems to be some relationship with adiabatic force constants and as
a result also with the local modes associated with the adiabatic force constants.
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The compliance force constants are largely independent of the internal coordinate
set used. In a similar way as the adiabatic force constants describe the strength of
a bond, the compliance force constants measure its weakness (the larger C(AB) the
weaker is bond AB, the smaller C(AB) the stronger is bond AB). Compliance force
constants have been used to describe the gallium, gallium triple bond [108], the
strength of the NN and CO bond in NNH " and COH*, respectively [109] or
H bonding in Watson Crick base pairs [110].

It will be interesting to derive the relationship between adiabatic and compliance
force constants and to investigate whether both force constants can be used in a
confirmative or even complementary way when describing chemical bonding.

4.5
Badger-type Relationships for Polyatomic Molecules

The vibrational spectra of 51 polyatomic molecules with a total of 170 different bonds
were analyzed for the purpose of determining adiabatic and c vector vibrational
modes. Exclusively, those molecules were considered for which measured vibrational
data are available so that either directly or with the approach described in Section 4.3.5
experimental AICoMs and c vector modes could be determined and compared
with the corresponding modes calculated at the B3LYP/6 31G(d,p) level of theory.
This objective of the current analysis limited the molecules investigated exclusively
to neutral closed shell systems with normal bonding situations. This has to be
considered when discussing the generalization of the Badger rule to polyatomic
molecules.

The analysis of the stretching force constants and frequencies provided new
insights into the usefulness of AICoMs. Calculated and experimental adiabatic
frequencies correlate with a correlation coefficient R? of 0.997. The harmonic AICoM
frequencies can be scaled down to experimental AICoM frequencies using a factor
of 0.963. Similarly, calculated AICoM stretching force constants, if multiplied by
0.928, satisfactorily agree with experimental AICoM stretching force constants.
Hence, it will be possible to base future studies on calculated adiabatic stretching
modes. The correlation of AICoM stretching frequencies and force constants with the
corresponding ¢ modes values led to a somewhat lower correlation coefficient R? of
0.988. Analysis of the data revealed that c mode stretching force constants are always
somewhat larger than AICoM force constants where the difference k° k* can be
considered as a measure for the degree of mode coupling of the bond stretching
vibration. For CH stretching force constants, deviations are between 0.05 and 0.10
mdyne/A, whereas for CC stretching force constants deviations increase to 0.2 0.3
mdyne/A. If carbon is bonded to a hetero atom, a further increase in the deviation
from AICoM force constants is found. However, deviations decrease when compar
ing CX single bonds with double and triple bonds. Adiabatic and c vector force
constants for triple bonds do hardly differ.

Not surprisingly, deviations as large as 1.9 mdyne/A are found for CC and CX
bonds in conjugated five and six membered rings. In general, strained cyclic and
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polycyclic systems lead to a relatively large coupling effect of bond stretching motions
with other stretching and bending motions. These observations clearly show that
¢ mode vibrations mostly used in vibrational analysis are not suited to study bond
properties. It remains to be clarified why studies based on these modes could lead to
Badger type relationships. A typical example is the study of Ohno and coworkers who
could derive a Badger type relationship for 74 different CX bonds using c vector
vibrational modes [61]. The CX double and triple bonds investigated outnumbered
the CX single bonds by a factor 2, that is, only a relatively small number of single
bonds were considered. Also, the number of cases with X belonging to the third or the
fourth period was large. Finally, all molecules with divalent Si or Ge were excluded
from the test set as was also the case for triply bonded Si and Ge. Hence, the set of
investigated molecules did not contain any “problem” cases and c vector stretching
force constants, although contaminated by coupling contributions, seemed to verify
the Badger rule.

In Figure 4.4, the AICoM stretching force constants of 51 polyatomic molecules
are given in dependence of the corresponding bond lengths. Hence, Figure 4.4 is
based on the description of each polyatomic molecule as a collection of N quasi
diatomics where N is the number of bonds in the molecule. In so far it is not
surprising that the diagrams in Figure 4.4 are closely related to those obtained for
diatomic molecules (Figure 4.1). However, one essential difference between the
Badger type diagrams for diatomics and those for polyatomics becomes obvious: In
the case of the latter molecules, there is one ke . curve for each type of bond, thatis,
the curves for OH, NH, CH, and BH bonds are all different, even though they seem to
be closely related. This also holds for the relationships describing CC, CN, or CO
bonds. We note that this observation is in agreement with the prediction made in
Chapter 4.2 and suggests that for each bond type AB specified by atoms A and B and
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< CN A k(BH)
g +  Kk(CH)
< 204 H
i 2-2 ®  k(NH)
= A k(OH)
g -] = kCo |
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Figure 4.4 Adiabatic stretching force constants given in dependence of equilibrium bond lengths
both calculated at the B3LYP/6 31G(d,p) level of theory for polyatomic molecules.
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the electronic state of the polyatomic molecule an individual curve can be expected.
The curves grouped according to A(period i) B(period j) combinations, however, do
not coincide.

We have used various ways of fitting the data in Figure 4.4: The original Badger
formula was tested, that is, (kﬁB)fl/ * was plotted against r., but other possible
relationships were also tested, which led to (kZB)_l/ P with p=2, 4, 5, or 6 in the
general form of (4.65):

kY =are+b p=2 6 (4.65)
The results of these tests can be summarized as follows:

1) Badger’s rule is fulfilled for individual bonds of polyatomic molecules provided
that they are described by the AICoM concept and all bonds considered possess
similar electronic features. The correlation coefficients are between 0.98 and
0.99 or even higher. However, if cations, anions, or open shell cases are included,
the scattering of data points will increase as seen in the case of the diatomics.

2) According to the calculated correlation coefficients, there is hardly any difference
whether p=3, 4,5, or 6is used in relationship (4.65). One can avoid relationships
of the form (4.65) by using the exponential form (4.66) previously suggested by
other authors (entries 31, 33, 47, 50, and 53 in Table 4.1):

k? = qe e (4.66)

The exponential dependence of the adiabatic force constant on the calculated bond
length in Equation 4.66 accounts for all possibilities provided by Equation 4.65.

By defining an effective bond length, the curves of Figure 4.4 can be merged in one
XH and one CX curve (see, for example, Figure 4.5). This provides evidence that

5 T I T I I I I

Adiabatic Stretching Force Constant [mdyne/A]

1.15 1.2 1.25 13 135 14 1.45 1.5 1.55
Effective Bond Length R [A]

Figure 4.5 Merging of CX Badger type relationships from Figure 4.4 by introducing an effective
bond length R.



4.6 Conclusions

a universal Badger type relationship can be derived on the basis of hard sphere
adjustment parameters dap characteristic of A and B, their charge, and spin situation
rather than just the location of A and B in periods i and j. Work is in progress to
determine these parameters.

4.6
Conclusions

A universal relationship between bond length r(AB) and bond stretching force
constant k(AB) valid for both diatomic and polyatomic molecules can be derived only
if two major prerequisites are fulfilled.

1) The bond stretching force constant must correspond to a local stretching mode
that is characteristic of the bond AB only. A generally applicable way of deriving
local modes is provided by the adiabatic internal coordinate mode concept. As
described in this work, AICoMs can be determined for all bonds of a molecule
using either calculated or experimental vibrational mode frequencies. AICoMs
have been verified in this work as suitable local modes by comparing them with
McKean’s isolated XH stretching modes and the local CH modes from overtone
spectroscopy. They differ from c vector modes because the latter are contam
inated by the coupling with other vibrational modes. The averaging of vibrational
frequencies to obtain local mode information is also not suitable because it can
lead to physically not meaningful local mode frequencies.

2) Inview of the increasing size of an atom A or B with the number of its electrons,
a universal bond length force constant relationship must be based on effective
bond lengths, which are corrected for the different hard sphere sizes of A and B.
This work has shown that correction parameters cannot be uniformly defined for
all atoms of a period i and all atoms of a second period j. Instead, they have to
consider the charge and spin multiplicity of bond AB (or the molecule containing
bond AB). In addition, one has to consider that in strained molecules such as
cyclopropane the actual bond path is significantly longer than the internuclear
distance because of the (concave or convex) bond bending. Because of this, the
stretching force constant turns out to be smaller (indicating a weaker bond) than
the length of the bond might suggest.

The results obtained in this work indicate that different bonding situations (single,
double, triple bonded AB) of closed shell molecules can be described with just one
hard sphere parameter. Test calculations for cations and anions (not described in this
chapter) suggest that the number of parameters for a given bond AB will not be larger
than 3 or 4 because in this way cationic, anionic, closed, and open shell situations can
be described for a large body of molecules containing bond AB. Work is in progress
to determine hard sphere parameters for bonds formed by atoms of the first three
periods in a systematic way. This work will lead to a universal Badger type relation
ship that will facilitate the derivation of suitable initial guesses of the Hessian matrix
in quantum chemical geometry optimizations, the construction of force fields, and
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the prediction of bond lengths from measured vibrational data in surface studies,
for molecular aggregates, and catalysis. Conversely, calculated bond lengths can be
used to predict via the stretching force constant the strength of the bond.
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5
The Simulation of UV-Vis Spectroscopy
with Computational Methods

Benedetta Mennucci

5.1
Introduction

In the past 10 years, quantum chemistry has developed toward the modeling of
systems of increasing complexity. Among the most active research lines, there is
one aiming at an accurate description of molecular (and supramolecular) systems
in their electronically excited states [1]. The enormous progress in time dependent
spectroscopies, in fact, has allowed a detailed study of the process of formation and
relaxation of excited states and has pushed theoretical chemists to develop new
methods and efficient computational strategies able to simulate such a process. In
parallel, the development of new branches of technological research focusing on
the process of capture and conversion of light has shown that a reliable quantum
description of the phenomenon of photoexcitation in molecular systems and
materials is of fundamental importance to designing and optimizing efficient
devices.

Although quantum chemistry has since long developed theoretical methods and
computational approaches to describe excited states [2], however the older quantum
methods were either very expensive or extremely approximated and thus they could
not be applied to systems of real interest for spectroscopic and/or technological
applications. In addition, to successfully apply these formulations it was often
necessary to have a large experience in both quantum theories and computational
techniques. For years, all these aspects limited the modeling of excited states and
related phenomena to a few very specialized research groups. Things have started to
really change after the enormous success of methods based on the density functional
theory (DFT) [3] for ground state systems. This success, in fact, encouraged a search
for a time dependent theory of a similar flavor (TDDFT) [4] that could be applied
to excited states. It is exactly the development of TDDFT approaches that, by
combining computational efficiency with ease if use, has pushed many researchers
(not only with quantum or computational background) to shift their studies toward
processes and phenomena involving electronic excitations.
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In this new (or enhanced) interest in the modeling of electronically excited states,
an important role is played by UV Vis spectroscopy. This, in fact, is the first
fundamental test of any theoretical method aiming at describing photoinduced
processes and at the same time at becoming a useful tool to calibrate computational
methodologies so as to obtain not only accuracy and reliability but also efficiency. In
this calibration process, a further modelistic aspect that has to be carefully considered
is the environment and its effects on the structure and the electronic properties of the
molecular systems undergoing excitation. The coupling between quantum mechan
ical methods and solvation models represents a very active research line for many
years, and now an important part of this research has been shifted to approaches that
can describe formation and relaxation of excited states of solvated (or more generally
embedded) systems [5].

From this brief excursus comes out clearly the large complexity involved in
characterizing any description of excited states. Indeed, a reliable and accurate
approach for realistic molecules in real life environments is still an open problem.
Some effective strategies based on cleverly chosen approximations are, however,
available. These are exactly the focus of this chapter in which a review of the main
aspects of the computational simulation of UV Vis spectra of molecular systems is
presented. The first section of this chapter will focus on the QM methods used to
describe electronic excitations, the second will present models to include effects that
environment has on such excitations, the third will focus on the computational
strategies developed to simulate the entire spectra, and the fourth will summarize
some studies appeared in the literature and selected here as illustrative examples
of applications. Finally, in the fifth section some conclusive remarks will be made
together with some comments on the main aspects that still require further
development both in the theoretical and in the computational tools.

5.2
Quantum Mechanical Methods

The quantum chemical approaches for the calculation of excited states and their
properties are generally divided into three groups: (1) wavefunction based ab initio
methods, (2) semiempirical methods, and (3) density functional theory based
approaches.

Wavefunction based ab initio methods for the calculation of excited states of
molecular systems can be divided into single reference and multireference methods,
on the one hand, and into configuration interaction and coupled cluster methods,
on the other hand.

In configuration interaction type calculations, the electronic many body wavefunc
tion is constructed as alinear combination of the ground state Slater determinant and
“excited” determinants, which are obtained by replacing occupied orbitals with
virtual ones. In this framework, the exact numerical solution of the Schrodinger
equation within the chosen atomic basis set would correspond to include all possible
“excited” determinants (full CI). Such calculations are extremely expensive and at
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present feasible only for very small systems. As a consequence, one has to truncate
the CI expansion; in particular, if one stops after the “singly” excited determinants,
the widespread method called CIS (configuration interaction singles) is obtained [6].
The obvious limits of such a description may be partially overcome if a linear
combination of all possible single excited determinants is used to build the excited
state wavefunction. The main problem of the CIS method is the basic lack of
correlation energy. As a result, excitation energies computed with the CIS method
are usually overestimated up to 0.5 2eV compared to their experimental values.
Despite these limitations, the CIS method possesses some useful properties; for
example, it is variational and size consistent. In addition, the excited state energies
are analytically differentiable with respect to external parameters, for example,
nuclear displacements and external fields, which makes possible the application of
analytic gradient techniques for the calculation of excited state properties such as
equilibrium geometries and vibrational frequencies.

To make CI calculations computationally feasible, a different approximation with
respect to the CI truncation is made defining an active space of occupied and virtual
orbitals in which all possible “excited” determinants are constructed. Since such an
approximation can significantly reduce the flexibility of the CI wavefunction, in
general one has to reoptimize the molecular orbitals during the minimization
procedure to improve the accuracy. The resulting approach is known as the complete
active space self consistent field (CASSCF) [7]. In an analogy to CIS, CASSCF
analytical derivatives are available allowing efficient optimization of excited state
geometries and localization of conical intersections. However, from a computational
point of view, CASSCF calculations become quickly very expensive since the
computational effort increases exponentially with the size of the active space. In
addition, three general problems exist with CASSCF calculations.

First, the choice of the active space is not unique, but a careful analysis of both the
chemical nature of the system and the physical nature of the orbitals is required.
Second, the relative energies of the calculated excited states and their energetic
ordering strongly depend on the choice of the state for which the orbitals are
optimized. One way to partially circumvent this problem is to perform a state
averaged CASSCF calculation, in which the orbitals are optimized with respect to a
weighted mean of all states of interest. Third, too small active spaces and concomitant
neglect of large parts of dynamic electron correlation can lead to significant errors and
an unbalanced treatment of electronic states of different nature. A very successful,
but also expensive, approach to include dynamic electron correlation is a second
order perturbation theory on a wavefunction obtained from a state averaged CASSCF
calculation: this approach is known as CASPT2 [8]. Analytical CASPT2 gradients have
been also developed [9].

Correlation can also be included in single reference wavefunction methods, for
instance, through coupled cluster (CC) theory [10]. CC is exact when all the possible
excitations are included, but in practice the expansion is truncated at a given order.
The most widely used truncation order implies single and double excitations (CCSD).
Because of the nonlinearity of the exponential wave operator, higher order excitations
are included at this level of truncation, so that CCSD is a dramatic improvement over
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configuration interaction singles and doubles (CISD). The success and limitation of
CCSD are also related to its computational cost, as it scales iteratively at O(N°), where
N is the number of basis functions, so this method is feasible only for small and
medium sized molecules. CC theory has been extended to excited state calculation
through the equation of motion (EOM) formalism [11] or alternatively through the
linear response (LR) formalism [12] (these two approaches are equivalent for
transition energies). EOM CC scales as the ground state at a certain level of
truncation; thus, the same systems that are accessible at CCSD level can be in
general also treated at EOM CCSD level for the excited states.

Closely related to these coupled cluster theories is the symmetry adapted cluster
configuration interaction (SAC CI) approach [13] and approximate coupled cluster
schemes of second or third order (CC2, CC3) [14]. At present, analytical gradients for
excited states in single configuration methods are available, at a high computational
cost, at the SAC CI [15], EOM CCSD [16], and CC2 [17] levels.

Meanwhile, semiempirical approaches were also successfully applied to the
calculation of photoinitiated processes in molecular systems; the most common
approach is the intermediate neglect of differential overlap (INDO/S) method in
combination with a CIS formalism developed by Zerner (the method is also
known as ZINDO) [18]. The simple structure of the one and two electron integrals
allows an efficient and fast computation of excited states of very large molecular
systems. The accuracy of the method, however, is unpredictable, and careful
comparison with experiment and/or higher level computations must be made.
However, the quantitative aspect of the results obtained was found to be highly
system dependent and thus practically unpredictable. More recently, calculations
carried out for organic dyes have indicated that PM5 could be a promising
approach [19], but such a claim remains to be tested on a broader set of transitions
and molecules.

As anticipated in the introduction, in the last few years there has been an
explosion of interest in DFT driven largely by its applications in quantum
chemistry. This is because of the recent progress made in the accuracy of available
approximations and the wealth of chemical problems that can be tackled with such
a computationally inexpensive tool. The success of DFT methods for ground state
systems has pushed researchers to extend the theory to excited states. This has led
to the development of the linear response regime within a time dependent DFT
(TDDFT) approach. The linear response of any system can, in fact, be used to
determine its excitation energies. In fact, by simply applying an oscillating
potential and varying its frequency, a resonance occurs whenever the frequency
equals the difference of two energy eigenvalues of the system. The basic idea is to
apply time dependent perturbation theory to first order and to describe the time
dependent linear response of the one particle density to a time dependent oscil
lating electric field. Before the time dependent electric field is applied, the
molecular system is assumed to be in its electronic ground state, that is, to obey
the ground state Kohn Sham equation. Now a time dependent oscillating electric
field is applied, and as a consequence, the Kohn Sham orbitals, the electron
density, and the Kohn Sham operator will change, since the latter depends on the
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orbitals. If the field is a small perturbation, the new density can in first order be
written as

o(r,t) = °(r) +de(r,1) (5.1)

Equation 5.1 when inserted into the time dependent Kohn Sham equation yields,
after Fourier transformation into the energy space, the TDDFT equation for the
excitation energies and transition vectors. In compact matrix notation, the TDDFT

equations read [20]
1 0 X
0 1 Y

(3 20

where the matrices A and B are the Hessians of the electronic energy; for example,
for a hybrid exchange correlation functional, their elements become

Aia.jo = dapdij(ea &) + (jalib) cur(jilab) + (1 cur)(jol fic|ib)

o o , , (5.3)
Bio,jy =(jalbi) cur(jblai) + (1 cur)(jalfic|bi)

The leading term on the diagonal of the A matrix is the difference of the energies
of the orbitals i and a, which are the ones from which and to which the electron is
excited, respectively (indices i, j, ..., label occupied, a, b, ..., virtual orbitals). The
second term of the A matrix and the elements of the B matrix contain the
antisymmetrized two electron integrals and they follow from the linear response
of the Coulomb and exchange correlation (xc) operators to the first order changes
in the single particle orbitals. In Equation 5.3, we have used the hybrid mixing
parameter cyy that allows us to interpolate between the limits of “pure” density
functionals (cyr =0, no “exact” exchange) and HF theory (cyr = 1, full exchange, no
correlation).

Equation 5.2 is a non Hermitian eigenvalue equation, the solution of which yields
excitation energies w and transition vectors |XY) determining the first order change
in the density and thereby the excited state wavefunction. Although the exchange
correlation kernel f;. of Equations 5.3 formally depends on energy, in practical
calculations standard ground state xc functionals are employed to evaluate those
terms. This is a consequence of the so called adiabatic local density approximation
(ALDA) [21].

It is worth noting that Equations 5.2 5.3 contain different but closely related
schemes for the calculation of excited states. If the coefficient cyr is equal to 1, the
scheme reduces to the time dependent Hartree Fock (TDHF). In addition, if the
Tamm Dancoff approximation (TDA) is introduced, which means that the B matrix
is neglected in Equation 5.2, the TDHF scheme reduces to CIS. This shows that the
CIS scheme can be obtained either via the CI formalism as presented previously or
via linear response theory.

So far, simulation and assignment of vertical electronic absorption spectra have
been the main task of TDDFT calculations in chemistry. Most benchmark studies
agree that low lying valence excitations are predicted with errors of about 0.4 eV by
local density approximation (LDA) and generalized gradient approximation (GGA)
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functionals. Hybrid functionals can be more accurate but display a less systematic
error pattern [22] (see Section 5.5 for more details).

The reason for the accuracy of TDDFT excitation energies is that the difference of
the Kohn Sham orbital energies, which are the leading term of the diagonal elements
of the A matrix in Equation 5.3, is usually an excellent approximation for excitation
energies. This is because the virtual KS orbital energies are evaluated for the
N electron system and, thus, correspond more to the single particle energy of an
excited electron than to the energy of an additional electron as in Hartree Fock
theory, where the virtual orbital energies are evaluated for the N + 1 electron system.
Consequently, orbital energy differences are a much better estimate for valence
excited states in KS DFT than in HF theory.

Although TDDFT performs usually very well for valence excited states, it is now
well known that it has severe problems with the correct description of Rydberg states,
valence states of molecules exhibiting extended 7t systems, doubly excited states, and
charge transfer excited states [23]. For such states, the errors in the excitation energies
can be as large as a few electron volts, and the potential energy surfaces (PES) can
exhibit incorrect curvature.

The problems with Rydberg states and extended i systems can be attributed to the
wrong long range behavior of current standard xc functionals. In the case of excited
charge transfer (CT) states, the excitation energies are quite too low (by up to 1€V)
and the potential energy curves do not exhibit the correct 1/R asymptote when R
corresponds to a distance coordinate between the positive and the negative charges of
the CT state. The 1/R failure of TDDFT employing pure standard xc functionals has,
in fact, been understood as an electron transfer self interaction error [24]. This
electron transfer self interaction effect is canceled in TDHF by the response of the
HF exchange term. At present, several different pathways are starting to emerge to
address this substantial failure of TDDFT for CT states and to correct for it. The most
obvious way is to improve the xc functional by including exact exchange in the
unperturbed Hamiltonian, either in the form of nonlocal Hartree Fock exchange or
in the form of the exact local Kohn Sham exchange potential. Inclusion of nonlocal
Hartree Fock exchange has been realized in a few schemes so far. In all these
schemes, the Coulomb operator of the Hamiltonian is split into two parts: a short
range (SR) and a long range (LR) part [25]:

u u u

where the screening parameter o defines the range separation and u represents the
interelectronic distance. Short range exchange is then treated primarily using a local
functional; long range exchange is treated primarily using exact orbital exchange. For
example, the Coulomb attenuated CAM B3LYP [26] functional contains just 20%
exact exchange at short range, like a conventional hybrid, but 65% at long range.
Recently, an extensive assessment of the performance of the CAM B3LYP for the
calculation of local, Rydberg, and intramolecular CT excitation energies was pre
sented [27]. By comparing CAM B3LYP with standard GGA and hybrid functionals,
a quantification of the extent to which excitation energy errors correlate with the
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spatial overlap between the occupied and the virtual orbitals is found. The results
suggest that it is inappropriate to say that standard GGA functionals fail to describe
CT excitations. Indeed, the degree of CT in the sense of how much the occupied
and virtual orbitals overlap must be quantified before judgment can be made.

Simulation and assignment of vertical electronic absorption spectra surely con
stitute the main application of TDDFT calculations in chemistry; however, by solving
the same TDDFT equations, other spectroscopies can be simulated. In particular,
electronic circular dichroism (ECD) is easily obtained. The CD effect is, in fact,
expressed as the difference between the molar extinction coefficients for left and right
circularly polarized light that is related to the rotatory strength of the transition
between ground and excited states. In turn, the rotatory strength can be derived from
quantum mechanical theory as the product of the electric dipole and magnetic dipole
transition moments. Both of them are obtained in a straightforward manner from
TDDFT, as it will be shown in Chapter 9; by combining rotatory strengths with
excitation energies, the full ECD spectra of many molecular systems have been
calculated.

In recent years, TDDFT analytical gradients have been presented for the excited
states, making possible the efficient calculation of excited state properties such as
equilibrium geometries and dipole moments [28]. Owing to the more limited
number of available studies so far, however, it is still not clear if TDDFT behaves
with respect to properties/geometries of the excited states exactly as for excitation
energies (and transition properties). It could, in fact, be possible that cancellations of
errors that often make UV absorption spectra well reproduced by the standard hybrid
functionals disappear with subsequent failure of the same functional in the evalu
ation of the state properties.

5.3
Modeling Solvent Effects

Solvents strongly influence the electronic spectral bands of individual species
measured by various spectrometric techniques (UV Vis, fluorescence spectroscopy,
etc.) [29]. Significant shifts in absorption and emission bands can be induced by a
change in solvent nature or composition; these shifts, called solvatochromic shifts,
are experimental evidence of changes in solvation energy. In fact, when a solute is
surrounded by solvent molecules, its ground state and its excited state are differently
stabilized by solute solvent interactions, depending on the chemical nature of both
solute and solvent molecules.

In addition to shifts, the solvent generally induces broadening of the absorption
and fluorescence bands as a result of the fluctuations in the structure of the solvation
shell around the solute. This effect, called inhomogeneous broadening, superim
poses homogeneous broadening because of the existence of a continuous set of
vibrational sublevels.

Numerous methods of describing solvatochromism in terms of solvent
characteristics have been proposed. It is worth mentioning here that the use of
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solvatochromism of betaine dyes was proposed by Reichardt as a probe of solvent
polarity [30]. The exceptionally strong solvatochromism shown by these compounds
can be explained by considering that in their ground state they are zwitterions while,
upon excitation, electron transfer occurs exactly in the direction of canceling this
charge separation. As a result, the dipole moment that is rather large in the ground
state becomes almost zero in the excited state and thus solvent interactions change
markedly leading to the observed negative solvatochromism.

An alternative approach to quantifying polarity effects was proposed by Kamlet
et al.[31]. According to this approach, the positions of the bands in UV Vis absorption
and fluorescence spectra can be determined as

v =V 4st” +aa+ bp (5.5)

where v and V0 are the wave numbers of the band maxima in the solvent considered
and in the reference solvent (generally cyclohexane), respectively, t* is a measure of
the polarity/polarizability effects of the solvent, a is an index of solvent hydrogen
bond donor acidity, and 3 is an index of solvent hydrogen bond acceptor basicity. The
coefficients s, a, and b describe the sensitivity of a process to each of the individual
contributions.

The nt* scale of Kamlet et al. deserves special recognition not only because it has
been successfully applied in many studies (not limited to UV or fluorescence spectra,
and including many other physical or chemical parameters such as reaction rate,
equilibrium constant, etc.) but also because it gives a very clear introduction of the
problem. Namely, Equation 5.5 indicates that the two main aspects to consider when
modeling solvent effects on excitation energies are polarity/polarizability effects and
hydrogen bonding.

In addition to these “time independent” effects, the processes of formation and
relaxation of the electronic excited states will be strictly coupled with the dynamics
of the solvent molecules. A well known extreme example of such a coupling is the
distinction between “nonequilibrium” and “equilibrium” solvation regimes follow
ing an electronic transition in the solute. The differences in the characteristic
response time of the various degrees of freedom of the solvent, in fact, may lead
to a solvation regime in which the slow components (i.e., those arising from
molecular translations and rotations) are not equilibrated with the excited state
electronic redistribution upon vertical excitation. The resulting nonequilibrium
regime will then relax into a new equilibrium in which the solvent is allowed to
completely equilibrate, that is, to reorganize all its degrees of freedom including
the slow ones. Especially for highly polar solvents, these two different regimes can
influence the properties of the solute excited states in very different ways.

This brief excursus on the various specificities introduced by the presence of the
solvent is sufficient to underline the complexity of the modeling of excited states in
solution. From such a large complexity, it follows that strong approximations are
necessary to be able to treat molecular systems of real interest and not only simple
model cases.

An effective and well diffused strategy to overcome most of the difficulties is to
introduce a focused approach, that is, a more accurate description of the molecular
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system of interest (the chromophore, possibly including small portions of the
environment) and a less accurate description of the remainder. There are different
formulations of the focused approach; the most common ones are the hybrid
QM/molecular mechanics (QM/MM) [32] and the continuum solvation models [33].
Both of them use a classical description for the environment, but while in the former
the microscopic nature of the solvent molecules is maintained, in the latter a
macroscopic dielectric is used. In both cases, we can introduce a similar QM picture
in terms of an effective Hamiltonian giving rise to an effective Schrédinger equation
for the solvated solute. Introducing the standard Born Oppenheimer approximation,
the solute electronic wavefunction will in fact satisfy the following equation:

Hegr|¥) = (Ho + Heny)|W) = E|W) (5.6)

where Hy is the Hamiltonian of the isolated solute system and the operator Hey,y
introduces the coupling between the solute and the solvent. The form of the operator
Heny depends on the method used; in particular, for the two alternative schemes
analyzed here, we have

Ho — {HQM/MM+HMM QM/MM
env —

Haqm/cont QM/continuum (5.7)

In more common formulations of the QM/MM approaches, the MM system is
represented through atomic point charges; as a result, the first term in Equation 5.7
is the electrostatic interaction between the QM system and the point charges in the
MM part of the system:

Homn = HY =~ g () V(1) (5.8)

where V(r,,) is the electrostatic potential operator due to solute electrons and nuclei
at the MM charges g,,,. This term is directly included in the one electron part of the
vacuum Hamiltonian. The Hyyy introduced in Equation 5.7 is the classical MM
energy; this term, however, is a contribution only to the energy and does not affect the
wavefunction.

Moving now to QM/continuum approaches, we shall limit our exposition to the so
called apparent surface charges (ASC) version of such approaches, and in particular
to the family known with the acronym, PCM (polarizable continuum model) [34]. In
this family of methods, the reaction potential Howmjcont introduced in Equation 5.7
has a form completely equivalent to the electrostatic part of the Hom/mm operator
defined in Equation 5.8, namely,

Houm/eont — HPM =~ gfM(x,) V(xo) (5.9)
N

Now, the point charges g"“™ are no longer centered on the solvent nuclei as in
the MM description, but they are placed on selected points (rs) on the surface of the
molecular cavity containing the solute. In addition, such charges are not fixed but
are “apparent” in the sense that they exist only when the solute exists. These charges
are determined by the electrostatic potential acting at the selected points on the
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surface (i.e., the potential due to the solute and the charges themselves), but now they
also depend on the dielectric properties of the solvent, on the geometry of the cavity,
and on the number and position of the points chosen to map the cavity surface.

As for the QM/MM description also for PCM, nonelectrostatic (or van der Waals)
terms can be added to the Hqwmycont Operator; in this case, besides the dispersion and
repulsion terms, a new term has to be considered, namely, the energy required to
build a cavity of the proper shape and dimension in the continuum dielectric. This
continuum specific term is generally indicated as cavitation. In general, all the
nonelectrostatic terms are expressed using empirical expressions and thus their
effect is only on the energy and not on the solute wavefunction.

The different philosophy beyond the two classes of solvation methods leads to
important differences both in the physical and the computational aspects of their
applications and in their range of applicability. The methods based on explicit
representations of the environment yield information on specific configurations
of the environment around the chromophore, whereas the continuum models give
only an averaged picture of it. On the other hand, QM/MM requires many more
calculations than continuum models to obtain a correct statistical description. This
much larger computational cost of QM/MM is particularly disadvantageous in the
study of excited states, as the QM level required is generally quite expensive even for a
single calculation on an isolated system; thus, the necessity to repeat the calculation
many times makes the approach very expensive (or even not feasible). For this reason,
most of the QM/MM calculations on excited states are done using semiempirical
QM methods [35]. On the contrary, the level of the QM description can be any when
continuum models are used, as the additional cost with respect to gas phase
calculations remains very limited. In addition, continuum solvation models
include effects of mutual polarization between the solute and the environment (also
those due to a possible nonequilibrium solvation), whereas standard QM/MM
methods are based on nonpolarizable force fields. As a matter of fact, QM/MM
approaches including environment polarization have been proposed and also applied
to the study of excited states of solvated systems [36]. However, among the available
approaches, the most popular for this kind of study is still represented by continuum
solvation models [37].

Within the solvation framework, as in the case of isolated molecules, excitation
energies can be obtained with two different approaches: the state specific method and
the linear response method. The former has a longer tradition, being related to the
classical theory of solvatochromic effects, whereas the latter has been introduced
more recently in connection with the development of the linear response theory for
excited states. In both approaches, it is generally possible to introduce the nonequi
librium effects described before appearing in any vertical electronic transition
(absorption and emission). For example, in the PCM method this is easily obtained
by partitioning the apparent charges into an “inertial” and a “dynamic” component
corresponding to the slow and the fast part of the solvent polarization, respectively.
If we assume a Franck Condon like response of the solvent, exactly as for the
solute molecule, the nuclear motions inside and among the solvent molecules will
not be able to follow immediately the fast changes in the solute electronic charge
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distribution. The corresponding part of the solvent response (the inertial charges)
will remain frozen in the state immediately prior to the transition while the fast part
(the dynamic charges) will immediately change according to the new state.

Also, QM/MM methods account for nonequilibrium solvation even if not always
in a complete way: in fact, a standard nonpolarizable QM/MM includes the inertial
part of the solvent response (the MM charges that remain constant in the excitation),
butitlacks the dynamic part of the response. The latter can be recovered if polarizable
dipole moments are also used to describe the solvent molecules such as in polarizable
QM/MM approaches [38].

5.4
Toward the Simulation of UV-Vis Spectra

In the previous sections, we have sketched the key methodological steps for the
calculation of transition energies of molecular systems eventually including solvent
effects. In such a description, however, we have not said anything about the
simulation of the intensities of signals corresponding to the electronic excitations.

As a first approximation, to simulate the intensities of UV Vis signals, the square
of the transition dipole moment integral between the initial and the final electronic
state has to be evaluated. Typically, semiempirical approaches or CIS methods have
been used for estimating absorption intensities, often along with empirical scaling
procedures to correct for the overestimation of transition dipoles predicted by such
methods. Of course, it would be desirable to avoid such scaling, and recently more
accurate QM methods including electron correlation effects have begun to be used
to obtain transition dipoles. As a matter of fact, a more systematic study has shown
that transition dipole moments are much less sensitive to the particular level of QM
theory (and even less with respect to the basis set) than excitation energies [39].

The approximation of using transition dipoles to simulate bands, however, cannot
provide information on the spectrum shape, and the computed (vertical) transition
energies give only a rough estimate of the spectrum band maximum when it is
characterized by sensible vibrational progressions.

In general, the distribution of intensity within the spectra sensitively depends on
the details of the ground and excited state potential energy surfaces, transition dipole
moment coordinate dependence, temperature, spin orbit coupling, and nonadiabatic
effects. Though the nonadiabatic effects have been found to be rather important in
some cases, the Born Oppenheimer (BO) adiabatic approximation appears to
satisfactorily work for the description of various electronic spectra of molecules.
The Franck Condon (FC) approximation is usually employed within the BO ansatz to
interpret strongly dipole allowed electronic bands for which it has been found to be
sufficiently accurate. In the FC approximation, the electronic transition dipole
moment coordinate dependence is neglected and the simulation of absorption
spectra is reduced to evaluation of the well known FC factors that represent the
overlap between the ground and the excited state vibrational wavefunctions. In the
previous sections, we underlined that reliable energy minima and (numerical)

161



162

5 The Simulation of UV Vis Spectroscopy with Computational Methods

vibrational modes can be obtained for excited states thanks to the extension of linear
response QM methods (mainly CIS and TDDFT) to analytical gradients. It is exactly
the development of these theoretical tools that has made the simulation of spectral
shapes possible [40]. In general, this is done in the FC approximation using three
main computational steps, namely, (1) electronic structure calculations of both
ground and excited electronic states providing reliable potential energy surfaces,
(2) computation of vibrational wave functions using these PES, and (3) computation
of FC factors. The resulting vibronic lines are convoluted with Gaussian (or
Lorentzian) functions of given full width at half maximum to generate the final
spectrum.

In this procedure, however, it is implicitly assumed that bandwidths are deter
mined entirely by homogeneous broadening. This is valid for the idealized case of a
gas at low pressure. In more realistic situations, inhomogeneous broadening, which
arises from fluctuations in the molecular environment, plays an important role. Each
solute molecule experiences a slightly different solvent environment and therefore
has a slightly different absorption spectrum. The observed absorption spectrum is
made up of all the different spectra for the different molecular environments; it is
said to be inhomogeneously broadened [41]. The resulting broadening of the spectral
band is generally associated with the solvent reorganization energy corresponding
to the optical excitation and the solvent reorganization energy is the thermodynamic
quantity associated with change in the solvation free energy passing from the
nonequilibrium to the equilibrium solvation regimes described before. These
quantities are easily obtained with solvation continuum methods [42].

A different approach to obtain solvent induced broadening in UV Vis signals is
represented by molecular dynamics coupled to QM calculations. If a classical MD
simulation is used, one has to extract snapshots from trajectories, introduce a cutoff
to define the solvation shells, and extract the resulting solute solvent clusters. On
each of these clusters, the excitation energies are finally calculated ata QM/MM level.
Alternatively, the Car Parrinello molecular dynamics (CPMD) scheme [43] can be
used; in such a case, a fully quantum mechanical treatment of the solvent is, in
principle, possible, with a subsequent TDDFT calculation of the excitation energies
on selected snapshots. In both cases, the fluctuations of the environment and the
resulting shifts in the transition energies are automatically included in the analysis: a
convolution of the excitation energies calculated for the different local environments
will mimic the inhomogeneous broadening.

5.5
Some Numerical Examples

In this section, we summarize three studies appeared in the literature in the past
few years about the QM simulation of UV Vis spectra of molecular systems. These
summaries should help the reader to directly evaluate the real performances and
limitations of the QM methodologies described in the previous sections. As now
adays, TDDFT approaches represent the large majority of the QM applications in the
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simulation of UV Vis spectra, in this brief overview of examples we shall focus only on
TDDFT studies. In particular, we have selected two among the many studies recently
appeared in the literature about benchmarking analyses of TDDFT for excitation
energies of isolated molecules and an example of the study of the solvent effect on the
same properties. As the summary reported here is necessarily limited, the reader
may refer to the original papers in order to get a more complete picture of each of the
three studies.

The first study we summarize was recently published by Jacquemin et al. [22b].
The study consists in an extensive analysis of the merits of a large number of DFT
functionals including LDA, GGA (and meta GGA), global hybrids, and range
separated hybrids in predicting vertical absorption energies of a broad range of
organic molecules and dyes.

In Figure 5.1, we reporta part of the results of the study, namely, the one focused on
an internal comparison between TDDFT and CASPT2 and CC2 benchmarks
reported by Thiel and coworkers [22a] for 28 medium sized organic molecules
(104 singlet vertical excitations). It has to be remarked that here the use of an
internal comparison is to be preferred to a comparison with experiments for various
reasons. Experimental data, in fact, are generally in solution and this should be taken
into account in the calculation by introducing a solvation model; this, however,
prevents us from an evaluation of the real performances of the QM method as they
always couple with those of the solvation model used. In addition, a proper
comparison with experimental spectra requires the inclusion of vibronic effects;
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Figure 5.1 Mean absolute error (eV) for different functionals with respect to QM benchmarks.
Reprinted with permission from Ref. [22b].
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also in this case, as for the solvent effects, we have to introduce a model that
necessarily makes the analysis of the merits of the QM method difficult.

From the figure, it turns out that, as expected, TDHF provides very large errors
(MAE > 1.00 eV) and overestimates the transition energies in nearly 90% of the cases.
Using any TDDFT'scheme does reduce the errors by a factor ranging from two to four.
As expected, the pure functionals tend to provide too small transition energies, with
MAE > 0.2 eV. Global hybrids are more accurate than the GGA, and adding more and
more exact exchange tends to shift the transition energies to larger values. The MAE
of all long range corrected hybrids is close to 0.3 €V, due to an overestimation of the
transition energies. In particular, CAM B3LYP remains slightly less efficient than
B3LYP. A possible explanation of this behavior is the small size of the set of molecules
used in which charge transfer states are not significantly represented.

A better appraisal of the potentialities of CAM B3LYP is represented by a study
published in 2008 by Peach et al. [27]. As already reported in Section 5.2, the authors
of the study defined a parameter (indicated as A) that measures the degree of spatial
overlap between the occupied and the virtual orbitals involved in an excitation and
examined how it correlates with the accuracy of the excitation energy. Such a
parameter A is defined as

2
i,a%i“ Om
2
Ziﬁa%i“

where the spatial overlap factors O,, are defined as the inner product of the moduli
of the occupied (i) and virtual (a) orbital involved in the excitation whereas %;, =
Xiy + Yi,, with X;, and Y;, being elements of the solution of Equation 5.2.

The molecules considered in the study were chosen to include a wide range of
excitations, many of which have been shown to be a challenge for TDDFT. An extract
of the results of the study is summarized in Figure 5.2 in which the error in the
excitation energies is plotted against the associated A values for B3LYP and
CAM B3LYP. Each point corresponds to a single excitation, with different symbols
and colors, for the three categories of excitation.

A= with 0<A<1 (5.10)
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Figure 5.2 Excitation energy errors plotted against A using B3LYP (a) and CAM B3LYP (b) for
local excitations (A\), Rydberg excitations (x), and CT excitations (e). Reprinted with permission
from [27].
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These graphs clearly show that for standard hybrid functionals such as B3LYP, the
accuracy significantly decreases when the excitation presents a Rydberg (very low A)
or CT (low to medium A) character. In particular, when the overlap dropped too
low then excitations became significantly underestimated. By contrast, CAM B3LYP
provides by far a more homogeneous behavior for all the excitations, with essentially
no correlation between errors and spatial orbital overlap. From this analysis, it comes
out that low overlap could be used in a diagnostic manner to identify the problematic
excitations. Obviously, the quantity A is not unique, and its diagnostic value is
qualitative rather than quantitative. However, it captures the essential physics of the
problem and may prove useful in practical calculations. In addition, it can be trivially
computed from quantities available in a regular TDDFT calculation.

To complete this short overview on applications of TDDFT, we present an extract
from a study conducted by our group and published in 2005 [44]. The original study
focuses on the TDDFT simulation of various spectroscopic properties of solvated
N methyl acetamide (NMA), namely, IR, NMR, and UV, but here we report an extract
limited only to UV absorption.

The electronic absorption spectrum of NMA has been measured in gas phase and
in a variety of solvents [45]. The gas phase spectrum presents two well separated
bands that have been assigned to transitions in the 7 system of the amide group. In
nonpolar solvents such as cyclohexane or dioxane, a nit* also appears as a shoulder.
The lowest ™ transition (the one of interest here) comprises an electron transfer
from the nitrogen to the carbonyl carbon atom. This transition is redshifted from
gas phase to polar solution and to water. By contrast, for the nt* transition a blueshift
is observed passing from cyclohexane to water. In fact, the nt* transition reduces
the permanent dipole moment of the corresponding excited state that is thus less
strongly stabilized in polar solvents with respect to the ground state.

Absorption energies are calculated at TDDFT: B3LYP/d95v + (d) level and solvent
effects are introduced using PCM solvation model.

For both mtt* and nzt* transitions, PCM results reproduce the observed trend in
solvent shift, namely, a blueshift on nst* and a redshift on 7it*; in both cases, however,
there is an underestimation of the shift, especially for nm* transition. The possible
discrepancies between computed and observed shift can be due to different reasons.
The main one is clearly due to the fact that PCM results do not include explicit
hydrogen bonding effects and these can differentially affect the two transitions.

The most straightforward way to include these effects is to compute solute solvent
clusters including one, two, and three water molecules. For NMA, three water
molecules are enough to saturate the three H bonding donor and acceptor sites,
namely, two on (C)O and one on (N)H.

An alternative strategy to build NMA water clusters is MD simulation: water
molecules having any H atom closer to (C)O atom than the corresponding first
minimum of the O HW radial distribution function will be included in the cluster.
An analogous criterion was applied for the (N)H OW pair. The selected structures
were sampled at equal time intervals long enough to avoid correlation.

The comparison of the two alternative sets of clusters (either QM or MD) to
represent the effects of the first solvation shell(s) should give further hints on the
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Figure 5.3 Analysis of absorption energies for the nt* (left) and mt™ (right) transitions in the
NMA water QM and MD clusters in terms of the corresponding shifts with respect to the isolated
NMA. Dotted line shows the experimental value. Revised with permission from Ref. [44].

nature of the solvation around NMA, and in particular it should help in analyzing if
these effects are better represented in terms of rigid structures obtained as minima
of the potential energy surfaces or if, by contrast, dynamics, and therefore a variety
of different and representative structures, are needed to properly describe the
hydration effects.

In order to have a more direct picture of solvent effects in Figure 5.3, we present
the analysis of absorption energies for the nn* and ™ transitions in terms of the
corresponding shifts with respect to the isolated NMA: as reference excitation
energies of isolated NMA, we have considered those obtained for the most stable
conformer while the dotted lines indicate the experimental data (namely, + 0.2eV
for nm* and 0.14eV for mm*). For MD derived clusters the value reported in the
figure ((MD)) is obtained as an average on a set of 40 different clusters.

The analysis of Figure 5.3 involves different aspects.

First, let us consider the effects of H bonds alone by analyzing isolated NMA nw
clusters. H bonding effects on the two transitions are opposite if the H bond acts on
(C)O or on (N)H. In fact, including one or two water molecules close to carbonyl
oxygen induces a blueshift on both transitions, while when only the (NYH Ow bond
is included (1wN), the total effect is a redshift instead of a blueshift. When the two
different H bonds are combined (2wON and 3w clusters) the global effect is again a
blueshift but smaller than in the 1(2)wO(O) cases. In the case of m* transition also,
the largest 3w cluster presents a very small shift due to the two opposite effects of the
two H bonds that almost cancel out. The inclusion of an external continuum (PCM)
improves the description leading to the correct sign in the shift for all the possible
clusters: for both transitions, the long range electrostatic effects of the bulk solvent
appear to be more important than the local specific H bond. The set of PCM results,
however, give additional information. First, nit* results show that summing the
effects of two H bonds on carbonyl oxygen together with the long range interactions
leads to an overestimation of the observed solvent effect (around twice the exper
imental value); much better descriptions are given by the 1wO clusters and by the
mixed 2wON clusters (even if slightly overestimated in this latter case). The 1wN
result remains too low and in practice it does not add anything more to the
continuum only result.
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Concerning the nm* transition, the best results are represented by the 2wON
clusters, but in any case we do not observe a significant improvement with respect
to the continuum only model (NMA column). Once again by assuming two
(C)O...HOH interactions (2wOO), we obtain a noncorrect description even if the
inclusion of the continuum partially improves the wrong picture obtained in
the corresponding isolated clusters. Finally, the 1wN cluster leads to a slightly too
large effect.

If we pass from the static picture of QM optimized clusters to that of statistical type
obtained in terms of MD clusters and we also include bulk effects with the external
continuum, a very good result is obtained for wtrt* transition while, for nit*, we find a
slightly too large shift. This result, however, has to be reappraised if we consider that
the experimental shift refers to cyclohexane and not to gas phase and thus it has to be
read as a lower limit. We point out that the same clusters without the continuum give
a negligible shift for nt* and a too small one for st*. It is also interesting to note that
when the same clusters are described at a simpler level, namely, by representing
the water molecules in terms of classical charges, the description we obtain for the
two transitions is different: while the nrt* transition is reasonably described, the
one is not reproduced at all (small and wrong sign shift). Therefore, pure electrostatic
effects are not enough to describe the processes and a more complex picture of
the interactions involving a quantum mechanics electronic solvent description
is needed.

These results strongly indicate that short range and long range solvation effects
are required in order to properly describe the observed shifts. For short range effects,
a better picture is obtained by including explicit solvent molecules (namely, those
representing the first solvation shells) and mediating on different configurations
(i-e., introducing a statistical description), while long range effects are properly and
effectively described by adding a reaction field through a continuum model.

5.6
Conclusions and Perspectives

In the past few years, there has been a rapid development of methods to describe
electronic excitations in systems of increasing complexity. In this chapter, we have
tried to give a short but still exhaustive summary of the QM methodologies that
are dominating the computational research in this field.

Obviously, this review reflects the situation at the present moment and the fast
evolution still in act will probably significantly change it in few years. However, some
of the aspects considered in this chapter will remain as hot topics in the near future.
In particular, the complexity issue (i.e., considering chromophores embedded in
environment of increasing complexity) is one of the most important challenges in the
QM modeling. Many novel experimental techniques have, in fact, clearly shown that
the signal of each single molecule is affected by its local environment, but, in many
cases, the signal itself exists (or it becomes detectable) only in the presence of
a specific environment capable of activating or enhancing some specific molecular
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responses. It is sufficient here to recall all the surface enhanced (SE) spectroscopies
in which a spectroscopic signal (either Raman, IR, absorption, or fluorescence) is
amplified on orders of magnitude due to the presence of a metal nanoparticle close to
the molecular probe [46]. Another aspect that will be of enormous interest in the near
future is the explicit consideration of the dynamics. In all the methods I have
presented and discussed, in fact, time is not explicitly taken into account and the
picture one can get is always static. Indeed, time dependent spectroscopies have
shown that the signal reflects the complex coupling of different relaxation modes
involving many electronic and nuclear degrees of freedom of the molecular probe.
As a matter of fact, the intrinsic dynamics of the probe can further be complicated by
additional couplings with relaxation modes of the environments. These, in turn, can
give rise to coherence effects that strongly affect the final spectroscopic features.
Such coherence effects, for example, seem to play a fundamental role in determining
the efficiency of excitation energy transfers in light harvesting photosynthetic
proteins [47]. Unfortunately, the quantum mechanical description of dynamical
processes such as those involving excited states is very difficult, especially if one also
has to include relaxation processes within the environment. It is, thus, of funda
mental importance to combine different computational descriptions for the different
components of the whole system using a multiscale approach in which, however,
careful attention has to be paid to possible couplings between the different parts
and their evolution with time.

References

1 (a) Serrano Andrés, L. and Merchan, M. (c) Bauernschmitt, R. and Ahlrichs, R.
(2005) J. Mol. Struct.. THEOCHEM, 729, (1996) Chem. Phys. Lett., 256, 454.
99; (b) Dreuw, A. (2006) Chem. Phys. 5 (a) Mennucci, B. and Cammi, R. (eds)
Chem., 7, 2259. (2007) Continuum Solvation Models in

2 Klessinger, M. and Michl, J. (1994) Excited Chemical Physics: from Theory to
States and Photochemistry of Organic Applications, John Wiley & Sons Ltd.,
Molecules, John Wiley & Sons, Inc., Chichester, UK; (b) Canuto F S. (ed.)
New York. (2008) Solvation Effects on Molecules

3 (a) Parr, R.G. and Yang, W. (1989) and Biomolecules: Computational

Density Functional Theory of Atoms and
Molecules, Oxford Science Publication,
New York; (b) Dreizler, R.M. and
Gross, E.K.U. (1995) Density Functional
Theory, Springer, Heidelberg; (c) Koch, W.
and Holthausen, M.C. (2000)

A Chemist’s Guide to Density Functional
Theory, Wiley VCH Verlag GmbH,
Weinheim.

(a) Casida, M.E. (1995) Recent Advances
in Density Functional Methods, Part
(ed. D.P. Chong), World Scientific,
Singapore, p. 155; (b) Gross, E.K.U.,
Dobson, J.F., and Petersilka, M. (1996)
Top. Curr. Chem., 181, 81;

Methods and Applications, vol. 6, Series:
Challenges and Advances in
Computational Chemistry and Physics,
Springer.

Foresman, J.B., Head Gordon, M.,
Pople, J.A., and Frisch, M.J. (1992) J. Phys.
Chem., 96, 135.

(a) Roos, B.O. (1980) Int. J. Quantum
Chem., 14, 175; (b) Siegbahn, P.E.M.,
Almlof, J., Heiberg, A., and Roos, B.O.
(1981) J. Chem. Phys., 74, 2384;

(c) Roos, B.O. and Andresson, K. (1995)
Modern Electronic Structure Theory

(ed. D.R. Yarkony), World Scientific,
Singapore, p. 55.



8

9

10

n

12

13

14

15

16

17

18

19

20

21

(a) Andersson, K., Malmgqvist, P. A, and
Roos, B.O. (1992) J. Chem. Phys., 96, 1218;
(b) McDouall, J.J.W., Peasley, K., and
Robb, M.A. (1988) Chem. Phys. Lett.,
148, 183.

Celani, P. and Werner, H. J. (2003)

J. Chem. Phys., 119, 5044.

(a) Paldus, J. (1992) Methods in
Computational Physics (eds S. Wilson and
G.H.F. Diercksen), Plenum, New York;
(b) Bartlett F R.]. (ed.) (1997) Modern Ideas
in Coupled Cluster Methods, World
Scientific, Singapore; (c) Gauss, J. (1998)
Encyclopedia of Computational Chemistry
(ed. P. von Rague Schleyer), John Wiley &
Sons, Inc., New York.

Stanton, J.F. and Bartlett, R.J. (1993)

J. Chem. Phys., 98, 7029.

Christiansen, O., Koch, H., and
Jorgensen, P. (1995) Chem. Phys. Lett.,
243, 409.

(a) Nakatsuji, H. (1979) Chem. Phys. Lett.,
67, 344; (b) Das, A., Hasegawa, J.,
Miyahara, T., Ehara, M., and Nakatsuji, H.
(2003) J. Comput. Chem., 24, 1421;

(c) Hasegawa, J., Fujimoto, K., Swerts, B.,
Miyahara, T., and Nakatsuji, H. (2007)

J. Comput. Chem., 28, 2443.
Christiansen, O., Koch, H., and
Jorgensen, P. (1995) J. Chem. Phys.,

103, 7429.

Nakajima, T. and Nakatsuji, H. (1997)
Chem. Phys. Lett., 280, 79.

Stanton, J.F. and Gauss, J. (1994) J. Chem.
Phys., 100, 4695.

Kohn, A. and Hattig, C. (2003) J. Chem.
Phys., 119, 5021.

(a) Ridley, J.E. and Zerner, M.C. (1973)
Theor. Chim. Acta, 32, 111; (b) Kotzian, M.,
Rosch, N., and Zerner, M.C. (1992) Theor.
Chim. Acta, 81, 201.

Matsuura, M., Sato, H., Sotoyama, W.,
Takahashi, A., and Sakurai, M.

(2008) J. Mol. Struct. THEOCHEM,

860, 119.

(a) Stratmann, R.E., Scuseria, G.E., and
Frisch, M.J. (1998) J. Chem. Phys., 109,
8218; (c) Furche, F. and Ahlrichs, R. (2002)
J. Chem. Phys., 117, 7433.

(a) Marques, A.L. and Gross, E.K.U.
(2004) Annu. Rev. Phys. Chem., 55, 427,
(b) Appel, H., Gross, E.K.U., and Burke, K.
(2003) Phys. Rev. Lett., 90, 043005;

22

23

24

25

26

27

28

References

(c) Gonze, X. and Scheffler, M. (1999)
Phys. Rev. Lett., 82, 4416.

(a) Silva Junior, M.R., Schreiber, M.,
Sauer, S.P.A., and Thiel, W. (2008)

J. Chem. Phys., 129, 104103;

(b) Jacquemin, D., Wathelet, V.,

Perpete, E.A., and Adamo, C. (2009)

J. Chem. Theory Comput., 5, 2420;

(c) Elliott, P., Burke, K., and Furche, F.
(2009) Recent Advances in Density
Functional Methods, vol. 26 (eds K.B.
Lipkowitz and T.R. Cundari), John Wiley &
Sons, Inc., Hoboken, NJ, p. 91.

(a) Dreuw, A., Weisman, J.L., and

Head Gordon, M. (2003) J. Chem. Phys.,
119, 2943; (b) Tozer, D.J. (2003) J. Chem.
Phys., 119, 12697; (c) Gritsenko, O. and
Baerends, E.J. (2004) J. Chem. Phys., 121,
655; (d) Maitra, N.T. (2005) J. Chem. Phys.,
122, 234104; (e) Neugebauer, ]
Gritsenko, O., and Baerends, E.J. (2006)
J. Chem. Phys., 124, 214102.

Dreuw, A. and Head Gordon, M. (2005)
Chem. Rev., 105, 4009.

(a) Savin, A. (1996) Recent Developments
and Applications of Modern Density
Functional Theory (ed. ].M. Seminario),
Elsevier, Amsterdam,; (b) Ikura, H.,
Tsuneda, T., Yanai, T., and Hirao, K. (2001)
J. Chem. Phys., 115, 3540; (c) Toulouse, J.,
Colonna, F., and Savin, A. (2004) Phys. Rev.
A, 70,062505; (d) Baer, R. and Neuhauser,
D. (2005) Phys. Rev. Lett., 94, 043002;

(e) Heyd, R.J., Scuseria, G.E., and
Ernzerhof, M. (2003) J. Chem. Phys.,
118, 8207.

(a) Yanai, T., Tew, D.P., and Handy, N.C.
(2004) Chem. Phys. Lett., 393, 51;

(b) Tawada, Y., Tsuneda, T., Yanagisawa, S.,
Yanai, T., and Hirao, K. (2004) J. Chem.
Phys., 120, 8425.

Peach, M.].G., Benfield, P., Helgaker, T.,
and Tozer, D.J. (2008) J. Chem. Phys.,
128, 044118.

(a) Caillie, C.V. and Amos, R.D. (1999)
Chem. Phys. Lett., 308, 249; (b) Caillie, C.V.
and Amos, R.D. (2000) Chem. Phys. Lett.,
317, 159; (c) Furche, F. and Ahlrichs, R.
(2002) J. Chem. Phys., 117, 7433 (erratum:
121 (2004) 12772); (d) Scalmani, G.,
Frisch, M.]., Mennucci, B., Tomasi, .,
Cammi, R., and Barone, V. (2006) J. Chem.
Phys., 124, 094107.

169



170

5 The Simulation of UV Vis Spectroscopy with Computational Methods

29

30

31

32

33

34

35

36

(a) Reichardt, C. (2003) Solvents and
Solvent Effects in Organic Chemistry,
Wiley VCH Verlag GmbH, Weinheim;
(b) Wang, C.H. (1985) Spectroscopy of
Condensed Media, Academic Press,

New York; (c) Suppan, P. and Ghoneim, N.
(1997) Solvatochromism, The Royal Society
of Chemistry, Cambridge, UK; (d) Douhal,
A. and Santamaria, ]. (eds) (2002)
Femtochemistry and Femtobiology: Ultrafast
Dynamics in Molecular Science, World
Scientific, Singapore; (e) Valeur, B. (2001)
Molecular Fluorescence: Principles and
Applications, Wiley VCH Verlag GmbH,
Weinheim.

Reichardt, C. (1979) Angew. Chem. Int. Ed.
Engl., 18, 98.

Kamlet, M.]., Abboud, J.L., and Taft, R.W.
(1977) J. Am. Chem. Soc., 99, 6027.

(a) Warshel, A. and Levitt, M. (1976) J. Mol.
Biol., 103, 227; (b) Singh, U.C. and
Kollman, P.A. (1986) J. Comput. Chem.,
7, 718; (c) Field, M.]., Bash, P.A., and
Karplus, M. (1990) J. Comput. Chem.,
11, 700; (d) Gao, J. (1995) Reviews in
Computational Chemistry (eds E.K.B.
Lipkowitz and D.B. Boyd), John Wiley &
Sons, Inc., New York, pp. 119 185;

(e) Monard, G. and Merz, K.M. (1999)
Acc. Chem. Res., 32, 904.

(a) Tomasi, J. and Persico, M. (1994)
Chem. Rev., 94, 2027; (b) Cramer, C.J. and
Truhlar, D.G. (1999) Chem. Rev., 99, 2161;
(c) Orozco, M. and Luque, F.J. (2000)
Chem. Rev., 100, 4187; (d) Tomasi, J.,
Mennucci, B., and Cammi, R. (2005)
Chem. Rev., 105, 2999.

(a) Miertus, S., Scrocco, E., and Tomasi, J.
(1981) Chem. Phys., 55, 117; (b) Cances, E.,
Mennucci, B., and Tomasi, J. (1997)

J. Chem. Phys., 107, 3032.

(a) Gao, J. (1994) J. Am. Chem. Soc., 116,
9324; (b) Thompson, M.A. (1996) J. Phys.
Chem., 100, 14492; (c) Rajamani, R. and
Gao, J. (2002) J. Comput. Chem., 23, 96;
(d) Coutinho, K. and Canuto, S. (2000)
J. Chem. Phys., 113, 9132.

(a) Thompson, M.A. and Schenter, G.K.
(1995) J. Phys. Chem., 99, 6374; (b) Osted,
A., Kongsted, J., Mikkelsen, K.V., Astrand,
P. O., and Christiansen, O. (2006) . Chem.
Phys., 124, 124503; (c) Nielsen, C.B.,
Christiansen, O., Mikkelsen, K.V., and

37

38

39

40

41

42

43

44

45

Kongsted, J. (2007) J. Chem. Phys., 126,
154112; (e) Ohrn, A. and Karlstrom, G.
(2006) Mol. Phys., 104, 3087; (f) Mufioz
Losa, A., Galvan, L.F., Aguilar, M.A., and
Martin, E. (2007) J. Phys. Chem. B,

111, 9864.

(a) Karelson, M.M. and Zerner, M.C.
(1990) J. Am. Chem. Soc., 112, 9405;

(b) Kim, H.J. and Hynes, J.T. (1992)

J. Chem. Phys., 96, 5088; (c) Pappalardo,
R.R., Reguero, M., Robb, M., and Frisch,
M.]. (1993) Chem. Phys. Lett., 212, 12;

(d) Klamt, A. (1996) J. Phys. Chem., 100,
3349; (e) Christiansen, O. and Mikkelsen,
K.V. (1999) J. Chem. Phys., 110, 8348; () Li,
J., Cramer, C.J. and Truhlar, D.G. (2000)
Int. J. Quantum Chem., 77, 264; (g) Cossi,
M. and Barone, V. (2000) J. Chem. Phys.,
112, 2427; (h) Ferrighi, L., Frediani, L.,
Fossgaard, E., and Ruud, K. (2007)

J. Chem. Phys., 127, 244103; (i) Mennucci,
B., Cappelli, C., Guido, C.A., Cammi, R.,
and Tomasi, J. (2009) J. Phys. Chem. A,
113, 3009.

(a) Jensen, L., van Duijnen, P.Th., and
Snijders, J.G. (2003) J. Chem. Phys., 119,
3800; (b) Curutchet, C., Munoz Losa, A.,
Monti, S., Kongsted, J., Scholes, G.D., and
Mennucci, B. (2009) J. Chem. Theory
Comput., 5, 1838.

Munoz Losa, A., Curutchet, C., Galvan,
L.F., and Mennucci, B. (2008) J. Chem.
Phys., 129, 034104.

(a) Santoro, F., Improta, R., Lami, A.,
Bloino, J., and Barone, V. (2007) J. Chem.
Phys., 126, 084509; (b) Dierksen, M. and
Grimme, S. (2005) J. Chem. Phys., 122,
244101. (c) Jankowiak, H. C., Stuber, J.L.,
and Berger, R. (2007) J. Chem. Phys., 127,
234101; (d) Petrenko, T. and Neese, F.
(2007) J. Chem. Phys., 127, 164319.
Myers, A.B. (1996) Chem. Rev.,

96, 911.

Matyushov, D.V. and Newton, M.D. (2001)
J. Phys. Chem. A, 105, 8516.

Car, R. and Parrinello, M. (1985) Phys. Rev.
Lett., 55, 2471.

(a) Mennucci, B. and Martinez, ].M. (2005)
J. Phys. Chem. B, 109, 9818; (b) Mennucci,
B.and Martinez, .M. (2005) J. Phys. Chem.
B, 109, 9830.

(a) Kaya, K. and Nakagura, S. (1967) Theor.
Chim. Acta, 7, 117; (b) Nielsen, E. and



46

Schellman, J. (1967) J. Chem. Phys.,

71, 2297.

(a) Kneipp, K., Kneipp, H., Itzkan, I,
Dasari, R.R., and Feld, M.S. (1999)
Chem. Rev., 99, 2957; (b) Schatz, G.C.
and Van Duyne, R.P. (2002) Handbook of
Vibrational Spectroscopy (eds J. Chalmers
and P.R. Griffiths), John Wiley & Sons,
Inc., New York; (c) Kneipp, K.,
Moskovits, M., and Kneipp, H. (eds)

47

References

(2006) Surface Enhanced Raman
Scattering: Physics and Applications,

vol. 103, Topics in Applied Physics
Series, Springer, Berlin.

(a) Engel, G.S., Calhoun, T.R., Read, E.L.,
Ahn, T. K., Mancal, T,, Cheng, Y. C,,
Blankenship, R.E., and Fleming, G.R.
(2007) Nature, 446, 782; (b) Lee, H.,
Cheng, Y. C., and Fleming, G.R. (2007)
Science, 316, 1462.

7






6
Nonadiabatic Calculation of Dipole Moments

Francisco M. Fernandez and Julian Echave

6.1
Introduction

Many properties of molecular aggregates are attributed to the distribution of charges
in the constituent individual molecules or what is commonly called the molecular
dipole moment[1]. This molecular property is responsible not only for the behavior of
the molar polarization with temperature [1] but also for the most salient features of
the absorption and emission spectra of molecules [2 4]. Molecular dipole moments
can be derived, for example, from the molar polarization at varied temperatures [1],
from microwave spectra [2 4], or from first principles [5].

The purpose of this chapter is to outline the calculation of molecular dipole
moments by means of quantum mechanical approaches and to compare such
theoretical results with corresponding experimental measurements. It is not in
tended to be exhaustive because of the enormous number of worthy works on the
subject. However, we hope to succeed in giving an idea of the difficulties encountered
in such an endeavor.

In Section 6.2, we consider the nonrelativistic molecular Hamiltonian and discuss
the separation of the center of mass in detail. We derive general expressions that may
be useful for most of the various nonadiabatic approaches that appear in the
literature. In Section 6.3, we outline the dynamical symmetry of the molecular
Hamiltonian and some of the properties of the molecular stationary states. In
Section 6.4, we discuss the well known Hellmann Feynman theorem for variational
wavefunctions because it is relevant to the calculation of dipole moments. Although
we are interested mainly in nonadiabatic calculations of dipole moments, in
Section 6.5 we consider the separation of the electronic and nuclear motions that
leads to the Born Oppenheimer (BO) and adiabatic approaches to the calculation of
molecular properties. For completeness, in Section 6.6 we outline the interaction
between a system of point charges and an external electric field with the purpose
of defining dipole moment, polarizabilities, and other molecular properties. In
Section 6.7, we briefly describe the models used to derive the dipole moment from
the Stark effect in rotational spectra. They are useful for comparison between
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experimental measurements and theoretical calculations. In Section 6.8, we briefly
review the theoretical calculation of molecular dipole moments under the Born
Oppenheimer approximation. In Section 6.9, we discuss some of the existing
nonadiabatic calculations of dipole moments that are the main topic of this chapter.
In Section 6.10, we briefly describe the more rigorous nonadiabatic calculations of
dipole moments in the molecule fixed reference frame. For simplicity, we restrict
ourselves to diatomic molecules because they appear to be the only ones accessible to
current nonadiabatic approaches. In Section 6.11, we outline the application of
perturbation theory to the Schrédinger equation for a molecule in an external electric
field with the purpose of discussing a more rigorous connection between the
measured Stark shift and the molecular dipole moment. Finally, in Section 6.12 we
summarize the main conclusions of this chapter.

6.2
The Molecular Hamiltonian

In this section, we consider the nonrelativistic molecular Hamiltonian as a system of
N charged point particles with only Coulomb interactions

H=T+V
N 2
c pi
T =
Z Zmi
i1 (61)
TR =
Vo
Ameo 57 T
In this expression, m; is the mass of particle i, q; = eor q; = Z;e denotes the charges

of either an electron or a nucleus, and rj; = |r; 1;] is the distance between particles i
and j located at the points r; and 1;, respectively, from the origin of the laboratory
coordinate system. In the coordinate representation, p; = ihV;.

Since the Coulomb potential V is invariant under translations U(a)r;
U@)" =r,+a (U@@)VU(a)" = V), the eigenfunctions of the translation invariant
Hamiltonian operator (6.1) are not square integrable. For that reason, we
first separate the motion of the center of mass by means of a linear coordinate
transformation

rjl, = Z tjiri (62)
that leads to

Vi =) Vi (6.3)
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and

Z vZ Z 11v/2+zzz thvlv,+zzz tktv}vgc (64)

i j>1 i j>1 k>1 i

It is our purpose to keep the transformation (6.2) as general as possible so that it
applies to all the nonadiabatic approaches discussed in this chapter. To uncouple one
of the new coordinates r} from the remaining ones, we require that the coefficients of
the transformation (6.2) satisfy

bity;

iib1i .

—=0 >1 6.5
The new coordinates transform under translations as follows:

U(a)rj’.U(a)T =T +aZtﬁ (6.6)

If we require that r} transforms exactly as the original variables and that the
remaining r; are translationally invariant, we have

> = (6.7)

If we choose t;; = Em;, where § is an arbitrary real number, then Equation 6.5
becomes Equation 6.7 forj > 1. If we then substitute t; = Em; into Equation 6.7 with
j =1, we conclude that

m
tli:ML7 M:zi:mi (6.8)

and r] results to be the well known coordinate of the center of mass of the

molecule [6]. The choice of the coefficients of the transformation (6.2) for the

remaining variables r}, j > 1 is arbitrary as long as they satisfy Equation 6.7.
Finally, the total Hamiltonian operator reads

. W? .
H: —V]+HM

(6.9)

- ey (v Yy
m; 4mey j

>1 k>1 i i1j i+1 Ty

where Hy is the internal or molecular Hamiltonian operator. The explicit form of the
interparticle distances r; in terms of the new coordinates r;, may be rather cumber
some in the general case. We consider it in the particular applications discussed in
subsequent sections.
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For future reference, it is convenient to define the center of mass and relative
kinetic energy operators

Tem= — Vi (6.10)

and

T = —ZZ (Z t"’) A (6.11)

>1 k>1 i

respectively, so that T=Tewm+ Trel, Hy =T+ V, and H = Tem + Hu.
The inverse transformation t~! exists and gives us the old coordinates in terms of
the new ones:

=Y () (6.12)

J

According to Equations 6.6 and 6.7, we have U(a)r; U(a)" = (t"!),,a + r; from which
we conclude that

thH,=1i=12,...,N (6.13)

To understand the meaning of this result, notice that the momentum conjugate to r; is
given by the transformation

f’i = Z (rl)jif’j (6.14)

J

so that the linear momentum of the center of mass
13,1 = Z ﬁj (6.15)
J

is precisely the total linear momentum of the molecule. We also appreciate that
Tcm = P'2/(2M) and that the inverse transformation of the momenta is (see
Equation 6.3)

P =P (6.16)

Equation 6.13 is also relevant to the behavior of the dipole moment in internal
coordinates. We have

w= Z qgit; (6.17)
in the laboratory fixed frame, and

U@uU(a)’ =p+qa q=> g (6.18)
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clearly shows that u is invariant under translation of the origin for a neutral molecule
q = 0. In internal coordinates, we have

w=> dr, g => alt"), (6.19)
J i

and U(a)uU(a)" = w+ ¢,a consistent with Equation 6.18 because ¢, = g by virtue of
Equation 6.13.

We have kept the transformation (6.2) as general as possible to have a suitable
expression of the molecular Hamiltonian that applies to all the nonadiabatic
approaches discussed in this chapter. In what follows, we illustrate some particular
ways of determining the remaining transformation coefficients. More precisely, we
choose a point in the molecule as the origin of the new coordinate axis and refer the
positions of N 1 particles to it (remember that three coordinates have been reserved
for the location of the center of mass).

For example, consider an arbitrary set of particle labels I and choose

1 .
rj =1 Ezmiri’ j>1, M;= Zmi (6.20)

iel iel
That is to say

1 ifiel

0 otherwise (6.21)

m; )

ti = dji M;éﬂ’ ji>1 b= {
These coefficients t; already satisfy Equation 6.7. If I is the set of nuclear labels, then
we refer the positions r/,j > 1 to the nuclear center of mass. If the set I contains only
one nuclear label we refer the positions of the remaining particles to that particular
nucleus. Various authors have already chosen one or the other coordinate origin as
shown in Sections 6.9 and 6.10.

If we take into account that

T'—Z%—% i(6 +6')+L (6.22)

jk i m; m; M, kI Ji M; .
then we realize that the transformation (6.20) uncouples the coordinates of the
particles that belong to I from the remaining ones in the kinetic operator:

6j 1 JPa
Ty =<0 ifjel and k¢l or j¢I and kel (6.23)
6jk 1 e

The equations derived in this section are sufficiently general to cover all the
strategies commonly followed in the separation of the center of mass prior to the
solution of the Schrédinger equation for atoms and molecules. Other general
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expressions for the translation free internal coordinates have already been discussed
by Sutcliffe and Woolley [7 10]. It is a most important topic in the nonadiabatic
quantum mechanical approach to atoms and molecules.

6.3
Symmetry

In this section, we discuss the symmetry of a molecular system that is determined by
all the operators that commute with its Hamiltonian. For example, the total
Hamiltonian operator commutes with the total linear momentum

N
Hpl=0, p=> p=0p (6.24)
i1

and also with the total angular momentum

N

[Hj]=0. J=>_J (6.25)

i1

It follows from Equations 6.12 and 6.16 that

J=>tixp = #xp =i xp+] (6.26)
where i/ is the internal or molecular angular momentum. It is clear that

A~ 2l af N
[Hu,J1=0, J =) tixp (6.27)

The Hamiltonian operator is invariant under permutation of identical particles.
We may formally write this symmetry as

PHP ' = H=[H,P] =0 (6.28)

where P stands for any permutation of electrons or identical nuclei. Since Tcy is
invariant under permutation of identical particles, we conclude that

75HM7571 = HM=>[HN“7AD] =0 (629)

Besides, the molecular Hamiltonian operator is also invariant under inversion

1

SHuS =[Hw,3]=0 (6.30)

21

LS = fjand

&
~S

where the inversion operator 3 produces the transformations
1 A . I INVA Lo

= P;. Also, notice that [J, 3] = 0, [J, P] = 0, and [, P] = 0 so that we can
choose a stationary state W to be a simultaneous eigenfunction of such set of
commuting operators:

Py
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HuyW¥Y = EV¥,
12
7w =g+, J=01,...
]j;li = MW, M, =0,+1,...,4] (6.31)
PW = oW
S =¥
where 6 =1 or 0 = 1 for identical bosons or fermions, respectively. A somewhat

more rigorous discussion of the kinematics and dynamics of molecules was
provided, for example, by Woolley [11]. The simplified discussion in this section
is sufficient for the present purposes.

6.4
The Hellmann Feynman Theorem

In this section, we derive the Hellmann Feynman theorem for optimized variational
wavefunctions because it is most important for the accurate calculation of dipole
moments [5, 12].

Consider a trial function @ and the variational energy W given by

W(D|D) = (®|H|D) (6.32)
An arbitrary variation d® leads to
SW(D|D) = <6<1>|H WD) + <6<I>\H W|d)" (6.33)

where the asterisk denotes complex conjugation. The right hand side of this equation
vanishes when OW = 0; that is to say, when W is stationary with respect to the
infinitesimal change 8@ in the trial function. The variational or optimal trial function
satisfies this condition.

If the Hamiltonian operator depends on a parameter A, which may be, for example,
a mass, charge, force constant, strength of a external field, and so on, then the
variational function also depends on it. Therefore, differentiation of Equation 6.32
with respect to A leads to

¥<¢|¢>:<¢%'®>+<6§|H WI®>+<%§IH W|<I>>* (6.34)

It is clear from this equation that if the set of variations 0® includes (0®/0L)0A,
then the optimized trial function @ satisfies the well known Hellmann Feynman
theorem [13, 14]:

(o 639

where (A) = (D|A|D)/(D|D).
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6.5
The Born Oppenheimer Approximation

Since the vast majority of quantum mechanical studies of molecular properties are
based on the Born Oppenheimer approximation [15], we discuss it here in some
detail, in spite of the fact that we are more interested in non BO approaches. Before
proceeding, we mention the curious fact that the modern and most useful form of
that approach appears to have been first developed by Slater [16] in his study of the
helium atom as early as 1927. However, we adopt the common practice to attribute it
to Born and Oppenheimer. In this section, we begin with the traditional procedure
proposed by Slater [16] and Born and Huang [15] and then mention other authors’
approaches and criticisms.
For simplicity and clarity, we write the Schrédinger equation for a molecule as

W, (1, 1) = B, Wo (15, 1) (6.36)

where 1 and " denote all the electronic and nuclear coordinates, respectively, and
the subscript a stands for the collection of all the quantum numbers necessary for
the description of the molecular state. We use the symbols Te, Ty Vee, Ve, and Vi
to indicate the kinetic energy operators for the electrons and nuclei, and
the electron electron, nuclei electron, and nuclei nuclei Coulomb interactions,
respectively:

H=Tn+He+ Van, He = Te + Vee + Vie (6.37)

The BO approximation is based on the ansatz

ZXUJ )@ (r°,1") (6.38)

and we assume that (¢;|@;), = O, where the subscript e indicates integration over
electronic coordinates. It follows from Equations 6.36, 6.37, and 6.38 that

<(Pk‘H|IPU> = TﬂX(xk + Z Uk] + Wk])Xog EﬂX(xk (6'39)
j

where
Uy = (@il Hel@;), + Vandij, Wig = (@4|[Tn, 9}]), (6.40)

We have introduced the formal commutator [T, ¢;] for the sole purpose of making
the resulting equation more compact.

In the standard BO approximation, we choose the functions ¢; to be eigenfunctions
of the electronic Hamiltonian H,

Hey(r°,1") = Egi(r")g;(r°, 1) (6.41)
so that

Uy (") = Uiy, Uj(r") = Egi(r") + Vi (1) (6.42)
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In the first approximation, we assume the couplings W); between “electronic states”
to be small and keep just one term for the ground state

W (1%, 1") & Yoo (1)@ (5, 17) (6.43)

and
[Ta+ Uo(f") oo (r") = E£%0(r™) (6.44)

Addition of the diagonal term Wy to the nuclear operator in this equation gives rise to
the adiabatic approximation.

Sutcliffe and Woolley have criticized the main assumptions of this approach in
several papers [8 11, 17]. For example, they point out that the functions in the
expansion on the right hand side of Equation 6.38 are assumed to be square
integrable, whereas the left hand side is not because we have not removed the
motion of the center of mass. Such criticism, which also applies to the approximate
and widely used ansatz (6.43), does not appear to be justified because the nuclear
functions y,, are notsquare integrable. According to these authors, another drawback
of the BO approximation is that it does not take into account the permutational
symmetry of identical nuclei that are treated as distinguishable particles clamped in
space to define a framework geometry unambiguously. However, in principle we can
introduce such permutational symmetry in the approximate wavefunction (6.43) by
means of appropriate projection operators such as those mentioned in Section 6.9. In
our opinion, the Born Oppenheimer approximation is a consistent way of deriving a
suitable approximate solution to the Schrodinger equation.

It is interesting how some popular books on quantum chemistry introduce this
subject. For example, Szabo and Ostlung [5] state that “Our discussion of this appro
ximation is qualitative. The quantitative aspects of this approximation are clearly
discussed by Sutdliffe,” and they give a reference and simply write the single
product (6.43). On the other hand, Pilar [18], referring to a Hamiltonian operator such
as(6.1), says: “...whereitisassumed thatallnuclear and electronic coordinates have been
referred to the center of mass of the system.” However, the Hamiltonian operator
exhibits all the electronic and nuclear coordinates and no coupling terms coming from
the separation of the center of mass. Therefore, it cannot be the internal Hamiltonian
operator aswe have already seen above. These are justtwo examples of how most authors
blindly accept the clamped nuclei approximation without further analysis.

In some cases, mostly for diatomic molecules, the separation of the motion of the
center of mass has been carried out rigorously prior to the application of the BO
approximation [13]. Sutcliffe and Woolley have already discussed this issue in detail
in several papers [8 11, 17].

Although it is not customary to remove the motion of the center of mass of the
whole molecule before the application of BO approximation, it appears to be common
practice to separate the nuclear center of mass at the second stage (6.44). Since the
nuclei are much heavier than the electrons, we may assume that the error is small. A
rigorous discussion of this issue and a simple exactly solvable example are given
elsewhere [19, 20].
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A mostimportant by product of the clamped nuclei approximation is that it enables
one to introduce the familiar (classical) chemical concept of molecular structure into
the quantum mechanical calculations. The molecular geometry is given by the
equilibrium nuclear configuration r;, at the minimum of U(r"):

VU@, . =0 (6.45)

™ r‘gq

At this point, it is worth noticing that U(r") would not appear in a straightforward
rigorous solution of the Schrédinger Equation 6.36. Sutcliffe and Woolley [7 11, 17,
21] have also pointed out the difficulty in discussing molecular structure without the
BO approximation (or any of its variants).

6.6
Interaction between a Molecule and an External Field

To make the present chapter sufficiently self contained, we briefly develop the main
equations for the interaction between a molecule and an external potential d(r). The
energy of that interaction is given by [22]

W= JQ(I’)@(I’) dr (6.46)

where o(r) is the molecular charge density. If the potential varies slowly in the region
where the charge density is nonzero we can expand it in a Taylor series about the
coordinate origin located somewhere in the molecule:

2
®(r) = D(0) + Zuaa%’m) + %ZZW@@M; )+ - (6.47)

where u, v = x, y, z. Since V2®(r) = 0, we subtract r*V2®(0)/6 from this equation
and rewrite the result as

2
D(r) = ®(0) + Zuaaif(ow %ZZBW rzaw)%(oH o (648)

If we now take into account that the external field is given by F(r) = V®(r), we
have

®(r) = ®(0) r-F(0) %ZZ(auv rzéw)%(ow (6.49)

For a set of point charges g; located atr;, i = 1,2,..., N, we have

N

o) = gd(r 1) (6.50)

i1
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and the interaction energy becomes

oF,
=0+ - (6.51)

W =g0(0) wF0) (>3 0w

where the net charge g, the dipole moment u, and the quadrupole moment Q are
given by

N
qa = a
i1
o= qu (6.52)
lNl
Ow = Zqi(3uivi r2d.u)
i1

If the applied field is uniform in the region of interest, then all the terms beyond the
first two on the right hand side of Equation 6.51 vanish.

In one of his well known discussions of long range intermolecular forces, Buck
ingham [23] considers a Hamiltonian operator of the form

. 1
H=H" uF 32D OuFut - (6.53)
u v

where ©® = Q/2 and F,, = (0F,/0v)(0). Thus, the perturbation expansion for the
energy of the molecule in the external field leads to [23]

W= (WIH) = WO S WOR Y Sk,
u u v

DI

(6.54)

where

0 -
w = (WO, [wO)
00 — <1p<0) ‘@W|1p(0)>

uv

(6.55)

are the permanent dipole and quadrupole moments, respectively. Buckingham [23]
does not write the Hamiltonian operator H " explicitly, but he refers to the energy of
“separate molecules for fixed molecular positions and orientations.” Therefore, one
may assume that he probably means the BO Hamiltonian operator. On the other
hand, Bishop [24] considers that Equation 6.54 can be used irrespective of whether
one is considering the electronic or the total molecular energy. He explicitly indicates
that g; is an element of charge at the point r; relative to an origin fixed at some point in
the molecule. As shown in Sections 6.9 and 6.10, this choice of reference frame is not
convenient for the nonadiabatic calculation of the dipole moment.

In a most interesting and comprehensive review of the electric moments of
molecules, Buckingham [25] argues, by means of simple and rigorous symmetry
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arguments, that a diatomic molecule in some stationary states does not possess a
dipole moment. We come back to this point in Sections 6.9 and 6.10.

6.7
Experimental Measurements of Dipole Moments

Since long ago scientists have estimated the permanent dipole moment of a given
molecule from the Clausius Mosotti equation
e 1M

P= — 6.56
£e+20 ( )

where ¢ is the dielectric constant of the medium (mainly a gas or vapor), g its density,
and M the molar mass. The Debye equation gives us the behavior of the polarization
with temperature

_4n w?

where N, is the Avogadro constant, a takes account of distortion effects, and p is
the permanent dipole moment [1]. According to this equation, the plot of P as a
function of 1/T should give a straight line, the slope of which is proportional to the
square of the dipole moment [1]. The term u?/(3kT) is the contribution to the
polarizability of the orientation of the permanent dipole moment due to an external
electric field [1].

In this chapter, we are mainly interested in spectroscopic measurements of dipole
moments that are commonly based on microwave spectra, and almost invariably on
the Stark effect and the model of a rigid (or almost rigid) rotating dipole. If Hy is the
Hamiltonian of a rigid rotator and - F is the interaction between the molecular
dipole moment and the uniform electric field (as shown in Section 6.6), then the Stark
rotational energies are given by

Heot(F)y™t = E°YF)yY™, Hyoy(F) = Hyt(0) WF cos (8) (6.58)

where 6 is the angle between the external field F and the dipole moment p.

The external electric field produces both shift and split of the molecular rotational
energies. The magnitude of the shift of the spectral lines V(F) = AE™(F)/(hc)
changes with the field. Rayleigh Schrddinger perturbation theory provides analyt
ical expressions for the Stark shifts in the form of a power series of the field
intensity:

AV(F) = ¥(F) ¥(0) = VWuF+ v (uF)* + ... (6.59)

where the coefficients ¥/ are known functions of the rotational quantum num
bers [2 4]. If we measure the Stark shifts for known values of the field intensity and
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then fit selected experimental data to a polynomial function of the field, we can obtain
the dipole moment from the polynomial coefficients.

To account for the hyperfine structure of the spectra, one should add the terms
arising from the spin rotational interaction, the quadrupole interaction of the nuclei,
and the spin spin magnetic interactions [2 4].

Molecular beam electric resonance experiments are also based on the same model
of rotating dipole [4].

There have been many experimental studies of a wide variety of molecules. We
restrict to the simplest ones that are accessible to existing nonadiabatic approaches,
such as, obviously, diatomics [26 29]. In this case, v\!) = 0 and the Stark effect is
quadratic. Itis worth paying attention to the discrepancy in notation and presentation
of the empirical models. For example, the model Hamiltonian may be either an actual
operator [28] or a scalar function of the quantum numbers [29]. The interaction
between the dipole and the field may also be written in somewhat varied ways [28, 29]
or the effective Hamiltonian may omit the rotational kinetic energy [27].

Although symmetric tops appear to be beyond present nonadiabatic treatments,
we quote them here as another example of the use of the model of a rotating dipole
outlined above [30, 31]. In this case, v = 0 when K = 0 and vV # 0 when K # 0,
where K is the quantum number for the projection of the angular momentum along
the symmetry axis.

It is clear from the above discussion that the accuracy and reliability of the
experimental determination of the molecular dipole moment not only depend on
the accuracy of the measured Stark line shifts but also on the validity of the
theoretical, semiempirical model of the molecule as a rotating electric dipole. (Notice
that the same model is assumed in the calculation of dipole moments from
measurements of the dielectric constant.) We will come back to this important point
in Section 6.11.

6.8
The Born Oppenheimer Calculations of Dipole Moments

Although we are mainly interested in the nonadiabatic calculation of dipole mo
ments, it is worth comparing it with the more popular BO approach to the problem.
For this reason, in this section we outline the latter. If we are able to solve
Equation 6.41 for an appropriate set of nuclear configurations and determine the
equilibrium geometry of the molecule given by Equation 6.45, we can then calculate
the dipole moment as follows:

Ne Na
uBo — ¢ J o(r, 1) i (Z rf) o(r°, 15 ) drf +e Z Zirlo (6.60)
I I

for a molecule with N, electrons and N;, nuclei [5]. In this equation, dr® denotes the
volume element for all the electronic coordinates.
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An alternative approach consists in solving the electronic BO equation for the
molecule in an electric field
H.(F) = H.(0) +¢F -

J

r (6.61)

Ne
J
1

and then calculate the electronic part of the dipole moment as

OE. (12, F)
i () (6.62)
OF, F o

where E(rg, F) is the lowest eigenvalue of the electronic operator (6.61) for the
equilibrium geometry.

Szabo and Ostlund [5] discuss the reasons of the noticeable discrepancy between
both approaches. Itis known to be due to the fact that approximate wavefunctions that
are not well optimized fail to satisfy the Hellmann Feynman theorem [12] already
discussed in Section 6.4. Since the formally correct definition of properties such as
the dipole moment is as a response function to an external field (see Section 6.6),
Swanton et al. [12] proposed a calculation based on the following expression:

& = (@Ol 0(0) z<§§’ )

[F1.(0) E(r,0)|®(0)) (6.63)

in such cases where the variational function is not fully optimized and one does not
have appropriate analytical expressions for the derivatives (0E./0F,); ,. This
equation is a particular case of (6.34) when the electronic approximate wavefunction
is real and normalized to unity (®(0)|P(0)) = 1.

The nuclear configuration given by the set of equilibrium coordinates rg, deter
mines what we usually call the geometry of the molecule and thereby the orientation
of the dipole moment. For example, we know that the dipole moment is directed
along the molecular axis in a linear molecule without an inversion center or along the
symmetry axis in a symmetric top. The analysis is not so simple in the case of the
nonadiabatic calculations that we discuss in Section 6.9.

According to Cade and Huo [32], the dipole moment calculated by means of this
quantum mechanical approach for just one internuclear distance (say, the theoretical
or experimental R.) is not strictly comparable to the experimental one that commonly
corresponds to a particular vibrational state or an average over a set of vibrational
states. In spite of this apparent deficiency of the BO approach, it is worth noticing that
when Wharton et al. [26] determined the dipole moment of LiH experimentally to be
w=5.9D, there were as many as eight previous reliable quantum mechanical
calculations that agreed with it to £0.3D [33].

6.9
Nonadiabatic Calculations of Dipole Moments

Most theoretical calculations of dipole moments are based on the BO approximation
for several reasons: first, and most important, non BO calculations require far more
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computer time; second, most theoretical chemists are unwilling to go beyond the BO
approximation that they assume to know well; and third, non BO calculations give
rise to some additional theoretical difficulties as we show below. It is therefore not
surprising that non BO calculations of dipole moments are scarce and few. We
describe some of them in this section and in Section 6.10.

Tachikawa and Osamura [34] proposed a dynamic extended molecular orbital
(DEMO) approach based on SCF wavefunctions of the form

wser =TT @ (6.64)
I

where each @' is a function of the coordinates of a set of identical particles with the
appropriate permutation symmetry. These functions are expressed in terms of
generalized molecular orbitals q;j that are linear combinations of floating Gaussians

e
o = Z oy (6.65)

It is worth noticing that Tachikawa and Osamura [34] did not separate the motion
of the center of mass, and this omission gives rise to considerable errors if the SCF
orbitals depend on laboratory fixed coordinates [35]. Another limitation of this
approach is that the SCF wavefunction does not take into account particle correlation
that may be quite strong between nuclei [36, 37].

If the variational approach were based on a trial function ¢(r},r's,....1r'y)
of just internal, translation free coordinates r; (see Section 6.2), it would not be
necessary to separate the motion of the center of mass explicitly because
(¢|H|@) = (¢|Hwm|@). But it is not the case of the SCF wavefunction (6.64) so
that we have ESCF — <1PSCF|H|1PSCF> — <1PSCF|TCM“PSCF> + <IPSCF‘HM|IPSCF> >
(WSCF| F\|WSCF) Therefore, the estimated energy is always worse than when the
trial function depends only on internal coordinates, even though the SCF wavefunc
tion may satisfy the virial theorem 2(WSCF | T|WSCF) —  (WSCF |y |WSCFy (14, 34]. The
reader may find a more detailed discussion of this issue elsewhere [35].

Tachikawa and Osamura [34] calculated the dipole moments of the "H"H and
™Li"H isotopomer series but, unfortunately, they did not show the expression they
used. This is not a minor issue as discussed in what follows.

Before proceeding further, it is convenient to discuss the failure of the naive
approach to the nonadiabatic calculation of dipole moments. In quantum mechanics,
one obtains the average of an observable O as the expectation value (W|O|W) of
the corresponding operator O. In Section 6.3, we showed that SW = +W because the
molecular Hamiltonian is invariantunder inversion. Since (i3 o (i, we conclude

that
W= (W) = 0 (6.66)

for any nondegenerate molecular state W. This result known since long ago [25]
applies to any molecule in its ground state and renders fruitless the calculation of its
dipole moment as a straightforward expectation value in a set of axes parallel to those
of the laboratory (like the one discussed in Section 6.2).
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One of the problems arising from the separation of the center of mass discussed in
Section 6.2 is that the transformation (6.12) can make the Coulomb potential rather
messy. One way of keeping a simple form of the potential energy function is to
choose one of the particles as coordinate origin. From a practical point of view, it
appears to be convenient to choose the heaviest nucleus for that purpose [36]. Thus,
the transformation

=3y
=M (6.67)
rjfrj r,j=2,3,...,N

leads to

X e 1_, - 1 H &g
Hu= 3.V 5 ZZV + e 21

}>1 k>1 i 1] Tij

(6.68)

where m; is the mass of the heaviest nucleus and r; its location in the laboratory
reference frame. The transformed Coulomb potential does not make the calculation
of matrix elements unnecessarily complicated as follows from the fact that
I nl=r,i=23,....,N,and [ty g|=|r} 1, i,j=2,3,....N.

For example, we consider a four particle molecule. The transformation (6.67) is
given by the matrix

m; mMp; Mz My
M M M M
t=| 1. 1 0 o0 (6.69)
1 0 1 0
1 0 0 1
with inverse
1 my ms my
M M M
pgmom m
M M M
t1 = . mom e (6.70)
M M M
oM om o m
M M M

This transformation applies, for example, to the H, isotopomer series [38]. The
only members that exhibit dipole moments are HD, HT, and DT. In this case, we
choose thelabels 1, 2, 3, and 4 to denote the heaviest nucleus, the lightest one, and the
two electrons, respectively.

The fact is that m; > m; gives rise to a charge asymmetry and a small dipole
moment. Obviously, the straightforward BO approximation cannot account for it
because the electronic Hamiltonian H. does not depend on nuclear masses (see
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Section 6.5) and the resulting electronic charge density is exactly the same for all
isotopomers. Therefore, to obtain the dipole moment of diatomic molecules of the
form ™A"A, one has to take into account nonadiabatic corrections [39 41]. An
alternative approach is based on the fact that there is no unique way of implementing
the BO approximation. In fact, appropriate canonical transformations of the co
ordinates prior to the application of the BO approximation may force the required
asymmetry and provide a suitable way of calculating the dipole moment of "A"A
molecules [42, 43].

Cafiero and Adamowicz [36, 38] calculated nonadiabatic dipole moments for some
small diatomic molecules; in what follows, we outline the variational method
proposed by these authors for a diatomic molecule with N 2 electrons. The core
of the approach is a basis set of floating s type explicitly correlated Gaussian functions
of the form

g(r) = expl (X su)-A-(X sw) (Y sp) A (Y sy)

(Z si) A (Z si)] (6.71)

where Ayisa N’ x N'(N' = N 1) symmetric matrix, X, Y,and Z are 1 x N’ matrices
of the form X = (x/5,%'3,...,%'n), sgisa 1 x N’ matrix that determines the location
of the center of the Gaussian in space, and ¢ stands for transpose. To assure that the
Gaussians are square integrable, they chose A; to be of Cholesky factored form
A, =1L, - Lj, where L is a N’ X N’ lower triangular matrix.

To have the correct permutation symmetry of identical particles, they resorted to
appropriate projection operators of the form [36]

E=]]E (6.72)
and constructed the variational function
W= "cEgr) (6.73)
k1

so that the permutation of any pair of identical particles leads to either W or W if
they are bosons or fermions, respectively. Then, they minimized the variational
energy

E= min% (6.74)

Notice that the matrix Ly has N'(N’ + 1) /2 independent variational parameters and
each s; contributes with N’; therefore, there are N'(N"41)/2+4 3N’ + 1 adjustable
variational parameters for every basis function. In a most comprehensive review,
Bubin et al. [44] discussed this type of calculation.

Since the straightforward expectation value of the dipole moment operator [i does
not produce any physically meaningful result, as discussed above in this section,
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Cafiero and Adamowicz [36 38] resorted to an alternative approach based on the
energy of the molecule in an external electric field F, given by the Hamiltonian
operator:

H(F)= Hy F-ii (6.75)

They fitted energy values to a polynomial function of the field [36 38]:

E(FZ) = E(O) Mze %azng (6.76)
and obtained the dipole moment from the linear term. The dipole moments of HD,
HT, LiH, and LiD calculated in this way proved to be very accurate and in remarkable
agreement with available experimental values [36, 38]. In particular, the rate of
convergence of the theoretical results for the LiH [36] toward the corresponding
experimental dipole moment [27] is astonishing. Table 6.1 shows some dipole
moments calculated by Cafiero and Adamowicz [36, 38] and other authors
[34, 45, 46] as well as the corresponding experimental values [27, 47].

However, if the approximate variational function (6.73) were fully optimized, then
it should satisfy the Hellmann Feynman theorem discussed in Section 6.4 and in
that case the only possible result would be

OE(F,
“z ( )
OF. | o

— (W], /W) = 0 (6.77)

z

Table 6.1 Dipole moments for some diatomic molecules.

Ref. n(D) Method
LiH

[36] 5.8816 Non BO
[46] 5.879 BO

[34] 6.072 Non BO
[47] 5.8820 (4) Exp.
[27] 5.882 + 0.003 Exp.
LiD

[36] 5.8684 Non BO
[34] 6.080 Non BO
[47] 5.8677 (5) Exp.
[27] 5.868 + 0.003 Exp.
HD

[45] 1.54 x 1073 Non BO
[38] 0.831 x 1073 Non BO
HT

[38] 1.111 x 1073 Non BO
DT

[38] 2.77 x 107 Non BO
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The only way that Cafiero and Adamowicz [36, 38] could obtain a nonzero dipole
moment by means of this approach is that their variational wavefunction did not
become spherically symmetric when F, — 0. In other words, their variational ansatz
was not sufficiently accurate at small values of the field strength where it would reveal
the permanent molecular dipole moment. In that case, it is not clear how those
authors [36, 38] obtained such remarkable agreement between their theoretical
results and the experimental values of the dipole moment [27]. A more detailed
discussion of this baffling agreement has been published elsewhere [48] (Fernidndez,
F.M., On nonadiabatic calculation of dipole moments, arXiv.0808.3714v4 [math ph].)
A most speculative explanation is that a biased placement of the centers of the floating
Gaussians, inspired by the classical view of a polar diatomic molecule [36, 38],
somehow mimicked the use of a body fixed set of axes (see Section 6.10). However,
not only did the authors never mention this possibility but, curiously, in a later paper
they stated that “This spherical symmetry for the ground state wavefunction implies
several things about molecules that may go against common chemical intuition. First
of all, no molecule in the ground state will have a dipole moment, just as atoms do not.
Similarly, the molecule will have only one unique polarizability, an isotropic polari
zability. The current authors have presented several papers which discuss these
phenomena” [49]. However, they did not explain how they had obtained the dipole
moments in two of those earlier papers [36, 38]. Besides, in Section 6.10 we show that
the statement “no molecule in the ground state will have a dipole moment, just as
atoms do not” is false.

It would be interesting to investigate to what extent the variational ansatz (6.73)
optimized by Cafiero and Adamowicz [36, 38] satisfies the Hellmann Feynman
theorem that in the present case gives us an exact theoretical relation between the
molecule’s response to the field and the dipole moment. Exact relationships like those
given by the hypervirial and Hellmann Feynman theorems are useful to determine
the accuracy of approximate wavefunctions [13, 14]. The questionable success of the
method devised by these authors is obviously based on the floating nature of the
Gaussian functions that one can place conveniently to get the desired result [36, 38].
Notice that Bubin et al. [50] resorted to one center Gaussian functions of the form

() = rexp[ X-Ap- X' Y A Y Z-A,-Z1 (6.78)

to determine the charge asymmetry of the rotationless states of the HD molecule.
Clearly, this kind of basis functions cannot be placed at will to force an axial symmetry
and a nonzero dipole moment. It is for this reason that we mentioned above in this
section that it is unfortunate that Tachikawa and Osamura [34] did not show the
expression that they used for the calculation of the dipole moment of the "H"H and
"Li"H molecules.

The nonadiabatic calculations of molecular dipole moments described in this
section are bound to fail because they are based on a set of axes parallel to the
laboratory one. Therefore, the expectation value of the dipole moment operator
vanishes for any molecule in a nondegenerate state. In Section 6.10, we discuss more
judicious calculations based on molecule fixed coordinate systems.
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6.10
Molecule-Fixed Coordinate System

It is convenient to discuss the motion of a system of particles in space by means of
three sets of axes. One set of axes is fixed somewhere in the laboratory. A second set of
axes with its origin fixed on the system center of mass and parallel to the laboratory
one. It was discussed in Section 6.2 with the purpose of separating the motion of the
entire system as a point particle with mass equal to the total mass of the system. A
third set of axes with origin on the center of mass and somehow completely fastened
to the system enables us to describe its rotational motion. It is not difficult to define
such set of axes for a rigid body, but it is not so obvious when the distance between the
system particles change rather arbitrarily. It is clear that we should define any
intrinsic molecular property, such as the electric dipole moment, moment of inertia,
and so on, with respect to this body fixed reference frame. If we use the second set of
axes, we expect that the expectation value of the dipole moment operator for the
molecule in a nondegenerate state vanishes as discussed in Section 6.9. This result is
an obvious consequence of the average over the angular degrees of freedom of the
whole system. The proper use of the body fixed set of axes was clearly addressed by
Blinder [39, 40] in his studies on the HD molecule, and Sutcliffe [7 9, 51] discussed
the more general case of polyatomic molecules. For simplicity, here we restrict
ourselves to Blinder’s proposal for diatomic molecules [39, 40].

For generality, we first consider a diatomic molecule with the nuclei located at r;
and r, and the electrons at ry, 13, ...,ry. Following Blinder [39], we use relative
coordinates for the nuclei and refer the electron coordinates to the midpoint between
the nuclei according to

h,=r 1r1 (6.79)
gzr,- i(l‘]‘f’l’g), i>2

that is a particular case of Equation 6.2 with

ms
tlj =1

M
tzj =0 6j1 (6'80)

1 .
tj = 69‘ 5(61'1 +6j2), j>2

The resulting molecular Hamiltonian operator in the coordinate representation is

B2 R w2 (XN 2o N
2 _ 12 12 ! ! !
= Ve 3w 2.V %(ZVJ) gy Ve 2 Y
S Ej 3 S ] 3 a ] 3
(6.81)
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where m. is the electronic mass, ms = mym, /(my +my), and m, = mymy /(my  my).
These coordinates are most convenient to calculate the dipole moment of diatomic
molecules of the form ™A"A because the fourth term on the right hand side of the
internal Hamiltonian (6.81) vanishes when m; = m; and can therefore be treated as a
perturbation that converts the symmetric case to an asymmetric one.

To place the molecule fixed set of axes, we take into account the unit vectors
generated by

R=r1, 1, = R(cosdpsinOe,+sin¢psinOe,+cosOe;) (6.82)

where e,, e,, and e; are the space fixed orthonormal Cartesian vectors (second set of
axes). Notice that we renamed the vector r) to match Blinder’s notation [39].
We next define the body fixed orthonormal vectors

€ oR
f = ey =—
*~ Teo] " T 20
o o R
Y |E¢|7 b o (6.83)
, R
€, = €g, €er :ﬁ

and the new particle coordinates with respect to them
T, = xle, +yle, +ze, = xe, + yl{’e; +2]e, (6.84)

1

The transformation between these two sets of coordinates

X
Y | =C| ¥ (6.85)
Z

e.-€ e € e e cospcos® sinpcos®  sin6
/ / / _ .
C=|ece e-€ e e [= sin ¢ cos ¢ 0
e e, e-e e, e cospsin® singpsin® cosO

(6.86)

We do not show the explicit form of the Hamiltonian operator in this molecule
fixed reference frame because it is not necessary for the present discussion.
Blinder [39] derived it for the HD molecule.

The new nuclear coordinates are

1 R R
R] =In E(l’l +1’2) = 5: <0,07 E)
(6.87)
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and the electronic ones are simply given by r/, i > 2. Assuming that both nuclei have
identical charges, the classical dipole moment in the body fixed set of axes is given by
a purely electronic contribution

W= ey r (6.88)

For the particular case of HD (N = 4), the above expressions agree with those
developed by Blinder [39], except for the different notation and labeling of nuclear and
electronic coordinates. They allow one to calculate the dipole moment as the
expectation value of the corresponding operator by means of an eigenstate of the
Hamiltonian operator in the molecule fixed set of axes.

The effect of the inversion operator on the rotation angles is given by 6 — 7w 6 and
¢ — ¢ + . Therefore, the first row of the matrix C remains unchanged and the other
two change sign. For that reason, the inversion operation (x,y!,z!)—
(%}, yi, 2z in the laboratory fixed frame results in (x/,y/,2/) — ( «/,y/,2!)
in the body fixed one, and, consequently, we do not expect that {{i’,) vanishes because
of inversion symmetry. However, in the case of identical nuclei m; = m,, we cannot
have a net dipole moment along the internuclear axis because the additional
permutational symmetry leads to (i”,) = 0. To explain the occurrence of a dipole
moment in a diatomic molecule of the form A" A, we resort to perturbation theory
and write Hy = Hp —|—M:I/, where

. W, K h?

Hy = 12 12
0 s \%) . (V37 + V)

S (Vy+ V) +Vv (6.89)

A = mg/m,, and

R W
H = Z—MSV’Z (Vy+ V) (6.90)
Notice that Hy is the molecular Hamiltonian for identical nuclei, as follows from the
fact that A = 0 when m; = m,.

We can thus expand the eigenfunction in a A power series ¥ = W(© L @),
that leads to a similar expansion for the dipole moment u, = u?))\ + ---, where

ne = 2w ) (6.91)

provided that the eigenfunction is chosen to be real. This simple argument shows
how the different nuclear masses produce a charge asymmetry and a net dipole
moment.

Blinder [39] estimated the dipole moment of HD by means of a rather more
complicated perturbation approach and later Kolos and Wolniewicz [45, 52] and
Wolniewicz [53, 54] improved Blinder’s calculation by means of a variational
perturbation method based on Equation 6.91.

It is clear that any rigorous nonadiabatic calculation of the molecular dipole
moment should be carried out in the molecule fixed set of axes. Consequently,
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the approaches outlined in Section 6.9 are unconvincing (to say the least). Cafiero
and Adamowicz [36, 38] must have placed the floating Gaussians in a convenient
way to obtain nonzero dipole moments in good agreement with the experimental
ones and Tachikawa and Osamura [34] did not explain how they obtained their
results. Besides, the latter authors even forgot to remove the motion of the center
of mass.

6.11
Perturbation Theory for the Stark Shift

As we outline in Section 6.7, the experimental determination of the molecular
dipole moment relies on the validity of the model of a rotating quasi rigid polar
body. The procedure consists of fitting a polynomial function of the field strength to
the observed Stark shift lines. In principle, we should derive more rigorous
theoretical expressions for those line shifts by means of perturbation theory
and the actual quantum mechanical Hamiltonian operator for a molecule in an
electric field.

Instead of the rigid rotator model, we should choose the Hamiltonian operator,
Hoy = Hy, for the isolated molecule and the perturbation H = F.Ju. If we set F
along the z axis in the laboratory frame (F = Fe,), then H = Fii,. In this way,
perturbation theory gives us the well known quantum mechanical expressions for
the Stark shifts

E, = Eéo) 4 Er(ll) + Er(12) + .. (692)

where n is a collection of quantum numbers that completely specifies a given
(nonadiabatic) molecular state. For the ground state, we have

E= (W z|lv >F 0
0 m>0 E(()O) E(O

where we clearly appreciate that the field reduced splitting AE/F? does not give us
what we may call the square of the dipole moment but a kind of energy weighted
average over those molecular states with nonzero matrix element (‘P(()0>|112|11153>),
including the continuum part of the spectrum. This important issue was already
discussed by Brieger et al. [55] and Brieger [56] more than 20 years ago in
their BO study of the Stark effect of heteronuclear diatomic molecules in '
states.
In the molecule fixed reference frame, we have

W= wel + e, + e, (6.94)
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and a similar expression for F. Brieger [56] argued that the spherical vector
components

1
W= :F% (u £ ) (6.95)

are more convenient for the calculation of the matrix elements in Equation 6.93. Itis
not difficult to prove that

wEF=> ( 1uF, (6.96)
P
However, since the laboratory fixed and molecule fixed sets are the natural frames
for the external field and the molecule, respectively, Brieger [56] chose F = Fe, in the
former and p in the latter as in Equation 6.94. Thus, in the simple notation of
Section 6.10, we have

o / / / / /
w, = W.e; e, + “’yez : ey + n.e;-e,
sin 6

V2

= sin@p,+cosOp, = (W, w,)+cos Oy (6.97)

In this way, Brieger [56] showed that the perturbation H' connects the ground
electronic state '3 to excited 'S and 'IT states (in general, those with electronic
angular momentum quantum numbers A and A + 1). Under the BO approximation,
Brieger et al. [55] and Brieger [56] separated the Stark shift (6.93) into four
contributions: (1) coupling of rotational states within the same ' vibronic one,
(2) coupling of vibrational rotational states within the same 'X electronic state, (3)
coupling of vibrational rotational states between two ' electronic ones, and (4)
coupling of vibrational rotational states between the given 'S and T ones. The first
three contributions are due to u, and the fourth one due to u,, [55, 56].

As far as we know, there is no nonadiabatic calculation of the Stark shift by means
of Equation 6.93. A straightforward comparison of BO and non BO calculations may
lead to some difficulties as mentioned by Wolniewicz [54]: “Since the familiar
classification of electronic states of diatomic molecules is based on the Born
Oppenheimer approximation, some difficulties arise if one tries to use the standard
nomenclature to describe nonadiabatic functions.”

6.12
Conclusions

Quantum mechanics is a theory for observables; it gives us a recipe for the calculation
and prediction of what can be experimentally measured. When we apply this point of
view to molecular properties such as the dipole moment, we face some problems.

First, we should define precisely what we understand for the dipole moment of a
molecule and calculate it accordingly. As we said above, the nonadiabatic calculations
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of dipole moments are scarce and few. Those of Tachikawa and Osamura [34] and
Cafiero and Adamowicz [36, 38] are suspicious because they are not based on the
molecule fixed Hamiltonian operator. In our opinion, the only serious attempts at
nonadiabatic calculations of dipole moments are those of Blinder [39, 40], Kolos and
Wolniewicz [45, 52], and Wolniewicz [53, 54]. All other calculations of dipole
moments are based on the BO approximation.

Once we calculate the dipole moment according to such an agreed theoretical
definition, we realize that it may not be directly comparable to available experimental
data. Brieger [56] judiciously argued that the field reduced line splittings do not give
us the square of the molecular dipole moment, as predicted by the oversimplified
rigid rotor model, but a kind of energy weighted average. Thus, the well known
expression for the Stark shift in 'S levels dominated by the square of the dipole
moment is reasonably accurate only for sufficiently large dipole moments [56].

Cafiero and Adamowicz [36, 38] stated that “Our calculations simulate experiment
more closely than any previous calculations.” However, they calculated the Stark shift
for the ground state energy whereas spectroscopic experiments provide the Stark
shifts for the frequencies. In principle, the method developed by these authors could
be adapted to the calculation of the shift of the spectral lines that one can compare
directly with experiment. At this point, it is worth mentioning that the Hamiltonian
operator with the Coulomb potential plus the interaction with the field [36, 38] is
unbounded from below and therefore it exhibits only a continuous spectrum [48].
However, if the field strength is not too large then it is possible to apply the variational
method for bound states [36, 38]. Since there has not yet been any sound nonadiabatic
calculation of excited states, it is not clear whether it is feasible to obtain reliable
nonadiabatic Stark shifts. Even in the most favorable scenario, one would at best be
able to compare field reduced splittings because there does not appear to be a
rigorous procedure for extracting dipole moments from them [55, 56].

We appreciate that there is much to be done in this field and we hope that this
discussion will contribute to motivate such work.
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7
The Search for Parity Violation in Chiral Molecules
Peter Schwerdtfeger

7.1
Introduction

It is well known that symmetry through group and representation theory is an
indispensable tool for the interpretation of atomic, molecular, and solid state
spectra [1, 2]. Thus, symmetry plays an important role in chemistry and physics
[3, 4]. One of the most fundamental laws concerning symmetry in physics is
Noether’s first theorem [5], which states that any differentiable symmetry of the
action of a physical system has a corresponding conservation law. The action of a
physical system is obtained from its known Lagrangian function (currently obtained
from the so called standard model (SM)) [6], which by the principle of least action
should completely describe the system’s physical behavior. Beside the kinematic
symmetries like space time transformations, permutation symmetry (leading to the
famous Pauli principle for fermions), and gauge symmetry describing the dynamical
symmetries of particle fields, we also have charge conjugation (C), time reversal (T),
and space inversion (P, parity) symmetry in nature. The conservation of all physical
laws under simultaneous charge, space, and time inversion is known as the CPT
theorem, or the Schwinger Lilders Pauli theorem [7 9]. More exactly, the CPT
theorem implies that any Lorentz invariant local quantum field theory with a self
adjoint Hamiltonian must have CPT symmetry. Violation of the CPT theorem has far
reaching consequences as it implies violation of Lorentz invariance (sometimes
called relativity violation), but not vice versa (!) [10]. So far no violation of CPT
symmetry has been found in nature, although experiments are currently in progress
to rigorously test this important conservation law [11]. CPT violation could only be
explained beyond the SM and, consequently, any positive outcome of such experi
ments implies new physics.

In order to preserve CPT symmetry, every violation of the combined symmetry
of two of its components (such as CP) must have a corresponding violation in the
third component (such as T); mathematically, these are completely equivalent.
Thus, violation of T symmetry is more often referred to as CP violation. CP
violation is most likely responsible for the matter/antimatter asymmetry in our
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universe [12], although the SM does not predict enough CP violation to explain the
antimatter/matter upper limit ratio of about 10° in the universe [13]. Despite the
search for more than 40 years of CP violating effects, starting from the discovery of
CP violation in the K, meson decay into 27 (1 in 500 decays) [14] and much later
the By meson, no further examples of CP violation have been found [15]. P and T
violation results in an electric dipole moment for the neutron, proton, and
electron. These effects might be larger than the SM predicts and could, therefore,
result in new physics. The current experimental limit for the electron electric
dipole moment (EEDM) from an experiment on the thallium atom is
|de| < 1.6 x 107¥ e cm [16, 17] (the SM through the Kobayashi Maskawa mech

anism predicts ~10*' e cm) [16]. For the EEDM in diatomic molecules such as
YbF, HIt, TIF, and PbO, see Refs [18 21].

In 1956, Lee and Yang suggested that parity might not be conserved in nuclear
[ decay [22]. The experimental proof of parity nonconservation (PNC, or PV for P
violation) came 1 year later from Wu et al. [23] by measuring the electron distribution
during the B decay of the ®°Co isotope. The electrons were predominantly emitted
with negative helicity with their spin being opposite to the nuclear spin axis, that is,
they were left handed. Further support came from the anti f decay of Co [24],
where the angular distribution of the emitted positrons showed exactly the opposite
behavior, that is, they were right handed. Parity violation is described by the SM (or
Weinberg Glashow Salam theory) of elementary particle physics utilizing SU(3) x
SU(2) x U(1) symmetry transformations [25 27]. This model considers three of the
four fundamental forces (strong, electromagnetic, and weak) between quarks and
leptons through the carriers of the forces, the photon, the W= and Z bosons, and the
gluons. However, the SM fails to provide a deeper insight into the nature of these
interactions. Fundamental questions remain open, such as why fermions and quarks
come in groups of three, what determines the mass of an elementary particle (the
Higgs boson responsible for the masses of elementary particles in SM theory has not
been detected yet), and what determines the values of the fundamental constants in
nature. For example, the SM is not capable of correctly explaining the Big Bang
baryogenesis from CP violation, and it is therefore widely assumed that the SM is
only alow energy manifestation of a more complete theory, for example, the so called
theory of everything (TOE) [28].

A stringent test of the SM in the low energy regime is by measuring PV effects in
heavy atoms. It originates mainly from the weak neutral current, thatis, the Zo boson
exchange between electrons and nucleons. The weak interaction causes a mixing
between opposite parity states in atoms, for example, it mixes s, , and p, , states, so
for the hydrogen 2p; ), state, for example, we get

Y= Iy2p1/z + iﬁqugl/z (71)

with € being of the order of 1071,

(W, , | Hpv|Wap,,
. (W, | Hpv|Wap, ) (7.2)
E231/2 E2P1/z
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and Hpy being the weak interaction Hamiltonian between the electrons and
nucleons. For this Hamiltonian, the main P odd contributions come from the
nuclear spin independent (SI) and spin dependent (SD) part of the weak current
(P even contributions are neglected here since they lead only to small corrections in
the isotope shift and hyperfine structure) given by

G
Hpy=H3, +HY = —->"0,()> vie,(rn)
n i

22
+ %Z (nnc(n) +nup(n) +a(n)) Z (e 1)@y (Fin)
(7.3)

with the Fermi coupling constant G/ (he)® = 1.16637(1) x 10~° GeV~2, which gives
a value of Gg=2.22250(2) x 10~ ** in atomic units (a.u.). The summation is taken
over all electrons i and nuclei n- @ is the normalized nuclear charge density, I,, is the
spin of nucleus n, and the y° Dirac pseudoscalar (chirality operator) is defined as

5 02 12 o 02 o o 12 02
e=(e) =) %) 74

with 1, and 0, being the 2 x 2 identity and zero matrix, respectively. Here the Dirac
matrices o and f are in the standard (Dirac Pauli) representation, and a contains the
2 x 2 Pauli spin matrices 6. The weak charge Qw for a specific isotope is defined as

Qw= N+Z(1 4sin’0y)~ N (7.5)

where N and Z are the numbers of neutrons and protons in the nucleus, respectively.
The Weinberg mixing angle Oy is given as sin’y, = 0.2397(13) [29]. Radiative
corrections change the weak charge and one approximately obtains [36] (Johnson, W.
(2007), personal communication)

Qy= 0.9857N+0.0675Z (7.6)

%NC, ®uF, and %, are the nuclear dependent factors (nuclear spin dependent (NC),
hyperfine (HF), and anapole moment (A) components), where the nuclear anapole
moment [30] is the largest among all three contributions [31]. The anapole arises due
to the charged weak current inside the nucleus and interacts with the electrons by the
usual magnetic interaction (PV hyperfine interaction). Typically, one has
|Qw| ~ 100|»| with % = %nc +%uF +%a. The nycparameters are determined from
nuclear structure calculations [32] and we approximately have %a ~ Sknc and
#ur ~ %nc/2. For example, theoretical estimates for *)Cs gave np = 0.063
0.084 [33] in good agreement with experiment ((xa = 0.09(2)) [34, 35]. More details
can be found in Ref. [28].
It is obvious that Hpy does not commute with the parity operator, that is,

[Hev, P] # 0 (7.7)

Gr and consequently € are rather small, and early predictions of weak neutral
currents in atoms showed rather small effects [30]. However, in 1974, Bouchiat and
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Bouchiat predicted a Z* scaling with the nuclear charge Z for parity violation effects
in atoms and proposed optical rotation experiments for highly forbidden transitions
in atomic spectra of heavy elements [37 41]. The first observation of atomic PV came
in 1978 from Barkov and Zolotorevin at Novosibirsk from measurements on the ***Bi
isotope [42 44]. The most accurate optical rotation experiments are currently from
groups at Seattle (**T1, 1283 nm transition and 2’ Pb, 1279 nm transition) [45, 46]
and Oxford (**’Bi, 876 nm transition) [47]. Here the laser frequency is tuned to the
vicinity of a magnetic dipole resonance. The interference between the highly
forbidden PV induced E1 amplitude and, in this case, the dominant M1 amplitude,
leads to optical activity. Further successful experiments came from Berkeley using a
Stark interference technique for **°T1 [48]. The most accurate experiments to date
come from the Colorado group in 1997 using a Stark interference technique for
133Cs [49, 50]. These results are in unprecedented agreement with the SM to an
uncertainty of 0.35% [51 53]. Even more interestingly, these experiments are so
precise that nuclear spin dependent effects arising mainly from the nuclear anapole
moment (x4 in Equation 7.3) have been confirmed (first and only), thus providing
new insight into neutral current weak interactions in the hadron sector, which
otherwise is difficult to obtain. From Equation 7.6 we obtain for the weak charge of
B33Cs (z=55, N=78), Qw= 73.172. This agrees with the experiment and theory
(Ow= 73.16(29)exp(20)heor [54, 55]) to 10 accuracy. More recently, Tsigutkin et al.
found atomic PV in the 6s” ('S,) — 5d'6s' (*D,) 408 nm forbidden transition in
ytterbium to be two orders of magnitude larger than in cesium [56]. For reviews on
atomic PV, see Refs [41, 57 59].

The SM also predicts that PV originating from the weak neutral current between
electrons and nucleons introduces a tiny energy difference between left (S) and
right (R) symmetric (mirror image) molecules (enantiomers) of a chiral com
pound [60 63]. Consider the positive |+ ) and negative | ) parity eigenstates of a
parity conserving molecular Hamiltonian Hpc, which are usually split by tunneling
in a double minimum potential between the two enantiomers,

Pl+)=+|+), Pl )= | ), Hpc|+)=E|+), Hp| )=E])
(7.8)

with the tunneling splitting AEr = E_  E. > 0. For almost all chiral molecules, the
tunneling splitting can be completely neglected compared to the parity violation
energy shift, AEr < |Epy|. In this case, we form the left right superpositions of the
parity states,

1Sy =(+)+1 N/V2, IR =(+) | )/vV2, [S)=PIR), |R)=P|s)
(7.9)
In the standard Dirac picture, the parity operator is given as [64]
P= Y() — B (710)

and we have for the Dirac matrices the anticommutation rules,

{vau}zo (M:17273)7 {P>Y5}:0 (7'11)
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with
v =iy and v = (B.Ba) (1=0,1,2,3) (7.12)

From the parity conserving and nonconserving (Equation 7.3) Hamiltonians, we
therefore get

[P, Hpc] = 0, {P,Hpy} =0 (7.13)
or
P 'HpcP = Hpe, P 'HpP = Hypy (7.14)

and thus we obtain for the left right expectation values
Epy = (S|Hev|S) = (RIP"'HpyP|R) = (R|Hpv|R) = Epy (7.15)

and we have used P~! = P = P. E§, is the PV energy shift for the S enantiomer. The
PV energy difference between both enantiomers is therefore

AEI§\}§ = Efgv E1§v = 2Ef:;v (7.16)

Equation 7.16 of course includes the unlikely case that AEsk = 0 for a chiral
molecule in its equilibrium geometry. Therefore, strictly speaking, nonzero PV
transforms enantiomers into diastereomers. PV in chiral molecules led to some
speculation that it is the cause for biomolecular homochirality in nature, the fact that
life on earth is completely dominated by left handed amino acids and right handed
sugars [60, 61] (see Refs [65 70] for critical reviews on this highly debatable
hypothesis). Despite many claims in the past, PV effects in chiral molecules have
never been unambiguously observed [71]. The PV energy differences between
enantiomers are currently estimated to be in the range of below 1 Hz for experi
mentally accessible chiral molecules [71]. Moreover, precise calculations for PV
energy shifts are rather difficult at the molecular level and, therefore, offer no
competition for testing the SM unlike the atomic case. We mention, however, a
recent study by DeMille et al. who suggested to measure the nuclear spin dependent
PV through a Stark interference technique to determine the mixing between
opposite parity rotational /hyperfine levels of ground state diatomic molecules such
as BaF [72]. Nevertheless, the search for thermodynamically stable chiral compounds
with large parity violation effects, together with the development of ultrahigh
resolution spectroscopic techniques, constitutes one of the most exciting and
challenging areas in molecular physics, which will be discussed in the following
sections. There are a number of excellent review articles already available on both
experimental and theoretical aspects of parity violation in chiral molecules[71,73 78].

7.2
Experimental Attempts

Letokov predicted in 1975 [62] that PV leads to energy differences in molecular
spectra of chiral molecules. In 1976, Kompanets et al. suggested the use of narrow
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saturated absorption resonances in the vibrational rotational spectrum of CHFCIBr
induced in a continuous wave CO, laser field [63]. It was speculated that a resolution
of Avpy /v = 10" can be achieved (AEpy = hAvpy). There have been many more
suggestions of how to measure P odd effects in chiral molecules since then, but only
few experiments have been carried out so far that stand on safe scientific ground. The
first serious attempt to find differences in transition frequencies was carried out by
Arimondo and coworkers in 1977 [79] using b and L camphor and a 9.22 um R(28)
CO, laser line, which conveniently lies in the C C* CO bending mode range of
camphor (C* denotes a chiral carbon in the camphor molecule). They concluded that
for this compound, PV effects must be smaller than 300 kHz, which gave the upper
limit Avpy /v< 10~%. Almost 30 years later, theoretical work carried outin Lazzeretti’s
group (Modena) and our group (Auckland) demonstrated that for camphor, the PV
shift is more than 10 orders of magnitude smaller, that is, Avpy /v ~ 1071 (80, 81].
Because of the weak charge and in general the Z scaling behavior for PV proposed by
Bouchiat and Bouchiat for atoms [37 41] and by Zel'dovich et al. or later Hegstrom
and Wiesenfeld for chiral molecules [82 84], it is clear that one has to choose chiral
molecules containing heavy elements. In fact, it was shown by us in 1999 that for
H,X, (X=0, S, Se, Te, and Po, torsion angle of 45°) at the Dirac Coulomb Hartree

Fock (DC HF) level of theory, the PV energy shift E5X scales approximately like
7% [85]. Another important aspect to consider is the single center theorem of
Hegstrom et al. [84], which implies that it is desirable to involve two or more
neighboring heavy elements in the chiral compound, preferably with PV contribu

tions of the same sign such that they amplify. Next, chiral compounds should consist
of as few atoms as possible leading to a more favorable partition function. Moreover,
the compound must be reasonably stable, volatile, and synthesizable, and an
enantioselective synthesis or enantiomeric enrichment is highly desirable for
independent measurements. It is now evident that finding suitable chiral molecules
for PV measurements is less than trivial. In the following sections, we review some
attempts to measure P odd frequency shifts in chiral molecules. We mention that one
very promising future alternative experimental method is to trap molecules at
ultracold temperatures (in the mK range or below) [86], for example, by pulsed
electric fields [87, 88], and subsequently perform ultrahigh resolution spectroscopic
measurements of vibration rotation or electronic transitions. Tunable lasers for
high resolution measurements are already available in the 1 20 um range, which can
reach resolutions of 1 Hz or below [76, 89 91]. Cold molecules are ideally suited for
high resolution spectroscopy [92].

7.2.1
Vibration Rotation Spectroscopy

PV effects in vibrational transitions are usually an order of magnitude or more
smaller than the direct PV shift in the total electronic energy. Perturbation theory
shows that enhancement effects in the PV contribution are expected if the first and
second derivatives of the PV energy shift with respect to the normal coordinate of the
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vibrational mode are of the same sign. Previous attempts by the Paris group focused
on Letokov’s suggestion of using CHFCIBr as the chiral target molecule. It took until
1989 when finally CHFCIBr was synthesized in high optical purity [93], and the
absolute configuration was determined by Collet and coworkers to be S(+) and R
() [94,95]. In 1999, the first high resolution PV experiment has been carried out by
Chardonnet’s group in Paris [74, 89]. In this experiment, a single CO, laser feeds an
electro optic modulator generating tunable frequency stabilized side bands. The
stabilized laser directly feeds two 3 m long Fabry Perot cavities containing the
separated enantiomeric compounds in high optical purity. The laser was locked on
one hyperfine component of the v, C F fundamental frequency in CHF*’CI*'Br
with a peak to peak line width of 90 kHz. Five hundred and eighty measurements
were carried out over 10 days resulting in a negative outcome, that is,
Avﬁ\(,_)/ S(*) = 9.4 Hz with a statistical and systematic uncertainty of 5.1 and 12.7 Hz,
respectively, and Avpy /v < 1.6 x 10713 [74, 89]. These experiments were repeated in
2002 with samples of higher enantiomeric excess and a slightly modified setup with a
line width of the signal of 60kHz, which gave Avﬁs/f)/s(ﬂ = 42+06+1.6
Hz [96] corresponding to a frequency ratio of Avpy /v < 5 x 1071, Current theo
retical estimates provide Avpy /v = 8 x 107 [97], hence, the resolution needs to
improve by three orders of magnitude for this compound. The Paris group is
therefore moving to a molecular beam experiment using two photon Ramsey fringe
spectroscopy, which will narrow the line widths and improve the sensitivity by one or
two orders of magnitude [96]. Moreover, larger PV shifts in chiral molecules
containing heavier elements, either as the chirality center or as ligands, are required
for this experiment, which will be discussed in the theoretical section. For example,
CHFCII has been synthesized and characterized recently by Cuisset et al. [98, 99].

7.2.2
Mossbauer Spectroscopy

In atomic Mossbauer transitions, PV manifests itself in the emission of circular
polarized vy radiation. Inzhechik et al. claimed to have seen circular polarization of
(0.9 +0.1) x 10> for the 23.9 keV transition in !**Sn and (0.58 4 0.12) x 107> for the
14.4 keV transition in *’Fe [100 102]. This, however, was disputed later by Shuskov
and Telitsin who obtained five orders of magnitude smaller values from the
theory [103]. This clearly underlines the importance of an independent theoretical
confirmation of experimental PV observations. No other atomic PV Mdssbauer
experiments have been carried out so far.

On the molecular side, Khriplovich suggested Mdssbauer experiments on heavy
nuclei such as ''Ta [104]. In 1994, Méssbauer measurements on the . and b tris(1,2
ethanediamine) iridium(III) complex provided an upper limit for the PV energy
difference of 4 x 10~° eV [105]. More recently, Compton and coworkers at Tennessee
reported Mossbauer spectra for the enantiomers of Fe(phen);Sby(C4H,Og), x 8
H,0 [106]. Four independent experiments showed a small (but reproducible) energy
shift in the >’ Fe Mossbauer spectra of 1.9 x 10 '°eV. Besides the fact that > Fe is a
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relatively light element and rather small PV effects are therefore expected, a
theoretical analysis concluded that for closed shell systems, PV energy shifts in
Méssbauer spectra should be very small due to Kramers symmetry [58, 106]. Here PV
contributions between different Kramers pairs of orbitals cancel out. This is
easily shown, that is, consider the Kramers operator K for the Kramers degenerate

orbitals (¥, d),

K= y'y¢' = i("z OZ)C*, oK = K¢ (7.17)
02 0

where C* denotes the complex conjugation. K commutes with the parity conserving

Dirac operator Hpc,

KKT =1, [K, Hpc] = 0 (7.18)

and we have
(%[ Hpy[0)= (o[Hpv[9),  ($°|HE[0%)="(o[HpIP) (7.19)

The first term comes from the nuclear spin independent PV Hamiltonian in
Equation 7.3. Here a change in the nuclear density is required to account for a PV
shift, which would lead to extremely small PV level splitting between the enantio
mers. More important, the nuclear spin dependent contributions cancel out unless
strong magnetic fields are applied to lift Kramers’ degeneracy. Moreover, as these are
solid state measurements, imperfections in the crystal and impurities can lead to
spurious energy shifts between the enantiomers. Hence, the observed level splitting
is most likely not due to PV.

7.23
NMR Spectroscopy

As mentioned before, most of the effect in the nuclear spin dependent PV Ham
iltonian comes from the nuclear anapole moment. In 1986, Barra, Robert, and
Wiesenfeld discussed the possibility of measuring PV in NMR observables such as
the nuclear magnetic shielding, the nuclear spin spin coupling, and the spin rota
tion coupling [107 111]. From relativistic extended Hiickel calculations, they esti
mated that PV shifts in the nuclear magnetic shielding are in the mHz range for
chiral molecules containing heavy elements [107, 108]. Ultrahigh resolution high
field NMR is indeed capable to achieve mHz resolution. However, there are certain
restrictions. One has to avoid line broadening from nuclear quadrupole coupling,
restricting the nuclei to nuclear spin I = 1/2. There are not too many promising heavy
element isotopes available satisfying this condition, and in addition forming stable
chiral compounds, and possible choices are 'V7Sn, Sn, 1870s, and '83W as chiral
centers [112]. Another possibility is to attach a heavy spin 1/2 nucleus to a chiral
center. The gas phase NMR will be the best method, as the liquid phase leads again to
line broadening due to dynamic effects, and the solid state may introduce spurious
effects due to imperfections in the sample. Nevertheless, Mukhamedjanov et al.
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suggested recently to use insulating garnets doped by rare earth ions to measure PV
shifts in the NMR frequency, which arises from the lattice crystal field and the nuclear
anapole moment of the rare earth nucleus such as 'Tm or “'Pr [113, 114].
Moreover, for the nuclear spin dependent term in Equation 7.3 the Z scaling might
not be as favorable as for the spin independent case [115, 116]. A recent article by
Ledbetter et al. [117] reported on optical detection of NMR ] spectra at zero magnetic
field. The experimental setup was a microfabricated optical atomic magnetometer
providing high sensitivity. They obtained 0.1 Hz line widths and measured scalar
coupling parameters of the form (JI;I,) between two nuclei with 4 mHz statistical
uncertainty. This high precision | spectroscopy technique can provide a new tech
nique for measuring PV in nuclear spin coupling. We mention that recently Fujiki
reported on the observation of PV effects in the NMR spectra of the 2?Si signal (as well
asin the UVand CD spectrum) of symmetrically substituted helical polysilylene, poly
[bis(S) 3,7 dimethyloctylsilylene] and its enantiomer, in CDCl; solution [118]. How
ever, such compounds are not suitable for high precision measurements. As there
are currently no other reports on measurements of PV effects in NMR properties, the
high resolution NMR remains a challenge to future experimental and theoretical
investigations.

7.2.4
Electronic Spectroscopy

In principle, electronic spectroscopy would be the most promising way to observe PV
effects in chiral molecules, as PV shifts in the total electronic energy are largest, and
are predicted to be in the range of a few 100 Hz for heavy element containing chiral
compounds [119]. However, narrow line widths are only obtained in symmetry or
spin forbidden electronic transitions with lifetimes of the excited electronic state of 1
ms or more. Enhancements in PV energy differences are expected if the PV shifts of
the ground and electronic excited states are of opposite sign. There has been little to
no work published on PV energy shifts in electronic transitions, and to find suitable
candidates remains a challenge. We mention that in 1986, Quack and coworkers
proposed an experiment making use of an achiral excited intermediate state of well
defined parity [120, 121], based on an earlier study by Harris and Stodolsky on
tunneling in the presence of weak interactions [122]. They suggested to investigate
molecules like C1,S, [123]. This allows one to isolate the PV energy shift in the ground
state as a spectroscopic combination difference. A similar scheme has been intro
duced by Berger, but suggesting an achiral electronic ground state and a chiral excited
state, which, for example, is the case for the molecule HFCO [124].

7.2.5
Other Experiments

Very recently, Barguefio et al. proposed to measure PV energy shifts between
enantiomers of chiral molecules by measuring changes induced by an external
chiral field such as circularly polarized light in the time averaged relative optical
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activity of a molecular sample prepared with chiral purity at the initial time [125]. This
proposal follows earlier work by Harris and coworkers [122, 126 131]. Here the
tunneling splitting must be of the same order as the PV energy shift, which
substantially narrows down the choice for suitable chiral candidates. If such an
experiment is feasible, remains to be seen. In the following, we briefly report on
various experiments carried out in the past to detect PV effects in chiral molecules,
some of them with claims of positive outcomes, which are highly questionable and to
our opinion, difficult to justify on theoretical grounds.

In a series of papers, Wang et al. [133 136] claimed evidence of a reversible
second order Salam phase transition [132] at 247 K caused by PV in a p alanine
crystal using a variety of spectroscopic techniques. However, the Salam hypothesis
of a PVinduced Bose Einstein condensation in a crystal is to our opinion seriously
flawed (to phrase it mildly), as it completely neglects the huge barrier of inversion
between two enantiomers in an amino acid crystal [137, 138]. Moreover, some of
the experiments have been carefully repeated in Compton’s group in Tennessee
with a (not surprisingly) negative outcome [138]. More recently, Wilson and
coworkers carried out neutron diffraction experiments for L and b alanine at
different temperatures, with no evidence at all for a Salam type phase transi
tion [139]. Bolik et al. presented a Raman spectra of b and 1 enantiomers of an RNA
duplex in water solution and found differences in the intensity of the vibrational
modes [140]. They concluded that their work is the first to provide experimental
evidence at the macromolecular level that the b enantiomer of RNA has an energy
level scheme different from that of its counterpart in the 1 configuration. Again,
such experimental findings are highly debatable and to our opinion not linked to
PV effects.

There have also been various claims of PVinduced preferred enantiomeric
crystallization by the Keszthelyi group [105, 141, 142]. A statistical analysis from
CD spectra of tris(1,2 ethanediamine)cobalt(III) and tris(1,2 ethanediamine)iridium
(III) crystals revealed an asymmetric distribution of 0 and t crystals, which the
authors see as a proof of PV forces acting in chiral molecules [141]. However,
crystallization is a complex process and such experiments at the macroscopic scale
will barely prove any PV effects in molecules, as a theoretical treatment is out of reach
to current computational methods. It comes therefore at no surprise that such
experiments are under constant criticisms [69].

In a more recent paper by Shinitzky et al., unexpected differences in the solubilities
of p and 1 tyrosine in water were reported [143]. They speculated that minute energy
differences between p and L tyrosine originating from PV, or other nonconservative
chiral discriminatory rules, could account for their observations. Their results were
again challenged by Lahav et al. pointing out the crucial role of impurities in the
samples [144]. An interesting note was added to Shinitzky’s paper in the journal
Chirality. In a commentary, the journal’s editor A. W. Schwartz explains why he
accepted Shinitsky’s manuscript despite one referee turning it down [145]. He asks
the question, “Is this good science or wishful thinking? Will this paper turn out to be
another example of ‘polywater’ or ‘cold fusion’ or is it a fundamental discovery of
great importance to theories of the origin of lifer”
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Theoretical Predictions

The first crude PV calculations for chiral molecules were performed by
Hegstrom et al. in 1980 on twisted ethylene and A nor 2 thiacholestane [84]. The
calculated PV shifts were extremely small, and 2 x 10~ a.u. for twisted ethylene.
However, ab initio calculations for PV in chiral molecules really started with Mason
and Tranter’s work 25 years ago, who investigated a variety of molecules, mainly
amino acids and sugars, to address the problem of the origin of biomolecular
homochirality [146 150]. They used a nonrelativistic approach, that is, a unitary
transformation from the Dirac to the Schrodinger picture, leading to the so called
Bouchiat Hamiltonian (in atomic units) [77],

NR

HPV:HPV+HPV = 40\/ZZQW Z{"LI’I’Qn Fin)

* ZC\;Z ; ) Xi:({piln’ 0, (rin) }

i(0i X L) - [pi, u(rin)]) + -+ (7.20)

For most nonrelativistic calculations, it is sufficient to apply a point charge nucleus
(0, (Fin) = 8 (rin)) [85]. Spin orbit coupling must be included in these nonrelativ
istic PV calculations, otherwise the matrix elements over the Hamiltonian (7.20)
would be exactly zero [84]. This can be done within a relativistic two component
framework, or by using linear response theory. For the latter method, we have [151]

Evy = ((Hlpy: Hso))o (7.21)
where Hso usually contains both the spin orbit and spin other orbit term. Berger
pointed out that for the lighter elements, the Breit interaction giving rise, for example,
to the spin other orbit term cannot be neglected anymore [152]. Laerdahl and
Schwerdtfeger demonstrated that while the largest PV contributions come from
the valence space where the chiral field is largest, the main amount comes from the
inner core region as one expects from the form of the PV operator (7.20) [85]. This
implies that most standard contracted Gaussian basis sets used in standard molec
ular quantum calculations cannot be applied anymore, as the wavefunction close to
the nucleus needs to be more flexible. This is similar to calculations of other typical
core properties like electric field gradients [153]. Indeed, it was first pointed out by
Kikuchi and Wang in 1987 that popular contracted basis sets used at that time, like
STO 3G or 6 31G, are not very useful in PV calculations [154]. A careful basis set study
by Kikuchi and Wang for glycine and alanine showed that the PV energy shift is very
sensitive to the various basis sets applied [155]. This was later reinvestigated by Quack
and coworkers, who pointed out that in the early work by Hegstrom et al. [84] as well as
Mason and coworkers [147 149], PV effects were underestimated by about one order
of magnitude [156]. It is now clear that great care needs to be applied for the choice of
the right basis set to accurately determine PV energy shifts. Further, test calculations
on H,0, and H,S; indicated that electron correlation effects are rather small [157].
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Table 7.1 PV energy shift Epy for HX; (X O, S, Se, Te, Po) at a dihedral angle
of 45° (in atomic units).

Method H202 H2$2 stez H2T62 HzPOz
DC HF 706x10 °  224x10 Y7  245x10 ¥  367x10 ' 1.55x10 '?
ZORA HF 793%x10 ¥  235x10 7  250x10 ¥ 371x10 * 1.55x10 '
DC MP2 567x10 ¥ 212x10 Y  228x10 ¥ 381x10 ™

DCCCSD(T)  6.12x10 " 211x10 V7

ZORA LDA 691x10 ¥ 278x10 Y 316x10 ¥ 460x10 * 1.39x10 '
ZORA Xo. 6.84x10 Y 274x10 Y7  314x10 ¥  459x10 * 1.45x10 '?
ZORA BLYP 654%x10 °  275%x10 7  3.06x10 ¥ 445x10 * 1.39x10 '
ZORAB3LYP 693x10 ¥ 269x10 Y 3.00x10 ©° 439%x10 ™ 144x10 12

The number of neutrons chosen for the weak charge is N= 8 (O), 16 (S), 46 (Se), 78 (Te), and 125 (Po).
DC HF, MP2, and coupled-cluster results from Refs [85, 157, 158] and ZORA results from
Refs [159, 160)].

Table 7.1 collects results from Epy calculations on H,X, (X=O to Po) from our
research group (Dirac Coulomb results) [85, 157], from DC MP2 calculations of van
Stralen et al. [158], and from zero order regular approximation (ZORA) density
functional calculations of Berger and van Wiillen [159, 160]. The H X X H torsion
angle is kept at 45°, where PV effects are largest (around 90° the PV energy shift goes
through zero and changes sign) [85]. The data in this table show that ZORA HF
results are in good agreement with the earlier DC HF calculations, and larger
deviations are only seen for the lighter elements as the DC HF calculations did not
incorporate any Breit interactions. Nevertheless, both the HF and density functional
theory (DFT) results are relatively close to the CCSD(T) results. However, this is
generally not the case for other molecules as we shall see. Interestingly, a fit to a
f(Z) = aZ" function gives basically the same Z scaling law of n=6.17 6.18 for all
levels of theory applied, and is therefore above the Z° scaling as suggested by
Zel'dovich [82]. A number of research groups in the past studied PV on the “test”
molecules H,0, or H,S,; or similar systems such as H,SO [151, 156, 161 166].

Concerning the nuclear spin dependent operator in Equation 7.3 or 7.20, the work
by Laubender and Berger [167, 168] and Soncini et al. [115] on PV contributions to
NMR chemical shifts for H,0,, H,S,, and H,Se, suggested a much lower Z27
scaling, hence, at the time NMR did not seem to be the best experimental method to
detect PV effects in chiral molecules. However, Bast et al. claimed a much larger
relativistic enhancement factor for H,Te, and H,Po, at the DC HF level of theory,
bringing the scaling even up to Z7-! [112]. ZORA DFT calculation by Nahrwold and
Berger later showed only a Z3* scaling indicating an instability in the Kramers
restricted DC HF wavefunction [116], or in other words, electron correlation effects
cannot be neglected anymore in such calculations, and DFT seems to perform well. A
comparison of four component HF, MP2, and DFT results on R CHFCIBr [169]
showed indeed the importance of electron correlation as large varying PV energy
shifts for the total electronic energy (even with changing sign) were obtained between
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different approximations used, that is, one obtains for Epy (in 10 '® a.u.) 5.53 (HF),
2.54 (MP2), 1.54 (B3LYP), 0.63 (BLYP), 0.66 (PW86), and 2.01 (LDA). Recent
coupled cluster calculations in our group gave 1.95 x 10 '® a.u., hence, a value
somewhere between the MP2 and B3LYP result (Thierfelder, C., Rauhut, G,
Schwerdtfeger, P. (2010) Phys. Rev. A, 81, 032513.). As a consequence, for the
determination of accurate PV energy shifts, one requires a higher level of electron
correlation treatment. This will become especially important for the correct descrip

tion of PV in electronic transitions. Concerning NMR shielding and spin spin
coupling constants, Manninen and coworkers performed HF and DFT calculations
for CHFCIBrand CHFBrI[172]. For the spin spin coupling constants, PV effects were
calculated in the nHz region or below, suggesting that heavier elements are required to
detect such effects. Laubender and Berger found that PV in NMR shielding constants
for the heavy elements in H,0,, H,S,, and H,Se, computed at the CCSD level of
theory deviate from their uncorrelated counterparts typically by approximately 20%,
with varying more pronounced corrections at the equilibrium structures, while in 2

fluorooxirane, electron correlation changes the shielding constants by almost
100% [168). For the same H,X, molecules at their equilibrium structures, Weijo
et al. found that coupled cluster and DFT results for PV contributions differ signif
icantly from the HF data, that s, for the 7’ Se PV shift in the nuclear shielding constant
for H,Se,, they obtain (in 10~'° ppm) 256.1 (HF), 139.9 (CCSD), 116.8 (B3LYP), 60.5
(BP86), 128.6 (PBEO), and 68.6 (PBE) [173]. Similarly, for the PV contribution to the
Se Se spin spin coupling, they calculate (in nHz) 6.606 (HF), 3.181 (CCSD),

3.038 (B3LYP), 1.943 (BP86), 3.795(PBE0),and 2.081 (PBE).They also showed
that basis set effects are very pronounced, especially at the correlated level of theory,
and that the choice of the nuclear charge distribution model (point charge or extended
Gaussian) has a significant impact on the PV contribution in the spin spin coupling
constant [173]. Vibrational effects in parity violating contributions to the isotropic
nuclear magnetic resonance chemical shift were recently investigated for CHFCIBr by
Weijo et al. [174]. They found that zero point vibrational corrections are less than 10%
with respect to the PV contributions calculated at the equilibrium geometry, but
become more important for vibrationally excited states as one expects. Weijo and
Manninen also analyzed PV shifts in the g tensor of electron spin resonance (ESR)
spectraof CH3XHO (X =N, P, As, and Sb) [175]. They concluded that itis unlikely that
PV effects could be experimentally observed by ESR.

From the Z scaling behavior, it is clear that the best candidates for PV measure
ments in chiral molecules should include one or more heavy elements. For example,
calculations for PV frequency shifts in fluorooxirane by Berger et al. show rather
small values, that is, Avpy /v = 1.2 x 107'® for the C F stretching mode [176]. The
first large PV energy shifts of up to 300 Hz were obtained for chiral organometallic
compounds such as [(n> CsHs)Re(CO)(NO)I][119]. These were DC HF calculations,
and from the more recent results for CHFCIBr, we expect that these HF results are
probably not very reliable and could change significantly upon inclusion of electron
correlation. Nevertheless, it was pointed out that the PV shifts to vibrational
transitions are relatively unaffected, as the main contributions come from the first
and second derivatives of the PV energy with respect to one particular normal
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coordinate g, and the total PV energy shift (Ppy(q = 0) = Epy(q = 0)) cancels out in
1 h |O*P 1 aP o’V
Poyvy = Ppy(q=0)+ > [ an\;(Q) (@ )

vibrational transitions [169, 177],
2 3 X
2 uw, g 0 Mg 0q 40 0q 40

(n+ %) + - (7.22)

The derivatives are taken at the equilibrium geometry (9=0), and we formulated
Equation 7.22 for the more general case of the vibrational dependence of any PV
property shift Ppy. This expression can be easily extended to a multimode expres
sion [170]. For the fundamental 0 — 1 C F stretching mode in R CHFCIBr, one
obtains (in 10" "®a.u.) 0.139 (HF), 0.186 (MP2), 0.198 (B3LYP), 0.184 (BLYP),

0.176 (PW86), and 0.192 (LDA) [169]. These calculations show that PV effects in
vibrational transitions are about one order of magnitude smaller than the PV total
energy shift. The importance to include anharmonicity effects in PV shifts in
vibrational transitions was already pointed out by Laerdahl et al. [178], that is, a
harmonic treatment can even lead to the wrong sign in Avpy [179, 180]. Similar
findings were obtained by Quack and Stohner who used a four dimensional parity
violating potential energy hypersurface for CDBrCIF and demonstrated that the
multidimensional anharmonic couplings provide the dominant corrections [171].
Concerning the accurate treatment of the vibrational spectrum of CHFCIBr and
CDFCIBr[181], Rauhut et al. [182] used coupled cluster theory (CCSD(T)) for the total
electronic energy and truncated vibrational configuration interaction to produce
fundamental frequencies of a few wave number accuracy compared to experi
ment [183, 184]. Similarly, good results were achieved for CHFCII and CDFCII [185].
The vibrational wavefunctions obtained will be used for a complete vibrational PV
treatment (Rauhut, G., Thierfelder, C., and Schwerdtfeger, P., to be published.). Two
component DFT was also used by Berger and Stuber to study PV induced vibrational
frequency shifts in these chiral polyhalomethanes [186]. Fokin et al. studied PV
effects in pseudotetrahedral polyhalocubanes, thus shifting the ligands outward from
the chirality center, resulting in PV energy shifts of two orders of magnitude smaller
compared to the polyhalomethanes [187].

Faglioni and Lazzeretti studied PV effects in the vibrational spectrum of BiHFBr
and BiHFI [188]. Barone and Viglione carried out anharmonic frequency analyses by
perturbation theory for the PV contributions in PHFBr and AsHFBr [170]. They
pointed out that even the coupling terms in the cubic force field between different
normal modes are important, which are usually neglected. Isotope effects in chiral
phosphorus compounds of the form PXYZ (XYZ =H, F, Cl, and Br with different
isotopes) have been studied by Quack and coworkers [189]. These molecules are all
good test cases for theoretical investigations, but have not yet been prepared, and as
such may be thermodynamically unstable. Bast and Schwerdtfeger, therefore,
suggested new target molecules, which can be synthesized and where important
fundamental modes lie conveniently in the CO, laser frequency range [190, 191]. In
fact, one compound investigated, (n° Cp*)(Re=0)(CH3)Cl, shows PV effects for the
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Re=O stretch in the Hz range [190]. Crassous and coworkers are currently trying to
synthesize suitable chiral molecules with a rigid molecular framework containing a
Re=0 double bond ". More recently, Figgen and Schwerdtfeger investigated chiral
selenium molecules of the form O=SeXYwith (X,Y =F, Cl, Br, and I) [192, 193]. The
PV energy shift for S SeOCII ranges between 7.1 and 9.2 Hz, depending on the
level of theory applied. For the Se=O fundamental stretching mode predicted at
968 cm ™, the PV energy difference is 110 mHz between the two enantiomers, and
therefore twice as large compared to the C F stretching mode of CHFBrI [192].
We finally mention that besides molecules with point chirality (a chirality center) or
a few systems with axial chirality (such as H,0,), little to no work has been done on
systems with planar chirality. For larger helical systems, we mention the work by
Kikuchi and Kiyonaga who investigated n alkanes [194]. They concluded that the
right handed helix is more stable than the left handed one, albeit by a very small

amount of less than 1072° a.u.

7.4
Conclusions

In the last decade, the methodology for treating PV in chiral molecules improved
considerably. We have come a long way and learned that electron correlation is more
important than originally anticipated, basis sets have to be more flexible in the core
region to correctly account for the response to the PV Hamiltonian, Breit interactions
need to be included for the lighter elements, the coupling between different
vibrational modes need to be taken into account for the correct description of PV
shifts, and relativistic effects need to be considered for the heavier elements. This is
certainly all very challenging from both the theoretical and the computational point of
view. On the experimental side, electronic spectroscopy would offer the largest PV
shifts, but remains relatively unexplored to date. Perhaps the best chance for the first
successful identification of PV effects in chiral molecules is by high resolution
vibrational spectroscopy as anticipated in Chardonnet’s group in Paris. However,
both high resolution gas phase NMR, and perhaps solid state Mdssbauer spectros
copy, should not be ruled out. On the practical side, it remains a challenge to find and
synthesize suitable chiral molecules, including heavy elements (either at the chiral
center or as ligands), with large PV energy shifts. As chirality is not a quantum
mechanical observable, it remains to be seen if chirality measures can be linked to PV
energy shifts [195], that is, we do not have a simple model in place to qualitatively
predict which molecules show large PV effects (besides the Z° scaling law). Finally,
we mention that one very promising new technique is to trap cold chiral molecules,
which are ideally suited for high resolution spectroscopy.

1) De Montigny, F., Bast, R., Gomes, A.S.P., Pilet, G., Vanthuyne, N., Roussel, C., Guy, L.,
Schwerdtfeger, P., Saue, T., and Crassous, J., Phys. Chem. Chem. Phys., DOI:10.1039/b925050f. In this
paper the original PV shifts to the fundamental transitions published in Ref. [190] are revised.
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8
Vibrational Circular Dichroism: Time-Domain Approaches
Hanju Rhee, Seongeun Yang, and Minhaeng Cho

8.1
Introduction

When light propagates through a medium, not a vacuum, its velocity and intensity
are modulated depending on the medium’s refractive index n(w) and absorption
coefficient % (w), respectively, and they are intrinsic optical properties of the medium.
As a result, frequency dependent phase retardation and attenuation processes occur
simultaneously [1]. If the medium is isotropic and nonchiral, these quantities
are constant at a given frequency irrespective of the optical polarization, so the
polarization state of the incident light remains unchanged after passing through
the medium. In chiral media, however, this is not the case for circular polarization
(left: LCP, right: RCP) because the parameters n(w) and »(w) leading the dispersion
and absorption processes vary with its handedness, that is, ni(w)# nr(®) and
% () # nr(w) [2].

Circular dichroism (CD) and circular birefringence (CB), generally referred to as
optical activity, are given by the frequency dependent differential absorption coeffi
cient Ax(w) =% (w) xgr(w) and the differential refractive index An(w) = ny(w)
ngr(w), respectively. Note that we will use the terms optical rotatory dispersion (ORD)
and circular birefringence together when denoting An because the optical rotation of
linearly polarized light is the observable effect caused by the CB. Since these
chiroptical properties are manifested by almost all natural products, artificial drugs,
and so on and are highly sensitive to their structural conformations and absolute
configurations, the CD or ORD spectroscopy has been used to elucidate secondary
structures of biomolecules such as polypeptides and proteins and to determine
absolute configurations of chiral molecules and drugs in condensed phases [2].
However, as with the mutual dependence between %(w) and n(w), known as the
Kramers Kronig relations [3 5], the two observables CD (Ax) and ORD (An) are also
linked to each other via such relations. Thus, if one of them is measured for the entire
frequency range, the other can be in principle obtained by performing the Kramer
s Kronig transformation. This means that the CD and ORD ultimately provide the
same chirality specific information of a given molecule with a specific handedness.
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However, in practice, this is not the case because it is not possible to measure one of
the two spectra in the frequency range from zero to infinity, which is the integration
range for the Kramers Kronig transformations.

Of the two, the CD spectroscopy has been more widely used than the ORD
measurement technique in studying structural details of chiral molecules, which is
not only because the measurement is less troublesome but also because a direct
comparison between experimental and quantum mechanically computed results is
possible. The conventional CD spectroscopy relies on a differential intensity mea
surement technique, where the absorbance difference of LCP and RCP lights by
the chiral sample (CS) is selectively measured. In the case of the vibrational CD
(VCD) [6, 7], which is just the vibrational analogue of electronic CD, the chiral
susceptibilities for nuclear vibrations are far much smaller than the corresponding
signals in the UV Vis range. Consequently, it is by no means an easy measurement
because one has to differentiate such a weak effect by using the differential
measurement scheme with relatively largely fluctuating incident IR beams. This is
why it takes a long time (typically a few hours) to acquire a statistically meaningful
VCD spectrum with conventional VCD spectrometers.

In this chapter, we will introduce a novel time domain approach characterizing the
vibrational optical activity (VOA) of chiral molecule. Instead of measuring incoherent
transmitted beam intensities, we have developed a chiroptical spectroscopic tech
nique that can sensitively detect the transmitted beam at an amplitude level so that
both magnitude and phase of the signal field are measured [8 11]. This additional
phase information is used to simultaneously characterize the circular dichroic and
birefringence effects induced by the field chiral molecule interactions. Also, we have
developed a computational method for calculating vibrational CD spectra of peptides
and chiral molecules in solution, where quantum mechanical/molecular mechanical
(QM/MM) molecular dynamics (MD) simulation method is used [12]. A notable
difference between our method and the previous quantum chemistry calculation
method is that our approach is based on the direct time domain calculation of the
electric dipole and magnetic dipole cross correlation function. The imaginary part of
the Fourier transform of the cross correlation function corresponds to the vibrational
CD. In this chapter, a brief account of time correlation function formalism for
both time domain computational and experimental methods will be presented
(Section 8.2). Next, QM/MM MD simulation method for directly calculating the
corresponding time correlation function will be described and some simulation
results will be shown and discussed (Section 8.3). Finally, we will present a detailed
description of femtosecond VOA measurement experiment for directly measuring
the phase and amplitude of the time domain chiral response function (Section 8.4).

8.2
Time-Correlation Function Theory

The radiation matter interaction Hamiltonian in the minimal coupling scheme is
given by the inner product of the vector potential of the electromagnetic field and the



8.2 Time Correlation Function Theory

momentum operator of the charged particle. Then, the multipolar expansion form of
the interaction Hamiltonian, which is valid up to the first order in the wave vector k,
is 8, 13, 14]

Hi= n-E@rt) M-B(r,t) (1/2)Q: VE(r,¢) (8.1)

Here, E and B are the electric and magnetic fields, respectively. u, M, and Q are the
electric dipole, magnetic dipole, and electric quadrupole operators, respectively.
Using the linear response function theory, one can find that the linear polarization is
given as [8]

PO (r, 1) = (ue™ (r,1) + (M x ke (r, 1) (i/2)((k- Q)™M (r, 1) (8.2)

where k =k/[k| and o(r, ) is the first order perturbation expanded density
operator with respect to the above radiation matter interaction Hamiltonian H;
in Equation 8.1. Then, the linear polarization in Equation 8.2 can be rewritten as, in
terms of the corresponding linear response functions [14],

P(l) (1'7 t) = QO J dr{q)lxu (T) + q)uM(T) + (l/z)q)uQ(T) +¢MM(T) (l/z)q)Qu(T)} . eE(r,t T)
0

(8.3)

where e is the unit vector in the polarization direction of electric field and g, is the
number density N/V, and

Guul®) =7 0(0) (1) 1(O)]ey)

Bune (1) = ~0(1) ((1), M(0) x Kloy)

= =

buo(v) = %G(TN[M(T)J(' Q(0)]eeq) (8.4)

O (1) = OO M(T) x K w(0)]0,y)

Gou(t) =+ 0()(k-Q(r). m(0)]oey)

Here, (...) denotes the trace over the bath degrees of freedom and Q. is the thermal
equilibrium density operator. Note that the first term on the right hand side of
Equation 8.3 is typically two to three orders of magnitude larger than the other
terms for electronic transition and four to six orders for vibrational transition.
For an absorption process, without loss of generality, itis assumed that the incident
field propagates along the z axis in a space fixed frame, thatis, k = (wo/c)z, where w,
is the center frequency of the electric field, and that e = §. Then, the rotationally
averaged y component of P)(t), which is the temporal amplitude of PY(r, #), is
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P = [ v ¢ (8.5)
0
where

() = 20(*) (1 01,0y (56

In this case, the magnetic dipole and electric quadrupole contributions to the linear
polarization in Equation 8.3 vanish. The linear susceptibility is defined as

x(w) = J di, (D™ = /() + i1 (0) (8.7)
0

The imaginary part of x(w), denoted as " (w), can be rewritten as

x'(@)

LQ;ZZP(a)IMahIZ[é(w Opa) (0 + wpg)]
a,b

(8.8)

T
=T )Y Pyl 30 o)
ab

where P(a) is the population of the state [a) and w,, = (a|u,(0)[b). Now, the
absorption line shape function in an isotropic medium is given as

10) = gy ey = 5 | dre () wio) (5.9)

—00

where the imaginary part of the dielectric constant is &”(w) = 4y (w).

We next consider the optical activity, that is, circular dichroism and circular
birefringence. When the incident radiation is circularly polarized, the unit vector
eshould be replaced withey = (% +ip)/v/2andegr = (X ip)/+/2 for the leftand right
circularly polarized lights, respectively. The difference polarization, which is related
to the linear optical activity, is then defined as AP(r, t)=P"(r, t) P%(r, t). Again,
assuming that k = (wo/c)z, the rotationally averaged x components of the linear
polarizations P'(r, t) and PX(x, t) are

PL(r, 1) = %f AT (0) + Kot (1) + X (D} E(E, £ ) (8.10)

PE(r,t):éJ:ch{qu(T) XuM(T) XMu(T)}E(r7t T) (811)

where

Yo () = 0o (1')<mx<t>, M, (0)]0.) (8.12)
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i .
a8 = 00() (B0, i 0o (8.13)
Thus, we find that the rotationally averaged difference polarization amplitude is
1 [o¢]
AP,(t) = 72 J dTAy(t T)E(T) (8.14)
0

where the linear optical activity susceptibility Ax(t) [= xu(t) ¥r(t)] is defined as

A = Z{XMM +XMu( )} (815)

Note that AP,(t) in this case has no contribution from the electric dipole electric
dipole and the electric dipole electric quadrupole responses because they all vanish
after rotational averaging of the corresponding second and third rank tensorial
response functions over randomly oriented chiral molecules in solutions. The linear
optical activity susceptibility in Equation 8.15 can be rewritten as

Ay () %Tdtem{@x(t),Mx<o>]eeq> (IM.(0), 1, (0) ey ) |

(8.16)

Q - [ (-
B D P M) [a

where u,, = (alu, (0 )|b) and M, = (a|M ( )|b) in this case. Using the relationship
7 dte™ (A(t)B(0)) = ([, dte’”(B 0)))", the line shape function of the
circular dichr01sm in an isotropic medlum is then given by

3 e’ (0)

MO =gt e m) =

1 J dt e (u(t) - M(0)) (8.17)

This result shows that the cross correlation function of electric dipole and magnetic
dipole is directly related to the CD spectrum via Fourier transformation. Conse
quently, a direct calculation of the cross correlation function in time is enough to
obtain the CD spectrum.

8.3
Direct Time-Domain Calculation with QM/MM MD Simulation Methods

The VCD line shape and intensity are determined by the anisotropy ratio g=AA/
A=4R/D|[2]. Here, the rotational strength (R) is the imaginary part of inner product
of the electric and the magnetic dipole transition moments, and the dipole strength
(D) is the square of the electric dipole transition moment. The rotational strength of
a given vibrational transition, which is the critical quantity in predicting VCD
spectrum by performing proper quantum chemical computations, can be obtained
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by calculating the atomic axial and polar tensors. The computed VCD spectra of
isolated peptides were shown to predict the specific sign patterns of the represen

tative protein secondary structures in a satisfactory manner [15]. In the cases where
the conformational distribution of a given molecule of interest is comparatively
narrow at around a well defined structure, that is, relatively rigid chiral molecule, the
optimized geometry of an isolated molecule in gas phase can be used to predict
the observed VCD spectra. However, this is not the case in general for polypeptides
and complicated polyatomic chiral molecules in solutions. Then, the band broad

ening and subtle line shape variations due to hydration or conformational hetero

geneity require the explicit inclusion of solvent molecules [16 19], and this would be
impractical for polypeptides or proteins.

The QM/MM molecular dynamics simulation method combines the mixed
QM/MM Hamiltonian approach with the molecular dynamics simulation and is
believed to be a promising approach to resolving those issues inherent in studying
condensed phase dynamics. With this method, the chiral solute molecule is treated
quantum mechanically and the solvent dynamics is explicitly included in a molecular
mechanical way. The total effective Hamiltonian is decomposed into QM, MM, and
QM/MM Hamiltonians [20]

Her = Houm + v + Hom/mu (8.18)
and the coupled Hamiltonian is defined as

- qm Zoqum Aum Bam
Houmm = » -+ Z—;QM +3° {Ri‘z o (8.19)
(¢4

: G
iM M oM oM M Rom

where the lower case index is to denote the QM part (solute) and the capital letter
index is to denote the MM part (solvent). The first term in Equation 8.19 is the
Coulomb interaction between the electrons in the QM region and the MM atoms with
partial charge gy, while the second term is that between the QM nuclei and the MM
atoms. The last term in Equation 8.19 is the van der Waals interaction between the
QM nuclei and the MM atoms with optimized parameters A and B. The solute
trajectory is directly governed by the QM and the coupled QM/MM Hamiltonians and
indirectly by the MM Hamiltonian.

The simulation procedure follows the conventional MD protocol except for some
specifics listed below [21], and we use the GAMESS UK [22] combined with
CHARMM [23] to do the QM/MM MD simulations. The solute whose VCD spectrum
is of concern is restrained by a weak harmonic potential at the center of a sphere filled
with solvent molecules. The bulk solvent effect outside the spherical system is
modeled by the spherical solvent boundary potential [24]. The nonbonding interac
tions between molecules are evaluated without using a cutoff. The MD integration
time step should be compromised between the computational cost and the details in
high frequency dynamics information. When the subtle hydrogen bonding dynam
ics of the solute is the major issue, however, the time step size should be smaller than
1fs. Apart from the integration time step size, the trajectory saving time step size
determines the upper limit of the spectral window. The finite system size inevitably
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limits the range of the long range interactions, which could not fully account in the
QM/MM MD algorithm as of now, and the total energy of the simulated system is
kept constant to ensure the stability of the spherical system. The population analysis
is done for every data saving time step and the atomic partial charges (¢;) along with
the solute trajectory (atomic positions and velocities, r; and v;) are used in calculating
the electric and the magnetic dipole moments of the QM solute molecule,

wt) = Z gi(t)ri(t)

M) = o> abn(8) x i) (8.20)

where the summation index denotes the solute atoms. To compute the VCD spectra
using the QM/MM MD trajectories, one should just carry out a Fourier transfor
mation of the cross correlation function of the electric dipole moment and the
magnetic dipole moment of the solute. Then the raw spectrum is smoothed out to
have the experimental spectral resolution.

The characteristic features of VCD spectra provide complementary and often
critical information used to elucidate the conformation of polypeptides and pro
teins [25]. As the firstapplication of this time correlation function calculation method
developed recently by us [12], the alanine dipeptide analogue, (CH3)CO Ala NH
(CHj3), was chosen to compute the VCD spectra of o helix, 3, Py, and random
coils [26]. The basis sets of 3 21G, 4 31G, 6 31G, and 6 31G* were used at the
restricted HF level and the solventis modeled with TIP3P [27]. At each level of the QM
method, several MD trajectories were independently generated with different initial
conformations and velocities, that is, different initial conditions. The atomic partial
charges were obtained by the Lowdin population analysis [28]. The dihedral angles ¢
and 1 of the peptide were evaluated for each MD snapshot and the trajectory that is
dominantly populated with a specific secondary motif was selectively used to calculate
the corresponding VCD spectra. We were able to assign the amide I, IT, and III modes
in the computed VCD spectra by calculating the autocorrelation functions of the
relevant internal local vibrations [26].

The polyproline II (Py;) structure, defined by the dihedral angles ¢ = 75° and
P = 145°, has been extensively studied over the last decade because it was believed
to be one of the possible structures of unfolded or denatured proteins [29]. The
distinction between the random coil and Py; structures has been, therefore, one of
the main issues paid a great deal of attention and was often not so clear. The amide
VCD bands of Py; conformer were observed experimentally to be negative couplets,
each with a much weaker positive peak on the higher frequency side. The computed
VCD spectrum using a P;; dominant trajectory is shown in the uppermost panel of
Figure 8.1. All amide VCD bands were found to be negative couplets in the
computed spectra and are indeed compatible to the experimental VCD of Py or
random coil polypeptides. However, the relative intensity of the amide II in
comparison to the amide I VCD band is very large, which is contrary to the
observed VCD spectra.
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Figure 8.1 Vibrational absorption (gray) and o helix conformations, respectively. The
circular dichroism spectra (black) of alanine trajectories of extended structures, such as Py,

dipeptide analogue in water using QM/MM MD  and [3 conformers, are obtained with6 31G* basis
trajectories highly populated with Py, 3, coil, and  and those of a helix structures with 3 21G basis.

The VCD spectrum of f structure, including both parallel (b= 119°, ¢ =113°)
and antiparallel 3 sheet conformers (p = 139°, ¢y = 135°), which cannot be distin
guished from each other in a single stranded peptide, is shown in the second panel of
Figure 8.1 and is the averaged one over several trajectories generated at the same level
of basis set. In the experimental VCD spectra of {3 sheet rich proteins, the amide I
VCD is weaker than the amide II VCD. In the computed VCD spectra in Figure 8.1,
the amide I band is very weak in intensity and is difficult to assign the band character.
Referring to other spectra that are calculated using trajectories generated at different
basis level but are represented by § conformers (not shown here), however, the
computed amide I VCD of 3 conformers is commonly a weak negative couplet.

The computed coil VCD spectrum is presented in the third panel of Figure 8.1 and
this was obtained using a trajectory generated at 6 31G* basis level. Furthermore, we
found that the coil VCD spectra obtained at other level of QM method show more or
less qualitatively spectral profiles (not shown here) similar to the one presented in
Figure 8.1. Comparing the VCD spectra of the three conformers Py, f, and coil,
which are shown in the upper three panels in Figure 8.1, one can find that the overall
spectral sign patterns are quite similar. The amide I and I VCD bands are negative
and the amide IIT VCD bands are negative couplets, even though the relative peak
intensities appear to depend on the specific structures. This indicates that the similar
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VCD spectral profile itself does not always guarantee the homogeneous distribution
of a specific secondary structure of a peptide in the solution.

It was shown that the VCD spectrum of a helix (p=57°, (= 47°) exhibits the
opposite amide I spectral profile in comparison to that of P;; VCD and is a positive
couplet, while the amide IT VCD band was known to be negative and as strong as the
amide I VCD band. In the bottom panel in Figure 8.1, we plot the computed VCD
spectrum using QM/MM MD trajectories populated dominantly with the a helical
conformation, which is the averaged one over several trajectories generated at the
3 21G basis level. The amide I VCD is a positive couplet that is in agreement with
experimental results, while the amide II VCD is a negative couplet with a strong
positive peak in the high frequency region. The amide III VCD is a strong positive
peak and the sign pattern is in good agreement with the previous computational and
experimental results.

There are issues to be addressed in future studies to improve the agreement
between computed and experimental VCD spectra and they include the QM level and
basis sets, the population analysis method, the integration time step size in MD
simulations, the polarizability of solvent molecules, and so on. The application of the
QM/MM MD simulations and the time correlation function formalism to compute
the VCD spectra of alanine dipeptide analogue in water is the very first example
showing the promising aspects of the combined method.

8.4
Direct Time-Domain Measurement of VOA Free Induction Decay Field

8.4.1
Conventional Differential Measurement Method

The CD is the result of slightly different responses (x1 r) of a chiral sample with LCP
and RCP lights so that the conventional CD measurement technique is based on this
differential measurement scheme, which is depicted in Figure 8.2. Note that the
chiral signal is detected at the intensity level not at the amplitude level. Experimen
tally, an equal amount of LCP or RCP beam (Io) is alternately created by a polarization
modulator (PM) and injected into the chiral sample. Then, the transmitted beam

PM D
ligt P LP LCP  RCP griot
N t /\ 1'\ H AWR S;

' I_l I In

] = -
c+45 (+ 459} (450) Al = I-lg
AE°
Figure 8.2 Conventional differential CD LCP or RCP beam by alternately switching its
measurement scheme. P: polarizer, LP: linearly  optic axis to +45°. The attenuated intensities /|
polarized, PM: polarization modulator, CS: and Ig by the CS are individually measured and

chiral sample, D: detector. The PM generates  their difference (Al I Ig) is then taken.
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intensities I} and Iy attenuated after traveling through the absorptive medium are
separately recorded by detector (D). By taking the difference of their logarithmic
scales, the CD spectrum (AA) is finally obtained as

s e (%) (1) () s

With AI=1; Iz and I=(Iy + Ig)/2, for Al < I, AA is approximately given
by AI/(2.303 x I). In the case of VCD, AA/A value is typically about 10~* 10°.
Therefore, even if the incident light (I = I+ 1) is fairly stable so that intensity
fluctuation (81) is less than 0.1% of its average intensity (I), it is very difficult to
discriminate such a weak chiral signal (A ) from largely fluctuating background noise
(81) that s typically one to two orders of magnitude larger than the chiral signal. This
is afundamental and intrinsic problem of the conventional differential measurement
method. In the following section, an alternative time domain method will be
discussed.

8.4.2
Femtosecond Spectral Interferometric Approach

8.4.2.1 Cross-Polarization Detection Configuration

Now, let us consider the cross polarization detection (CPD) configuration shown in
Figure 8.3, which was found to be useful to isolate the polarization originating from
the chiral response (Ay) as well as to eliminate the strong background signal from
the transmitted beam [8 11]. A femtosecond pulse propagates along the z axis and
is polarized in the direction of the y axis by the first linear polarizer (P1). After
passing through the chiral sample, only the x component of the transmitted field is
selected by the second linear polarizer (P2) whose optic axis is perpendicular to the

fs pulse LEPorREP P2 oa-FD '}
4%5 @ m b7
P A AEW) 00):0

_%%pﬁ(%) ORD CD Elw,) @ (@,)=r

Ap A DA A A E@®) O O I +| ==+ 0O _V%A%E{ma] o,)=n2

- B 0)0 LCP RCP| achiral | chiral f

Figure 8.3 Cross polarization detection containing chiral information (CD and ORD)
configuration for producing OA FID field. is finally selected by the P2. The output field
P1 P2: polarizers, LP: linearly polarized, CS: from the P2 can be viewed as a wave packet

chiral sample, E(w): electric field, @, (w): relative  formed by a superposition of individual
spectral phase. The incident femtosecond pulse  frequency components with different phases
first becomes vertically polarized by the P1. The  [®,(®)] and amplitudes [|E(w)|], which are

CS then transforms it into LEP or REP light modulated by a chirospecific response Ay, (o)
whose major axis is inclined to the left or right  of the CS. This time domain signal field is called
side. Only the horizontal field component OA FID.
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first one. With this CPD configuration, the unit vector of the incident beam is given
as e =y in Equation 8.3 and the rotationally averaged x component of the linear
polarization PSPP(t) over the ensemble of randomly oriented chiral molecules in
solution is then given as

PEPD (1) = r ATt (1) + oD} ECE )
(8.22)

= %J:othx(t)E(t T)

From this, we find that PSPP () is the same as the difference polarization AP,(t) in
Equation 8.14 except for the constant factor and that the CPD geometry enables
a direct measurement of the chiral response without relying on the conventional
differential measurement scheme.

The resultant Equation 8.22 includes information on both CD (Ax =%  %g) and
CB (An=ny ng). The incident pulse that is linearly polarized by the first polarizer
(P1) is essentially an equal superposition of LCP and RCP components (Figure 8.3).
Then, the chiral sample absorbs these opposite components differently due to the
CD so that the linearly polarized pulse is transformed into left or right elliptically
polarized (LEP or REP) light depending on the handedness of the chiral molecule.
At the same time, the major axis of the polarization ellipse becomes rotated due to
the CB effect, which in turn gives rise to a phase delay between the LCP and RCP
lights. Consequently, the perpendicular polarization component [PSPP(%)] to the
incident polarization direction (e =¥) contains information on the full optical
activity of the chiral molecule, whereas the parallel one [P,(t)] reflects the achiral
response. The second polarizer (P2) oriented perpendicular to the polarization
direction of the incident beam was thus used to selectively measure the chiral
component only.

Often, the parallel component P,(t) is referred to as optical free induction decay
(FID), a time domain observable representing the relaxation of a nonequilibrium
ensemble of oscillating electric dipoles created by a short optical pulse whose
temporal width is shorter than the corresponding dephasing time. It is related to
the electric dipole electric dipole time correlation function (u(t)-u(0)) as can be
seen in Equations 8.5 8.9. Now, the perpendicular component PSPP (%) can thus be
named as optical activity FID (OA FID) because it carries detailed information on the
chirality of the molecule in its phase and amplitude. In contrast to the conventional
FID, the OAFID is led by the electric dipole magnetic dipole time correlation
function (u(t) - M(0)).

In reality, the experimentally measured quantity is not the polarization itself but
the electric field E(t). For the x and y components of the emitted signal electric field at
position z inside the sample, E.(z, t) and E,(z, t), we found that the Maxwell equation
is given as

2 2
0 4w o pCPD
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where

OO

PSPD(% t) = %L dtAY(T)Ey(z,t 1)+ JO d Ty (1) Ex(z,t T) (8.24)

Note that P$PP(z,t), determined by both E,(z, t) and E,(z, t), acts as the source of
E,(z, t). By solving this equation in the frequency domain [8], it was found that the
x component of the emitted electric field, that is, OA FID, after the sample length Lis
given as

ol
cn(w)

E (L) = Ax(w)E,(L, ) (8.25)
where E (o) is the complex transmitted electric field spectrum given by the
interference between the input field and the electric dipole allowed FID and
the complex function Ay(w) is the linear optical activity susceptibility. This suggests
that once the phases and amplitudes of both E,(w) and E,(w) are measured in the
frequency domain, the linear optical activity susceptibility Ay (o) whose imaginary
and real parts correspond to the CD and ORD spectra, respectively, can be fully
characterized.

8.4.2.2 Fourier Transform Spectral Interferometry

It is the Fourier transform spectral interferometry (FTSI) that turned out to be quite
useful in precisely determining both the phase and amplitude of any unknown weak
electric field [30, 31]. Figure 8.4 shows the standard FTSI data conversion procedure.
When a reference electric field E,.fw) precedes the unknown field E,mown(®) by
a fixed time delay 14, they interfere with each other in the frequency domain.
The heterodyne term of the resultant spectral interferogram Syei(®) can be detected
by a spectrometer as

Shet(w) = 2Re[Ef¢ (0) Eyninown (@ )exp(inty) | (8.26)
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=
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Figure 8.4 Standard FTSI procedure for characterizing an unknown electric field E,pknown- See the
text for details.
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Once the real function Sy.(w) is recorded (step 1), it is inverse Fourier transformed
into the time domain signal F~'{Sy.ci()} (step 2). Then, by multiplying the Heaviside
step function 0(f) with F~'{Syc(®)} (step 3) and Fourier transforming the 0(t)
F Y She(®)} (step 4), the complex form of Equation 8.26 is obtained as F [0(t)
F'{Spet()}]. Consequently, the complex electric field Eypinown() is now given by

_ F[O(t)F'{Shet(w) Hexp( iwTa)

2E ()

If one has a well defined reference field E.fw) with a fixed 14, the phase and
amplitude information of the Ey,nown(®) can be fully retrieved from the measured
spectral interferogram.

Similarly, the weak OA FID field can be measured using the FTSI procedure
described above. However, the y component of the emitted FID (nonchiral FID) in
addition to its x component (OA FID) should also be measured to completely
characterize the optical activity susceptibility Ay(w) because it is given by the ratio
of E.(w) to E,(w). Figure 8.5 is a schematic outline of the femtosecond spectral
interferometry setup used to measure such FID fields. A linearly polarized femto

Eunknown(w) (827)

second pulse whose polarization direction is inclined at 45° with respect to the y axis
isinjected into a Mach Zehnder interferometer [13] and is split into two parts, signal
and reference arms, by a beam splitter (BS1). In the signal arm, the OA FID or
nonchiral FID signal electric field (Ej) is created through the CPD or parallel
polarization detection configuration, respectively. In the reference arm, on the other

X
P1(y) CS  p2xy) o
Ao o
fs pulse signal POX.Y) Es(x,y) :
L]
JAN or _.
p V. .0
reference
BS1 Eref{x‘w Ba2 Es Eref
I delay stage

Figure 8.5 Femtosecond spectral
interferometric measurement setup. PO P2:
polarizers, BST BS2: beam splitters, CS: chiral
sample, S: spectrometer. The incident
femtosecond pulse is split into the signal and
reference arms of Mach Zehnder
interferometer by the BS1. One is used as an
excitation pulse generating the FID signal fields
(E5) and the other as a reference (E,ef). For the
measurement of OA FID (x component of E;),
the transmission axis of P1is aligned to be the Y

axis, whereas those of P2 and PO to be

the X axis. For the measurement of nonchiral
FID (y component of E), on the other

hand, those of all the polarizers (PO P2) are in
the Y axis. For spectral interferometric
detection, the delay stage is controlled to make
the E,r precede the E by a fixed time delay 14
and they are combined at the BS2. Finally, the
resultant spectral interferograms (S, ;)

are recorded at spectrometer.
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hand, the reference electric field (E,.f) is properly delayed such that it precedes the
signal field by a fixed time delay tq4 for the spectral interferometric detection. Then,
the signal and reference fields are combined by another beam splitter (BS2) and
finally recorded as a spectral interferogram by a spectrometer. In the CPD config
uration, the transmission axes of the polarizers P1, P2, and POliein they, x , and x
axes, respectively, and the perpendicular detected spectral interferogram S, () is
then measured, whereas for the measurement of the parallel detected spectral
interferogram Sy(o), those of both P2 and PO are rotated into the y axis with the
P1 being fixed. Note that the transmission axis of PO is controlled to be the same as
that of P2 for maximal heterodyning efficiency.

Assuming that the phase and amplitude of the reference field E,.f(®) and the time
delay 14 remain unaltered during the two measurements of S, |(w), we showed that
by combining Equations 8.25 and 8.27 Ay(w) is given as

_ on(w) FHOMF S, (0)}]

M) = 20T FIO0F (S (0))] (8.28)

Note that the reference field E,.f(®) in the denominator of Equation 8.27 and an
additional phase term exp( iwtg) in the numerator of Equation 8.27 cancel out by
taking the ratio of E.(w) to E,(w). From the definition of the differential absorption
coefficient Ax(w), we find that the absorption difference AA (CD) of chiral molecules
for LCP and RCP beams is given as

 An(o)L 4 F[O(t)F 1 {S"Y(w)}]
AA©) =303 ~ 2303 ™ {F[e(t)Fl{ShEt(w)}]] (8.29)
where
An(0) = (@) 2r() = %Imm(wn (8.30)

On the other hand, for a dilute solution, the ORD A@(w) defined by the half of phase
difference between LCP and RCP after passing through the sample is given as

_ o o |FB@EF {1 (w)}]
AQ(0) = An(v) 5L = Re {F[e s (w)}]] (8.31)
where
An(o) = m(0) ne(w) = %Re[Ax(w)] (8.32)

Equations 8.29 and 8.31 are the principal results of the femtosecond spectral
interferometric detection method, which demonstrate that both CD and ORD spectra
can simultaneously be obtained from the measured spectral interferograms S, j(w).
Also, it should be emphasized that even though the interferogram S () containing
chiral information is recorded in the frequency domain via the spectral interfero
metric detection, the measured quantity is the time domain OA FID signal electric
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field that is directly associated with the electric dipole magnetic dipole time corre
lation function (m(t) - M(0)).

8.4.2.3 Vibrational OA-FID Measurement

The theory and the experimental scheme of the femtosecond OA FID measurement
approach presented above is sufficiently general, so this method can be readily
applied to a variety of optical activity measurement experiments over electronic
(UV Vis) to vibrational (IR) transition frequency ranges. Experimentally, however,
ameasurement of vibrational OA FID (VOA FID) has been believed to be extremely
challenging because of its weak chiral susceptibility and low detectivity of IR
detectors. In the CPD configuration, extinction ratio of the crossed polarizer pairs
(P1 and P2) is a critical factor for successfully discriminating such a weak VOA FID
signal from comparatively huge achiral FID. For typical chiral molecules with AA
(VCD)=10"* 107, linear polarizers with the exceptionally small extinction ratio of
~10"% are required. Dichroic absorptive calcite polarizers meet this rigorous
criterion [32], even though its effective working frequency window is restricted
within narrow spectral limits (3.35 3.5um, 3.9 4.1 pum, and soon), and it can thus be
used to examine VCD active C H stretching vibrational modes (2800 3000cm™")of
organic chiral molecules [9, 10].

Figure 8.6 depicts the step by step procedure for retrieving the VCD and VORD
spectra from the perpendicular and parallel detected spectral interferograms S, ()
of (1S) B pinene, which has been considered to be a standard chiral molecule often
used to verify performance of VCD spectrometer. The dispersed heterodyned spectral
interferograms S, (w) (solid) and S)(w) (dashed) are depicted in Figure 8.6a and they
exhibit distinct spectral shapes in terms of phases and amplitudes. In particular, the
S, (w) has highly oscillating features than the Sj(w), which implies that the S, (w)
contains more complicated positive /negative sign information on the optical activity.
Each interferogram is then inverse Fourier transformed and multiplied by the
Heaviside step function. The resultant time domain signal amplitudes |6(%)
F'{S, (w)}| (solid) and |B(t) F*{S(w)}| (dashed) are displayed in Figure 8.6b. Here
8(t)F'{S)(w)} is the convolution product of E,e¢(t) and E,(t) given by the interference
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Figure 8.6 VCD and VORD measurements of
(15) B pinene in CCl, using the femtosecond
spectral interferometry. (a) Experimentally
measured heterodyned spectral interferograms
S1(w) (solid) and Sy(w) (dashed). (b) Inverse

Frequency (cm™)

Frequency (cm™)

Fourier transformed time domain signal
amplitudes |8 (t)F '{S.(®)}] (solid) and |O(t)

F '{S;(@)}| (dashed). (b) Retrieved VCD (solid)

and VORD (dashed dotted) spectra obtained by
using Equations 8.29 and 8.31, respectively.
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between the input field and the achiral FID field, whereas the O(t)F '{S, (»)} is that
between E,.(t) and E,(t), which is in turn given by the convolution between Ay(t) and
E,(t). Although the time domain signal in Figure 8.6b is not absolutely identical to the
chiral response Ay(#) itself or the achiral response y,,(t), 0(H)F '{S. ()} and 6(t)
F'{S(®)} are governed by Ay(t) and y,(t), that is, (u(t) - M(0)) and (u(t) - n(0)),
respectively. Finally, Figure 8.6c shows the VCD (solid) and VORD (dashed dotted)
spectra retrieved by Fourier transforming the FID signals in Figure 8.6b and then by
using Equations 8.29 and 8.31. It is noteworthy that the simultaneous acquisition
of both VCD and VORD spectra is allowed by directly measuring the phase and
amplitude of the time domain OA FID field through the femtosecond spectral
interferometry.

8.5
Summary and a Few Concluding Remarks

In this chapter, we presented both time domain measurement and calculation
methods for vibrational CD and ORD spectra of chiral molecules in condensed
phases. From the time correlation function theory for the optical activity, we showed
that the direct calculation of electric dipole magnetic dipole cross correlation func
tion is possible by using a QM/MM molecular dynamics simulation method. Here,
the chiral solute molecule is treated quantum mechanically, whereas the surrounding
solvent molecules are treated classically. Since the vibrational dynamics is deter
mined by quantum mechanically calculated potential surface, the anharmonic
natures of the potential energy surface are fully taken into consideration. Note that
the classical force fields used in conventional molecular mechanical MD simulation
methods are often inaccurate in quantitatively describing vibrational dynamics of
polyatomic molecule in condensed phases. Furthermore, the fluctuating partial
charge effects originating from the intrinsic polarizable nature of molecules in
solutions were also automatically included in our direct calculation method utilizing
combined QM and MM molecular dynamics simulation methods.

In addition, we have developed experimental method that can also be used to
directly measure the optical activity response function in time domain by using
femtosecond laser pulses and employing a properly designed Mach Zehnder
spectral interferometry. Detailed procedures on how to obtain the vibrational CD
and ORD spectra from the measured spectral interferograms have also been
discussed here. Thus, we showed that the time domain calculation and measure
ment techniques for simultaneously characterizing vibrational CD and ORD
spectra of chiral molecules in condensed phases are not only feasible but also
potentially useful. In particular, the present phase and amplitude sensitive VCD
and VORD measurement technique has a superior time resolution in comparison
to the conventional VCD spectroscopy based on the differential absorption mea
surement. Consequently, one can directly extend this method to study ultrafast
dynamics of chiral molecules in solutions with unprecedented achievable time
resolution.
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9
Electronic Circular Dichroism

Lorenzo Di Bari and Gennaro Pescitelli

9.1
Introduction

Electronic circular dichroism (ECD) is one of the most simple and sensitive
spectroscopic methods for structural analysis. It is quite strange that it is looked
at with completely different eyes by two classes of researchers: while those dealing
mostly with small molecules consider it as a tool for absolute configuration assign
ments, those working with macromolecules (synthetic or biological polymers) use it
to investigate conformations and more in particular regular secondary structures. To
our experience, it is uncommon for a “molecular chemist” to think of ECD for
conformational analysis or to follow, for example, the adjustments taking place
during the course of a reaction. On the other hand, biochemists and polymer
chemists tend to forget that 100% enantiomeric purity hardly exists, that racemiza
tion and epimerization processes occur, and that there are very relevant examples of
violation of what can be regarded as a homochirality dogma.

Let us broadly classify some relevant problems of molecular structure, with
reference to the specific example of compound 1 (Blennolide E, Scheme 9.1) [1].

a) Absolute configuration (AC), that is, (2R,9S5,10S,11R) versus (2S,9R,10R,115);

b) Relative configuration (RC), for example, (2R/9S,10S,11R) versus
(25,95,10S,11R); and

c) Conformation.

Points (b) and (c) change the molecular shape and very importantly imply different
spatial relations (distances and angles) between atoms and groups. Many or even
most spectroscopies are sensitive to these parameters, which are scalar quantities.
On the contrary, point (a) implies a complete coordinate inversion, which leaves all
the scalar quantities unchanged, while inverting pseudoscalars, like dihedral angles.
Only chiroptical techniques (ECD, vibrational circular dichroism or VCD, circularly
polarized luminescence or CPL, Raman optical activity or ROA, and optical rotation
or OR) sense this, and this is one reason why they are regarded as a tool for solving
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this problem. Nonetheless, all of them strongly depend on scalar quantities as well, as
we shall discuss below.

Let us focus on ECD: its fundamental equation was given by Rosenfeld and states
that, if we define the molar ECD as the difference between the molar extinction
coefficients versus left and right circularly polarized radiation (Ae =&’ &%), then the
integral of an ECD band (also called Cotton effect, CE) due to one electronic transition
i between the states is proportional to

R; = Im(w; - m;) (9.1)

where w; and m; are the electric and magnetic transition dipoles, respectively.
The quantity R; is called rotational strength (in an analogy with the oscillator
strength) and it is a pseudoscalar (i.e., it changes sign upon coordinate inversion)
because it is the result of the scalar product between a proper vector p; and a
pseudovector m;.

Whichever computational tool may provide p;and m; for all the relevant transitions
i, it can be used in principle to predict the rotational strengths: after applying a
suitable band shape to the set of calculated R; (see Section 9.5), one obtains a
calculated ECD spectrum to be compared with experimental data. This idealized
situation must take into account temperature effects and calls for Boltzmann
averaging over a structural ensemble or even for the existence of hot bands. Both
these effects will be discussed in some detail in this chapter.

Coming back to the stereochemical problems outlined above, we may put
forward that often carbon stereogenic centers are inert, that is, they do not
lead to an appreciable R/S inversion with temperature, possibly leading to race
mization or epimerization process. In other words, at the very firstapproximation,
we may consider absolute and relative configurations (points (a) and (b) above)
thermally stable. On the contrary, depending on the structure, there may be a
considerable amount of temperature dependent conformational variation (point
(c) above). An interesting borderline case is provided by atropisomers, that is,
frozen conformations that cannot jump from one to the other. This has important
fallouts in our context, for example, for axial chirality in biaryls or dimeric
compounds. We shall treat these conformational stereogenic elements as if they
were configurational.
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Application of Rosenfeld equation requires that we calculate all the relevant
magnetic and electric transition dipoles of a molecule provided, with reference to
the points a ¢ above,

') an absolute configuration is more or less arbitrarily chosen;

b’) for molecules containing more than one stereogenic element, the relative
configurations are known, or a set of all the possible diastereomers must be
built and taken into full account; and

') for each diastereomer, a reasonable set of conformational isomers is
considered.

Because for two enantiomers all the rotational strengths must be exactly opposite,
for point (a') either we produce a calculated ECD spectrum or its mirror image. There
is no symmetry relation for the isomers to be considered in point (b') and (¢), and
each should be separately calculated. Very often, one does have an exact knowledge of
the relative configurations (e.g., from other spectroscopies such as NMR or IR, or
from X ray diffraction, XRD), but there are examples when ECD has been used to
discriminate among diastereomers [1]. As long as we can consider the configurations
of all the elements in the molecule inert, point (b’) does not require any temperature
averaging.

Conformational manifolds, as implied by point (c'), will be the object of a more
thorough discussion in Section 9.3.

9.2
Molecular Anatomy

What we said in Section 9.1 is common about circular dichroism and related
techniques, that is, it holds for both ECD and VCD. What makes ECD a particularly
interesting tool is that it looks at electronic transitions, which is practically viable only
in the presence of specific chemical features called chromophores. A chromophore
may be defined as part of a molecule responsible for one or more absorption bands in
the UV or in the visible spectrum. In the context of organic chemistry, it is usually a
functional group or a combination of several groups with a more or less extended
7t electron system.

In fact, it is unlikely that bonding o orbitals contribute significantly to absorption
bands above 180 nm. This is often regarded as a limitation of ECD versus, for
example, VCD, where practically all the bonds can be regarded as potential chro
mophores. Indeed, UV vis transparent molecules cannot be used for ECD. At the
same time, it is a great advantage, because one may focus only on chromophoric
moieties, neglecting the rest of the molecular backbone, which has relevant con
sequences in computing ECD.

Moreover, the fact that optical activity is essentially centered on chromophores
gives chemists the opportunity to change ECD by modifying the chromophores, that
is, by inserting groups that extend conjugation or by adding new chromophores [2, 3].
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Scheme 9.2

Unfortunately, this fascinating field goes beyond the scope of the present discussion
on computational methods.

We wish to introduce here a concept of molecular dissection, that is, the separa
tion of a molecule’s anatomy into structural and functional parts, like a skeleton
and the organs in a living organism. Clearly, there may be parts sharing both
functions.

As we mentioned before, organic chromophores must contain 7 orbitals and the
whole set of atoms, where electron delocalization may extend, must be considered
part of the chromophore (see framed portions in Scheme 9.2). Thus, for example
methyl benzene must be considered as a whole, but the methyl group in ethyl
benzene can be thought as not conjugated to the restand can be neglected, thatis,
methyl and ethyl benzene can be considered equivalent from our point of view.
Styrene is clearly another whole, at least as long as conjugation is not prevented
by, for example, steric effects, as in the case of 1 (1’ methylvinyl)naphthalene where
the two unsaturated planes are at right angles and electron delocalization is
impossible.

The latter example should tell us that in certain cases the notion of chromo
phore must be actively treated and may need revision depending on the notion
of geometrical features. The degree of overlap between p orbitals depends on
the cosine of the dihedral they define; thus, it is very large even for almost
orthogonal arrangements (cos 80°=0.17!). Skewed conjugation constitutes an
example of intrinsic chirality: the chromophore itself, lacking improper symmetry
elements (planes, inversion, or improper axes in general), has electronic transi
tions endowed with nonvanishing and nonorthogonal p; and m;, which leads to
nonvanishing rotational strength R;. When perfect conjugation leads to planar
chromophores, a fundamental symmetry property of pseudoscalars leads to
vanishing R; (either because one of the two transition dipole moments is zero
or because they are orthogonal). In this case, we speak of intrinsically achiral
chromophores and their optical activity must arise from their coupling with the
surroundings.

Spectroscopically silent moieties perform two actions: they contribute to the
environment, where the chromophore is hosted, and they participate in giving the
molecule a more or less defined shape or flexibility.

Thus, the o backbone may cause a twist in the conjugated chromophore and
determine its intrinsic chirality. Alternatively, it may provide symmetry breaking
groups, which lower the local symmetry of an intrinsically achiral chromophore and
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determine the emergence of optical activity in its transitions. Clearly, their effects
must be taken into account in calculations.

For example, let us consider 5 methyl cyclohexa 1,3 diene (last molecule in
Scheme 9.2). The 6 membered ring prevents the diene from being planar. The
methyl group must occupy a pseudoequatorial position, determining one sense of
the twist of the diene, which becomes intrinsically chiral. At the same time, the
two allylic axial hydrogen atoms in positions 5 and 6 constitute chiral perturba
tions to the chromophore, and the observed ECD allied to the low lying t =t*
transition of this compound around 240 nm is the result of the combination of
both effects [4].

From this brief discussion, it should be clear that a correct molecular dissection
must take into account the chromophores together with their surroundings, through
space, or independent of the existence of covalent bonds. This raises an obvious
question about the size of the chromophore environment to be taken into account.
As we shall further see here, a primary reason of through space interaction is the
electric dipole interaction, which not only decays with the third power of the
distance (r %) but also depends on the polarity or the polarizability of atoms and
groups. For apolar and weakly polarizable systems, a radius of a few A from
the chromophore may be adequate.

Because of their very strong polarizability, if two or more chromophore are
present in the same system, their interaction may extend over very large
distances and very often provides a contribution to the observed ECD, which
largely overrides other terms and calls for a different approach. Exciton coupled
ECD is a theoretical framework where the spectroscopically silent portions are
completely neglected (or are considered only for their structural function) and
one focuses on the interaction between electric dipole allowed transitions. First
order quantum mechanics (QM) perturbation theory predicts states mixing and
possibly (if the geometric arrangement allows it) ECD for a pair of chromo
phores in a rather straightforward way. If one deals with more than two
electronic transitions, things become more complicated, and sometimes addi
tivity of pair wise interactions has been invoked. We believe that there is no need
for this simplification because hybrid approaches described below have been
shown very successful in accounting for a large number of transitions without
the limitation to first order but rather exactly (all order) by means of classical
electrodynamics.

The biological world offers a useful illustrative example of the involved
relationship between the chromophore and its environment. Many proteins
crucial for life contain a chromophoric prosthetic group (also indicated as dye
or pigment) either covalently or noncovalently attached, endowed with redshifted
absorption bands well distinguished from those of the peptide skeleton (below 240
nm) or its side groups (below 300 nm) [5]. Noteworthy examples are myoglobin
and hemoglobin, containing a heme, that is, a porphyrin analogue, with absorp
tions at 400 430 nm and between 500 and 600 nm, and rhodopsin, containing
retinal with absorption at 335 and 500 nm. Although the isolated chromophores
are achiral, when embedded in the protein, they show moderately intense ECD
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bands corresponding to their respective absorptions. Where do they arise from?
In principle, the following two different mechanisms may be responsible
for them:

e When the dye is placed in the protein, it is distorted from its originally planar
structure to a nonsymmetric, chiral structure; therefore, it constitutes an intrin
sically chiral chromophore whose electronic transitions are ECD active.

o The electronic transitions of the chromophore couple with those of the protein
chromophores (amide bonds and aromatic side groups).

Which of the two mechanisms dominates the observed ECD depends on the case.
Matrix type calculations (see Section 9.4) have, for example, shown that the ECD of
myoglobin is due to the exciton coupling between the porphyrin core and the
aromatic side groups [6], while a combination of the same calculations and TDDFT
(Section 9.5) has demonstrated that the ECD of rhodopsin is dominated by the
intrinsic chirality of retinal [7].

9.3
Conformational Manifolds and Molecular Structure

We shall see below that ECD is very sensitive to molecular conformations, which is
in strong contrast to most frequent cases of ordinary absorption. Indeed, frequency
and transition probability to an excited state are primarily related to an electric
transition dipole, which is often only weakly affected by the geometry of the
environment of an organic chromophore. The situation may be very different for
metal complexes where the coordination geometry can have a strong influence on the
absorption spectrum: in this case, however, one should consider at least the whole
first coordination sphere as the chromophore. ECD, in contrast, arises from an
interference effect (see Rosenfeld equation (9.1)) and depends not only on the electric
and magnetic dipole moments but also on their relative orientation (owing to the
scalar product), that is, explicitly on the geometry.

Before going into any further discussion, we wish to define what should be
regarded as a molecular structure. In a static picture, and for a single molecule, one
may consider each conformer as one structure (possibly endowed with more or
less large vibrational features), but for an ensemble and in the general case, a full
conformer distribution must be taken into account, which amounts to saying that a
molecular structure is a set of conformers (i.e., geometrical parameters defining
them) associated with temperature dependent Boltzmann weights. For a relatively
rigid molecule, this indeed may reduce to one conformer.

The calculated ECD spectrum over a conformational distribution, that is, over a
structure according to our definition, is the linear combination of the contributions
of the various conformers y, with their relative populations a, as multipliers

Ae(h) = " a, Aek()) (9.2)
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Only this should be compared with the experiment, and not the individual Ae* (A),
unless one postulates that the structure consists in one conformer (sometimes, this
can be defined as monorotameric approximation).

Even if the ECD spectrum encodes relevant geometric information, it is usually
very hard or impossible to extract it from the direct analysis of experimental data
(which is in contrast, for example, with XRD or some NMR data). What is often done
is calculate the various Ag* (A) and assess the Boltzmann weights a, at the working
temperature T by means of computed free energies E (often approximated to
enthalpies, or internal energies, without zero point vibrational corrections):

a, =exp( E,/RT) (9.3)

Alternatively, one may try and optimize the multipliers a, by fitting experimental
and calculated ECD spectra. More sophisticated procedures, essentially based on
linear algebra, have rarely proved satisfactory.

If the objective of an ECD analysis is primarily the absolute configuration
assignment, it may be very useful to reduce the conformational freedom as much
as one can. At least two strategies can be envisaged.

First, one can take advantage of the structural homogeneity guaranteed by crystals:
if a substance gives rise to one crystal form, whose structure can be solved by XRD,
apart from its AC, one is in the ideal situation of carrying out the ECD calculation on
one conformer of known structure. This solid state ECD (ss ECD) approach will be
discussed in Section 9.5.1.1.

Second, several chemical modifications to limit molecular flexibility by the
formation of cycles have been proposed [8]. This approach displaces the problem
of AC assignment from a flexible target molecule to some conformationally homo
geneous derivative, provided substrate AC and RCs are preserved or predictably
transformed.

These two approaches are of prime importance for AC assignment, but they
lead to overriding conformational richness and overlooking the role ECD may have
in revealing it.

9.4
Hybrid Approaches

As we have seen before, provided certain conditions are met, we may partition a
molecule into one or more separate chromophores, thatis, in chemical groups, which
are responsible for one or more electronic transitions giving rise to absorptions in the
UV vis region. Sometimes, we can recognize in one system (molecule, supramole
cule or aggregate) several chromophores, which following what we said before must
be considered having negligible differential overlap, which can also be expressed by
saying that they are independent (independent systems approximation or ISA).
Although independent, they are not isolated, which means that they sense and
perturb each other through space, and we shall provide here a framework to
rationalize this coupling and to determine its effects on the ECD.

247



248

9 Electronic Circular Dichroism

To derive a complete description of the molecular orbitals (MOs) and the electronic
transitions of each isolated chromophore, one may use the quantum mechanical
methods described in Chapter 5. By so doing, we depict the molecule as a collection of
chromophores held together by an inert (from the spectroscopic point of view)
scaffold. Indeed, we do not even need to invoke the existence of covalent bonds
connecting the various chromophores, which gives us the liberty to use our argu
ments for one single molecule, as well as for an aggregate, a compound, a
supramolecular structure, or even a crystal. In the following discussion, we shall
define our system a polymer, consisting of N monomer units, each containing a
chromophore. No restriction will be applied to the nature of the linkage between
monomers, neither to any similarity nor to a symmetry relation between them.

To a zeroth order approximation, the various chromophores are independent, but
their proximity leads to a mutual perturbation, primarily of Coulombic nature. From
a QM point of view, one may treat the polymer system by perturbation theory, by
introducing corrections to the individual chromophores wavefunctions, which would
lead to a rapidly increasing computational effort.

In contrast, we switch to classical electrodynamics and treat the through space
interactions between monomers in terms of local fields acting on polarizable charge
distributions. This is the reason why we define this one as hybrid approach: the
individual chromophores are dissected from the molecular framework, subject to full
MO characterization by suitable QM methods, and then they are made to interact
classically. In many literature reports, the spectroscopic parameters of the individual
chromophores are derived from the experimental absorption spectra of a model
compound (ideally, the dissected portion), like in a sort of semiempirical approach.
Nowadays, it seems to us more reasonable and correct to use such an experimental
information, when it is available, to check the quality of computations. This is
because there are two sets of parameters that are either difficult or impossible to
determine experimentally but are of prime importance in the ECD prediction, as we
shall see below. They are the directions of the transition dipoles and their location.
The first one may be accessed, although with several limitations and difficulties,
through linear dichroism (LD) measurements; for the second one, there is no chance,
apart from symmetry considerations that may occasionally hold.

9.4.1
Coupled Oscillators and the DeVoe Method

The coupled oscillators approximation is especially meant to account for interacting
electric dipole transitions located in distinct chromophores. Within a classical
framework, it is an exact treatment and has the merit of explicitly introducing line
shapes. As we will see in Section 9.4.3, it has been used most often for organic
molecules and organometallic species.

The radiation wavelength (typically >180 nm) is much larger than the system size
(at least neglecting very large nanoscopic aggregates), which ensures that we can
consider the electric field E of the electromagnetic wave as uniform throughout
the sample.



9.4 Hybrid Approaches

Each transition of the individual chromophores is characterized by a complex
electronic polarizability a?(v) and a polarization direction represented by the unit
vector €!'. The real and imaginary components of a(v) depend on one another
through Kronig Kramers relation, and Im(a(v)) is related to the molar extinction
coefficient &0 through

Re(a?(v)) = Zc‘jﬂ

x2 2
0 (9-4)
G g’ (V)

where the numerical constant C; =4.356 x 10~ in SI units.
Upon experiencing a local electric field E'°®, each polarizability gives rise to an
induced moment M?(v)

MO(v) = a¥(v) Eo? et = o (v [ > .Gy My ] (9.5)

where the local field is the sum of the electromagnetic radiation field E and of the
contributions arising from all the surrounding Mo(v) stemming from the polariz
abilities ajo (v) located in the other monomers. In fact, each of them gives rise to a
dipolar field, whose effect on the ith transition is quantified through G;; by the point
dipole interaction”

Gy = %(ef'ej" 3@2&) 06

Gi; = 0

Inthe previous equation, r;;is the vector connecting the two electric dipoles aligned
along e!' and e Apparently, Equation 9.5 is recursive, that is, by introducing the
initial vahles relatlve tothe jth transition, one obtains first order corrections to MY (v),
which then need to be reinserted in the same equations to improve to second and
higher orders. By means of matrix algebra, there is an exact solution, which can be
defined correct to all orders.

Let us define the following arrays and matrices, whose generic elements (with
i,j=1, ..., N) are indicated:

M) @5 ) O—pG;
M) = ¢ = ) = G-
0

1) Especially when the dipole approximation is poor, for example, in the case of closely spaced
monomers, one should substitute the above expression for G;; with one taking into account diffuse
transition charge densities or charge monopoles, instead.
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Then,
M(v) =a(v)-[e"-E G-M(v)] (9.7)
which can be solved for M(v)
M(v) = [a(v) " +G] " (e"-E) = A(v) - (" - E) (9.8)
with
AW) =[o(v) ' +6]! (9.9)

The array M(v) contains the dipole moments M?(v) correct to all orders, within the
point dipole approximation.

We can appreciate that all we need to do is to invert the frequency dependent matrix
[a(v) "' =G], which is Hermitian: it is the sum of a complex diagonal matrix
a(v)~! and of the real symmetric matrix G. Even for a large number of interacting
chromophores, modern computers and software can easily solve this problem.

Here, we account for two contributions to ECD: one due to the interacting electric
dipoles and the other one arising from the coupling of electric and magnetic
transition dipole moments. Equation 9.10 provides an operational tool for calculating
the ECD of an aggregate of chromophores.

AS(V) =4.76 x 10 7( s ) \4 E (e x e -1; bel -e )Im(A(v))

where /" is the direction of a magnetic transition dipole, ns is the medium refractive
index, and b; = ¢(Im|my|)[w;|/27v;.
The DeVoe approach to ECD was translated into a Fortran routine by Hug [9, 10].
Following the above derivation, input parameters are for all electronic transitions

o Electric and magnetic transition dipole moment amplitudes;

¢ Half height line widths;

« Directions of the electric and magnetic transition dipole moments e} and ¢ and
« Locations of the electric and magnetic transition dipoles, x}' and X",

The above first two points are used to calculate the frequency dependent complex
polarizabilities a? (v) upon approximating &? in Equation 9.4 with a Lorentzian band.

In the present form of Hug’s routine, the two latter sets of input parameters are
inserted as their Cartesian components/coordinates or by reference to atoms
provided a table of atomic coordinates is also supplied. This latter aspect is
particularly convenient when one needs to consider a set of conformers because
it is sufficient to change the table defining the molecular structure, while leaving the
rest of the input unchanged.

The program outputs absorption and ECD spectra, and the matrix G is also
provided, which measures the strength of couplings of the various transitions. What
influences the terms G; are geometrical parameters arising from the dipolar
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Figure 9.1 Exciton chirality rule. A clockwise  chirality, and corresponds to a positive couplet

twist to bring the chromophore (actually its in the ECD spectrum. This consists in a
electric dipole transition moment) in the front  bisignate feature with positive long wavelength
onto that in the back is defined as positive branch [2, 3, 11].

interaction, namely, distance and relative orientations of the dipoles, as well as purely
spectroscopic terms. Since we are dealing with coupling between oscillators, it should
be clear that their proper frequencies play a role, as well, and in fact the stronger the
interaction is, the closer to resonance they are (i.e., the smaller is the difference
between their frequencies). The limiting case is provided by what is called degenerate
coupling, obtained when two oscillators are identical. The consequence of this
interaction is the formation of two different normal oscillation modes (in phase and
out of phase) with different frequencies (leading to a more or less pronounced
splitting or broadening of the absorption band) and opposite rotational strengths. For
reviews of the so called exciton chirality rule, depicted in Figure 9.1, see Refs [2, 3, 11].

9.4.2
The Matrix Method

This procedure is in many respects similar to DeVoe approach outlined above, insofar
itis based once more on a classical treatment of the interaction of transition dipoles.
There are two main differences: on the one hand, it accounts fully and explicitly for all
electric and magnetic dipole interactions and, on the other, it is based on strictly
localized transitions, that is, the line shape is introduced only a posteriori.

In this method, developed by Schellman [12, 13], each chromophore is described
by two elements, an electric and a magnetic transition dipole, and for a collection of
N chromophores, one deals with dimension 2N.

For a system of two chromophores, one can build the Hamiltonian matrix H

Enl an m an n an my
an m Em1 le ny 0
an ny le ny Enz Vnz my
V”l my 0 Vnz mp Emz

H= (9.11)

The diagonal terms E,,, En,, E,,, and E,, represent the zero order transition
energies for the electric (n) and magnetic (m) dipole transitions of chromophores 1
and 2. The off diagonal elements contain the interaction terms and specifically:
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®  Vum, is a pure term for chromophore 1 (and similarly V,,,,,, for 2) and represents
what is also called one electron mechanism. In the independent systems approx
imation, the transitions described as n; and m, originate from one ground state to
two possibly different excited states, one allied with electric and the other with
magnetic dipole character. For a local achiral chromophore, either the two do not
mix or the two moments are orthogonal, so as to lead to vanishing rotational
strength. On the contrary, in the absence of improper symmetry operations, that
is, when the chromophore becomes intrinsically chiral neither transition is pure,
which for small distortions may be treated by means of perturbation theory,
whereby the transition allied to n, acquires a character of m, and vice versa. This
perturbative coupling term is Vi, .

® V., is the electric dipole coupling described in the previous section and named
there Gj;.

e Vum, and V,, ,, are also called p-m terms because they describe the coupling of
electric and magnetic dipoles (as required in Rosenfeld equation) but occur on
different chromophores, that is, at different locations.

Generalization to a larger number of chromophores is straightforward because
only pair wise terms as those described above are required. The mixing between two
transitions is determined not only by the off diagonal coupling terms but also by the
difference in their transition energies. Corrected eigenstates and transition energies
(eigenvalues) are obtained by diagonalizing matrix H, which is Hermitian.

The matrix method shows its full potential in the quantitative structural analysis
of biopolymers [14]. Particularly for what concerns proteins, many transitions of
different nature are responsible for the observed CD in the far and near UV, either
electric or magnetic dipole allowed (amide m 7* and n 7*, aromatic @ 7* and
disulfide n o* in the side chains). Therefore, considerable effort has been put in
studying the relevant transitions at a high level of theory [15, 16], to afford the most
reliable parameters for matrix method calculations [17].

Since in this chapter we focus on small molecules, where it has been somewhat less
used [13], we shall not deal further with the matrix method.

9.4.3
Applications

Applications of the DeVoe method to stereochemistry have been recently reviewed by
Rosini and coworkers [18] and do not really need to be covered here. We shall provide
only a couple of examples, from our own work, to illustrate the power of this
approach. We wished to investigate the solution conformation of enantioselective
catalytic precursors, based on 1,1’ bi(2 naphthol) (BINOL) as the chiral element. In
the parent system, the only degree of internal freedom is the dihedral angle 6 between
the two aromatic planes, which can hardly be assessed through mostly used and
reliable NMR techniques. 1,1’ Binaphthalenes are a common example of atropiso
meric axial chiral moieties. The sp* sp® joint, in the absence of other constraints,
ensures a large flexibility and the dihedral angle 8 can sweep a range as wide as
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60 120° without exceeding 1 kcal mol ™" above the conformational minimum at 90°.
One can easily encounter in the literature compounds including this moiety, often
substituted at 2,2" and possibly at 6,6’ positions. Other examples are somewhat less
common. C, symmetry makes corresponding nuclei isochronous, which prevents
the direct observation of NOEs, for example, between the protons at positions 8
and 8. On the contrary, ECD provides an excellent alternative by means of DeVoe
approach.

In the first place, we need to look at the specific molecule we wish to investigate
and correctly recognize the chromophore(s). First, quasi orthogonal arrangement of
the two aromatics (0 ~ 90°) leads to negligible electron delocalization and the two
subunits can be considered independent. Second, the presence of substituents
that may extend conjugation must be taken into account; thus, for molecules such
as 2 and 3 (Scheme 9.3) the active chromophore is simply naphthalene, while 4-7
must be regarded as dimers of 2 naphthol, 6 bromo 2 naphthol, 2 iodonaphthalene,
or 2naphthoate, respectively. Wavelength, dipole strength, transition dipole
orientations and center of gravity may be more or less affected by nature and
position of the substituents.

In the simplest cases, when naphthalene is the chromophore, calculation of the
absorption and ECD spectra as a function of 8 with Hug’s routine is straightforward
and yields the results depicted in Figure 9.2a, where we can appreciate the extreme
sensitivity of the computed ECD to conformation [19].

The experimental ECD spectra for (R) 2 and (R) 3, shown in Figure 9.2b, reveal
profound differences in intensity and wavelength separation between peak and
trough (related to the so called Davydoff splitting), and a comparison with the
calculated curves reveals a good match between compound 2 and 6=90° and
compound 3 and 8 =50 60°. In fact, this finding is confirmed by computational
geometry optimization: 2, lacking particular constraints, can be expected to assume
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Figure 9.2 Calculated (a) and experimental (b) ECD spectra of (R) 1,1 binaphthyls as a function
of the dihedral angle 0.

an orthogonal arrangement (6 &~ 90°), ensuring minimum steric interaction, while
for 3 the seven membered cycle constraints 0 to a smaller value (6 ~ 55°).

BINOL (1,1’ bi (2 naphthol)) enters the composition of many efficient enantiose
lective catalysts, where it (or its conjugated base) is used as a ligand for transition
metal and lanthanide ions. Owing to its pliancy, BINOL (or its ate form) can
accommodate any metal ion M" " both as a chelate and as a bridging ligand, namely,
the two oxygen atoms are bonded to the same or to different M" *, giving rise to a wide
variety of structures. In the recent past, we dealt with many BINOLate complexes,
with variable geometries and possibly involving several BINOLate units in the same
compound, which introduces the possibility of interactions between transitions
centered on aryl moieties that are not directly bonded (interbinaphthol as opposed to
intrabinaphtol) [20 23]. These are long range interactions; although made relatively
weaker by the term r; in Equation 9.6, these nevertheless need to be properly
accounted for to correctly calculate the spectra. Once more, Hug's program can
easily implement this feature and predict the absorption and ECD spectra starting
from tentative structures of the aggregate based on other evidence.

One of the most complex cases treated so far is represented by porphyrins 8 and 9,
which differ in atropisomerism around the two bonds indicated by gray straight
arrows depicted in Scheme 9.4 [24]. NMR reveals that the two species are endowed
with C, and D, symmetry, respectively. Accordingly, only two degrees of conforma
tional freedom need to be taken into account: the dihedral 1) between the porphyrin
and the directly attached naphthalene and the binaphthyl angle 0.? The fourfold
symmetry found above reveals that only one pair (y, 0) fully describes the confor
mation of each porphyrin.

2) A further angle describes the orientation of the methoxy group, but this is irrelevant to the present
summary.
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Scheme 9.4

The chromophores can be identified as the porphyrin, described through a dircular
osdllator for its Soret transition (i.e., a degenerate pair of orthogonal transition
dipoles, oriented along the two axes connecting opposite nitrogen atoms); a naph
thalene (once more delocalization to the porphyrin is hampered by quasi orthogonal
arrangement); and a 2 naphthol. All of them are well described in the literature and
need no further comment; their spectroscopic features can be directly introduced in
the program. Two sets of structures, one for the C, and one for the D, spedies are
produced, by changing the conformational variables (), 6) and ECD, and absorption
spectra are calculated as shown in Figure 9.3. The high frequency part of the spectra
(below 300 nm), which are dominated by naphthalene centered transitions, can be
used to investigate binaphthyl conformation: the amount of Davydoff splitting

1 1000

500 |

200 300 400 500 600
2 (nm) % (nm)

Figure 9.3 Absorption (a) and ECD (b) spectra calculated for porphyrin 8 with DeVoe method on
varying dihedral angles 6 and 1. Spectra are stacked and shifted to the right for clarity.
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(in some cases, apparent also in the absorption spectrum), the couplet amplitude, and
in extreme cases its sign, can also be considered primary reporters of the dihedral 6,
mainly owing to degenerate coupling of the 'By, transitions.

In these compounds, Soret transition is predicted, and also experimentally
found, to be allied with a monosignated ECD band. In the DeVoe approach that
we are following, the intensity of this Cotton effect arises from the nondegenerate
coupling with the high energy naphthalene transitions and it is strongly affected by
both dihedrals. As a result, for both the C, and the D, porphyrins, each conformation
is uniquely associated with a pair of calculated absorption and ECD spectra. Thus,
the comparison of the experimental data with the computed spectra allows one to
pick up one single best match. For compound 8, this is found for 6 = 75° and 1y = 75°,
and for compound 9, for 6 =90° and 1y =90°. Semiempirical geometry optimiza
tions and considerations on the 'H NMR chemical shifts further support this
assignment [24].

9.5
The QM Approach

“Direct” or “full” ECD calculation with quantum mechanical methods or, in other
terms, from first principles theory, is nowadays a fully practicable option for
moderately large organic molecules and metal complexes. In principle, any QM
method affording excited state description (in terms of wavefunctions, transition
energies, and moments) may provide rotational strengths with a little extra compu
tational effort. In practice, however, it is not yet completely understood what level of
theory is required to obtain the most accurate predictions of rotational strengths. In
general, chiroptical properties are very sensitive to every approximation made in
electronic structure calculations. It is, however, not uncommon that a more approx
imate method may perform more efficiently than more rigorous (and computation
ally expensive) ones.

Most of the QM approaches described in Chapter 5 used to calculate absorption
(UV vis) spectra have been implemented for both rotational strengths and optical
rotation calculations. The relative theoretical formulations may be found in the
literature, summarized by several reviews [25 28]. Our intention is to stay on a rather
practical ground, and to face with the following basic questions:

e Which are the state of the art and/or most popular QM methods employed to
calculate ECD spectra;

¢ What are their respective applicability, scope, and limitations; and

¢ What kind of structural information is expected to be gained and how accurate.

First, we shall quickly describe the most important approaches and later we shall
give a few examples of applications.

Reliable ECD predictions necessarily require theoretical methods that take
electron correlation into account. This also implies the use of large basis sets,
often including diffuse functions. Large basis sets (ideally approaching the
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so called basis set limit) are also beneficial to circumvent the problem of origin
dependence of magnetic properties in finite basis set calculations (see below). Put
all together, a post Hartree Fock (HF) method including the highest possible level
of electron correlation (i.e., approaching a full CI treatment) [29] along with the
largest possible basis set, which may be regarded as the most rigorous treatment,
would be impractical for any “real” molecule. This is the reason why alternative
methods mustnecessarily be employed. They fall into two main families that can be
identified as high level ab initio calculation approaches and semiempirical QM
methods (described in Chapter 5).

Ab initio methods imply explicit solution of time dependent Schrodinger or
Kohn Sham equation.’> Among the several different high level methods that have
been employed for ECD calculations, three have especially emerged over the years as
those leading to the best accuracy/cost compromise and stand out as the methods of
choice for practicable and accurate ECD calculations. Time dependent density
functional theory (TDDFT) represents by far the most popular one and will be the
main subject of this section. Another DFT based method, namely, DFT/MRCI
(multireference configuration interaction), is computationally more expensive than
TDDFT but has one advantage that the detrimental impact of small basis sets is
reduced. One step above in terms of theoretical rigor and reliability stands the
coupled cluster (CC) theory, which contrary to TDDFT is a convergent approach, that
is, it is systematically extensible toward the “exact” limit. However, it is rather
computationally expensive limiting its scope. Other ab initio methods such as RPA
(random phase approximation, also known as time dependent HF) were relatively
popular in the past to calculate ECD spectra, but are now outperformed by more
modern approaches and will not be discussed here [30, 31].

To describe the optical and chiroptical response of a molecule to an applied time
dependent (oscillating) field, the interaction is treated as a perturbation of the initial
(ground) state and expressed as a linear dependence on the field strength through the
system polarizabilities. This linear response theory avoids the length and slow
convergence of the alternative sum over states approach, which requires summation
over all excited states to derive chiroptical properties at any frequency. In the linear
response regime, the chiroptical response is expressed in terms of a frequency
dependent magnetic/electric polarizability tensor {3 that relates induced electric and
magnetic moments to the time dependent magnetic and electric fields, respectively
(in au):

0
—oE ¢'B=B
nw=0aE ¢ B@t
5 (9.12)
m = xB+cf1ﬁ—atE

3) Many DFT functionals such as Becke’s B3 exchange functional contain parameters derived from best
fits of experimental data; therefore, they are not strictly ab initio. Here, however, we will include all
DFT functionals in the ab initio family.
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where E and B are the applied time dependent electric and magnetic fields, a and
% the electric polarizability and magnetic susceptibility, respectively. The factor ¢
(1/137 in au) explains the relative order of magnitude of the electronic absorption
(related to the first terms in the equations) and circular dichroism phenomenon,
which is phenomenologically quantified by the factor g= Ae/e. For isotropic sam
ples, only the complex quantity 3 (v) related to the trace of tensor § needs to be
considered.

A noteworthy property of parameter f§ (v) is that its poles occur in correspondence
with excitation frequencies, which is exploited in most linear response approaches
(such as TDDFT and CC) to compute vertical excitation frequencies without requir
ing explicit calculation of excited state wavefunctions or densities.

One problem related to tensor f is its origin dependence. For finite basis sets, the
computed chiroptical properties to f are origin dependent, that is, they vary upon
translation of molecular coordinates, which is of course an unphysical outcome. One
way to overcome such a problem is by using gauge independent atomic orbitals
(GIAOs) such as London AOs that directly incorporate magnetic field depen
dence [32]. The use of LAOs has, however, effect only when employed with the
so called variational computational methods (i.e., based on energy minimization,
such as TDDFT and DFT/MRCI but not CC). Alternatively, the tensor 3 may be
represented through an origin independent velocity gauge formulation, instead of
the origin dependent length gauge formulation. In practice, it consists in evaluating
instead of the electric moment  its momentum p = iw(27tv) . Dipole velocity
(DV) rotational strengths usually lead to poorer results than dipole length (DL) ones
when small basis sets are used, thatis, DL tends to converge faster toward the basis set
limit. However, the use of modern polarized double or triple T quality basis sets leads
to substantially equivalent DL and DV rotational strengths with most high level
methods. On the contrary, with semiempirical calculations large discrepancies are
often obtained, and use of DL values is especially questionable.

TDDFT has a very favorable balance of cost and accuracy [28]. Density functional
theory, which was practically unexplored in the context of ECD calculations only 10
years ago, has most of the merit of the recent “renaissance” of chiroptical meth
ods [33]. This is surprising in light of the fact that DFT functionals such as the most
popular B3LYP have been designed and optimized to reproduce thermochemical
data [34], and there is no obvious reason for them to reproduce equally well chiroptical
properties. Nonetheless, hybrid functionals such as B3LYP, PBEO and BH&HLYP
[35, 36] do predict transition energies and rotational strength with high accuracy in
many cases. Still, the typical DFT drawbacks described in Chapter 5 (self interaction
error and wrong asymptotic behavior) should always be kept in mind when using
functionals, such as BP86, employing adiabatic local density approximation. Their
practical consequence is that poorly localized states such as charge transfer, diffuse,
and Rydberg states are often inadequately described. These problems may be
alleviated by increasing the fraction of “exact” HF exchange, that is, using hybrid
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functionals such as B3LYP and especially PBEO and BH&HLYP (20, 25 and 50%
HF exchange, respectively), or solved using the newest range separated functionals
such as CAM B3LYP or functionals based on the so called statistical average of orbital
potentials (SAOP) model. In the field of newly developed functionals, double hybrid
perturbatively corrected functionals such as B2PLYP yield very accurate excitation
energies and lead to less spurious or “ghost” states than hybrid functionals. Another
issue related to TDDFT calculations is that, because of the perturbative nature of the
approach employed, they are intrinsically more accurate in predicting low lying
excited states. Strictly speaking, all states falling beyond the computed ionization
potential IP should be disregarded [37]. The problem is worsened by the fact that
the absolute value of the HOMO energy (eigenvalue), which equals the IP in HF
theory, is often underestimated by DFT, so that the number of “fallen” states is
artificially increased. Most often, however, this IP threshold is below the observable
ECD spectra cutoff (= 185 nm), so that the true impact of the described problem in
practical applications is only marginal.

Contrary to ab initio methods, semiempirical quantum mechanical methods
(Chapter 5) rely on strong simplifications [38]. They ignore core electrons and use
the neglect of differential overlap approximation (NDO) to skip the explicit calcu
lation of computationally demanding one and two electron integrals. These latter are
either put to zero or suitably parameterized to atom related values depending on
quantities such as ionization potential and electron affinity. In the context of excited
state calculations, electron correlation is taken into account by means of a truncated
configuration interaction (CI). When only singly excited states are included, a CI
single (CIS) procedure is employed in connection with various semiempirical
models developed for spectroscopic purposes, such as CNDO/S (complete NDO)
and ZINDO/S (Zerner’s intermediate NDO). Both of them have been successfully
employed for ECD calculations [13, 39, 40]. The main advantage of such techniques is
that they may be simultaneously extremely fast and accurate enough, at least for
certain types of chromophores and transitions. In fact, because of the parametric
essence of NDO methods, their efficiency depends case by case on the system
investigated and their consistency is somewhat limited. Both CNDO/S and ZINDO/S
have been especially designed to treat aromatic and heteroaromatic chromophores
(including ligands for transition metals, for ZINDO) [41, 42], so that they perform
well for compounds such as biaryls whose UV vis and ECD spectra are dominated by
strong m m* transitions. On the contrary, their accuracy in predicting high lying
electric dipole forbidden transitions such as n 0* is comparatively much poorer [43].
Also, systematic shifts between computed and experimental transition wavelengths
are common and must be taken into account by the so called wavelength correction
(see below).

How should one choose from among all available QM methods for ECD
predictions? The answer to such a question depends essentially on how complex
(large, flexible) is the system and on the nature of the chromophores contributing to
the ECD spectra. For very large molecular systems with many degrees of confor
mational freedom (that is, for which several different low energy structures must
be considered), any ab initio method may be unpractical. In such a situation,
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semiempirical NDO methods may be the answer especially if the ECD is dominated
by strong aromatic T mt* transitions [39]. For moderately complex systems, TDDFT
is the lead choice in most common cases [25, 26]. The most frequent applications of
TDDFT calculations are in the AC assignment of relatively rigid organic molecules,
whose conformation is known from other means (in solution or in the solid state),
and in the interpretation of chiroptical properties (ECD and OR) of prototypical
molecules with established AC. Relatively much less popular is their use in
conformational analyses, in a way similar to what is seen in Section 9.4.3. A few
specific examples of applications of TDDFT ECD calculations will be presented in
the following sections.

Situations where the use of alternative QM methods may be desirable are the
simulation of high lying aromatic transitions with large contribution from double
and higher excitations, which need multireference methods such as DFT/MRCI to be
treated [39]; and of diffuse or Rydberg transitions of relatively weak chromophores,
for which CC methods may be well employed [44, 45].

Focusing on TDDFT calculations, the most essential issue is the choice of the
functional and the basis set. As discussed above, hybrid functionals with different
HF character usually perform better than pure DFT functionals. In general, B3LYP,
PBEO and BH&HLYP should be employed as the first choices for ECD calculations
among standard functionals. On the other hand, range separated (CAM
B3LYP) [46], double hybrid functionals (B2PLYP) [47], and SAOP based func
tionals [48] will probably represent the future benchmarks in TDDFT calculations.
The choice of the basis set is a little more involved decision. Here, in principle,
the larger is the better but also the more time consuming. Therefore, one should
always wonder how necessary a large basis set is for a given situation. Split valence
double or triple € quality basis sets with polarization functions usually represent
very good compromises for moderately large molecules where ECD is dominated
by valence excitations. Our personal favorite is Ahlrichs’ TZVP set [49]. Especially
when only low lying excited states need to be evaluated, however, using smaller
basis sets such as 6 31G(d) may be sufficient [50]. Smaller molecules with relatively
weak chromophores may, on the other hand, require the use of basis sets
augmented with diffuse functions, like the “aug ” ones of Dunning’s correla
tion consistent basis sets (aug cc pVDZ and so on) [51].

Apart from the approximations specifically related to the TDDFT method, two
further very crude simplifications are usually made in computing ECD, that s, the
impact of environment (commonly, a solvent) and vibrations is neglected. Ideally,
they should be taken into account both in the generation of input geometries (as
seen above) and in the prediction of optical and chiroptical spectra. The appearance
of ECD spectra may be strongly affected by the presence of vibrational progressions
and/or vibronic coupling. This is, however, especially true for a few particular cases,
for example, for low lying electric dipole forbidden transitions of weak chromo
phores. As for the solvent, the dependence of ECD is usually less pronounced than,
for example, of OR and VCD. However, specific interactions such as hydrogen
bonds may affect overall ECD spectra, for example, of amino acids and oligopep
tides to a large extent and imply the inclusion of explicit solvent molecules [52, 53],
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although their impact may be minimal for less polar compounds [54]. Whenever
possible and desired, vibronic coupling [55 57]and/or solvent models [58] (see also
Chapter 5) may be introduced in ECD calculations although they will considerably
increase the computational time.

Whatever the QM method employed for ECD calculations, the computational
outcome is normally a list of rotational strengths R; (possibly, both in DL and DV
gauges) at discrete transition frequencies v;, or, in other words, a stick plot. To
compare it with an experimental ECD spectrum, it is advisable to apply a broadening
or band shape. That is, each rotational strength is associated with a Gaussian or
Lorentzian shape function with intensity proportional to the absolute rotational
strength value, and then a sum of all bands is evaluated. Such a procedure requires a
more or less arbitrary bandwidth o to be chosen. In principle, band broadening is
associated with excited states having finite lifetimes, and related damping constants
could be introduced at some point in the OR or ECD calculation formalism. In
practice, empirically derived bandwidths are usually employed, that is, those pro
viding the best fit with the experimental spectra. Reasonable values are between
0=1500 and 3000 cm ™ ; alternatively, a frequency dependent bandwidth (propor
tional to the frequency or wave number square root, 0; o< 1/V;) may be employed.
Comparison between experimental and calculated ECD spectra is most properly
made on the frequency or wave number scale. Expressing the rotational strengths in
10~ * cgs units and Ae in the common M~ cm™! (where M is molarity, mol 1"
units, the ECD spectrum calculated as sums of Gaussians in the wave numbers
(vin cm™") domain is

i ~ 2
Ae(¥) :0.02472}3(;?‘ exp|: (Vo"‘) } (9.14)

Computed transition frequencies may be systematically shifted with respect to
experimental ones. With TDDFT, this shift depends on the functional used and, for
hybrid functionals, on the amount of exact exchange included: an increasing
HF fraction brings about a blueshift over all estimated transition wavelengths [59].
To better compare computed and experimental spectra, the former ones may
be appropriately shifted; in other words, a frequency or wavelength correction
may be applied. A common way of doing it is to look for the match between computed
and experimental UV Vis spectra, then the same shift is applied to ECD ones
(the so called UV correction) [39]. After band shape application and shift correction,
the computed spectrum in the wave number domain may be translated into that
in the wavelengths one (A = 10*v!) for a quicker comparison with the experimental
ECD, which is usually recorded as a function of wavelength.

9.5.1
Assignments of Absolute Configurations

TDDFT calculations of ECD spectra have emerged over the years as one of the
most efficient tools for assigning absolute configurations of organic molecules, in
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particular, of natural products and, less frequently, of metal complexes. The pre
requisites for this kind of application are only a few but of fundamental nature:

a) The compound must show a significant ECD spectrum in the commonly
accessible range, that is, above 185 nm.

b) A reliable input structure, or a series of input structures, is available.

c) If the molecule is flexible, the number of populated conformers at the working
temperature is not too large.

d) The molecule is not too big (let us say, below 30 35 nonhydrogen atoms).

Point (a) is not a severe limitation in the context of chiral organic molecules and
especially of natural products, most of which contain a conjugated moiety leading to
nonnegligible ECD spectrum. The problem of a consistent conformational sampling
and of the generation of a set of “correct” input structures (points (b) and (c)) has been
already discussed in Section 9.3. As for point (d), it is gratifying to note that ECD of
increasingly larger and complex molecular systems has been treated by TDDFT in
recent years. Notable examples are the photosynthetic reaction center [60] and gold
nanoclusters covered with chiral adsorbates [61].

In general, the common simplifications employed in TDDFT calculations (the
neglect of environment and vibrational structure), as well as the problems associated
with standard functionals discussed above, do not hamper a safe application of the
method, provided a proper functional/basis set combination is employed. If the
above conditions are fulfilled, a reliable AC assignment is usually achieved by
comparing experimental and TDDFT calculated ECD spectra. This approach repre
sents a valid option to methods based on other chiroptical spectroscopies such as
VCDand ROA [62 64] when the method based on X ray anomalous scattering cannot
be applied.

The usual procedure for assigning ACs of a moderately flexible molecule via QM
ECD calculations consists of many steps. Recalling what we discussed in previous
sections, we may summarize them as follows:

1) Thorough conformational search with MM or semiempirical methods, possibly
based on Monte Carlo or molecular dynamics treatment, to afford a more or less
wide ensemble of structures.

2) [Ifapplicable, dissection of molecular portions (e.g., flexible chains remote from
the chromophore) that seemingly do not contribute to the observed ECD.

3) Geometry optimization of all above structures at a higher level (DFT, MP2, and so
on), to afford a reduced set of low energy minima with the same arbitrarily
assumed AC.

4) Experimental check of optimized geometries based on NMR data such as NOEs
and J couplings.

5) TDDEFT (or other QM) ECD calculations on all minima within a certain energy
threshold (2 3 kcal/mol), that is, with significant population (say, >3 5%) at the
working temperature (normally, 298 or 300 K).

6) Weighted average of all computed ECD spectra according to the Boltzmann
weights at the working temperature.
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7) Comparison with the experimental ECD spectrum: if the match is good with
either the average calculated ECD (for the initially assumed AC) or its mirror
image (that is, for the opposite AC), the configuration may be assigned.

The most drastic approximations used are the neglect of zero point vibrational
corrections to the free energies, and of solventand vibronic effects on geometries and
calculated ECD. They can be relieved by ad hoc methods that are, however, compu
tationally quite demanding.

Of the many examples published in the past 10 years of AC assignments based on
the above procedure (referred to as “solution ECD TDDFT//DFT” if solution ECD
spectra, DFT geometry optimizations, and TDDFT ECD calculations are employed),
we will discuss only a few illustrative cases.

Compounds 10a-10c (Scheme 9.5) were synthesized to be screened for anti
inflammatory activity (COX 2 inhibitor). They were prepared in racemic form and
resolved through enantioselective HPLC. Their ECD spectra were recorded online
stopping the elution in correspondence with the peaks for the two enantiomers of
each compound. In Figure 9.4b, the ECD for the two enantiomers of compound 10a
are shown. To assign their ACs, the solution ECD TDDFT//DFT method was
applied [23]. The molecule was first split into two moieties to investigate the
conformation around the chiral fragment attached at C 3 and the two aryl aryl
torsions at N 1 and C 5, which were thought to be independent of each other. The
relevant dihedral angles for the first moiety (C 3/C 2’ and C 2//C 1’) were system
atically varied in the 0 360° range by 15° step. From this double torsional energy scan
with AM1 method, a 3D plot was generated (energy versus the two angles) whose low
energy points (eight in total) were optimized with DFT, B3LYP/6 31G* method,
affording four different structures. The two lowest energy ones were in agreement
with observed NOE between pyrrole H 4 and CH3 3’ methyl group protons, and with
the measured dependence of OH chemical shift with the temperature, which
indicated intramolecular hydrogen bonding with the ester group. NMR experiments
gave instead no clear indication about the situation around the twoaryl aryl linkages,
thus only computational data were available. DFT geometry optimizations revealed
that the two aryl aryl torsions are correlated and two enantiomeric situations are

X=H (a), F (b), CH3 (c)

Scheme 9.5
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Figure 9.4 (a) DFT optimized lowest energy structures (I 1V) of 10a. (b) ECD spectra recorded
online for the two enantiomers. (c) ECD spectra calculated with TDDFT method on the four
structures (I 1V) and Boltzmann weighted average for (S) 10a.

possible with both positive or both negative values for N 1/phenyl and C 5/aryl
dihedrals. When all results were put together and the whole molecule reconstituted
and subdued to final DFT geometry optimizations, four energy minima (I IV) were
obtained with sizable population at 300 K (Figure 9.4a). TDDFT ECD calculations
with B3LYP/TZVP method led to quite different ECD spectra for the four structures
(Figure 9.4c). Such a situation is far from ideal because, in principle, a small change
in the relative Boltzmann’s factors may strongly affect the weighted average ECD. In
this situation, however, the average calculated ECD was in good agreement with the
experimental one and the AC could safely be established [23].

One may expect that upon increasing the molecular complexity and flexibility, the
computational cost and possible errors associated with the conformational search
will increase too. This is well exemplified by the 3,8” biflavonoid morelloflavone
(11, Figure 9.5) that contains flavanone (ABC) and flavone (DEF) moieties
giving rise to atropisomerism around the C 3/C 8" bond [65]. The two atropisomers
(11a and 11b) have around 7: 3 population in methanol found by NMR. Apart from
that, several other degrees of freedom are apparent in the geometry of 11, in
particular, the two torsions around rings B Cand E F. Independent AM1 torsional
energy scans around these torsions resulted in 16 conformers (corresponding to
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Figure 9.5 Torsional AM1 energy scans for relevant dihedrals of compound 11. (a)
Atropisomers 11a and 11b correspond to the two minima found for the torsion between rings C and
D. (b and c) Energy scans relative to the torsions between rings E and F for the two atropisomers.
Reprinted with permission from Ref. [65]. Copyright 2007, the American Chemical Society.

the various minima in the graphs in Figure 9.5) that were optimized with DFT
(B3LYP/6 31G*). The absolute lowest energy structure (with, in principle, almost
100% population) was, however, discarded because its exceptional stabilization is
due to a long range intramolecular hydrogen bond between C 3" and C 5 hydro
xyls. This feature was consistently found even including a solvent model for
methanol in DFT calculations; however, it was considered a computational artifact
unlikely to survive in the experimental conditions. After removal of that minimum,
five low energy DFT minima were left with population >3% at 300 K. They were
subdued to TDDFT ECD calculations (B3LYP/6 31G*) and the weighted average
ECD was in agreement with the experimental one atlow energies, thus allowing the
AC assignment [65].

A quite common situation occurs when a set of important molecular torsions are
all correlated with each other, making any independent torsional energy scan
meaningless. If so, a thorough conformational search may be run by employing
suitable algorithms consisting in a more or less systematic variation of some or all
possible torsions to generate a large set of starting structures. Each of them is
optimized (usually with MM or semiempirical method) and checked for acceptance
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on the basis of an energy criterion. Finally, the set of optimized structures is screened
for duplicates and an ensemble of distinguishable low energy structures within a
certain energy window (say, 2.5 3 kcal/mol) is obtained. Usually, C(sp®) C(sp’) single
bonds are varied by 120° in each step, C(sp?) C(sp?) single bonds by 180°, and so on;
some tricks are used to include endocyclic torsions in the search. When a full
systematic search would be too long, a Monte Carlo procedure may be employed
where the bonds are randomly rotated. This is a simulated annealing method where
the molecule is first placed at high temperature to overcome high rotation barriers,
then as an increasing number of minima is found, the temperature is lowered so that
the procedure tends to converge. Both methods are usually very effective in exploring
conformational ensembles even for very flexible molecules. Usually, the set of
minima thus found is refined by higher level calculations. Such a procedure is
illustrated, for example, by diastereomeric compounds (3R,4S) and (3S,4S) 12
(Scheme 9.5) that were investigated as enantiopure starting materials in the synthesis
of prostacyclin analogues [66]. Four adjacent torsions in the middle of the molecules
are the main degrees of freedom, clearly correlated with each other. A Monte Carlo
conformational search with MNDO method led to around 20 low energy minima
(within 3 kcal/mol) for each isomer, which were reoptimized with DFT (BP86/TZVP)
and subdued to TDDFT ECD calculations (same level as above). It turned out that for
(3R,45) 12 the first 5 conformers substantially contributed to the average ECD, while
for (35,45) 12 the first 10 did. The average calculated ECD values for the two isomers
were in good agreement with experimental ones and their ACs could thus be
assigned [66].

9.5.1.1 The Solid-State ECD TDDFT Method
From the discussion and examples given in the above section, it is clear that flexible
molecules may represent very difficult cases to handle for ECD QM calculations.
First, the conformational analysis step is prone to inaccuracy, the major sources of
error lying in the prediction of relative energies and in the possible missing of one or
more significant conformers. Second, the ECD calculation must be run on each
structure at the same level of theory, which may require a lot of computational time.
One possibility of avoiding large time consumption and uncertainty related to the
conformational flexibility is offered by considering the crystal state, where the
molecular conformation is fixed and univocal. Moreover, if crystals amenable to
X ray analysis are available, such a structure can be determined with high accuracy. It
must be stressed that the availability of good crystals is not sufficient for assigning AC
by means of the Bijovet's method because this additionally requires the presence of a
strong scatterer, thatis, a “heavy” atom (second row and beyond). ECD spectra may be
recorded in the solid state with various techniques, the most common of which
consists in mixing a microcrystalline sample with an excess of a salt such as KBr or
KCl, the mixture is then pressed to obtain a glassy transparent pellet similar to that
used for IR measurements. Reproducing such a solid state ECD spectrum by means
of QM calculations would require a unique and, if possible, already determined
conformation to be taken into account. This so called ss ECD/TDDFT method has
been purposely developed for assigning AC of natural products [67] and requires the
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following steps: (1) isolation and structural identification of the natural compound;
(2) growth of suitable crystals; (3) solid state structure determination by X ray single
crystal diffraction; (4) generation of an input geometry for ECD calculations with
initial arbitrary AC, after optimizing hydrogen atoms of the X ray structure with DFT;
(5) TDDFT ECD calculation on the latter geometry with TDDFT, possibly employing
various functional/basis set combinations; (6) measurement of solid state ECD
spectrum as KCl pellet; and (7) comparison between experimental solid state ECD
spectrum and TDDFT calculated one using the X ray geometry. The method is
computationally very fast and usually leads to a very good agreement between
calculated and experimental spectra [67]. Its main limitation is that it is applicable
only to samples giving single crystals suitable for X ray diffraction, although they
need not contain heavy elements, which is the situation found for a large majority
of natural compounds that are made up of H and C to O atoms. The second
limitation is that intermolecular interactions between molecules closely packed in
the crystals should not make significant contributions to the solid state ECD
spectrum because they cannot be reproduced by single molecule calculations.
Finally, since solid state ECD spectra may be easily plagued by artifacts, a strict
protocol for sample preparation and measurement must be followed. One of the
best qualities of the ss ECD/TDDFT method is that it may be applied to treat
difficult cases, such as very flexible molecules or compounds that exist as mixture
of tautomers or epimers in solution. It seems especially well suited for natural
products because they frequently have rather complicated structures, which
justifies the efforts toward obtaining crystals, and are often available in very
small amounts preventing manipulations necessary for other ECD options.

As an example of application of the ss ECD/TDDFT approach, let us consider
macropodumine B (13, Figure 9.6) a unique zwitterionic natural compound contain
ing a rare cyclopentadienyl anion and an iminio counterion [68]. It was isolated from
Daphniphyllum macropodum, a Chinese medicinal plant, along with several related
metabolites including macropodumine C (14), and its solid state structure was
determined by X ray analysis. The AC of macropodumines B and C was established
by comparing their ECD spectra with TDDFT calculated ones, employing for 13
the solid state approach and for 14 the more common approach described in
Section 9.5.1. For macropodumine B (13), the ECD spectrum calculated on the
X ray geometry (B3LYP/TZVP) was in very good agreement with the experimental
solid state ECD (Figure 9.6a), and the AC could be safely established after a moderate
computational effort. For macropodumine C (14), a Monte Carlo based conforma
tional search (MMFF method) followed by DFT geometry optimizations (B3LYP/
6 31G*) revealed the presence of several minima due to the rotation of CH,CH,0H
and COOCH; substituents accompanied by fluctuations in the ring system. When
used as input structures in B3LYP/TZVP calculations, the first four low energy DFT
minima (with Boltzmann populations >4% at 300 K) led to quite different ECD
spectra. Their weighted average was in agreement with the ECD of 14 measured in
solution in the low energy region, while some discrepancy was obtained at high
energies (Figure 9.6b). Moreover, the AC assignment required a considerable
computational effort, about 4.5 times longer than for 13 [68].
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Figure 9.6 Experimental and TDDFT the X ray geometry as input (a). For 14, the
calculated CD spectra for compounds 13 spectrum in CH3CN solution is compared with

and 14. For 13, the solid state CD spectrum (KCl  the Boltzmann weighted average over four DFT
pellet) is compared with that calculated using  optimized lowest energy minima (b).

9.52
Interpretations of ECD Spectra

Having reliable calculations methods in hand may have some unexpected incon
veniences. A possible one is the tendency to use them as “black box” that just provides
the result we sought for without the need for any control of the underlying operations.
Although such “superficial” use of computational packages may well solve everyday
problems, it will not add much to our knowledge of physicochemical processes and
properties such as those responsible for an ECD signal. On the contrary, one can fully
benefit from all the possibilities offered by a reliable ECD calculation.

A deeper analysis of an excited state calculation result than a mere spectral
comparison will first of all provide indication of the chromophores and the specific
transitions involved in the computed ECD bands and allow one to rationalize the
observed ECD. A classical way of analyzing UV vis and ECD spectra of molecules is
to assign each band to a certain transition, in terms of one electron excitation or
configuration, centered on a certain chromophore, as seen in Section 9.2. However,
the typical output of QM calculations often describes most transitions as the
combination of a more or less large number of configurations. Moreover, the
“canonical” MOs are usually delocalized on large molecular portions, rather than
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on single chromophores. It must also be stressed that, strictly speaking, DFT or
Kohn Sham orbitals (KSO), defined starting from the electron density, are not the
same as classical MOs, although they are known to be qualitatively similar and convey
the same kind of information [69]. Overall, describing any ECD band as primarily due
to a specific chromophore transition, although desirable, is always a little simplistic
even in the most favorable cases. Let us consider the case of phospholene oxide 15
(Figure 9.7). The first transition computed with TDDFT (B3LYP/6 31++G(d,p)) is
made up of eight different contributions, that is, single excitations involving four
occupied and two virtual orbitals, most of which are delocalized on a large molecular
portion [70]. In such a circumstance, it is possible to adopt a mathematical trick
known as singular value decomposition (SVD) that transforms the space of canonical
orbitals into a new one, that of “natural” orbitals, which are more strictly localized on
individual chromophores. In addition, the number of configurations contributing to
each transition is heavily reduced, making description of interesting transitions, and
therefore of ECD bands, much simpler. After SVD, the first transition of com
pound 15 clearly emerges to be due to solely two ;t m* excitations with the four
involved orbitals well localized on the benzene ring (Figure 9.7).

One of the most important qualities of QM calculations is that they may provide the
chiroptical response of purposely designed molecular geometries that would not be
experimentally accessible. In addition, one can also disentangle the contributions
due to different conformers that sum up to yield the experimental average. The
combination of the two pieces of information the structural and the spectroscopic
one would provide a basis for understanding and/or establishing structure to
spectra relationships. Put on a ground familiar to ECD users, these relationships
correspond to the so called helicity or sector rules. They relate the sign of a specific
ECD band to the inherent chirality of the chromophore responsible for it (helicity rules
like the diene one) or to the spatial disposition of a certain perturber with respect to
an achiral chromophore responsible for it (sector rules like the ketone octant rule)
[2, 71, 72]. These rules have represented in the past popular means of interpreting
ECD spectra and especially of assigning ACs, but nowadays their use is greatly
downsized. However, QM calculations offer a unique possibility to recheck the
validity of old sector and helicity rules, put them on a firmer theoretical basis, and
establish new ones. This is because, as stressed before, any calculated ECD spectrum

Figure 9.7 Principal components of the main electronic transition for 15 obtained after SVD
treatment. Adapted from Ref. [70], with permission from Elsevier.
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Figure 9.8 Empirical comet rule for ester n m* transition (framed) and compounds tested: a real
one (16) and a hypothetical one (17).

is directly associated with its input structure, and calculation results may be easily
analyzed in terms of involved transitions and orbitals. The case of ester chromophore
will exemplify what stated. Various semiempirical rules were developed in the 1960s
for esters and lactones, relating the sign of the observed n 7t* band around 220 nm to
the geometry of the groups surrounding the chromophore [72]. In particular, Snatzke
proposed a sector (or “comet”) rule for acyclic esters valid only for a planar (achiral)
ester chromophore (Figure 9.8).

The AC of a compound of natural origin, the diester pyrenophorol (16), was assigned
through the solid state ECD/TDDFT approach described in Section 9.5.1.1 [73]. In
addition, Snatzke’s comet rule was considered with the advantages provided by the
solid state. In fact, the geometry found by X ray analysis (showing a planar ester
moiety) was subdued to TDDFT (B3LYP/TZVP) calculations and the sign calculated
for the n mt* band at 210 nm was in keeping with the rule’s prediction, based on the
same structure. Moreover, the hypothetical “chirogenic” fragment 17 was used in a
series of calculations where the two relevant dihedral angles (curved arrows in
Figure 9.8) were systematically varied and the ECD calculated. In this way, the
consistency between the sign calculated for n s* band and the geometry around the
ester chromophore could be more precisely ascertained. When analyzed through a
sector scheme, the sector surfaces thus found turned out to be very similar to those
suggested by Snatzke. The second rule established by Legrand and Bucourt for
five seven membered ring lactones has recently been similarly rechecked [74, 75].

Analyses of this kind may help rejuvenating old semiempirical rules, as demon
strated by other examples where the very popular sector rules for the benzene
chromophore have been investigated [76, 77].

9.5.3
Other Applications

Because of relatively large time consumption of high level QM methods, ECD
calculations with these methods are poorly employed as a source of conformational
information. In particular, the approach described in Section 9.4.3 for DeVoe type
calculations, consisting in a systematic conformational sampling followed by ECD
calculations on each single structure to find the best matching one with the



9.6 Conclusions and Perspectives

experiment, has seldom been explored with TDDFT calculations [54, 78, 79].
However, thanks to the advances in computer technologies we expect this kind of
treatment to become more widespread in the future.

Thus far, we have not mentioned a rather fundamental application of TDDFT or
other QM ECD calculations, which actually represents a fundamental prerequisite of
everything discussed in this section. After a certain computational method is
theoretically established, it needs to be validated for everyday uses. Normally, a set
of “real” molecules, usually both structurally simple and conformationally rigid, is
considered for calculations and the results compared with the experiment in order to
assess the performance of the method tested. To check the applicability and scope of
TDDFT ECD calculations, for example, various series of prototypical test molecules
have been considered, either with very diverse skeletons [45, 80, 81] or belonging to
certain classes, for example, alkenes [82]. Alternatively, single small molecules are
investigated upon systematic variation of functionals and basis sets, to explore their
respective capacities for specific problems [83, 84]. Finally, critical evaluation of new
developments such as new functionals, solvent models, and so on, usually requires
consideration of extensive sets of test molecules.

9.6
Conclusions and Perspectives

Nowadays, direct calculations of ECD spectra of increasingly large and complex
molecules is possible with high level QM approaches being both efficient and
practical. It is amazing to notice that in a review about ECD calculations published
in 2000, the authors observed that TDDFT “method has not been used for optical
activity calculations” [31]. Less than 10 years later, TDDFT has become the most
popular tool in the field of ECD calculations, and the development of efficient DFT
functionals is still one of the hottest topics in theoretical chemistry.

Excited state calculations of medium sized organic molecules are presently
workable on a common personal computer. Clearly, a limitation is still posed by
molecular flexibility because taking into account many different populated confor
mations may still be computationally very demanding. The whole procedure is
complicated by the fact that, most often, computational packages for conformational
searches that perform efficient conformational searches are not implemented for
ECD calculations, and vice versa. An expected development for the near future is the
appearance of packages capable of an automatic procedure consisting in conforma
tional search, selection of relevant energy minima, computation of spectroscopic
properties (including ECD), and averaging to afford a response immediately com
parable to experimental data. Computational software is likely to further spread
among nonspecialized users, although this “black box usage” may have its incon
veniences, as discussed above.

Ab initio or TDDFT prediction of the ECD spectrum of a biopolymer is still not
routine, though filling this gap will probably be just a matter of time. However, one
should always use common sense to select the right means for the right purpose. The
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fact that TDDFT calculations are possibly applicable for a very complex and large
molecular system does not necessarily mean that they have to be employed. Provided
certain assumptions are met, hybrid approaches such as DeVoe’s may afford the
desired answer with a comparably negligible computational effort. Therefore, some
space will always be left for simplified calculation tools in the present and future
computational era.

Abbreviations

AC absolute configuration

CE Cotton effect

CI configuration interaction
DFT density functional theory

DL dipole length

DV dipole velocity

ECD electronic circular dichroism
HF Hartree Fock

HOMO  highest occupied MO

IP ionization potential

ISA independent systems approximation
KSO Kohn Sham orbital

MO molecular orbitals

NDO neglect of differential overlap
QM quantum mechanics

RC relative configuration

ss ECD  solid state ECD

SVD singular value decomposition

TDDFT  time dependent DFT
UV Vis ultraviolet visible

XRD X ray diffractometry
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10
Computational Dielectric Spectroscopy of Charged,
Dipolar Systems

Christian Schroder and Othmar Steinhauser

10.1
Methods

10.1.1
Dielectric Field Equation

Dielectric spectroscopy obtains information of a molecular system by exposing the
sample to an external, spatially homogeneous electric field E (o). For nottoo strong
fields, the response of the system, that is, the total dielectric polarization ﬁtot(m), isa
linear function of the Maxwell field E(o):

<A_;Itot>fg (o)

Bu(0) = —= = = E(0) (10.1)

with the proportionality factor Z* (w) /4. Hence, 2* (o) is commonly called dielectric
“susceptibility” or generalized dielectric constant (GDC) (although being a function
of ). The polarization itself represents the averaged total collective dipole moment
Mot per volume V in the presence of the external field Eeox. The constitutive
relation (10.1) always involves the Maxwell or internal field E, that is, the average
field acting in the sample. It is composed of the external field E ext (Which is assumed
to be spatially homogeneous and hence does not depend on 7) and the average
molecular fields inside:

E(F) = Eex + J§(? 7). o(F)dP + J?(? 7). Bp(7)d7 (10.2)
\% \%

The coupling vector S(7) and the tensor ?(?) are the gradients of the Green
function G(7):

—_

G(F) = = (10.3)

|7
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S(F) = 7L

(10.4)

=i

—

T(F) =VV

| =

(10.5)

=

The molecular fields in Equation 10.2 consist of a contribution from the rotation of
the dipoles (represented by the dipolar density Pp (7)) and a contribution from the
charges in the system formulated in terms of the charge density o(7¥). This charge
density is connected to the translational or current polarization via the equation of
continuity

-

J ]()dt—i—gfo

§PJ+Q:0

(10.6)

keeping in mind that the current J () is the time derivative of the translational dipole
moment M ( @) =] J(#)dt, which divided by the volume > gives the current polarization
p = =M 1y /V. The sum of the rotational polarlzatlon Pp(7) and the current polari
zation P ]( 7) yields the total polarization Py (¥):

Pi(F) = PBy(F) + Pp(7) (10.7)
The inhomogeneous, internal field in Equation 10.2 is a particular solution of the
Poisson equation (10.8) (see Equation 4.33 of Ref. [30]):

V- E = 4n(o V- Pp)

. - 10.8
= 4x(V- B+ V- Pp) (10.8)

= 4.7[6 l_itot (109)

which can be reformulated by means of Equations 10.6 and 10.7 to show the
dependence of the internal field E on the total polarization ﬁtot. The fact that at
least parts of the system consist of simultaneously charged and dipolar species
manifests itself in the appearance of translational and rotational dipole densities P i
and Pp. Replacing the total polarization by the constitutive relation (10.1) gives

V- (E+Z(w)-E) = 0

V(" (w)+1)E) = 0 (10.10)

This last equation can be used to calculate the local internal field E (7), which is the
negative gradient of the potential ¢(7). First, the universal, spatially independent
GDC is made space dependent

() 4+1— 27, ) (10.11)
transforming Equation 10.10 into

V- (Z'(F0)V(F)) =0 (10.12)
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Figure 10.1 Computation of the dielectric (Equation 10.15) of £, X}, and =}, the dielectric

constant ='(7,®) on a basis of a r dependent  constant € and the conductivity o of the gray
potential ¢. In order to calculate the potential ~ shaded body are used, whereas the dielectric
¢p, the adjacent potentials ¢, ¢ are used. Due  constant of the conductivity of the “white”
to this schematic 2D visualization, ¢s and ¢g  solvent determine =] and =).

cannot be displayed. For the evaluation

For an approximate numerical solution, the volume of the sample is subdivided
into finite elements, in the simplest case into cubes of edge length h, as depicted in

Figure 10.1. Integrating the equation over a cube and applying the Gaussian theorem,
we get the surface integral

o=ﬂ2mmﬁqaﬁ

A

6
— lq)k ¢0h2
_sz h

k1

from which the potential ¢, at the center of each cube is finally given by

(10.13)

kf:lzm
by =

- (10.14)
> 5
k1

This formula has a simple interpretation. The potential at the central cube ¢, is
determined by the potential ¢, at the six nearest neighbors multiplied by the
respective GDC 3. Practically, ¢, is obtained in a self consistent procedure starting
from appropriate estimates of ¢,.. So far we have followed the traditional concept of
the widely used Poisson Boltzmann method [24]. The essential difference is the
replacement of the simple dielectric permittivity € by the GDC. We emphasize that
the crucial point is the choice of the GDC of each grid point. For example, in
Figure 10.1, 3, 3}, and 3} are equal and correspond to the GDC of the gray shaded
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body. £} and =} are computed from the dielectric permittivity € and the conductivity
o of the “white” solute according to

47io
Zi =&+ k

(10.15)

In this approximation of Ref. [3], & and oy are the static values of the dielectric
permittivity e(w = 0) and the conductivity o(ow = 0). Actually, these quantities are
not varied at each cube, but are kept constant in a complete region representing a
biomolecule, the solvent, the membrane, and so on. The estimate (10.15) is inspired
by the general relation

4mio(w)

() =¢(w) 1+ o

(10.16)
derived in the subsequent section. Upon making the drastic approximation to replace
both &(w) and 6(w) by their static values leads to the estimate in Equation 10.15 since
the frequency dependence is solely introduced by the denominator o.

10.1.2
Molecular Resolution of the Total Collective Dipole Moment

In principle, the computation of the GDC in a molecular dynamics (MD) simulation
is directly possible from the constitutive relation (10.1) by applying an additional

-

external field [48, 63, 64, 71]. The molecular forces F; , acting on each atom o of the

—

molecule i with their velocities V; , are augmented by charge weighted term g; o - Eext:

= Fi,a + Gio E‘ext (10.17)

The external field influences the individual atoms that are located off center at7; , and
simultaneously generates a translation of the center of mass as well as a rotation
about that center. As we are dealing with charged species, their collective translation
creates a current ] (t). Without an external field, that is, for a system in equilibrium,
the direction of J(t) fluctuates and finally averages to 0. In the presence of the field,
however, a preferred direction remains and produces a continuous current whose
molecular contributions obey the equation of motion:

& demi 4 . -
a =4qi dt = ;1 (; Fi,a + <; qi‘(x> . Eext>

- 2
=L F+ LR,
m; m;

(10.18)

If the external field is strong enough to overrule the molecular forces F;, the second
term in the last equation dominates the time evolution of the molecular currentfi.
The sign of the molecular charge carrier g; becomes insignificant and the molecular
current follows the direction of the applied field. In Equation 10.18, m; = Y mi,
qi = o Yia and F ;= Zuﬁ i.« denote the net mass, net charge, and net force acting
on molecule i. These quantities govern the time evolution of the center of mass
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velocity Vem . In other words, the translation of the covalently bound charge set {g; o }
may be considered as the movement of the net charge g; located at the center of mass.
Consequently, the molecular contribution to the current is fi(t) = qi - Vem,i(2) [14].
The total current J () is given as the sum over all molecules:

J® =350 =D _a Vemi(t) (10.19)

This relation holds irrespective of the presence or absence of an external field.
Integrating this current over time yields the corresponding collective translational
dipole moment:

M () = Jf (Bt = i Tami(t) (10.20)

With respect to actual simulations, the evaluation of M ;(t) as the integral of J(#)isto
be preferred over a sum involving the center of mass positions ¥ ;(t), because the
latter experiences discontinuities through toroidal shifts due to minimum image
convention (for details, see Section 10.1.4). However, M (t) is only the translational
part of the total collective dipole moment M(t),

Mie(t) =Y Y Gia - Fialt) (10.21)
i oa
entering the constitutive Equation 10.1. The nontranslational complement of M ()
Mp(t) = M(t) M;(t) (10.22)
=D D didfial) D aTemi(t) (10.23)
ia i
= Z Z Gia(Fia(t) Fani(t)) (10.24)
i o
= Z Wp,i(t) (10.25)

is not only essentially determined by overall rotation but also includes bond and angle
vibrations as well as torsional motions. For the sake of simplicity, however, we use the
term collective rotational dipole moment for Mp(t).

At the molecular level, we map the molecular [i,; to the ith contribution in
Equation 10.24:

fipi =Y Gia(Fialt) Femi(t)) (10.26)
a
= G Temi (10.27)
Mio \ -
= za: (Qi,a - )Ti‘a(t) (10.28)

= dia Tialt) (10.29)
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The last equation shows that the so defined molecular dipole moment i, ; is inde
pendent of the choice of origin, because the sum over ¢ ia is zero. However, this
independence neither applies to [i; nor to its translational counterpart g; - ¥em,i(t) in
the case of charged molecules. Taking the difference of both quantities, the depen
dence cancels out.

So far, the molecular formulas given are valid for charged and neutral molecules
likewise, as demonstrated by Equation 10.29. In the case of neutral molecules, [ip;
equals (i;, because the net charge g; does not exist. Consequently, ¢'; , is g; - In the
case of charged molecules, the role of the modified charges ¢'; , is merely to show that
fp; is still a well defined dipole moment. They are never used to compute physical
quantities, for example, forces, in simulations. Moreover, [i, ; for charged species can
be alternatively computed by

—

Wp; = qi(Feqi(t) Tem.i()) (10.30)

with the center of charge eq;(t) defined analogously to the center of mass, but
using the partial charges as weight factors. In Figure 10.2, the center of mass and
the center of charge are shown for the organic cation 1 butyl 3 methyl imidazolium
(BMIM 7). The difference vector 7cqi(t) 7em,i(t) is the so called charge arm [33].
The net charge of the molecule is located at 7cq;(t), that is, off to the center of
mass. This implies that the action of the external field on the charge center creates
both a translation of the center of mass of the molecule and a rotation about this
center. Therefore, [ij,; is best suited to describe the molecular rotation. In fact,
it was shown in Ref. [49] that the equation of motion for the angular momentum
is governed by the torque fip; X Eex. Furthermore, fip; is also important for
the static structure. It is essential in constructing the so called g coefficient
expansion [28, 62].

Figure 10.2 Schematic view of a 1 butyl 3 between these two centers is called “charge
methylimidazolium cation. The center of mass  arm” and equals the dipole vector [i, divided by
Fem and the center of charge ¥q does not the net charge g of the molecule.

coincide fora molecularion. The distance vector
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If the whole system exclusively consists of charged species, the concept of charge
center can also be used to compute the total collective dipole moment:

Mtot qu rcqr (1031)

In this sense, the asymmetry of the molecular charge distribution {g; .} determines
the dielectric properties via the position of the charge center in the respective
molecularions. Foratomicions, the center of mass and the center of charge coincide,
thus giving no charge arm descriptive of rotation. As a result, Myo(t) is only given
by M;(t).

Figure 10.3 summarizes the considerations made in this chapter. The central
quantity M., is on top of the figure and stands for the macroscopic regime. This is
the definite level of experiments measuring the complex spectrum of the GDC.
This is also the level where experiment and simulation meet each other. The step
down to the mesoscopic level M, can be decomposed into its rotational (Mp) and
translational (M) components. This decomposition is in a strict sense an interpre
tation of the well defined collective property My In other words, this decomposition
is not necessary but useful. From the rotational component Mp, the dielectric
permittivity £(m) can be evaluated and the translational component M 7 can be
used to compute the conductivity o(w). Both quantities contain a contribution
from the cross correlation of the rotational and translational dipolar components,
but this contribution is very small [17, 34, 53]. In a complex mixture of positively,
negatwely, and uncharged species, a further subdivision into collective moments
My, M, MD, MJ ,and M can be made for a finer grained analysis. At this point,
we anticipate that the rotatlonal components affect the low frequency regime of
the GDC spectrum, while the translational ones show up at higher frequencies.

= J [
+ - 0 + -
(5 ) (o) (o] [ ) (%]
e = (] 5 s = =
M e B B Fous wOu0RL, T 0T, GGd
By Mooy o T T
";uD + My pououﬂuou "j+ j* j_J
I-l; *p H, "nuop,,uo no j+ J
Figure 10.3 Decomposition of the total dipole moments jip. The translational collective

collective dipole moment My: The rotational  dipole moment A-;’J is basically determined by
part Mp can be calculated for each species since  the current j of each molecule.
it is made up by the corresponding molecular



286

10 Computational Dielectric Spectroscopy of Charged, Dipolar Systems

At the finest level of graining, a resolution into molecular dipole moments }IS T
— 2+ . .
and [i° as well as molecular currents ;] andj is possible.

10.1.3
Computing the Generalized Dielectric Constant in Equilibrium

In the previous section, we applied an external field to the sample in order to create a
total collective dipole moment M wor- Simulations of this kind are seldom found in
literature [48, 63, 64, 71]. The reason is that one needs strong external fields to
overrule the molecular forces as visible in Equation 10.18. In this case, however, the
average total dipole moment (M) is no more a linear function of the applied field as
quadratic and higher terms enter Equation 10.1. On the contrary, for weak fields, the
response of the system is too noisy to be seriously analyzed. An alternative way is the
equilibrium MD simulation.

Although the averages of the collective dipole moments are zero in equilibrium,
they nevertheless have a memory. The traditional measures of temporal memory are
time correlation functions, such as

T
(1) = (A(0)- B(t)) = lim 1JA’(t’) -B(t+¢)dY (10.32)
0

Quite generally, the initial value ®(t = 0) is the average of the product (A - B), while
the asymptotic value is the product of the averages (A)-(B). In equilibrium,
howezer, t}je last value should be zero. The special case is autocorrelation Ellznctions
with A = B. Frequently, they decay monotonically from the initial value (A") to the
asymptotic one (A)?. In contrast, the current autocorrelation functions show a
typical behavior of a damped oscillator. Furthermore, time correlation functions
have a translational symmetry in time, that is, they are independent of the initial
reference time (A(0)-B(t)) = (A(¥)- B(t+1)). The first derivative d®(t)/dt is
given by

aot) d . . - - dB()
5 =3 A0 -Bo) = <A(0)~T> (10.33)
= (A(0)- B(r)) (10.34)

Furthermore, the second derivative d*®(t)/d#* is equal to negative of the corre
lation function of the first derivatives:

dA(0) df%(t)> (10.35)

@~ an A0 B0 = <m O

— (A(0)-B()) (10.36)
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Instead of simulating the situation of an applied field, one can use linear response
theory that includes the external field in the Liouville equation [26]. Under the
assumption of not too strong fields, the augmented Liouville equation is linearized
such that the system’s response can be expressed in terms of time correlation
functions computed in equilibrium. For the concrete case of dielectric spectroscopy,
one gets

. Mior) 2 .
Ptot(w):ﬂi 1 { d

v = 3VkBT£ a@ (Mit(0) - Mtot(t)>eq:| Eexi(®) (10.37)
Since the left hand side of Equations 10.1 and 10.37 are equal, the right hand side
must also be equal:

(o) =T (0) (ex 1) (10.38)

47 d
dt “a| E

= 3kaT£ — (Mi51(0) - Myt (£)) } B
In principle, the dielectric polarization contains an electronic contribution that shows
up in the GDC as &, visible in the high frequency limit. In theoretical studies, &, is
often set to unity corresponding to a neglect of electronic contributions [38]. The field
ratio Eex/E depends in a characteristic way on the boundary conditions used. In
Section 10.1.4, this dependence is analyzed. For the so called conducting boundary

conditions [40, 42], the ratio is unity [49, 54, 59]. L[. . .] denotes the Fourier Laplace
transform of a temporal function f (¢):

£lf ) = [ fereniar (10.39)
0

As already discussed at the end of the previous section, the interpretation of the
dielectric spectrum proceeds via the decomposition of the total collective dipole
moment M. Therefore, its autocorrelation function @y = (1\71 t0t(0) - M tot(t)) may
be split into two correlation functions:

Bua(t) = D (8) + By (1) (10.40)
®p (1) = (Mp(0) - Mo (1)) + (Mp(0) - My (1)) (10.41)
®; (1) = (M;(0) - My (1)) + (Mp(0) - My (1)) (10.42)

In this first step of decomposition, the appearance of cross correlations
(Mp(0)- M 7(t)) becomes already obvious. They represent the coupling of rotation
and translation at the mesoscopic level that cannot be described independently by
autocorrelation functions alone. Fortunately, the cross terms are much smaller than
the self terms, which enables a de facto decoupling of translation and rotation for
numerical reasons [17, 34, 53].
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We evaluate the rotational contribution ®p(t) first:

e G0 = 2| 5o Fiow] +£[ 5 o(0)-Fey0)

(10.43)

The first autocorrelation term in the equation above can be reformulated using partial
integration

d, - Y i o d = Y
5[ 5<MD(O)'MD(t)>:| = Je a(MD(O)'MD(t»dt (10.44)
= [(Mp(0)- Mp(1)e]
+ imJe“‘”(MD(O) -Mp(t))dt (10.45)
0
= (Mp) +i0L[(Mp(0) - Mp(£))] (10.46)
while the second cross term may be transformed using relation (10.34):
d o o T o
L [ 3 (Mo (0)- M,(t))} = (‘) (Mp(0) - J(t))e""dt (10.47)
= L[(Mp(0)-](1)]

Fortunately, the contribution from the cross correlation of the rotational and trans
lational collective dipole moments can be computed by the Fourier Laplace trans
form of (M (0) - J (t)) since J () (as opposed to M ;(t)) does not suffer from the jumps
of individual molecules due to the periodic boundary conditions. This is important to
note because it increases the statistical quality of the correlation function and thus
allows computing this very small contribution. Altogether, the rotational contribution
is given by

d _

£ 500 = )+ oL (Vto(0) Bro(e)] £[(¥Eo(0)-Tw)]  (1048)

The general form of the translational contribution is

e[ Sow] -] Lo Bmm)]| oo Jo] o)

While the correlation function of the rotational dipole moment (Mp(0) - Mp(t))
exhibits the expected classical behavior, its translational counterpart (M 7(0) - M (1)
behaves rather peculiar and needs more careful analysis. In order to elucidate this
behavior, we first investigate the so called dipolar displacement:

(AM; (1)) = (M;(0) M;()?) (10.50)
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An alternative expression can be given following the approach of Berne and Pecora [6]
for the mean squared displacement in terms of the velocity correlation function. The
pair M 7 and J can be treated formally equivalent to the pair 7 and 7.

<AI\7I]2(t)> =2 (J {J(0) ~f(t’)>dt’> t 2 Jt’((o) J())ar (10.51)
0 0

In the asymptotic limit at sufficiently long times, this formula gives a linear relation
for the dipolar displacement:

Jim (AN} (1)) = 6VknTo(0)t+2(M)) (10.52)

The first term on the right hand side follows from the Green Kubo approach to
compute the static conductivity:

0(0) = 3737 | T e (10.53)

Using Equation 10.34, the second term on the right hand side is

o0

jt‘<f<o>-f<t>>dt: [t (M(0) T ()]

0 —_——————
-0 (10.54)

= [(My(0)- M;(1)] (10.55)
= (M) (10.56)

A typical example of the dipolar displacement for the molecular ionicliquid 1 ethyl 3
methyl imidazolium dicyanoamide is shown in Figure 10.4 as dashed line. Evalu
ating the binomial in Equation 10.50, a formulation of the correlation function
(M 7(0) ‘M (1)) in terms of the dipolar displacement is found.

(M(0) - M (t)) = %<AM§(¢)> + % ((Mj(o» + <N4j(t)>) (10.57)

Since t is a reference point along the trajectory in the same way as the initial point 0,
the two averages (l\_)fj (0)) and ( Mj g)) become equal for sufficiently long times. This
should not be confusﬂed wit}L (AM;(t)) that increases linearly in time. Now, the
peculiar behavior of (M (0) - M/(t)) becomes obvious: ithad to be a linear function of
time over a long range of time. For example, this linear behavior of (M 7(0) - M 1(1)) s
shown in Figure 10.4 (solid line). According to Equation 10.52, its derivative or slope
is determined by the static conductivity after an initial regime:

lim g<1C4,(0) - M;(t)) = 3VkpTo(0) (10.58)
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Figure 10.4 Mean squared displacement of
the translational collective dipole moment
(AM;(t)?) (dashed line) of the simulated 1
ethyl 3 methyl imidazolium dicyanoamide that

can be used to calculate the static conductivity
0(0). The solid line shows the linear behavior of
the autocorrelation function (M;(0) M,(t))
within the first nanoseconds.

As the time dependence in the initial region is quadratic, the derivative
(d/dt)(M;(0) - M(t)) vanishes for t— 0.

Now, all tools for the evaluation of £[ (d/dt)(M;(0) - Mj(t))] are available. Upon
partial integration, it transforms to

o]

L %(1\711(0) M; (1)) :J.%%Q\_/‘[j(o)‘ﬁj(t»dt
61'2% M;(0) - My (1)) (10.59)
0

i - S
=2 2[((0) Jw)]

where in the second step we have used Equation 10.36 with A = B = M ]

Assembling Equations 10.48 and 10.49, multiplying all these terms by
47t/3VkgT, and inserting them into Equation 10.38, we get the final expression
for the GDC:
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47

2©) = 3T

(M) + oL [(Fp(0) - Mo ()] £[(Mn(0) (1))

+ {2100 Jw)] +ioc] ) Jo)]))

(10.60)

In the zero frequency limit the real part of Fourier Laplace transform of the current
auto correlation yields the static conductivity 6(0). Hence, the ratio o(0)/w repre
sents a parabola in the imaginary part of the dielectric spectrum.

() = S(o) 4’“’2(0) (10.61)
_e(w) 14 O o(0) (10.62)

w

While removing the singularity in the imaginary part, this does not affect the real
part of the spectrum. The different contributions to the GDC in Equation 10.60 may
be arranged into two groups: one with the prefactor i/w and one without.
Accordingly, the different contributions to the GDC in Equation 10.60 can be
assigned to &(w) as well as to the conductivity 6(w) in Equation 10.62:

e(0) 1= 5o () + 0L [(Ho(0)- Bo(0)] £[(o(0)-T0)])
(10.63)
() = 37 (L1010 J0)] + oL [(¥10(0)- (1)) (10.64)

The last two equations can be seen as the motivation for the “arbitrary” decom
position of My: Despite the marginal cross term £[(Mp(0) - J(t))], the dielectric
permittivity £(w) is built up by the rotational collective dipole moment Mp(t). The
time derivative of the translational collective dipole moment M 7(t) almost exclu
sively determines the conductivity o(w). However, the influence of the conductivity
o(w) onthe GDCis indirect since the ratio o(w) /w enters the spectrum of the GDC.
Therefore, we introduce the dielectric conductivity:

o(0) o(0)
w

Vo(w) = 4mi (10.65)
The difference between the dielectric conductivity 9(w) and the conductivity o(w)
is more than a mere downscaling by the frequency w: First, it shifts the contribution
from o(w) to smaller frequencies. Second, and even more important, it is the
nonvanishing static limit lim9(w). Both, the numerator and the denominator
tend to zero for zero frequ(eur?c(})l. So, the static limit of the dielectric conductivity is
the result of a delicate balance of the ratio of two zero terms. Neglecting for the
moment the cross term (M (0) - ] (t)), Equation 10.64 gives the explicit expression
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for the zero frequency limit of ¥y(m):

. ami e 1
lim 90(0) ~ 5 VkBTJ L) Ty (10.66)
0
As the limit
eiu)t 1
lim —it (10.67)
w—0 w

the static limit of the dielectric conductivity is given by

Ul)iinoﬁo(w)zsészJ £ (7(0)-J (1)) dt (10.68)
47 .y
W< 7) (10.69)

where in the last step we have used Equation 10.56. The zero frequency limit of the
cross term (Mp(0) - J(t)) yields

lim £{(8o (0) ()] = [ (Bo(0) - (et (1070)
= [(Mp(0) - M (1)1 (10.71)
— ((0) - W1,(0)) (1072)

by means of Equation 10.34. Augmenting Equation 10.69 by the static limit of the
cross term in Equation 10.72, the static limit of the dielectric conductivity finally
reads

47

T 3VksT (<M;> +(Mp(0) '1‘711(0)>> (10.73)

lim ‘0()((1))
0w—0
From Equation 10.63, the static limit of the dielectric permittivity can be easily read:

lim e(w) 1= oo ({Bp) + (Fo(0) - ¥1(0)) (10.74)

Uniting the last two equations, the generalized static dielectric constant &g is
given by

. 47 2 = = — 2
s 1= lim 30(0) = 57 (M) + 2(Mo(0) - My (0)) + ()
i 3 (10.75)

= m <Mtot>
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The derivation of this expression shows that the conductivity although residing in
the high frequency regime finally makes a knowledgeable contribution to the static
GDC é&gat. This demonstrates that in charged, dipolar systems, the conductivity is an
equal partner of the permittivity.

So far, we have split the macroscopic total dipole moment M, into its rotational
Mp and translational M ; contributions in order to get separate equations for the
dielectric permittivity and the dielectric conductivity. At the mesoscopic level, Mp(#)
as well as J(t) may be further decomposed into contributions from the cations, the
anions, and the neutral solvent. Formally, we can write

Mo(t) = 3 Mp () (10.76)

i =37 (10.77)
k

where M1 (t) € {M, (), My (), MY(8)} and J5(t) € {J 7 ()7 (1)} as indicated in
Figure 10.3. At this level of decomposition, we have contracted all species with respect
to their charge. In a finer grained decomposition, a resolution into species can be
done. Even more, the species itself may be further decomposed: The solvent may be
divided into several solvation shells of the solute and the remaining bulk. The solute,
for example, a protein, may be split into regions of helical structure, § sheets, or
loops. In DNA molecules, the contribution from the sugar and the phosphate group
may be even separated.

Since (Mp(0) - Mp(t)) correlates the sum over several species or their moieties,
one gets autocorrelations <I\71 I];(O) ‘M lg(t)> and cross terms 2<l\71 I];(O) ‘M ;(t)> with
k # I. These cross correlations are the mesoscopic analogue of intermolecular or
intermoiety coupling. They always appear by a factor of 2 such that one cross term can
be attributed to each partner in the sense of an equal sharing of the coupling. In other
words, one can define correlation functions

@o.(t) = (Mp(0)- My (1) + Y (Wp(0)- My (1) (1078)
17k

specific for species, moieties, or regions. Thus, the sum of all individual ®p,;(t)
equals the total (M (0) - Mp (t)). Since the Fourier Laplace transform is linear, each
®p, 1 () can be transformed separately. In this sense, each Fourier Laplace transform
stands for the contribution of a species, moiety, or region to the total dielectric
permittivity . This contribution, however, should not be mixed up with the term
“local dielectric constant” of the respective species, moiety, or region. This is already
obvious from the fact that all terms are weighted by the same factor 1/V and not by
their individual volumes. In other words, if a species is present at infinite dilution, its
contribution to the whole sample vanishes despite its individual dielectric properties.
An analogous decomposition of the current leads to ®;;(t) and, consequently, to
contributions to the conductivity from individual charged species, moieties, or
regions. We emphasize that such a decomposition is much more appropriate to
the collective nature of the current than a description in terms of ion pairs.
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10.1.4
Finite System Electrostatics

In a mesoscopic description of dielectrics, the Poisson equation plays a central role as
shown in the first section. At the molecular level, the equations of motion involving
the electrostatic forces are central. Both descriptions rest upon the multiple appli
cation of Coulomb’s law

qi -9

Fi=q-E= V
Ti

(10.79)

acting between a pair of charges. Unfortunately, Coulomb’s law is the force law of
longest range found in nature. Therefore, the finiteness or boundary of the system
under consideration is of importance. So far, we have solved equations with no
respect to the finiteness or boundary conditions. In simulation studies, this question
of finiteness is even more urgent because of the limitations in memory and storage.
Therefore, the correct treatment of finite size effects, the so called finite system
electrostatics, is a prerequisite for the interpretation of dielectric spectra.

The field Equation 10.2 is of dual nature as it can be used for both, a molecular and a
mesoscopic description of finiteness of the system: At the molecular level the charge
and dipole density describes the atomistic or molecular set of point charges {g;} and
point dipoles {{i ;}.

o(f) = %Z gi-O(F 7i) (10.80)

- 1 . oL
PD("):VZMDJ'(S(" 7) (10.81)

If these expressions are inserted into the field equation (10.2), one gets electrostatic
part of the molecular forces used in MD simulations, for example, Equation 10.17.

At the mesoscopic level, averaging of the field equation yields the internal or
Maxwell field entering the constitutive relation (10.1):

E:%JE‘(?)d? (10.82)
\4
— Eout |37 [oar+ [T@ar [Potr)ar (1083)
v v v v

Thus, we have used the convolution property of the integrals appearing in the field
equation (10.2). The integral [;,0(7)d7 equals the net charge gy of the sample. As a
result, the second contribution in Equation 10.83 vanishes for a neutral system
qot = 0. If the integral of the dipole dipole tensor T(¥) also vanish, Maxwell and
external field would be identical. Consequently, one always tries to accomplish overall
charge neutrality and a vanishing integral of the dipole dipole tensor.
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The integral of ?(?) is essential for the dielectric boundary conditions that we
use here as a synonym for a complex situation. On the one hand, this term
comprises the finite range of the Coulomb interaction. On the other hand, it
refers to the finite size and shape of the samples volume. The geometrical part is
usually handled by the introduction of the so called toroidal boundary conditions
based on the minimum image convention: If a particle crosses the face of the
simulation volume, it is reinserted with the same velocity but via the opposite face.
The pair distances 7;; connecting particles are also subject to this toroidal shift.
Thus, toroidal boundary conditions simulate a finite system but without surface.
One however has to pay for this advantage. While all quantities involving the
velocities remain unchanged, those based on the coordinates experience a jump.
For example, this has severe consequence on the translational collective dipole
moment M ;(t), while its derivative the current J (t) is unaffected since it is built up
from the velocities. One remedy to cope with the jumps in M ;(t) is the unfolding
of the trajectory post simulation. In other words, the toroidal moves performed
during simulation are undone for the analysis. One has to be aware, however, that
the mechanism of unfolding always depends on the initial geometry. Computation

of the dipolar displacement <AI\7I; ()) essentially removes this dependence. There

fore, the average static value of <l\71]2> is taken from the axis intercept of <A]\7Ij(t)>

instead of the initial value of (M;(0) - M;(t)).

The other aspect of the boundary conditions is the truncation of Coulomb inter
action. Subsequently, we will discuss the most important types of truncation or
modification, namely, truncation at the cutoff, inclusion of the reaction field, and the
Ewald summation over periodic replica. Of course, truncation or modification of the
Coulomb law is not independent of the system size or geometry. Indeed, the com
bination of both makes what we call dielectric boundary conditions. Fortunately, the
toroidal shifts are included in Equation 10.2 because it is of convolution type that
means that the relative distance ¥ 7 is always kept in the simulation volume V.

The simplest and most time saving method to treat electrostatic forces is the cutoff
principle. Beyond a typical distance of 7 = 10 12, all interactions with more distant
neighbors are neglected. Formulated in terms of the T(7) tensor, one has

?(?) < Fent

Teu(P) = (10.84)
0 :7>fw
The integral of this truncated dipole tensor is
JT (7)dF = J T(7)d7 (10.85)
v Kew
47 T
= J 81 g7 (10.86)
Keut
4

=— I (10.87)
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where K is a sphere of radius rq, and ? is the unit tensor. Thus, we have used
Equation 10.5. While the off diagonal elements of T(¥) vanish and the diagonal
elements become equal due to the isotropy of the simulation volume, the above
integral actually calculates 1/3 of the Laplacian of the original Green function 1/r that
gives AG(r) = 4nd(¥) [15]. These special relations are lost for an anisotropic
volume, for example, a cuboid. As a result, the Maxwell field becomes the well known
Lorentz field [13, 31, 35]

- - -

E=FEe -nbp (10.88)

Wl s

and deviates considerably from the applied external field E.,. While appropriate for
the short range interaction, for example, Lennard Jones, the cutoff principle has
tremendous consequences on electrostatic forces. A critical measure is the so called
r dependent Kirkwood gx(r) factor [10, 11, 15]. The neighborhood of a reference
dipole i, is decomposed into spherical shells of increasing radius r and the rotational
collective dipole moment Mp(r) is projected onto fip,

_ Hp - M p(r)

g(r) =——7—"" (10.89)
)

It measures the collective orientational order of dipoles. Alternatively, gk (r) may be
written as integral over spherical shells:

gx(r) =1+4n ng(r’)r’zdr’ (10.90)
0

where the integrand g, () is the radial distribution function weighted by the
direction cosine of pair of dipoles up separated by a distance r [15, 28, 37, 57].
The higher sensitivity of gk(r) as compared to the integrand g, (r) comes from
the r? amplifier at larger distances. In an infinite, unperturbed system, one would
expect that gg(r) after some initial oscillations over coordination shells
approaches a plateau value when g, (7) has died off. Within the cutoff scheme,
such a plateau value is never reached. After the initial oscillations, gx(r) drops
sharply and even reaches negative values at r = r,; [61]. Afterward it recovers, but
the final positive value is very small, because truncation of interaction does not
automatically imply the truncation of spatial correlations. An extension to solvated
biomolecules shows that the cutoff principle distorts the helical structure of
peptides [50, 51].

A first remedy against the cutoff artifacts is to approximate the neglected inter
actions beyond the cutoff by a reaction field (RF) with dielectric permittivity egg
illustrated in Figure 10.5a. When embedding the cutoff sphere in this dielectric, the
reaction field contributes an additional term

(10.91)
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Figure10.5 (a) Schematic view of the reaction the local field (E) becomes more similar to the
field method. The dielectricum outside the external field (Eet). (b) In case of the Ewald
cutoff sphere (white area) is treated with a summation technique, the local field (E) equals
dielectric constant eg¢. With the increasing ege,  the external field (E ).
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to the original ?(?) in Equation 10.5. The integral of the combined tensors
T(7) 4+ Trr now results in a field relation

E=Feu ‘—;n. milﬁ,) (10.92)
For the isolated sample, that is, in the absence of the reaction field corresponding to
err = 1, we obtain the Lorentz field again. With increasing egg, however, internal and
external field come closer to each other. For a surrounding dielectric of infinite
dielectric permittivity egp, the so called conducting boundary conditions, both fields
are equal. While g (r) now gives the correct asymptotic value, its spatial resolution is
still not satisfying. Although being now positive, there is still a minimum at
r = reu [62]. It is interesting to note that the inclusion of the reaction field tensor
in Equation 10.91 corresponds to a change of the original Green function G(r) to

1
Gre= + = - CRF 2 10.93
R R T R (1093)

This additional harmonic term counteracts the original Coulomb law: The attraction
between unlike charges and the repulsion between like charges is reduced.

Lattice sum techniques replace the neglected interactions by a sum over translational
replica, as illustrated in Figure 10.5b. In other words, an effective Green function
implicitly containing the interaction with all images of the interaction partner in the
primary cell is used. In the Ewald scheme, this effective Green function is

1 erf(M) 4n et
74_72

Gew = - ikr 10.94
Ew r r 14 € ( )

k
where in the last term, the sum over all relevant k vectors in reciprocal space has to be
performed. The Ewald tensor Ty is the double gradient of Ggw and its integral is given
by [39]
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with Q given by the integral
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Here rgy is the threshold beyond which the screened Coulomb potential
(1 erf(Ar))/r acting in real space can be neglected for numerical reasons. The
screening parameter A governs the balance of real space and reciprocal space
Coulombic lattice sums. Equation 10.96 represents the integral of a nonnegative
function and therefore increases monotonically with A. For sufficiently large A,
where the Gaussian integrand has become sufficiently small, Q tends to unity as it
represents the integral over a normalized Gaussian function. In this case, the Ewald
tensor completely compensates the Lorentz field created by the original T tensor
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such that the internal Maxwell field and the external field become equal. This is only
valid, however, for sufficiently large screening parameter A, otherwise both fields
deviate and the field ratio E./E is not unity. Therefore, all expressions for the GDC
have to be corrected by this field ratio Eey / E. Itis true that the reaction field method and
the Ewald sum may result in identical asymptotic values of r dependent gk factor. So
one may question the high effort of the Ewald sum as compared to that of the reaction
field being almost identical to the cutoff scheme. At a radial scale, however, the
improvement of the Ewald method is impressing. gk (r) reaches the expected plateau
value and lacks any further artifacts [10]. Nowadays, the Ewald method is the standard
technique to handle the long range Coulomb forces in finite systems. In order to
reduce computational effort, however, mesh based methods project the position of the
fluctuating charges on a fixed grid. This is known as “particle mesh Ewald” (PME)
method [20].

10.2
Applications and Experiments

Although the previous theory sections have established the principal connection
between simulation data and the dielectric spectrum, the application of these
analytical expressions to the real simulation data is not straightforward. The problem
of finite system electrostatics makes one select the size and shape of the simulation
box carefully. The box shape has to be spatially isotropic and the size is even more
important in a twofold sense: First, we have learnt that Coulomb’s law has to be
modified in order to handle the long range Coulomb forces in finite systems. We have
presented three possibilities: The cutoff method, the reaction field, and the Ewald
sum. Each of these has its own size dependence. While the cutoff method would
require unrealistically large systems in order to give results free from artifacts, the
reaction field and the Ewald sum yield reliable results for practically feasible system
sizes. The computational efforts for the reaction field are almost identical to those of
the cutoff methods, but they correctly give the global properties only. In order to be
correct on a local scale too, the more expensive Ewald sum has to be implemented.
Therefore, the Ewald sum exhibits the least size dependence of all three methods and
its higher numerical effort is thus partially paid for. Apart from this consideration
concerning the undisturbed buildup of electrostatics, there is a second demand on
system size. As we need collective properties to compute the spectrum, the system
must be large enough to behave like a piece of dielectric material. In practice, several
hundred molecules are necessary to fulfill this requirement.

Provided a reasonable system size has been chosen, the preparation or equilibra
tion of the system prior to the actual simulation is the next critical issue.
The traditional method to start from crystal structure usually implies unreasonably
high collective rotational dipole moments. In principle, long equilibration runs at
constant pressure could bring down Mp,(t), however, at extreme computational cost.
Therefore, one is forced to create a starting configuration of moderate dipole
alignment. This usually consumes several nanoseconds of equilibration time.
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For a well prepared system of reasonable size, the so called production period
where the system’s trajectory is generated has to last sufficiently long in time. As a
rule of thumb, the simulation time must cover several dielectric relaxation times
being defined as the time necessary for the time correlation functions of the collective
dipole moments to get leveled off. Bearing in mind that for a collective property, every
point along the trajectory provides a single value only, because averaging over
particles, residue, and so on is not possible, these extreme demand on simulation
length can be easily understood. This explains why time correlation functions of
collective dipole moments are still noisy for simulation length of 100 ns. In order to
smooth this statistical roughness, time correlation functions are often fitted to
analytical expressions. For (Mp(0)- Mp(t)) and its mesoscopic decompositions,
multiexponential fits are frequently used:

—

(Mp(0)- Mp () =) Ay-e ™ (10.97)
;

The number of exponential terms depends on the correlation function under
investigation and the precision desired. This may require up to four terms. As the
amplitudes A; determine the height of the peaks in the imaginary part of the
dielectric spectrum, the careful determination of the amplitudes and their correct
sum is crucial. As similar relaxation times result in a single broaden peak in the
spectrum, they are not a real problem. However, an increasing number of expo

nentials impedes a reasonable interpretation. On the other hand, a Fourier Laplace
transform of the raw data of (Mp(0) - Mp(t)) is not desirable since the integration of
statistical errors of the correlation function at very long times leads to blurred spectra.
Therefore, one has to restrict the upper integration limit of (Mp(0)- Mp(t)). In
Figure 10.6, the gray line represents the direct Fourier Laplace transform of the raw
data up to six times the longest time constant t;, which can be fairly reproduced by the
Fourier Laplace transform of the fit function (black solid line). Due to the linearity of
the Fourier Laplace transform, the multiexponential fit results in a superposition of
Debye processes:

At
—t/ _ klk
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In order to keep the number of fit parameters at the minimum, one could
alternatively use the so called Kohlrausch Williams Watt (KWW) functions [68],
which model the spread of exponentials by a single parameter f3:

(Mp(0) - Mp(t)) ~ A e~ ¥/’ (10.99)

The corresponding Fourier Laplace transform can only be approximated by a
series [23, 27]:
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Figure 10.6 Imaginary part of the dielectric ~ function f(t) 3 ,Ace™*/™ and the gray line
constant ¢(w) of simulated 1 ethyl 3 methyl represents the result from the direct
imidazolium dicyanoamide. The solid line Fourier Laplace transform of (Mp(0) Mp(t))
represents the spectrum evaluated by the fit up to 5ns.

Unfortunately, this series has problems to converge for very low frequencies wt < 1.
Therefore, one has to switch in this case to the asymptotic series:

UEQIE[A@_('/I)&] ~ %Z (mt)k@ (cos (Ek) +i sm(%k))

— k! 2
(10.101)

In order to avoid the switching between these two series, we represent the dielectric
spectrum originating from the KWW function by Havriliak Negami function
dpetrf] oL
L[ A ~ TG (10.102)
with fitted parameters a and vy [1, 2].
As a general rule, the rotational relaxation times scale with the viscosity of the
underlying system. This may be considered as a remnant feature of hydrodynamics
that provides formulas involving the product of the volume and the viscosity [21].

3Vi

with & being the shape factor. In case of ionic liquids, the evaluation of the prefactor
usually gives molecular volumes V; that are unreasonably small [59]. For neutral
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molecular liquids, however, one gets reasonable molecular volumes. In both cases, a
linear scaling of relaxation times t with the viscosity 1 is valid.

As opposed to the monotonic behavior of the collective rotational dipole functions,
the correlation functions involve the current relax within few picoseconds and are
oscillatory in nature. Therefore, we have generalized the above multiexponential fit
f(t) including phase shifted cosine functions [58]:

-

(J(0)-J(1)) = f(t) = _ Arcos(awy - t+ & )e /™ (10.104)
k

The relaxation times T}, are found to be much shorter than those of (M (0) - Mp (t)).
Itisimportant to note that this fit function does not only mimic the overall behavior of
(J(0) - J(t)), but its Fourier Laplace transform

Re[L[f ()] = ;% (COS(ékl) :fz((u:ﬁk U(Jj)szin(ék)
k (10.105)
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(10.106)

also gives the correct limiting behavior of the dielectric conductivity O(w). In
particular, the fit function describes the divergence of imaginary part of O(w) that
is represented by Re [L[f(t)]] at zero frequency. After correcting for the static
conductivity, that is, considering ¥y (),

Im([do(w)] = 3‘jk1TRe[£[f(2” o) (10.107)

:mzAk‘ci[(tﬁ(3w% ®?) 1) cos(dy) + Ty sin(&) (3 T (wf w?))]
' (1+720f) (1+ 72 (0 ©)°)(1+7 (0 +w)")
(10.108)

the limit w — 01is zero. The application of the set of fit functions for the rotational and
translational correlation functions is, however, not limited to (Mp(0) - Mp(t)) and
(J(0) - J (1)), but can be applied to the correlation functions of their subcomponents.

Having developed the necessary theoretical and practical tools for the interpre
tation of dielectric spectra, we now turn to a discussion of concrete charged, dipolar
systems. They may be grouped into two classes: solvated biomolecules and molecular
ionic liquids.
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10.2.1
Solvated Biomolecules

Starting from the building block of single amino acid in its zwitterionic form, we
already encounter two dipoles: the dipole generated by the dislocation of the terminal
charges of the amino and the carboxyl group and the side chain dipole in case of polar
amino acids. Assembling the individual building blocks to peptides or proteins
creates a third type of dipole, namely, that of the peptide unit NH CO . These
single peptide dipoles may be summed up to a collective peptide dipole moment. It
depends on the secondary structure whether the dipoles cooperate and enhance the
collective value or they compensate each other decreasing the collective value. For
example, a helices are characteristic of a parallel alignment of peptide dipoles.
Therefore, in this case, the collective value reaches its maximum value. In contrast,
[ sheets are typical of dipole compensation. Loop structures exhibit a certain residual
correlation of dipoles in the sense of an intramolecular Kirkwood gi factor. Since a
protein is characterized by a diversity of rather different structural elements, the
compensation of dipoles is larger compared to peptides, which in their turn are more
compensatory than the single amino acids. In other words a protein with a smaller
number of residues has a higher dipole density or polarization Py, per residue. This
order refers to a mixture of structural elements. If a protein consists almost
exclusively of o helices, its collective dipole moment and consequently the dielectric
increment of the protein solution may be exceedingly high. As this polarization of the
solute replaces the dipole density of the solvent, for example, water, it is decisive for
the dielectric increment representing the excess value of the biomolecular solution
compared to the pure solvent.

One should not overlook, however, the influence of ions that are usually present in
a protein solution. As atomic ions occupy space but contribute nothing to the
collective rotational dipole moment, they counteract the protein dipoles. In extreme
cases, they may even generate a dielectric decrement. However, one has to bear in
mind that the ions contribute to the static dielectric properties via the current density
P ;. In other words, the influence of the ions is a delicate balance between the lack of
dipole density Pp and the contribution of current density P ;. Charged protein
residues unite both features: They contribute to the dielectric permittivity via Pp
and to the dielectric conductivity P;. However, the number of charged residues in a
protein is typically 10% of the total number of residues. Furthermore, the difference
in sign leads to a compensation of the overall net charge that is usually a few charge
units only. Not to forget that roughly half of the proteins possess a metallic ionic
cofactor enhancing the charge. A typical motif of such a charge stabilized structure is
the zinc finger, which is extensively used by nature as a tandem sequence. In this
sense, peptides and proteins may be considered as charged macroions moving
through the solution. DNA molecules are extreme in this respect as each residue
carries a negative charge. Therefore, one has to add an appropriate number of
counterions to keep the whole system electrically neutral.

In the following, we discuss the concrete applications of “computational dielectric
spectroscopy” and compare the results with corresponding experiments. While the
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experiments provide the total spectrum, the computational analysis enables the
decomposition down to the molecular level. This helps to interpret the experimental
spectra. It is a long tradition that the dielectric properties either experimental or
computational are given in dimensionless units. In order to subject the above
dielectric theory to this criterion, all relevant formulas have to be divided by 4.

10.2.1.1 Peptides

The importance of finite system electrostatics for a peptide dissolved in an ionic
solution of NaCl and water at room temperature was analyzed by Smith and Pettitt
20 years ago [60]. The truncation of electrostatic interactions using a switching
function to smooth the discontinuous drop at several cutoffs was compared to an
implementation of the Ewald summation technique in a bundle of simulation
studies. Thus, the size of the cutoff, the water content, the inclusion or exclusion
ofions, and the initial configurations of the ions were varied. As criteria for judgment
of all these variations, the single particle relaxation time of water molecules and gk (r)
are used. Without NaCl the relaxation time is retarded by a factor of 2 when using the
cutoff instead of the Ewald summation. In addition, gk drops by a factor of 30 to an
unphysical low value of 0.2 that can also be derived from the g, functions of
Equation 10.90 shown in Figure 14 of Ref. [60]. In the presence of NaCl, the deviation
becomes less but it is still remarkable. Reaction field simulations of pure water
included from the literature yield relaxation times close to those gained by the Ewald
simulations [41, 42]. All these findings nicely demonstrate the extreme sensitivity of
dielectric properties to boundary conditions. Subsequently, the influence of finite
system electrostatics on the solvated peptides was systematically investigated in a
series of papers [50 52].

Based on this analysis of boundary conditions, Pettitt and coworkers [69] provided
first the dielectric permittivities for a similar peptide solvated in an ionic solution. The
system was decomposed into neutral and charged peptide moieties, water, and ions.
Although restricted to static values, the paper reports averages of the collective dipoles
themselves, of their square, and of the cross correlation with others for all four
components. Since the cross correlation are found to be rather small, the averaged
mean squared total dipole moment (M 2D> can be approximated by the sum of the
individual contributions ((M D)Z). Among the latter, the charged components make
the major contribution as expected from the theory. Subsequently, the ((M,)*) are
converted to dielectric permittivities €, of the respective component. This is achieved
by using a component specific molar volume Vi instead of the total volume V. This is
somewhat misleading as it suggests a “molecular dielectric permittivity” that has no
theoretical basis. In order to be consistent with Section 10.1, one could multiply these
g; by the ratio V;/V and then call it the contribution of the component to the dielectric
permittivity of the system.

A complete spectrum of solvated peptides consisting of alanine subunits in
roughly 400 TIP3P water is given in Ref. [12]. All electrostatic forces were exclusively
calculated by the Ewald method. Several systems containing different concentra
tions of alanine and dialanine were simulated over a period of 10ns. Increasing
the concentration of alanines and dialanines leads to a linearly rising dielectric
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increment. Only when the zwitterionic nature is suppressed, a decrement is
observed. The autocorrelation function of the total collective dipole moment
(Mot (0) - Myt (t)) was fitted mono and biexponentially as well as by a KWW
function. While the monoexponential fit turned out to be too crude, the biexponential
and KWW fits yield similar spectra. Water molecules showed a different behavior as
a function of the distance to the nearest peptide. Consequently, the collective dipole
moment of the water was decomposed into a contribution from the first shell around
alanine and the bulk. The imaginary part of the dielectric spectrum is determined
by three contributions: The slowest contribution at lowest frequency stems from
correlations of the alanine with alanine, first shell water, and bulk water. The cross
term between the shell and bulk water holds the medium position. The self terms of
shell and bulk water comprise the fast contribution. The frequency spread in case of
two solvated dialanines is larger as compared to four solvated alanines. The fast
contributions do not change their position in frequency, but the slow contribution is
shifted to lower frequency because the larger volume of the dipeptide slows down
molecular motion.

The model of bulk, solvation shell, and peptide was also analyzed for hydrophilic
NAGMA and amphiphilic NALMA dissolved in TIP4P Ew water at different con
centrations [36]. The molecular dynamics simulation with the Ewald summation
was carried out over a period from 6 to 21ns. The collective dipole correlation
functions (M (0) - Mp(t)) were fitted biexponentially (refer to Equation 10.97).
The decomposition was done at three levels: the whole system, peptide and water,
and peptide, first hydration shell, and water. The fit parameters are given explicitly
for all three levels of decomposition. For the whole and the two component
systems, the dielectric permittivity spectra are given graphically. While the hydro
philic NAGMA shows a dielectric decrement for both concentrations, the amphi
philic NALMA yields a decrement at lower concentration but shows a dielectric
increment at higher concentrations. Even more interesting, the highly concentrated
NALMA system displays a doublet shape in the imaginary part, while the other
three systems show a single peak structure. This double peak structure is generated
by the downshift of the peptide peptide and peptide water peaks at the higher
NALMA concentration.

10.2.1.2 Proteins

A comparative study of the static dielectric properties of a suite of the four proteins (P)
hen egg white lysozyme, o lactalbumin, rat fatty acid binding protein, and llama
antibody heavy chain variable domain was performed over a simulation period of
5ns within the framework of the reaction field method [45]. Instead of conducting
boundary conditions (egr = 00), the strength of the reaction field was set to egr = 68
for the simulation in SPC water and egr = 5 for the simulation in chloroform. The
values given correspond to static dielectric constants of the pure solvents. This
implies that the field ratio

_ 2egpte

Eet/E = 10.1
¢/ pT— (10.109)
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has to be included in the expression for the evaluation of the simulated dielectric
constant. A central issue of the paper was the careful analysis of the convergence of
the mean squared total dipole moment ((M E)2> of the respective protein. In order to
achieve a better convergence, the square of the average (M E)Z was subtracted from
(M E)z). So, the static dielectric permittivity was finally calculated from
4n <(I\7IE)2> <ME>2 2egr + €

1=
& 3VksT Vo 2egp +1

(10.110)

It is important to note that the volume Vp is not the volume of the sample V, but the
volume of the respective protein calculated from its mass and mass density.
Therefore, the values given for the static dielectric permittivity ep should be scaled
by the ratio Vp/V in order to get the contribution of the protein to the dielectric
constant of the whole system. The convergence of the corrected dipole fluctuations of
the protein within the simulation period was carefully analyzed for each protein. The
time for convergencewas 1 4 nsdepending on the system. The contribution from the
water and the ions was ignored. The dipole fluctuations of the protein were further
subdivided into the contribution of the backbone and the contribution when leaving
out the charged residues and the NH;* COO™ rear head dipole. One clearly sees
that the charged components give the major contribution. The compensation of the
peptide dipoles along the backbone already anticipated at the beginning of this
section leads to a small dielectric contribution.

The first simulation providing the complete dielectric spectrum of a solvated
protein is given in Ref. [8]. The 76 residue protein ubiquitin (P) dissolved in
5523 TIP3P water molecules was simulated over 5ns with the PME method. Since
ubiquitin contains the same number of positively and negatively charged amino
acids at neutral pH, the total collective dipole moment My is only made up by
the rotational part Mp because M 7 is zero due to qﬂge zero net charge gyt = 0. The
cumulative dipole fluctuations of the protein (M, ) gradually decline during
the simulation. Nevertheless, it needs 5ns to bring this value in the vicinity of
zero. In ot}lgr WOIéSI; in this case, 5ns is sufficiently 1_(31&}; to c::;ll\xc/ulate a well
behaved <Mt3t 0)- M, t)). The water water self term (M, ,(0)- M, (t)) and the
cross term (M, (0) - M, (t)) relax faster to zero. All these three correlation functions
were fitted biexponentially in order to compute the dielectric contributions. The
bimodal structure of the imaginary part of €(w) comes from the superposition of
the protein protein and protein water contributions in the first peak at lower
frequencies and the water water self term at the second higher peak, as shown in
Figure 10.8a. It should be noted that the protein self term and the cross term
contribute almost equally to the first peak. This structure was also found experi
mentally [32] and attributed to the so called 3 and vy processes. The experimental
investigation of the § process was difficult due to the small amplitude. In the com
putational spectrum, however, this 0 process may be explained by the protein water
cross term. This contribution is not directly visible as a single peak in the spectrum
because the protein protein (B process) and the water water (y process) peaks
overlap in the dielectric spectrum. This interpretation is not restricted to ubiquitin,
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Figure 10.7 Ubiquitin and its solvation layers. The first shell (S1) consists of water molecules
directly attached to the protein. The second shell (S2) water molecules are neighbors of the S1water
molecules. All water that do not belong to S1 or S2 are considered as bulk water (B).

but also applies to the spectrum of Myoglobin [18]. Another advantage of the
simulation is the classification of water as a function of the distance to the protein.
Based on the Voronoi decomposition [5, 43, 65] that enables a parameter free
construction of the first, second, and subsequent solvation shells, the dielectric
contribution from these shells (depicted in Figure 10.7) can be analyzed separately. It
turns out that the first solvation shell (S1) is anticorrelated with the protein (red
dashed dotted line in Figure 10.8b) supporting the picture of a suprasolute with a
quenched dipole moment. The correlation of the suprasolute with the second shell
(S2) is very small and demonstrates the importance of the first solvent layer of a
protein. For subsequent shells, the correlation with the suprasolute is still there and
even stronger compared to the second shell.

While the previous study dealt with a single protein ubiquitin and was restricted
to the static dielectric properties of the solvation shell, a comparative study of three
proteins, namely, ubiquitin, apo calbindin Dy, and the C terminal SH2 domain of
phospholipase C y1 provided a decomposition of the dielectric spectrum into
contributions from the protein, the first and second shells, and bulk water [49].
The number of water molecules surrounding the protein in a truncated octahedron
was 8500 for ubiquitin and apo calbindin and 10 000 TIP3P water for the SH2
domain. The simulations were performed under Ewald boundary conditions and
covered 20 35ns. The imaginary part of the dielectric spectrum shows the typical
bimodality, but the relative weight of the § and vy processes differ among the
proteins. While for ubiquitin, the low frequency protein peak is lower in height
as compared to the water peak, it is of equal height for apo calbindin, and even
higher than the water peak for the SH2 domain. In order to elucidate the complete
fine structure of the spectrum, the sample was split into four components: the
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Figure 10.8 (a) Imaginary part of the dielectric  coupling between the bulk and ubiquitin is

constant £(m) of ubiquitin in water. The shown as dashed dotted line. (b) The
protein protein self term (B process) is interactions of the first and second solvation
represented as solid line, the bulk bulk shells.

interaction (y process) as dotted line. The

protein, the first and second hydration shells, and the bulk water. Itis interesting to
analyze the static dielectric properties of these components. The contribution from
the protein protein self term does not follow the sequence of the height of the first
peak in the spectrum. Rather, we have now the sequence ubiquitin < SH2 domain
< apo calbindin. It is the additional cross term between protein and the bulk that
enhances the first peak in case of the solvated SH2 domain dielectric spectrum.
The three proteins also differ with respect to the correlation of the protein and the
first hydration shell. While ubiquitin and apo calbindin are anticorrelated with
their first water layer, the SH2 domain is positively correlated. The correlation with
the second shell is negative for all three proteins, but the actual value of 0.4 is
almost negligible and leaves the protein water correlation mainly to the bulk. In
principle, the decomposition into protein (P), first (S1) and second (S2) hydration
shells, and bulk (B) water leads to 10 dipolar correlation functions, 4 self terms,
and 6 cross terms. It turns out that the spectrum is dominated by the P Pand B B
self terms with the P B playing an important role for the height of the first low

frequency peak, as shown in Figure 10.8b. The remaining seven contributions, two
self terms S1 S1 and S2 S2, as well as all other cross terms involving S1 and
S2 altogether give a small contribution, but their bimodal structure is also
instructive: however, ubiquitin and apo calbindin show a bimodal shape with a
first negative peak, which is reversed to a positive peak for the SH2 domain. The
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superposition of all minor contributions involving self terms and cross terms with
S1 and S2 may be viewed as a difference spectrum when subtracting P P, P B,
and B B from the total spectrum. As the first two are essentially the 3 process and
B B is almost exclusively the vy process, the difference spectrum must reflect
what experimenter refer to as the § process. The present analysis shows that this
0 process is not a single relaxation, but a rather complicated superposition of
shell based contributions.

All studies discussed so far dealt with the dielectric permittivity spectrum. The zinc
finger as the classical model for a charged protein introduces a “protein current”
and its cross term with the proteins a rotational dipole moment. Thus, all terms
developed in Section 10.1 come into action in this model system. The charge of
the protein was focused on Zn?* and two chloride anions in 2872 SPC/E water
molecules guaranteed the total charge neutrality. The simulation was performed
over 13 ns with Ewald conditions [34]. The system was split into overall neutral body
of the zinc finger and the neutral water as well as the ionic component Zn*" and
tvzopCl’. F_% the two_‘r{Xe/:utral components, t}LePcollect_i‘v\% dipole correlation functions
(Mp(0)- Mp(t)), (Mp(0)-Mp (¢)), and (Mp(0)- My (t)) were fitted biexponen
tially to compute the two contributions ep(w) and ew(w) being determined by the
Fourier Laplace transform of the respective self term and the cross term. Again, the
vy process is almost exclusively made up by the water self term, while the 3 process
is a superposition of the protein self term and the protein water cross term. In
contrast to the larger protein discussed above, the contribution of the cross term
is not of equal weight but considerably smaller. The current current correlation
function (J(0)-J(t)) of the ionic component was Fourier Laplace transformed to
give a conductivity spectrum. The cross correlation function (M \];V(O) -J(t)) appears
more or less as numerical noise. In other words, there is no coupling between water
and the ionic component. In a subsequent study [9], the water component was
decomposed into two hydration shells S1 and S2 and the bulk B. From the
contribution to the static dielectric permittivity, we learnt again that the first shell
is anticorrelated with the protein, although the contribution is rather small. This is
also true for the coupling with S2 that is just opposite in sign to S1. The coupling of
the protein with the bulk is rather small in this case too. This is also visible in the
dielectric spectrum where the § process does not play the dominant role as for the
larger proteins discussed above. This brings into action the self terms S1 S1 and
S2 S2 that now contribute to the y process.

10.2.1.3 DNA

As already stated in the general introduction, solvated DNA molecules are the most
complicated molecular systems to study since each nucleotide carries a net negative
charge. Therefore, a DNA oligomer is a macroion with a negative charge proportional
to the number of nucleotides. To ensure a neutral system, positive counterions are
usually added. If doing so, the total dipole moment of the system My (t) is a well
defined quantity. Any decomposition, however, into charged fragments automatically
creates the problem how to compute the fragment dipole. As the fragments are
covalently bonded, they share a common center of mass. Therefore, the splitting of
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the fragment dipole into a contribution to current of its net charge and a neutral
charge set referring to fragment’s individual center of mass is possible, but the so
obtained rotational dipole moments of each fragment do not add up to the DNA’s
total rotational dipole moment My, (t) as they refer to individual center of mass. This
general principle has been overlooked in a paper by Yang et al. [70] simulating a triple
helical DNA d(CG-G), with 37 Na™ and 16 Cl~ and 837 SPC/E water molecules
over a period of 1155 ps. The total collective dipole moment is split up into water
component, ions, and DNA, which in its turn is decomposed into its bases, sugar
moieties, and phosphate groups. Therefore, we have a lot of charged fragments with
the problem how to compute their dipole moments. Nevertheless, this was done in
this study, and from the dipole moment fluctuations of the self and cross terms,
static dielectric contributions were calculated.

A more recent study by Ikeda et al. [29] tackles the dielectric spectrum of a solvated
DNA again. This time, simulating a octamer random sequence ds DNA with
16 Na* and 2 CI~ dissolved in 1239 water molecules over a time period of 7.3 ns.
The self terms (Mpxa(0) - Mpya(t)) and (Mw(0)- My (t)) as well as the mixed
term were computed. The ions and their current seem to be completely ignored.
It should be noted that the correlation functions refer to the net dipole moment of
the respective component. No splitting into a rotational and a translational part
was performed. This may explain why the fit function contains an exponential and a
linear function that may be assigned to these two components. The nonintuitive
linear behavior of (M 7(0) - M 7(t)) was already discussed in Section 10.1 and
graphically displayed in Figure 10.4. All three correlation functions are directly
Fourier Laplace transformed to give the real and imaginary part of the frequency
dependent dielectric function.

10.2.1.4 Biological Cells

So far we have discussed applications at the molecular resolution. The numerical
solution of Poisson equation (10.10) outlined at the end of Section 10.1 offers
the possibility to compute a dielectric spectrum even at the macroscopic level.
This was done by Asami [3, 4]. As a test case, he first studied the method for a
water in oil and oil in water emulsion, that is, for a mixture with components
of rather different dielectric properties [3]. The real world application is now
the computation of the dielectric spectra of cells during cell division. The single
cell is modeled by a sphere, the membrane by an attached spherical shell, and
the cytosol by the rest of the volume. Each of the three regions is assigned a
different but constant value of € and o. Intermediate state of cells are modeled by
penetrating spheres.

An alternative and more elaborate method to describe the biological cells was
developed by Prodan and Prodan [46]. First, they augment the Poisson equation by a
diffusion term and then they convert the solution to an integral over the surface.
The electric field is represented by a surface integral over dipoles oriented in the
direction of the external field. These surface dipoles are assumed to be polarizable
and their polarizability is related to the generalized dielectric constant of the two
media contacting at the surface. The method was applied by di Biaso et al. [22]
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to the numerical simulation of dielectric spectra of aqueous suspensions of non
spheroidal differently shaped biological cells. For the transition from a sphere over
two penetrating spheres to a dumbbell, the changes in the dielectric spectrum
are computed.

10.2.2
Molecular lonic Liquids

So far we have discussed solutions of charged, dipolar species. A biomolecular
solute is considerably larger than the water solvent molecules and the added
monoatomic ions. Thus, charge polarity is heterogeneous in an otherwise essen
tially uncharged solvent. A homogeneous system of charged, dipolar species is
realized by ionic liquids consisting of molecular ions where the charge and the
dipole reside on the very same molecule. Itis the anisotropy in molecular shape that
makes this system liquid at ambient temperature. Isotropic monoatomic ions are
ionic melts with melting points of hundreds degrees of Celsius. For comparison,
liquid NaCl melts at 801 °C. Replacing the atomic cation by imidazolium brings the
melting point down to 80 °C. Further replacement of the anion by slightly
anisotropic species like BF, or PF; reduces the melting point to ambient tem
perature. Therefore, these systems are liquid, but one should not forget that
solidification is retarded by the molecular anisotropy. As a consequence of this
remnant feature of the solid state, the viscosity of molecular ionic liquids is quite
high compared to the viscosity of water of roughly 1 mPa - s. The viscosity of ionic
liquids ranges from 20 mPa - s in case of 1 ethyl 3 methyl imidazolium [EMIM "]
dicyanoamide [N(CN), Jup to 100 mPa - s and more. For ionicliquids composed of
substituted amino acid viscosities up to 1000 mPa s have been measured. This high
viscosity has important implications for simulation studies as the molecular
dynamics usually scales linearly with viscosity (see Equation 10.103). This means
that for water, a simulation period of 1 ns might be quite sufficient, but has to cover
100 ns for ionic liquids. Bearing in mind that both systems proceed in the same
time step of 1 fs, the largely enhanced computational effort in simulating ionic
liquids becomes obvious. The situation is even more acuminated when calculating
collective properties. As an averaging over individual molecules is not possible in
this case, the statistical demands on the simulation length are very high. As this
study exclusively deals with collective properties, their evaluation requires a
maximum of computational effort.

Nevertheless, it is worthwhile to undertake simulations of ionic liquids as their
fascinating properties can be varied in a wide range because of the vast amount of
combinations of cations and anions. In some sense, one may speak of “task specific”
ionic liquids designed for the special purposes needed. As the properties of ionic
liquids are mainly governed by the type of the anion, the set of applied cations
concentrates to a few prominent examples, for example, imidazolium cations. The
plethora of anions ranges from simple atomic chloride ions over slightly anisotropic
molecular ions like BF,~ or PFs~ to dipolar species like CF3SO; ™~ to hydrophobic
species derived from perfluorated hydrocarbons.
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10.2.2.1 Conductivity and Dielectric Conductivity

When dealing with ionic liquids, the conductivity is one of the first macroscopic
properties to be used for their characterization. As outlined in Section 10.1, the
frequency dependent conductivity is determined by the Fourier Laplace transform
of the current current correlation function (J(0) - J(t)) in Equation 10.53. Its zero
frequency limit is the static or “DC” conductivity. This value is needed to correct the
imaginary part of the generalized dielectric constant, as outlined in Section 10.1
(refer to Equation 10.62). A rough estimate for the static conductivity frequently used
is given by the Nernst Einstein relation:

og’
ong == (DT +D7)(1 A) (10.111)
ke T

Thus, the static conductivity can be computed from the single particle diffusion
coefficients of the cations D" and the anions D~. Besides, the coupling between
cations and anions as well as the coupling between different cations or anions is
neglected. The A parameter is a measure for the deviation caused by this simpli
fication. A typical value of A is 0.35, but in extreme cases much higher A values up to
0.87 may be found [7, 44], as given in Table 10.1.

In an interesting comparative study, Rey Castro and Vega have compared the
diffusion coefficients, the viscosity, and the conductivity of molten NaCl and liquid
EMIM " Cl™ in order to show the influence of the anisotropy of the cation [47]. The
Ewald method was used to calculate the electrostatic forces and the simulation
covered 8 ns. Studying 64, 125, and 216 ion pairs, they tried to investigate the effect
of system size. While the diffusion turned out to be rather insensitive, as expected,
a speculative trend for a lower viscosity and higher conductivity for the larger system
was observed. In order to figure out the cooperativity of the current correlation
function, the self terms of the EMIM " cation and the chloride anion were subtracted
to get the cross term between cations and anions. The integral over this cross
term turned out to be very small, such that the conductivity estimated from the

Table 10.1 Collective properties for several common ionic liquids.

lonic liquid A £(0) empj(0)
EMIM *Cl 0.87

EMIM " PFq~ 0.32

EMIM " N(CN),” 0.18 0.35 2.2 0.2
EMIM T CF3S03~ 0.61 7.6 0.2
BMIM " PF¢~ 0.34 0.38 9.5 0.8
BMIM " BF4~ 0.36 8.2 0.3
BMIM * CF;CO0 0.14 26.2 0.5

A describes the deviation of static conductivity 6(0) from the Nernst Einstein relation (10.110).€(0) is
the static dielectric permittivity [53, 57]. Its contribution from the cross-correlation of the collective
rotational dipole moment and the current is eypj(0). These two properties are in units of 47e,.
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Nernst Einstein equation and the integral of the current correlation function were
found to be pretty close. The linear dependence of the conductivity on the fluidity
or inverse viscosity, the so called Walden rule, was found to be fulfilled over a
considerable temperature range of 378 489 K.

In a molecular dynamics study, Picalek and Kolafa [44] computed the conductivity
from the linear slope of the dipolar displacement according to Equation 10.52. The
ionic liquids BMIM * PF~, BMIM " BF,~, and EMIM " PFs~ were simulated for
1.2 ns. Two hundred, 400, and 800 ion pairs were investigated in order to find out
some influence of the system size. The cationic diffusion coefficient turned out to
be insensitive, while the anionic diffusion was slowed down in the larger systems.
The conductivities derived from the dipolar displacements, including all collective
effects, were compared to the estimates from the Nernst Einstein equation retaining
the selfterms only. Raising the temperature from 360 to 400K, the A values
decreased from 0.46 to 0.19. In other words, the higher the temperature, the smaller
the effect of cooperativity.

While the previous studies were restricted to the static conductivity at zero
frequency, the first simulated conductivity spectrum was given in Ref. [53]. Three
ionic liquids BMIM " BF,~, BMIM " CF;COO ", and EMIM " N(CN),” were simu
lated at room temperature over a period of 84, 100, and 66 ns, respectively. While
below 7 THz, all spectra looked rather similar to the divergence for higher frequen
cies with the peak ranking EMIM " N(CN),” >BMIM " BF,~ > BMIM " CF;COO".
While the real part is always positive with a broad maximum, the imaginary part
displays a typical sigmoidal shape passing zero at 11.9 THz (BMIM " BF, "), 9.4 THz
(BMIM " CF;CO07), and 15.5 THz (EMIM " N(CN),”). While previous studies
derived the static conductivity either from the integral of the current correlation
function or the linear slope of the dipolar displacement, this study applies both
methods and thus permits a critical comparison. It turns out that the dipolar
displacement method is more robust and reliable.

In principle, the frequency dependent conductivity o(w) is a macroscopic
property to characterize the collective movement of ions and can thus be discussed
stand alone. When considering the generalized dielectric constant, however, one
has to consider the dielectric conductivity 9o(w) as defined in Equation 10.65. In
the first presentation of 9y (w) in Ref. [53], this quantity was computed directly from
its definition as the ratio o(w) /w. As we have already learnt from the computation of
the static value o(0), the upper integration limit of (J(0)-J(t)) is of major
importance. This numerical problem can be circumvented by using the fit function
F(t) of (J(0)-J(t)) presented in Section 10.2 [58]. However, the parameters of f(t)
cannot be determined by a simple least square fit. Rather, they have to be optimized
according to the correct behavior of the running integral of (J(0) - J(£)). Thus, it is
found that the oscillatory components compensate each other almost perfectly.
Therefore, an additional nonoscillatory (0, = 8, = 0) fit component plays an
important role. Although of low amplitude Ay, it is essential for the static value
0(0) as well as for the computational spectrum of ¥¢(w). The imaginary part of
Bo(w) typically resides in the regime from @ = 0.01 to 10 THz. Its shape is not only
determined by the time correlation of individual ion currents (j " (0) ~J_"+ (t)) and
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(i (0)-] (t)) (refer to Figure 10.3) but it also involves all possible intermolecular
couplings. The fact that 9¢(w) is a dielectric conductivity, that is, it behaves like
a dielectric constant, becomes obvious when considering its real part. Starting
from a static value 0¢(0), it remains constant with increasing w until the imaginary
part Im[8(w)] shows its peak structure. From this frequency on, the real part
Re[¥o(w)] declines.

10.2.2.2 Dielectric Permittivity

So far for ionic liquids, our focus was on the dielectric behavior resulting from
translational motion. Its rotational counterpart, the classical dielectric permittivity
€, was first compared to experiment for BMIM " BF,~ [59]. The static value £(0)
was found to be in fair agreement with Refs [19, 57, 67]. The frequency
dependence, however, differed because the computed rotational relaxation times
were much higher than the experimental ones. Both, computational and exper
imental results are not in line with hydrodynamic theory because the extracted
molecular volumes of BMIM T are too small: In simulation, they differ by a factor
of 2 and in experiment up to an order of magnitude [59]. This rather different
behavior of computational and experimental motions is restricted to rotation and
does not affect translation. In simulation, the extracted molecular volume is too
small but consistent between rotation and translation. The large discrepancy
between these two types of motion in experiment may be explained by a possible
spatial heterogeneity or segregation: The butyl chains may form hydrophobic
islands [16, 66], which in their turn favor anisotropic rotation of BMIM *. The
fastest of these anisotropic rotations seems to be those observed in experiment. In
recent studies [66], it was found that a potential segregation occurs for a chain
length n > 4, that is, for imidazolium substituents with butyl and larger alkyl
chains. Apart from all these considerations, the linear dependence of relaxation
times on viscosity seems to be a general feature of motions in ionic liquids. The
only remnant feature of hydrodynamic theory was analyzed in detail in a recent
study [56].

While dielectric experiments always yield the complete spectrum, a computational
approach enables the decomposition into various contributions. In particular, the
cationic and anionic contribution can be separated [54, 55]. In this way, the first main
peak in the imaginary part of the spectrum of BMIM * CF;COO™ can be assigned to
the cation, while the high frequency shoulder comes from the anion [59]. However,
the sum of those two does not give the complete spectrum of €(w), which also
includes a cross term between the ions.

The appearance of cross terms is not restricted to the rotational motion of
ionic species. It can also refer to the coupling of translational and rotational motions
of the very same species. In dielectric terms, there exists a cross correlation
function (Mp(0)-J(t)) whose Fourier Laplace transform contributes to the di
electric spectrum. As a measure of their magnitudes, the static values eyp; for
some ionic liquids are tabulated in Table 10.1 together with the total £(0). As can
be seen, the contribution of the cross terms are small [53, 57] and therefore
often neglected.
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10.2.2.3 Generalized Dielectric Constant
In the last two sections, we have discussed the dielectric permittivity &(), that is,
the rotational part of the dielectric spectrum, and its translational counterpart,
the dielectric conductivity 9o (w), separately. Experimentally accessible, however, is
only the sum 3(w) [19, 67]. Therefore, computational dielectric spectroscopy
offers the possibility for an interpretation of experimental spectra via a decompo
sition of Z(w) into &(w) and Yo(w) as done for EMIM *N(CN), ™ in Figure 10.9.
The real part of these three spectra is given in Figure 10.9a, ¢, and e, while
Figure 10.9b, d, and f present the corresponding imaginary part. Figure 10.9d and f
also contain the black dotted parabola 4mic(0)/w resulting from the static con
ductivity. The dielectric absorption Re[e(w) 1] in Figure 10.9a is essentially
determined by the autocorrelation function (Mp(0)-Mp(t)) of the collective
rotational dipole moment corresponding to the first line of Equation 10.63 shown
as dashed line. The additional cross term L£[(Mp(0)-J(t))] is depicted as solid
gray line in Figure 10.9a d.

In Figure 10.9b, the first peak of Im[e(w)] located at 1.3 GHz originates from
the cations EMIM™. Because of the low dipole moment of N(CN),”, the
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Figure 10.9 Spectral decomposition of the Same as (c) butimaginary partof 3o(w). (e) The
generalized dielectric constant Zy(w): (a) The  black dashed line, the dashed dotted line, and
black dashed line represents the contribution of  the gray solid line represent Re[e(w) 1],
(Mp(0) Mp(t))toRe[e(w) Tjandthegrayline Re[3q(w)], and Re[Zy(w)], respectively.

stands for the contribution of (Mp(0) J(t)). (b)  (f) Same as (e) but imaginary parts. The black
Imaginary counterpart Im[e(®) 1] to (a). () dotted line stands for the conductivity parabola
The black dashed dotted line stems from the  4mio(0)/w. Note that the experimental
contribution of (j(0) J(t)) to Re[30(®)]. (d) frequency v is w/2.
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anionic contributions is hidden in the peak shoulder up to 5 THz. In principle,
Figure 10.9a and b may be interconverted using the Kramers Kronig relation [25].
The black dashed dotted line in Figure 10.9c shows the contribution from the
collective translational dipole moment M 7(t). Surprisingly, for this system, the static
value 9p(w = 0) has the same magnitude as its rotational counterpart £(0). This leads
to the counterintuitive result that the translational motion of the ions, that is, their
conductivity, residing in the high frequency regime makes a considerable contribu

tion to the static dielectric constant. For other ionic liquids, however, the weighting
between these two static values may be quite different favoring £(0). Nevertheless, the
dielectric conductivity O (m) behaves like a dielectric constant. It merely differs from
the dielectric permittivity by a shift to higher frequencies. As opposed to e(®), where
the respective molecular dipole moment [ of cations and anions determine the peak
structure, one might argue that the equal strength of the charges leads to comparable
peak heights in Oy (w). This conclusion is wrong, however, the double peak structure
in Figure 10.9d is made up by almost coincidence of cation and anion peaks at high
frequencies, while the peak atlower frequencies stems from the interaction of cations
and anions. Even more, this interaction also reduces the height of the second peak. In
the computational analysis, the conductivity parabola (dotted line) is not necessary to
compute g(w) and Vy(w). On the contrary, it has to be subtracted from the
experimental spectrum in order to get the sum Im[e(w) 4+ 9o(w)]. This procedure
is delicate because at low frequencies w, the parabola dominates the spectrum by far.
Consequently, the residual spectrum left after the subtraction of 4mic(0)/w is
plagued with considerable numerical errors.

The generalized dielectric constant Zp(®) = €(®w) & + Bo(w) for the simulated
EMIM " N(CN),~ is displayed as gray solid line in Figure 10.9¢ and f. &, represents
the high frequency limit of the electronic contribution. Since these effects are usually
neglected in simulation, €4, is unity. Therefore, experimental and computational
spectra have to be matched by subtracting the respective e, [54, 59].

One can see that the multiple steps in the real part come from the superposition
of rotational and translational contributions. In the imaginary part, the interplay
of these two contributions becomes even more obvious, as they populate a
common frequency region around 10 GHz in case of simulated EMIM " N(CN), .
This region profits from the overlay of the decaying Im[e(w)] and the rising
Im[9(w)] that is shifted to lower frequencies because of the 1/w downscaling of
o(w). On the other hand, the decay of Im[e(w)] can be shifted to higher fre
quencies by lowering the viscosity of that ionic liquid. Altogether, one can imagine
that in ionic liquids where these two contributions are closer in frequency, the
common region will profit even more such that a very broad plateau like spectrum
emerges [54].

Itis interesting to see that the cross term (Mp(0) - J(t)) between the rotational and
translational motions is also located at the intersection of Im[e(w)] and Im[¥y()].
However, its contribution in this transition region is too small compared to the
rotational (Mp(0)- Mp(t)) and the translational (J(0)-J(t)) self terms. In other
words, it is the overlap of the rotational and translational self terms and not the cross
correlation between them.
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10.3
Summary and Outlook

Quite generally, dielectric spectroscopy may be seen from two viewpoints. On the one
hand, the dielectric spectrum of a system may be seen as the signature ofits collective
relaxation phenomena involving rotational as well as translational motions in the case
of charged, dipolar systems. On the other hand, dielectric properties pave the way
toward a better understanding of solvation processes. The extent a solvent can
influence a solute depends on the magnitude and frequency distribution of its
generalized dielectric constant.

As the system size governs the computational effort, it also determines the method
applied and hence the level of resolution. The solvation characteristics may be already
analyzed at the macroscopic level prior to any molecular analysis. The largest systems
studied so far are biological cells whose dielectric heterogeneity is described by
regions or bodies differing with respect to their generalized dielectric constant. This
concept of a regional dielectric constant is compatible with the dielectric field
equation mentioned in Section 10.1.1. At this very crude level of resolution, one
only gets the complete dielectric spectrum.

Decomposition of the dielectric spectrum is only possible at the higher level
of molecular resolution that necessitates molecular dynamics simulations. These
simulations are usually performed at several dozens of nanoseconds without
applying an external field and cover the dynamic range of the underlying collec
tive motions of the molecules. As raw data, these simulations yield time correlation
functions of collective dipole moment of the whole sample and their constitutive
species (see Sections 10.1.2 and 10.1.3). Selecting a subset of these time correlation
functions corresponds to a decomposition of the dielectric spectrum. This cannot be
done only with respect to the different species but also with the different modes of
motion, that is, rotation and translation. Rotational relaxation typically appears
multiexponentially, while translation has to be described by damped oscillatory
functions. By using fit functions of the appropriate type, one can cope with the
disturbing noise of the time correlation functions because of the limitation of the
elapsed simulation period. Finiteness in space is an even more critical point.
Therefore, a prerequisite for all these calculations is the correct treatment of the
“finite system electrostatics” described in Section 10.1.4. This rules out any attempt to
emulate bulk properties by clusters of several dozens of molecules or equivalently a
biomolecule with one or two solvation layers.

In the last two decades, the theoretical framework of computing dielectric spectra
was applied to charged, dipolar systems, in particular to biomolecules in aqueous
solution described in Section 10.2.1. The computational decomposition of corre
sponding dielectric spectra revealed the importance of cross correlation between the
biomolecule and the water bulk. The first and second hydration layers of the
biomolecule contribute to a minor degree to the dielectric properties. Furthermore,
all correlation functions involving the coupling between the biomolecule and any
fraction of water, hydration layer or bulk, falls in the same time range as the relaxation
of the biomolecule itself. Thus, the protein peak in the dielectric spectrum is usually
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enhanced by these interactions, which in certain cases may comprise one half of the
overall peak.

Quite recently, dielectric spectra of the prospering field of molecular ionic liquids
(see Section 10.2.2) were analyzed computationally. These molecular ionicliquids are
real examples that combine a net charge and a molecular dipole on the very same
molecule. Starting from the pure ionicliquids, the range of applicability has extended
even to hydrated ionic liquids. Thus, it was found that relaxation times scale with the
viscosity of the system. Furthermore, the appearance of a translational contribution to
dielectric spectrum at high frequencies was demonstrated for the first time. Even
more, translational motion of molecular ions contributes to the static dielectric
constant.

From the dielectric point of view, solvated biomolecules are prestigious objects,
while the molecular ionic liquids are outstanding model systems. This makes the
combination of both, namely, solvation of biomolecules in hydrated ionic liquids, a
charming future perspective.
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Computational Spectroscopy in Environmental Chemistry
James D. Kubicki and Karl T. Mueller

11.1
Introduction

11.1.1
Need for Computational Spectroscopy

11.1.1.1 Speciation

Early in the development of environmental chemistry and toxicology, chemicals such
as metals and organic contaminants were analyzed and regulated according to their
total concentrations. Although this approach made sense in the absence of previous
studies on the complex interactions of contaminants with other compounds present
in the environment, researchers observed significant deviations between toxicities
predicted based on total concentrations and actual effects in the real environment.
For example, aqueous Cu concentrations in the laboratory were found to have
deleterious effects on organisms at extremely low concentrations (e.g., 10~ M),
but the same organisms were found to suffer no toxic effects due to Cu at
concentrations that were orders of magnitude higher in nature [1]. The realization
that certain chemical species may be responsible for toxic effects, in this case “free”
Cu’" ions, and that complexation with naturally occurring organic matter could
dramatically decrease the bioavailability and toxicity of contaminants both dimin
ished the risk due to exposure and complicated the process of predicting risk.
Environmental scientists could no longer simply collect a water sample and perform
a quantitative analysis, such as atomic absorption spectroscopy, to judge whether the
biota living in the water were at risk. Instead, matrix effects needed to be considered
as the level of dissolved organic matter (DOM) could diminish environmental
impacts of the total contaminant concentration [2].

The need to quantify speciation effects led environment chemists to spectroscopic
analysis of their samples in order to determine the chemical form of a given
contaminant in the environment. Generally, spectroscopic methods are successfully
applied to determine chemical structures of compounds. In environmental chem
istry, however, the process of collecting and interpreting spectra is complicated by
several factors. First, the concentration levels at which a chemical is considered toxic
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may be orders of magnitude lower than the detection limits of available spectroscopic
techniques. To overcome this problem, chemicals of interest were studied at
concentrations above the detection limit of the spectroscopic technique, and it was
then assumed that the speciation determined under high concentrations (and/or low
pH where solubilities were considerably higher) was applicable to lower concentra
tion conditions in the environment [3]. More sensitive techniques have shown that
this extrapolation can be problematic [4]. In addition, interpretation of spectra was
commonly guided by previous potentiometric work and thermodynamic databases
that rely on model speciation diagrams [5], but these thermodynamic models are
generally not sensitive enough to distinguish among species of the same stoichi
ometry, especially under low concentration conditions [6]. For example, Mueller et al.
[7] have demonstrated that aqueous U speciation atlower concentrations more typical
of environmental conditions deviates significantly from the speciation predicted by
standard thermodynamic models.

Second, naturally occurring compounds and phases may be complex and
disordered. Thus, it is difficult to find simple analogue models with which to
interpret spectra. Naturally occurring organic matter, such as humic acids, and
many solid phases (e.g., nanoparticulate ferric hydroxides) have considerable
ranges in structure and composition and hence spectroscopic signatures and
reactivities. Consequently, there are examples in the literature where different
groups have applied spectroscopic techniques to the same problem and concluded
different speciation models. For example, the seemingly simple problem of
phosphate adsorption onto the mineral goethite (o FeFOOH) has been the subject
of numerous papers and is still debated today [8 12]. Thus, an objective method
for analyzing the accuracy of a given speciation model is extremely useful in
environmental chemistry. Computational chemistry provides such a tool because
one can build the various hypothesized models and predict spectroscopic para
meters based on each model independent of empirical data (i.e., no fitting to
observed spectra).

11.1.1.2 Surface Reactions

The roles of solid surfaces in environmental chemistry are particularly important.
Adsorption, catalysis, and redox reactions all can affect the fate and transport of
contaminants (both organic and inorganic) in natural systems. As mentioned above,
not all naturally occurring solids have a well defined crystal structure. Amorphous,
poorly crystalline, and nanocrystalline structures are all common and often have
greater reactivities than well crystallized minerals, so they play a disproportionate
role in environmental chemistry [13, 14]. Even when a mineral has a well defined
crystal structure, several crystal faces may be exposed in varying proportions
depending on the crystal growth kinetics in a given system. Because each face of
a mineral may have different functional groups exposed, the reactivity of each face
toward a given compound varies. One example is phyllosilicate minerals such as clay
or mica. These platy materials are dominantly Si, Al oxides, but their crystal form
results in a basal (001) surface that can be dominated by Si O Si (siloxane) groups
that are hydrophobic. The edge surfaces, (100) and (010), are terminated by Si OH
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(silanol) and Al OH (aluminol) groups that are more hydrophilic with exchangeable
OH " ligands [15, 16]. This leads to the fact that hydrophobic organic contaminants,
such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons
(PAHs), would be more strongly adsorbed onto the basal surfaces, whereas oxya
nions, such as arsenate, are more likely to bond to edge surfaces. This issue is well
described in the recent work of Villalobos and coworkers who demonstrated that
nucleation and growth kinetics of goethite lead to changes in the relative surface areas
of various faces and that the faces terminating the mineral are more reactive than the
prismatic faces [17, 18]. Because these terminated faces comprise a minor proportion
of the total mineral surface area, the ability to normalize adsorption based on total
surface area of a mineral is confounded.

In summary, the problem has been to describe adsorption in the field when
experimental studies have measured adsorption isotherms based on a total surface
area without information on the specific reactions occurring. The most common
method of predicting adsorption thermodynamics has been surface complexation
modeling. These approaches previously fit potentiometric and adsorption isotherm
data with assumed surface complexes while adjusting model parameters such as the
mineral water interface capacitance. A number of issues hindered predictive capa
bilities: fitting to high surface coverages while environmental concentrations are
typically much lower [19], assuming specific surface complex stoichiometries, and
lack of competitive effects in most cases (e.g., carbonate and natural organic matter
competing with arsenate for adsorption sites).

These issues have been addressed recently by combining spectroscopy, compu
tational chemistry, and surface complexation modeling. One particularly successful
model has been the MUIti SIte Complexation (MUSIC) model [20]. MUSIC uses
surface bonding and H bonding structures to predict the pK, values of titratable
surface functional groups, which in turn are used to predict adsorption isotherms.
Thus, the focus is on particular sites with specific concentrations on a given surface
rather than on a total surface area. By collecting spectroscopic data in a given surface,
interpreting the spectra with computational chemistry, estimating surface bond
distances, and constraining the surface speciation before using the MUSIC model,
excellent predictions can be made about adsorption behavior [21 24]. Other models
are being developed as well [25], but the combination of the above three techniques
is the key to linking molecular level information with field scale behavior of
contaminants.

11.1.2
Types of Spectra Calculated

11.1.2.1 IR/Raman

Vibrational spectroscopy is a commonly used technique to study aqueous solutions
and surfaces in environmental chemistry. Infrared, especially attenuated total
reflectance Fourier transform infrared (ATR FTIR), and Raman spectroscopies
reflect bond (including H bond) energies because the vibrations of molecules are
directly related to their bond strengths. Thus, as a compound forms an aqueous or
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surface complex, the bond strengths change and are reflected in the collected
vibrational spectra. Interpretation of these changes is not straightforward because
one can have frequency shifts due to a number of possible configuration changes. In
addition, as the frequencies change, the IR intensities can also change, complicating
spectral interpretation without an estimate of how both frequency and intensity
should shift for a given complex.

Computational chemistry addresses both of these spectral parameters, so for a
given proposed complex, one can calculate the spectra of the reactants and products
to see whether the original frequencies and the frequency shifts in the model match
observation. Typically, frequencies are computed more accurately than intensities
because frequencies are a function of the square root of the force constant, whereas
IR and Raman intensities are higher power functions of the dipole moment and
polarizability derivatives, respectively. However, quantum (QM) methods are capable
of identifying the relative IR and Raman intensities effectively enough to be useful
in assigning structures to vibrational spectra. Although frequencies can be calculated
to typically within +10cm ™" for the type of complexes studied in environmental
chemistry [26 29], frequencies are generally scaled by a predetermined factor to
account for basis set, electron correlation, and anharmonic effects [30, 31]. Larger
basis sets can lead to relatively small corrections (=2%), so the accuracy of frequency
prediction is limited by the available computational resources for a problem. Less
precise calculations are still valuable in many instances, however, because the
differences in correlations between observed and calculated frequencies can be
larger than the effects mentioned above when one model is correct and another
is incorrect.

The vibrational frequencies are calculated analytically with the following
equations:

1 v
Vi = Jmam, (aqiaq,.) .

where Vj; is the Hessian matrix, m; refers to the mass of atom i, and Og; refers to a
displacement of atom i in the x, y, or z direction,

VU =\U (11.2)

where U is a matrix of eigenvectors and A is a vector of eigenvalues, and
M = (2mu)? (11.3)

where ) is the kth eigenvalue and vy is the kth vibrational frequency. The vibrational
modes calculated are commonly more complex than assignments made based on
observed spectra because more atoms are involved in the computed eigenvectors
than typical assignments based on single functional groups. This can complicate
comparisons of observed and calculated vibrational spectra. For example, H,0
molecules solvating a molecule can be vibrationally coupled to the solute’s vibrations
especially if H bonding is strong [32]. Thus, there can be questions as to what is
responsible for changes in the observed spectra with addition of a solute. Is it just
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the vibration of the compound in question or do changes in the solvent vibrational
spectra contribute to the “background corrected” spectra between the solution of
interest and the background solution?

Infrared intensities can be computed with the equation [33]

d.o. d.o. all
(0Escr/ofda) =2 [ +4> "> uth/ (11.4)

i i j

where
AO 2
o o (Oh
fa __ i0 ~i0 uv

e =>"cocl <6faa> (11.5)

uv

Escr is the self consistent field energy, fis the electric field, a is a nuclear coordinate,
hyy is the one electron atomic orbital integral, U” is related to the derivative of the
molecular orbital coefficients with respect to a by

6Ci all
w _ m0
<6a> = Em UsC (11.6)

The term “all” in the above summations refers to all occupied and virtual molecular
orbitals and “d.o.” refers to doubly occupied orbitals such as those found in the
ground state of a closed shell system. Terms such as Ci? refer to the coefficients of
the atomic orbital m in the ith unperturbed molecular orbital. (See Ref. [33] for a
derivation and further explanation).

Raman intensities can be found estimated based on [34]

Qg _ Ok _ /opfop
Ox ofogox \ Ox Og

~(FeE) (Fmee) (Sa) )
(em) (T )

where fand g are directions of the electric field, “(--)” is the trace of a matrix, Dfis
a dipole integral, P is the electron density matrix, G* is a contraction of the integral
derivatives, Sis the overlap matrix, Wis the energy weighted density matrix, and h is
the Hamiltonian for the atomic core (see Hehre et al. [35], for a detailed explanation of
each of these terms).

Both IR and Raman calculated intensities are generally less accurate than the

computed frequencies, but the relative estimates of IR and Raman intensities are
usually reliable enough to identify which peaks will be observed. Although this
chapter will not discuss isotopic fractionations, a number of recent papers have been
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using calculated vibrational frequencies to predict isotopic fractionation factors that
are difficult to measure experimentally [36 38].

11.1.2.2 NMR

Nuclear magnetic resonance (NMR) spectroscopy has been utilized less than a
number of other analytical tools in environmental chemistry because it is not a
sensitive technique in most cases. However, excellent work has been produced on
organic [39], inorganic [40 43], and metal organic complexation [3, 44, 45]. Because
NMR is an element specific technique, one is allowed to see into the bonding
environment surrounding a selected element within this system. Cross polarization
techniques allow one to further target pairs of elements close in space, which is
especially helpful when studying surface reactions because surface atoms near to H
species that are localized on the surface can be readily distinguished from atoms
within the nonprotonated bulk [46]. Two and three dimensional techniques allow
further refinement of structures, which is particularly important for determining
structures of organic molecules relevant to environmental chemistry [47 49].

The most typical NMR parameter calculated is the chemical shift of a given nucleus
within the sample of interest. Experimentally, one measures the chemical shielding
of the element within the sample referenced to the chemical shielding of a standard
reference material and the difference is the chemical shift. Hence, calculating the
chemical shift is accomplished in a similar manner create models of the standard
reference and the unknown for the nucleus of interest, calculate the isotropic
chemical shielding of each, and then subtract the unknown chemical shielding
from the reference compound chemical shielding to obtain the isotropic chemical
shift [50]. The gauge including atomic orbital (GIAO) method ([51] and references
therein) is most commonly employed and has been successful for a number of
elements in environmental chemistry studies [52, 53].

The basic equation for calculating NMR shielding with the gauge including atomic
orbital method [54] is

Oup =D Duv
wv

where 02]6 is the af} tensor component of the derivative of the molecular energy for
o nucleus N, D represents the one electron density matrices, B, is the magnetic field
in the a direction, h is a one electron Hamiltonian, and m is the magnetic moment
of a nucleus. The chemical shieldings of nuclei of interest are then calculated and
subtracted from the shielding in a reference compound to give the chemical shift:

62 IW 6Dlw uv

dup = Ogp(ref) Oup (11.9)

Broad NMR spectra from molecules in the solid state arise from a number of
orientation dependent internal spin interactions, including the well known anisot
ropy of the chemical shift. This anisotropy is reflected in the fact that the chemical
shift is represented by a tensor rather than a scalar quantity. The isotropic chemical
shift observed in the liquid state NMR arises from the spatial averaging of the full
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chemical shift tensor, and is equivalent to one third of the trace of the tensor (which is
independent of the axis system chosen to represent the tensor). Under magic angle
spinning (MAS) conditions, the so called powder pattern arising from the study of a
disordered solid breaks up into a series of spinning side bands (SSBs) accompanied
by a peak at the isotropic chemical shift. The chemical shift tensor parameters in the
principal axis system (that where the tensor is diagonal) can be extracted from
the magic angle spinning spectrum via the method developed by Herzfeld and
Berger [55]. This analysis relies on an accurate measurement of the intensity and
frequency of the isotropic resonance and the corresponding SSBs, and the MAS
spectrum therefore provides the chemical shift tensor components of the corre
sponding nucleus. These components are conveniently expressed in terms of the
anisotropy (Ad) and asymmetry (1) parameters. Mathematically, for a chemical shift
anisotropy (CSA) tensor with principal shift components (9., d,,, and 0..) defined
so that

622 iso| = [dxx  Biso| = [y Diso (11.10)
where

Oiso = (Oxx 4+ Opy +0,2)/3 (11.11)
the anisotropy (Ad) is

Ad =08, (Oux+0y)/2 (11.12)
while the asymmetry (n) corresponds to

N=(0y 0x)/(dz diso) (11.13)

While most of the NMR nuclides studied in environmental chemistry have
nuclear spin quantum numbers of 1/2 (including 1y, B¢, N, YF, 2°si, and
31p), other nuclei such as 70O and ?’ Al have spin greater than 1/2 and therefore are
subject to additional internal interactions that can be anisotropic in the solid state,
or lead to fast spin relaxation in the liquid state. In particular, resonances in the
solid state NMR spectra of %Al will exhibit quadrupolar broadening and an addi
tional shift due to the quadrupolar interaction, which depends on the coupling of
the nuclear electric quadrupole moment to local gradients of the electric field at the
nucleus [56 58]. Most important, for chemical analysis, these effects will vary as a
function of bonding environment, providing insight into local structure with isotopic
selectivity. Fortunately, the effects of the isotropic shift components for the chemical
shift and quadrupolar interaction are separable, because the chemical shift is field
independent (in parts per million from the reference frequency), while the observed
quadrupolar shifts for ¥ Al depend inversely on the square of the strength of the
magnetic field used in the experiments.

11.1.2.3 EXAFS + CTR + XSW
Extended X ray absorption fine structure (EXAFS) spectroscopy, crystal truncation
rod (CTR), and Xray standing wave (XSW) techniques have all been used to
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characterize mineral water interface and surface adsorption complex structures
(see Ref. [59] where all three are combined). The techniques have been able to provide
detailed positions of atoms in a solid water interface and test previously held
assumptions about the structure of the electric double layer (see Ref. [60] for a
review). Surface complexation modeling as mentioned above relies upon the the
oretical picture of the mineral water interface, so predicting macroscopic adsorption
behavior in environmental systems depends upon having a clear picture of where
H,0 and adsorbate molecules reside with respect to the surface.

Although these techniques have rapidly advanced our understanding of the
mineral water interface, CTR and XSW depend upon having a relatively large
crystalline sample in order to scatter X rays from an atomically flat surface. Thus,
analysis of many types of environmental substrates such as nanoparticles or poorly
crystalline solids is not possible. EXAFS is less dependent upon the substrate and can
be used for aqueous species, but spectra can be difficult to interpret when more than
one surface species exists, when the surface is disordered, and when a significant
fraction occurs as outer sphere (i.e., an adsorbate separated from the surface by a
solvation shell of H,O molecules) species. Furthermore, EXAFS does not see light
elements (especially H), so the determining of the protonation state of the adsorbate
and surface can be inhibited.

In this case, computational chemistry becomes a valuable tool for predicting
mineral water interface behavior. Parallel simulations can be performed on well
understood systems such as single faces of TiO, [59, 61 67] and benchmarked
against high quality EXAFS, CTR, and XSW data. Once the modeling techniques
have proven accurate for these types of systems, one can more confidently perform
simulations on substrates that are more difficult to analyze experimentally. In
general, computational methods are currently passing through the former stage
and beginning to work on the latter types of systems where obtaining and/or
interpreting these kinds of analytical data are not possible.

11.1.2.4 QENS and INS

Neutron scattering techniques are not formally a type of spectroscopy, but they do
probe similar dynamical behaviors as IR and Raman such as O H bond stretching,
H O H angle bending, and so on, as well as slower translational dynamics.
Combined with CTR studies, these techniques can provide a detailed picture of the
structure and dynamics of water at the interface with a solid [68]. Neutron scattering is
highly sensitive to H atoms, which makes it a good complement to the X ray
techniques that cannot detect light elements. Furthermore, substitution of D for
H can dramatically alter the observed spectrum in order to gain further insight into
the system of interest.

Because neutron scattering probes both the pico and nanosecond time frames,
both quantum and classical computational methods are applicable. For example,
inelastic neutron scattering (INS) can detect changes in the O H stretching and
H O H angle bending modes of water interacting with a surface [69]. Density
functional theory molecular dynamics (DFT MD) can then be used to model these
same dynamics with simulations on the order of tens of picoseconds in order to
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assign the observed shifts to particular OH bearing species [70]. For longer timescale
diffusional dynamics, classical MD simulations can be performed on the order of
tens or hundreds of nanoseconds that reproduce H,O translational motions. Such
simulations have proven useful in fitting observed quasi elastic neutron scattering
(QENS) spectra [71]. When the classical force field is based on DFT calculations [72], a
self consistent multiscale model that reproduces numerous experimental observa
bles is the result [59]. Recent success on surfaces has led to a new research challenge
into studying the behavior of water in nanopores with the goal of understanding how
chemical reactions such as dissolution change with the development of etch pits (see
Ref. [73] for a discussion of the importance of etch pit formation on mineral
dissolution).

11.2
Methods

The techniques employed for computational spectroscopy in environmental
chemistry are no different from other areas of computational chemistry described
in this book and elsewhere. Consequently, this chapter will focus on discussing
the pitfalls and solutions that are common in the complex chemistry of natural
systems.

11.2.1
Model Building

The single most important aspect of applying computational chemistry techniques to
environmental chemistry is to have an accurate model of the chemistry that actually
occurs. One could solve the Schrodinger equation exactly for some simplified system,
but if the model does not include a critical component of interest, then the results
are of limited use to the environmental chemist. A realistic approximate model is
generally much better than an unrealistic highly accurate model. Of course, high
level calculations are useful in their own way and this will be discussed below.
One important component that is commonly neglected is water. Since most
environmental chemistry occurs in the presence of water, including H,0 molecules
to explicitly solvate the reaction can be critical. Even in heterogeneous atmospheric
reactions where bulk water is not present, water vapor can adsorb onto particles and
alter chemical reactions significantly (see Ref. [74] for a recent review). Polarized
continuum models (PCMs) of solvation are helpful in many instances, but the strong
H bonding to specific atoms within the system of interest is not reliably modeled
through PCM methods. This seems like an obvious statement to make, but the
literature is full of examples where explicit solvation is ignored in the interest of
saving computational time. An example of the necessity for explicit solvation can
be found in Bargar et al. [75]. IR spectra of carbonate adsorbed onto hematite
(o0 Fe;03) were collected and various models of the carbonate surface complex
constructed. These spectra were collected “dry” (i.e., in air rather than under
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solution), so the initial models used to search for surface complexes capable of giving
rise to the observed spectra did not include H,0 molecules of hydration. One likely
candidate was a monodentate binuclear configuration (i.e., two of the O atoms of the
carbonate were bonded to one of the Fe surface atoms). The resulting IR frequencies
of the carbonate group did not match the observed spectra, and the Av between
the C Ogand C O, modes was 542cm ! compared to the observed Av around
200cm™". Addition of two H,O molecules to this complex shifted the calculated
frequencies into agreement with observation and the model Av value decreased to
195 cm ™! in good agreement with observation. This is an extreme example because
anionic species such as carbonate can form very strong H bonds with H,O such that
the C O vibrations are dramatically affected, but the principal lesson should be
considered with most environmental chemistry reactions.

How does one determine the minimum number of necessary components to
include in a model? Incorporating all possible components is not practical for most
studies, so assumptions and approximations are necessary. There are two main
reasons for the model results to be wrong: inappropriate computational methodology
and neglect of an important component. To address the first, a test model should be
selected that represents the quantity to be computed in the system of interest. This
test model structure should be well known and have an accurate experimental value
for the property of interest (e.g., vibrational spectra, NMR chemical shift, and
enthalpy of adsorption). It should also represent the basic chemistry in the more
complex system; attempting to model metal complexation with a complex biomol
ecule would not be wise if one could not model the metal of interest interacting with
a simple organic compound. Once a reasonable test model is generated, increasing
basis set size and levels of electron correlation can be employed to determine the
most computationally efficient method for reproducing the experimental observable
with the desired accuracy. Depending on the property to be reproduced, the level of
theory can vary considerably as structural information and vibrational frequencies
are easier to reproduce than NMR chemical shifts or reaction enthalpies.

Second, the computations should not be performed in a vacuum (sorry for the bad
pun). Often discussions will arise concerning how you can prove a simulation result
is ata global minimum. This is an exceedingly difficult task for most natural systems;
and, if it needed to be answered solely on the basis of computational results, most
studies would fall short of succeeding. However, experimental results are commonly
available that constrain the possible choices, and comparison of model and obser
vation can distinguish among several possibilities rather than attempting to calculate
the properties of all possible configurations. A fortunate result of this is that high
accuracy is not always necessary. Some may wince at the idea that AG is only accurate
to £20 kJ/mol or an NMR chemical shift to within 5 ppm. Granted, neither of these
would be sufficient accuracy to answer many questions, but if there are two proposed
configurations for a complex that differ in calculated G by 100 kJ/mol or 20 ppm, then
the absolute accuracy of the computational methodology is not as critical. When there
are two or more properties for comparison, better relative agreement by one model
over the others is even more comforting. Consequently, collaboration with experi
mental and analytical is imperative for defining the question to be answered a priori
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and for an iterative approach to solving the problem. This is by no means a foolproof
solution, but it does build a higher level of confidence in the results, allows an
estimation of what the size of the error is in the calculation, and the communication
can bring a deeper understanding as what is clear from analytical work may be murky
in the simulation and vice versa.

11.2.2
Selecting a Methodology

Details of computational chemistry methods are way beyond the scope of this chapter
and are covered in the Encyclopedia of Computational Chemistry [76]. An excellent book
that provides an overview of many methods is Essentials of Computational Chemistry:
Theories and Models [77]. However, a few words about the selection of methods are
presented here to help the novice get started. The first choice is whether to use a
quantum or classical molecular mechanical (MM) approach. When necessary, these
two can be combined in the QM/MM methodology. A number of considerations
factor into this decision, but a couple of the more important are the size of the system
and the process to be modeled. QM methods are inherently more computationally
demanding, so systems of thousands of atoms are generally treated with MM. For the
same reason, simulations that require a large number (i.e., millions) of steps such
as a nanosecond molecular dynamics (MD) simulation tend toward MM rather
than QM.

The composition and process to be modeled are, however, equally important.
Force fields are typically parameterized to be accurate for certain compounds and
physical states. If an appropriate force field is not available for the system of
interest, then one should consider QM or creating/modifying a force field for the
situation at hand. Furthermore, most force fields do not handle reactivity such that
processes involving bond making and bond breaking cannot be simulated. An
exception is the reactive force field ReaxFF [78]. Hence, in some cases, the system
size, duration of process, and the chemistry can conspire to make computational
chemistry inappropriate.

Even when QM is possible, some types of spectroscopy such as electron spin
resonance (ESR) and X ray photoelectron spectroscopy (XPS) can require large basis
sets and high levels of theory such that computational demands become impractical
for the common user even for systems of moderate size. Situations that require
multiconfigurational approaches such as the complete active space multiconfigura
tion self consistent field (MC SCF or CASSCF) method for examining excited states
quickly become impractical for environmental chemistry. The time dependent
density functional theory (ITD DFT) approach can provide a relatively quick shortcut
to calculate UV visible spectra and can be accurate in some instances, but it is not
universally applicable.

Once one has decided to use QM or MM, the type of calculation should be selected.
For simple systems where one wishes to calculate vibrational (IR and Raman) or
NMR parameters, energy minimizations should be performed first. This is especially
true for vibrational frequencies because calculated frequencies are valid only at a
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potential energy minimum for a given methodology. For more complex systems,
one may wish to perform MD or Monte Carlo (MC) simulations in order to explore
the potential energy surface of the system before trying to find an energy minimum.
Complex systems can have multiple minima and performing an energy minimiza
tion only on an initial guess for the structure could lead to a local rather than global
minimum. MD simulations can also be used to predict vibrational frequencies
directly from the velocity autocorrelation functions of the atoms [77].

The last topic discussed here with regard to methodology is the choice of using
isolated molecular clusters versus a periodic system. Examples are discussed within
this chapter where simple molecules can adequately represent the system of interest
in an aqueous solution or on a mineral surface. For vibrational frequencies,
simplifying the system to essential components can allow more accurate method
ologies that quantitatively reproduce observed frequencies. However, one should test
for system size effects and the role of solvation and compare known structures to
experiment before concluding one as a realistic representation of the chemistry
of interest. Periodic model systems often more realistically represent real systems,
but calculations within periodic models may not allow estimation of IR or
Raman intensities or they may use less accurate numerical methods for calculating
frequencies. Recent developments in periodic calculations of NMR properties
are promising, but have not been extensively applied in environmental chemistry
to date.

11.3
Examples

11.3.1
IR/Raman Phosphate on Goethite

As mentioned above, vibrational spectroscopy has been used in environmental
chemistry for decades, but the application of computational chemistry to help
interpret these spectra is a relatively new enterprise [79]. One example where
computational methods are particularly useful is the adsorption of phosphate onto
the mineral goethite (¢ FeFOOH). Phosphate is a key nutrient in the environment,
so its adsorption to mineral surfaces is an important factor in its transport and
bioavailability. Fe oxyhydroxide minerals tend to have a strong affinity for phos
phate [80], and goethite is one of the most common Fe oxyhydroxide minerals.
Furthermore, adsorption of negatively charged oxyanions to a positively charged
oxyhydroxide mineral surface can reverse the surface charge and affect the behavior
of other solutes in pore waters [81]. For these reasons, numerous studies have been
performed on the adsorption of phosphate to goethite ([9] and references therein) and
many of these have been IR studies [8, 82 85].

AtpHs around 4.2 4.5, observed IR frequencies are found in the ranges 939 945,
1001 1008, 1044 1049, and 1122 1123 cm™* (first value from Ref. [8]; second from
Luengo et al. [85]). Persson et al. [8] also observed peaks at 876 and 1178 cm ™' and
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Figure11.1 Possible surface complex structures of phosphate on goethite as suggested by Elzinga
and Sparks [12].

Tejedor Tejedor and Anderson [84] predicted a weak band at 982 cm . Note the range
of values from these observed spectra as the broadness of the IR bands and perhaps
the variability of the goethite surfaces affect the collected spectra. Possible surface
complex structures of phosphate on goethite as suggested by Elzinga and Sparks [12]
are shown in Figure 11.1.

Kwon and Kubicki [10] used a simple cluster model approach using a
Fe hydroxide dimer model for the goethite surface and a small number of H,0
molecules to hydrate the phosphate group. All six models suggested by Elzinga and
Sparks [12] were subjected to energy minimization using Gaussian 03 [86], the B3LYP
density functional method [87, 88], and the 6 31G(d) basis set [89]. The doubly
protonated bidentate configuration (Figure 11.1a) resulted in IR active frequencies of
876, 940, 993, 1080, 1120, and 1178 cm ™' that correlate very strongly with the
observed IR frequencies of Persson et al. [8]. The presence of the 876 and 1178 cm™*
peaks in the Persson et al. [8] spectra that were not reported in other studies are critical
in this assignment because no other model predicts a phosphate related IR active
vibration in the vicinity of 1178 cm™".

Under moderate pH conditions, it was not possible to distinguish between the
deprotonated bidentate and the monoprotonated monodentate configurations based
on correlations of observed and calculated frequencies. Estimation of adsorption
energies to form these two complexes favored the monoprotonated monodentate
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Figure11.2 Periodic DFT MD simulations using VASP [90] of phosphate on goethite (010) surface.
Energies of phosphate in water layer and adsorbed onto surface can be directly compared as the
stoichiometry is the same in each model.

species, but this result is questionable due to the approximations used in calculating
the reaction energies with a cluster approach. A more accurate method would be to
use periodic DFT MD simulations to calculate the energy of the phosphate in solution
and on the surface for various protonation states and surface complexes (Figure 11.2).
Preliminary results for HPO,* ™ adsorption on the (010) surface (Pbnm space group)
of o FeOOH (goethite) suggest that the enthalpy of adsorption should be on the
order of 200k]J/mol for the bidentate configuration and that the monodentate
configuration is tens of kJ/mol higher in energy.

For alkaline solution conditions, the deprotonated monodentate model resulted in
the best match with observed frequencies 939 (944), 970 (973), and 1057 (1050) cm "
(calculated values in parentheses). These assignments are not only consistent with
observed IR spectra, they also make sense with the chemistry of increasing pH
conditions. At low pH, the surface OH™ groups become protonated to form OH,
groups that are better leaving groups, favoring a bidentate binuclear configuration
such as Figure 11.1c. As pH increases to circumneutral values where OH™ groups
dominate the surface, monodentate configurations can become more common
because the metal OH™ bonds are harder to break. Under alkaline conditions, the
adsorbed HPO,*~ deprotonates to form PO,>".
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11.3.2
Solution-State NMR of Al Organic Complexes

The interaction of metals and hydrophobic organic contaminants with natural
organic matter (NOM) is critical for two reasons. First, the solubility of these toxic
components can be enhanced dramatically over the solubility in pure water due to
associations with NOM. Second, interaction of toxic components with NOM can
reduce the toxicological effects and bioavailability of the contaminants. Indeed, it
is thought that organisms produce chelating agents to sequester metals such as
copper in natural waters in order to survive. Recognition of these two phenomena
has caused the US Environmental Protection Agency to re evaluate how it handles
allowable concentration limits of pollutants in natural waters. From the first
observation above, it becomes exceedingly difficult to remediate natural waters to
extremely low levels because of dissolved NOM such as fulvic and humic acids
(i-e., products of partial degradation of biological compounds). However, due to
the lowered environmental risk associated with pollutants associated with NOM,
there is not as great a need to lower contaminant levels below threshold levels
found in laboratory studies utilizing solutions that did not contain these complex
ing agents.

Fulvic and humic acids mentioned above are not specific compounds. Because
they are derived from a variety of metabolic processes on a variety of precursor
materials and are affected by the minerals, climate, and other factors, dissolved NOM
exhibits extreme complexity. One approach to dealing with this complexity has been
to study metal NOM interactions with various functional groups that are common
in NOM that are likely to interact strongly with various metals. For example,
carboxylate, sulfhydryl groups, and heterocyclic N atoms can bond to different
metals, and the assumption is that the short range chemistry of model compounds
containing these functional groups will reflect the bonding that occurs in the fulvic
and humic acids containing the same functional groups. One common functionality
thought to be responsible for binding important metals such as AI** and Fe* " is the
carboxylate + phenol moiety as found in salicylic acid (C¢H4,OHCOOH). Thus,
27 Al NMR spectra of Al salicylate solutions were collected by Thomas et al. [3] in
order to determine the structure of possible Al NOM complexes. A % Al value of
approximately 3 ppm was observed and assigned to the bidentate salicylate Al’*
complex (Figure 11.3a) based on a thermodynamic speciation model of
Rakotonarivo et al. [91].

Kubicki et al. [92] created molecular models of the various possible complexes,
performed energy minimizations and frequency calculations, and then calculated
%7 Al chemical shifts relative to a model standard AI* * -6(H,0). Both the monodentate
[CeH,OHCOO A’ *-5(H,0) and the bidentate [CsH,O0COO* |AI’ *-4(H,0) com
plex resulted in predicted %’ Al values consistent with observation within compu
tational accuracy (i.e., 6 and 7 ppm, respectively). However, the latter complex with
the phenol group protonated resulted in much poorer correlations to the observed
vibrational frequencies of this complex [93]. Consequently, it was proposed that the
monodentate configuration was the most probable at the low pH of the observed
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Figure 11.3  Possible Al salicylic complexes in aqueous solution are represented by (left to right)
bidentate (or bidentate mononuclear), monodentate, and bidentate bridging (or bidentate
binuclear) models.

NMR spectra even though a bidentate configuration could form at higher pH where
the phenol group could deprotonate if salicylate were complexed with AI* * [94]. This
example reiterates the points made above that experimental conditions necessary for
spectroscopic analysis are not always consistent with environmental conditions and
that multiple spectroscopic techniques should be modeled simultaneously in order to
distinguish among possible models and verify the accuracy of the theoretical
prediction.

In this chapter, this issue is revisited. With the last decade of advances in
computational efficiency, it is possible to use larger basis sets (i.e., 6 311G(2d,2p)
versus 3 21G(d,p)) and explicit hydration with H,O molecules to predict the
structures of the aqueous Al salicylate complexes. In addition, the B3LYP
[87, 88] density functional methods are included in both the energy minimization
and NMR calculations. Although the current methods should be much more
accurate than those employed in Kubicki et al. [92], the results for the calculated
5% Al values are similar. For example, the previous 8%’ Al values for the monodentate
and bidentate complexes were 6 and 16 ppm, respectively. B3LYP/6 311G(2d,2p)
values are 4 and 13 ppm, respectively. Hence, the monodentate configuration is still
consistent with the observed value. In addition, a mononuclear bidentate complex
with the phenol still protonated (Figure 11.3a with a H* on the phenol group
connected to the AI**) results in a ’ Al chemical shift of 3 ppm and a binuclear
bidentate configuration (Figure 11.3c) has a 6 ppm shift. Three potential complexes
are possible by comparing the observed and calculated 8%’ Al values.

To resolve this issue, the 8'*C chemical shifts were also calculated relative to
tetramethylsilane (TMS) and compared to experimental values. The B3LYP/6 311G
(2d,2p) method was chosen for these new calculations because Anandan et al. [95]
have shown that this method results in accurate 8"*C values for salicylic acid. As
a test, 8'3C values for salicylic acid were taken from the Biological Magnetic Data
Bank (www.bmrb.wisc.edu) and the calculated values were correlated against them.
Using salicylic acid in the configuration with the phenol OH H bonded to the O atom
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in the C=0 group, the best correlation with observed values was found. The R” value
is 0.992 with a slope of 1.07 and intercept of 6.3 ppm compared to ideal values of
1.000, 1.00, and 0.0 ppm. The standard deviation is only 2.1 ppm. These results are
fairly accurate, so the same methodology was applied to predict 8**C values for the
Al salicylate complex.

Of the three Al salicylate complexes that gave 8% Al values reasonably close to
observation, the monodentate complex resulted in the best correlation with observed
8'3C values. For example, the monodentate linear fit parameters were R? =0.964,
slope =1.04, intercept= 0.44 ppm and standard deviation of +5.1 ppm. In com
parison, the bidentate, phenol protonated complex gave fit parameters of R* = 0.850,
slope =0.76, intercept = 35.5 ppm, and standard deviation of £8.2 ppm. The mono
dentate match to observation is superior for all parameters. Combined with the
superior correlation of the observed and calculated vibrational frequencies at the
B3LYP/6 311G(2d,2p) level (i.e., monodentate R* = 0.996, slope = 1.02, intercept =

36cm !, and standard deviation of £15cm ™" versus bidentate R* = 0.994, slope
=0.96, intercept = 62 cm ™', and standard deviation of +£18 cm "), the model results
are most consistent with a monodentate complex at pH 3.

11.3.3
Solid-State NMR of Phosphate Binding on Alumina

Understanding the interactions of nucleic acids and related compounds with metal
oxides is important for describing many agricultural, environmental, and geochem
ical problems. In a combined approach aimed at measuring bonding interactions of
nucleic acids at the molecular scale, Fry et al. [96] combined the solid state MAS NMR
measurements of the principal components of the full chemical shift anisotropy
tensor with ab initio calculations. They interrogated the structure of the bound
phosphate group of the mononucleotide 2’ deoxyadenosine 5 monophosphate
(dAMP) interacting with the octahedrally coordinated aluminum species on the
surface of a mesoporous alumina sample. dAMP forms an inner sphere complex at
the alumina surface that can bind in either a monodentate or bidentate configuration.
After using rotational echo double resonance (REDOR) NMR methods [97] to
confirm that the phosphate group is predominantly interacting with aluminum
species in octahedral coordination on the surface, a *' P magic angle spinning NMR
spectrum was acquired. The spectrum, shown in Figure 11.4, contains a peak at the
isotropic chemical shift value (8;5,= 3.2 ppm) as well as a set of spinning side
bands. Analysis of the sideband intensities using a method introduced by Herzfeld
and Berger [55] provides values for the shift anisotropy (Ad= 117.2 ppm) and
asymmetry (1 = 0.64) parameters.

The surface complexation of dAMP with mesoporous alumina was modeled using
the full dAMP molecule and edge sharing octahedral aluminum clusters, repre
sented in Figure 11.4 as the monodentate complex, [Al,(OH)4(OH,)sdAMP-(H,0)g4],
and the bidentate complex, [Al,(OH)4(OH,)4dAMP-(H,0)g]. The H,O molecules
were added to the complexes as the incorporation of explicit hydrogen bonding to
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Figure 11.4 The 3'P solid state MAS NMR calculated chemical shift tensor components
experimental and simulated spectra (left) for the monodentate complex

provide discrimination between two (Ad 116.5ppm andn 0.79) and centered
different inner sphere binding models for at the experimentally determined isotropic
dAMP adsorbed onto an alumina surface. chemical shift.

The simulated spectrum is based on

a model system has been shown to improve the agreement between simulated and
experimental 31 P CSA tensor components [98, 99]. The structures of these complexes
were energy minimized with B3LYP functionals and the 6 31G(d) basis set using
Gaussian 03. NMR calculations were also performed in Gaussian 03, using the GIAO
method with HF/6 311 ++ G(2d,2p) basis sets and the structures obtained with the
B3LYP calculation.

The isotropic chemical shift is first considered as a parameter for discrimination
between these two possible binding conformations. However, perturbations such as
changes in bond lengths and angles noticeably affect the 3!P CSA tensor [100, 101],
and changes in one of the tensor components are commonly compensated by equally
large changes in another component. Therefore, only minor variations are found in
the isotropic chemical shift [102], so the interpretation solely based on the changes in
the isotropic chemical shift between the two surface complexation environments is
unreliable and complicated by the difficulty and uncertainty in calculating a chemical
shift standard for 3!P. However, measurements of the remaining CSA parameters
and their comparison to those found through computational methods for these two
bonding complexes (calculated as Ad= 116.5 ppm and n=0.79 for the mono
dentate complex and A8 = 99.9 ppm and n = 0.58 for the bidentate complex) indicate
that the binding of dAMP to the alumina surface is indeed through a monodentate,
inner sphere complex. These results indicate that for more complex systems where
nuclides are present with wide chemical shift ranges and where large variations in
principal components of the CSA tensor are present, experimental and computa
tional investigations of additional chemical shift tensor components in addition to
the isotropic chemical shift provide an improved and discriminatory molecular scale
description of the bonding environments.
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11.3.4
Solid-State NMR of Aluminum Species at Mineral and Glass Surfaces

The release of metal species to solution during the aqueous dissolution of alumi

nosilicate minerals and glasses is tied to soil development and fertility, as well as the
global carbon budget. Criscenti et al. [103] used ab initio modeling of feldspar
dissolution to understand the mechanism of this process and, in particular, the
change of coordination state of aluminum from tetrahedral coordination (“/Al) in
the bulk structure to octahedral coordination (*/Al) in solution. The formation of
octahedrally coordinated aluminum species on the surface itself during dissolution,
and not as the result of reprecipitation from solution, has implications for the
formation of silicon rich leached layers on these surfaces as well as the sorption of
natural organic matter. Hypothesizing that this transformation takes place at the
oxide/water interface, molecular orbital calculations were undertaken on alumino

silicate clusters with discrete water molecules present to account for solvation effects
at the interface.

Energy calculations on both fully relaxed and partially constrained clusters
demonstrated that the energy difference between /Al and Al on the surface of
a feldspar (or similar aluminosilicate material) is small enough to allow the
conversion of Al to ®/Al (each connected to three Si atoms through bridging
oxygen species) at or near the surface of the mineral, even before the release of Alions
to the aqueous solution. Experimental NMR results confirm that AL is present in
the leached layer of a model aluminosilicate glass with a nepheline composition
through the observed isotropic chemical shift (8 ppm) of the 2 Al NMR resonance
acquired using cross polarization MAS NMR techniques. Calculated isotropic shifts
for QA1 Q%°/Al, and Q*®/Al  containing one, two, or three oxygen bridges,
respectively, tosilicon atoms suggest that the °/ Al observed on aluminosilicate glass
surfaces is Ql[(’]Al and therefore formed as part of the dissolution process. Impor
tantly, the observed shift of the resonance in the NMR spectrum falls at a position that
is the sum of both the isotropic chemical shift and the isotropic second order
quadrupolar shift, the former being magnetic field independent while the latter
shift is scaled (in ppm units) by the square of the inverse of the field strength.
Therefore, performing experiments at two magnetic field strengths (here, 9.4 and
11.7'T) allows the separation of these two isotropic components to the overall shifts
and the determination of the true isotropic chemical shift for comparison to
calculated values.

11.3.5
Water and Zn(ll) on TiO,

Adsorption onto mineral surfaces is a significant process affecting the transport
and fate of metals in the environment (see Ref. [60] for a review). Myriad studies have
been performed using different approaches (i.e., potentiometric and adsorption
isotherm studies with surface complexation modeling, spectroscopic studies, and
molecular simulations). Zhang et al. [66] combined these approaches to examine the
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atomic structure of ions adsorbed on the (110) surface of a TiO, (rutile). The
combined approach is the key because each technique has its own strengths and
weaknesses; a model of the mineral water interface that describes all the results
simultaneously should be superior to attempting to explain each type of result
separately. Another reason to utilize various approaches is that the molecular level
model can inform macroscopic scale models that are more practical in environmental
applications such as predicting adsorption in large scale (i.e., meters to kilometers)
fluid flow simulations.

It is also imperative to note that this paper focused on a specific surface of the
mineral. When comparing results from computational chemistry to experimental
observations, discrepancies can arise due to inadequacy of the theoretical method
ology or due to the model system. Often experiments are performed on minerals that
exhibit a number of different crystal faces with various reactivities toward a given
species. Thus, the observed value is a weighted average of all the surfaces present.
Modeling studies are generally performed on one surface at a time, so even if the
results are correct, they can disagree with observations on bulk materials.

The experimental components of this study examined Na™, Rb™, Ca*™, Sr* T,
Zn*™, Y*T, and Nd* . All these cations except for Zn?* were found to adsorb at
similar sites via X ray reflectivity and X ray standing wave measurements (Zhang
et al., [66]). This discovery was significant in itself because the assumption that
ion such as Na™ would reside in the “diffuse layer” and not specifically adsorb to the
surface had guided much of the experimental design and interpretation up to this
point. Periodic DFT calculations on Sr** and classical MD simulations (see also
Ref. [104]) on Na™, Rb™, Ca*", and Sr** were consistent with the X ray results.
Furthermore, the surface structural information from the simulations was used as
inputs to surface complexation models, and the results were consistent with the
adsorption isotherms indicating that the spectroscopic, computational, and macro
scopic data were all consistent except for Zn” ™.

Why should the Zn”" results be at odds when the other ions resulted in a
consistent picture for the state of the adsorbed species? The problem was that the
X ray results suggested that Zn? * adsorbed at two different sites from Sr* * and that
it could reside closer to the TiO, surface. The hypothesis to explain these differences
was that Zn” " was undergoing hydrolysis on the surface in much the same manner
as it undergoes hydrolysis in solution, except that hydrolysis was occurring at a lower
pH. As Zn” " undergoes hydrolysis, the coordination state can change from six to
fourfold. The tetrahedral coordination state would stabilize Zn®* at different sites
from the other octahedrally coordinated cations in the study and allow it to approach
the TiO, surface more closely because tetrahedral Zn O bonds are shorter than
octahedral Zn O bonds (Figure 11.5).

A subsequent paper by Zhang et al. [59] added extended X ray absorption fine
structure spectroscopy to the mix of techniques employed in order to better constrain
Zn O bond lengths and Zn coordination numbers. This study found better
agreement between the observed and DFT predicted Zn positions on the surface
when the Zn®* was hydrolyzed compared to the case of the Zn”" coordination
sphere being completed by H,O molecules. This hydrolysis led to spontaneous
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Figure 11.5 Zn(OH) on a TiO, (110) from DFT using the VASP code [90] predict that hydrolysis
leads to a lower coordination state and closer approach of the Zn** ion to the surface as
observed [59].

lowering of the coordination number in the DFT energy minimizations. Minor
discrepancies for the lateral positions of the Zn”>* adsorption sites remained among
the XSW, EXAFS, and DFT results; however, it is interesting to note that the
difference between the XSW and EXAFS positions was greater than the difference
between these techniques and the DFT results.

These papers served as an important benchmark and verification of DFT methods
in this type of study. A similar study was performed to predict the acid base behavior
of the a TiO, (110) surface that combined the second harmonic generation, surface
complexation modeling, and DFT calculations [21]. These studies demonstrated
the ability of DFT calculations to predict accurately the structures of mineral water
interfaces and adsorption of ions at these surfaces. These studies also served as a
starting point for simulations of the dynamic behavior of the mineral water interface.

11.3.6
Water Dynamics on TiO, and SnO,

Static pictures of the mineral water interface atomic structure are useful, but
ultimately the environmental chemist is interested in the rates of chemical reactions
such as adsorption and desorption. A step toward this goal is to move from the
static structures generated from X ray analyses and DFT energy minimizations to
dynamic movies of atomic motions in the interfacial region. A particularly excellent
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tool for collecting these data is neutron scattering. Quasi elastic neutron scattering
and inelastic neutron scattering probe the translational, rotational, and vibrational
movements of molecules and are sensitive to H atoms of the water molecules near
the surface.

Mamontov et al. [68] performed QENS experiments on a TiO, and SnO, (cassit
erite) nanocrystals to study the structure and dynamics of water around these two
minerals. Rutile and cassiterite were chosen because they have the same crystal
structure (although cassiterite has lattice parameters approximately 10% larger than
rutile), but extremely different bulk dielectric properties. James and Healy [105 107]
and Sverjensky [108] had hypothesized that the dielectric constant of the mineral
would control the nature of the mineral water interface, so comparing these two
minerals would be a test of that hypothesis.

The structure and dynamics of water around the two types of nanoparticles were
found to be significantly different. Both exhibited three types of H,O molecular
behavior as defined by the distance from the mineral surface. Of the designated L1,
L2, and L3 layers, the L1 layer closest to the surface was restricted in its diffusional
behavior compared to the bulk, whereas L3 was similar to bulk water. The inference of
this observation is that the mineral water interface extends only three molecular
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Figure 11.6 Comparison of H bonding and dynamics of H,O on TiO, and SnO, shows
significantly more rapid exchange on SnO, than TiO, (Kumar and Sofo, personal
communication).
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layers (approximately 1 nm) in terms ofits structural and dynamical behavior. Much
wider interfacial regions have been calculated in the past based on force measure
ments [109]. Classical MD simulations (see also Vlcek et al. [71]) based on the
SPC/E water force field and modified to provide TiO, H,0 and SnO, H,0 inter
actions [72, 110] provided both structural and energy transfer spectra consistent with
the QENS data. Both the structural and dynamical behaviors of water was different
on the rutile and cassiterite surfaces [68]; however, the attribution of this behavior to
the bulk dielectric constant of the mineral is a matter of current research [61, 63, 67,
111, 112].

A similar type of study using DFT based MD simulations of the TiO, H,0O
interface produced vibrational densities of state consistent with INS data (Figure 11.6;
[70]). The combination of DFT calculations, force field parameterization based on the
DFTresults, classical MD simulations, and a variety of spectroscopies allows one to
probe various spatial and temporal scales in a self consistent manner.

11.4
Summary and Future

Although the last decade has seen computational chemistry become successful and
more common in environmental chemistry, there are a number of challenges that
the community is now poised to overcome. Most published papers to date have dealt
with identifying aqueous and surface speciation. This complementary role for
computational spectroscopy is valuable, but computational chemistry can go beyond
what can be observed experimentally. Thus, one can study reaction mechanisms and
probe transient phenomenon. Based on numerous examples where the computa
tional methods are consistent with observation, we can begin to trust the simulation
results to explore chemical reactions with a level of detail not attainable with analytical
instrumentation.

Another area where computational chemistry has lagged in environmental appli
cations is the simulation of defects. Surface defects and disordered materials can
play a huge role in environmental chemistry [13], but surface modeling typically is
based on an idealized surface. As computer power and code parallelization increase,
it becomes possible to build larger models capable of incorporating defects and
disorder. These more energetic and reactive sites could be disproportionately
important in reaction kinetics and difficult to identify experimentally. Of course,
continued collaboration with analytical chemists will be the key in identifying
and quantifying the reactive surface area of materials in the environment [113].

As already mentioned, the increasing computational power and parallelization
of software allow larger numbers of atoms to be modeled with quantum methods.
These quantum based calculations also serve as benchmarks for the development of
classical force fields. Classical MD and Monte Carlo simulations should always be
useful, especially if these force fields can handle chemical reactivity [78]. Expansion of
the system size in both quantum and classical simulations will allow more detailed
and realistic modeling of biogeochemical phenomena, such as the interaction of

345
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bacteria with mineral surfaces [114]. As the biotic factors influencing environmental
chemistry are increasingly recognized as being critically important, the ability to
model a complex inorganic organic biotic system will be invaluable in understand
ing how nature works on a molecular level.
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12
Comparison of Calculated and Observed Vibrational
Frequencies of New Molecules from an Experimental Perspective

Lester Andrews

12.1
Introduction

Reactions of metal atoms with small molecules have provided a productive route to
many new molecules of fundamental importance for their contributions to our
understanding of chemical bonding, and the matrix isolation technique has con
tributed to this large body of information over the past half century [1 3]. Investiga
tions of this type with more volatile metal atoms employed thermal methods for
evaporation, but less volatile metal atoms required more challenging higher tem
perature experimental methods [4, 5]. Laser ablation provides a very efficient and
effective means of heating a very small volume element of solid material to very high
temperature sufficient for vaporization (and even ionization) [2, 6 9]. The key point
here is that the laser is pulsed and focused on a spot less than 0.1 mm in diameter so
that a large amount of energy is deposited into a small volume element of sample in a
very short time interval. Accordingly, the most refractory metals such as tungsten and
uranium can be evaporated for simple atom molecule reactions [3].

This chapter will describe some examples of the use of laser ablation to generate
metal atoms for reactions with small molecules to make interesting new subject
molecules and the comparison of calculated and observed vibrational frequencies for
the identification of these new molecules using different theoretical methods.

12.2
Experimental and Theoretical Methods

The matrixisolation laser ablation apparatus employed at the University of Virginia and
sketched in Figure 12.1 has been described in more detail previously [3]. Closed cycle
cryogenic refrigerators provide very good 4 7 K refrigeration when properly config

ured. A focused, pulsed Nd YAG laser (1 20 m]/pulse, 10 Hz) evaporates metal atoms
toward the cryogenically cooled window (4 K for hydrogen and neon or 7 K for argon
matrix experiments) for codeposition and reaction with pure hydrogen, Ne/reagent,
or Ar/reagent gas mixtures. The laser ablation plume not only contains visible light that
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1064 nm
1 - 20 mJ/pulse

4-10K Infrared
=) ||<F

T Argon/Reagent
Vis-UV Neon/Reagent
Irradiation Hydrogen

Figure 12.1 Diagram of laser ablation matrix isolation apparatus used for reacting metal atoms
with small molecules and trapping the products in solid argon, neon, or hydrogen for infrared
spectroscopic and photochemical investigations.

is useful to focus the laser and to direct the ablated materials but also provides
ultraviolet and vacuum ultraviolet radiation, which can perform photochemistry on the
reagentmolecule as well [3]. Infrared spectraare recorded by Nicolet Fourier transform
instruments at 0.5 cm™ ' resolutionand 0.1 cm ™ frequency accuracy after deposition,
after subsequent irradiation by a mercury arc street lamp (Sylvania, 175 watt, outer
globe removed) in combination with glass filters, and after sequential annealing of the
matrix sample to allow diffusion and further reaction of trapped species.

We routinely compute frequencies, energies, and structures for all molecular
products anticipated from the laser evaporated metal atom reactions under inves
tigation. The straightforward method for such calculations is to use the Gaussian
program system and the hybrid B3LYP and pure BPW91 density functionals [10 12].
We employ the large Gaussian basis set 6 311 ++ G(3df,3pd) for lighter atoms and
the pseudopotentials supported by Gaussian for transition and actinide metal
atoms [13]. With selected small systems, we use the CCSD(T) wavefunction based
method for comparison [14].

12.2.1
The LiO, lonic Molecule

One of the firstand most important new molecules to be prepared in a solid matrix at
the University of Virginia was the ionic LiO, molecule [15]. The bonding model



12.2 Experimental and Theoretical Methods

Table 12.1 Observed neon matrix and calculated harmonic frequencies (cm ') and infrared
intensities (km/mol) for the LiO, molecule in the 2A, ground electronic states with the Cy,
structure?.

7(16-16) 7(16-16) 7(18-18) 6(16-16) 6(18-18) Mode
observed B3LYP B3LYP B3LYP B3LYP identification
508.9 5279 (31)  510.1(32) 5454 (38)  528.1(40) B, antisym.Li O
719.7 7533 (117) 7454 (114)  802.6 (132)  795.0 (129) A, sym.Li O
1093.9 1175.4 (9) 1108.4 (9) 1176.0 (10) 11092 (11) Ay, sym. O 00
BPW91 BPW91 BPW91 BPW91
508.9 515.2 (35) 497.8 (36) 532.2 (43) 515.4 (44) B, antisym. Li O
719.7 7242 (106)  716.6 (104) 7715 (120) 7642 (117) A, sym.Li O
1093.9 1111.2(12)  1048.0 (11) 11119 (13) 10489 (14) A, sym.O O
ccsp(T) ccsp(T) ccsp(T) ccsp(T)
508.9 533.1 515.0 550.5 532.9 B,, antisym. Li O
719.7 734.7 727.1 782.9 775.6 Ay, sym. Li O
1093.9 1130.4 1066.0 1130.9 1066.6 A, sym. O O

a) See Refs [10 14] for the methods of calculation.

deduced from infrared and Raman spectra was reaffirmed by subsequent theoretical
calculations [15 17]. New observations of neon matrix bands at 1093.9, 719.7, and
508.9cm ™! correlate with the argon matrix 1096.9, 698.8, and 492.4 cm ! absorp
tions, respectively, assigned to the ionic LiO, molecule [15, 18] and with the
frequencies recently computed for this molecule (Table 12.1). The neon matrix
frequencies for the interionic modes are higher owing to less interaction with the less
polarizable neon matrix and closer to the still yet to be observed gas phase vibrational
frequencies [1]. The near agreement of frequencies calculated with the hybrid B3LYP
and the pure BPW91 density functionals and the CCSD(T) wavefunction based
methods is reassuring. Frequencies computed at the SCF level are of course high
er [17]. We typically find B3LYP values higher than BPW91 values and both slightly
higher than observed values owing in part to the neglect of anharmonic correc
tions [19 21]. What is important here is the coverage of experimental observations by
several theoretical methods to confirm the experimental identification and assign
ment and the application of theoretical computations to this problem.

The ratios of harmonic lithium 6/lithium 7 isotopic frequencies with oxygen 16
for the strong diagnostic interionic modes are 1.06 545, 1.06 531, and 1.06 561 for the
three methods, respectively, which show that the normal modes are described
similarly by the three theoretical methods. Also, notice the oxygen 16/oxygen 18
isotopic frequency ratios with lithium 7 computed as 1.0106 and 1.0349 for the
symmetric and antisymmetric Li O stretching modes, respectively, (B3LYP, for
example) illustrate different oxygen participations in these modes, as do the exper
imental values (1.0100 and 1.0343) [18]. Furthermore, the structural parameters
computed in Figure 12.2 are within the range of values presented earlier using a
variety of theoretical methods [17], and the O Li O angle of 44° deduced from
isotopic vibrational analysis of the LiO, molecule [15] is within approximately a
degree of the values calculated here. And the symmetrical structure based on the
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1.754
1.773
1.773

1.341
1.358
1.351

Figure 12.2 Optimized structures calculated for the lithium and oxygen reaction product LiO,.
Parameters given for B3LYP, BPW91, CCSD(T). Bond lengths in angstroms.

triplet pattern in °0,, 1*0'80, 180, isotopic spectra [15] has been reaffirmed by all of
these calculations. The Mulliken charges on Liare + 0.55, 0.53, and 0.64 for the three
above methods, respectively. In addition, the calculated Mulliken atomic spin
densities  0.012 for Li, + 0.506 for O using B3LYP, 0.009 for Li, +0.505 for O
using BPW91, and  0.026 for Li, + 0.513 for O using SCF based on CCSD(T) also
substantiate the ionic model for the bonding in LiO,.

123
Aluminum and Hydrogen: First Preparation of Dibridged Dialane, Al,Hg

The chemistry of boron hydrides has been investigated for over a century, and a large
number of boron hydride compounds have been identified and characterized;
however, aluminum hydride chemistry under normal conditions is limited to the
nonvolatile polymeric solid trihydride (AlHj;), [22, 23]. The diborane molecule is
fundamentally important as the textbook example of hydrogen (u hydrido) bridge
bonding. Although the isostructural dialane molecule is calculated to be stable,
molecular Al,Hy was not isolated until our work with solid hydrogen [24, 25]. The
failure to observe dialane earlier is even more surprising in view of the synthesis of
the isostructural Ga,Hg molecule [26]. Alane (AIH;) has been observed by three
groups from reactions of energetic aluminum atoms with hydrogen in solid argon
and characterized by infrared spectroscopy [27]; however, the concentration of AlH3
was not sufficient to form Al,H in the rigid argon matrix. Our successful synthesis of
Al H; for the first time involved pure hydrogen as the matrix. This ensured the
selective formation of the highest monohydride AlH;, and diffusion in the soft
hydrogen matrix upon annealing allows dimerization to dialane Al,Hg, here called
DA. The DA bands are produced in much greater yield in the softer hydrogen matrix
solid than in the harder argon matrix.

The spectrum of our first deposited Al and H, sample (Figure 12.3) is dominated
by the strong AIH absorption at 1598.7 cm ™", which is intermediate between the gas
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Figure 12.3 Infrared spectra in the (b) after annealing at 6.2K, (c) after >290 nm
2000 600cm ' region for laser ablated Al photolysis, (d) after >220 nm photolysis,
codeposited with normal hydrogen at 4 K. (e) after annealing at 6.5 K, and (f) after second

(a) Spectrum of sample deposited for 25 min, ~ >220 nm photolysis.

phase (1624.4cm ') and the argon matrix (1590.7 cm ') absorptions for diatomic
AlH. Absorptions are also observed for AlH; (1883.7, 777.9, 711.3 cm™ ') and AlH,,
which are for the most part higher than the argon matrix values. New absorptions are
observed for Al,H, with the hint of very weak absorptions at 1932.3, 1915.1, 1408.1,
1268.2, 835.6, 702.4, 631.9cm ™" (labeled DA) (Figure 12.3a). Annealing to 6.2 K
increased these bands except for AIH (Figure 12.3b). Photolysis stepwise at >290 nm
and then at >220nm decreased the AlH band and increased the AlH; absorptions
and the DA band set (Figure 12.3c,d). A subsequent annealing at 6.5 K increased all
but the 1638 cm ™" band (Figure 12.3e), and a final >220 nm irradiation increased the
DA bands by another 25% (Figure 12.3f). Al atoms and D, were also codeposited, and
the spectra containing all but the weakest DA counterpart bands are assigned in our
research papers [24, 25].

The seven band DA set has a straightforward chemistry. The strongest three bands
at 1932.3, 1408.1, and 1268.2 cm ™' are detected on laser ablated Al deposition with
normal hydrogen (absorbance 0.001). These bands double upon annealing to 6.0 K
and double again upon >290 nm photolysis while AlH is reduced by 90%, AlH;
increases fourfold, and weaker DA bands appear at 1915.1, 835.6, 702.4, and
631.9cm™'. Subsequent >220nm photolysis increases the DA bands fourfold in
concert and the AlH; bands twofold, while the next 6.5 K annealing increases DA
bands by 25% at the expense of AlH; (Figure 12.3). Thus, AlH; is produced upon
photoexcitation of AIH with excess hydrogen, and DA is formed upon ultraviolet
photolysis along with AlH3 and upon annealing from diffusion and reaction of AlH;.
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Table12.2 Comparison of calculated and observed infrared active frequencies (cm ') for dibridged
Al;Hg in solid hydrogen.

sym® Mode SCF/TzP® ccsp/pzP®  B3LYPY BPW91?  Observed® H/D"

by, 8 2062 (518) 2047 (344) 1989 (419) 1934 (379) 1932 (0.069) 1.366
9 977(393) 954 (317) 866 (244) 808 (199) 836 (0.037)  1.376
10 249 (18) 235 (15) 223 (13) 205 (10)
bau 13 1350 (544) 1368 (463) 1292 (352) 1275 (291) 1268 (0.053) 1.379
14 694 (353) 664 (328) 634 (263) 607 (230) 632 (0.039)
bsu 16 2051 (101) 2024 (88) 1966 (126) 1908 (130) 1915 (0.023) 1.364

17 1603(1399) 1589 (1162)  1483(1096) 1431 (968) 1408 (0.128) 1.370
18 766 (890) 744 (684) 712 (648) 683 (575) 702 (0.048)  1.376

a) Symmetry (D, point group) and mode description from Liang, C., Davy, R.D., and Schaeffer,
H.F., III. Chem. Phys. Lett. 1989, 159, 393.

b) From Liang, C., Davy, R.D., and Schaeffer, H.F., IIl. Chem. Phys. Lett. 1989, 159, 393 with
calculated intensities (km/mol) in parentheses.

c) From Shen, M. and Schaefer, H.F., IIL. J. Chem. Phys. 1992, 96, 2868.

d) Ref. [24, 25]: 6-311 ++ G** basis set.

e) In solid hydrogen, integrated intensities at maximum yield in parentheses.

f) Hydrogen/deuterium isotopic frequency ratio.

The seven DA bands are therefore assigned to dialane, Al,Hg, which is confirmed by
comparison to extensive vibrational frequency calculations at different levels of
quantum theory, which are compared in Table 12.2 [24, 25]. This table shows how the
different levels of computational theory for harmonic frequencies tend to overesti
mate observed anharmonic frequencies. The two density functionals produce
calculated frequencies that are very close to the observed values. Extrapolation
through these sets of calculated frequencies to the observed values confirms the
assignments to dialane and thus the first preparation of this novel molecule. Notice
that the computed and observed infrared intensities are in very good qualitative
agreement as well. Thus, the correlation between calculated and observed frequen
cies makes the case for the identification of this important molecule.

When the hydrogen matrix samples are annealed at 6.8 K, H, evaporates, molec
ular aluminum hydrides diffuse, aggregate, and their absorptions decrease, and
broad absorptions appear at 1720 (20) and 720 (20) cm™". These broad bands remain
on the CsI window with decreasing absorbance until room temperature is reached.
The deuterium matrix samples evaporate D, at about 10 K and aluminum deuterides
produce a broad 1260 (20) cm ™" absorption, which remains on the CsI window. The
frequency ratio 1720/1260 = 1.365 demonstrates that these bands are due to Al H/
Al D vibrations. The spectrum of pure solid (AlH3), gives strong broad bands at 1760
and 680 cm !, solid (AlH3), in Nujol reveals a very strong, broad 1592 cm ™" band,
and solid (AlDs),, gives a corresponding 1163 cm™ ' band [24, 25]. The present broad
absorptions at 1720 and 1260 cm ™" are therefore due to solid (AlH3), and (AlD3),,,
respectively, on the salt window. Thus, we have made solid alane through the reaction
of the elements aluminum and hydrogen to give AlH, then AlH;, Al,Hg, and finally
the solid (AlH3), polymeric material. The crystal structure for this solid material
shows six coordinate aluminum with equivalent hydrogen atoms in bridge bonding
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arrangements between aluminum atoms [23]. The average Al H distance is 1.72 A. It
is interesting to note that the solid Al H distance is intermediate between the 1.74 A
bridge and the 1.58 A terminal Al H distances calculated [24, 25] for Al,Hg and that
the solid frequency of 1720cm ™' is likewise intermediate between the terminal
(1932, 1915cm ') and the bridged (1408, 1268 cm ') Al,H values observed here.

12.4
Titanium and Boron Trifluoride Give the Borylene FB=TiF,

The boron trifluoride molecule is one of the least reactive we have investigated, and
boron and fluorine are among the most difficult theoretical subject atoms. Three
medium intensityabsorptions wereobservedat 1414 cm™'inthe B Fstretchingregion
andat721and 638 cm 'intheTi Fstretching region from the reaction of laser ablated
Tiand BF; in excess argon. Density functional calculations showed that the anticipated
borylene molecule FB=TiF, was the lowest energy product [28], but the presence of low

energy singlet and triplet states in this difficult system called for higher levels of theory,
and we asked Roos to perform CASSCF/CASPT2 calculations. At this higher level of
theory, the singlet state was 8 kcal/mol lower than the triplet in energy [28].

Table 12.3 compares the observed and computed singlet state frequencies for the
singlet FB=TiF, borylene titanium difluoride product using CASPT2 and two density
functional theoretical methods. The B3LYP frequencies are all slightly higher than
the observed values, and the BPW91 values are slightly lower, as expected [19, 20]. The
frequencies calculated by CASPT2 are slightly higher than the B3LYP values: a
similar relationship has been found among computed frequencies for these different
methods for the simple group 6 metal pnictides [29]. The B3LYP computed terminal

Table12.3 Observed CASPT2 and density functional theory calculated fundamental frequencies for
the FB TiF, borylene molecule in the ground 'A, electronic states with C,, structures®.

Approx. mode FB TiF,
description

Obs. Calc. (CA) Int. Calc. (B3) Int. Calc. (BP) Int.

B Fstr, a; 1404 1454 403 1444 424 1394 341
Ti Fstr., b, 721 755 284 742 243 736 219
Ti Fstr, ay 638 670 151 656 108 654 101
Ti Bstr, a; 421 8 398 0 405 0
TiBF def., by 318 19 325 23 318 29
TiBF def., b, 314 4 321 4 311 2
TiF, bend, a; 148 19 133 11 141 8
FBTiF def., b, 103 54 79 0 83 0
BTiF, def., by 88 1 48 25 24 32

a) Frequencies and intensities are in cm ' and km/mol. Observed in an argon matrix. Frequencies
and intensities calculated with CASPT2/VTZP(6s5p3d2fl1g for Ti) noted (CA), B3LYP/6-311+ G
(3df)/SDD for Ti noted (B3), or BPW91/6-311 + G(3df)/SDD for Ti noted (BP)in the harmonic
approximation. Mode symmetry notations are based on the C2v structure.
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bond stretching frequencies are 2.8, 2.9, and 2.8% higher and again the BPW91
values are slightly lower. Overall, the agreement between calculated and observed
frequencies is excellent, and this correlation for the rigorous CASPT2 wavefunction

based approach and two density functional methods confirms our identification of
the FB=TiF, borylene complex [28]. Finally, occupation of the CASPT2 computed
molecular orbitals gives an effective bond order of 1.81 for the FB=TiF, borylene
complex [28].

12,5
Ti and CH;F Form the Agostic Methylidene Product CH,=TiHF

Methane activation is an important process, and we were initially interested in
methane activation by early transition metal atoms, but we knew from earlier
experiments that the reaction product yield is relatively low. Hence, we reasoned
that transition metal atom reactions with the more electron rich methyl halides
would be more favorable, and the Ti and CH;F reaction provided our first contri
bution to the methylidene complex literature [30].

Infrared spectra of Tiand CH;F reaction products revealed three sets of absorptions
thatare grouped by their behavior on sampleirradiation and annealing. The first group
(noted m for methylidene) at 1602.8, 757.9, 698.6,and 652.8 cm ' decreases on visible
lightirradiation butincreases markedly on ultraviolet irradiation while the second set
at 504.3, 646.3, and 1105.7 cm ™! (noted i for insertion product) decreases. These
photochemical changes arereversible. In addition, newbands at 782.3 and 703.8 cm?
(for dimethyl titanium difluoride) increase slightly upon UV irradiation and markedly
upon annealing and with higher CH;F reagent concentrations.

Density functional theory calculations found the lowest energy products as
CH; TiF (triplet state) and CH,=TiHF (singlet state) with the latter 22 kcal/mol
higher energy than the former, but both structural isomers are trapped in the solid
matrix and interconverted on light irradiation. The observed frequencies for the i
group correlated with the calculated frequencies having the higher infrared inten
sities for CH; TiF and the m group absorptions corresponded to the strongest
calculated infrared frequencies for CH,=TiHF. The shifts with *CH,F and CD;F
and computed isotopic frequencies agree well enough to confirm the vibrational
assignments and the CH,=TiHF molecular identification [30].

Table 12.4 compares the observed isotopic frequencies with those calculated
using the large all electron Gaussian basis 6 311 ++ G(3df,3pd) and the B3LYP and
BPW91 density functionals. Notice first that the frequencies computed by both
functionals are higher than the observed values, with B3LYP slightly higher than
BPW91, which is the typical relationship [19, 20]. Since the hybrid and pure density
functionals have sufficiently different treatments of exchange and correlation, their
general agreement shows that the system is reasonably well described.

Next, focus on the two frequencies computed in the 720 820 cm ™' region, which
show Ti C and Ti F stretching character along with in plane Ti H and C H
(nonagostic) bending motion. For example, a pure Ti C stretching mode at



Table 12.4 Observed and calculated fundamental frequencies of CH, TiHF in the ground electronic state ('A)?.

Approx. mode description CH, TiHF CD, TiDF BCH, TiHF

Exp. Calc? Int? Calc® Int? Exp. Calc® Int® cCalc? Int? Exp. Calc® Int® calc® Int?
v1 CH str. 3194.8 1 31351 1 2365.8 2 23216 2 3183.8 1 31243 0
v, CH str. 2861.3 5 27598 4 2081.7 3 2007.8 2 2854.8 5 27535 4
v3Ti H str. 1602.8 1671.7 411 1630.5 327 1158.6 11964 220 11667 175 1602.8 16717 410 16305 327
v, CH, scis. 13282 24 12938 22 1048.9 31 10142 28 13184 24 12854 22
vs C Tistrd 757.8  816.6 128  818.7 127 6449  693.9 58 6860 77 7488 8039 148 8049 141
veTi Fstrd 698.6 7387 148 7265 124  702.6 7350 169 7341 136  692.0 7333 127 7214 109
v, CH, wag 6528  689.1 165 6558 146 5221 5430 120 5161 107  646.6 6829 160  650.1 141
vg CTiH bend 608.9 15 610.8 16 472.6 10 482.0 8 607.7 14 609.2 15
vo CH, twist 4958 25 4932 30 353.5 9 3514 11 4958 25 493.1 31
v1o CH, rock 386.0 4 4218 6 310.1 3 325.8 5 382.3 4 4188 6
v11 CTiF bend 197.9 19 2085 19 168.7 5 181.9 6 1970 19 2073 20
v1, TiH OOP bend 101.9 163 88.0 146 80.5 105 70.5 95 101.7 163 87.8 145

a) Frequencies and intensities are in cm ' and km/mol. Intensities are all calculated values.
b) Calculated with B3LYP/6-311 + + G(3df,3pd) for all atoms.

c) Calculated with BPW91/6-311 + + G(3df,3pd) for all atoms.

d) These modes also involve in-plane Ti H and C H (nonagostic) bending motion.
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757.8 cm™ ! would shift 23.7 cm ™" upon carbon 13 substitution, and the present band
shifts only 9.0 cm ™, but a large 112.9 cm ™' deuterium shift is observed. The mostly
Ti Fstretching mode shows an unusual blueshift upon deuteration, 4.0 cm ™~ !here,
and a 6.6 cm™" carbon 13 redshift, which are due to mixing with the above vibrational
mode shifted to a lower position upon deuteration, and the frequency calculations
will be examined for this behavior. Since the hybrid B3LYP functional predicts higher
frequencies for most modes, as observed previously, than the pure BPW91 func
tional [19, 20], as a result the pure density functional values are closer to the observed
frequencies, and the mode mixing is predicted more nearly correctly. The pure
BPW91 functional gives a 7.6cm ' blueshift in the mostly Ti F stretching mode
upon deuteration and a 5.1 cm ™' carbon 13 redshift, which are within a few cm ™" of
the observed values, but the B3LYP functional predicts instead a 3.7 cm ™ redshift
and a 5.4 cm ™! redshift, respectively. The mostly Ti Cand Ti F stretching modes
clearly involve mode mixing with hydrogen motion. Finally, notice that the smaller
Gaussian basis used earlier [30] gave frequencies within 7 cm™" except for the very
lowest modes and even using the SDD pseudopotential on Ti made little difference
except in the Ti F mode.

The CH,=TiHF methylidene is distorted at the CH, group through the agostic
(Greek for hold on to oneself ) interaction between one hydrogen and the Ti center based
on our original B3LYP calculations [30] and a subsequent more detailed theoretical
analysis including compliance constants [21]. Grunenberg et al. found no o agostic
distortion with the HF method while MP2 overestimates the agostic interaction. The
CCSD(T) method revealed an 86 88° agostic H C Ti angle depending on the basis
set employed. These works underscore the necessity of polarization functions on
carbon to characterize the agostic interaction [21, 30]. The B3LYP and BPW91
functionals with the large all electron 6 311 ++ G(3df,3pd) Gaussian basis gave
91.6 and 87.6° agostic H C Ti angles, respectively, and B3LYP with the small all
electron 6 311 ++ G(2d,p) Gaussian basis resulted in a 91.5° agostic angle, but using
the SDD pseudopotential for Ti gave a larger 94.0° agostic angle. Finally, Grunenberg
et al. conclude that the strength of a agostic bonding is in the range  though different
in nature of a typical hydrogen bond (<10 kcal/mol) [21].

The major 782.3 and 703.8 cm ™" absorptions for the third group of product bands
reveal Ti isotopic splittings in natural abundance for the antisymmetric and sym
metric stretching vibrations of a TiF, subunit. In addition, associated 1385.2 and
1378.4cm™" bands are characteristic of methyl bending modes and a 566.9 cm ™!
band with the antisymmetric Ti CH3 stretching mode. These bands are in excellent
agreement with frequencies computed for the (CH;),TiF, molecule, which is
chemically analogous to the (CH3),TiCl, compound.

12.6
Zr and CH, Form the Agostic Methylidene Product CH,=ZrH,

The simple CH,=ZrH, complex presents the best experimental case for agostic
distortion in a methylidene transition metal dihydride complex [31]. The neon matrix
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spectrum for laser ablated Zr codeposited with 2% CH, in neon at 4 K revealed weak
bands at 1581.0 and 1546.2cm™' upon sample deposition. These absorptions
increased on vis and UV irradiation and exhibited counterparts in the Zr D
stretching region, and the H/D frequency ratios, 1.3953 and 1.3901, characterize
these vibrations as symmetric and antisymmetric Zr H, stretching modes. Note
that these new Zr H, stretching modes appear between the 1530cm ™" and the
1648 cm™ ! antisymmetric stretching modes for ZrH, and ZrH, in solid neon [31].
Two absorptions at 757.0 and 634.5 cm ™, which show carbon 13 shifts appropriate
for C=Zr stretching and CH, wagging modes, are associated upon photolysis and
annealing. In addition, the CH,D, reaction provides diagnostic information for the
identification of the CH,=ZrH, species because of the low symmetry and non
equivalent C H bonds brought about by agostic distortion [31].

The final confirmation for the identification of CH,=ZrH, is the agreement
between calculated and observed frequencies for four diagnostic vibrational modes.
Table 12.5 lists the frequencies calculated (not scaled) for the C; symmetry
CH,=ZrH, structure at the B3LYP and CCSD levels of theory [31]. Notice that the
four most intense calculated frequencies are 3.2, 3.6, 1.3, and 4.5% higher, as is
appropriate for the B3LYP density functional [19, 20], and the more rigorous
quantum mechanical CCSD method gives slightly higher frequencies, which cor
relate well with the experimental absorptions. The calculated and observed
BCH,=7ZrH, and CD,=ZrD, frequencies are characteristic of their vibrational
modes, as discussed in the original report [31]. Thus, we conclude that CH,=Z7rH,
is distorted by agostic interaction, based on our neon (and argon) matrix spectra, and
calculations at several levels of single reference theory. The small T1 diagnostic that
we obtained (0.016) indicates that multireference character is not a problem for

Table12.5 Vibrational frequencies (cm ') observed and calculated for C; ground state CH, ZrH,
at the CCSD/6 311 ++ G(2d,p)/SDD and B3LYP/6 311 ++ G(3df,3pd)/SDD levels of theory.

Mode Calculated” Intensity  Calculated® Intensity”  Observed®  Ratio?
CH, str. 3210 (1) 3179 1)

CH, str. 2842 7) 2858 )

ZrH, str. 1650 (384) 1634 (301) 1581 0.968
ZrH, str. 1597 (695) 1603 (544) 1546 0.964
CH, scis. 1384 (17) 1320 (16)

C Zr str. 787 (133) 767 (130) 757 0.987
CH, wag 713 (206) 665 (144) 635 0.955
Z1H, scis. 656 (55) 642 (85)

ZrH, rock 531 (29) 515 (10)

CH, twist 481 3) 408 (23)

CH, rock 385 (6) 310 (75)

ZrH, wag 87 (457) 240 (131)

a) CCSD, intensities in km/mol.

b) B3LYP.

c) Neon matrix.

d) Obs./B3LYP Calc. Ratio (i.e., scale factor).
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Figure 12.4 Structure and parameters calculated for C; ground state CH, ZrH, using CCSD/6
311 ++ G(2d,p)/SDD (in bold) and B3LYP/6 311 ++ G(3df, 3pd)/SDD.

CH,=7rH,. Although multireference calculations found a stable C,, structure after
imposing C,, symmetry [32], our calculations find the lowest energy structure to be
distorted. Figure 12.4 shows the structure, and the two methods give almost the same
parameters save the agostic angle, which is smaller for CCSD, as found previously for
CH,=TiHF [21] Finally, CCSD(T) calculations have also shown that the simple
CH,=TiH, methylidene is similarly distorted [3c].

12.7
Mo and CHCIl; Form the Methylidyne CH=MoCl;

Methane activation with laser ablated Mo atoms forms three products, the insertion
CH; MoH, which is characterized by a Mo H stretching mode at 1728.0cm™".
Visible irradiation promotes o H transfer to give CH,=MoH, with two Mo H
stretching modes at 1791.6 and 1759.6cm ', and a second a H transfer to form
CH=MoH; with a strong MoH; stretching mode at 1830 cm™'. Next UV irradiation
transfers H back to carbon. These photochemical processes are completely revers
ible. These products with comparable energies were identified by matching observed
frequencies with those computed by density functional theory [33]. However, the
reaction with CHCI; exclusively forms the methylidyne CH=MoCl; as this product is
147 kcal/mol lower in energy than the reagents based on B3LYP calculations [34].
Four vibrational modes have been observed at 3058.2,978.1,438.7,and 658.9 cm '
for the methylidyne CH=MoCls, and these assignments are substantiated by the
B3LYP frequency calculations summarized in Table 12.6 [34]. First, the highest band
is characterized as a C H stretching mode from its position and from its observed
and calculated *C and D isotopic shifts. The 978.1cm ™" band shows the large *C
isotopic shift anticipated for the Mo  C stretching mode, which is confirmed by the
resolved natural Mo isotopic shifts and the values computed using the Mo isotopic
masses. The 438.7 cm™ ' band is assigned to the strong degenerate Mo  Cl stretching
mode even though the B3LYP calculation undershoots this by 13.7cm ' (3.1%),
which is opposite from most of the present comparisons. The transition metal



Table 1.6 Observed and calculated fundamental frequencies of isotopic HC=MoCl; complexes in the ground 'A, electronic state with the Cs, structure?.

Approximate HC=MoCl, H'C=MoCl; DC=MoCl;
Description

Observed Calculated Intensity Observed Calculated Observed Calculated Intensity
C Hstr, a; 3058.2 3212.2 35 3048.0 3200.4 2296.2 2387.9 24
HC=Mo str,, a; 978.1% 1051.9 8 948.0 1019.1 932.4%) 1005.8 6
Mo Xstr, e 438.7 425.0 81 x 2 438.6 425.4 436.4 423.0 74 x 2
Mo Xstr., a; 380.8 9 380.7 380.7 9
H C Modef, e 658.9 660.2 76 x 2 652.4 653.4 533.4 533.6 52 x 2
C Mo Xdef, e 237.7 7x2 232.5 212.3 7 %2
Mo X3 umb., a; 144.0 0 143.7 143.7 0
Mo X, bend, e 100.4 0 100.4 100.4 0

a) Frequencies and intensities areincm ' and km/mol and computed with B3LYP/6-311 ++ G(2d,p) in the harmonic approximation using the SDD core potential and basis
set for Mo. The symmetry notations are based on the C3v structure.
b) Observed in an argon matrix. Band position for the major **Mo isotope.
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chlorine bond is difficult to theoretically model, and a similar relationship is found
for the Mo F bond [34]. Finally, the 658.9cm ™" band is assigned to the H C Mo
deformation mode, and again the observed and calculated BCand D isotopic shifts
verify this assignment.

12.8
Tungsten and Hydrogen Produce the WH4(H,), Supercomplex

The first experimental observation of atomic W reactions with dihydrogen found
evidence for WH, as a major reaction product, and annealing the solid neon matrix
increased a group of six sharp new absorptions, which were assigned to WHs, formed
Dby the spontaneous reaction of WH, and H, [35]. These absorptions matched density
functional calculated frequencies for the distorted Cs, prism WHg structure, which
remains the highest neutral hydride and the only neutral metal hexahydride to be
observed experimentally. This distorted structure is more stable than the octahedral
form, which has been the subject of extensive theoretical calculations [36]. Later work
in this laboratory showed that laser ablated W atoms react with neat normal and para

hydrogen to form the largest possible physically stable tungsten hydride species,
which is the tungsten tetrahydride tetradihydrogen [37].

Figure 12.5 illustrates infrared spectra for tungsten ablation and reaction with pure
normal hydrogen during condensation at 4 K. The most prominent new absorptions
are observed at 1859.1, 1830.3, and 437.2 cm ™! with weaker bands at 2500, 1781.6,
1007.6,and 551.5 cm ™! (marked with arrows). Annealing this sample to 6 K had little
effect on the spectrum while full arc irradiation (>220 nm) reduced the absorptions
and a subsequent annealing to 6.3 K only sharpened them. The seven absorptions
marked with arrows track together upon annealing and UV irradiation, and they are
thus associated with a common new product species. Note the absence of absorptions

M ho.m-%gﬁ
WWNW"’MJ\A —o——'———’vj\.k/\\/\—v%

0.010

d)

<)

L

0.005 000
WMMMAJ\’ o N b)
C02 ‘—'\J
WH, @)
0.000 WWWM»J\.» 0.00- —
2800 2500 2000 1900 1800 1700 1050 950 550 450

Wavenumbers (cm1)

Figure 12.5 Infrared spectra for the laser ablated W atom and pure hydrogen reaction product in
solid normal hydrogen at4 K. (a) Spectrum after reagent codeposition for 30 min, (b) after annealing
at 6 K, (c) after >220 nm irradiation, and (d) after annealing at 6.3 K.



12.9 Pt and CCl, Form the Carbene CCl, PtCl,

in the 1920 2020 cm ™' region where the strongest absorptions of WH; appeared in
solid neon [35]. A final annealing at 7 K allowed the hydrogen matrix to evaporate, and
the new product to aggregate leaving behind no infrared absorption. Deuterium
counterparts for the stronger bands were also observed and are reported in our
publication [37].

The observed infrared spectra reveal diagnostic absorptions due to molecular
subunits thatidentify this new tungsten hydride dihydrogen complex. First, the WH,
molecule in tetrahedral symmetry has been characterized by the triply degenerate
antisymmetric W H stretching and bending modes at 1920.5 and 525.2cm ™" in
solid neon [35], and the weak new band at 1911.5cm ' in the solid hydrogen
experiment can be assigned to WH, trapped on the surface where limited coordi
nation can occur. The strong new absorptions at 1859.1 and 1830.3 cm ™' are slightly
lower but still appropriate for W H stretching modes as the 1.3951 and 1.3853
isotopic H/D frequency ratios indicate, and the new 551.5 cm ™' band is likewise due
to an analogous H W H bending mode. Hence, the new product contains two or
more W H hydride bonds. Second, the new absorptions at 2500, 1781.6, 1007.6, and
437.2cm™ ! arise from the presence of side bound dihydrogen molecules in this new
product. The broad 2500 cm ™' band is characteristic of the H  H stretching mode for
strongly complexed dihydrogen molecules as this mode was first observed at 2690
cm™ ' in the important Kubas complex [38]. The 2500/1790 = 1.397 H/D isotopic ratio
is in accord with that expected foran H H stretching mode. The 1781.6 cm ™' band
can be assigned to the antisymmetric W (H,) stretching mode on the basis of its
1.3892 isotopic H/D frequency ratio and its prediction from density functional
calculations to fall about 80 cm ™" below the aforementioned highest antisymmetric
W Hstretchingmodeat 1859.1 cm ™. Such a mode was observed lowerat 1570 cm ™'
in the Kubas complex. The remaining two weak 1007.6 and strong 437.2 cm ™' bands
are due to H, W H, bending modes based on the prediction of such vibrational
frequencies at 1065 and 414 cm ™' by density functional theory calculations [37]. The
higher of these has the appropriate 1.3996 H/D isotopic frequency ratio, and the lower
of these may be compared with the W (H,) deformation mode observed near
450cm ™" for the Kubas complex. This identification of WH4(H,)4 based on the
above vibrational assignments is confirmed by the close correlation of the seven
strongest observed and calculated frequencies (Table 12.7) [37].

Thus, we see that WH,, is ligated by four dihydrogen molecules after preparation
from the spontaneous reaction of W and neat H,. Calculations show that the lowest
energy complex that can be formed is the WH4(H,)4 species [37]. In like fashion,
laser ablated Ru reacts with pure hydrogen to form an analogous RuH,(H,)
supercomplex [39].

12.9
Pt and CCl, Form the Carbene CCl,=PtCl,

Platinum metal is well known as a catalyst material for many chemical processes, and
a number of platinum carbene complexes and their organometallic chemistry in

367



368

12 Comparison of Calculated and Observed Vibrational Frequencies of New Molecules

Table 12.7 Frequencies (cm ) calculated at the DFT/BP86/TZVPP level of theory for WH,(H2)s.
singlet state. D,q symmetry.

Observed Calculated Intensity® Symmetry® Mode description
frequency? frequency
351 0 b,
437.2 414 171 b, Bending H, W H,
428 6x2 e Bending H, W H,
499 0 ay
539 0 a,
551.5 565 38x2 e BendingH W H
681 0 by
748 8x2 e Bending H W H,
775 0 a
816 16 x 2 e Bending H W H,
842 0 b,
871 0 ap
897 0 b,
1007.6 1065 172 x 2 e Bending H, W H,
1160 3 b, Bending H, W H,
1284 0 ap
1741 0 by Asym. stretch W H,
1767 0 a Stretch W H,
1782.0 1790 40 x 2 e Asym. stretch W H,
1830.6 1844 212 b, Sym. stretch W H
1859.3 1868 53x2 e Asym. stretch W H
1903 0 a; Totally sym. stretch W H
2500 2657 208 x 2 e Stretch H H
2683 11 b, Stretch H H
2740 0 a; Totally sym. stretch H H

a) Observed here in solid hydrogen.
b) Calculated infrared intensity (km/mol).
c) Mode irreducible representation in D,q symmetry.

catalytic reactions have been explored [40]. Carbon tetrachloride reacts extensively
with metal atoms, and the simple methylidyne product CIC=MoCls is a testament to
this point [34]. In the case of platinum, however, relative product energies terminate
this reaction with the CCl,=PtCl, carbene [41].

Laser ablated Pt atoms react with carbon tetrachloride in excess argon during
condensation at 8K to give two strong new absorptions at 1008.3 and 886.5cm ™"
(884.6 cm ™' shoulder for chlorine isotopic splitting) (labeled m for methylidene) in
Figure 12.6 along with bands at 1036.4cm ' (CCl3 "), 1019.3 and 926.7cm !
(CLL,CCI Cl), and 898cm™" (CCls) produced by laser plume irradiation of the
precursor. The latter bands are common to all laser ablated metal experiments with
CCly [34, 40]. The new absorptions increased in concert by 10 and 20% upon
irradiation in the visible (A > 420 nm) and ultraviolet (240 380 nm) regions, respec
tively. Annealing at 28 K sharpened the bands and resolved the 884.6 cm ™' shoulder.
A similar experiment with *CCl, (90% enriched) shifted the new absorptions to
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Figure 12.6 Infrared spectra observed in the ~ 20min, and (c) after ultraviolet (240 380 nm)
1100 800cm ' region for the laser ablated irradiation for 20 min. (d) Ptand CCl, (0.5% in
platinum atom and carbon tetrachloride argon, 90% enriched) codeposited for Th, (e)
reaction products in excess argon at 10K. (a) Pt after visible (A > 420 nm) irradiation for 20 min,
and CCly (0.5% in argon) codeposited for 1h,  and (f) after ultraviolet (240 380 nm)

(b) after visible (A >420nm) irradiation for irradiation for 20 min.

971.4 and to 858.5cm ™! (856.1 cm ™' shoulder). The appearance of the 2C product
bands with about 1/10 of the 1*C product band absorbance confirms that a single
carbon atom participates in these vibrational modes [41].

The two strong 1008.3 and 886.5 cm ™' product absorptions from the reaction of Pt
and CCl, in solid argon are assigned to the CCl,=PtCl, methylidene for the following
reasons [36]. First, the observed bands are 1 and 2% higher than the harmonic
frequencies calculated for the two strongest modes of this minimum energy product
using the B3LYP density functional (Table 12.8). Furthermore, the strongest calcu
lated (B3LYP) absorption for the 23 kcal/mol higher energy CCl; PtCl insertion
productat 838 cm ™ is not detected. Second, the carbon 13 shifts, 36.9and 28.0cm ™,
observed for the two strong bands very closely match the computed values, 36.6 and
28.1cm ', as the observed 12/13 isotopic frequency ratios 1.03 799 and 1.03 262 are
almost the same as the calculated frequency ratios, 1.03 799 and 1.03 339. This means
that the calculation is describing the same normal modes as observed for the reaction
product, and it reinforces the match in calculated frequency position and high
intensities. Third, the 886.5 cm™? product band and 884.6 cm ™! shoulder have the
appropriate 9/6 relative intensity for natural abundance chlorine isotopes (35,35/
35,37 statistical population) for a vibration involving two equivalent chlorine atoms.
The B3LYP density functional calculation predicts a 2.0 cm ™" shift, and we observe a
1.9 cm ™" shift for this isotopic effect. In the CCl,=PtCl, methylidene case, the B3LYP
density functional predicts slightly higher frequencies than observed, but the BPW91
pure density functional values are considerably lower than the observed values.
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Table 12.8 Observed and calculated fundamental frequencies of the CCl, PtCl, methylidene in the ground 1A1 electronic state with the Gy, structure®.

Approximate 2ccl, PiCl, B¢ccl, Picl,
description
Observed B3LYP Intensity BPW91 Intensity Observed B3LYP Intensity BPW91 Intensity

Cl, C Ptstr,”a 1008.3 999.9 284 981.5 242 971.4 963.3 264 945.4 225
C Clstr, b, 886.5 869.7 198 838.9 190 858.5 841.6 185 811.8 178
CCl, wag, by 451.1 0 427.9 5 434.7 0 427.5 5
CCl, bend,” a; 438.9 4 426.6 0 438.5 3 411.4 0
Pt Clstr. by 365.3 69 367.9 60 365.1 68 367.5 60
Pt Clstr, a; 349.1 8 350.9 8 349.1 8 350.9 8
CCl, def., a; 227.7 0 222.0 0 227.7 0 222.0 0
CCl, rock, b, 213.2 0 207.2 0 212.3 0 206.4 0
PiCl, wag, b, 102.29 1 101.4 1 102.2 1 101.4 1

a) Frequencies and intensities are in cm ' and km/mol. Observed in an argon matrix. Frequencies and intensities computed with B3LYP/6-311 ++ G(3df,3pd) in the
harmonic approximation using the SDD core potential and basis set for Pt and using the BPW91 functional. Symmetry notations are based on the C,, structure.

b) Mode has antisymmetric Cl, C=Pt stretching character.
c) Mode has some symmetric Cl, C=Pt stretching character.
d) Three real 96, 65, and 23cm ! frequencies are not listed.
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12.11 U and CHF; Produce the Methylidyne CH=UF;

Interestingly, the 1008.3cm ™' vibrational coordinate involves mostly Pt=C

stretching mixed with symmetric C Cl, displacement. For a pure symmetric
Cl C (I stretching mode with the 115.3° valence angle calculated here, the
12/13 isotopic frequency ratio would be 1.02 503, which is substantially less than
the observed 1.03 799 value. This underscores the description of this normal mode as
C vibrating back and forth between Pt and two Cl atoms. The calculated 438.9 cm™*
mode with only 0.4cm™" carbon 13 shift is the symmetric Cl, C=Pt stretching
counterpart, which involves little carbon motion. The matrix infrared spectrum with
the two strongest modes calculated for CCl,=PtCl, facilitates the identification of this
simple platinum carbene complex.

12.10
Th and CH, Yield the Agostic Methylidene Product CH,=ThH,

Thorium and uranium chemistries are centered on IV and VI oxidation state
compounds [22], respectively, so we thought it would be possible to prepare some
of the above group 4 and 6 complexes using the same reactions of these two least
radioactive early actinide metals. Following Ti, Zr, and Hf reactions, Th experiments
were conducted first with methane, and a group of five bands (1435.7, 1397.1cm ™"
ThH, stretch, 670.8 cm ™' C=Th stretch, 634.6 cm ™' CH, wag, and 458.7 cm™ ' ThH,
bend) tracked together upon photolysis and annealing and were assigned to
CH,=ThH, based on the mode characterizations and excellent agreement with
calculated frequencies, as shown in Table 12.9 [42]. Notice that the isotopic shifts for
the diagnostic Th=C bond stretching mode are nicely matched by the calculations.
The computed structure reveals comparable agostic distortion to that calculated for
CH,=ZrH,. Following the results with Ti, thorium reactions with methyl fluoride
gave a higher productyield, and the Th H, Th F, and Th=C stretching modes and
the CH, wagging mode correlate well with B3LYP computed values for the
CH,=ThHF product [43].

12.11
U and CHF; Produce the Methylidyne CH=UF;

Following the logic described above for Mo, it appeared that higher oxidation state
uranium products would be favored with more heavily halogenated reagents. The
analogous reaction with uranium and CHF; produced similar product spectra. New
absorptions were observed at 576.2, 540.2, and 527.5 cm ™" in the infrared spectrum
recorded after the initial reaction of U and CHF;. These bands increase by 30% upon
ultraviolet irradiation (A >290nm) and another 20% upon further ultraviolet irra
diation (A >220nm), and they are due to the major reaction product. The reaction
with CDF; gave the same upper band, the strong band shifted to 535.9cm ™", and the
lower band shifted below our region of observation.

On the basis of the agreement with density functional computed frequencies,
Table 12.10, the higher bands are assigned to the symmetric stretching mode of a
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Table 129 Observed and calculated fundamental frequencies of CH, ThH,?.

Approximate mode CH, ThH, BCH, ThH, BCH, ThH,
description
Observed Calculated Intensity Observed Calculated Intensity Observed Calculated Intensity

CH,, stretch 3142.6 2 3132.2 2 2321.7 2
CH, stretch 2861.4 11 2854.9 11 2084.7 2
ThH, stretch 1435.7 1434.9 350 1435.7 1434.8 350 b 1023.5 110
ThH, stretch 1397.1 1394.2 698 1391.7 1394.2 698 b 1005.7 98
CH, bend 1327.5 11 1320.5 11 989.0 340
C Th stretch 670.8 679.6 178 651.5 659.7 173 602.9 614.8 127
CH; wag 634.6 633.0 161 629.2 627.5 157 499.2 495.1 109
ThH, bend 458.7 492.8 110 492.3 108 355.8 34
ThH, rock 460.8 5 458.2 4 344.4 29
CH, twist 343.0 30 342.5 30 245.3 18
ThH, wag 3219 65 3216 66 230.2 30
CH, rock 248.4 62 248.1 62 177.5 30

a) B3LYP/6-311++ G(3df,3pd)/SDD level of theory. Frequencies and infrared intensities are in cm *and km/mol. Observed are in argon matrix. Intensities are calculated

values.

b) Region covered by CD, precursor absorption.
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Table 12.10 Observed and calculated fundamental vibrational frequencies for the C3, CH=UF; (X H, D, F) molecules.

Mode description BCH=UF; 13CH = UF, CD=UF,; CH=UF; CD=UF;
Observed? Calculated® Observed? Calculated” Observed? Calculated” Calculated® Calculated®
C Xstr, a 2979(2) 2969(2) 2200(1) 3069(1) 2267(0)
U=CX str,, a; 747(46) 9 721(42) 717(41) 715(20) 687(16)
U Fsym. str., a; 576.2 585(122) 9 585(123) 576.2 586(123) 586(142) 586(141)
U Fantisym. str,, e 540.2 561(284) 539.2 559(280) 535.9 541(207) 575(560) 545(478)
U=C Xbend, e 527.5 508(34) 9 506(24) 412(49) 520(43) 436(71)

a) Absorptions observed in argon matrix.

b) Vibrational frequencies (cm ‘) and intensities (km/mol, in parenthesis) are calculated using PW91/TZ2P. Three real lower frequency
bending modes (a ', e, €) are not listed.

c) B3LYP/6-311 ++ G(3df,3pd)/SDD calculation.

d) Sample too dilute to observe weaker bands.
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trigonal UF; group and the strongest band to the degenerate antisymmetric coun
terpart. The lowest band is due to the degenerate H U F bending mode, which is
blueshifted in the chloroform product. The B3LYP values are higher than the PW91
values, and in the case of the degenerate H U F bending mode, closer to the
observed spectral bands. Theoretical analysis shows that a triple bond is formed
between carbon and uranium in these methylidyne HC=UF; molecules [44].

Expanding the extensive methylidene and methylidyne organometallic chemistry
of the transition metals [45] to include actinide metals is a difficult challenge. This
may be due in part to the fact that actinide 6d and 5f valence orbitals do not behave like
transition metal nd orbitals, but we find some transition metal like behavior in the
early actinides. These investigations into Th and U methylidenes and methyli
dynes [42 44, 46] provide information on the existence and the nature of novel
actinide carbon multiple bonded species.
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13
Astronomical Molecular Spectroscopy
Timothy W. Schmidt

13.1
The Giants’ Shoulders

Stargazing, in its most primitive form, has entertained our species for hundreds of
thousands of years. The ancients used knowledge of the positions of fixed stars as
navigational aids and also recognized wandering stars (planets), comets, and novae.
The astrolabe, an instrument for fixing the positions of stars, was invented in
Greece some 2200 years ago. In medieval times, the positions of stars were of great
importance to the Islamic world to indicate the correct times for prayer and the
direction of Mecca, and the astrolabe was an important tool. Indeed, one of the
greatest observational astronomers, Tycho Brahe,? performed his measurements
without a telescope. He used a “great mural quadrant,” whereby stars were sighted
through a slotin a wall with a tool attached to a 90° arc. Accurate measurements of the
positions of stars and planets were made in this way, and they remained the most
accurate until the introduction of well built telescopes. Brahe died in 1601, passing
his legacy to Johannes Kepler,” who had joined him as an assistant only a year before.
Kepler continued to work with Brahe’s observations for a decade, during which he
developed the laws of planetary motion for which he is most famous, and advanced
theories on geometric optics. Kepler was a contemporary of Galileo,® who is credited
with the development and improvement of the refractive telescope. Galileo observed
the four largest moons of Jupiter and described the phases of Venus as being similar
to the Earth’s moon. Hans Lipperhey,” a German Dutch lensmaker, is widely
considered the inventor of the telescope. However, lenses themselves had been
known for at least 2000 years, and are the subject of many writings from ancient and
medieval times. Indeed, Ibn al Haytham,” considered by many the first scientist,
wrote extensively on optical properties of light and vision in his Kitab al Manazir

1) Tyge Ottesen Brahe, 1546 1601, Danish 3) Galileo Galilei, 1564 1642, Italian physicist,
astronomer. astronomer, and mathematician.

2) 1571 1630, German astronomer and 4) 1570 1619.
physicist. 5) Abu Ali Hasan Ibn al-Haytham (called Alha-

zen in Europe), 965 1039, Persian polymath.
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(Book of Optics, 1021), summarized by Roger Bacon over 200 years later in his
Perspectiva (1267). Al Haytham’s work was translated into Latin in 1270 as Opticae
thesaurus Alhazeni. He described many studies on parabolic and spherical mirrors,
the foundation for all modern optical telescopes, and performed the first recorded
experiments on the separation of white light into its constituent colors.

Around 1650, in Bologna, Grimaldi® observed that small apertures cause what he
referred to as diffringere. Moreover, he also observed that diffraction also resulted in
coloration. As an astronomer, Grimaldi made accurate maps of the visible geograph
ical features of the Earth’s moon and named them after scientists. Grimaldi’s
diffraction was explained by the wave theory of light put forward by Christiaan
Huygens”) in his Traité de la lumiere (1690), though the reason of the appearance of
different colors eluded him. In addition to studying light, Huygens described the
rings of Saturn and the largest of its moons, Titan. The atmosphere of Titan is today
the subject of intense chemical research following the successful deployment of the
Huygens probe by the Cassini orbiter in 2005.

Isaac Newton® wrote to the Royal Society in 1672 a letter enclosing his New Theory
about Light and Colors:

Where Light is declared to be not Similar or Homogeneal, but consisting of difform
rays, some of which are more refrangible than others: And Colors are affirm’d to be
not Qualifications of Light, deriv’d from Refractions of natural Bodies, (as ’tis
generally believed;) but Original and Connate properties, which in divers rays are
divers: Where several Observations and Experiments are alledged to prove the said
Theory.

Newton'’s letter begins, “To perform my late promise to you, I shall without further
ceremony acquaint you, that in the beginning of the Year 1666 (at which time
I applyed my self to the grinding of Optick glasses of other figures than Spherical),
I procured me a Triangular glass Prisme, to try therewith the celebrated Phzenomena
of Colours. And in order thereto having darkened my chamber, and made a small hole
in my window shuts, to let in a convenient quantity of the Suns light, I placed my
Prisme at his entrance, that it might be thereby refracted to the opposite wall. It was at
first a very pleasing divertisement, to view the vivid and intense colours produced
thereby.”

Newton explained refraction as a property of a corpuscular light, in which the
particles of different colors were refracted to different extents. This communication
marks the birth of spectroscopy, with the description of color arising from the
selective absorption and transmission of various components of the visible spectrum.
Newton communicated his studies on light to the general public in his Opticks: or, a
Treatise of the Relexions, Refractions, Inflexions and Colours of Light, released in 1704.
The treatise was written in contemporary English, rather than Latin, and dealt with

6) Francesco Maria Grimaldi, 1618 1663, Italian mathematician, physicist, and Jesuit priest.
7) 1629 1695, Dutch astronomer, physicist, and mathematician.
8) 1643 1727, English physicist, astronomer, mathematician, and alchemist.
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everyday phenomena in the language of everyday people. Importantly, just like
Al Haytham, Kepler, Galileo, Grimaldi, and Huygens, Newton contributed to the
development of astronomy and designed a reflecting telescope that now bears his
name. With the telecope and the prism, we have the tools of astronomical spectros
copy. Newton, standing on the shoulders of giants,” provided the tools with which to
investigate phenomena in the greatest laboratory of all: Outer Space.

13.2
The First Spectroscopists and Seeds of Quantum Theory

The wave theory of Huygens and the corpuscular theory of Newton were both
hugely successful, yet the wave theory of light gained the upper hand during the
nineteenth century. Ironically, Newton’s reputation and achievements served as a
barrier to further developments in fundamental understanding of light until the late
eighteenth century. In November 1801, Thomas Young'® delivered the Bakerian
Lecture to the Royal Society entitled “On the Theory of Light and Colours” [1]. In this
lecture, he begins carefully by deferring to Newton, going so far as to claim that his
theories are mostly a reinterpretation of Newton’s own writings: “A more extensive
examination of Newton’s various writings has shown me, that he was in reality
the first that suggested such a theory as I shall endeavour to maintain.” Yet, by the
end of the lecture, Young has all but destroyed the corpuscular theory of light by
demonstrating, quantitatively, that the colors of thin plates, oil films, and diffraction
gratings (“Mr Coventry’s Exquisite Micrometers”) can all be explained by an
undulatory theory of light. He postulates that “The Sensation of different Colours
depends on the different frequency of Vibrations excited by Light in the Retina,”
having himself dissected many [2]. Moreover, he accurately calculates the wave
number of the extrema of the visible spectrum as 37 640in.”" (14820 cm ™", 675 nm)
and 59750in.”" (23520cm ', 425nm), with yellow estimated at 44000in.”"
(17320cm™ ", 577 nm) (Figure 13.1). William Herschel'” had demonstrated, in
1800, that the sun’s radiation extended into the infrared, and Ritter made similar
observations in the ultraviolet the following year. In the same volume of Philosophical
Transactions, as Young’s lecture is published, Herschel publishes estimates of the
sizes of the asteroids Ceres and Pallas [3] and Wollaston'® remarks on dark lines
within the solar spectrum [4]. Analyzing the light of a flame, he says that the blue part
of the flame exhibits a series of four bands from the red to the blue, and a fifth band at
the boundary of the blue and violet regions. The red band was terminated with a

9) Newton used this ancient metaphor in a letter ered Uranus and named it George, for the
to Robert Hooke, which some have taken as a king of England.
sarcastic reference to Hooke’s stature. 12) William Hyde Wollaston, 1766 1828, En-
10) 1773 1829, English physician, physicist, and glish chemist and physicist. Discovered pal-
Egyptologist. ladium and rhodium.

11) Friedrich Wilhelm Herschel, 1738 1822,
German-born British astronomer. Discov-
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Figure 13.1 Young’s tabulated wavelengths and wave numbers for visible light, from his 1801
Bakerian Lecture. The frequencies suppose the speed of light to be 500000 000 000 ft. in 8.5 min,
2.99 x 108 ms 1, from astronomical measurements.

bright line of yellow. On the spectrum of an electrical discharge in air, he says, “I
cannot undertake to explain.”

Fraunhofer,"® who had become a skilled glassmaker and instrument maker,
invented the spectroscope in 1814. He located 574 dark lines appearing in the solar
spectrum, and still denoted Fraunhofer lines in his honor. The most prominent of
these dark lines were labeled with letters A K, and Fraunhofer noted the coincidence
between the D lines and a yellow emission feature known to occur in flames, which
Wollaston had described. In the early 1820s, he affixed his spectroscope to a telescope
in order to study the spectrum of stars other than the sun. The brightest star, Sirius,
was found to exhibit a spectrum quite different from and simpler than that of the sun,
while that of the Venus was virtually identical, it being seen in reflected sunlight.

Slowly, many of the dark lines exhibited in the solar spectrum were observed in
emission from laboratory flames, with various lines becoming associated with
particular elements. Indeed, the D lines of sodium observed by Wollaston and
Fraunhofer are still referred to as such. The exact explanation for the appearance
of lines in absorption and emission came from Kirchhoff and Bunsen'® who
published, in 1860, a list of laboratory lines and their correspondences with the
absorption features in the solar spectrum (Figure 13.2) [5]. Their work conclusively
proved that the sun contained the same elements as appeared on earth, among them
calcium and sodium. A few years earlier, William Swan"® described the emission

13) Joseph (von) Fraunhofer, 1787 1826, German.

14) Robert Wilhelm Eberhard Bunsen, 1811 1899, and Gustav Robert Kirchhoff, 1824 1887, German
physicists and chemists. Discovered rubidium and caesium.

15) 1818 1894, Scottish.
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Figure 13.2 Bunsen and Kirchhoff's spectroscope from Annalen der Physik (1860), showing
Bunsen’s famous burner. With this apparatus, one could observe the Swan bands of C, and the
hydrocarbon bands due to the CH radical.

bands that bear his name to the Royal Society of Edinburgh [6]. These had been
observed by Wollaston as the dominant emission from the blue part of a flame.

William Huggins'® pounced on the scientific opportunities facilitated by the work
of Kirchhoff and Bunsen and published the spectra of many elements in 1864 [7]. He
built a telescope and spectrograph in his garden and collected the spectra of various
stars, nebulae, and comets. This work was published almost simultaneously with that
of the American L.M. Rutherfurd, who also collected and classified various stellar
spectra. The first cometary spectrum, of Comet Tempel, was reported in 1864 by
Donati,'”) who reported the appearance of the Swan bands [8]. The appearance of
Swan bands in cometary spectra was confirmed by Huggins in 1868 in his report of
the spectrum of Comet Winnecke and also in Coggia’s Comet of 1874 [9, 10].
Remarkably, by comparison with the positions of Swan bands obtained from a
terrestrial flame, Huggins demonstrated that the relative velocity of the comet was
some 40 miles per second. The bright band near Fraunhofer’s G line at 4300 A was
conspicuously absent from the comet’s spectrum, being normally associated with the
Swan bands.

The Great Comet of 1881 was first observed by Tebbutt at Windsor, New South
Wales, now on the outskirts of Sydney,'® and its spectrum was obtained by Huggins
and others (Figure 13.3) [11]. Huggins correctly concluded that the bright lines
appearing at 3883 and 3870 A were due to carbon, in combination with nitrogen,
noting Liveing and Dewar’s demonstration that the spectrum was obtained from
cyanogen [12]. Huggin’s 1881 spectrum also revealed a band near 4050 A, which
would not be identified for another 70 years.

16) 1824 1910, English astronomer.
17) Giovanni Battista Donati, 1826 1873, Italian astronomer.
18) John Tebbutt, 1834 1916, Australian astronomer.
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Figure 13.3  Top: The spectrum of the Great  species are responsible for the emissions, CN
Comet of 1881, discovered by Tebbutt, as and Cs. The latter would not be identified until
recorded and published by Huggins. The 1951. Bottom: Tebbutt and his observatories as
Fraunhofer lines indicated are due to Ca™ (H, depicted in Australia’s original $100 note.

K), Fe (G),andHn 5—2 (h). Two molecular

By the late nineteenth century, spectroscopy was established as an astronomical
tool of great utility. The inherent curiosity of our species had spurred fundamental
studies of nature that had by now revealed the spectra of elements and molecules,
though these were not yet identified as such. The comets had revealed the great
ubiquity of the carbonaceous Swan bands, a hydrocarbon associated emission of
about 4300 A, and bright emissions from a cyanogen related form of carbon. These
phenomena were revealed to fundamental physicists by astronomical spectrosco
pists, but a proper understanding of them would have to wait until the advent of
quantum mechanics.

This chapter is about the relationship between astronomical molecular spectros
copy and computational spectrometry. A brief account of how the former gave rise to
the discovery of the quantum mechanical phenomena that necessitated the latter has
already been given. Happily, in 2010, we are approaching the age whereby quantum
mechanics can “give back” to astronomy and assist in solving problems, some as old
as 90 years. Between these periods, molecular astronomy and computational
spectrometry have walked hand in hand, one aiding the other in development and
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interpretation. In the following sections, we will deal with molecular astronomy
across four orders of magnitude of the electromagnetic spectrum, using case studies
to illustrate how computational spectrometry has advanced since the beginning of the
quantum theory.

13.3
Small Molecules

The spectra of many small molecules were obtained astronomically in the late
nineteenth and early twentieth centuries. However, in many instances, their iden
tification depended on the detailed understanding of spectroscopy afforded by the
developments in quantum theory in the first few decades of the twentieth century. As
0f2010, spectroscopic constants of small astronomical molecules can be calculated to
within 0.1, but it has not always been so. Nevertheless, computational spectrometry
has played its part in interpreting astronomical spectra throughout the twentieth
century, and the exquisite data afforded by molecular spectroscopy have provided
quantum chemists with the sparring partners necessary to hone their code.

13.3.1
CH, CN, CO,CcO™

By the end of the nineteenth century, the hydrocarbon spectrum observed by
Wollaston had been extensively reproduced in the laboratory. Although it was not
possible to establish with certainty whether hydrogen was required for production of
the Swan bands at 5635, 5165, and 4737 A, it appeared that it was required for the
4315 Aband, and as such this and the other bands associated with this feature came to
be known as the “hydrocarbon bands.” Similarly, the “cyanogen bands,” identified
first in comets, were known to involve both carbon and nitrogen. Liveing and Dewar
referred to these as the nitrocarbon bands in 1880 [12], and they were observed
brightly in the Great Comet of 1881 [11]. Other band systems known to be associated
with carbon were the Angstrom bands [13] and the “comet tail bands” [14].

The comet tail bands were first observed in the spectra of comets Daniel (1907d)
and Morehouse (1908c), especially bright in the tails. They were reproduced by
Fowler and shown most likely to be due to CO [14, 15]. As they were always produced
at very low pressures, some referred to these spectra as the low pressure carbon
bands. While CO is a major component of cometary gas, the lowest transition that can
be excited from the ground state is already in the vacuum ultraviolet and inaccessible
to early astronomers. As such, the spectrum of neutral CO was not known at first by
cometary spectra but by experimentation with discharge tubes.

Birge noted in 1926, “Until very recently it was impossible to give the exact
chemical origin of practically any band system, even of those most exhaustively
investigated. The long controversy concerning the Swan bands is a case in point.”
Indeed, the origin of the Swan bands in C, would not be accepted for a few years,
and Birge thought “it is doubtful such a molecule (diatomic) exists” [16]. In 1926,
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The National Research Council (Washington) published “Molecular Spectra in
Gases,” the report of the National Research Council Committee on Radiation in
Gases. A bound copy would set you back $4.50, but it would have been worth it just to
read Chapter 2: “a thirty page survey of ‘quantum dynamics and the correspondence
principle’, ... entirely on the basis of the old quantum theory rather than the
Heisenberg Schroedinger mechanics, which were developed too late for in
corporation” [17]. Notwithstanding, the theories were advanced sufficiently that
moments of inertia extracted from the quantized rotational structure were sufficient
to identify the carriers of the hydrocarbon and cyanogen bands as CH and CN,
respectively. The identification of the comet tail bands with CO™ stems from a
combination of the chemical evidence, the measured spectroscopic constants (now
more or less understood), and the fact that they occur in the region of the discharge
tube associated with cations [16]. These three diatomic molecules were among the
first radicals to be identified. They were discovered in space and contributed to the
development of the spectroscopy, which in the mid 1920s was developing into a
quantitative science.

In 1940, MacKellar reported on “Evidence for the molecular origin of some
hitherto unidentified interstellar lines” [18]. Coincidences between the lowest | lines
of CH and CN demonstrated these species to be interstellar. Indeed, from these
spectra, the temperature of interstellar space is calculated to not to exceed 2.7 K. In
fact, this is also the first evidence for the cosmic microwave background (CMB), for
the discovery of which, in 1965, Penzias and Wilson were awarded the 1978 Nobel
Prize in Physics. The dipolar CN molecule has since been used as a molecular
thermometer of the CMB [19]. In order to calculate column densities of CN, the
oscillator strengths must be known. The oscillator strengths in use are those of Roth,
Meyer, and Hawkins [20], who calculated values from a combination of total
electronic oscillator strength (from Jackson’s laser excitation studies [21]), Franck
Condon and Honl London factors.

Cartwright and Hay, at Los Alamos, made an attempt to calculate oscillator
strengths for the CN violet and red systems in 1982 [22]. Their CI study utilized
a set of orbitals derived from an MCSCF calculation of the anion, which is
isoelectronic with N,. With a [4s 3p 1d] basis, a decent agreement was found between
the measured and the calculated fluorescence lifetimes for the B2S* state (violet
system), with the calculated values about 6% high. However, the calculations for the
A’T1 — X227 red system were not in agreement with the experiment. Sumner Davis
et al. at Berkeley sought to clarify the relative oscillator strengths of the violet and red
systems in 1986, after discussions with Cartwright and Hay [23]. They directly
compared the oscillator strengths of the red and violet systems, and calibrated their
results with a check of the fluorescence lifetime of the vV = 0 level of the BZ™ state.
The results confirmed the validity of the experimental findings, and prompted
theorists at NASA to reattempt the calculation of the CN red system. In 1988,
Bauschlicher, Langhoff, and Taylor calculated oscillator strengths and emission
lifetimes for the red and violet CN systems [24]. They performed MRCI calculations
with a [5s 4p 3d 2f 1g] basis, calculating the radiative lifetime of the vV = 0 level of the
violet system in accord with that measured by Davis, but a little lower than some



13.3 Small Molecules

earlier investigations. Moreover, their calculated lifetimes for the violet system were
nearly identical with those of Cartwright and Hay. Again, the calculated lifetimes for
the red system were about twice as long as the experimental values. Lu, Huang, and
Halpern remeasured the vibrational levels of the red system in 1992, confirming the
error in the calculated lifetimes [25]. They suggested that the calculations had omitted
some effects assumed to be small, such as rotational interactions or quadrupole
terms. So, while astronomers can be satisfied that the experimental oscillator
strengths are reliable, it remains for computational spectrometry to predict the
correct lifetimes for the CN red system.

13.3.2
Dicarbon: C,

The Swan bands were known to be associated with carbon, but there persisted
uncertainty as to the carrier as late as 1927 [26]. Johnson concludes, “The evidence
both of direct experiment and of analysis is conclusive in assigning the Swan bands to
a HC CH molecule.” The same year Mulliken argued that the Swan bands are
“probably C,” [27], and by 1929 Johnson had come around to this way of thinking,
influenced, in part, by “more especially the rapid theoretical developments due to the
work of Mulliken and others” [28]. This paper also revealed more information on
Fowler’s “high pressure bands of carbon” [14, 15], which were shown to share the
lower state with the Swan bands."® In the same paper, Fowler described reproduction
of the “tail bands” of comets in low pressure CO, alluding to conversations with
Huggins that suggested that it was these bands that were seen in the 1868 comet
(Bronson). In 1939, Mulliken predicted 33 electronic states of C,, and calculated bond
lengths with remarkable accuracy using semiempirical formulas honed on the
knowledge of CN, N, *, N,, and O, [29]. It was unknown then whether the triplet
311, or singlet 12; state should be the “normal” state of C,, with Mulliken leaning
toward the triplet, without ruling out other possibilities, including 32;. These issues
were resolved by the discovery of a band system by Ballik and Ramsay in 1958 that
shared the lower state with the Swan and Fox Herzberg systems [30]. This had, as its
upper level, the 321{; state that Mulliken had entertained as a possible ground state.
Moreover, perturbations in the *3; levels were found to match equal and opposite
perturbations in the 12; state, revealing the singlet state as the ground state of C,. In
a conversation between Ramsay and the author,””) Ramsay described that Herzberg
took as many as eight matching perturbations as sufficient evidence as to this now
established fact. The band systems of greatest astrophysical importance then known
were the d’IT; — a*I1, Swan, ¢’Il; — a’TI, Fox Herzberg, b32; — a1, Ballik
Ramsay, D'S, — X'Z" Mulliken, and A'TT, — X'E" Phillips systems. The ¢*%,
state predicted by Mulliken could not be identified in spectra until the next century
(Figure 13.4).

19) These bands were, in fact, shown by Herzberg to be Swan bands with 1V = 6, this state being excited
selectively from the recombination of two carbon atoms in a three-body collision.

20) International Symposium on Free Radicals, Big Sky, Montana, 2007.
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Figure 13.4 Some of the valence states of C,, with notable band systems indicated. The “Duck”
bands were discovered in the author’s laboratory in 2006, the name being coined by Klaas Nauta for
d ¢, and the proximity of a pub called the Duck and Swan (not to scale).

With the ground state of C, fixed, and the positions of several states known,
Clementi proceeded to calculate the oscillator strengths of several band systems of C,
with impressive accuracy [31], using the “magic formula” of Mulliken to calculate the
hybridization of the molecular orbitals [32], checked against LCAO MO calculations.
Clementi used a compromise between his calculated values and the contemporary
experimental values for the oscillator strength of the Swan system to estimate the
abundance of dicarbon in the solar reversing layer, the Swan bands having been
observed in absorption in the spectrum of the sun [33].

In 1977, Souza and Lutz confirmed the dicarbon molecule as a component of the
interstellar medium, as evidenced by Phillips band absorption in the line of the sight
toward Cyg OB2 No. 12 [34]. This was the first new molecule identified in the
interstellar medium by optical spectroscopy since the late 1930s. In arriving at a total
abundance in this line of sight of 1 x 10 cm™?, they used the experimentally
determined oscillator strength for the 1 0 band of 2.4 x 10~* from Roux [35], which
did not differ so much from the earlier calculated result of Clementi. The following
year Chaffee and Lutz observed dicarbon toward C Ophiuchi, reporting a total
column density of 7.9 x 10'2 cm ™2 [36].

At the same time, with these astronomical developments, there were several
attempts to conquer C, by theory. Arnold and Langhoff published their CI study of the
Swan system in 1978 [37], and the same year a similar study by Zeitz et al. was also
published [38]. Chabalowski et al. improved upon these calculations in 1981 [39],
reporting accurate oscillator strengths for the Swan and Fox Herzberg systems,
and reported the results of similar calculations on the Mulliken, Phillips, and
Ballik Ramsay systems in 1983 [40]. These calculations are in very good agreement
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with the most recent ones from the author’s research group in Sydney. The
motivation for undertaking these calculations in Sydney is an interesting story and
highlights how computational spectrometry is now so advanced as to precede
experiment.

In 2004, Robert Sharp (Anglo Australian Observatory) and the author undertook
observations on the Red Rectangle (q.1). It was pointed out to us by Robert Glinski
(Tennessee Tech.) that our spectra of the 5800 A Red Rectangle bands (RRBs) had also
captured the (0,1) Swan band of C,. The Swan bands are dwarfed by the RRBs for which
the carrier is unknown. Nevertheless, we undertook to model the C, photophysically, on
the initial assumption that C, was a “solved problem.” This sort of kinetic model had
been built before by various groups [41]. However, there appeared to be some
uncertainty in the transition moments of some of the band systems invoked in the
models, which normallyincluded the a*IT,,, b32g’, Ax), Pl X 12; ,and A'TI, states.
Iapproached my friend and colleague, George Bacskay, to calculate these states using the
highestlevel possible in 2006. Partitioning the work between us and a graduate student,
Damian Kokkin, we obtained, eventually, excellent results for the primary spectroscopic
constants, generally to within 0.1%. This triumph was confused only by the terrible
agreement with the literature for the 032; state, where w, was calculated at 2061 cm ™ ?
with the experiment reporting 2085 cm ™" [42]. Such an agreement might have been
satisfactory 20 years earlier, but since all other states agreed with the reported spec
troscopy to within 0.19, we were confident that the calculations for the >} state were
indeed accurate, and searched the literature thoroughly. As it turned out, the ¢3S state
had actually never been observed, except in a photodetachment spectrum of the
anion [43]. The reported constants were the result of fitting five spectroscopic constants
to five perturbations of the ¢*Z" state with the A'I1,, state [44].

Being ambitious spectroscopists, and with the tools at our disposal, we undertook a
laboratory search for the predicted d*Il;«c*E, fluorescence excitation spectrum,
monitoring Swan emission, which theory had shown would dominate the Einstein A
coefficient. Due to the metastable nature of the ¢*%, state, it having no symmetry or
spin allowed downward transitions, it is formed easily enough (as it turned out) in a
pulsed electric discharge through argon containing about 1% acetylene. We obtained
excellent signal on the first day of trying and after some weeks had extracted spectra of
sufficient quality to extract the spectroscopic constants predicted by our calcula
tions [45, 46]. The experiments confirmed the validity of the computational results,
with w, measured at 2061.940 cm ™', only 0.03% above the calculated value. This
example of computational spectrometry taking priority of experiment, while seem
ingly minor, gives hope for the future, when age old problems of astronomical
spectroscopy may be solved using computers.

13.3.3
The Carbon Trimer: C;

What appear to be four lines centered around 4050 A in Huggin’s spectrum of the
Great Comet of 1881 would prove a mystery for 70 years [11]. The bands appeared in
many comets, though not all, sometimes when the CH spectrum around 4300 A was
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absent. In her report of the study of the spectrum of Comet Mellish (1915), Glancy
notes the appearance of the 4050 A group, which had also been observed in Comets
Zlatinsky (1914) and Brooks (1910) [47]. Importantly, she connects these bands with
the 1916 observations of Raffety in his study on discharges with carbon electro
des [48]. Indeed, Raffety’s work appears to be the first laboratory detection of the
4050 A group, and these bands were denoted Raffety’s Bands by Bobrovnikoff in his
1931 review, in which he suggests CN as the carrier of the bands [49]. Swings et al.
discussing the appearance of the bands in Comet Cunningham (1940), regard the use
of the term “Raffety’s Bands” inadequate and suggest the carrier to be an as yet
uninvestigated polyatomic molecule [50]. In 2010, the bands were commonly
referred to as the “comet bands” for obvious reasons. The comet bands were
reproduced by Herzberg in the laboratory in 1942 [51]. He suggested CH, as the
carrier, but it was shown by Monfils and Rosen, using a deuterated precursor, that the
carrier possessed no hydrogens [52]. However, suggesting nothing else, the iden
tification remained a mystery until 1951, with a landmark paper by Douglas [53].
Comparing laboratory spectra obtained with natural and *C enriched precursors,
Douglas concluded that the carrier was most likely Cs, which was confirmed by a
follow up study in 1954 [54]. The spectroscopy of C; was analyzed in detail in 1965 by
Gausset et al., a paper which, at the time of writing, has been cited nearly 250
times [55].

The carbon trimer poses a tricky problem for computational spectrometry, the
upper state being plagued by the complications of Renner Teller coupling. The
ground state is also rather unusual, having a vibrational frequency of only 63.4 cm ™.
Liskow et al. were able to calculate this at 69 cm ™' in 1972 [56], but this was perhaps
fortuitous as very high quality calculations by Saha and Western in 2006 yielded
85 cm ™! for this mode [57]. In 1977, Peri¢ Radi¢ et al. in Bonn treated both the ground
and the excited states of C; with configuration interaction using a polarized double
zeta basis [58]. They obtained excellent agreement with the excited state position,
predicting a value only 0.03 eV too low, or 4 nm to the red. However, the calculated
ground state bending frequency is quite poor. They calculated the total oscillator
strength for the A'IT,«X'%," transition to be about f = 0.061. Another result
reported is the theoretical position of the lowest triplet state of C3, which Peri¢ Radié¢
and coworkers put at 2.04 eV seemingly confirming the 2.10 eV phosphorescence
observed in matrix isolation spectra as originating in the a’Il, state. The precise
position of this state is not known from gas phase spectroscopy, and may be
astronomically interesting. Chabalowski et al. improved on the previous results of
the Bonn group in 1986 with a study employing a much larger basis set, revising the
oscillator strength to f = 0.052 [59]. This would correspond to an observable
emission lifetime of about 95 ns for the A'IT, — X 12; transition.

In 2001, Maier and coworkers succeeded in observing Cs in absorption toward a
number of astronomical sources, namely, € Ophiuchi, 20 Aquilae, and T Persei
(Figure 13.5) [60]. In calculating the column densities of C; toward these sources,
Maier et al. opted for a value of f = 0.016, some three times smaller than the ab initio
result of Chabalowski et al. Now, the theoretical result is a total oscillator strength,
assuming a Franck Condon factor of unity. Nevertheless, the predicted emission
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Figure 13.5 The absorption spectrum of C; seen toward T Ophiuchi by Maier et al. [60] compared
with a calculated spectrum at 80 K.

lifetime is directly comparable with observations. Indeed, the oscillator strength of Cs
is calculated from emission lifetimes on the order of 200 ns observed by Becker et al.
in 1979 [61]. A recent reinvestigation by Zhang et al. of the lifetimes of rovibrational
lines of Cj, in 2005, shows Becker and coworkers’ experimental results to be
essentially correct [62]. Their reported emission lifetimes span 192 227 ns for low
J levels of the A'1,,(000) state. The discrepancy between these values and those
predicted ab initio is possibly due to the variation of the transition moment with
geometry. The theoretical value of Chabalowski et al. is a f; value, evaluated only at the
equilibrium geometry. However, a 2002 MR AQCC calculation quotes a value of
fe =0.02, in accord with the derived experimental total oscillator strength of
0.0246 [63]. Although the 2006 results of Saha and Western are generally excellent,
they do not report oscillator strengths [57]. It would appear that the defining
computational spectrometry for Cj is yet to be reported. C; has now been observed
in many translucent sight lines toward reddened stars [64] and in the infrared
spectrum of the molecule factory, IRC + 10216, and Saggitarius B2 [65, 66]. As a
fundamental component of the interstellar medium, accurate calculations on the
spectrosocpy of C3 will certainly illuminate its role in the chemistry of space.

13.3.4
Radioastronomy

In the mid 1930s, it was shown by Cleeton and Williams that gases could absorb
microwaves in the centimeter region [67]. Following the World War II, scientists who
had diverted their attention to the development of radar could redirect their efforts to
fundamental science. In 1946, there was an explosion of spectroscopy of water and
ammonia in the centimeter region [68, 69]. However, detection of ammonia and then
water emission from extraterrestrial sources did not come until the reports of
Cheung et al. in the late 1960s [70, 71]. Cheung’s coauthors included Charles Townes,
who had won the Nobel Prize in Physics in 1964 “for fundamental work in the field of
quantum electronics, which has led to the construction of oscillators and amplifiers
based on the maser laser principle.” These reports were the first of the existence of
polyatomic molecules in the interstellar regions, as opposed to transient species in
comet tails. While the first molecules in space were identified through electronic
spectroscopy, it was the radioregions that yielded, by far, the majority of interstellar
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molecular identifications. As of July 2000, there were 123 interstellar molecules
known, with new discoveries being added at a rate of about 4 per year [72]. In
molecular radioastronomy, line positions can be measured to a precision of 1 partin
107, with laboratory measurements matching this precision [73]. Since rotational
spectroscopy is a ground state phenomenon, it poses excellent challenges and
opportunities to various computational methods. As radioastronomy progressed,
many new unidentified lines, or “U” lines, were discovered. The discovery of the
identity of these interstellar molecules is greatly enhanced by theoretical predictions
of structure and centrifugal distortion. An excellent example of this is the first
detection of an interstellar anion. In 1995, Kawaguchi and coworkers reported a
series of harmonically related U lines, a signature of a linear molecule, in a survey
toward IRC + 10216, a source often called the “molecule factory” [74]. Seven lines
were identified consistent with a linear molecule having a rotational constant of
1376.8641(4) MHz. From this, the unidentified species was designated B1377. Aoki
performed ab initio calculations of various candidates [75]. He noted, in 2000, that the
rotational constant was similar to CgH and CsN, and while noting that no anion had
yet been discovered in interstellar space, recommended that “the U lines with the
rotational constant of 1377 MHz may originate from the C¢H™ anion. The B1377
spectrum was reproduced in the laboratory in 2006 by McCarthy et al. at the Harvard
Smithsonian Center for Astrophysics [76]. The laboratory B constant was measured
at 1376.86298(7) MHz, compared to the astronomical measurement, 1376.86248
(294) MHz. John Stanton performed a CCSD(T)/cc pVIZ calculation to predict a
rotational constant of 1376.9 MHz, confirming without doubt the chemical origin of
the B1377 spectrum. Consequently, C;H™ was discovered in the envelope of the
carbon star IRC + 10216 [77]. The anion had been previously identified, along with
CgH ™, in the laboratory by the Harvard Smithsonian group [78]. They compared
measured constants to Stanton’s CCSD(T)/cc pVTZ calculations with the vibration

rotation correction calculated at the CCSD(T)/cc pVDZ level of theory. For both
anions, the error is only 0.02%, highlighting the importance and success of
computational spectrometry in aiding the identification of laboratory and interstellar
spectra. CsH ™ has since been detected in the Galactic molecular source TMC 1 [79].

13.4
The Diffuse Interstellar Bands

The first descriptions, in 1922, of unidentified absorption features seen toward
reddened stars were due to Mary Lea Heger [80]. Merrill’s studies had demonstrated
that these features did not follow the oscillatory motion when observed toward binary
systems and thus were due to the interstellar medium [81]. Merrill knew of four
features, at 5780.4, 5796.9, 6283.9, and 6613.9 Awith a vague feature at 4427 A being
“suspected.” There are now hundreds of confirmed diffuse interstellar bands, but not a
single one has been assigned to a carrier, despite decades of detailed investigation. In
the late 1970s, it was generally assumed that the carriers arose from impurities in
grains acting as color centers. However, Smith et al. renewed interest in molecular
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carriers [82]. Also in 1977, Douglas, who had years earlier identified C; in the
laboratory, suggested carbon chains as carriers of the diffuse interstellar bands and
that the observed widths of the lines arose from the rapid internal conversion [83]. It
was known by then from radioastronomy that carbon chains existed in the interstellar
medium.

Computational results aid in interpreting and understanding laboratory spectra.
While calculations may not always be able to reproduce oscillator strengths and band
positions quantitatively, there is still value in qualitative results. Coulson would have
agreed. At the molecular quantum mechanics conference in 1960 at Boulder,
Colorado, he is said to have pleaded in his after dinner speech “give us insight,
not numbers!” [84]. An example of this with regard to carbon chain molecules and
DIBs is in the strengths of electronic transitions of odd, hydrogen terminated carbon
chains, HC;, , 1 H [85]. These molecules possess one 1, and one 7, electron for each
carbon in the chain, ensuring that the ground state has odd occupancies of each of the
two perpendicular rt systems. The ground state is thus a triplet, and electronic
excitations take place by promoting electrons from the nth s, , orbital to the n + 1th,
or from the singly occupied n + 1th to the n 4 2th (LUMO). At the Hiickel level, these
transitions give rise to a pair of degenerate excited states, due to the symmetry of the
energy level spacings in the m system. Introducing configuration interaction acts to
split these states into even and odd combinations of the one electron excitations. As it
turns out, the lower energy excited state, which had been the focus of laboratory
investigations, is the odd combination [86]. This has the consequence that the
transition moments of each one electron excitation cancel, and the A’ HX3Zg’
carries very little oscillator strength and is therefore not likely to be a good candidate
for astronomical detection (a match to a DIB would have been self evident). The
oscillator strength is carried by the B*S, <—X3Zg transition, which we calculated by
CASSCF to have oscillator strengths greater than unity and increasing with chain
length. For HC;9H, which we detected using R2C2PI spectroscopy, the CASSCF
BS X 32; oscillator strength is calculated to be about 10. Higher level calculations
by Mithlhduser et al. using MRCI for smaller members of the series predict an fvalue
about two thirds this value [87]. Indeed, these consequences are predicted by the
pairing theorem put forward by Coulson and Rushbrooke in 1940 [88].

Observations on infrared emissions at characteristic wavelengths in the 1970s led
to polycyclic aromatic hydrocarbons (PAHs) being suggested as the carrier [89].
PAHs are transiently heated by absorption of ultraviolet photons and then fluoresce
in the infrared through vibrational transitions on the ground state following internal
conversion. Léger and d’Hendecourt dedicated their 1985 paper on the DIBs to the
memory of Douglas, in which they hypothesize that the DIBs are due to polycyclic
aromatic hydrocarbons [90]. A similar hypothesis was put forward by van der Zwet
and Allamandola [91]. Crawford, Tielens, and Allamandola, realizing that even small
PAH cations exhibited transitions in the DIB range, proposed this class of molecular
ion as a set of candidates [92]. With carbon chains and PAHs, neutral or ionized, we
have the most seriously considered candidates for the DIB carriers. Computational
spectroscopy may be of great use to experimentalists in identifying candidate carriers
for investigation in the laboratory. For instance, for PAHs comprising between 4 and
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10 fused benzene rings, there are over 20 000 possibilities! It is clearly impossible to
synthesize every possible species and measure its excitation under simulated
astrophysical conditions.

Weisman et al. applied TDDFTwith the 6 31G* basis to show that closed shell PAH
cations exhibit spectra dominated by a strong absorption in the DIB range, with
oscillator strengths in the f ~ 0.2 range [93]. Since few DIBs exhibit any perfect
correlation in equivalent width, it is generally assumed that each DIB arises from a
different species, hence the need for a single strong transition to dominate the
spectroscopy. Recently, Hammonds et al. performed a similar study on hydrogenated
and protonated PAHs [94]. For more standard PAHs and their cations, a database is
maintained by Malloci et al. at http://astrochemistry.ca.astro.it/database/. At the time
of writing, it contained calculated spectra of 40 PAHs in various charge states.

In 2010, with the DIB problem still unresolved, the problem lies more with
experimental techniques. Itis rather simple these days to select a candidate molecule,
optimize the geometry at the B3LYP/6 31G* or a similar level, and run a TDDFT
calculation. The positions of excited states may be within 0.3 eV of the eventual
answer, but matches to DIBs must be spectroscopically exact. In the author’s opinion,
a real contribution to solving the problem may come from finding, using theoretical
methods, a chromophore with large oscillator strengths and near vertical excitations.
In doing so, laboratory measurements may be guided toward more likely DIB carriers
and effort will be more fruitfully spent.

13.4.1
The Hump

The most prominent feature on the interstellar extinction curve, and thus the biggest
DIB of all, is the so called 2175 A “hump,” discovered in 1965 [95]. It was immediately
realized that this could be explained by graphitic particles in the interstellar medium,
an idea that fits well with the later proposed carriers of the DIBs and the AIBs. In
1991, using the CNDO/S method, Braga et al. suggested that fullerenes could be
responsible for the hump [96]. Sitting between fullerenes and graphitic particles,
carbon onions were proposed in 2003, from comparisons with actual spectra [97].
Recent calculations at the B3LYP/4 31G level have shown that a mixture of dehy
drogenated PAHs could give rise to this feature [98, 99]. So, it would appear that there
is a range of materials that could conspire together to give rise to the 2175 A hump.
Unfortunately, computational spectrometry is not yet at a stage to rule out candidates,
but rather shows that a great variety of aromatic carbonaceous materials may be
responsible.

13.5
The Red Rectangle, HD44179

The Red Rectangle is one of the brightest objects in the sky when viewed at a
wavelength of 3.3 um (Figure 13.6) [100]. It has a peculiar shape, which at low resolution
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Figure 13.6 The emission spectrum from the biconial Red Rectangle nebula (below). The Red
Rectangle bands are presumed to be due to as yet unidentified molecules. Spectrum courtesy of Rob
Sharp, Anglo Australian Observatory. Photograph from Hubble Heritage archive.

appears to be a red rectangle, but Hubble Space Telescope images reveal to be a beautiful
biconical nebula, a view almost exactly side on, so as to appear like a bow tie [101]. In
1980, Gary Schmidt et al. reported molecular emission in the nebula, the most
prominent series of emission being on the red side of 5800 A [102]. In 1995, Sarre
noted a tantalizing coincidence between the blue edge of these emissions and several
DIBs, raising the possibility that the carriers may be the same species and opening a new
front in the experimental assault to uncover the carriers [103]. A crucial part of the
hypothesis is that the Red Rectangle bands, being degraded to the red, are due to hotter
versions of the same species as the DIB absorber. We showed, using a combination of
DFT and molecular mechanics, that the broadening observed in the RRBs is consistent
with large organic molecules heated at moderate temperatures of a few 10s of Kelvin,
getting colder toward the edges of the nebula [104]. A suggestion by Glinski that the
carrier could be phosphorescence from Cj is unlikely, yet the precise position of the
lowest triplet state of C; remains unknown [105]. It also remains to be proven whether
the RRBs actually do converge upon the DIB positions, but nevertheless, the carriers of
the RRBs remain undiscovered as of 2010 and still pose a very interesting problem for
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astronomical spectroscopy [106]. As with the carriers of the DIBs, computation can aid in
reducing the size of the field of candidates for experimental investigation.

13.6
The Aromatic Infrared Bands

As mentioned above, a set of infrared emission features observed since the
1970s [108] were suggested to be due to polycyclic aromatic hydrocarbons [89].
These bands were referred to, for a long time, as the “unidentified infrared bands,”
though more commonly in 2010 it is accepted to call them the “aromatic infrared
bands” (AIBs). The strongest AIBs lie at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.4 um, which
had been noted by Duley and Williams to coincide with typical vibrational frequen

cies of organic molecules [109]. There has been much effort dedicated to under

standing the AIBs and what these emission features tell us about interstellar and
circumstellar chemistry. Much of the computational work has been carried out by
Charles W. Bauschlicher, Jr., at NASA, with over 40 papers on the topic. In 2008, the
NASA group reported DFT calculations on PAHs as large as Cy30Hye [110]. The
largest PAH ever studied spectroscopically as an isolated gas phase molecule is hexa

peri hexabenzocoronene, Cy,Hyg, also reported in 2008 [107]. Bauschlicher and
coworkers, content to use the 4 31G basis set with the B3LYP functional, have
provided the “insight” that Coulson would have requested. They suggest that the
AlBs are due to a mixture of large and small PAHs, which are symmetrical and
compact. Substitutions with nitrogen may improve the agreement between astro

nomical and synthetic spectra further still. These conclusions were supported by a
2009 report by the same authors, where irregularly shaped PAHs were studied at
sizes up to Cqp0Hj36 [111]. The spectroscopy of nitrogen containing PAHs (PANHs) is
largely unexplored, especially for larger members. If these are indeed the carriers of
the AIBs, itis also possible that they enter the diffuse interstellar regions and present
themselves as the carriers of the DIBs. If this turns out to be the case, then it is clear
that computational spectrometry would have played a significant role in guiding
experimentalists toward these species.

13.7
The Holy Grail

One chapter is insufficient to mention every interaction between computational
spectrometry and astronomical spectroscopy. However, what I have attempted to
communicate above is the complexity and bilaterality of the relationship that these
two fundamental fields of endeavor enjoy. It was astronomers and their laboratory
bound companions who first studied the spectra of atoms and small molecules, as
observed in astronomical sources such as the sun, other stars, nebulae, and comets. It
was in part due to these data that led Bohr and others to propose quantized energy
level structures for atoms, but Mulliken more than others advanced our understand
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ing of molecular structure by seeking to explain the band spectra presented by
astronomers and molecular spectroscopists. His Nobel Prize in Chemistry, awarded
“for his fundamental work concerning chemical bonds and the electronic structure of
molecules by the molecular orbital method,” in 1966, was overdue. By then
computational spectrometry was beginning to take off as a subject with the possi

bilities afforded by the developments in computing. In 2010, computational results
are used regularly for large molecules as a qualitative guide for experimental
investigation, and there are some results, such as the spectroscopy of the ¢*= .}

state of C,, where computation was the first to arrive at the correct answer.*" Our
work on C, showed the possibility to calculate vibrational frequencies of second row
diatomic molecules to within 0.1%. However, the absolute positions of electronic
transitions were generally calculated to within about 0.5% of the true values. Coulson
may have wanted insight rather than numbers, but in the coming years it need not be
“either or.” What I will put forward is the “Holy Grail” of computational spectrom

etry as it relates to astronomical spectroscopy, to calculate the electronic spectra of a
large organic molecule to spectroscopic accuracy. This may at first sound like an
unreasonable request because it is! Let us lay down this challenge in 2010 to
calculate electronic spectra of molecules with accuracies of 1 cm™ or better on each
band. We have shown that this is still not possible for C, in a single calculation, buta
series of calculations that isolate the effects of basis set size and level of correlation
may be found to achieve the task. Just as the list of known molecules in space had zero
members in 1940, so is our list of accurately calculated electronic spectra in 2010,
some 70 years later. The author sincerely hopes that in the next 70 years of his life (by
which time he will be 105!) he will see computational spectrometry develop to the
stage where calculations of electronic spectra make redundant the careful collection
of laboratory spectra. The only pity would be that playing with lasers, vacuums, and
discharges is a lot of fun. Let us begin.
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approach 159

applications
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BINOL (1,1’ bi(2 naphthol)) 252, 254
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biphenyls, polychlorinated 325
birefringence, circular 223 239
BMIM™ (1 butyl 3 methyl imidazolium)
284, 314
BO, see Born Oppenheimer . ..
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390 392
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Bohr’s theory 5
Boltzmann weights
bond lengths 105
effective 142
equilibrium 141
experimental 114 116
bond specific Badger rules
bonds
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hydrogen 96
intramolecular hydrogen 51
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constants 106 108
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Born Oppenheimer (BO) approximation 65
dipole moments 185 186
discussion 180 182
Born Oppenheimer (BO) Hamiltonian 67
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boundary conditions
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Bunsen, Robert Wilhelm Eberhard 380 381
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1 butyl 3 methyl imidazolium (BMIM™)
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calculations
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coupling constants 54
direct time domain 231 238
errors 55
generalized dielectric constant
harmonic frequencies 355
Hiickel 208
magnetic tensors 63 104
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nonadiabatic 173 199
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vibrational frequencies of new
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Car Parrinello molecular dynamics (CPMD)
scheme 162
carbenes 367 371

carbon monoxide ion (CO™) 383 385
carbon tetrachloride (CCLy) 367 371
carbon trimer 387 389
carbonaceous Swan bands 382

Cartesian vectors, orthonormal 193
CASSCF (complete active space self consistent
field) 153
cassiterite 344
catalysts, enantioselective 254
cations
organic 284
trihydrogen 25
CC (coupled cluster) theory 153
CCl, (carbon tetrachloride) 367 371
CD (circular dichroism), vibrational 223 239
CE (Cotton effect) 242, 256
cells, biological 310 311
center of mass motion 24, 283

center of mass operator 176
charge
“charge arm” 284

charged dipolar systems 279 321
Mulliken 356
nuclear charge distribution model 213
surface 159
chemical reactions
simple atom molecule 353
surface 324 325
chemical shift 37 41
CSA tensor 329
chemistry
environmental
organometallic
quantum 1 36
CHF; (fluoroform)
CH;F (fluoromethane)

323 351
374

371 374
360 362

CHFCIBr 206 207,212 214
chiral adsorbates 262
chiral molecules 201 221

randomly oriented 233
chiral phosphorus compounds
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operator

rule 251
chiroptical spectroscopic technique
chirospecific response 232
chloroform 101, 305, 364 366
chromophores 243 244, 248 252
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CI (configuration interaction), truncated 259
circular birefringence (CB) 223 239
circular dichroism (CD)

electronic 241 277

vibrational 223 239
circular polarized y radiation 207
CIS (configuration interaction singles)

153 155, 161 162
Clausius Mosotti equation 184
closed shell systems, neutral 140
CMB (cosmic microwave background)
CO™ (carbon monoxide ion) 383 385
“coarse grained” models 66
codeposition 357, 369
cold molecules 206
collective dipole moment, total 282 286
color, “Theory of Light and Colours” 379
comet rule, empirical 270
comet tail bands 383 384
commuting operators 178 179
complete active space self consistent field

(CASSCF) 153
complex electric field 235
complex numbers 15, 26 27

hyper 18
complexes

Al organic 337 339

Kubas 367

metal dihydride 362

super 366 367

tempo alcohol 89
compliance constants 139 140, 362
computation, symbolic 34
computational conformational

optimization 253
computational dielectric spectroscopy

applications 299 316

charged dipolar systems 279 321
computational NMR spectroscopy 37 61
computational simulation, see simulation
computational spectrometry

carbon trimer 388

concepts 1 36

environmental chemistry 323 351
condensation, Bose Einstein 210
Condon

Franck Condon factors 384

Franck Condon like response 160
conducting boundary conditions 287, 305
conductivity
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frequency dependent

parabola 316

static 289, 312
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Index
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261 270
configuration interaction (CI), truncated 259
configuration interaction singles (CIS)

153 155, 161 162
conformation 241

peptides 100
conformational manifolds 246 247
conformational optimization,

computational 253
conformational search, Monte Carlo

based 267
conformers, § sheet 230, 303
conjugated aromatic ring 97
conservation of orbital symmetry 33
constants of integration 10
contaminants, organic 323
continuum models 53

PCM, see polarizable continuum model
coordinate matrix 7
coordinate transformation 175, 193
coordinates

electronic 180, 185 186

mass weighted 119

molecule fixed system 192 195

redundant sets 137

translation free internal 177 178
correlated Gaussian functions 189
correlation, auto 288
correlation coefficients 142
correlation functions, time 286
cosine functions, phase shifted 302
cosmic microwave background (CMB)
Cotton effect (CE) 242, 256
Coulomb, DC HF theory 206
Coulomb interactions 174, 180, 228, 295
Coulomb’s law 294
counterions, iminio 267
coupled cluster calculations 213
coupled cluster (CC) theory 153
coupled oscillators 248 251
coupling

degenerate 251

hyperfine 71, 81, 91

mass 123

quadrupole 71 72

Renner Teller 388

spin orbit 70 71

vibronic 261
coupling constants

Fermi 203

hexafluorocyclotriphosphazene 54

hyperfine 66 84

spin spin 45 52

384

CPT symmetry 201

creation operator 15 16

cross correlation function 227

cross polarization detection
configuration 232 234

crystal field, lattice 209

crystal truncation rod (CTR)

crystals, macroscopic 3

CSA (chemical shift anisotropy) tensor

CTR (crystal truncation rod) 329 330

cuprite 29

cyanide 383 385

cybotactic region 101

cyclic amines 39

cyclobutene 32

cyclohexa 1,3 diene, 5 methyl 245

cyclohexane 158

cyclopentadienyl anion 267

D lines of sodium 380

329 330

329

d
d orbital hole 29
dAMP (2 deoxyadenosine 5’
monophosphate) 339
Daphniphyllum macropodum 267
Davydoff splitting 253
DC HF (Dirac Coulomb Hartree Fock)
theory 206
Debye equation 184
Debye processes 300
decomposition
singular value 269
system bath 86
defects, “free from” 30
deformation mode 366 367
degenerate coupling 251
degrees of freedom, angular
delocalization, spin 97
delocalized bonds 134
delta function, Kronecker 5
DEMO (dynamic extended molecular
orbitals) 187
denatured proteins 229
density functional theory (DFT)
212 214
astronomical molecular spectroscopy
392 394
environmental chemistry 330 333,
342 345
magnetic parameters 64, 72 73, 79, 82
NMR spectroscopy 46 50
periodic DFT MD simulations 336
time dependent, see time dependent density
functional theory

192

131, 163,



density matrix 65
2’ deoxyadenosine 5" monophosphate
(dAMP) 339
destruction operator 15 16
detection, cross polarization 232 234
determinant
“excited” 152
Slater 68, 152
deviation, mean absolute 83 84
DeVoe method 248 251
DFT, see density functional theory
di (tert butyl nitroxide (dtbn) 85, 95
diagnostic interionic modes 355
dialane, dibridged 356 359
diastereomeric compounds 266
diatomic molecules
as anharmonic oscillator 17 20
Badger type relationships 112 118
dipole moments 190
heteronuclear 195
3a,6a diazapentalene 45
dibridged dialane 356 359
dicarbon 385 387
valence states 386
dichroism
linear 248
vibrational circular 223 239
dicyanoamide, 1 ethyl 3 methyl
imidazolium 290, 301
dielectric conductivity 312 314
dielectric constant
generalized 286 293, 315 316
imaginary part 226
local 293
solvents 88
dielectric field equation 279 282
dielectric permittivity 314
dielectric polarization, total 279
dielectric relaxation time 300
dielectric solvent effects (DSE) 53
dielectric spectroscopy, computational
279 321
differential operators 9
differential overlap 259
diffuse interstellar bands (DIBs) 390 392
diffusion tensor, generalized 98
diffusive operators 66
dihedral angle 212, 254
dihydride complex, metal 362
1,2 dihydro 1,2 azaborine 52
dimer model 335
dimers 253
dimethyl ether 24
dipolar displacement 288, 295

Index

dipolar moment, molecular electric 32
dipolar spin spin interaction, magnetic 71
dipolar systems, charged 279 321
dipole densities, translational/rotational 280
dipole dipole tensor 294
dipole moment
diatomic molecules 190
EEDM 202
measurements 184 185
nonadiabatic calculation 173 199
total collective 282 286
dipoles
oscillating electric 233
transition 250
Dirac constant 4
Dirac Coulomb Hartree Fock (DC HF)
theory 206
Dirac matrices 204
Dirac operators
creation and destruction 15 16
parity conserving 208
Dirac pseudoscalar 203
Dirac van Vleck vector model 46
direct magnetic dipolar spin spin
interaction 71
direct time domain calculation 227 231
direct time domain measurement, VOA free
induction decay field 231 238
discreteness, laws of 3 5
dispersion, optical rotatory 223
dispersion repulsion contribution 94
dissection
molecular 244
polyatomic molecules 118 131
dissolved organic matter (DOM) 323
distance, “effective” 77
DNA, computational dielectric
spectroscopy 309 310
DOM (dissolved organic matter) 323
donor ions, proton 52
double bonds 143
double hybrid functionals 260
double perturbation theory 72
ds DNA 310
DSE (dielectric solvent effects) 53
dtbn (di tert butyl nitroxide) 85, 95
dynamic criterion 127
dynamic extended molecular orbitals
(DEMO) 187
dynamical effects 84 98
dynamical variables 18
dynamics
molecular, see molecular dynamics
water 343 345
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Index

e
ECD (electronic circular dichroism)
hybrid approaches 247 256
solid state 266 268
spectra 254 255, 268 270
TDDFT 246, 257 272
EEDM (electron electric dipole
moment) 202
effective bond lengths
effective distance, 77
effective force constants 131
effective Green function 298
effects
Cotton 242, 256
dielectric solvent 53
dynamical 84 98
electron correlation 212
environmental 86 89
Mills Nixon 41
modeling of solvent effects
polarity 158
short /long range solvation 167
solvent 53 54
stereoelectronic 84 98
Zeeman 22
Einstein
BEC 210
Einstein’s relation 99
Nernst Einstein relation 312 313
electric dipolar moment, molecular 32
electric dipoles, oscillating 233
electric field, complex 235
electric field gradient 81 82
electric Hessian matrix 75
electric resonance experiments, molecular
beam 185
electric transition dipole 250
electrocyclic process, stereospecific 32
electron correlation effects 212
electron electric dipole moment
(EEDM) 202
electron paramagnetic resonance (EPR) 63
104
electron rich methyl halides
electron spin resonance (ESR)
observables 64
electronic Bohr magneton 67
electronic circular dichroism (ECD)
hybrid approaches 247 256
solid state 266 268
spectra 254 255, 268 270
electronic coordinates 180, 185 186
electronic effects, stereo 84 98
electronic spectroscopy, parity violation 209

241 277

142

157 161

360
101, 213, 333

241 277

electronic structure theory 67 69
electronic Zeeman interaction 72
electrostatic interactions 20
electrostatic potential, molecular 44
electrostatics, finite system 294 299
empirical comet rule 270
S enantiomer 205
enantioselective catalysts 254
enantioselective HPLC 263
Encyclopedia of Computational
Chemistry 333
energy
absorption 166

excitation energy errors 164 165
gas phase 92 93

kinetic 80

PED analysis 128 129

potential energy surface 118

residual 8
Stark rotational 184
vibrational rotational 21 22
zero point 8
energy matrix 7
enthalpy, reaction 332
environmental chemistry 323 351
environmental effects 86 89
EPR spectra, free radicals 63 104
equation of motion (EOM) formalism 154
equations, see laws and equations
equilibrium
bond lengths 141
generalized dielectric constant 286 293
geometry 90
errors
excitation energy 164 165
in theoretical calculations 55
self interaction 258
ESR (electron spin resonance)
observables 64
ether, dimethyl 24
1 ethyl 3 methyl imidazolium
dicyanoamide 290, 301
ethylene, twisted 211
Euler Lagrange equations
Ewald scheme 298
exchange correlation functional, hybrid 155
exchange potential, Kohn Sham 156
excitation energy errors 164 165

101, 213, 333

129

excitation spectra, fluorescence 387
“excited” determinants 152

exciton chirality rule 251

exciton coupled ECD 245
experimental bond lengths 114 116

experimental coupling constants 54



experimental force constants, bond
stretching 113 116

extended X ray absorption fine structure
(EXAFS) spectroscopy 329 330

extinction coefficients, molar 157, 249
f

F substituted borazines 51

FC (Fermi contact) 46

Fe hydroxide dimer model 335

femtosecond spectral interferometric
approach 232 238

o FeOOH (goethite) 324, 334 336

Fermi contact (FC) 46

Fermi coupling constant 203

Fermi resonances 132 133

fermions 189

Feynman theorem, Hellmann 179, 186,
190 191

FID (free induction decay) field 231 238
field

CASSCF 153
complex electric 235
dielectric 279 282
FID 231 238

force field parameterization 345
interaction with molecules 182 184
lattice crystal 209
Lorentz 296
Maxwell 279, 294
reaction field method 296 297
reactive force 333
self consistent 28, 73
field gradient, electric 81 82
field reduced splitting 195
fine structure, EXAFS spectroscopy 329 330
finite system electrostatics 294 299
first hydration layers 317
fluorescence excitation spectra 387
2 fluorobenzamide 38
fluoroform (CHF;) 371 374
fluoromethane (CH3F) 360 362
Fokker Planck operators 66
folding motion 128
force
long range intermolecular
reactive force field 333
force constant matrix 139
force constants
compliance 139 140
effective 131
experimental
intrinsic 138
quadratic 131

183

113 116
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force field parameterization 345

four particle molecule 188

Fourier Laplace transform 287, 293,
300 302

Fourier transform spectral interferometry
(FTSI) 234 237

Fourier transformation 14

Fox Herzberg system 385 386

fractionation factors, isotopic 328
Franck Condon factors 384
Franck Condon like response 160 161

Fraunhofer, Joseph (von) 380
“free from defects” 30
free induction decay (FID) field 231 238
free radicals, EPR spectra 63 104
Free Wilson matrices 43
frequencies
fundamental 359 361, 365, 370 373
harmonic 355
intrinsic 135 139

IR active 358

local modes 134 135
overtone 136

vibrational 326, 353 375

frequency dependent bandwidth 261
frequency dependent conductivity 313
friction tensor 99
FTSI (Fourier transform spectral
interferometry) 234 237
functionals 82 84
DFT, see density functional theory
double hybrid 260
hybrid 69
hybrid exchange correlation 155
functions
correlated Gaussian 189
cross correlation 227
effective Green 298
Gaussian 13
Green 279
Havriliak Negami
Kronecker delta 5
one center Gaussian 191
phase shifted cosine 302
polynomial 190
SCF wavefunction 187
time correlation 286
time correlation function theory
224 227
variational 179, 189
wavefunction 9
Whittaker M/W 10 13
fundamental frequencies
370 373

301
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gfactor 21 22
vy radiation, circular polarized 207

g
g tensor 66 84

isotropic 85
Galilei, Galileo 377
gas phase energy 92 93
gauge including atomic orbitals (GIAOs) 80,
328
Gaussian functions 13
correlated 189
Gaussian theorem 281
generalized dielectric constant (GDC)
286 293, 315 316
generalized diffusion tensor 98
geometry
molecular 106 108, 182
optimization 109
Glashow Salam theory, Weinberg
glass, surfaces 341
GLOB model 93
goethite (o FeOOH) 324, 334 336
gold nanoclusters 262
gradient, electric field 81 82
gradient vector 139
great mural quadrant
Green function 279
effective 298
Green Kubo approach 289
group theory 201
groups
Schleyer's 44
symmetry breaking 244

202

377

h
halides, electron rich methyl
Hamiltonian 7
Born Oppenheimer 67
Bouchiat 211
molecular 23, 174 178, 192
nonrelativistic 16
radiation matter interaction 224 225
spin 66 84
harmonic frequencies
harmonic oscillator
canonical linear
quantum theories 5 20
harmonic potential 120
harmonic wave number 26
Hartree Fock (HF) theory 69
DC HF 206
time dependent 257
Havriliak Negami function 301

360

355

11 12,18 19

Heisenberg’s principle of indeterminacy 5

helical systems 215

helicity rules 269

helicogenic amino acids

o helix, VCD spectra 231

Hellmann Feynman theorem 179, 186,
190 191

hen egg white lysozyme 305

Hermite polynomial 11 13
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Herschbach Laurie equations, Badger 111
Herzberg system, Fox 385 386
Hessian matrix 105
electric 75
heterocycles, aromatic 37
heterodyned spectral interferograms 237

heteronuclear diatomic molecules 195
heteropentalenes 42 43
hexafluorocyclotriphosphazene 54
HF (Hartree Fock) theory 69

DC HF 206

time dependent 257
high harmonic spectra 31
high resolution spectroscopy 206
Hohenberg Kohn theorems 68
hohlraum radiation 19

Hoénl London factors 384
Hooke’s law 6
Hiickel calculations 208

“Hump”, DIB 392
Huygens, Christiaan 378
hybrid bases, Ahlrich like 46
hybrid ECD approaches 247 256
hybrid functionals 69, 155
double 260
hybrid QM/molecular mechanics (QM/MM)
approach 159 161
hybridization 30
hydrated ionic liquids 318
hydration layers, first and second 317
hydrazones 39
hydrocarbons, polycyclic aromatic 325, 391
hydrodynamic approach, mesoscopic 99
hydrogen
dibridged dialane 356 359
solid 358
supercomplex 366 367
hydrogen atoms, data analysis
hydrogen bonds
intramolecular 51
solute solvent 96
hydrolysis 342
hypercomplex numbers 18
hyperfine coupling 71, 81
constants 66 84

82 83



vinyl 91
hyperfine structure 203
hypersurface 25

]
ICSS (isochemical shielding surfaces)
identical particles, permutation 178
imaging, tomographic 30
iminio counterion 267
INDCO 96
independent systems approximation
(ISA) 247
indeterminacy, principle of 5
induction decay, free 231 238
inelastic neutron scattering (INS)
infrared, see IR
integration, constants of 10
intensities, Raman 327
intensity of transition 14
intercept 40
interface, mineral water 342 343
interferograms, heterodyned spectral
interferometer, Mach Zehnder 235
interferometry, spectral 232 238
interionic modes 355
intermolecular forces 183
internal coordinate modes, adiabatic
124 131
internal coordinates, translation free
177 178
internal displacement coordinates
internuclear axis 194
interstellar bands, diffuse 390 392
interstellar regions, polyatomic
molecules 389
intramolecular hydrogen bonds 51
intrinsic chirality 244
intrinsic force constants 138
intrinsic frequencies 135 139
inverse Fourier transform 14
ionic liquids
hydrated 318
molecular 311 316
ionic lithium dioxide molecule
ionization 353

41 42

330 331

236

121

354 356

ions
CO™ 383 385
isotropic monoatomic 311
proton donor 52

IR active frequencies 358

IR spectra
aromatic bands 394
laser ablation 357, 366
IR/Raman spectra 325 328, 334 336
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iron, see Fe

ISA (independent systems approximation)
247

isochemical shielding surfaces (ICSS)

isolated peptides, VCD spectra 228

isolated stretching modes 132 134

isolation, matrix 353 354

isotope shift 203

isotope substitution 132 133

isotopic fractionation factors

isotopic variants 21 23

isotropic g tensor 85

isotropic monoatomic ions

isotropic polarizability 191

41 42

328

311

J
Jones interaction, Lennard 296

k

Kepler, Johannes
ketones 123
kinetic energy operator 80

Kirchhoff, Gustav Robert 380 381
Kobayashi Maskawa mechanism 202
Kohn Sham exchange potential 156
Kohn Sham procedure 68 69
Kramers Kronig relation 249
Kramers Kronig transformation 224
Kramers operator 208

Kronecker delta function 5

Kubas complex 367

377

Kubo approach, Green 289
o lactalbumin 305

I

Lagrange multiplier 124 126

Laplace, Fourier Laplace transform 287,293,
300 302

laser ablation 353 354

lattice crystal field 209

lattice sum techniques 298
laws and equations
anticommutation rules 204

asymmetry 82

augmented Liouville equation 287
Badger Herschbach Laurie equations
Badger rule 105 149

Clausius Mosotti equation 184
Coulomb’s law 294

Debye equation 184

dielectric field equation 279 282
dipolar displacement 288
Einstein’s relation 99
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Gaussian theorem 281
helicity rules 269
Hellmann Feynman theorem 179, 186,
190 191
Hohenberg Kohn theorems 68
Hooke’s law 6
Kramers Kronig relation 249
laws of discreteness 3 5
linear polarization 225 226
linear response equations 76 82
Liouville equation 65
Nernst Einstein relation 312 313
Newton’s second law 6, 119
Poisson equation 294, 310
quantum laws 3 5
Raman intensities 327
Rosenfeld equation 242 243, 246
Schrodinger’s equation 9 12, 24, 67
Schwinger Liiders Pauli theorem 201
vibrational secular equation 131
laws of discreteness 3 5
LD (linear dichroism) measurements 248
leading parameter principle 129
Lecture, Bakerian 379
Lennard Jones interaction 296
light, “Theory of Light and Colours” 379
line shapes 98 101
VCD 227
linear dichroism (LD) measurements 248
linear harmonic oscillator, canonical 11 12,
18 19
linear optical activity susceptibility 227, 234
linear polarization 225
linear response equations 76 82
linear response theory 72 76
D lines of sodium 380
Liouville equation 65
augmented 287
Liouville transformation 27
liquid state NMR 328
liquids, molecular ionic 311 316
lithium dioxide molecule 354 356
llama antibody heavy chain variable
domain 305
local density approximation, adiabatic 155
local dielectric constant 293
local excitations 164 165
local mode frequencies 134 135
localized vibrational modes 122 124
London factors, Hénl 384
long range intermolecular forces 183
long range solvation effects 167

Lorentz field 296

Lorentzian curve 127

low frequency motions 92

Luders Pauli theorem, Schwinger 201
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MAD (mean absolute deviation) 83 84
magic angle spinning (MAS), liquid
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magnetic dipolar spin spin interaction 71
magnetic parameters 84 86
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magnetic tensor 63 104
magnetic transition dipole 250
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maser 389
Maskawa mechanism, Kobayashi 202
mass, reduced 106
mass coupling 123
mass weighted coordinates 119
matrix
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Dirac matrices 204
force constant 139
Free Wilson 43
Hessian 75, 105
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Wilson 121
matrix isolation laser ablation 353 354
matrix mechanics 6 9
matrix method 251 252
matter/antimatter asymmetry 201
Maxwell field 279, 294
MC (Monte Carlo) based conformational
search 267
MC (Monte Carlo) simulations 334
MD, see molecular dynamics
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direct time domain 231 238
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molecular, see molecular mechanics
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Millikan’s measurement 4
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mineral water interface 342 343
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models, see theories and models
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molecular mechanics 18
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molecular resolution 282 286
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small 383 390
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super 53,151
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Monte Carlo (MC) simulations 334
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EOM formalism 154
Mulliken charges 356
MUIti STte Complexation (MUSIC)
model 325
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Nernst Einstein relation 312 313
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353 375

Newton’s second law 6, 119

NICS (nucleus independent chemical
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Nixon effect, Mills 41
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liquid state 328
MAS 339 341
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spectra 328 329
triplet wavefunction model (NMRTWM)
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NMR properties 37 41
NMR spectroscopy
computational 37 61
parity violation 208 209
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noncommuting operators 15
noninteracting reference system 68
nonrelativistic Hamiltonian 16
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nuclear charge distribution model 213
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nuclear magnetic shielding 208
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nucleus independent chemical shifts (NICS)
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operator 15
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differential 9
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number 15
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parity conserving Dirac 208
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linear susceptibility 234
Raman 241
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optical rotatory dispersion (ORD) 223
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orbit, spin /nuclear orbit interaction 70 71
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conservation symmetry 33
d orbital hole 29
gauge including atomic 80, 328
molecular 68
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perturbed 74
“quasi restricted” 80
organic cations 284
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organometallic chemistry 374
orthogonal matrix 193
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coupled 248 251
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overtone spectroscopy 134 135
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PAHs (polycyclic aromatic
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parabola, conductivity 316
paramagnetic resonance, electron, see EPR
parity conserving Dirac operator 208
parity operator 204
parity violation in chiral molecules
Parrinello MD scheme, Car 162
particle in a box 2
particle mesh Ewald (PME) method 299
Pauli theorem, Schwinger Liiders 201
PCBs (polychlorinated biphenyls) 325
pentalene dianion 42
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computational dielectric spectroscopy
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spin labeled 101

VCD spectra 228
periodic DFT MD simulations 336
permanent dipole/quadrupole moments
permittivity, dielectric 314
permutation of identical particles
perturbation theory
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orbitals 74

Stark shift 195 196
phase shifted cosine functions 302
phenomenological spin Hamiltonian 63
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philosophical point of view 2
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IR/Raman spectra 334 336
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spectroscopy 207
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pioneer quantum mechanics 17
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point dipole approximation 76
Poisson equation 294, 310
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polarity effects 158
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polarizability tensor 257
polarizable continuum model (PCM) 87,
159 160, 165 166
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cross 232 234
Debye equation 184
linear 225 226
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polyatomic molecules 23
Badger type relationships 140 143
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polycyclic aromatic hydrocarbons
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quantum chemistry 1 36
quantum laws 3 5
quantum mechanics
and molecular structure 23 33
approach to ECD 256 271
QM benchmarks 163
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simulation methods 152 157
quantum theory
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history 17, 377 383
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free 63 104
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radioastronomy 389 390
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Raman optical activity (ROA) 241
Raman spectra 325 328, 334 336

Ramsey fringe spectroscopy, two photon 207
random phase approximation (RPA) 257

randomly oriented chiral molecules 233
rare earth nuclei 209
rat fatty acid binding protein 305
RC (relative configuration) 241
reaction field (RF) method 296 297
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enthalpies 332

simple atom molecule 353
surface 324 325
reactive force field 333
“Red Rectangle” 392 394
Redfield limit 63
reduced mass 106
redundant coordinate sets 137
reference compound 40

reference system, noninteracting 68

refractive index 250
relative configuration (RC) 241
relaxation time, dielectric 300
Renner Teller coupling 388
representation theory 201
residual energy 8
resonances, Fermi 132 133
response
chirospecific 232
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linear 72 76
retinol 246
reversibility, microscopic 8
rhodopsin 246
rigid rotator model 195
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conjugated aromatic 97
Mobius 41

ROA (Raman optical activity) 241

rod, crystal truncation 329 330

Rosenfeld equation 243, 246

rotation, optical 241

rotational dipole densities 280

rotational energy, Stark 184

rotational spectra 173

rotational strength 258
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rotator, rigid 195

rotatory dispersion, optical 223

Royal Society 378 379

RPA (random phase approximation)

rutile 344

Rydberg excitations 164 165
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Salam theory, Weinberg Glashow
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scaling parameters 73

scattering, neutron 330 331
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Schrodinger’s equation 9 12
Born Oppenheimer 67
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Schwinger Liiders Pauli theorem 201
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self consistent field (SCF) 28, 73
complete active space 153
wavefunction 187
self interaction error 258
self term, water water 306
semiempirical methods 152
Sham ..., see Kohn Sham ...
{ sheet conformers 230, 303
shielding
absolute 37 38
isochemical 41
nuclear magnetic 208
through space NMR 41
shift
chemical 37 41, 329
isotope 203
Stark 195 196
toroidal 283
short range solvation effects 167
short time dynamical effects 89 98
simulations
Monte Carlo 334
periodic DFT MD 336
quantum mechanical methods 152 157
UV Vis spectroscopy 151 171
single bonds 143
singular value decomposition (SVD) 269
Slater, Born Oppenheimer
approximation 180
Slater determinant 68, 152
slope 40
small molecules, astronomical
spectroscopy 383 390
Sn, see tin
sodium, D lines 380
solid hydrogen 358
solid state ECD 266 268
solid state NMR 341
solid surfaces 324
solute solvent hydrogen bonds 96
solute solvent interactions 53
solution state NMR 337 340
solvated biomolecules 303 311
solvation effects, short /long range 167
solvatochromism 157 158
solvent effects 53 54
modeling 157 161
solvent solvent interactions 65
solvents, dielectric constant 88
Soret transition 255
spatial overlap factors 164
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fluorescence excitation 387
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IR/Raman 325 328, 334 336
neutron scattering 330 331
NMR 328 329
rotational 173
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spectral analysis 23
spectral interferograms, heterodyned 236
spectral interferometry, femtosecond
232 238
spectrometry, computational, see
computational spectrometry

spectroscopic constants, molecules 106 108

spectroscopic observables 65
spectroscopy 1
astronomical 377 398
chiroptical techniques 224
computational dielectric 279 321
computational NMR 37 61
electronic 209
EXAFS 329 330
high resolution 206
history 377 383
interstellar nitrogen 394
Mossbauer 207 208
NMR 208 209
overtone 134 135
Ramsey fringe 207
UVVvis 151 171
vibration rotation 206 207
spherical vector components 196
spin, total 78
spin delocalization 97
spin Hamiltonian 66 84
spin labeled peptides 101
spin orbit coupling 70 71
spin resonance, electron, see ESR

spin spin coupling constants (SSCC) 45 52

calculations 48 50
spin spin interaction, magnetic dipolar 71
spinning, magic angle 329, 339 341
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field reduced 195
zero field 66 84
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standing wave, X ray 329 330
Stark rotational energy 184
Stark shift, perturbation theory 195 196
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stereoelectronic effects 84 98
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stretching modes
antisymmetric 135
isolated 132 134
structure, molecular 246 247
structure theory, electronic 67 69
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substitution, isotope 132 133
subunits, alanine 304
sum techniques, lattice 298
supercomplex 366 367
supermolecules 53, 151
surface charges, apparent 159
surface reactions 324 325
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isochemical shielding 41
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solid 324
susceptibility, linear OA 227, 234
SVD (singular value decomposition) 269
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Swan system 385 386
symbolic computation 34
symmetric top 186
symmetry
CPT 201
molecular systems
orbital 33
symmetry breaking groups 244
symmetry criterion 127
system bath decomposition 86
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Tamm Dancoff approximation (TDA) 155
“task specific” ionic liquids 311
tautomerism 43 44
Taylor expansion 119, 182
Teller coupling, Renner 388
tempo radical 85
tempo alcohol complexes 89
tempo choline 88
temporal memory 286
tensor
CSA 329
diffusion 98

dipole dipole 294
friction 99
g 66 85
magnetic 63 104
polarizability 257
tesserae 87,93
tetrahedral coordination 341
theoretical calculations, errors 55
theories and models
Bohr’s theory 5
“coarse grained” models 66
continuum models 53
coupled cluster theory 153
Dirac van Vleck vector model 46
double perturbation theory 72
electronic structure theory 67 69
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EPR general model 64 66
Fe hydroxide dimer model 335
GLOB model 93
group theory 201
harmonic oscillator 5 20
Hartree Fock 69
history of quantum theory 17, 377 383
linear response theory 72 76
MUSIC 325
NMRTWM 46
nuclear charge distribution model 213
PCM, see polarizable continuum model
PES concept 118
QM/MM approach 159 161
QM/MM MD approach 227 231
representation theory 201
rigid rotator model 195
Stark shift 195 196
“Theory of Light and Colours” 379
time correlation function theory 224 227
Weinberg Glashow Salam theory 202
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time correlation function theory 224 227
time correlation functions 286
time dependent density functional theory
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time dependent HF = 257
time dependent spectroscopy 151
time domain approaches 223 239
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titanium 359 362
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torsion 92
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total collective dipole moment
total dielectric polarization 279
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Fourier Laplace transform 287, 293,
300 302
Kramers Kronig 224
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transition dipole 250
transition metals 374
transition probability 14
transition states 3
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177 178
translational dipole densities 280
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triple bonds 143
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truncated configuration interaction 259
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two photon Ramsey fringe spectroscopy
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unfolded proteins 229

uranium 371 374
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valence states, dicarbon 386
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vector operators 78
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vibrational circular dichroism (VCD)
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IR/Raman spectra 326
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vibrational rotational energy 21 22
vibrational rotational spectroscopy 206 207
vibrational rotational states 196
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wave mechanics 9 15
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