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PREFACE

Since the inception of this volume, the world’s financial climate has radically
changed. The emphasis has shifted from booming economies and economic growth
to the reality of recession and diminishing outlook. With economic downturn comes
opportunity, in all areas of chemistry from research and development through to
product registration and risk assessment, replacements are being sought for costly
time-consuming processes. Leading amongst the replacements are models with true
predictive capability. Of these computational models are preferred.

This volume addresses a broad need within various areas of the ‘“chemical
industries”, from pharmaceuticals and pesticides to personal products to provide
computational methods to predict the effects, activities and properties of molecules.
It addresses the use of models to design new molecules and assess their fate and
effects both to the environment and to human health. There is an emphasis running
throughout this volume to produce robust models suitable for purpose. The volume
aims to allow the reader to find data and descriptors and develop, discover and utilise
valid models.

Gdansk, Poland Tomasz Puzyn
Jackson, MS, USA Jerzy Leszczynski
Liverpool, UK Mark T.D. Cronin

May 2009
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Part I
Theory of QSAR



CHAPTER 1

QUANTITATIVE STRUCTURE-ACTIVITY
RELATIONSHIPS (QSARs) — APPLICATIONS
AND METHODOLOGY

MARK T. D. CRONIN

School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF, England,
e-mail: m.t.cronin@[jmu.ac.uk

Abstract: The aim of this introduction is to describe briefly the applications and methodologies
involved in (Q)SAR and relate these to the various chapters in this volume. This chapter
gives the reader an overview of how, why and where in silico methods, including (Q)SAR,
have been utilized to predict endpoints as diverse as those from pharmacology and toxi-
cology. It provides an illustration of how all the various topics in this book interweave to
form a single coherent area of science.

Keywords:  QSAR, In silico methods, Resources for QSAR

1.1. INTRODUCTION

If we can understand how a molecular structure brings about a particular effect in
a biological system, we have a key to unlocking the relationship and using that
information to our advantage. Formal development of these relationships on this
premise has proved to be the foundation for the development of predictive models.
If we take a series of chemicals and attempt to form a quantitative relationship
between the biological effects (i.e. the activity) and the chemistry (i.e. the structure)
of each of the chemicals, then we are able to form a quantitative structure—activity
relationship or QSAR.

Less complex, or quantitative, understanding of the role of structure to govern
effects, i.e. that a fragment or sub-structure could result in a certain activity, is
often simply termed a structure—activity relationship or SAR. Together SARs and
QSARs can be referred to as (Q)SARs and fall within a range of techniques known
as in silico approaches. Generally, although there is no formal definition, in silico
includes SARs and QSARs, as well as the use of existing data (e.g. searching within
databases), category formation and read-across. It also borders into various other
areas of chemoinformatics and bioinformatics.

3
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A (Q)SAR comprises three parts: the (activity) data to be modelled and hence
predicted, data with which to model and a method to formulate the model. These
three components are described below and in greater detail in subsequent chapters.

1.2. PURPOSE OF QSAR

QSAR should not be seen as an academic tool to allow for the post-rationalization
of data. We wish to derive the relationships between molecular structure, chemistry
and biology for good reason. From these relationships we can develop models, and
with luck, good judgment and expertise these will be predictive. There are many
practical purposes of a QSAR and these techniques are utilized widely in many
situations. The purpose of in silico studies, therefore, includes the following:

* To predict biological activity and physico-chemical properties by rational means.
* To comprehend and rationalize the mechanisms of action within a series of
chemicals.

Underlying these aims, the reasons for wishing to develop these models include

* Savings in the cost of product development (e.g. in the pharmaceutical, pesticide,
personal products, etc. areas).

* Predictions could reduce the requirement for lengthy and expensive animal tests.

» Reduction (and even, in some cases, replacement) of animal tests, thus reducing
animal use and obviously pain and discomfort to animals.

e Other areas of promoting green and greener chemistry to increase efficiency and
eliminate waste by not following leads unlikely to be successful.

1.3. APPLICATIONS OF QSAR

The ability to predict a biological activity is valuable in any number of industries.
Whilst some QSARSs appear to be little more than academic studies, there are a large
number of applications of these models within industry, academia and governmental
(regulatory) agencies. A small number of potential uses are listed below:

* The rational identification of new leads with pharmacological, biocidal or
pesticidal activity.

* The optimization of pharmacological, biocidal or pesticidal activity.

» The rational design of numerous other products such as surface-active agents,
perfumes, dyes, and fine chemicals.

» The identification of hazardous compounds at early stages of product develop-
ment or the screening of inventories of existing compounds.

» The designing out of toxicity and side-effects in new compounds.

* The prediction of toxicity to humans through deliberate, occasional and occupa-
tional exposure.

» The prediction of toxicity to environmental species.

* The selection of compounds with optimal pharmacokinetic properties, whether it
be stability or availability in biological systems.
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» The prediction of a variety of physico-chemical properties of molecules (whether
they be pharmaceuticals, pesticides, personal products, fine chemicals, etc.).

* The prediction of the fate of molecules which are released into the environment.

* The rationalization and prediction of the combined effects of molecules, whether
it be in mixtures or formulations.

The key feature of the role of in silico technologies in all of these areas is that
predictions can be made from molecular structure alone.

1.4. METHODS

Predictive models of all types are reliant on the data on which they are based, the
technique to develop the model and the overall quality of the information includ-
ing the item to be modelled. In silico models for the prediction of the properties
and effects of molecules are no different. In almost all cases two types of infor-
mation are required for a model (the effect to be modelled and descriptors on the
chemicals) and a technique(s) to formulate the relationship(s). These are denoted in
Figure 1-1 in a typical spreadsheet for organizing the data. The data to be modelled
are denoted as the X-matrix, the descriptors as the Y-matrix. From such a matrix
various types of relationship may be obtained by statistical, or other, means. For
instance, a structure—activity relationship will be formed for a categorical endpoint,
e.g. active/non-active or toxic/non-toxic. In this case a molecular fragment or sub-
structure is associated with an effect. A quantitative structure—activity relationship
is based on a continuous endpoint, e.g. potency where activity (X) is a function of
one or more descriptors (Y).

To develop a SAR, as few as a single compound might be required — should there
be a very firm basis (such as a well-established mechanism of action) for devel-
oping the relationship. For instance, if a compound is known to elicit a particular
effect, and the structural determinant is recognized, that structural fragment can be
extracted. This may be in the form of a “structural alert” which can be coded eas-
ily into software. Obviously, the greater the number of compounds with the same
structural determinant demonstrating the same effect, the greater the confidence that

Chemical Activity (to Property/ Property/ Property/ ** | Property/
Identifier be modelled) | Descriptor/ Descriptor/ Descriptor/ Descriptor/
Fragment 1 Fragment 2 Fragment 3 Fragment n
Molecule i X; Yy, Y,; Y5, . Y,
Molecule ii Xii Y i Y, Y5, Y i
Molecule iii Xiii Yiiii Yoiii Yjii Y iii
Molecule n X, Y, Y5, Y3, Y,

Figure 1-1. Typical data matrix for a (Q)SAR study
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can be demonstrated in the alert. The formation of SARSs is usually appropriate for a
qualitative (i.e. yes/no; active/inactive; presence of toxicity/absence of toxicity, etc.)
endpoint.

To develop a QSAR, a more significant number of compounds is required to
develop a meaningful relationship. An often asked question is “how many com-
pounds are required to develop a QSAR?” There is no direct and simple response
to this question — other than “as many as possible!” To provide some guide, it is
widely accepted that between five and ten compounds are required for every descrip-
tor in a QSAR [1, 2]. This does suggest that a one descriptor regression-based
QSAR could be developed on five compounds. This is possible, but is very reliant
on issues such as data distribution and range. Ideally “many more” compounds
are required to obtain statistically robust QSARs, with some modelling techniques
being considerably more data hungry than regression analysis.

In the history of developing in silico models, there have been many types of
information integrated into (Q)SARs. These are summarized in Table 1-1. The bio-
logical effects are normally (though not exclusively) the property to be modelled;
some aspect from the physical or structural chemistry of the molecules is related
to the effects. Readers are welcome to extend this list according to their experience
and requirements!

There has been a wide range of modelling approaches. A brief overview of these
is given in Table 1-2. These can be very simplistic to extremely complex.

Table 1-1. Types of information included in in silico modelling approaches and reference to
chapters for further reading

e Data to be modelled

o Pharmacological effects (Chapter 9)

o Toxicological effects (Chapters 7, 11, 12 and 14)

o Physico-chemical properties (Chapters 12 and 14)

o Pharmacokinetic properties governing bioavailability (Chapters 9 and 10)
o Environmental fate (Chapter 12)

e Chemistry

o Physico-chemical properties (Chapters 12 and 14)

o Structural properties — 2-D and 3-D (Chapters 4, 5, 8 and 14)

o Presence, absence and counts of atoms, fragments, sub-structures (Chapters 3 and7)
o Quantum and computational chemistry (Chapters 2 and 14)

e Modelling
o Formation of categories of “similar molecules” (Chapters 7, 13 and 14)
o Statistical (Chapters 5, 6 and 12)
o 3D/4D QSAR (Chapters 2, 4, 5,9 and 14)
o Other issues
o Data quality and reliability (Chapter 11)
o Model and prediction reporting formats (Chapter 13)

o Applicability domain (Chapters 12 and 13)
o Robustness of model and validity of a prediction (Chapters 6 and 12)
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Table 1-2. Summary of the main modelling approaches for the develop-
ment of (Q)SARs and in silico techniques and where further details are
available in this volume

(Q)SAR method Chapters

Hansch analysis

Free-Wilson

Structural fragments and alerts
Category formation and read-across
Linear regression analysis
Partial least squares

Pattern recognition

Robust methods, outliers
Pharmacophores

3-D models

CoMFA
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Fall g
— ©
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1.5. THE CORNERSTONES OF SUCCESSFUL PREDICTIVE
MODELS

Predictive and intuitive models are widely used in all aspects of society and science.
The user of a model accepts that it is a model and the results, or information it
provides, should be used with circumspection. This is true whether one is accepting
an actuarial prediction for one’s pension planning or a weather forecast to determine
whether to wear a raincoat. The same is true for a prediction, or any information (e.g.
mechanism of action), that may be determined from a (Q)SAR. Therefore, the user
must put the model in the context in which it exists and be aware of a number of
possible problems and pitfalls.

Much has been written and said about the reality of using (Q)SARs. The concern
is that scientists who are introduced to the field can place too much confidence
in either a model or predictive system, only to see their expectations dashed.
Alternatively, there is a point of view that (Q)SARs will not work and models are
not to be trusted. A healthy dose of scepticism is important, but some form of bal-
ance is required to meet the hopes of the optimists and criticisms of the sceptics. In
order to do that, some comment is required on the “successful use of (Q)SAR”.

The requirements for a good model are quite straightforward. Some of the fun-
damentals are noted below and expanded upon in more detail in various chapters of
this book.

(1) The data to model. The modeller, and user of a model, must consider the
data to model. Data should, ideally, be of high quality, meaning they are reliable
and consistent across the data set to be modelled. The definition of data quality is,
at best, subjective and is likely to be different for any effect, endpoint or property.
Therefore, the modeller or user should determine whether the data are performed in
a standard manner, to a recognized protocol, and if they are taken from a single or
multiple laboratories.

This author is of the belief that, within reason, poor-quality data can be used in
models, but their limitations must be clearly understood, and the implications for
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the model appreciated. Therefore, to use a (Q)SAR successfully there should be
complete access to the data used and a complete description of those data. Even
then, producing public models from confidential business information may make
this restrictive. To provide the source data is the responsibility of the modeller, and
to assess the source data in terms of the model is the responsibility of the model user.

(ii) Reasonable and honest use of statistics to describe a (Q)SAR. Many (Q)SARs
are accompanied by performance statistics of some kind. These statistics may assess
statistical fit and predictivity for a QSAR or the predictive capability of a SAR.
Generally statistics are helpful to the interpretation of a model. One would prefer
to use a model with a good statistical fit between the effect to be modelled and the
descriptors of the chemicals. However, it is important to ensure that the statistical fit
of a model does not go beyond the experimental error of the data being modelled —
should that happen it would suggest an overfit model. To develop a significant
quantitative model, a significant range of effect values are ideally required. Also,
one must be cautious of comparing the ubiquitous correlation coefficient between
different data sets.

In the opinion of the author, whilst neither the model developer nor the user needs
be a statistician, it is of great help to discuss the issues with a competent statistician.
In addition, the developer or user must have confidence in the statistics they are
applying and interpreting.

(iii) The molecules for which predictions are being made must be within the
applicability domain of the model. The applicability domain of the model is the
chemical, structural, molecular, biological and/or mechanistical space of the data
set of the model. The definition of the applicability domain will vary for different
types of model (e.g. SAR vs. QSAR), endpoints and effects. There are also a wide
variety of methods to define it. The important fact is that the user of a model must
assess whether a molecule is within the domain of a model, and thus how much
confidence they can place in a predicted value.

(iv) Ideally a (Q)SAR should be simple, transparent, interpretable and mecha-
nistically relevant. A simple model will have only one or a very small number of
descriptors to form the relationship with the effect data. Transparency is usually
dependent on the modelling approach itself; thus linear regression analysis can be
thought of as being highly transparent, i.e. the algorithm is available, and predictions
can be made easily. For the more multivariate and non-linear modelling techniques
(e.g. a neural network), it is generally accepted that there is lower transparency.

The mechanistic relevance of a model is more difficult to define. Some data sets
are based around a single, well-defined and understood mechanism of action. Other
models comprise data where the mechanism may not be known or where there are
many mechanisms. There is also a difference between biological mechanisms (e.g.
receptor binding, concentration at an active site, accumulation in a membrane) and
physico-chemical effects (e.g. the properties affecting solubility, ionization), which
may be general across the chemical universe. There is no reason to exclude a model
where the mechanism is not known or if there are multiple mechanisms. However,
the advantages of a strong mechanistic basis to model are that it provides a clear
capability to understand the model and should the descriptors be relevant to that
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mechanism it provides the user with extra confidence to use the model. Another
advantage is that it can aid a priori descriptors selection.

In reality, (Q)SARS span the range from simple models to highly complex multi-
variate. It is important to remember that whilst a simple model is preferable in many
circumstances if it provides comparable performance to something more complex,
many multivariate models are routinely and successfully used. The requirements for
model simplicity are highly dependent on the context and application of the model.

1.6. A VALIDATED (Q)SAR OR A VALID PREDICTION?

Historically, much effort has been placed into performing some form of validation
on a (Q)SAR. Often this has been in terms of a model’s statistical fit; more recently
the focus has turned to using an external test set, i.e. group of molecules not in the
original data set on which the model has been developed. Confusion has arisen in
some areas, due to the term “validated” which has a specific regulatory, and hence
legal, connotation in replacing animal tests in toxicology.

As a result of the efforts to use (Q)SARs correctly, for the statistical validation
of models it is more usual to refer to those algorithms that may be applied in drug
discovery and lead optimization. Whilst statistical approaches may be applied to
toxicological endpoints of regulatory significance, for the validation of a toxicolog-
ical (Q)SAR to be used to assess hazard, for example for the purposes of registration
of a product, a more formal validation process may be required.

In terms of toxicological predictive models, “Principles for the Validation of
(Q)SARSs” have been proposed by the Organization for Economic Co-operation and
Development (OECD) and promoted widely. These principles are described in more
detail in Chapter 13, and whilst they were originally derived with toxicity and fate
endpoints in mind, they are generally applicable across all models to determine
whether a (Q)SAR may be valid. The use of the OECD principles has brought to
the forefront of whether a (Q)SAR can be “validated” in terms of being an accept-
able alternative method. Probably of more importance is using these principles to
evaluate and characterize a (Q)SAR and hence determine whether an individual
prediction is valid.

1.7. USING IN SILICO TECHNIQUES

This book will make it apparent that there are many models available for use in
QSAR. Publication on paper is, of course, essential, but to make these models
usable they must be presented in a user-friendly format. Thus, there have been many
attempts to computerize these models. As computational power has increased, and
hardware platforms became more sophisticated, the possibilities to produce useable
algorithms have improved. Accessibility to software has also, of course, been made
so much more convenient through the use of the Internet. As a result of the progress
in these areas, many algorithms are now freely available. Sources of some, as well
as other essential resources for (Q)SAR, are noted in Table 1-3.
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Table 1-3. Invaluable resources for QSAR

Internet
There are obviously many Internet sites, wikis and blogs devoted to (Q)SAR, molecular modelling,
drug design and predictive ADMET. Two of the most well established are

e The homepage of the International Chemoinformatics and QSAR Society: www.gsar.org — this is
a good starting place for those in the field of QSAR; it also contains excellent listings of upcoming
meetings and resources.

e The homepage of the Computational Chemistry List: www.ccl.net — this also contains excellent
listings resources and freely downloadable software.

Journals

Papers relating to (Q)SAR are published in a very wide variety of journals from those in pure and
applied chemistry to pharmacology, toxicology and risk assessment and as far as chemoinformatics and
statistics. The following is a small number that is commonly used by the author; whilst the reader will
hopefully find these suggestions useful, they are, by no means, an exhaustive list (see the resources
section of www.gsar.org which lists over 250 journal titles).

e Chemical Research in Toxicology

e Chemical Reviews

o Journal of Chemical Information and Modeling

e Journal of Enzyme Inhibition and Medicinal Chemistry

o Journal of Medicinal Chemistry

e Journal of Molecular Modelling

e “Molecular Informatics (formerly QSAR and Combinatorial Science)”
e SAR and QSAR in Environmental Research

Books

There are many hundreds of books available in areas related to (Q)SAR. Again, the reader is referred
to the resource section of www.qsar.org. A very short list is given below, clearly biased by the author’s
own interests and experience. Apologies are given for omission of other “favourite” or “essential”” books
that have not been listed.

e Cronin MTD, Livingstone DJ (eds) (2004) Predicting Chemical Toxicity and Fate, CRC Press, Boca
Raton, FL.

e Helma C (ed) (2005) Predictive Toxicology, CRC Press, Boca Raton, FL.

e Livingstone DJ (1995) Data Analysis for Chemists — Application to QSAR and Chemical Product
Design, Oxford University Press, Oxford.

e Todeschini R, Consonni V (2001) Handbook of Molecular Descriptor. Wiley, New York.

e Triggle DJ, Taylor JB (series eds) (2006) Comprehensive Medicinal Chemistry Il — Volumes 1-8.
Elsevier, Oxford.

Software

It is well beyond the scope or possibility of this section to note individual software for use in (Q)SAR.

Experienced QSAR practitioners will no doubt be familiar with many of the freely available and com-

mercial packages available. For the novice, in addition to the resources listed on www.gsar.org and

www.ccl.net, there is information in the following chapters of this book in the three key areas to

formulate a (Q)SAR:

e Activity to be modelled: Pharmacology (Chapters 4, 5, 9 and 10), ADMET (Chapters 4, 7, 10, 11, 12
and 14), physico-chemical properties (Chapters 8, 12 and 14)

e Descriptor calculation (Chapters 2, 3, 4, 5 and 14)

o Statistical analysis (Chapters 5, 6 and 12)
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1.8. NEW AREAS FOR IN SILICO MODELS

Understanding and forming the relationships between the effect of a molecule and
its structure has a long history [3] — its nearly 50 years since Hansch, Fujita and
co-workers first published in this area [4], over 150 years since the foundations
of modern chemistry and millennia since man first determined the beneficial and
harmful effects of plants. It is surprising therefore that there continues to be such
continued interest in developing technologies for in silico models.

There are many reasons for the growth of in silico techniques. In particular, these
can be in response to new problems. Areas where in silico approaches can play a
particular role include

* integrating and harnessing new computational technologies and increasing speed
and power of processing;

* ability to react to new disease states (e.g. HIV);

* ability to react to new toxicological problems (e.g. cardio-toxicity);

* modelling the new problems with regard to the impact of chemicals on the
environment;

* new and emerging issues, problems and opportunities, e.g. nano-technology,
properties of crystals, extension into other areas of chemistry, e.g. design of
formulations;

* integration with the -omics technologies to improve all areas of molecular design.

1.9. CONCLUSIONS

QSAR is a broadly used tool for developing relationships between the effects (e.g.
activities and properties of interest) of a series of molecules with their structural
properties. It is used in many areas of science. It is a dynamic area that integrates
new technologies at a staggering rate. There have been many recent advances in
the applications and methodologies of QSAR, which are summarized partially in
Table 1-3 and more thoroughly described in this book.
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CHAPTER 2

THE USE OF QUANTUM MECHANICS DERIVED
DESCRIPTORS IN COMPUTATIONAL TOXICOLOGY

STEVEN J. ENOCH

School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF, England,
e-mail: s.j.enoch@[jmu.ac.uk

Abstract: The aim of this chapter is to outline the theoretical background and application of quan-
tum mechanics (QM) derived descriptors in computational toxicology, specifically in
(quantitative) structure—activity relationship models ((Q)SARs). The chapter includes a
discussion of the mechanistic rationale for the need for such descriptors in terms of the
underlying chemistry. Having established the mechanistic rationale for quantum mechan-
ical descriptors, a brief discussion of the underlying mathematical theory to quantum
mechanical methodologies is presented, the aim being to help the reader understand (in
simple terms) the differences between the commonly used levels of theory that one finds
when surveying the computational toxicological literature. Finally, the chapter highlights
anumber of (Q)SAR models in which QM descriptors have been utilised to model a range
of toxicological effects

Keywords:  Geometry optimisation, Semi-empirical methods, Density functional theory, Quantum
mechanical descriptors

2.1. INTRODUCTION

Computational toxicology is concerned with rationalising the toxic effects of chem-
icals, with the hypothesis being that if the factors that are responsible for a given
chemical’s toxicity can be understood, then the toxicity of related chemicals can
be predicted without the need for animal experiments. Unfortunately, there are
many factors, some of them extremely complex, that govern whether even the
simplest industrial chemical will be toxic. The majority of these factors (e.g.
metabolism, bioavailability) are outside of the scope of this chapter. Instead the
focus of this chapter is to highlight the importance of assessing the electronic state of
a potentially toxic chemical, and how this information enables one to begin to ratio-
nalise and subsequently predict certain aspects of human health and environmental
toxicology.

Knowledge of a chemical’s mechanism of action is important if a chemical’s
potential toxic effects are to be understood. Broadly speaking, potential non-
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receptor-mediated mechanisms of toxic action can be divided into non-covalent
and covalent categories. One of the most important non-covalent mechanisms in
aquatic systems involves the accumulation of a chemical within the cell membrane
resulting in narcosis. Chemicals able to cause narcosis can be split into a number
of mechanisms, the two most frequent being non-polar and polar narcosis. Non-
polar narcotics are well modelled using hydrophobicity alone, whilst the modelling
of the polar chemicals may require the inclusion of a parameter to account for the
polarisation effect of an electronegative centre in the molecule. Such effects are well
modelled using quantum mechanics derived descriptors such as Epymo and Amax
(see Table 2-1 for definitions).

In contrast, covalent mechanisms of toxicity involve the formation of a chem-
ical bond between proteins (or DNA) and the toxic chemical. Such mechanisms
are irreversible and have little or no correlation with the chemical’s hydrophobicity
(assuming the hydrophobicity of the chemical is within a range that allows it to get
to the reactive site). In order for a chemical to be toxic via a covalent mechanism, it
must be electrophilic, that is to say some portion of it must be susceptible to attack
(either directly or after either oxidative or metabolic conversion) from electron-rich
amino acid (or nucleic acid) side chains. These covalent mechanisms have recently
been rationalised in terms of simple electrophilic—nucleophilic organic chemistry
reactions [1] (Figure 2-1).

The chemical reactions between toxicant and biomolecule can be rationalised
in terms of hard—soft acid—base theory which states that for a chemical reaction
to occur like should react with like, i.e. a soft electrophile (where an electrophile
can be considered as an acid) prefers to react with a soft nucleophile (where the
nucleophile can be considered as a base), whilst a hard electrophile preferentially
reacts with a hard nucleophile [2]. This is related directly to the energies of the
frontier molecular orbitals as a soft electrophile has a low Epypmo which can readily
interact with the energetically close high Egomo of the soft nucleophile. In contrast,
a hard electrophile has a high Ep ymo that can readily interact with the energetically
close low Egomo of a hard nucleophile.

In the simplest terms it is the relative differences between the nucleophile and
electrophile orbitals that govern how reactive a given nucleophile—electrophile inter-
action will be (assuming factors such as entropy and steric hindrance at the reaction
centre are equal). Clearly, in terms of covalent toxicity mechanisms, the more reac-
tive a nucleophile—electrophile interaction is (in which the nucleophile is a protein
or DNA and the electrophile is a chemical) the more toxic the chemical is likely
to be. However, it is important to remember that toxicokinetics and toxicodynam-
ics play an important role in a chemical’s ability to produce a toxic effect, with
the relative importance (compared to intrinsic reactivity) of such effects being
mechanism dependent. Given the importance of the frontier molecular orbitals in
hard—soft acid-base theory, it is clear that quantum mechanics methods that enable
the molecular orbitals to be calculated play an important role in the rationalising and
the subsequent modelling of such reactions.

Table 2-1 highlights some common descriptors used to model both covalent and
non-covalent mechanisms. In addition, Schiilirmann provides an excellent recent
review of the theoretical background of such descriptors in more detail [3].



The Use of Quantum Mechanics Derived Descriptors 15

/ o-carbon
Nu/\ Nu
- /\ X —> Protein ~ \/\X

\

-carbon

Michael addition: Characteristics: double or triple bond where X = electron withdrawing
substituent (¢t and B alkene carbon atom as highlighted).

Protein

Protein
/\X Nu/
Nu

. s
Protein

Y Y
SNAr electrophiles: Characteristics: X = halogen or pseudo-halogen. Y = (at least two) NO,,
CN, CHO, CFj, halogen.

me

Nu
Protein g R/ > R/

S\2 electrophiles: Characteristics: X = halogen or other electronegative leaving group.

* Protein

 NH, RO -0 ——s VN\

Protein \_)/

Schiff base formers: Characteristics: reactive carbonyl species such as aliphatic aldehyde or
di-ketones.

O

(0]
_ NH, )]\ _ Protein
Protein \_/ X — N

Acylating agents: Characteristics: X = halogen or electronegative leaving group

Figure 2-1. Electrophilic—nucleophilic reactions responsible for covalent mechanisms of toxic action

2.2. THE SCHRODINGER EQUATION

Given the importance of the ability to calculate the electronic structure of a molecule
in computational toxicology, it is important to outline, albeit briefly, the underlying
theory that both the commonly used semi-empirical and density functional methods
attempt to solve. The mathematics is complex and will be kept to an absolute min-
imum, the aim being to set the scene concerning the various components that must
be dealt with if quantum mechanics is to be utilised to help understand the elec-
tronic structure of chemicals. The subsequent sections dealing with the commonly
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Table 2-1. Common quantum mechanics derived molecular and atom-based descriptors

Name Definition
ErLumo Energy of the lowest unoccupied molecular orbital
Enomo Energy of the highest occupied molecular orbital
n Chemical potential (negative of electronegativity)
n = (ELumo + Enomo)/2
n Chemical hardness
n = (ELumo - Enomo)/2
o Chemical softness
o=1-n
® Electrophilicity
= u2/2n
AFI Activation energy index

AEl = AEgomo-1 + AEgomo
AEgomo and AEgoMmo-1 are the changes in energy of the highest occupied
molecular orbital and second highest occupied molecular orbital on going from
the ground state to transition state in an SNAr reaction

Amax Maximum atomic acceptor superdelocalisability within a molecule, where
acceptor superdelocalisability is a measure of an atom’s ability to accept
electron density

Dmax Maximum atomic donor superdelocalisability within a molecule, where donor
superdelocalisability is a measure of an atom’s ability to donate electron density

AN Atomic acceptor superdelocalisability for atom N

Dn Atomic donor superdelocalisability for atom N

om/om” Atomic local philicity. Derived from Fukui functions [4], electrophilicity index
 and then applied to individual atoms using a charge scheme

QN Atomic charge on atom N

Bab Bond order between atom a and b

used semi-empirical and density functional approaches will highlight how each of
these methods approximates these important mathematical components. The start-
ing point of any discussion into quantum mechanics is always the time-independent
Schrodinger equation (2-1):

HY= BV 2-1)

where H is the Hamiltonian operator, E is the energy of the molecule and s is the
wavefunction which is a function of the position of the electrons and nuclei within
the molecule.

A number of solutions exist for Eq. (2-1), with each one representing a different
electronic state of the molecule. Importantly the lowest energy solution represents
the ground state. It is worth stating that the Schrédinger equation is an eigenvalue
equation, which in mathematical terms means that the equation contains an operator
acting upon a function that produces a multiple of the function itself as the result
[Eq. (2-2)]:

Operator™function = constant™function (2-2)
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In Eq. (2-1) the wavefunction ({r) can be approximated to the electronic state,
this being the configuration of the electrons in a series of molecular orbitals. It is
then possible to evaluate differing electronic configurations of the wavefunction in
terms of their energies, with the lowest energy configuration being the ground state.
It is the ground state energy that corresponds to the ground state geometry of a
given molecule. For a given wavefunction the associated Hamiltonian is calculated
according to Eq. (2-3):

H= KEota1+PE(otal (2‘3)

where
KEiota) = total kinetic energy = Y (coulomb repulsion between each pair of
charged entities)
PEoa1 = total potential energy = Y (electron—nuclei attraction) +
(electron— electron repulsion) + Y (nuclei—nuclei repulsion).

In order to evaluate the components of Eq. (2-3), a number of approximations are
required that are complex and out of the scope of this chapter. A number of excellent
texts exist that discuss these approximations in great detail [5, 6].

2.3. HARTREE-FOCK THEORY

Having established the importance of the electronic wavefunction (V) in Eq. (2-1),
it is now necessary to discuss the methods that enable the derivation of the electronic
states for which Eq. (2-1) holds true. The following discussion is an outline of the
fundamentals of Hartree—Fock theory from which both semi-empirical and density
functional methods have been developed.

The first step towards obtaining an optimised electronic structure (i.e. the ground
state) for a molecule is to consider the wavefunction as a series of molecular orbitals
with differing electronic occupations. One of these sets of molecular orbitals will
correspond to the ground state and hence have the lowest energy. Approximating the
wavefunction to a series of molecular orbitals allows the substitution of the wave-
function in Eq. (2-1) with Eq. (2-4) resulting in Eq. (2-5) (both Egs. (2-4) and (2-5)
are simplified to illustrate the important conceptual idea that in Hartree—Fock theory
the wavefunction is represented by a series of molecular orbitals).

U =0d1d203... (2-4)
H(d1d2d3 ... dn) = E(G10203 ... dn) (2-5)

where ¢; is the ith molecular orbital.

Having broken down the electronic wavefunction into a series of molecular
orbitals, Hartree—Fock theory then makes use of so-called “basis functions”. These
functions are a series of one-electron mathematical representations that are localised
on individual atoms, which can be thought of as representing the atomic orbitals.
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The more basis functions included in the molecular orbital calculation, the more
accurate the final representation. However as might be expected, this results in an
increase in computational time. Both semi-empirical and density functional meth-
ods make use of basis functions to represent atomic orbitals (so-called basis sets). It
is then possible to calculate the ground state electronic structure by making use of a
mathematical procedure known as the variational principle.

The significant drawback within the Hartree—Fock formalisation is the incom-
plete treatment of so-called exchange—correlation effects when evaluating the
energy of the wavefunction. These effects relate to the interactions between pairs
of electrons with the same spin (exchange) and pairs of electrons with opposing
spins (correlation). Thus, when evaluating the energy of the wavefunction within
Hartree—Fock theory correlation effects are completely neglected, leading to an
underestimation of the true energy of a given electronic state.

24. SEMI-EMPIRICAL METHODS: AM1 AND RM1

Initial usage of Hartree—Fock theory was limited to very small systems for which the
iterative process of locating the lowest energy wavefunction was amenable to early
computers. Such limitations led to the development of so-called semi-empirical
quantum mechanics methods, with the aim of allowing chemically meaningful sys-
tems to be investigated. As would be expected, one of the most time-consuming
steps in the Hartree—Fock optimisation procedure is the manipulation of the math-
ematical representations of the molecular orbitals. In contrast, the semi-empirical
Austin Method 1 (AM1) deals only with the valence electrons, thus significantly
reducing the complexity and hence time of one of the most computationally
expensive steps [7]. Additional computational savings are made in the use of param-
eterised functions for some of the terms in the Hamiltonian. These functions are
developed using experimental data such as heats of formation, the aim being that the
functions are optimised (often manually) until the resulting calculations can repro-
duce a series of experimental molecular properties. Such approximations obviously
reduce the accuracy of the AM1 method (and semi-empirical methods in general),
this being the major limitation. Semi-empirical methods generally perform well
for calculations upon molecular systems for which the basis functions were opti-
mised (for example, heats of formations are frequently well reproduced). However
(and as might be expected) calculations into systems for which no experimental
data existed (or was used) in the parameterisation procedure often perform poorly.
The significant advantage of the computational efficiency resulting from the vari-
ous approximations in the AM1 methodology is that it allows for a high number of
chemicals to be investigated in a reasonable timeframe, and for calculations upon
large molecular systems.

A recent re-parameterisation of the AM1 model has led to the development of the
Recife Model 1 (RM1) semi-empirical method [8]. This methodology has been sug-
gested to be a significant improvement over the original AM1 model as additional
parameterisation data were included in its development. These data came from high-
level density functional calculations allowing for a better definition of common
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geometrical variables poorly defined by existing experimental data. In addition, the
description of the electron repulsion portion of the wavefunction was also improved.

2.5. AB INITIO: DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) is a closely related methodology to Hartree—Fock
theory in that it attempts to provide a solution to the electronic state of a molecule
directly from the electron density. One can view the methodologies as essentially
analogous, for the purpose of this discussion, in terms of using basis functions for
orbitals and in the use of the variational principle to locate the lowest energy wave-
function. However, the major difference is the inclusion of terms to account for both
exchange and correlation when evaluating the energy of the wavefunction, result-
ing in a significantly improved description of the electronic structure. Differing
functionals (for example, B3LYP) use differing mathematical approximations to
describe the Hamiltonian and thus evaluate the energy of a given wavefunction. The
discussion of how such functionals are calculated and thus their relative strengths
and weaknesses is well outside the scope of this chapter. It is important only to
realise that DFT (whatever the chosen functional) is a more complete description
of the electronic structure than that offered from Hartree—Fock theory and is signifi-
cantly more complete than semi-empirical methods. However, as would be expected
by the inclusion of more complex mathematics, it is also the most time consuming.
A more complete discussion of DFT and functionals can be found in several texts
[6, 9].

2.6. QSAR FOR NON-REACTIVE MECHANISMS OF ACUTE
(AQUATIC) TOXICITY

The importance of quantum mechanics electronic parameters in toxicology becomes
apparent when one examines the descriptors required to model the polar narcotic
chemicals. Such relationships frequently involve the use of the energy of the lowest
unoccupied molecular orbital (Ep ypo) to account for the increased electronegativ-
ity of these chemicals (compared to those that cause baseline narcosis). The most
commonly used level of theory is the AM1 Hamiltonian. The descriptor Epymo in
combination with the logarithm of the octanol-water partition coefficient (log P) (or
other descriptor describing hydrophobicity) leads to excellent statistical relation-
ships. Such two-parameter QSARs are commonly referred to as response-surface
models [10]. Cronin and Schultz investigated the acute toxicity of 166 phenols to the
ciliated protozoan Tetrahymena pyriformis, for which potential toxic mechanisms of
action had previously been assigned [11]. Of the 166 chemicals in the training data,
120 were assigned as acting via polar narcosis, and response-surface analysis of the
toxicity for these chemicals (IGCsg) produced the following relationship:

Log (IGCs0)~!'= 0.67(0.02) log P — 0.67(0.06)E; ypo — 1.123(0.13)

n = 120, r>= 0.90, r2,= 0.89, s = 0.26, F = 523 (2-6)
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where

the figures in parentheses are the standard errors on the coefficients;

n is the number of compounds

12 is the square of the correlation coefficient

12y is the square of the leave-one-out cross-validated correlation coefficient
s is the standard error

F is Fisher’s statistic

The importance of the AM1 Hamiltonian-derived parameter E; ymo in Eq. (2-6)
is reinforced by a QSAR model [Eq. (2-7)] in which Epypmo was replaced by the
experimentally determined Hammett constant o, used to account for the polarising
effect of substituent groups on the pK, of the phenolic moiety [12]:

Log (IGCs)~'= 0.64(0.04) log P + 0.61(0.12)0 + 1.123(0.13)
n =119, = 0.90, r2,= 0.89, s = 0.265 (2-7)

> TCv

A number of related multiple linear regression models have been developed for
chemicals acting via the polar narcosis mechanism; such studies on a range of fish
species frequently make use of either Ep ymo or other equivalent electronic param-
eters derived using the AM1 Hamiltonian. Such models usually display excellent
regression statistics indicating the mechanistic importance of hydrophobicity and
an electronic descriptor related to electronegativity and/or polarisability [13, 14].

The benefits of electronic descriptors derived using AM1 theory and density
functional theory (using the B3LYP functional coupled with a 6-31G(d,p) basis
set) have been investigated [15]. The study utilised toxicity data to Pimephales
promelas for 568 chemicals covering multiple mechanisms of action (covalent and
non-covalent). A wide range of quantum mechanically derived descriptors were
calculated at the two levels of theory, with two, three and four parameter models
derived using multiple linear regression. The authors conclude that descriptors cal-
culated at the AM1 level of theory resulted in QSAR models as statistically relevant
as those constructed using the higher level of theory when modelling large multi-
mechanism data sets. The simplest two-parameter equations for toxicity using AM1
and DFT, respectively, are:

AMT1:Log (LCsy)~'= 0.614(0.022)log P — 0.240(0.026)E; 0 — 0.392(0.062)
n = 568, ’= 0.663, 12, = 0.658, s = 0.805, F = 555

(2-8)

DFT: Log (LCs)~'= 0.630(0.021)log P — 0.242(0.025)E; ymo — 0.603(0.057)
n = 568, ’= 0.667, 12, = 0.663, s = 0.800, F = 565
(2-9)
Investigations into the prediction of physico-chemical properties have also
demonstrated the comparable statistical performance between QSARs developed

using RM1 and DFT derived descriptors [16].
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2.7. QSARs FOR REACTIVE TOXICITY MECHANISMS
2.7.1. Aquatic Toxicity and Skin Sensitisation

Semi-empirical descriptors may be used to model the reactive covalent mechanisms
of toxic action between electrophilic chemicals and nucleophilic centres in proteins.
Karabunarliev et al. [17] investigated the ability of six mechanistically interpretable
AMI parameters (in addition to log P) to model the toxicity of 98 chemicals to
P. promelas. The data were modelled within mechanistic domains resulting in 35
of the chemicals being assigned to the Sy2 mechanism, 18 to the Michael addition
mechanism and 45 to the Schiff base mechanism (see Figure 2-1 for a summary
of these mechanisms). Multiple linear regression analysis resulted in three QSAR
models for the domains [Egs. (2-10, 2-11 and 2-12)].

Sn2: Log (1/LCsq) = — 1.56(0.337)E; ymo+0.358(0.106) log P + 4.43(0.283)
n =35, 2= 0.69, r2,= 0.41, s*>= 0.67, F = 35.6

soevT

(2-10)
Michael addition: Log (1/LCs,) = 28.6(0.525)AR + 81.3(0.306)B,_g
+0.359(0.142)log P — 89.10.290) ;|\
n=18,1>=0.78,12, =043,s> =033, F= 165
Schiff base: Log (1/LCsj) = 0.466(0.059)log P + 12.702(0.457)Qo
+7.285(0.145)
n =451 =0.60,r2, = 0.31,s> =0.23, F = 31.3 (2-12)

where

AR is the acceptor superdelocalisability for polarising atom
By_r is the bond order for the alpha carbon-polarising group bond
Qo is the atom superdelocalisability for oxygen

As with the non-covalent mechanisms, a chemical’s hydrophobicity is impor-
tant in determining its overall toxicity. Equation 2-10 highlights the usefulness
of ELumo in modelling a reactive mechanism. Mechanistically its inclusion is in
keeping with the ideas presented previously detailing hard—soft acid—base theory,
which for the Sy2 mechanism would involve the direct attack of the LUMO by
the incoming nucleophile and then subsequent expulsion of the leaving group. In
contrast, the QSARs for the Michael addition and Schiff base mechanisms utilise
alternate quantum mechanics descriptors which are less interpretable in terms of
the underlying reaction chemistry. The descriptors Ar and Qo are derived from a
family of descriptors known as superdelocalisability. These descriptors are atom
specific and have been suggested to account for an atom’s ability to either accept
electron density (commonly denoted as AN and Apax, where N = atom and Apax
is the atom with the greatest ability to accept electron density within a molecule)
or donate electron density (commonly denoted as Dy and Dy,x). A related study
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by the same authors into a series of benzene derivatives also using a similar set of
AM1-derived descriptors produced similar results [18].

Aptula et al. [19, 20] recently introduced the activation energy index (AEI) based
on the changes in energy of the frontier molecular orbitals for a series of chemicals
acting via the Michael addition mechanism of action. The AEI was designed to
model the alterations in orbital energies when an electrophile interacts with a nucle-
ophile in the SyAr mechanism. The analysis resulted in the AEI being calculated
from the change in the highest occupied molecular orbital and second highest occu-
pied molecular orbital energies upon formation of the ionic intermediate, both of
which are optimised using the AM1 Hamiltonian equation (2-13):

AEI = AEgomo-1 + AEnomo (2-13)

This parameter was first introduced to rationalise why two apparently related
chemicals, 2-methylisothiazol-3-one and 5-chloro-2-methylisothiazol-3-one, both
known to cause skin sensitisation, had been shown to react differently with the two
nucleophiles producing different reaction products [19]. A follow-up study investi-
gated the mechanistic rationale for the toxicity of 18 di- and tri-hydroxybenzenes
to T. pyriformis [20]. The authors suggested that these chemicals exert their toxic-
ity due to their ability to be oxidised to quinone-type species, which then react via
subsequent electrophilic Michael addition. An initial quantitative relationship was
developed for the 18 chemicals [Eq. (2-14)]:

Log (IGCs0)~! = —0.49(0.06)AEI + 6.85(0.69)
n=18,r2 =0.810,s = 0.24, F= 73 (2-14)

Both of these studies highlight the ability of AM1 Hamiltonian-derived descrip-
tors to model subtle electronic effects given a series of closely related chemicals
in which the electronics of the system dominate the differences in the toxicity. The
two studies also show how well-thought-out orbital analysis and subsequent cal-
culations can aid significantly the mechanistic interpretation of a series of related
chemicals.

A further descriptor that makes use of the frontier molecular orbitals has been
developed, namely the electrophilicity index w [21]. The electrophilicity index is
based on two previously developed quantum mechanical properties, chemical poten-
tial (u, which can be considered as the negative of chemical electronegativity) and
chemical hardness (1) [22, 23]. Thus, w can be calculated from Egomo and Er.umo
values as follows:

o = n?/21 = (Epomo + ELumo)?/2(EL umo — Exomo) (2-15)

A number of recent articles have highlighted the ability of the electrophilicity
index to model the site selectivity and reactivity in diene—dieneophile chemical reac-
tions [24, 25]. In terms of toxicity prediction, these studies are relevant as the ability
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to rationalise the Michael acceptor reaction is of clear importance, given its involve-
ment in reactive toxicity. In a more recent study, Domingo et al. [25] showed that
the electrophilic index (calculated at the B3LYP/6-31Gd level of theory) was able to
rank a series of Michael acceptors qualitatively. Importantly, the study also showed
the quantitative relationships between experimentally determined rate constants and
the electrophilicity index for several series of related chemicals. For example, the
rate of the Michael reaction for piperidine reacting with a series of benzylidene-
malononitriles was found to be reasonably correlated with o (1> = 0.75). Inspection
of the correlation revealed that the major deviation was due to lower than predicted
reactivity of the para-NMe, species, with it being suggested that a significant sol-
vation effect of the tertiary amide being responsible. Exclusion of this chemical
improved the correlation significantly (1> = 0.90). In addition, the w values for
four chemicals from the same series were shown to be highly correlated with the
available data for previously determined experimental measures of electrophilicity
[26] (12 = 0.98). A similar correlation was also reported for five a-nitrostilbenes
(2 = 0.98). It is important to note that these excellent correlations occurred after
careful consideration of the reactivity applicability domain, that is to say within
carefully considered chemical categories in which the electronic effects of the sys-
tem were determined to be the major influence on the differing rates of reaction. No
attempt was made to correlate w in a global fashion with the reaction rates for all 39
chemicals in the study [25].

A local lymph node assay (LLNA) study into the skin sensitising potential of a
series of Michael acceptor alkenes also highlighted the utility of the electrophilicity
index [27]. The authors utilised o (calculated using the B3LYP/6-31Gd level of the-
ory) as a measure of electrophilic similarity within a well-defined alkene Michael
acceptor category in order to perform quantitative mechanistic read-across. The
methodology assumed that within the Michael reaction domain the skin-sensitising
potential of a chemical is dominated by how electrophilic the chemical is and thus
how readily it will react with skin proteins. This is in keeping with reactivity stud-
ies which have shown that within this domain reactivity is the driving force, with
other factors such as toxicokinetics being of less importance [1, 28, 29]. Although
not a statistically based QSAR study (in that no attempt was made to derive a
linear model), the read-across methodology presented by the authors offered excel-
lent predictions within the perceived experimental error of the local lymph node
assay. In addition, the methodology allowed mechanistic outliers to be identified in
terms of easily rationalised chemistry effects such as steric hindrance and ring strain
release.

Other related studies have also demonstrated the utility of the electrophilicity
index in modelling several reactive mechanisms that occur in the toxicity of indus-
trial chemicals to T. pyriformis. In these studies the authors optimised a series of
aliphatic and aromatic chemicals using Hartree—Fock theory and 6-31Gd basis set
[30, 31]. In both studies chemicals were divided into a series of chemical cate-
gories and then modelled using a number of descriptors derived from w, including
so-called atom condensed philicity indices (wn* and wp ™) derived utilising Fukui
functions and several charge schemes including Mulliken analysis [4, 32]. A range
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of QSAR models were developed, the best of which was for 18 amino alcohols [Eq.
(2-16)]:

Log (IGC5,) = —0.40w — 2.19w;, — 1.52
n=18,1%=093s=0.14 (2-16)

Other density functional theory derived descriptors have been utilised to model
the toxicity of 28 nitroaromatic chemicals to P. promelas [33]. Six mechanistically
relevant descriptors were calculated using the B3LYP functional with a 6-31G(d,p)
basis set. The resulting QSAR model obtained by stepwise regression is given by
Eq. (2-17):

Log (LCsp) = —39.5 ELumo + 16.9 Egomo + 15.1 Qno2 + 4.17 Q¢ + 9.52
n=28,r=091,s =0.36,F =284
(2-17)
where
Qo2 is the charge on the nitro group
Q. is the charge on the nitro carbon

As previously determined, this study demonstrated the importance of the frontier
molecular orbitals in modelling hard—soft acid—base theory that plays an important
role in the toxicity of these chemicals.

2.7.2. QSARs for Mutagenicity

A chemical’s ability to act as a genotoxic mutagen is considered to be related to its
ability to form a covalent bond with nucleic acids [34-36]. The mechanistic basis for
such interactions is similar to those discussed for excess aquatic toxicity and skin
sensitisation, with the importance of the types of nucleophilic—electrophilic reac-
tions (Figure 2-1) and hard—soft acid—base theory being applicable (nitrogen within
nucleic acids acts as the nucleophile in genotoxic mutagenicity). Most mutagenicity
studies have focused on the development of small local QSAR models based on a
single chemical class. As has been discussed for aquatic toxicity and skin sensiti-
sation, this type of approach leads to the most mechanistically interpretable model
in which the inclusion of quantum mechanical descriptors can model a chemical’s
electrophilicity/reactivity.

Several studies of nitroaromatic chemicals in the TA98 and TA100 strains of
Salmonella typhimurium noted that mutagenicity could be well modelled using log
P and Epymo (calculated at the AMI level of theory) [37-39], an example being
Eq. (2-18):

log TA100 = 1.36(0.20)log P — 1.98(0.39)ELumo — 7.01(1.20)
n=47,r=091,s=0.74,F =999 (2-18)

where TA100 is the number of revertants per millimole.

It was suggested that the inclusion of the electronic parameter E ymo accounted
for the ability of the nitroaromatic chemicals to accept electrons, and thus be reduced
to the mutagenic nitroso species.
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A recent study into the mutagenic potential of a series of o, B-unsaturated aldehy-
des to the TA100 strain of S. typhimurium revealed a QSAR model (2-10) in which
ErLumo (calculated at the AM1 level of theory) also figured prominently [40]:

Log TA100 = —4.58 E{ ymo — 3.66 MR + 72.46 Qc—_cary + 2.55 log P
+13.09 Qc_p — 12.6 (2-19)
n=17,r* =0.84

where

MR is the molar refractivity
Qc-carb 1s the partial charge on the carbonilic carbon atom
Qc-p is the partial charge on the p carbon atom

In addition, several binary classification models were also presented utilising
hydrophobicity (log P) and electronic descriptors (ELumo). As previously discussed
(in terms of aquatic toxicity and skin sensitisation), the inclusion of molecular
orbital parameters to model the nucleophilic—electrophilic reaction thought to be
responsible for the reactive toxicity of such chemicals shows the importance of
quantum mechanical descriptors.

A related study investigated the important structural, quantum chemical and
hydrophobic factors thought to be related to the mutagenic potential of 12 closely
related heterocyclic amines to S. typhimurium TA98 [41]. The authors carried out
a series of calculations using Hartree—Fock theory coupled with a 6-31Gd basis
set to calculate a range of electronic descriptors. The study highlighted a number
of quantum mechanical factors that were suggested to be important in the control
of mutagenicity of the studied heterocyclic amines, these being low values for the
dipole moment (p), calculated energy of the aromatic 7 system and chemical soft-
ness (measured as the gap between the HOMO and LUMO). A number of linear
regression models were presented, such as Eq. (2-20):

Log TA98 = —033p+2.180 — 1.85

n = 12,12 = 0.85, RMSE = 0.38, F = 39.1 (2-20)

where
o is chemical softness
RMSE is the root mean square error

2.8. FUTURE DIRECTIONS AND OUTLOOK

The increase in computational power has led to a parallel increase in the use of
quantum mechanics derived molecular descriptors. This trend is likely to increase
in the future as computational chemists/toxicologists seek to fully understand the
underlying electronic effects of toxic mechanisms. This is especially true for the
reactive mechanisms involving the formation of covalent bonds. One can envisage
parameters such as the electrophilicity index being used to understand the electronic
effects within a series of chemicals within a category (see Chapter 7 in this volume
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for a discussion of chemical categories). Such analysis will enable a theoretical
understanding of the electronic effects to be added to weight of evidence approaches
in regulatory chemical safety assessments. This information will compliment, not
replace, other experimental investigations.

2.9. CONCLUSIONS

This chapter has highlighted the mechanistic rationale for the use of quantum
mechanics derived descriptors in the modelling of both non-covalent and covalent
mechanisms of action. In addition, some of the underlying chemical and com-
putational theory has been detailed to enable a qualitative understanding of the
theoretical background to the calculation of such descriptors. Two aspects have been
highlighted, the first being the inclusion of frontier molecular orbital descriptors
such as Er ymo, to aid the modelling of non-covalent mechanisms such as polar nar-
cosis. The second and perhaps the more important being the relationship between
the uses of such descriptors and hard—soft acid—base theory and how the two com-
bine to help in the understanding of covalent mechanisms of toxicity involving
nucleophilic—electrophilic chemistry.

For both non-covalent and covalent mechanisms, a number of examples have
been presented to highlight the usage of quantum mechanics derived descriptors.
The important conclusions from the examples presented are in the differing lev-
els of computational theory required to model the two types of mechanism. It is
clear that for non-covalent mechanisms the computationally efficient semi-empirical
methods such as AMI1 are sufficient for good predictions. In contrast, for covalent
mechanisms higher levels of theory are required for successful modelling of these
more chemically complex mechanisms. Finally, this chapter has demonstrated that
given a well-defined mechanistic applicability domain, quantum mechanics derived
molecular methods are extremely powerful tools that aid computational toxicolo-
gists in understanding the electronic structure of a chemical and how that structure
influences both non-covalent and covalent toxic mechanisms.
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Abstract: In the last decades, several scientific researches have been focused on studying how to
encompass and convert — by a theoretical pathway — the information encoded in the
molecular structure into one or more numbers used to establish quantitative relationships
between structures and properties, biological activities, or other experimental proper-
ties. Molecular descriptors are formally mathematical representations of a molecule
obtained by a well-specified algorithm applied to a defined molecular representation or a
well-specified experimental procedure. They play a fundamental role in chemistry, phar-
maceutical sciences, environmental protection policy, toxicology, ecotoxicology, health
research, and quality control. Evidence of the interest of the scientific community in
the molecular descriptors is provided by the huge number of descriptors proposed up
today: more than 5000 descriptors derived from different theories and approaches are
defined in the literature and most of them can be calculated by means of dedicated soft-
ware applications. Molecular descriptors are of outstanding importance in the research
fields of quantitative structure—activity relationships (QSARSs) and quantitative structure—
property relationships (QSPRs), where they are the independent chemical information
used to predict the properties of interest. Along with the definition of appropriate molec-
ular descriptors, the molecular structure representation and the mathematical tools for
deriving and assessing models are other fundamental components of the QSAR/QSPR
approach. The remarkable progress during the last few years in chemometrics and
chemoinformatics has led to new strategies for finding mathematical meaningful rela-
tionships between the molecular structure and biological activities, physico-chemical,
toxicological, and environmental properties of chemicals. Different approaches for deriv-
ing molecular descriptors here reviewed and some of the most relevant descriptors are
presented in detail with numerical examples.

Keywords:  Molecular representation, Topological indexes, Autocorrelation descriptors, Geometrical
descriptors

3.1. INTRODUCTION
3.1.1. Definitions

In the last decades, much scientific research has focused on how to capture and
convert — by a theoretical pathway — the information encoded in a molecular
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structure into one or more numbers used to establish quantitative relationships
between structures and properties, biological activities, or other experimental prop-
erties. Molecular descriptors are formal mathematical representations of a molecule,
obtained by a well-specified algorithm, and applied to a defined molecular repre-
sentation or a well-specified experimental procedure: the molecular descriptor is
the final result of a logic and mathematical procedure which transforms chemical
information encoded within a symbolic representation of a molecule into a useful
number or the result of some standardized experiment [1].

Molecular descriptors play a fundamental role in developing models for chem-
istry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxi-
cology, health research, and quality control. Evidence of the interest of the scientific
community in molecular descriptors is provided by the huge number of descriptors
that have been proposed: more than 5000 descriptors [1] derived from different the-
ories and approaches are defined and computable by using dedicated software of
chemical structure.

There are three main parts to the QSAR/QSPR approach in scientific research:
the concept of molecular structure, the definition of molecular descriptors, and
the chemoinformatic tools. The concept of molecular structure, its representa-
tion by theoretical molecular descriptors, and its relationship with experimental
properties of molecules is an inter-disciplinary network. Many theories, knowl-
edge, and methodologies and their inter-relationships are required. These have
led to a new scientific research field resulting in several practical applications.
Molecular descriptors are numerical indexes encoding some information related to
the molecular structure. They can be both experimental physico-chemical properties
of molecules and theoretical indexes calculated by mathematical formulas or com-
putational algorithms. Thus, molecular descriptors, which are closely connected to
the concept of molecular structure, play a fundamental role in scientific research,
being the theoretical core of a complex network of knowledge, as it is shown in
Figure 3-1.

Molecular descriptors are derived by applying principles from several different
theories, such as quantum-chemistry, information theory, organic chemistry, graph
theory. They are used to model several different properties of chemicals in scien-
tific fields such as toxicology, analytical chemistry, physical chemistry, medicinal,
pharmaceutical, and environmental chemistry. Moreover, in order to obtain reli-
able estimates of molecular properties, identify the structural features responsible
for biological activity, and select candidate structures for new drugs, molecular
descriptors have been processed by a number of statistical, chemometrics, and
chemoinformatics methods. In particular, for about 30 years chemometrics has
been developing classification and regression methods able to provide — although
not always — reliable models, for both reproducing known experimental data and
predicting unknown values. The interest in predictive models able to provide effec-
tive reliable estimates has been growing in the last few years as they are more
and more considered to be useful and safer tools for predicting data for chem-
icals. In recent years, “The use of information technology and management has
become a critical part of the drug discovery process. Chemoinformatics is the
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Figure 3.1. General scheme of the relationships among molecular structure, molecular descriptors,
chemoinformatics, and QSAR/QSPR modeling

mixing of those information resources to transform data into information and infor-
mation into knowledge for the intended purpose of making better decisions faster
in the area of drug lead identification and organization” [2]. In fact, chemoin-
formatics encompasses the design, creation, organization, management, retrieval,
analysis, dissemination, visualization, and use of chemical information [3,4]; molec-
ular descriptors play a fundamental role in all these processes being the basic
tool to transform chemical information into a numerical code suitable for applying
informatic procedures.

3.1.2. History

The history of molecular descriptors is closely related to the history of what can
be considered one of the most important scientific concepts of the last part of the
nineteenth century and the whole twentieth century, that is, the concept of molecular
structure. The years between 1860 and 1880 were characterized by a strong dispute
about the concept of molecular structure, arising from the studies on substances
showing optical isomerism and the studies of Kekulé (1861-1867) on the structure
of benzene. The concept of the molecule thought of as a three-dimensional body
was first proposed by Butlerov (1861-1865), Wislicenus (1869—-1873), Van’t Hoff
(1874-1875), and Le Bel (1874). The publication in French of the revised edition
of “La chimie dans 1’éspace” by Van’t Hoff in 1875 is considered a milestone of the
three-dimensional understanding of the chemical structures.

Molecular descriptors can be considered as the most important realization of the
theory of Crum-Brown. His M.D. Thesis at the University of Edinburgh (1861),
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entitled “On the Theory of Chemical Combination”, shows that he was a pioneer of
mathematical chemistry science. In it, he developed a system of graphical represen-
tation of compounds which is basically identical to that used today. His formulae
were the first that showed clearly both valency and linking of atoms in organic
compounds. Toward the conclusion of his M.D. thesis he wrote:

It does not seem to me improbable that we may be able to form a mathematical theory of
chemistry, applicable to all cases of composition and recomposition.

In 1864, he published an important paper on the “Theory of Isomeric
Compounds” in which, using his graphical formulae, he discussed various types of
isomerism [5], guessing the link between mathematics and chemistry. Later, Crum-
Brown and Fraser [6,7] proposed the existence of a correlation between biological
activity of different alkaloids and their molecular constitution. More specifically, the
physiological action of a substance in a certain biological system (®) was defined
as a function (f) of its chemical constitution (C) [Eq. (3-1)]:

@ =f(O) (3-1)

Thus, an alteration in chemical constitution, AC, would be reflected by an
effect on biological activity, A®. This equation can be considered the first general
formulation of a quantitative structure—activity relationship.

Another hypothesis on the existence of correlations between molecular structure
and physico-chemical properties was reported in the work of Korner [9], which dealt
with the synthesis of di-substituted benzenes and the discovery of ortho, meta, and
para derivatives: the different colors of di-substituted benzenes were thought of to
be related to differences in molecular structure and the indicator variables for ortho,
meta, and para substitution can be considered as the first three molecular descriptors
[8.9].

From the Hammett equation [10,11], the seminal work of Hammett gave rise to
the “o—p” culture in the delineation of substituent effects for organic reactions. The
aim of this work was the search for linear free energy relationships (LFER) [12]:
steric, electronic, and hydrophobic constants were derived for several substituents
and used in an additive model to estimate the biological activity of congeneric series
of compounds. The first theoretical QSAR/QSPR approaches, that related biological
activities and physico-chemical properties to theoretical numerical indexes derived
from the molecular structure, date back to the end of 1940s. The Wiener index
[13] and the Platt number [14], proposed in 1947 to model the boiling point of
hydrocarbons, were the first theoretical molecular descriptors based on the graph
theory. In the 1950s, the fundamental work of Taft in physical organic chemistry was
the foundation of relationships between physico-chemical properties and solute—
solvent interaction energies (linear solvation energy relationships, LSER), based
on steric, polar, and resonance parameters for substituent groups in congeneric
compounds [15,16].

In the mid-1960s, led by the pioneering work of Hansch [17-19], the
QSAR/QSPR approach began to assume its modern look. The definition of Hansch
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models led to an explosion in the development of QSAR analysis and related
approaches [20]. This approach, known by the name of Hansch analysis, became
and still is a basic tool for QSAR modeling. At the same time, Free and Wilson
developed a model of additive substituent contributions to biological activities [21],
giving a further push to the development of QSAR strategies. In the 1960s, sev-
eral other molecular descriptors were proposed, which signaled the beginning of
systematic studies on molecular descriptors, mainly based on the graph theory
[22-26].

The use of quantum-chemical descriptors in QSAR/QSPR modeling dates back
to early 1970s [27], although they actually were conceived several years before
to encode information about relevant properties of molecules in the framework of
quantum-chemistry. The fundamental work of Balaban [28], Randi¢ [29], Kier and
Hall [30] led to further significant developments of the QSAR approaches based
on topological indexes. As a natural extension of the topological representation of
a molecule, the geometrical aspects of molecular structures have been taken into
account since the mid-1980s, leading to the development of the 3D-QSAR, which
exploits information on molecular geometry. Geometrical descriptors were derived
from the 3D spatial coordinates of a molecule and, among them, there were shadow
indexes [31], charged partial surface area descriptors [32], WHIM descriptors [33],
gravitational indexes [34], EVA descriptors [35], 3D-MoRSE descriptors [36], and
GETAWAY descriptors [37].

In the late 1980s, a new strategy for describing molecule characteristics was pro-
posed, based on molecular interaction fields, which are comprised of interaction
energies between a molecule and probes, at specified spatial points in 3D space.
Different probes (such as a water molecule, methyl group, hydrogen) were used for
evaluating the interaction energies in thousands of grid points where the molecule
was embedded. As the final result of this approach, a scalar field (a lattice) of inter-
action energy values characterizing the molecule was obtained. The formulation of
a lattice model to compare molecules by aligning them in 3D space and extract-
ing chemical information from molecular interaction fields was first proposed by
Goodford [38] in the GRID method and then by Cramer, Patterson, Bunce [39] in
the comparative molecular field analysis (CoMFA).

Finally, an increasing interest of the scientific community has been shown in
recent years for virtual screening and design of chemical libraries, for which
several similarity/diversity approaches, cell-based methods, and scoring functions
have been proposed based mainly on substructural descriptors such as molecular
fingerprints [3,40].

3.1.3. Theoretical vs. Experimental Descriptors

Molecular descriptors are divided into two main classes: experimental measure-
ments, such as log P, molar refractivity, dipole moment, polarizability, and, in
general, physico-chemical properties, and theoretical molecular descriptors, which
are derived from a symbolic representation of the molecule and can be further
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classified according to the different types of molecular representation. The fun-
damental difference between theoretical descriptors and experimentally measured
ones is that theoretical descriptors contain no statistical error due to experimental
noise, as opposed to experimental measurements. However, the assumptions needed
to facilitate calculation and numerical approximation are themselves associated with
an inherent error, although in most cases the direction, but not the magnitude, of the
error is known. Moreover, within a series of related compounds the error term is
usually considered to be approximately constant. All kinds of error are absent only
for the most simple theoretical descriptors such as counts of structural features or
for descriptors directly derived from exact mathematical theories.

Theoretical descriptors derived from physical and physico-chemical theories
show some natural overlap with experimental measurements. Several quantum-
chemical descriptors, surface areas, and volume descriptors are examples of such
descriptors also having an experimental counterpart. With respect to experimental
measurements, the greatest recognized advantages of the theoretical descriptors are
usually (but not always) in terms of cost, time, and availability.

Each molecular descriptor takes into account a small part of the whole chemical
information contained into the real molecule and, as a consequence, the number of
descriptors is continuously increasing with the increasing request of deeper investi-
gations on chemical and biological systems. Different descriptors have independent
methods or perspectives to view a molecule, taking into account the various fea-
tures of chemical structure. Molecular descriptors have now become some of the
most important variables used in molecular modeling, and, consequently, managed
by statistics, chemometrics, and chemoinformatics.

The availability of molecular descriptors has not only provided a new oppor-
tunity to search for new relationships, but has been stimulated a great change of
the research paradigm in this field: in effect, the use of the molecular descriptors —
calculated theoretically — has permitted for the first time a link between the exper-
imental knowledge and theoretical information arising from molecular structure.
Whereas, until the 1960s—1970s molecular modeling mainly consisted of the search
for mathematical relationships between experimentally measured quantities, nowa-
days it is mainly performed to search for relationships between a measured property
and molecular descriptors able to capture structural chemical information.

A general consideration about the use of molecular descriptors in modeling
problems concerns their information content. This depends on the type of molec-
ular representation used and the defined algorithm for their calculation. There are
simple molecular descriptors derived by counting some atom types or structural
fragments in the molecule, as well as physico-chemical and bulk properties such as,
for example, molecular weight, number of hydrogen bond donors/acceptors, number
of OH-groups, and so on. Other molecular descriptors are derived from algorithms
applied to a topological representation. These are usually termed topological, or
2D-descriptors. Other molecular descriptors are derived from the spatial (x, y, z)
coordinates of the molecule, usually called geometrical, or 3D-descriptors; another
class of molecular descriptors, called 4D-descriptors, is derived from the interaction
energies between the molecule, imbedded into a grid, and some probe.
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It is true that geometrical 3D- or 4D-descriptors have higher information content
than other simpler descriptors, such as counts of atoms/fragments or topological
descriptors which often show significant levels of degeneracy. Thus, there is a point
of view that it is better to use the most informative descriptors in all modeling pro-
cesses. This thinking is not correct because the “best descriptors” are those whose
information content is comparable with the information content of the response for
which the model is sought. In effect, too much information in the independent vari-
ables (the descriptors) with respect to the response is often seen as noise in the
model, thus giving instable or unpredictive models. For example, a property whose
values are equal or similar for isomeric structures is better modelled by a simple
descriptor with appropriate values for isomeric structures. In this case, descrip-
tors able to discriminate among the isomeric structures have redundant information
which cannot be integrated in the model. In conclusion, it can be stated that the best
descriptor(s) valid for all the problems does(do) not exist.

In general, molecular descriptors, besides trivial invariance properties, should
satisfy some basic requirements. A list of desirable requirements of chemical
descriptors suggested by Randi¢ [41] is shown in Table 3-1.

Table 3-1. List of desirable attributes of molecular descriptors for use in (Q)SAR
studies

# Descriptors should be associated with the following desirable features

Structural interpretation

Show good correlation with at least one property
Preferably allow for the discrimination of isomers
Applicable to local structure

Generalizable to “higher” descriptors
Independence

Simplicity

Not to be based on properties

Not to be trivially related to other descriptors
Allow for efficient construction

Use familiar structural concepts

Show the correct size dependence

Show gradual change with gradual change in structures
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3.2. MOLECULAR REPRESENTATION

Molecular representation is the manner in which a molecule, i.e., a phenomeno-
logical real body, is symbolically represented by a specific formal procedure and
conventional rules. The quantity of chemical information which is transferred to the
molecule symbolic representation depends on the kind of representation [42,43].
The simplest molecular representation is the chemical formula (or molecular for-
mula), which is the list of the different atom types, each accompanied by a subscript
representing the number of occurrences of the atoms in the molecule. For example,
the chemical formula of 4-chlorotoluene is C7H7Cl, indicating the presence in the
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molecule of A = 8 (number of atoms, hydrogen excluded), Nc = 7, Ny = 7, and
Nc1 = 1 (the subscript “1” is usually omitted in the chemical formula). This repre-
sentation is independent of any knowledge concerning the molecular structure and,
hence, molecular descriptors obtained from the chemical formula can be referred
to as OD-molecular descriptors. Examples are the number of atoms A, the molec-
ular weight MW, the number Ny of atoms of type X, and, in general, any function
of atomic properties. Atomic properties are usually the weighting schemes used to
characterize the atoms in a molecule and express chemical information regarding a
molecular structure. The most common atomic properties for molecular descriptor
calculation are atomic masses, atomic charges, van der Waals radii, atomic polariz-
abilities, and electronegativities. Atoms can also be characterized by the local vertex
invariants (LOVIs) derived from graph theory.

The substructure list representation can be considered as a one-dimensional rep-
resentation of a molecule and consists of a list of structural fragments of a molecule.
The list is as simple as a partial list of fragments, functional groups, or substituents
of interest present in the molecule. Thus, it does not require a complete knowl-
edge of molecular structure. The descriptors derived from this representation are
holographic vectors or bit-strings, usually referred to as ID-molecular descrip-
tors. These are typically used in substructural analysis, similarity/diversity analysis
of molecules, and virtual screening and design of molecule libraries. 0D and 1D
descriptors can be always easily calculated, are naturally interpreted, do not require
optimization of the molecular structure, and are independent of any conformational
problem. They usually show a very high degeneration, i.e., many molecules have the
same values, for example, isomers. Their information content is low, but neverthe-
less they can play an important role in modeling several physico-chemical properties
or can be included in more complex models.

The two-dimensional representation of a molecule considers how the atoms
are connected, that is, it defines the connectivity of atoms in the molecule in
terms of the presence and, ultimately, nature of chemical bonds. The repre-
sentation of a molecule in terms of the molecular graph is commonly known
as the topological representation. The molecular graph depicts the connectivity
of atoms in a molecule irrespective of the metric parameters such as equilib-
rium interatomic distances between nuclei, bond angles, and torsion angles. In
Figure 3-2, examples of H-depleted molecular graphs are given for 2-methyl-3-
butenoic acid, 1-ethyl-2-methyl-cyclobutan, and 5-methyl-1,3,4-oxathiazol-2-one.

60

Figure 3-2.  Some molecular graph representations of molecules
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Molecular descriptors derived from algorithms applied to a topological repre-
sentation are referred to as 2D-molecular descriptors; they include the so-called
topological indexes.

Linear notation systems are alternative two-dimensional representations to the
molecular graph. These include, for instance, Wiswesser line notation (WLN)
system [44], SMILES [45,46], and SMARTS [47]. Three-dimensional molecular
representation considers a molecule as a rigid geometrical object in space and allows
a representation not only of the nature and connectivity of the atoms, but also the
overall spatial configuration of molecule atoms. This representation of a molecule
is called geometrical representation and defines a molecule in terms of atom types
constituting the molecule and the set of (x, y, z)-coordinates associated to each atom.
Figure 3-3 shows a geometrical representation of lactic acid. Molecular descriptors
derived from this representation are referred to as 3D-molecular descriptors or geo-
metrical descriptors; several of them were proposed to measure the steric and size
properties of molecules.

Several molecular descriptors derive from multiple molecular representations
and can only be classified with difficulty. For example, graph invariants derived from
a molecular graph weighted by properties obtained by methods of computational
chemistry are both 2D and 3D descriptors. The bulk representation of a molecule
describes the molecule in terms of a physical object with 3D attributes such as bulk
and steric properties, surface area, and volume. The stereoelectronic representation
(or lattice representation) of a molecule is a molecular description related to those
molecular properties arising from electron distribution, interaction of the molecule
with probes characterizing the space surrounding them (e.g., molecular interaction
fields, see Chapter 4). This representation is typical of the grid-based QSAR tech-
niques. Descriptors at this level can be considered 4D-molecular descriptors, being
characterized by a scalar field, that is, a lattice of scalar numbers, associated with
the 3D molecular geometry (Figure 3-4).

GRID [38] and CoMFA [39] approaches were the first methods based on the cal-
culation of the interaction energy between molecule and a probe. The focus of these
approaches is to identify and characterize quantitatively the interactions between the

Figure 3-3. The 3D-structure representation of a molecule
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Figure 3-4. A lattice of grid points with an embedded molecule

molecule and the receptor’s active site. They place molecules in a 3D lattice con-
stituted by several thousands of evenly spaced grid points and use a probe (a steric,
electrostatic, hydrophilic, etc., atom, ion, or fragment) to map the surface of the
molecule on the basis of the molecule interaction with the probe. It is noteworthy
that the use of interaction energies at the grid points for molecular modeling requires
careful alignment of the data set molecules in such a way that each of the thousands
of grid points represents, for all the molecules, the same kind of information and not
spurious information due to the lack of invariance to rotation of molecules. However,
an advantage of these approaches is that the scalar fields can be efficiently visualized
and used to display information visually for new drug candidates, thus resulting in
a very helpful tool in the drug discovery process [48,49].

Several other methods that are also based on molecular interaction fields have
been successively developed. Among them are comparative molecular similarity
indexes analysis (CoMSIA) [50], compass method [51], G-WHIM descriptors [52],
Voronoi field analysis [53], SOMFA [54], VolSurf descriptors [55], and GRIND
[56]. Finally, the stereodynamic representation of a molecule is a time-dependent
representation which adds structural properties to the 3D representations, such as
flexibility, conformational behavior, transport properties. Dynamic QSAR [57], 4D
molecular similarity analysis [58], and 4D-QSAR analysis [59] are examples of a
multi-conformational approach.

3.3. TOPOLOGICAL INDEXES
3.3.1. Molecular Graphs

A molecular graph is a topological representation of a chemical; it is a connected
graph where vertexes and edges are chemically interpreted as atoms and covalent
bonds [60]. The molecular graph is usually denoted as G =(V,E), where V is a set
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of vertexes which correspond to the molecule atoms and E is a set of elements rep-
resenting the binary relationship between pairs of vertexes; unordered vertex pairs
are called edges, which correspond to bonds between atoms. A molecular graph
obtained excluding all the hydrogen atoms is called H-depleted molecular graph,
while a molecular graph where hydrogens are included is called a H-filled molecular
graph (or, simply, molecular graph). A walk in G is a sequence of pairwise adjacent
edges leading from one vertex to another vertex in the graph; any vertex or edge
can be traversed several times. The walk length is the number of edges traversed by
the walk. A path (or self-avoiding walk) is a walk without any repeated vertexes.
The path length is the number of edges associated with the path. The topological
distance between two vertexes is the length of the shortest path between them.

Graph invariants are mathematical quantities derived from a graph representa-
tion of the molecule and represent graph—theoretical properties that are preserved
by isomorphism, i.e., properties with identical values for isomorphic graphs. A
graph invariant may be a characteristic polynomial, a sequence of numbers, or a
single numerical index obtained by the application of algebraic operators to graph—
theoretical matrixes and whose values are independent of vertex numbering or
labeling [61-69].

3.3.2. Definition and Calculation of Topological Indexes (TIs)

Single indexes derived from a molecular graph are called ropological indexes
(TTs). These are numerical quantifiers of molecular topology that are mathemati-
cally derived in a direct and unambiguous manner from the structural graph of a
molecule, usually an H-depleted molecular graph. They can be sensitive to one or
more structural features of the molecule such as size, shape, symmetry, branch-
ing, and cyclicity and can also encode chemical information concerning atom type
and bond multiplicity. In fact, it has been proposed to divide topological indexes
into two categories: fopostructural and topochemical indexes [70]. Topostructural
indexes only encode information about the adjacency and distances between atoms
in the molecular structure; topochemical indexes quantify information about topol-
ogy, but also specific chemical properties of atoms such as their chemical identity
and hybridization state.

Topological indexes are based mainly on distances between atoms calculated by
the number of intervening bonds and are thus considered through-bond indexes.
They differ from geometrical descriptors which are, instead, considered through-
space indexes because they are based on interatomic geometric distances [71,72].
In general, TIs do not uniquely characterize molecular topology, but different
structures may have some of the same TIs. A consequence of topological index non-
uniqueness is that TIs do not, in general, allow for the re-construction of a molecule.
Therefore, suitably defined ordered sequences of TIs can be used to characterize
molecules with higher discrimination.

There are several ways to calculate topological indexes. Simple TIs consist of
the counts of some specific graph elements; examples are the Hosoya Z index
[73], path counts [74], self-returning walk counts [26], Kier shape descriptors [75],
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path/walk shape indexes [76]. However, the most common TIs are derived by apply-
ing some graph operators (e.g., the Wiener operator, that is, the half-sum of the
matrix elements) to graph—theoretical matrixes. Among them there are the Wiener
index [77], spectral indexes [69], and Harary indexes [78]. In the last few years,
several efforts have been made to formalize the several formulae and algorithms
dealing with molecular graph information: ““ a graph operator applies a mathe-
matical equation to compute a whole class of related molecular graph descriptors,
using different molecular matrixes and various weighting schemes. .. In this way,
molecular graph operators introduce a systematization of topological indexes and
graph invariants by assembling together all descriptors computed with the same
mathematical formula or algorithm, but with different parameters or molecular
matrixes.” [19].

The most common functions to derive topological indexes from graph—
theoretical matrixes are listed in Table 3-2. Note that, in functions D and D», the
most common parameter values are o = 1/2 and \ = 1. Moreover, it should be noted
that function Dy, is restricted to pairs of adjacent vertexes, a;; being the elements of
the adjacency matrix. which are equal to one for pairs of adjacent vertexes, and
zero otherwise. Function D3 is used to generate descriptors derived from the matrix
determinant and function D4 descriptors that are linear combinations of the coef-
ficients of the characteristic polynomial of a graph—theoretical matrix, such as the
Hosoya-type indexes [80]. Function D5 is based on the eigenvalues calculated from
graph—theoretical matrixes and the related molecular descriptors are the so-called
spectral indexes. Function Dg makes use of the matrix row sums VS; as the local
vertex invariants (LOVIs) and, then, adds up the contributions from different graph
fragments (e.g., edges), each weighted by the product of the local invariants of all
the vertexes contained in the fragment; connectivity-like indexes [81] and Balaban-
like indexes [81] are calculated according to this function. Function D7 for o = 1/2
and N = 2 generates the hyper-Wiener-type indexes [81].

Table 3-2. Classical functions to derive molecular descriptors from graph—theoretical matrixes M; n is
the matrix dimension, c(Ch(M; x)); is the ith coefficient of the characteristic polynomial of M,A (M)
indicates the graph spectrum (i.e., the set of eigenvalues of M), o and ) are real parameters. In function
Dg, VS;(M) is the ith matrix row sum, K is the total number of selected graph fragments, and ny the
number of vertexes in kth fragment, a;; indicates the elements of the adjacency matrix which are equal
to one for pairs of adjacent vertexes, and zero otherwise
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Other topological indexes can be obtained by using suitable functions applied to
local vertex invariants (LOVIs); the most common functions are atom and/or bond
additive, resulting into descriptors which correlate well physico-chemical proper-
ties that are atom and/or bond additive themselves. For example, Zagreb indexes
[82], Randi¢ connectivity index [83], related higher-order connectivity indexes
[84], and the Balaban distance connectivity index [85] are derived according to
this approach. Local vertex invariants (LOVIs) are numerical quantities associated
with graph vertexes independent of any arbitrary vertex numbering used to char-
acterize local properties in a molecule. They can be either purely topological if
heteroatoms are not distinguished from carbon atoms, or chemical if the heteroatoms
are assigned distinct values from carbon atoms, even when these are topologically
equivalent [86].

Some functions to derive molecular descriptors D from local vertex invari-
ants, denoted by L, are presented in Table 3-3. It should be noted that function
Dy, that is the well-known Randié-type formula for ¢ = 1 and X = —1/2, is
restricted to pairs of adjacent vertexes, a;; being the elements of the adjacency
matrix, which are equal to one for pairs of adjacent vertexes, and zero other-
wise. Function Dg is an extension of function D4 to any type of graph fragments
as in the Kier—Hall connectivity indexes [84]. Function D7 gives autocorrelation
descriptors, while function Dg gives maximum auto-cross-correlation descriptors.
Moreover, similar functions can be applied to local edge invariants L;; in place
of local vertex invariants L; so that other sets of molecular descriptors can be
generated.

Another way to derive topological indexes is by generalizing the existing
indexes or graph—theoretical matrixes. Moreover, topological information indexes
are indexes based on information theory and calculated as the information content

Table 3-3. Classical functions to derive molecular descriptors from local vertex invariants. L; and L; are
local invariants associated to the vertexes v; and vj, respectively; A is the number of graph vertexes, V
denotes the set of graph vertexes, and 3(dj;;k) is a Dirac delta function equal to one for pairs of vertexes
at topological distance dj; equal to k, and zero otherwise. In function Dy, ajj indicates the elements
of the adjacency matrix which are equal to one for pairs of adjacent vertexes, and zero otherwise. In
function Dg, the summation goes over fragments of a given type, K is the total number of selected graph
fragments, and ny the number of vertexes in the kth fragment
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of specified equivalence relationships on the molecular graph [87]. Several fragment
topological indexes can be derived by any topological index calculated for molecular
subgraphs [88].

Particular topological indexes are derived from weighted molecular graphs where
vertexes and/or edges are weighted by quantities representing some 3D features
of the molecule, such as those obtained by methods of computational chemistry.
The topological indexes obtained in this way encode both information on molec-
ular topology and molecular geometry. BCUT descriptors [89] are an example of
these topological descriptors. Triplet topological indexes were proposed based on a
general matrix-vector multiplication approach [90].

Several graph invariants can also be derived by the vector-matrix-vector multi-
plication approach (or VMV approach) proposed by Estrada [91]. This approach
allows the generation of graph invariants D according to the following equation
(3-2):

D (Mvi,voia0) = o - (v - M* - v2) (3-2)

where v and vy are two-column vectors collecting atomic properties or local vertex
invariants, and M is a graph—theoretical matrix; o and \ are two real parameters.
Topological indexes have been successfully applied in characterizing the struc-
tural similarity/dissimilarity of molecules and in QSAR/QSPR modeling. Due to the
large proliferation of graph invariants and as the result of many authors following
the procedures outlined above and other general schemes, some rules are needed to
critically analyze such invariants, paying particular attention to their effective role in
correlating physico-chemical properties, biological responses, and other experimen-
tal responses as well as their chemical meaning. In this respect, a list of desirable
attributes for topological indexes (Table 3-1) was suggested by Randic¢ [41].

3.3.3. Graph-Theoretical Matrixes

Molecular matrixes are the most common mathematical tool to encode struc-
tural information of molecules. Very popular molecular matrixes are the graph—
theoretical matrixes, a huge number of which were proposed in the last decades
in order to derive topological indexes and describe molecules from a topological
point of view. Graph-theoretical matrixes are matrixes derived from a molecular
graph G (often from an H-depleted molecular graph). A comprehensive collec-
tion of graph—theoretical matrixes is reported in [92]. Graph—theoretical matrixes
can be either vertex matrixes, if both rows and columns refer to graph vertexes
(atoms) and matrix elements encode some property of pairs of vertexes, or edge
matrixes, if both rows and columns refer to graph edges (bonds) and matrix ele-
ments encode some property of pairs of edges. Vertex matrixes are square matrixes
of dimension Ax A, A being the number of graph vertexes, while edge matrixes are
square matrixes of dimension BxB, B being the number of graph edges. Together
with vertex matrixes and edge matrixes, incidence matrixes are another class of
important graph—theoretical matrixes used to characterize a molecular graph. These
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are matrixes whose rows can represent either vertexes or edges and columns some
subgraphs, such as edges, paths, or cycles.

Vertex matrixes are undoubtedly the graph—theoretical matrixes most frequently
used for characterizing a molecular graph. The matrix entries encode different infor-
mation about pairs of vertexes such as their connectivities, topological distances,
sums of the weights of the atoms along the connecting paths; the diagonal entries
can encode chemical information about the vertexes. A huge number of topological
indexes were proposed from vertex matrixes.

The most important vertex matrixes are the adjacency matrix A which encodes
information about vertex connectivities and the distance matrix D which also
encodes information about relative locations of graph vertexes. The adjacency
matrix A is symmetric with dimension A x A, where A is the number of vertexes,
and it is usually derived from the H-depleted molecular graph; the entries a;; of the
matrix equal one if vertexes v; and v; are adjacent (i.e., the atoms i and j are bonded),
and zero otherwise [Eq. (3-3)]:

| 1if G, j) e EG)
(Al = { 0 otherwise (3-3)
where E(G) is the set of the graph edges.
The ith row sum of the adjacency matrix is called vertex degree, denoted by §;,
and defined as follows [Eq. (3-4)]:

A
5= ay (3-4)
j=1

An example of calculation of the adjacency matrix A and vertex degrees d; is
shown for the H-depleted molecular graph of 2-methylpentane.

Atom | 1 2 3 4 5 6|3,

1 [0 L 0 0 0 0]1

6 2 1 0 1 0 0 1]3
A= 3 o 1 0 1 0 02

12345 4 o o 1 0 1 0]2
5 o o 0 1 0 0]1

6 o 1 0 0 0 01

The total adjacency index, denoted as Ay, is a measure of the graph connect-
edness and is calculated as the sum of all the entries of the adjacency matrix of a
molecular graph, which is twice the number B of graph edges [Eq. (3-5)] [26]:
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Av=) > ay=) 6=2B (3-5)

For example, the total adjacency index of 2-methylpentane is Ay =1 +3 +2 +
2+ 1+ 1 =10, which is twice the number of edges equal to five in the H-depleted
molecular graph of this molecule. The total adjacency index is sometimes calculated
as the half-sum of the adjacency matrix elements.

The distance matrix D is a symmetric A x A matrix whose elements are the topo-
logical distances between all the pairs of graph vertexes; the topological distance d;;
is the number of edges along the shortest path ™" P;; between the vertexes v; and v;

[Eq. (3-6)]:

di = |Minp.y ifj £

The off-diagonal entries of the distance matrix equal one if vertexes v; and v;
are adjacent (that is, the atoms i and j are bonded and d;; = a;; = 1, where a;; are
elements of the adjacency matrix A) and are greater than one otherwise. For vertex-
and edge-weighted graphs, the distance matrix entry i—j could be defined as the min-
imum sum of edge weights along the path between the vertexes v; and v;, which is
not necessarily the shortest possible path between them, or otherwise as the sum
of the weights of the edges along the shortest path between the considered ver-
texes. Diagonal entries usually are the vertex weights. Different weighting schemes
for vertex and/or edges were proposed from which a number of weighted distance
matrixes were derived [93].

The distance degree (or distance sum), denoted as o;, is defined as the distance
matrix row sum [Eq. (3-7)]:

A
oi =Y dj (3-7)
Jj=1

The maximum value entry in the ith row of the distance matrix is called atom

eccentricity (or vertex eccentricity) and denoted as n; [Eq. (3-8)]:
;i = max; (d,--) (3-8)
The atom eccentricity is a local vertex invariant representing the maximum dis-
tance from a vertex to any other vertex in the graph. An example of calculation of

the distance matrix D, vertex distance degrees o;, and atom eccentricities v; is here
reported for 2-methylpentane.
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Atom |1 2 3 4 5 6| o U

1 o 1 2 3 4 212 4

6 2 |1 0 1 2 3 1|38 3
)\/\ D=| 3 |2 1 0 1 2 2 2
] 2 3 4 s 4 |3 2 1 0 1 3|10 3
s |4 3 2 1 0 4|14 4

6 |2 1 2 3 4 0|12 4

Vertex distance degrees are local vertex invariants: high values are observed for
terminal vertexes (e.g., in 2-methylpentane, 0 = 12 for terminal vertexes 1 and 6,
and o = 14 for terminal vertex 5), while low values for central vertexes. Moreover,
among the terminal vertexes, vertex distance degrees are small if the vertex is next
to a branching site (e.g., in 2-methylpentane, vertexes 1 and 6 are directly bonded
to vertex 2 which represents a branching site) and larger if the terminal vertex is far
away (e.g., in 2-methylpentane, terminal vertex 5 is three bonds far away from the
branching site 2).

The half-sum of all the elements dj; of the distance matrix [73], which is equal
to the half-sum of the distance degrees o; of all the vertexes [94], is the well known
Wiener index W, which is one of the most popular topological indexes used in QSAR
modeling [Eq. (3-9)] [77]:

W:E-ZZd,-j:E-Za,» (3-9)

where A is the number of graph vertexes.

The total sum of the entries of the distance matrix is another topological index
called Rouvray index and denoted as Irouv, wWhich is twice the Wiener index W
[Eq. (3-10)]:

A A A
Iowv=Y Y dj=Y 0;=2W (3-10)
i=1

i=1 j=1

For example, in 2-methylpentane, the Rouvray index derived from distance val-
ues is Irpouy = 10x1 + 10x2 + 6x3 + 4x4 = 64 or, alternatively, derived from
distance degrees is IRoyy = 12+ 8+ 8 + 10 + 14 + 12 = 64.

From the vertex eccentricity definition, a graph can be immediately character-
ized by two molecular descriptors known as fopological radius R and topological
diameter D. The topological radius of a molecule is defined as the minimum ver-
tex eccentricity and the topological diameter is defined as the maximum vertex
eccentricity, according to the following equation (3-11) [26]:
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R =min; (;) and D = max; (n;) (3-11)

From the topological radius and the topological diameter, a graph—theoretical
shape index, called Petitjean index, is defined as follows [Eq. (3-12)] [95]:

D—R
h="2" 0<h<1 (3-12)

For strictly cyclic graphs, D = R and I = 0. For example, the radius of
2-methylpentane is 2, while the diameter is 4; the Petitjean index is 1.

The detour matrix A of a graph G (or maximum path matrix) is a square
symmetric A X A matrix, A being the number of graph vertexes, whose entry
i—j is the length of the longest path from vertex v; to vertex v; (M%Pj;)
[Eq. (3-13)] [26]:

Ay = [™Py|ifi #j

This definition is the exact “opposite” of the definition of the distance matrix
whose off-diagonal elements are the lengths of the shortest paths between the con-
sidered vertexes. However, the distance and detour matrixes coincide for acyclic
graphs, there being only one path connecting any pair of vertexes.

The maximum path sum of the ith vertex, denoted by MPVS,, is a local vertex
invariant defined as the sum of the lengths of the longest paths between vertex v;
and any other vertex in the molecular graph, i.e., Eq. (3-14):

A
MPVS; = > "[A]; (3-14)
j=1

A Wiener-type index, originally called the MPS topological index [96] but usu-
ally known as the detour index and denoted by w [97], was proposed as the half-sum
of the detour distances between any two vertexes in the molecular graph [Eq.
(3-19)]:

1 A A 1 A
W= Y 1Al = 3 > MPVS; (3-15)
i=1

i=1 j=1

where MPVS; is the maximum path sum of the ith vertex. Calculation of detour
matrix A, maximum path sums MPVS;, and detour index w is illustrated with that
for ethylbenzene.
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Alom |1 2 3 4 5 6 7 8| MSVP,
1 T |0 1 2 7 6 5 6 7| 34
. 2 1 01 6 5 4 5 6| 28
; 3 /2 1 05 4 3 4 5| 24
. o A=| 4 |7 6 5 0 5 4 3 4| 34
5 6 5 45 05 4 3| 32
> 7 6 |5 4 3 4 5 0 5 4| 30
6 7 |6 5 4 3 4 5 0 5 32
8 |7 6 5 4 3 4 5 0| 34

1
W= X (34428424 + 34432430 +32434) = 124

The Laplacian matrix L is a square A XA symmetric matrix, A being the number
of graph vertexes, defined as the difference between the vertex degree matrix V and
the adjacency matrix A [Eq. (3-16)] [98,99]:

L=V-A (3-16)

where V is a diagonal matrix of dimension AxA, whose diagonal entries are
the vertex degrees 8;. The entries of the Laplacian matrix formally are given by
Eq. (3-17):

d; ifi=j
[Ll;j =14 —1 if (i, j) € E(G) (3-17)
0 if (i, j) ¢ E(G)

where E(G) is the set of edges of the molecular graph G. Important molecular
descriptors are derived from the eigenvalues of the Laplacian matrix (see spec-
tral indexes). An example of calculation of the Laplacian matrix L is shown for
2-methylpentane.

Atom |1 2 3 4 5 6

1 |1 -1 0 0 0 o

6 2 |1 3 -1 0 0 -l
L= 3 [0 -1 3 -1 0 0

1 2 N 4 : 4 10 0 -1 2 -1 0
5 /0 0 0 -1 1 0

6 |0 -1 0 0 0 1
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3.34. Connectivity Indexes

Connectivity indexes are among the most popular topological indexes and are cal-
culated from the vertex degrees §; of the atoms in the H-depleted molecular graph.
The Randic¢ connectivity index was the first connectivity index proposed [100]; it is
defined as [Eq. (3-18)]

A-1 A
== ) ap G5 (3-18)

i=1 j=i+1

where the summation goes over all the pairs of vertexes v; and v; in the molecular
graph, but only contributions from pairs of adjacent vertexes are accounted for, a;;
being the elements of the adjacency matrix A.

The term (6,- . 8]-)_1/ *for each pair of adjacent vertexes is called edge connectivity
and can be used to characterize edges as a primitive bond order accounting for bond
accessibility, i.e., the accessibility of a bond to encounter another bond in inter-
molecular interactions, as the reciprocal of the vertex degree 8 is the fraction of the
total number of non-hydrogen sigma electrons contributing to each bond formed
with a particular atom [101]. This interpretation places emphasis on the possibility
of bimolecular encounters among molecules, reflecting the collective influence of
the accessibilities of the bond in each molecule to other molecules in its immediate
environment.

Kier and Hall defined [84,102] a general scheme based on the Randi¢ index to
also calculate zero-order and higher-order descriptors; these are called molecular
connectivity indexes (MCls), also known as Kier—Hall connectivity indexes. They
are calculated by the following equations (3-19):

A , B s 2p , K n —-1/2
O =612 T =669, % 2x=d 686 M=) (H &)
=1 b=1 k=1 k=1 \i=1

(3-19)

where k runs over all of the mth order subgraphs constituted by n atoms (n = m+1
for acyclic subgraphs); K is the total number of mth order subgraphs present in
the molecular graph. The product is over the simple vertex degrees & of all the
vertexes involved in each subgraph. The subscript “¢” refers to the type of molecular
subgraph and is ch for chain or ring, pc for path—cluster, ¢ for cluster, and p for path.
Obviously, the first-order Kier—Hall connectivity index is the Randi¢ connectivity
index.

Calculation of 0-, 1-, and 2-order connectivity indexes is illustrated for 2-
methylpentane:
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Atoms|123456
5, |132211

2 4 i
1 3 5
()XZBI—IIZ+6;1/2+8;I/2+6;1/2+85—I/2+6g1/2 -
:171/2+3fl/2+27|/2+271/2+lfl/2+171/2 :4992
'x= (8, %8, )_”2 +(8, %8, )7”2 +(63X84 )7”2 +(8, %8s )7”2 +(62X66 )7”2 =
=(x3)"+ (3x2) P+ (2x2) "+ (2x1) "+ (3x1) " =2.770
2y = (8, %8, %8, ) 7+ (8, x 8, x8, )T+ (8, x8, x85 )T (8,8, %8 )+ (8, x8,%x8, ) =
=(1x3%x2Y) +(2x2x1)"? + (1x3x1) "% + (2x3x1) " = 2.183
( ) ( )

1/2 1/2

172 —1/2

+(3x2x2)

Connectivity-like indexes are molecular descriptors calculated applying the same
mathematical formula of the connectivity indexes, but substituting the vertex degree
d with any local vertex invariant (LOVI) [Eq. (3-20)]:

K n —1/2
" Chiy(L) = Z ( L) (3-20)
1

k=1 \i= k

where L; is the general symbol for local vertex invariants, the summation goes over
all the subgraphs of type 7 constituted by n atoms and m edges; K is the total number
of such mth order subgraphs present in the molecular graph, and each subgraph is
weighted by the product of the local invariants associated to the vertexes contained
in the subgraph. Connectivity-like indexes may also be calculated by replacing local
vertex invariants L; with physico-chemical atomic properties P;.

The general formula for the calculation of connectivity-like indexes, which uses
the row sums VS; of a graph—theoretical matrix as the local vertex invariants,
was called by Ivanciuc Chi operator [81]. Specifically, for any square symmetric
(AxA) matrix M(w) representing a molecular graph with A vertexes and a weighting
scheme w, the Chi operator is defined as follows [Eq. (3-21)]:

—1/2

K n
" Chi (Mw) = Z (]‘[ VS; (M,w)) (3-21)

k=1 \i=1 X

where VS; indicates the matrix row sums.
Moreover, generalized connectivity indexes are a generalization of the Kier—Hall
connectivity indexes in terms of a variable exponent A as given by Eq. (3-22):
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K n A
"= (]_[ 51’) (3-22)

where A is any real exponent. If A = 1 and m = 1, the second Zagreb index M, [82]
is obtained:

B
Z (8n(1) - 31;(2) (3-23)

where the summation goes over all the edges in the molecular graph and B is the
total number of edges in the graph; the subscripts (1) and b(2) represent the two
vertexes connected by the edge b.

Values of A = —1 and A = 1/2 were considered by Altenburg [103] and values of
A = —1/3 and A = —1/4 were also investigated [104].

Related to Randic¢-like indexes are the Balaban-like indexes, which only differ
by the normalization factor [Eq. (3-24)]:

A-1 A
B _
TMw) = = - SN ay- (VS M) - VS Maw)) T2 (3-24)
i=1 j=i+1

where M is a graph—theoretical matrix, a;; the elements of the adjacency matrix A
equal to one for pairs of adjacent vertexes and zero otherwise, and w the weight-
ing scheme applied to represent molecules containing heteroatoms and/or multiple
bonds; VS is the vertex sum operator applied to the matrix M. A is the number of
graph vertexes, B the number of graph edges, and C the cyclomatic number, i.e.,
the number of rings. The denominator C + 1 is a normalization factor against the
number of rings in the molecule.

This formula for the calculation of the Balaban-like indexes was called the
Ivanciuc-Balaban operator by Ivanciuc [81,105]. It is a generalization of the
Balaban distance connectivity index denoted by J and defined as [Eq. (3-25)] [85]

C+1 Z Z aij - (0 o))~ \/? (3-25)

i=1 j=i+1

where o; and o are the vertex distance degrees of the vertexes v; and v;, which are
the row sums of the distance matrix D. The Balaban index is a very discriminating
molecular descriptor and its values do not increase substantially with molecule size
or number of rings.

3.3.5. Characteristic Polynomial

The characteristic polynomial of the molecular graph is the characteristic polyno-
mial of a graph—theoretical matrix M derived from the graph [Eq. (3-26)] [105-107]:
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n
Ch(M;w:x) det (xI — M(w)) = Z (— Die T =x" — X1 4 o2
i=0

++(_ 1)”_lcn,1x~|—(— l)ncn (3—26)

where “det” denotes the matrix determinant, I is the identity matrix of dimension
nxn,x is a scalar variable, and c; are the n + 1 polynomial coefficients; M(w) is
any square nxn matrix computed on weighted or unweighted molecular graphs; w
is the weighting scheme applied to the molecular graph in order to encode chemical
information. Note that w = 1 denotes unweighted graphs. If M is a vertex matrix,
then 7 is equal to A, the number of graph vertexes, while, if M is an edge matrix,
then 7 is equal to B, the number of graph edges. Polynomial coefficients are graph
invariants and are thus related to the structure of a molecular graph.

A large number of graph polynomials have been proposed in the literature. They
differ from each other according to the molecular matrix M they are derived from
and the weighting scheme w used to characterize heteroatoms and bond multiplicity
of molecules. The most known polynomial is the characteristic polynomial of the
adjacency matrix (M = A), which is usually referred to as the graph characteristic
polynomial [Eq. (3-27)] [26]:

Ch(A;1; x) = det(xI — A) (3-27)

For any acyclic graph, the absolute values of Ch(A; 1; x) coefficients are equal to
the coefficients of the Z-counting polynomial Q(G;x), which are the non-adjacent
numbers a(G, k) of order k, i.e., the numbers of & mutually non-incident edges
[108]. An H-depleted molecular graph and adjacency matrix A are shown for
2-methylpentane:

Atom 1 2 3 4 5 6
] 1 0 1 0 0 0 0
2 |1 0 1 0 0 1
A=l 3 |0 1 0 1 0 0
2 4 4 o 0o 1 0 1 o0
1 3 5
5 o o 0 1 0 0
6 |0 1 0 0 0 0

[

The characteristic polynomial of the adjacency matrix of 2-methylpentane is

given by Eq. (3-28):

Ch(Ax) =x° =5 - x* +5. 22 (3-28)
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where coefficients ¢y, ¢3, ¢5, and cg are zero. Absolute values of non-zero coeffi-
cients are: |co| = 1, which corresponds to the non-adjacent number of zero order,
a(G, 0) = 1 (by definition); |c2| = 5, which corresponds to the non-adjacent number
of first order, a(G, 1) = 5 (the number of graph edges); |c4| = 5, which corresponds
to the non-adjacent number of second order, a(G, 2) = 5 (the number of ways two
edges may be selected so that they are non-adjacent).

Depending on the elements of the matrix M, a characteristic polynomial can
have very large coefficients, and spanning the x axis, often, asymptotic curves are
obtained, whose characteristic points are not very representative as graph descrip-
tors. To deal with this problem, the characteristic polynomial can be transformed
according to some Hermite-like wave functions for graphs, as given by Eq. (3-29)
[109]:

2
W = Ch (Mww) - exp <—%> (3-29)

where Ch(M;w;x) is the characteristic polynomial of a graph. The most significant
difference is that the area under the curve becomes finite in this approach, thus
allowing the definition of more reliable graph invariants, such as the area under the
curve (AUC), the maximum ¥V value (™) and the maximum amplitude (MA) of
the obtained sinusoidal curve.

By analogy with the Hosoya Z index [73] which, for acyclic graphs, can be cal-
culated as the sum of the absolute values of the coefficients of the characteristic
polynomial of the adjacency matrix, the stability index (or modified Z index) is a
molecular descriptor calculated for any graph as the sum of the absolute values of
the coefficients cp; appearing alternatively in the characteristic polynomial of the
adjacency matrix [Eq. (3-30)] [110]:

Z= |cail (3-30)

where the square brackets indicate the greatest integer not exceeding A/2 and A is the
number of graph vertexes. The same approach applied to the distance polynomial
led to the definition of the Hosoya Z' index (or Z' index) [Eq. (3-31)] [111]:

A
7= el (3-31)
i=0

where ¢; are the coefficients of the distance polynomial of the molecular graph.

An extension of the Z/ index are the Hosoya-type indexes, which are defined as
the sum of the absolute values of the coefficients of the characteristic polynomial of
any square graph—theoretical matrix M [Eq. (3-32)] [80,105]:
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n
Ho (Miw) = ) [ (3-32)
i=0

where n is the matrix dimension and w the weighting scheme applied to compute
the matrix M. The formula for the calculation of Hosoya-type indexes was called
by Ivanciuc the Hosoya operator. For any graph, when M is the distance matrix
of a simple graph, Ho(D;1) = Z/, when M is the adjacency matrix of a simple
graph, Ho(A ;1) = Z; moreover, for acyclic graphs, when M is the adjacency matrix

of a simple graph, Ho(A;1) = Z = Z (Hosoya Z index).

3.3.6. Spectral Indexes

Spectral indexes are molecular descriptors defined in terms of the eigenvalues of
a square graph—theoretical matrix M of size (nxn). The eigenvalues are the roots
of the characteristic polynomial of the matrix M and the set of the eigenvalues is
the matrix spectrum A(M) = {\1, \2,..., A, }; the eigenvalues are conventionally
labeled so that A > X, > --- > A,. The most common eigenvalue functions used
to derive spectral indexes are given below in a general form which can be applied to
any molecular matrix M(w), calculated with the weighting scheme w [Eq. (3-33)]
[69,112]:

n nt n-

SpSumk Mw) = 3 [lE SpSumb M) = 3 (1) SpSumk. Mw) = ¥ 47

2
i=1

i=1 i=1

SpAD (M,w) = i |Ai —A|  SpMAD (M,w) = i |Ai — A|/n
i=1 i=1

SpMin (M,w) = min; {A;} SpMax (M,w) = max; {);}

SpAMax M,w) = max; {|A;|} SpDiam M,w) = SpMax — SpMin
(3-33)

where k is a real exponent, usually taken to be equal to one; for negative values of
k, eigenvalues equal to zero must not be considered. For k = 1, SpSum is the sum
of the n absolute values of the spectrum eigenvalues; this quantity calculated on the
adjacency matrix of simple graphs SpSum(A) was called graph energy and denoted
by E [113,114]; the same quantity derived from the Laplacian matrix was called
Laplacian graph energy [115]; SpSum. is the sum of the n * positive eigenvalues;
SpSum_ is the sum of the absolute values of the n ~ negative eigenvalues; SpAD is
the sum of the absolute deviations of the eigenvalues from their mean and is called
generalized graph energy [112]; SpMAD is the mean absolute deviation and is called
generalized average graph energy [112]; SpMin is the minimum eigenvalue; SpMax
is the maximum eigenvalue, called leading eigenvalue or spectral radius; MaxSpA is
the maximum absolute value of the spectrum; and SpDiam is the spectral diameter
of the molecular matrix, defined as the difference between SpMax and SpMin. These
kinds of functions were called by Ivanciuc matrix spectrum operators [116]. It has
been demonstrated that the leading eigenvalue of a symmetric matrix M is bounded
from above and from below by its largest and smallest row sum [Eq. (3-34)]:
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min; [VS; (M)] < MaxSp (M) = A; (M) < max; [VS; (M)] (3-34)

where VS indicates the matrix row sums.
Spectral moments of the matrix M(w) are molecular descriptors defined in terms
of the kth power of the eigenvalues [Eq. (3-35)]:

p M) =) i (3-35)
i=1

where k = 1,. . .,n is the order of the spectral moment. It is noteworthy that for even
k values, spectral moments p* coincide with spectral indexes SpSum*.

Spectral indexes and spectral moments were tested in QSAR/QSPR modeling,
calculated from a number of graph—theoretical matrixes [117]. Important spectral
indexes are defined in terms of the eigenvalues of the adjacency matrix A; these
eigenvalues take both positive and negative values, their sum being equal to zero.
The largest eigenvalue of adjacency matrix A is among the most popular graph
invariants and is known as the Lovasz-Pelikan index A\:¥ [118]: ALY = SpMax (A)
This eigenvalue has been suggested as an index for molecular branching, the small-
est values corresponding to chain graphs and the highest to the most branched
graphs. It is not a very discriminatory index because in many cases the same value is
obtained for two or more non-isomorphic graphs. The eigenvalues of the Laplacian
matrix L. have some relevant properties [119,120]; among these, three important
ones are

(a) the Laplacian eigenvalues are non-negative numbers;

(b) the last eigenvalue h4 is always equal to zero;

(c) the eigenvalue \4.1 is greater than zero if, and only if, the graph G is connected;
therefore, for a molecular graph all the Laplacian eigenvalues except the last are
positive numbers.

Moreover, the sum of the positive eigenvalues is equal to twice the number B of
graph edges, i.e., Eq. [3-36]

A-1
Z)\i =2.B (3-36)
i=1

The sum of the reciprocal positive eigenvalues was proposed as a molecular
descriptor [121,122] and called the quasi-Wiener index W* [123]; it is defined as
[Eq. (3-37)]

a-1

W*=A. — 3-37
2.5 (3-37)
i=1

For acyclic graphs, the quasi-Wiener index W* coincides with the Wiener index
W, whereas for cycle-containing graphs the two descriptors differ. The product of the

positive A — 1 eigenvalues of the Laplacian matrix gives the spanning tree number
T* of the molecular graph G as [Eq. (3-38)]
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R s P 539
T A | TA

i=

where the spanning tree is a connected acyclic subgraph containing all the vertexes
of G [120]. The term a in the second equality is the coefficient of the linear term in
the Laplacian polynomial [124]. The number of spanning trees of a graph is used
as a measure of molecular complexity for polycyclic graphs; it increases with the
complexity of the molecular structure. Moreover, the spanning-tree density (STD)
and the reciprocal spanning-tree density (RSTD) were defined as [Eq. (3-39)] [125]

T* °N
STD=— STD<1 RSTD=— RSTD>1 (3-39)
eN T*
where °N is the number of ways of choosing any A — 1 edges belonging to the set
E(G) of graph edges. RSTD was proposed as a measure of intricacy of a graph, that
is, the larger RSTD the more intricate G. Also derived from the Laplacian matrix are
the Mohar indexes TI; and TI,, defined as Eqs. (3-40) and (3-41):

B\ 1y B
T11=2-A~log<—>~Z—=2~log<—>-W* (3-40)
A) Sk A
4
T = 3-41
2= s (3-41)

where A4.; is the first non-zero eigenvalue and W* the quasi-Wiener index [120].
Being W* = W for acyclic graphs, it also derives that the first Mohar index TI; is
closely related to the Wiener index W for acyclic graphs.

34. AUTOCORRELATION DESCRIPTORS
34.1. Introduction

Spatial autocorrelation coefficients are frequently used in molecular modeling and
QSAR to account for spatial distribution of molecular properties. The simplest
descriptor P for a molecular property is obtained by summing the (squared) atomic
property values. Mathematically it is defined as

P=3 1 (3-42)

where A is the number of atoms in a molecule and P the global property which
depends on the kind of molecule atoms and not on the molecular structure; p; is
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the property of the ith atom. An extension of this global property descriptor that
combines chemical information given by property values in specified molecule
regions and structural information are the spatial autocorrelation descriptors. These
are based on a conceptual dissection of the molecular structure and the applica-
tion of an autocorrelation function to molecular properties measured in different
molecular regions. Autocorrelation functions ACy, for ordered discrete sequence of n
values f(x;) are based on summation of the products of the ith value and the (i + k)th
value as.

n—k
AC, = (n— k) 02 ; (f(-xi) — W) - (f(XH_k) — H)] (3-43)

where f{x) is any function of the variable x and k is the lag representing an interval of

x, o2 is the variance of the function values, and ( their mean. The lag assumes val-
ues between 1 and K, where the maximum value K can be n — 1; however, in several
applications, K is chosen equal to a small number (K < 8). A lag value of zero cor-
responds to the sum of the square-centered values of the function. The function f{(x)
is usually a time-dependent function such as a time-dependent electrical signal, or a
spatial-dependent function such as the population density in space. Then, autocor-
relation measures the strength of a relationship between observations as a function
of the time or space separation between them [126]. Autocorrelation descriptors of
chemical compounds are calculated by using various molecular properties that can
be represented at the atomic level or molecular surface level or else.

Based on the same principles as the autocorrelation descriptors, but calcu-
lated contemporarily on two different properties f(x) and g(x), cross-correlation
descriptors are calculated to measure the strength of relationships between the two
considered properties. For any two-ordered sequences comprised of a number of
discrete values, the cross-correlation is calculated by summing the products of the
ith value of the first sequence and the (i + k)th value of the second sequence, as

n—k

1
ISR TRRERRE ,; [0 = ) - (8@ii) = pgw) ] (3-44)

where 7 is the lowest cardinality of the two sets.

The most common spatial autocorrelation molecular descriptors are obtained
taking the molecule atoms as the set of discrete points in space and an atomic
property as the function evaluated at those points. Common weighting schemes w
used to describe atoms in the molecule are atomic masses, van der Waals volumes,
atomic electronegativities, atomic polarizabilities, covalent radii, etc. Alternatively,
the weighting scheme for atoms can be based on quantities, which are local ver-
tex invariants derived from the molecular graph, such as the topological vertex
degrees (i.e., the number of adjacent vertexes) and the Kier—Hall intrinsic states or
E-state indexes [127]. For spatial autocorrelation molecular descriptors calculated
on a molecular graph, the lag k coincides with the topological distance between



Molecular Descriptors 57

any pair of vertexes (i.e., the number of edges along the shortest path between two
vertexes).

Autocorrelation descriptors can also be calculated from 3D-spatial molecular
geometry. In this case, the distribution of a molecular property can be evaluated
by a mathematical function f(x,y,z), x, ¥, and z being the spatial coordinates, either
defined for each point of molecular space or molecular surface (i.e., a continuous
property such as electronic density or molecular interaction energy) or only for
points occupied by atoms (i.e., atomic properties) [128—130].

The plot of an ordered sequence of autocorrelation descriptors from lag 0
to lag K is called autocorrelogram; this is a vectorial descriptor usually used to
describe a chemical compound in similarity/diversity analysis. Autocorrelation
descriptors have been demonstrated to be useful in QSAR studies as they are unique
for a given geometry, are sensitive to changes in conformation, and do not require
any molecule alignment being invariant to roto-translation. A typical disadvantage
of all the autocorrelation descriptors might be that the original information on the
molecular structure or surface cannot be reconstructed.

34.2. Moreau-Broto Autocorrelation Descriptors

Moreau and Broto were the researchers who applied first an autocorrelation func-
tion to the molecular graph to measure the distribution of atomic properties on the
molecule topology [131-133]. They termed the final vectorial descriptor comprised
of autocorrelation functions autocorrelation of a topological structure (ATS). This
was calculated as follows [Eq. (3-45)]:

A A
1
ATSg = 5 ;;‘—1 wi - wj - 8(dyjk) (3-45)

where w is any atomic property, A is the number of atoms in a molecule,  is the lag,
and dj; is the topological distance between ith and jth atoms; 3(d;;:k) is a Kronecker
delta function equal to 1 if dj; = k, zero otherwise. The autocorrelation ATS defined
for path of length zero is calculated as [Eq. (3-46)]:

A
ATS) = > " w} (3-46)
i=1

that is, the sum of the squares of the atomic properties. Typical atomic properties
are atomic masses, polarizabilities, charges, electronegativities. Atomic properties
w should be centered by subtracting the average property value in the molecule
in order to obtain proper autocorrelation values. Hollas demonstrated that, only if
properties are centered are all autocorrelation descriptors uncorrelated, thus result-
ing more suitable for subsequent statistical analysis [134]. For each atomic property
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w, the set of autocorrelation terms defined for all existing topological distances in
the graph is the ATS descriptor defined as in Eq. (3-47):

{ATSo, ATS|, ATS, ..., ATSp}w (3-47)

where D is the topological diameter, that is, the maximum distance in the graph.

Average spatial autocorrelation descriptors are obtained by dividing each term
by the corresponding number of contributions, thus avoiding any dependence on
molecular size [Eq. (3-48)]:

A A

— 1

ATS; = v DO wiewi - 8(dijik) (3-48)
i=1 j=1

where Ay is the sum of the Kronecker delta, i.e., the total number of vertex pairs at
distance equal to k [130]. An example of calculation of Moreau—Broto autocorre-
lation descriptors is reported for 4-hydroxy-2-butanone. The H-depleted molecular
graph is given below: .

Atomic masses are used as the weighting scheme for molecule atoms: w; =
wo = w3 = wgq = 12; ws = wg = 16. Then, autocorrelation terms for lag k from 0O to
4 are

ATSO=W%+W%+W§+Wi+w§+W%
=122 + 122 4+ 122 + 122 + 16 + 16* = 1088
ATS| =wi -wy+wo - w3 +w3-wg +wq-ws+wp-wg
=12-124+12-12412-12+12-16+12- 16 = 816
ATS; = wi - w3 +wy - wg + wa - wq + w3 - ws + w3 - wg
=12-12+12-16+12-12+12-16+ 12 -16 = 864
ATS3 = wi - wg +wo - ws + wy - wg
=12-12+12-164+12-16 =528
ATS4 = wy - ws + wg - ws
=12-16+16-16 =448

Three-dimensional topological distance-based descriptors (3D-TDB descriptors)
are a variant of the average Moreau—Broto autocorrelations also encoding infor-
mation about the 3D spatial separation between two atoms [135]. TDB-steric
descriptors, denoted by S, are defined for each lag k as [Eq. (3-49)]
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A
Se= 30 30 (RS RS -8 (dyik) (3-49)

where Ay is the number of atom pairs located at a topological distance k, r;; is the
geometric distance between the ith and jth atoms, and RV is the atomic covalent
radius accounting for steric properties of atoms. In a similar way, TDB-electronic
descriptors, denoted by X, are defined as [Eq. (3-50)]

A
Xk = v Z (Xi S rij - Xj) -8 (dyk) (3-50)

where Yy is the sigma orbital electronegativity accounting for electronic properties
of atoms.

Together with steric and electronic descriptors, TDB atom-type descriptors,
denoted by 7, are defined as [Eq. (3-51)]

1 A A
I () = = - DO 8y ) - 8 (dyk) (3-51)

i=1 j=1

where u denotes an atom type and 8;;(u,u) is a Kronecker delta equal to one if both
atoms 7 and j are of type u. These atom-type autocorrelations are calculated only for
pairs of atoms of the same type. Moreover, unlike the previous two TDB descriptors
(Sx and Xp), this autocorrelation descriptor does not account for 3D information.

3.4.3. Moran and Geary Coefficients

Moran and Geary coefficients are autocorrelation functions applied mainly in eco-
logical studies to measure spatial distribution of environmental properties. They
are applied to molecular structure in the same way as the Moreau—Broto func-
tion; however, unlike the Moreau—Broto function, Moran and Geary functions give
real autocorrelation accounting explicitly for the mean and standard deviation of
each property. The Moran coefficient, applied to a molecular graph, is calculated as
follows [Eq. (3-52)] [136]:

1 4 - -

A XY v — ) - g — W) - 8(dyik)

L= — == (3-52)

(w; — w)?

NS

1.
A
1

where w; is any atomic property, w is its average value on the molecule, A is the
number of atoms, k is the considered lag, and dj; is the topological distance between
ith and jth atoms; 3(dj;;k) is the Kronecker delta equal to 1 if dj; = k, zero otherwise.
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Ay is the number of vertex pairs at distance equal to k. Moran coefficient usually
takes value in the interval [—1,+1]. Positive autocorrelation corresponds to positive
values of the coefficient, whereas negative autocorrelation produces negative values.
The Geary coefficient, denoted by cy, is defined as [Eq. (3-53)] [137].

o = ' (3-53)

where w; is any atomic property, w is its average value on the molecule, A is the
number of atoms, k is the considered lag, and dj; is the topological distance between
ith and jth atoms; 8(d;j;k) is the Kronecker delta equal to 1 if dj; = k, zero otherwise.

The Geary coefficient is a distance-type function varying from zero to infinity.
Strong autocorrelation produces low values of this index; moreover, positive auto-
correlation translates to values between 0 and 1, whereas negative autocorrelation
produces values larger than 1; therefore, the reference “no correlation” is ¢ = 1.

In Table 3-4, Moran and Geary coefficients are listed together with Moreau—
Broto autocorrelation values for 22 N,N-dimethyl-a-bromo-phenethylamines,
whose parent structure is shown in Figure 3-5. Carbon-scaled atomic masses were
used as the weighting scheme for molecule atoms for the calculation of all the
autocorrelation functions.

3.4.4. Auto-cross-covariance Transforms

Auto-cross-covariance (ACC) transforms are autocovariances and cross-covariances
calculated from sequential data with the aim of transforming them into uniform-
length descriptors suitable for QSAR modeling. ACC transforms were originally
proposed to describe peptide sequences [138,139]. In order to calculate ACC trans-
forms, each amino acid position in the peptide sequence was defined in terms of a
number of amino acid properties; in particular, three orthogonal z-scores, derived
from a principal component analysis (PCA) of 29 physico-chemical properties of
the 20 coded amino acids, were originally used to describe each amino acid. Then,
for each peptide sequence, auto- and cross-covariances with lags k =1, 2, ..., K
were calculated as [Eq. (3-54)]

n—k . . n—k
ACCy (. j) = Z zi (/) 'ji—lf;k ()

i=1 i=1

ACCy j, m) = Y A2k T (i)ﬁ Z_’+]f ") (3.5

where j and m indicate two different amino acid properties, n is the number of amino
acids in the sequence, and index i refers to amino acid position in the sequence.
Z-score values, being derived from PCA, are used directly because they are already
mean centered.
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Figure 3-5. Parent structure of N, N-dimethyl-o-bromo-phenethylamines

ACC transforms were also used to encode information contained in molecular
interaction fields typical of CoMFA analysis using as the lag the distance between
grid points along each coordinate axis, along the diagonal, or along any interme-
diate direction [140]. The cross-correlation terms were calculated by the products
of the interaction energy values for steric and electrostatic fields in grid points at
distances equal to the lag. Different kinds of interactions, namely positive—positive,
negative—negative, and positive—negative, were kept separated, thus resulting in 10
ACC terms for each lag. The major drawback of these ACC transforms is that their
values depend on molecule orientation along the axes.

Topological maximum auto-cross-correlation (TMACC) descriptors are a vari-
ant of the ACC transforms for molecular graphs [141]. These are cross-covariances
calculated taking into account the topological distance d;; between the atoms
i and j and four basic atomic properties: (1) Gasteiger-Marsili partial charges,
accounting for electrostatic properties [142]; (2) Wildman—Crippen molar refrac-
tivity parameters, accounting for steric properties and polarizabilities [143];
(3) Wildman—Crippen log P values, accounting for hydrophobicity [143]; and
(4) log S values, accounting for solubility and solvation phenomena [144].

The general formula for the calculation of TMACC descriptors is given by
Eq. (3-55):

A A
1
TMACC (xy:h) = 1 DO xieyi 8 (dyk) (3-55)
i=1 j=1

where x and y are two atomic properties, A is the number of atoms in the molecule, k
is the lag, and dj; is the topological distance between the ith and jth atoms; Ay is the
number of atom pairs located at topological distance k and 8(d;;;k) is the Kronecker
delta equal to 1, if the topological distance equals the lag, zero otherwise. If only
one property is considered, i.e., x = y, autocovariances are obtained. Because all
the selected properties, except for molar refractivity, can assume both positive and
negative values, these are treated as different properties and cross-covariance terms
are also calculated between positive and negative values of each property. Therefore,
7 autocovariance terms and 12 cross-covariance terms constitute the final TMACC
vector.
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34.5. Autocorrelation of Molecular Surface Properties

The autocorrelation of molecular surface properties is a general approach for the
description of property measures on the molecular surface by using uniform-length
descriptors, which are comprised of the same number of elements regardless of the
size of the molecule [130,145]. This approach is an extension of Moreau—Broto
autocorrelation function to 3D molecular geometry. Since geometrical distances r;j
can have any real positive value, some ordered distance intervals need to be speci-
fied, each defined by a lower and upper value of 7;;. All distances falling in the same
interval are considered identical.

To generate 3D autocorrelation descriptors of molecular surface properties, first,
a number of points are randomly distributed on the molecular surface with a user-
defined density and in an orderly manner to ensure a continuous surface. Then,
the surface autocorrelation vector (SAV) is derived by calculating for each lag k the
sum of the products of the property values at two surface points located at a distance
falling into the kth distance interval. This value is then normalized by the number
Ay, of the geometrical distances r;; in the interval [Eq. (3-56)]:

N-1 N
1
Ak) = Ve DD wiewi 8 (ryk) (3-56)
i=1 j=i+1

where N is the number of surface points and k represents a distance interval defined
by a lower and upper bound.

It was demonstrated that to obtain the best surface autocorrelation vectors for
QSAR modeling, the van der Waals surface is better than other molecular sur-
faces. Then, the surface should have no fewer than five grid points per A2 and a
distance interval no greater than 1 A should be used in the distance binning scheme.
Autocorrelation values calculated for a number of distance intervals constitute a
unique fingerprint of the molecule, thus resulting suitable for similarity/diversity
analysis of molecules. Figure 3-6 shows the autocorrelation vector of estradiol cal-
culated by using molecular electrostatic potential (MEP) as the surface property.

3.4.6. Atom Pairs

A special case of autocorrelation descriptors is the atom-type autocorrelation
(ATAC), which is calculated by summing property values only of atoms of given
types. The simplest atom-type autocorrelation is given by Eq. (3-57):

A

A
ATACy (uy) =Y Y "8 (isu) - 8 (j2v) - 8 (diik) (3-57)

i=1 j=I

where u and v denote two different atom types; A is the number of molecule atoms;
and 3(7;u) is a Kronecker delta function equal to 1 if the atom i is of type u, and zero
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Figure 3-6. Surface autocorrelation vector of estradiol calculated by using molecular electrostatic
potential (MEP) as the surface property

otherwise; analogously, 8(j;v) is a Kronecker delta function equal to 1 if the atom j
is of type v, and zero otherwise; 8(d;j; k) is a Kronecker delta function equal to one
if the interatomic distance dj; is equal to the lag k, and zero otherwise.

This descriptor is defined for each pair of atom types and simply encodes the
occurrence numbers of the given atom type pair at different distance values. It can
be normalized by using two different procedures: the first one consists in dividing
each ATAC} value by the total number of atom pairs at distance k independently
of their types; the second one consists in dividing each ATAC}, value by a constant,
which can be equal to the total number of atoms in the molecule or, alternatively,
to the total number of (u,v) atom type pairs in the molecule. Note that if atom
types u and v coincide, i.e., u = v, then the atom-type autocorrelation is calculated
as [Eq. (3-58)]
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A A

ATAC (uu) = % YN 8 Gy - 8 G - 8 (dijik) (3-58)

i=1 j=1

in order to avoid to count twice a given pairs of atom types.

Atom types can be defined in different ways; they can be defined in terms of
the simple chemical elements or account also for atom connectivity, hybridization
states, and pharmacophoric features. Atom-type autocorrelations have been used to
derive some vectors of substructure descriptors such as atom pairs [146] and CATS
descriptors [147]. Substructure descriptors are counts of the occurrences of prede-
fined structural features (functional groups, augmented atoms, pharmacophore point
pairs, atom pairs and triangles, surface triangles, etc.) in molecules or binary vari-
ables specifying their presence/absence. These constitute string representations of
chemical structures usually designed to enhance the efficiency of chemical database
screening and analysis. Each bin or set of bins of the string is associated with a
structural feature or pattern. The string length can vary depending on the amount of
structural information to be encoded.

Atom pairs are substructure descriptors defined in terms of any pair of atoms and
bond types connecting them. An atom pair (AP) is composed of two non-hydrogen
atoms and an interatomic separation [Eq. (3-59)] [146]:

AP = {[ith atom description][separation][jth atom description]} (3-59)

The two considered atoms need not be directly connected and the separation can
be the topological distance between them; these descriptors are properly called topo-
logical atom pairs being based on the topological representation of the molecules.
Atom type is defined by the element itself, number of heavy-atom connections and
number of 1 electron pairs on each atom.

Atom pairs are sensitive to long-range correlations between atoms in molecules
and therefore to small changes even in one part of large molecules. Atom pair
descriptors usually are Boolean variables encoding the presence or absence of a
particular atom pair in each molecule.

Distance-counting descriptors (or SE-vectors) are a particular implementation
of topological atom pairs proposed by Clerc and Terkovics in 1990 [148]. These
are holographic vectors encoding information on the occurrence frequency of any
combination of two atom types and a distance relationship between them. All the
paths and not only the shortest one between any pair of atom types are considered in
the original proposal. Based on the shortest path, revised SE-vectors were proposed
by Baumann in 2002 and called SESP-Top vectors and SESP-Geo vectors [149].

CATS descriptors are a particular implementation of atom pairs descriptors based
on pharmacophore point types [147,150]. CATS descriptors are holographic vectors
where each bin encodes the number of times a potential pharmacophore point-
pair (PPP-pair) occurs in the molecule. The five defined potential pharmacophore
points (PPPs) are hydrogen-bond donor (D), hydrogen-bond acceptor (A), positively
charged or ionizable (P), negatively charged or ionizable (N), and lipophilic (L).
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Figure 3-7. Conversion of a two-dimensional molecular representation into the molecular graph, in
which pharmacophore point types are assigned as implemented in CATS
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If an atom does not belong to any of the five PPP types it is not considered.
Moreover, an atom is allowed to be assigned to one or two PPP types (Figure 3-7).
For each molecule, the number of occurrences of all 15 possible pharmacophore
point-pairs (DD, DA, DP, DN, DL, AA, AP, AN, AL, PP, PN, PL, NN, NL, LL)
is determined and then associated with the number of intervening bonds between
the two considered points, whereby the shortest path length is used. Topological
distances of 0-9 bonds are considered leading to a 150-dimensional autocorrelation
vector. Finally, PPP-pair counts are scaled by the total frequency in the molecule.

CATS3D descriptors [151] are based on geometrical distances between PPPs
rather than topological distances; hydrogens are also considered. Pairs of PPPs are
considered to fall into one of 20 equal-spaced bins from 0 to 20 A. Multiple potential
pharmacophore point assignments of one atom are not allowed. Moreover, an addi-
tional type is defined to account for atoms assigned to none of the five PPP types: a
total of 21 possible PPP-pairs is thus obtained and to each of them, 20 distance bins
are assigned, resulting into a 420-dimensional vector. SURFCATS descriptors [152]
are based on the spatial distance between PPPs on the Connolly surface area. Surface
points are calculated with a spacing of 2 A and assigned to the pharmacophore type
of the nearest atoms. CATS-charge descriptors [150]. map the partial atom charges
of a molecule to predefined spatial distance bins. The geometrical distances of all
atom pair combinations in one molecule are calculated. Distances within a certain
range (0.1 A) are allocated to the same bin. The charges of the two atoms that form
a pair are multiplied to yield a single charge value per pair. Charge values that are
assigned to the same bin are summed up. Distances from 0 to 10 A are considered
at increments of 0.1 A. All distances greater than 10 A are associated with the last
bin. The output is a 100-dimensional vector, which characterizes the molecule by
means of its atom partial charge distribution.

34.7. Estrada Generalized Topological Index

Variable molecular descriptors are local and graph invariants containing adjustable
parameters whose values are optimized in order to improve the statistical quality
of a given regression model. Sometimes also called flexible descriptors or optimal
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descriptors, their flexibility in modeling is useful to obtain good models; however,
due to the increased number of parameters needing to be optimized, they require
more intensive validation procedures to generate predictive models. These molecu-
lar descriptors are called “variable” because their values are not fixed for a molecule
but change depending on the training set and the property to be modelled.

The Estrada generalized topological index (GTI) is a general strategy to search
for optimized quantitative structure—property relationship models based on variable
topological indexes [153,154]. The main objective of this approach is to obtain the
best optimized molecular descriptors for each property under study. The family of
GTI descriptors is comprised of autocorrelation functions defined by the following
general form [Eq. (3-60)]:

D

GTI =Y Ci (x0, po) - n® (3-60)
k=1

where the summation goes over the different topological distances in the graph, D
being the topological diameter, that is, the maximum topological distance in the
graph and accounts for the contributions n® of pairs of vertexes located at the same
topological distance k. Each contribution n® is scaled by two real parameters xo
and pg through the Cy(xo, po) coefficient defined as [Eq. (3-61)].

Ci (x0, po) = k0 - 300D (3-61)

By definition, the Cy coefficient is equal to one for any pair of adjacent vertexes
(k = 1), independently of the parameter values. Note that the coefficients Cy are the
elements of the so-called generalized molecular-graph matrix I", which is a square
symmetric A XA matrix, defined as [Eq. (3-62)] [155]

1 if dyj =1

r — Lo =7 ) 3.62

[T %0, po)]; di - xy ifitj A dj>1 (3-62)
0 ifi=j

where dj; is the topological distance between vertexes v; and v;. This matrix was
also defined in terms of interatomic geometric distances. The term n® defines the
contribution of all those interactions due to the pairs of vertexes at distance k in the
graph as given by Eq. (3-63):

® = ZZ 5 (djik) (3-63)

where A is the number of vertexes in the graph, 38(djj;k) is a Kronecker delta func-
tion equal to one if the topological distance d;; is equal to k, and zero otherwise.
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The term(i, j) is the “geodesic-bracket” term encoding information about the
molecular shape on the basis of a connectivity-like formula as [Eq. (3-64)].

(i, J) = % . (u,' Vit uj) (3-64)

where u and v are two functions of the variable parameters x and p and can be
considered as generalized vertex degrees defined as Egs. [3-65] and [3-66]:

D pP1
w; (x1, p1, W) = [wi +8+ Y kexi! .kﬁ} (3-65)
k=2
D P2
vi (%2, p2, 8) = [s,» +85i+ Yy kexy! -kfl} (3-66)
k=2

where §; is the simple vertex degree of the ith vertex, i.e., the number of adja-
cent vertexes and kﬁ is its vertex distance count, i.e., the number of vertexes at
distance k from the ith vertex. The scalars xqo, x1, X2, po, p1, P2, W and s define a
(2A + 6)-dimensional real space of parameters; w and s are two A-dimensional vec-
tors collecting atomic properties. The first six parameters xg, x1, X2, po, P1, and pa
are free parameters to be optimized, whereas the parameters w and s are predefined
quantities used to distinguish among the different atom types. For each combination
of the possible values of these parameters a different topological index is obtained
for a molecule. It has to be noted that several of the well-known topological indexes
can be calculated by the GTI formula by settling specific combinations of the param-
eters; for instance, for w =(0, 0,...., 0) and s =(0, O,...., 0), the index GTI reduces to
the Wiener index when xg = 1, x1 = any, x, = any, po =1, p1 =0, p» =0, while GTI
coincides with the Randi¢ connectivity index when xo = 0, x; = 0, x, = 0, pg =1,
p1=—1/12,pp = —1/2.

3.5. GEOMETRICAL DESCRIPTORS
3.5.1. Introduction

Geometrical molecular descriptors, also called 3D-molecular descriptors, are
derived from a geometrical representation of the molecule, more specifically from
the x, y, z Cartesian coordinates of the molecule atoms. These are molecular
descriptors defined in several different ways but always derived from the three-
dimensional structure of the molecule [156,157]. Generally, geometrical descriptors
are calculated either on some optimized molecular geometry obtained by the meth-
ods of computational chemistry or from crystallographic coordinates. Topographic
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indexes constitute a special subset of geometrical descriptors, being calculated on
the graph representation of molecules but using the geometric distances between
atoms instead of the topological distances [71,158,159].

Since a geometrical representation involves the knowledge of the relative posi-
tions of the atoms in 3D space, geometrical descriptors usually provide more
information and discrimination power for similar molecular structures and molecule
conformations than topological descriptors. Despite their high information content,
geometrical descriptors usually show some drawbacks. They require geometry opti-
mization and therefore the cost to calculate them. Moreover, for flexible molecules,
several molecule conformations can be available; on one hand, new information is
available and can be exploited, but, on the other hand, the problem complexity can
significantly increase.

For these reasons, topological descriptors, fingerprints based on fragment counts
and other simple descriptors are usually preferred for the screening of large
databases of molecules. On the other hand, searching for relationships between
molecular structures and complex properties, such as biological activities, can
often be performed efficiently by using geometrical descriptors, exploiting their
large information content. Moreover, it is important to remember that the biolog-
ically active conformation of the studied chemicals is seldom known. Some authors
overcome this problem by using a multi-conformation dynamic approach [57].

Most of the geometrical descriptors are calculated directly from the x,y,z coor-
dinates of the molecule atoms and other quantities derived from the coordinates
such as interatomic distances or distances from a specified origin (e.g., the molecule
barycenter). Many of these are derived from the molecular geometry matrix defined
by all the geometrical distances r; between atom pairs. In order to account for
more chemical information, the atoms in the molecule can be represented by their
atomic masses and molecular descriptors can be derived from the molecule inertia
matrix, from atom distances with respect to the centers of mass, and by weighting
interatomic distances with functions of atomic masses.

3.5.2. Indexes from the Geometry Matrix

The geometry matrix, denoted by G, is a simple molecular representation where
atoms are viewed as single points in the 3D molecule space. It is a square symmetric
matrix AxA, A being the number of molecule atoms, where each entry r;; is the
Euclidean distance between the atoms i and j [Eq. (3-67)]:

0 ri2 -+ ria
G=|m 0 (3-67)
ral ta2 -+ 0

Diagonal entries are always zero, by definition. Geometric distances are
intramolecular interatomic distances.
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The geometry matrix contains information about molecular configurations and
conformations; however, the geometry matrix does not contain information about
atom connectivity. Thus, for several applications, it is accompanied by a connec-
tivity table where, for each atom, the identification number of the bonded atoms is
listed. The geometry matrix can also be calculated on geometry-based standardized
bond lengths and bond angles and derived by embedding a graph on a regular two-
dimensional or three-dimensional grid; in these cases, the geometry matrix is often
referred to as the topographic matrix T and the interatomic distance to as the topo-
graphic distance [72]. Depending on the kind of grid used for graph embedding,
different topographic matrixes can be obtained. The bond length-weighted adja-
cency matrix, or 3D-adjacency matrix, is obtained from the geometry matrix G as
[Eq. (3-68)] [160]

bA=G®A (3-68)

where ® indicates the Hadamard matrix product and A is the adjacency matrix,
whose elements are equal to one for pairs of bonded atoms, and zero otherwise.
Thus, the elements of the 3D-adjacency matrix are the bond lengths for pairs of
bonded atoms, and zero otherwise. The ith row sum of the geometry matrix is called
geometric distance degree (or Euclidean degree [161]) and denoted by %o;; it is
defined as [Eq. (3-69)]

A
GO',' = Z rij (3-69)
j=1

In general, the row sum of this matrix represents a measure of the centrality of an
atom; atoms that are close to the center of the molecule have smaller atomic sums,
while those far from the center have large atomic sums. The smallest and the largest
row sums give the extreme values of the first eigenvalue of the geometry matrix;
therefore when all the atoms are equivalent, i.e., the distance degrees are all the
same, the geometric distance degree yields exactly the first eigenvalue. The aver-
age sum of all geometric distance degrees is a molecular descriptor called average
geometric distance degree, i.e., Eq. (3-70)

o 1 A G 1 A A
o:z-l; aizz-zzr,;, (3-70)

i=1 j=1

while the half-sum of all geometric distance degrees is another molecular descrip-
tor called 3D-Wiener index by analogy with the Wiener index calculated from the
topological distance matrix. The 3D-Wiener index is calculated as [Eq. (3-71)] [162]
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Dy = erl] (3-71)

where r;; is the interatomic distance between the ith and jth atom. This index is
obviously more discriminatory than the 2D-Wiener index as it accounts for spatial
molecular geometry; it shows different values for different molecular conforma-
tions, the largest values corresponding to the most extended conformations, the
smallest to the most compact conformations. Therefore, it is considered a measure
of molecular shape since it decreases with increasing sphericity of a structure [163].
The 3D-Wiener index can be calculated both considering (*PWy) and not consider-
ing *PW) hydrogen atoms [164]. Moreover, a strictly related molecular descriptor is
the bond length-weighted Wiener index calculated by using as the distance between
two atoms the sum of the bond lengths along the shortest path [165].

The 3D-connectivity indexes denoted by xx are defined as connectivity-like
indexes derived using the geometric distance degree Yo in place of the topological
vertex degree d [Eq. (3-72)] [166]:

K n —1/2
XK= (]_[ Gm) (3-72)

k=1 \i=1

where k runs over all of the mth order subgraphs constituted by n vertexes; K is the
total number of mth order subgraphs and each subgraph is weighted by the product
of the local invariants associated to the vertexes contained in the subgraph. The
subscript “f” refers to the type of molecular subgraph and is ch for chain or ring, pc
for path—cluster, ¢ for cluster, and p for path.

The Euclidean connectivity index is another geometrical descriptor defined by
using a Randié-like formula applied to geometric distance degrees “o as given by
Eq. (3-73) [161]:

172

xE = Z i (Go,- : G(Tj)_ (3-73)

This index discriminates geometrical isomers and can be considered as a measure
of the compactness of a molecule in the 3D space. Note that all possible atom pairs
are considered instead of the pairs of bonded atoms because in 3D space there exists
a Euclidean distance between every pair of atoms. The 3D-Balaban index, denoted
as PJ, is a Balaban-like index derived from the geometry matrix as [Eq. (3-74)]
[160]

- e Z Z aij- (Co; o~/ (3-74)

i=1 j=i+1
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where %o and Goj are the geometric distance degrees of the atoms i and j and a;;
are the elements of the adjacency matrix used to account only for contributions from
pairs of bonded atoms. A variant of the geometric distance degree was proposed as
[Eq. (3-75)] [167,168].

A
3DW; = 3 (1 — ay) - exp (r,.]fz) i (3-75)

j=1

where the summation accounts only for contributions from non-bonded atoms,
a;; being the elements of the adjacency matrix equal to one for pairs of bonded
atoms, and zero otherwise. The exponential form of the distance was cho-
sen from a series of terms approximating the attracting interatomic potentials.
From this 3D local invariant, Zagreb-like (3DM;| and 3DM>), connectivity-like
(3D and 3D'y), and Wiener-type indexes (3DWi) were derived, as given by
Eqgs. (3-76, 3-77, 3-78, 3-79, 3-80):

A
3DM) = ) 3DW; (3-76)
i=1
A-1 A
3DMy =Y ) ay (3DW; - 3DW;) (3-77)
i=1 j=i+1
A
3Dy = Z (3DW;)~1/2 (3-78)
i=1
A-1 A .
3D'x =) > ay (3DW; - 3DW;)” / (3-79)
i=1 j=i+1

A-1 A
3DWi=Y" > exp(ry) (3-80)

i=1 j=i+1

where A is the number of molecule atoms.

Molecular descriptors based on this kind of local vertex invariant were termed
method of ideal symmetry (MIS) indexes, based on a partial optimization procedure
of the molecular geometry, where bond lengths and bond angles are kept fixed and
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only free rotations around C—C bonds are varied [169]. The maximum value entry in
the ith row of the geometry matrix is a local descriptor called geometric eccentricity
Gy, representing the longest geometric distance from the ith atom to any other atom
in the molecule [Eq. (3-81)]:

O = max () (3-81)

From the eccentricity definition, the geometric radius ©R and geometric diameter
GD can immediately characterize a molecule. The radius of a molecule is defined
as the minimum geometric eccentricity and the diameter is defined as the maximum
geometric eccentricity in the molecule, according to the following equation (3-82):

6p = mljax (Gni) and °D = miax (Gni) (3-82)

These parameters are measures of molecule size which also depend on molec-
ular shape. The geometrical shape coefficient I3 is defined in a similar way to the
Petitjean index /> [Eq. (3.12)] as a function of the geometric radius and diameter as
given by Eq. (3-83) [170]:

D — ©R
I = —Gr (3-83)
An example of calculation of some geometrical indexes is reported for 2-
methylpentane. The H-depleted molecular graph and geometry matrix G of
2-methylpentane are

6

2 4
1 3 5

Atom 1 2 3 4 5 6 ‘g, n,
1 0 1.519 2504 3.856 5014 2498 | 15391 5.014
2 1.519 0 1.530 2.521 3.864 1.521 | 10.955 3.864

G=| 3 2.504  1.530 0 1.521 2509 2.507 | 10.571 2.509

4 3.856 2521 1.521 0 1.511 3.038 | 12.447 3.856
5 5.014 3.864 1511 1511 0 4.348 | 17.246  5.014
6 2498 1521 3.038 3.038 4.348 0 13912 4.348
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where Co; indicates the geometric distance degrees and n; the atomic eccentrici-
ties. Then, geometric radius R, diameter ©D, average geometric distance degrees
G&, and 3D-Wiener index *PW are, respectively:

OR =min; (%n;) =2.509 %5 = { - (15391 4 10.955 + 10.571
+12.447 4 17.246 4 13.912) = 13.420

YD = max; (°n;) =5.014 PW =} . (15.391 4 10.955 + 10.571
+12.447 4 17.246 4 13.912) = 40.261

The 3D-Schultz index, denoted as 3PMTI, is derived from both geometry matrix
G and 3D-adjacency matrix A as given by Eq. (3-84) [160]:

A
PMTI =Y [(bA +G)- v], (3-84)
i=1 !

where v is an A-dimensional column vector collecting the vertex degrees (i.e.,
number of adjacent vertexes) of the A vertexes in the H-depleted molecular graph.
Moreover, the 3D-MTI’ index is defined as [Eq. (3-85)].

A A A
PMTI =Y "D [A-Gl; =) [v'-G], (3-85)

i=1 j=1 i=1

where A is the topological adjacency matrix and v is the transpose of the vector v
defined above.

When the information carried by the atom masses is added to the interatomic
distances, several other molecular descriptors can be defined. Among these, the
gravitational indexes are geometrical descriptors reflecting the mass distribution in
a molecule, defined as follows [Eqgs. (3-86) and (3-87)] [34]:

i=1 j=i+1 l]
B

Z ( ) (3-87)
b=1 b

where m; and m; are the atomic masses of the considered atoms, r;; the correspond-
ing interatomic distances, A and B the number of atoms and bonds of the molecule,
respectively. The G| index takes into account all atom pairs in the molecule, while
the G» index is restricted to pairs of bonded atoms. These indexes are related
to the bulk cohesiveness of the molecules accounting, simultaneously, for both
atomic masses (volumes) and their distribution within the molecular space. For

(3-86)
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modeling purposes the square root and cubic root of the gravitational indexes were
also proposed. Both indexes can be extended to any other atomic property differ-
ent from atomic mass, such as atomic polarizability, van der Waals volume, and
electronegativity.

Triangular descriptors (or triplet descriptors) can be easily calculated from the
geometry matrix. They describe the relative positions of three atoms or group cen-
troids in the molecule. Each possible triplet of non-hydrogen atoms is taken as a
triangle, and different triangle measures have been proposed such as individual
triangle side lengths (i.e., geometric interatomic distances), triangular perimeter,
and area; these measures are integerized and transformed into single-bit inte-
gers of defined length by different procedures, and their distribution is used to
describe the molecule. They are used both to characterize molecular shape and
for 3D pharmacophore database searching [171-176]. Similar to the triangular
descriptors are potential pharmacophore point-pairs (PPP pairs) and potential phar-
macophore point triangles (PPP triangles), which are 3D fingerprints encoding,
respectively, the distance information between all possible combinations of two and
three potential pharmacophore points [177]. Potential pharmacophore points usually
considered are hydrogen bond donors and acceptors, sites of potential negative and
positive charge, and hydrophobic atoms. Moreover, a set of molecular descriptors
can be obtained by summing the geometric distances between all possible combina-
tions of predefined heteroatom-type pairs, such as N...N, N...O, O...0, N...S, N...P,
N...CL O...P.

Derived from the geometry matrix, the neighborhood geometry matrix, (or neigh-
borhood Euclidean matrix), denoted as NG, was proposed, as given in Eq. (3-88)
[178]:

N i if <R, )
[ G]ij - { 0 ifrj >Ry (3-88)

where R, is a user-defined distance threshold. This matrix was originally used to
calculate numerical indexes characterizing proteomics maps by the additional con-
straint that the matrix element i—j is set at zero also for non-connected protein
spots.

The reciprocal geometry matrix, denoted as G, is obtained by inverting the
interatomic distances collected in the geometry matrix as the following equation
(3-89):

1 . .

_ rood

G = { j L7 (3-89)
' 0 i=j

Other important derived matrixes are the generalized geometry matrixes obtained

by raising to different powers the elements of the geometry matrix. These matrixes

were used to calculate molecular profiles, which are molecular descriptors denoted

by D and defined as the average row sum of all interatomic distances raised to the
kth power, normalized by the factor k! [Eq. (3-90)] [179]:
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™=
NES

r{;.

i=1j=1
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I

kp = (3-90)

1
k!

b

where r is the kth power of the i—j entry of the geometry matrix and A is the number
of atoms

Using several increasing k values, a sequence of molecular invariants called
molecular profile is obtained, as given by Eq. (3-91):

(!D,*D>D,*D’DSD, ..} (3-91)

As the exponent k increases, the contributions of the most distant pairs of atoms
become the most important. Moreover, distance/distance matrixes, denoted as D/D,
were defined as quotient matrixes in terms of the ratio of geometric r;; or topographic
distances #; over topological distances d;; in order to unify 2D and 3D information
about the structure of molecules [180,181]. The row sums of these matrixes con-
tain information on the molecular folding; in effect, in highly folded structures, they
tend to be relatively small as the interatomic distances are small while the topolog-
ical distances increase as the size of the structure increases. Therefore, the average
row sum is a molecular descriptor called average distance/distance degree, i.e., Eq.
(3-92)

ADDD = Z Z Ty (3-92)

i=1 j=1

while the half-sum of all distance/distance matrix entries is another molecular
descriptor called D/D index, i.e., Eq. (3-93).

D/D = Z Z Wi (3-93)

zl]lU

From the largest eigenvalue of the distance/distance matrix, a folding degree
index ¢ was also defined [180,181]; this is the largest eigenvalue X?D obtained by
the diagonalization of the distance/distance matrix D/D, then normalized dividing it
by the number of atoms A [Eq. (3-94)]:

ADD
¢>=1T 0<¢<1 (3-94)
This quantity tends to one for linear molecules (of infinite length) and decreases
in correspondence with the folding of the molecule. For example, ¢ values for
transoid-molecules are always greater than the values for the corresponding cisoid-
molecules. Thus, ¢ can be thought of as a measure of the degree of folding of the
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molecule because it indicates the degree of departure of a molecule from strict lin-
earity. The folding degree index is a measure of the conformational variability of the
molecule, i.e., the capability of a flexible molecule (often macromolecules, proteins)
to assume conformations close over upon itself. This index allows a quantitative
measure of similarity between chains of the same length but with different geome-
tries, it is sensitive to conformational changes. The folding profile of a molecule is
proposed, as given by Eq. (3-95):

(1¢20>0,... 5p,.. ) (3-95)

where ¥¢ is the normalized first eigenvalue of the kth order distance/distance matrix,
whose elements are derived raising to the kth power the elements of the matrix D/D.
Obviously, '¢ is the folding degree index. These vectorial descriptors were used to
study the folding of peptide sequences [182].

3.5.3. WHIM Descriptors

Weighted holistic invariant molecular (WHIM) descriptors are geometrical descrip-
tors based on statistical indexes calculated on the projections of the atoms along
principal axes [33,183]. WHIM descriptors are generated in such a way as to cap-
ture relevant molecular 3D information regarding molecular size, shape, symmetry,
and atom distribution with respect to invariant reference frames. Within the WHIM
approach, a molecule is seen as a configuration of points (the atoms) in the three-
dimensional space defined by the Cartesian axes (x,y,z). In order to obtain a unique
reference frame, principal axes of the molecule are calculated. Then, projections
of the atoms along each of the principal axes are performed and their dispersion
and distribution around the geometric center are evaluated. More specifically, the
algorithm consists of calculating the eigenvalues and eigenvectors of a weighted
covariance matrix of the centered Cartesian coordinates of the atoms of a molecule,
obtained from different weighting schemes for the atoms [Eq. (3-96)]:

A
2 Wi (2 — @) (git — @)
sip = = (3-96)

wi

N

1

where sj; is the weighted covariance between the jth and kth atomic coordinates, A
is the number of atoms, w; is the weight of the ith atom, g;; and g represent the jth
and kth coordinate (j, k =x,y,z) of the ith atom, respectively, and g the corresponding
average value.

Six different weighting schemes, providing WHIM weighted covariance matrixes
(WWC matrixes), were proposed: (1) the unweighted case u (w; = 1 i = 1,A,
where A is the number of atoms for each compound), (2) atomic mass m, (3) the van
der Waals volume v, (4) the Sanderson atomic electronegativity e, (5) the atomic
polarizability p, and (6) the electrotopological state indexes of Kier and Hall, S
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[127]. All the weights are scaled with respect to the carbon atom. Depending on
the kind of weighting scheme, different covariance matrixes and, therefore, differ-
ent principal axes are obtained. For example, using atomic masses as the weighting
scheme, the directions of the three principal axes are the directions of the principal
inertia axes. Thus, the WHIM approach can be viewed as a generalization of search-
ing for the principal axes with respect to a defined atomic property (the weighting
scheme). Based on the same principles of the WHIMs, COMMA descriptors were
later proposed [184]. They consist of 11 descriptors given by moment expansions for
which the zero-order moment of a property field is non-vanishing. WHIM descrip-
tors are divided into two main classes:directional WHIM descriptors and global
WHIM descriptors. A summary of WHIMs is shown in Table 3-5.

Table 3-5. WHIM descriptors. A refers to eigenvalues of the weighted covariance matrix; ¢ refers to
atomic coordinates with respect to the principal axes; A is the number of molecule atoms; ng is the
number of symmetric atoms along a principal axis; and n, is the number of asymmetric atoms

Molecular
Equation  Formula Name feature
(3-97) Am m=123 d-WSIZ Axial
indexes dimension
(3-98) T=Xx+2+A3 WSIZ index Global
dimension
(3-99) A =AAy+A1A3 + 1243 WSIZ index Global
dimension
3
(3-100) =[] A+ xn) =1 =T+ A+r12213 WSIZ index Global
m=1 dimension
(G-101)  Op =M m=123 d-WSHA Axial shape
Lomm indexes
3
(3-102) K=3 .ma Zi,mx\m - %‘ WSHA index  Global shape
A2-A . .
(3-103) Nm = 7 m=123 d-WDEN Axial density
it indexes
(3-104) D=n1+n+n WDEN index Global density
-1
(3105 ym={1-[% loga % +na- (%1022 )]} d-WSYM Axial
m=123 indexes symmetry
(3-106) G=(y;-y2-y3)/3 WSYM index  Global
symmetry

Directional WHIM descriptors are calculated as some univariate statistical
indexes on the projections of the atoms along each individual principal axis, while
the global WHIMs are directly calculated as a combination of the former, thus
simultaneously accounting for the variation of molecular properties along the three
principal directions in the molecule. In this case, any information related individu-
ally to each principal axis disappears and the description is related only to a global
view of the molecule.
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WHIM descriptors are invariant to translation due to the centering of the atomic
coordinates and invariant to rotation due to the uniqueness of the principal axes,
thus resulting free from prior alignment of molecules. To make the WHIM approach
clearer, it is illustrated with a simple example. Considering chlorobenzene to be the
molecule for analysis, it can be thought of as the configuration of points shown in
Figure 3-8, the atomic Cartesian coordinates being those shown in Table 3-6.

A
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Figure 3-8. Geometrical representation of chlorobenzene based on the Cartesian coordinates (Table
3-6). The chlorine atom (12) shows the highest distance from the aromatic ring

Table 3-6. Cartesian atomic coordinates of an optimized geometry of
chlorobenzene (see Figure 3-8)

ID Atom X y z
1 C —0.662 4.186 0
2 C 0.549 3.489 0
3 C 0.547 2.093 0
4 C —0.662 1.395 0
5 C —1.871 2.093 0
6 C —1.873 3.489 0
7 H 1.511 4.030 0
8 H 1.502 1.540 0
9 H —0.662 0.291 0
10 H —2.826 1.540 0
11 H —2.835 4.030 0
12 Cl —0.662 5911 0

This reference frame is obviously not unique as it depends on how the molecule
was drawn and its conformation was optimized. Thus, to calculate unique molecular
descriptors independent of the reference frame the principal axes have to be searched
for. Figure 3-9 shows the principal axes of chlorobenzene computed by considering
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each point weighted by the corresponding atomic mass. Note that the first principal
axis is along the direction of the heteroatom and the origin of the reference frame
coincides with the geometrical center of the molecule. The atomic coordinates with
respect to the new reference frame together with scaled atomic masses are shown
in Table 3-7. In general, the effect of weighting atoms with atomic properties con-
sists of redirecting the principal axes toward molecular regions with large property
values.

t
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Figure 3-9. Geometrical representation of chlorobenzene in the space of principal axes. Point size is
proportional to atomic mass. The chlorine atom shows (12) the highest distance from the aromatic ring
and the largest mass resulting for the most important atom in determining the first axis direction (t;)

Table 3-7. Scaled atomic masses and coordinates with respect to the principal
axes of chlorobenzene

ID Atom m tq to t3
1 C 1 —1.346 0 0
2 C 1 —0.649 —1.211 0
3 C 1 0.748 —1.209 0
4 C 1 1.446 0 0
5 C 1 0.748 1.209 0
6 C 1 —0.649 1.211 0
7 H 0.084 —1.189 —2.173 0
8 H 0.084 1.300 —2.164 0
9 H 0.084 2.549 0 0
10 H 0.084 1.300 2.164 0
11 H 0.084 —1.189 2.173 0
12 Cl 2.952 —3.071 0 0

A fundamental role in the WHIM descriptor calculation process is played by the
eigenvalues A, A\, and A3 of the weighted covariance matrix of the molecule atomic
coordinates. Each eigenvalue represents a dispersion measure (i.e., the weighted
variance) of the projected atoms along the considered principal axis, thus accounting
for the molecular size along that principal direction [Eqgs. (3-97,3-98,3-99,3-100)].
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In the case of chlorobenzene, the mass-weighted eigenvalues are 3.709, 0.794, and
0, highlighting that the molecule is much more elongated along the first axis with
respect to the second one due to the relatively large mass of the chlorine atom. Note
that if the three unweighted eigenvalues 2.333. 2.055, and O were considered, then
this difference would be less significant, as expected from a purely geometrical point
of view. Moreover, the third eigenvalue is zero as expected for planar molecules,
there being no variance out of the molecular plane.

Relationships among the eigenvalues are used to describe the molecular shape
[Egs. (3-101 and (3-102)]. For example, for an ideal straight molecule both X\, and
A3 are equal to zero and the global shape K is equal to 1 (maximum value); for
an ideal spherical molecule all three eigenvalues are all equal to 1/3 and K = 0.
In the case of chlorobenzene, the mass-weighted global shape Km is equal to 0.736,
highlighting once again the role of the chlorine mass in amplifying the molecule
linearity with respect to the unweighted case Ku = 0.500.

Exploiting the new coordinates #,, of the atoms along the principal axes, the atom
distribution and density around the molecule center can be evaluated by an inverse
function [Eq. (3-103)] of the kurtosis k (n = 1/k). Low values of the kurtosis are
obtained when the data points (i.e., the atom projections) assume opposite values
with respect to the center. When an increasing number of data values are within
the extreme values along a principal axis, the kurtosis value increases (i.e., kurtosis
equal to 1.8 for a uniform distribution of points and equal to 3.0 for a normal distri-
bution). When the kurtosis value tends to infinity, the corresponding 1 value tends
to zero.

In an analogous way, from the analysis of the new coordinates #,, of the atoms,
molecular symmetry is evaluated on the basis of the number n; of symmetric atoms
with respect to the molecule center, i.e., atoms with opposite coordinates along the
considered axis, and the number n, of asymmetric atoms [Eq. (3-105)].

In conclusion, for each weighting scheme w, 11 molecular directional WHIM
descriptors (93 is excluded) were proposed, thus resulting in a total of 66 directional
WHIM descriptors. For planar compounds, A3, A3, and n3 are always equal to zero.
The global WHIMs are five for each of the six proposed weighting schemes w, plus
the symmetry indexes Gu, Gm, and Gs, giving a total number of 33 descriptors. An
example of calculation of WHIMs is given in Table 3-8.

3.54. GETAWAY Descriptors

Geometry, topology, and atom-weights assembly (GETAWAY) descriptors have
been proposed as chemical structure descriptors derived from the molecular influ-
ence matrix. This is a matrix representation of molecules denoted by H and defined
as the following equation (3-107) [37,185]:

H=Mx M x M)"! x MT (3-107)

where M is the molecular matrix comprising the centered Cartesian coordinates x,
v, z of the molecule atoms (hydrogens included) in a chosen conformation. Atomic
coordinates are assumed to be calculated with respect to the geometrical center of
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the molecule in order to obtain translational invariance. The molecular influence
matrix is a symmetric AxA matrix, where A represents the number of atoms, and
shows rotational invariance with respect to the molecule coordinates, thus resulting
independent of any alignment of data set molecules.

The diagonal elements #; of the molecular influence matrix, called leverages
being the elements of the leverage matrix defined in statistics, range from O to 1
and encode atomic information related to the “influence” of each molecule atom in
determining the whole shape of the molecule; in effect, mantle atoms always have
higher 4;; values than atoms near the molecule center. Moreover, the magnitude of
the maximum leverage in a molecule depends on the size and shape of the molecule.
As derived from the geometry of the molecule, leverage values are effectively sen-
sitive to significant conformational changes and to the bond lengths that account for
atom types and bond multiplicity.

Each off-diagonal element £;; represents the degree of accessibility of the jth
atom to interaction with the ith atom, or, in other words, the attitude of the two
considered atoms to interact with each other. A negative sign for the off-diagonal
elements means that the two atoms occupy opposite molecular regions with respect
to the center, hence the degree of their mutual accessibility should be low. Table 3-9
shows the molecular influence matrix of chlorobenzene, whose three-dimensional
structure has been optimized by minimizing the conformational energy. Atom
numbering of chlorobenzene is shown in Figure 3-10.

It can be noted that the outer atoms of chlorobenzene (Cl and hydrogens) have
larger leverage values (0.337, 0.242, 0.250, 0.232) than the carbon atoms of the aro-
matic ring (0.065, 0.075, 0.079). Then, among the outer atoms, the chlorine atom
has the largest value (0.337), its bond length being larger than the bond distances of
hydrogens. It must also be noted that equal leverage values are obtained for sym-
metric atoms, such as (C,, Cg), (C3, Cs), (H7, Hy1), and (Hg, Hig). Moreover, the
off-diagonal terms give, to some extent, information on the relative spatial posi-
tion of pairs of atoms. For instance, atoms Ci, Co, Cg, H7, and Hj; have positive
off-diagonal values with respect to the chlorine atom and, among these, C; has the
largest value being the nearest one.

Combining the elements of the molecular influence matrix H with those of the
geometry matrix G, which encodes spatial relationships between pairs of atoms,
another symmetric AxA molecular matrix, called influence/distance matrix and
denoted by R, was derived as the following equation (3-108):

R]; = [—M] i (3-108)
i

r,-j

where h; and h; are the leverages of the atoms i and j, and r;; is their geometric
distance. The diagonal elements of the matrix R are zero, while each off-diagonal
element i—j is calculated by the ratio of the geometric mean of the corresponding ith
and jth diagonal elements of the matrix H over the interatomic distance r;; provided
by the geometry matrix G. The square root product of the leverages of two atoms is
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Figure 3-10. H-filled molecular graph of chlorobenzene

divided by their interatomic distance in order to make less significant contributions
from pairs of atoms far apart, according to the basic idea that interactions between
atoms in the molecule decrease as their distance increases. Obviously, the largest
values of the matrix elements are derived from the most external atoms (i.e., those
with high leverages) and simultaneously next to each other in the molecular space
(i.e., those having small interatomic distances).

A set of the GETAWAY descriptors (Hgm, ITH, IsH, HIC, RARS, RCON, REIG)
was derived by applying some traditional matrix operators and concepts of infor-
mation theory both to the molecular influence matrix H and the influence/distance
matrix R. Most of these descriptors are simply calculated only by the leverages used
as the atomic weightings. Their formulae and definitions are described in Table 3-10.

The index Hgm (Eq 3-109) has been proposed as the geometric mean of the
leverage values in order to encompass information related to molecular shape. It has,
in effect, been found that in an isomeric series of hydrocarbons, the Hgym index is
sensitive to the molecular shape increasing from linear to more branched molecules;
it is also inversely related to molecular size, decreasing as the number of atoms in
the molecule increases.

The total and standardized information content on the leverage equality
[Egs. (3-110) and (3-111)] mainly encode information on molecular symmetry; if
all the atoms have different leverage values, i.e., the molecule does not show any
element of symmetry, ITq =Ao log Ag and Isg = 1; otherwise, if all the atoms have
equal leverage values (a perfectly symmetric theoretical case), Ity = 0 and Isy =
0. The total information content on the leverage equality Ity is more discriminating
than Isy, because of its dependence on molecular size, and thus it could be thought
of as a measure of molecular complexity. These indexes were demonstrated to be
useful in modeling physico-chemical properties related to entropy and symmetry
[185].

The HIC descriptor [Eq. (3-112)] seems to encompass more information related
to molecular complexity than the total and standardized information content on
the leverage equality. Unlike Ity and Isy, HIC can, for example, recognize the
different substituents in a series of monosubstituted benzenes. It is also sensitive
to the presence of multiple bonds.
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Table 3-10. GETAWAY descriptors based on matrix operators and information indexes. A is the number
of molecule; atoms (hydrogen included); Ag is the number of non-hydrogen atoms; Ng is the number
of atoms with the same leverage value and G the number of equivalence classes; M = 1, 2, or 3 (1
for linear, 2 for planar, and 3 for non-planar molecules); B is the number of molecule bonds; VS;(R)
indicates the row sums of the influence/distance matrix R; ajj is equal to one for pairs of bonded atoms,
and zero otherwise

Equation Formula Name
s 1/A
(3-109) Hgm = 100 - (]_[ h,',') Geometric mean of the
=1 leverage magnitude
G
(3-110) ITH = Ag - logy Ag — )~ Ny - logy Ng Total information content
g=1 on the leverage equality
G
. Z] Ng-logy Ng
— TH _ _ 8= andardized i i
(3-111) Isy = Ao Togs Ay = 1- AoToz; A Standardized information
content on the leverage
equality
(3-112) HIC=-)" o - logy 37 Mean information content
i=1 on the leverage
magnitude
L&A Sy g 8
(3-113) RARS = % - Z Z % L=2. Z VSi(R) Average row sum of the
i=1j=1 i=1 influence/distance matrix
A A
(3-114) RCON = Zl Zl ai - (VSi(R) - VS;(R)) /2 R-connectivity index
i=1j=
(3-115) REIG = SpMax(R) R-matrix leading
eigenvalue

Both RARS [Eq. (3-113)] and RCON [Eq. (3-114)] are based on the row sums of
the influence/distance matrix since these encode some useful information that could
be related to the presence of significant substituents or fragments in the molecule.
It was, in effect, observed that larger row sums correspond to terminal atoms that
are located very next to other terminal atoms such as those in substituents on a
parent structure. Moreover, the RCON index is very sensitive to the molecular size as
well as to conformational changes and cyclicity. The REIG descriptor [Eq. (3-115)]
has been defined by analogy with the Lovasz-Pelikan index [118], that is an index
of molecular branching calculated as the first eigenvalue of the adjacency matrix.
RARS and REIG indexes are closely related; their values decrease as the molecular
size increases and seem to be a little more sensitive to molecular branching than to
cyclicity and conformational changes.

The calculation of some GETAWAY descriptors is illustrated for acrylic acid.
The hydrogen-filled molecular graph, molecular influence matrix H, and influ-
ence/distance matrix R for acrylic acid are shown in Figure 3-11, Tables 3-11 and
3-12, respectively. The matrixes were calculated from the x, y, z coordinates of the
atoms in the minimum energy conformation optimized by the AM1 semi-empirical
method (see Chapter 2).
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Figure 3-11. H-filled molecular graph of acrylic acid
Table 3-11. Molecular influence matrix H of acrylic acid. Atom numbering is shown in Figure 3-11.
Cy Cy C3 Oy Os5 Hg Hy Hg Hog
Cy 0.056 0.004 —0.076 0.130 0.017 0.037 —0.114 —0.110 0.056
Cy 0.004 0.054 0.009 0.040 —0.096 0.134 0.049 —-0.071 —0.122
Cs —0.076 0.009 0.109 —0.171 —0.048 —0.018 0.170 0.135 —0.109
Oy 0.130 0.040 —0.171 0321 —0.017 0.163 —0.233 —0.293 0.059
Os 0.017 —0.096 —0.048 —0.017 0.179 —-0.225 —0.136 0.082 0.243
He 0.037 0.134  —0.018 0.163 —0.225 0.347 0.061 —0.230 —0.270
Hy —0.114 0.049 0.170 —0.233 —0.136 0.061 0.291 0.157 —0.247
Hg —0.110 —0.071 0.135 —0.293 0.082 —0.230 0.157 0.292 0.038
Hg 0.056 —0.122 —0.109 0.059 0.243  —0.270 —0.247 0.038 0.351

Table 3-12. Influence/distance matrix R of acrylic acid. Atom numbering is shown in Figure 3-11. VS;
indicates the matrix row sums

Cy Cy C3 Oy Os Hg H7 Hg Ho VS;
Cy 0 0.037  0.031 0.108 0.073  0.064 0.037 0.046 0.073 | 0.469
Cy 0.037 0 0.058  0.054 0.041 0.124 0.059 0.059 0.043 | 0475
C3 0.031  0.058 0 0.052  0.050 0.091 0.162 0.162 0.052 |0.658
Oy 0.108  0.054 0052 O 0.109  0.125  0.067 0.077 0.150 | 0.742
Os 0.073  0.041  0.050 0.109 0O 0.074  0.059 0.091 0.258 |0.755
He 0.064 0.124  0.091 0.125 0.074 O 0.126  0.102  0.086 | 0.792
Hy 0.037  0.059 0.162 0067 0.059 0.126 0 0.157  0.066 | 0.733
Hg 0.046  0.059 0.162 0.077 0.091 0.102 0.157 0 0.092 | 0.786
Ho 0.073  0.043  0.052 0.150 0.258 0.086 0.066 0.092 0 0.820

9
Hgm = 100 x (H hi
i=1

1/9

x0.347 x 0.291 x 0.292 x 0.351)1/9 = 179.8

5
ITH =5 xlogy 5 — > Ng

g=1

x logy Ng = 11.61 — 5 x (1 x logy 1) = 11.61

Isu

ItH

B 1161
T 5xlogy5 1161

= 100 x (0.059 x 0.054 x 0.109 x 0.321 x 0.179
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b _ 0056 005 0054 0054 0.109
2577 2275 2 8275 2
0109 0321 0321 0179 0179

9 h;
HIC= — ) — xlog
=2

1

xlogZT—Tx 0gy > 5 x log,
0.347  Io 0.347  0.291 <o 0.291  0.292  Io 0.292  0.351
8275 3 S 5 825 3

0.351
x logy — = 2.938

RARS = § x (0.469 + 0.475 + 0.658 + 0.742 + 0.755 + 0.792 + 0.733
+0.786 + 0.820) = 0.692
RCON = (0.469 x 0.475 + 0.469 x 0.742 + 0.469 x 0.755 + 0.475
x0.658 + 0.475 x 0.792 + 0.658 x 0.733 + 0.658 x 0.786 + 0.755
x0.820)1/2 = 5.028

The set of eigenvalues of the influence/distance matrix R is: 0.713, 0.159, 0.022,
—0.037, —0.103, —0.149, —0.166, —0.177, —0.263. Therefore, REIG = 0.713.

The other set of GETAWAY descriptors, shown in Table 3-13, is comprised of
autocorrelation vectors obtained by double-weighting the molecule atoms in such
a way as to account for atomic mass, polarizability, van der Waals volume, and
electronegativity together with 3D information encoded by the elements of the
molecular influence matrix H and influence/distance matrix R.

Table 3-13. GETAWAY descriptors based on autocorrelation functions A is the number of molecule
atoms (hydrogen included); D is the topological diameter; dj; is the topological distance between atoms
i and j; w; is a physico-chemical property of the ith atom

Equation  Formula Name
Al , HATS
(3-116)  HATSy (w) = El jmi i hi) + (wj - hyg) -8 (disk) - k=01.2,...0 "7 o
D
(-117)  HATS (w) = HATSy (w) +2- > HATS; (w) HATS total
=1 index
A-1
G-118)  Hyw) = 3 Y ihij-wi-wj-8 (dyjshisk) k= 01,2, ..., D H indexes
i=1
D H total
(3-119)  HT (w) = Hy (w) +2-k§l Hy (w) index
A—1 e
(-120) Ry = ¥ Yy V",'[,',_hff cwiwi -8 (dgk)  k=1,2,....D R indexes
i=1 :
D R total
(3-121)  RT (w) :2.121 Ry (w) index
+ _ Jhihj . T Maximal R
(3-122) R W) _maxij< e -w,-‘wj‘a(d,-j,k)> i#j k=12 ....D "
Maximal R
(3-123)  RT* (w) = max; (Rk+ (w)) total

index
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HATS indexes [Eqs. (3-116) and (3-117)] are defined by analogy with the
Moreau—Broto autocorrelation descriptors ATS [Eq. (3-45)], but weighting each
atom of the molecule by physico-chemical properties combined with the diago-
nal elements of the molecular influence matrix H, thus they also account for the
3D features of the molecules. The calculation of HATS(m) indexes is illustrated for
acrylic acid (Figure 3-11). Atomic masses scaled on the carbon atom were used as
the weighting scheme for molecule atoms: m(C) = 1, m(H) = 0.084, m(O) = 1.332.
The molecular influence matrix H of acrylic acid is reported in Table 3-11. Because
the topological diameter D is equal to 5, six HATS indexes (k = 0, 5) can be derived.
Examples of calculation for k = 0 and k = 3 are reported. For k = 0, the summation
goes over the single atoms, then

9
HATSp(m) = 3" (m; - h;)* = 0.003 + 0.003 + 0.012 4+ 0.183 + 0.057 + 0.001
i=1
40.001 + 0.001 4 0.001 = 0.262
For k = 3, the summation goes over all of the atom pairs at topological distance
three:

HATS3(m) = (my - hy) - (m7 - hy) + (my - hy) - (mg - hg)
+(my - ho) - (mg - ho) + (M3 - h3) - (my - hy)
+(mj3 - h3) - (ms - hs) + (my - hyg) - (Mg - ho)
+(my - hy) - (g - he) + (M5 - hs) - (Mg - he) + (Mg - he) - (M7 - h7)
+(mg - hg) - (mg - hg) = 0.001 + 0.001 + 0.002 + 0.047 + 0.026
+0.013 4+ 0.012 4+ 0.007 + 0.001 + 0.001 = 0.110

H indexes [Eqs. (3-118 and (3-119)] are filtered autocorrelation descriptors. The
function 3(k;d;j;h;;) used for the calculation of these indexes is a Dirac-delta function
defined as follows [Eq. (3-124)]:

N B! ifdij=k and h; >0
8 (k,dl-j,h,-j) = { 0 if dijj £k or Iy IS 0 (3-124)
While the HATS indexes [Eq. (3-116)] make use of the diagonal elements of
the matrix H, the H indexes [Eq. (3-118)] exploit the off-diagonal elements, which
can be either positive or negative. In order to emphasize interactions between spa-
tially near atoms, only off-diagonal positive & values are used. In effect, for a given
lag (i.e., topological distance) the product of the atom properties is multiplied by
the corresponding h;; value and only those contributions with a positive /;; value are
considered. This means that, for a given atom 7, only those atoms j at topological dis-
tance d;; with a positive 4;; value are considered, because they may have the chance
to interact with the ith atom. The maximal R indexes [Eq. (3-122)] were proposed in
order to take into account local aspects of the molecule and allow reversible decod-
ing; only the maximum property product between atom pairs at a given topological
distance (lag) is retained.
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An example for the calculation of H(m), R(m), and R*(m) indexes for acrylic acid
(Figure 3-11) is reported. The molecular influence matrix and influence/distance
matrix of acrylic acid are given in Tables 3-11 and 3-12, respectively. Calculation is
based on the atomic mass weighting scheme scaled on the carbon atom: m(C) = 1,
m(H) = 0.084, m(O) = 1.332. Only indexes for k = 3 are reported

H3(m) = my X mg X hgg + mg X mg X h4g + mg X m7 X hg7
= 0.0182 + 0.0066 + 0.0004 = 0.025

R3(m) = [R]y7 -my -m7 + [R]y 8 - my - mg + [R]o9 - mp - mg + [R]34 - m3 - my
+[R]35-m3 - ms + [R]s9 - my - mg + [R]y6 - my - mg + [R]5
‘ms - mg + [R]e7 - mg - m7 4 [R]g g - me - mg = 0.003 + 0.004 4- 0.004
4+0.069 + 0.067 + 0.017 + 0.014 + 0.008 + 0.001 + 0.001 = 0.188

R;’ (m) = max (0.003;0.004;0.004;0.069;0.067;0.017;0.014;0.008;0.001;0.001)
= 0.069

Note that the R;" (m) index identifies the structural fragment Cz3 = C, — C| =
Oy.

The atomic weighting schemes applied for GETAWAY descriptor calculation are
those proposed for the WHIM descriptors, that is, atomic mass (m), atomic polar-
izability (p), Sanderson atomic electronegativity (e), atomic van der Waals volume
(v), plus the unit weighting scheme ().

HATS, H, R, and maximal R indexes are vectorial descriptors for structure—
property correlations, but they can also be used as molecular profiles suitable for
similarity/diversity analysis studies. These descriptors, as based on spatial auto-
correlation, encode information on structural fragments and therefore seem to be
particularly suitable for describing differences in congeneric series of molecules.
Unlike the Moreau—Broto autocorrelations, GETAWAYs are geometrical descrip-
tors encoding information on the effective position of substituents and fragments in
the molecular space. Moreover, they are independent of molecule alignment and, to
some extent, account also for information on molecular size and shape as well as
for specific atomic properties.

A joint use of GETAWAY and WHIM descriptors is advised, exploiting both
local information of the former and holistic information of the latter set of descrip-
tors. The GETAWAY descriptors have been used for modeling several data sets of
pharmacological and environmental interest [185—188].

3.5.5. Molecular Transforms

Molecular transforms are vectorial descriptors based on the concept of obtain-
ing information from the 3D atomic coordinates by the transform used in
electron diffraction studies for preparing theoretical scattering curves [189,190].
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A generalized scattering function can be used as the functional basis for deriving,
from a known molecular structure, the specific analytic relationship of both X-ray
and electron diffraction. The general molecular transform is given by Eq. (3-125):

A
G()=)Y firexp2mi-ri-s) (3-125)

i=1

where s represents the scattering in various directions by a collection of A atoms
located at points r;; f; is a form factor taking into account the direction dependence
of scattering from a spherical body of finite size. The scattering parameter s has the
dimension of a reciprocal distance and depends on the scattering angle, as given by
Eq. (3-126):

dr .
s = o sin (9/2) (3-126)

where ¢ is the scattering angle and X is the wavelength of the electron beam.

Usually, the above equation is used in a modified form as suggested in 1931 by
Wierl [191]. On substituting the form factor by an atomic property w;, consider-
ing the molecule to be rigid and setting the instrumental constant equal to one, the
following function, usually called radial distribution function, is used to calculate
molecular transforms [Eq. (3-127)]:

A-lh A sin (s . rl-j)
)= > wi wp—= (3-127)
i=1 j=it+1 §- Tij

where I(s) is the scattered electron intensity, w is an atomic property, chosen as
the atomic number Z by Soltzberg and Wilkins [189], r;; is the geometric distance
between the ith and jth atom, and A is the number of atoms in the molecule. The
sum is performed over all the pairs of atoms in the molecule.

Soltzberg and Wilkins introduced a number of simplifications in order to obtain
a binary code. Only the zero crossing of the I(s) curve, i.e., the s values at which
I(s) = 0, in the range 1-31 A~! were considered. The s range was then divided
into 100 equal-sized bins, each described by a binary variable equal to 1 if the bin
contains a zero crossing, and zero otherwise. Thus, a vectorial descriptor consisting
of 100 bins was finally calculated for each molecule.

Raevsky and co-workers applied the molecular transform to study ligand—
receptor interactions by using hydrogen-bond abilities, hydrophobicity, and charge
of the atoms, instead of the atomic number Z [192]. For each atomic property,
a spectrum of interatomic distances, called interatomic interaction spectrum, was
derived to represent the 3D structure of molecules and the scattered intensities
in selected regions of the spectrum were used as the molecular descriptors [193].
These descriptors are based on local characteristics of different pairs of centers
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in the molecule. For a selected distance R, the following function was evaluated
[Eq. (3-128)] [193,194]:

A A

1(1{):2222&/2 P (3-128)

pmin =1 j=1 1+ (R—ry)
0.1

where A is the number of atoms in the molecule, w; and w; are atomic properties of
the ith and jth atom, respectively, r;; is the geometric interatomic distance; 7MiM and
rM3 define a distance range around R, which accounts for vibrations of atoms and
allows to obtain a band instead of a line in the final spectrum for each pair of centers
defined by R. Distances R are varied from 1.1 to 20 A with step 0.1 A, resulting in a
total of 190 signals per spectrum.

Superimposition of all the bands for all the possible pairs of centers forms the
final interatomic interaction spectrum. Seven types of spectrum are calculated for
each molecule by using different atomic properties w: steric interaction spectrum,
spectrum of interactions between positively charged atoms, spectrum of interac-
tions between negatively charged atoms, spectrum of interactions of positively
charged atoms with negatively charged atoms, spectrum of interactions between
hydrogen-bond donors, spectrum of interactions between hydrogen-bond accep-
tors, and spectrum of interactions of hydrogen-bond donors with hydrogen-bond
acceptors.

The integrated molecular transform (FTy,) is a molecular descriptor calculated
from the square of the molecular transform by integrating the squared molecular
transform in a selected interval of the scattering parameter s to obtain the area under
the curve and finally taking the square root of the area [195,196].

To calculate 3D-molecule representation of structures based on electron diffrac-
tion descriptors (or 3D-MoRSE), Gasteiger et al. [197,198] returned to the initial
I(s) curve and maintained the explicit form of the curve. As for the atomic weight-
ing scheme w, various physico-chemical properties such as atomic mass, partial
atomic charges, atomic polarizability were considered. In order to obtain uniform-
length descriptors, the intensity distribution /(s) was made discrete, calculating its
value at a sequence of evenly distributed values of, e.g., 32 or 64 values in the range
of 1-31 A~ 1, Clearly, the more values are chosen, the finer the resolution in the
representation of the molecule.

Radial distribution function (RDF) descriptors were proposed based on a radial
distribution function different from that commonly used to calculate molecular
transforms I(s) [199,200]. The radial distribution function here selected is that quite
often used for the interpretation of the diffraction patterns obtained in powder X-ray
diffraction experiments. Formally, the radial distribution function of an ensemble
of A atoms can be interpreted as the probability distribution to find an atom in a
spherical volume of radius R. The general form of the radial distribution function is
represented by Eq. (3-129):



Molecular Descriptors 93

A-1 A
gR) =f- Z Z Wi - wj - e—ﬁ-(R—rij)2 (3-129)

i=1 j=i+1

where f'is a scaling factor, w are characteristic atomic properties of the atoms i and
J rij is the interatomic distance between the ith and jth atom, and A is the number of
atoms. The exponential term contains the distance r;; between the atoms i and j and
the smoothing parameter 8, that defines the probability distribution of the individual
interatomic distances; f can be interpreted as a temperature factor that defines the
movement of atoms. g(R) is generally calculated at a number of discrete points with
defined intervals. A RDF vector of 128 values was proposed, using a step size for
R about 0.1-0.2 A, while the p parameter is fixed in the range between 100 and
200 A~2. By including characteristic atomic properties w of the atoms i and j, RDF
descriptors can be used in different tasks to fit the requirements of the information
to be represented. These atomic properties enable the discrimination of the atoms of
a molecule for almost any property that can be attributed to an atom.

The radial distribution function in this form meets all the requirements for a 3D
structure descriptor: it is independent of the number of atoms, i.e., the size of a
molecule, it is unique regarding the three-dimensional arrangement of the atoms,
and invariant against translation and rotation of the entire molecule. Additionally,
the RDF descriptors can be restricted to specific atom types or distance ranges to
represent specific information in a certain three-dimensional structure space, e.g., to
describe steric hindrance or structure/activity properties of a molecule. Moreover,
the RDF vectorial descriptor is interpretable by using simple rules and, thus, it
provides a possibility of reversible decoding. Besides information about distri-
bution of interatomic distances in the entire molecule, the RDF vector provides
further valuable information, e.g., about bond distances, ring types, planar and non-
planar systems, and atom types. This fact is a most valuable consideration for a
computer-assisted code elucidation.

3.6. CONCLUSIONS

The scientific community is showing an increasing interest in the field of QSAR.
Several chemoinformatics methods were specifically conceived trying to solve
QSAR problems, answering the demand to know in a deeper manner the chem-
ical systems and their relationships with biological systems. Nowadays, the need
to deal with biological systems described by peptide/protein or DNA sequences,
to describe proteomics maps, or to give effective answers to ecological and health
problems, pushes new borders further where mathematics, statistics, chemistry, and
biology and their inter-relationships may produce new effective useful knowledge.
Several molecular descriptors have been proposed in the last few years, illustrating
the great interest the scientific community has shown in the theoretical approach
to capture information about chemical compounds and the need for more sophisti-
cated molecular descriptors useful for the development of predictive QSAR/QSPR
models [92].
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Abstract: Three-dimensional quantitative structure—activity relationship (3D-QSAR) techniques
are the most prominent computational means to support chemistry within drug design
projects where no three-dimensional structure of the macromolecular target is avail-
able. The primary aim of these techniques is to establish a correlation of biological
activities of a series of structurally and biologically characterized compounds with the
spatial fingerprints of numerous field properties of each molecule, such as steric demand,
lipophilicity, and electrostatic interactions. The number of 3D-QSAR studies has expo-
nentially increased over the last decade, since a variety of methods are commercially
available in user-friendly, graphically guided software. In this chapter, we will review
recent advances, known limitations, and the application of receptor-based 3D-QSAR

Keywords: 3D-QSAR, CoMFA, CoMSIA, GRID/GLOPE, AFMoC, Receptor-based QSAR

4.1. INTRODUCTION

An important goal in computer-aided design is to find a correlation between the
structural features of ligands and their biological activity, that is, their ability to bind
to specific target proteins. In some cases, simple mathematical models may provide
a means for identifying the property related to biological activity; in other cases a
multitude of parameters are necessary to describe the complex behavior of a com-
pound in a biological system. In general, the necessary parameters can be derived
by forming a relationship between those properties that describe the structural vari-
ation within the group of molecules under investigation and those that describe their
biological activities. This relationship is termed a quantitative structure—activity
relationship (QSAR) [1-3]. Historically, the primary objective of QSAR was to
understand which properties are important to control a specific biological activity
of a series of compounds. However, the main objective of these techniques nowa-
days is the prediction of novel compounds on the basis of previously synthesized
molecules.
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Usually, a QSAR model is derived using a training set of already characterized
ligands. Using statistical methods, one considers the molecular descriptors and the
effects of substituents on biological activities. Molecular descriptors are measured
or calculated physico-chemical properties, such as log P, pKj,, boiling point, molec-
ular refraction, molecular surface areas, or molecular interaction fields. If prepared
correctly, this strategy identifies which structural variations are relevant and influ-
ence changes in biological activities. Usually, the mathematical models obtained by
regression analysis are validated, in terms of their predictive power, by assessing
their capability to predict correctly the biological data of compounds belonging to a
so-called test set, that is, a set of molecules with determined biological activity that
was not used to generate the initial QSAR model.

4.2. WHY IS 3D-QSAR SO ATTRACTIVE?

The era of quantitative analysis for the correlation of molecular structures with bio-
logical activities started in the 1960s from the classical equation for 2D-QSAR
analysis proposed by Hansch [4]. Since then a variety of QSAR approaches have
been reported [5-8]. The first applicable 3D-QSAR method was proposed by
Cramer et al. in 1988 [6]. His program, CoMFA, was a major breakthrough in
the field of 3D-QSAR. The primary aim of 3D-QSAR methods is to establish a
correlation of biological activities of a series of structurally and biologically char-
acterized compounds with the spatial fingerprints of numerous field properties of
each molecule, such as steric demand, lipophilicity, and electrostatic interactions.
Typically, a 3D-QSAR analysis allows the identification of the pharmacophoric
arrangement of molecular features in space and provides guidelines for the design
of next-generation compounds with enhanced bioactivity or selectivity.

No 3D-QSAR method would be applied to a data set unless one expects that the
analysis will reveal insights into useful 3D structure—activity relationships. Since
chemists and biologists know that 3D properties of molecules govern biological
activity, it is especially informative to see a 3D picture of how structural changes
influence biological activities. Approaches that do not provide such a graphical rep-
resentation are often less attractive to the scientific community. An advantage of
3D-QSAR - over the traditional 2D-QSAR — method is that it takes into account the
3D structures of ligands and additionally is applicable to sets of structurally diverse
compounds.

The number of 3D-QSAR studies has increased exponentially over the last
decade, since a variety of methods have been made commercially available in user-
friendly software [6, 9]. As of the end of 2007, the number of papers dealing with
3D-QSAR is greater than 2500 when the CAS (Chemical Abstracts Service) service
is searched using the keywords “3D-QSAR” or “CoMFA” (Figure 4-1). However, it
seems that the initial “QSAR hype” is over, as indicated by the constant number of
new 3D-QSAR applications in the last few years. The major drawback of 3D-QSAR
is that it is not applicable to huge data sets containing more than several thousand
compounds, which are usually considered in high-throughput screening. For these
kinds of studies, novel faster and simpler methods have been developed, which use
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Figure 4-1. Number of 3D-QSAR articles published between 1988 and 2007

the original 3D descriptors (i.e., molecular interaction fields or surface descrip-
tors) as inputs for the generation of alignment-independent models. Examples for
this kind of programs recently developed are Volsurf and Almond (for review
see [10]).

The most frequently applied methods include comparative molecular field anal-
ysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) [9],
and the GRID/GOLPE program (generating optimal linear PLS estimations) [11].
Several reviews have been published in the last few years dealing with the basic
theory, the pitfalls, and the application of 3D-QSAR approaches [9-15]. Apart
from the commercial distribution, a major factor for the ongoing enthusiasm for
CoMFA-related approaches comes from the proven ability of several of these meth-
ods to correctly estimate the biological activity of novel compounds. However,
very often the predictive ability of QSAR models is only tested in retrospec-
tive studies rather than taking the ability to design and develop novel bioactive
molecules. Despite the known limitations of 3D-QSAR, the possibility to pre-
dict biological data is gaining respect as scientists realize that we are far away
from the hoped-for fast and accurate forecast of affinity from (the structure
of a) protein—ligand complexes by free-energy perturbation or empirical scoring
methods [17-19].

4.3. LIGAND ALIGNMENT

Establishing the molecular alignment of 3D structures of the investigated ligands is
an important prerequisite for several methodologies in drug design, e.g., 3D simi-
larity analysis, prediction of biological activities, and even the estimation of ADME
parameters [1-3]. Various procedures and pharmacophore strategies for the superpo-
sition of small ligands have thus been proposed in the past. An alignment generation
procedure usually considers two steps: superimposing the molecules and scoring
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of the resulting alignments. Superposition techniques may either utilize informa-
tion obtained from a binding site of a target protein (direct target-based methods)
or be based solely on information obtained from the ligands themselves (indirect
ligand-based methods). Some common assumptions, especially for the ligand-based
methods, are that the aligned molecules interact with the same amino acids within
a binding pocket and exhibit a unique binding mode. Additionally, the generated
alignment ideally contains the molecules studied in their bioactive conformation.
Superposition methods differ in how they treat flexibility and how the molecules are
represented. Ligands can be considered as flexible or rigid; alternatively, flexibility
can also be modelled via a limited set of rigid ligand conformers. The molecules
to be aligned can be represented by their atoms, shape, or molecular interaction
fields [1, 2].

The prediction of biological activity of novel ligands with improved activ-
ity/selectivity based on their structure is one of the major challenges in today’s drug
design. A prerequisite for most approaches is the correct alignment of the ligands
under study. Similar to the alignment procedures, the prediction methods can be
classified into two major groups: indirect ligand-based and direct structure-based
approaches. Ligand-based methods, including traditional quantitative structure—
activity relationships (QSARs) [4] and modern 3D-QSAR techniques [5], are based
entirely on experimental structure—activity relationships for receptor ligands. 3D-
QSAR methods are currently used as standard tools in drug design, since they
are computationally feasible and afford fast generation of models from which the
biological activity of newly synthesized molecules can be predicted. The basic
assumption is that a suitable sampling of the molecular interaction fields around a set
of aligned molecules might provide all the information necessary for an understand-
ing of their biological activities [6]. A suitable sampling is achieved by calculating
interaction energies between each molecule and an appropriate probe placed at reg-
ularly spaced grid points surrounding the molecules. The resulting energies derived
from simple potentials can then be contoured in order to give a quantitative spa-
tial description of molecular properties. If correlated with biological data, 3D-fields
can be generated which describe the contribution of a region of interest surround-
ing the ligands to the target properties. However, there is a significant difficulty in
the application of 3D-QSAR methods: in order to obtain a correct model, a spatial
arrangement of the ligands toward one another has to be found which is representa-
tive for the relative differences in the binding geometry at the protein-binding site.
The success of a molecular field analysis is therefore determined by the choice of
the ligand superposition [7-9]. In most cases, the first step in a 3D-QSAR study is
the generation of a reliable pharmacophore. Many alignment strategies have been
reported and compared that accomplish. Depending on the molecular flexibility and
the structural diversity of the investigated molecules, the task of generating a reli-
able pharmacophore can become less feasible. Despite the difficulties concerning
ligand alignment, many successful 3D-QSAR case studies applying different pro-
grams have been reported in the last few years. Most CoMFA applications in drug
design have been comprehensively listed and discussed in some reviews [10—13]
and books [7, 10, 16].
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Target-based methods, on the other hand, incorporate information from the target
protein and are able to calculate fairly accurately the position and orientation of a
potential ligand in a protein-binding site [20-27]. Over the last decade, a broad spec-
trum of competitive methods for scoring protein—ligand interactions has emerged
[19-27]. Established approaches have been further improved, e.g., in the area of the
regression-based scoring functions or methods based on first principles. In addition,
well-known techniques have been applied to protein—ligand scoring by using atom—
atom contact potentials to develop knowledge-based scoring functions. The major
problem of modern docking programs is the inability to evaluate the free energy of
binding required to correctly score different ligand—receptor complexes. The main
problem in affinity prediction is that the underlying molecular interactions are highly
complex and that the experimental data (structural as well as biological data) are far
away from being perfect for computational approaches. Numerous terms have to
be taken into account when trying to quantify the free energy of binding correctly
[27-29]. Elaborate methods, such as the free-energy perturbation or the thermody-
namic integration methods, have been shown to be able — at least to some extent —
to predict the binding free energy correctly. However, these approaches have the
drawback of being computationally very expensive.

In order to exploit the strengths of both approaches, i.e., incorporation of protein
information by docking programs and generation of predictive models for related
molecules by 3D-QSAR methods, it was suggested to use a combination of both
methods resulting in an automated unbiased procedure named receptor-based 3D-
QSAR [30-37]. In this context, the three-dimensional structure of a target protein
is used within a docking protocol to guide the alignment for a comparative molec-
ular field analysis. This approach allows the generation of a kind of target-specific
scoring method considering all the structure—activity data known for a related ligand
data set. The comprehensive utility of this approach is exemplified by a variety of
successful case studies published in the last few years.

44. CoMFA AND RELATED METHODS
44.1. CoMFA

For many years, 3D-QSAR has been used as a synonym for CoMFA [6], which
was the first method that implemented the concept into a QSAR method, i.e., that
the biological activity of a ligand can be predicted from its three-dimensional struc-
ture. Until now, CoMFA is probably the most commonly applied 3D-QSAR method
[6, 12]. A CoMFA study normally starts with traditional pharmacophore model-
ing in order to suggest a bioactive conformation of each molecule and ways to
superimpose the molecules under study. The underlying idea of CoMFA is that dif-
ferences in a target property, e.g., biological activity, are often closely related to
equivalent changes in shapes and strengths of non-covalent interaction fields sur-
rounding the molecules. Or stated in a different way, the steric and electrostatic
fields provide all information necessary for understanding the biological properties
of a set of compounds. Hence, the molecules are placed in a cubic grid and the
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interaction energies between the molecule and a defined probe are calculated for
each grid point. Normally, only two potentials, namely a steric potential in the form
of a Lennard-Jones function and an electrostatic potential in the form of a simple
Coulomb function, are used within a CoOMFA study. It is obvious that the description
of molecular similarity is not a trivial task nor is the description of the interaction
process of ligands with corresponding biological targets. In the standard application
of CoMFA, only enthalpic contributions of the free energy of binding are provided
by the potentials used. However, many binding effects are governed by hydropho-
bic and entropic contributions. Therefore, one has to characterize in advance the
expected main contributions of forces and whether under these conditions CoOMFA
will actually be able to find realistic results.

In the original CoMFA report, field values were systematically calculated for
ligands at each grid point of a regularly sampled 3D grid box that extended 4 A
beyond the dimension of all molecules in the data set, using a sp> carbon atom with
+1 charge as probe [6]. The grid resolution should be in a range to produce the
field information that is necessary to describe variations in biological activity. On
the other hand, introduction of too much irrelevant data to statistical analysis may
result in a decrease of predictivity of the model. Typically, a resolution of 2 A is
utilized. Often, superior results are derived using a grid spacing of 2 A as opposed
to the more accurate 1 A spacing [7]. In addition, the COMFA program provides a
variety of other parameters (probe atoms, charges, energy scaling, energy cut-offs,
etc.) which can be adjusted by the user. This flexibility in parameter settings enables
the user to fit the whole procedure as closely as possible to his problem. However,
it enhances the possibility of chance correlations. Interestingly, nearly all of the
successful CoMFA analyses have been achieved with default parameters.

4.4.2. CoMSIA

Due to the problems associated with the functional form of the Lennard-Jones
potential used in most CoMFA methods [12], Klebe et al. [9] have developed a
similarity indices-based CoMFA method named CoMSIA (comparative molecu-
lar similarity indices analysis). Instead of grid-based fields, CoMSIA is based on
similarity indices that are obtained using a functional form that is adapted from
the SEAL algorithm. Three different indices related to steric, electrostatic, and
hydrophobic potentials were used in their study of the classical steroid benchmark
data set. Models of comparable statistical quality with respect to cross-validation
of the training set, as well as predictivities of a test set, were derived using
CoMSIA. The advantage of this method lies in the functions used to describe the
molecules studied, as well as the resulting contour maps. The contour maps obtained
from CoMSIA are generally easier to interpret, compared to the ones obtained
by the CoMFA approach. CoMSIA also avoids cut-off values used in CoMFA to
restrict potential functions by assuming unacceptably large values. For a detailed
description of the method as well as its application, the reader is referred to the
literature [9, 10].
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4.4.3. GRID/GOLPE

GRID [38] has been used by a number of authors as an alternative to the origi-
nal CoMFA method for calculating interaction fields. An advantage of the GRID
approach, apart from the large number of chemical probes available, is the use of
a 6-4 potential function, which is smoother than the 6-12 form of the Lennard-
Jones type, for calculating the interaction energies at the grid lattice points. Good
statistical results have been obtained; for example, in an analysis of glycogen phos-
phorylase b inhibitors by Cruciani et al. [39]. They used GRID interaction fields
in combination with the GOLPE program [39], which accomplishes the necessary
chemometrical analysis. The particularly interesting aspect of this data set is that the
crystal structures of the protein—ligand complexes have been solved. This allowed
the authors to test the predictive abilities of the applied 3D-QSAR techniques.

A further refinement of the original CoMFA technique has been realized by
introducing the concept of variable selection and reduction [39, 40]. The large num-
ber of variables in the descriptor matrix (i.e., the interaction energies) represents a
statistical problem in the CoMFA approach. These variables make it increasingly
difficult for multivariate projection methods, such as PLS, to distinguish the useful
information contained in the descriptor matrix from that of less quality or noise.
Thus, approaches for separating the useful variables from the less useful ones were
needed. The GOLPE approach was developed in order to identify which variables
are meaningful for the prediction of the biological activity and to remove those with
no predictivity. Within this approach, fractional factorial design (FFD) is applied
initially to test multiple combinations of variables. For each combination, a PLS
model is generated and only variables which significantly increase the predictiv-
ity are considered. Variables are then classified considering their contribution to
predictivity. A further advance in GOLPE is the implementation of the smart region
definition (SRD) procedure that aims to select the cluster of variables mainly respon-
sible for activity rather than a single variable. The SRD technique was found to be
less prone to change correlation than any single variable selection, and improves the
interpretability of the models.

4.44. 4D-QSAR and 5D-QSAR

Recently developed QSAR methods include the so-called 4D-QSAR approach,
where an ensemble of conformations for each ligand represents the fourth dimen-
sion [41], and 5D-QSAR, which considers in addition hypotheses for changes that
might occur in a conformation of a receptor due to ligand binding (induced fit) as a
fifth dimension [42, 43]; whether these novel QSAR approaches show increased
quality regarding the predictive ability and interpretation of the results must be
demonstrated by future case studies.

4.4.5. AFMoC

A novel method which might overcome the problem of neglecting the protein infor-
mation in a 3D-QSAR analysis has been recently developed by Klebe et al. [44].
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In this approach named AFMoC (adaptation of fields for molecular comparison) or
“inverted CoMFA,” potential fields derived from a scoring function (Drug Score)
are generated in the binding pocket of a target protein. Methodologically, the pro-
gram is related to CoMFA and CoMSIA but with the advantage of including the
protein environment to the 3D-QSAR analysis. Instead of only using the Coulomb
or Lennard-Jones potential, AFMoC starts with a grid of pre-assigned values. The
numbers at the individual grid points consider the Drug Score potential values. By
use of ligands with known binding mode and biological data, the deliberately placed
ligand atoms introduce an activity-based weighting of the individual Drug Score
potential values. The resulting interaction fields are then evaluated by classical PLS.
It has been shown that AFMoC-derived QSAR models achieve much better corre-
lations between experimentally derived and computed activities compared with the
original scoring function Drug Score [45, 46].

4.5. RELIABILITY OF 3D-QSAR MODELS

The quality and reliability of any 3D-QSAR model is strongly dependent on the
careful examination of each step within a 3D-QSAR analysis. As with any QSAR
method, an important point is the question of whether the biological activities of
all compounds studied are of comparable quality. Preferably, the biological activity
should be obtained in the same laboratory under the same conditions. All com-
pounds being tested in a system must have the same mechanism (binding mode)
and all inactive compounds must be shown to be truly inactive. Only in vitro data
should be considered, since only in vitro experiments are able to reach a true equilib-
rium. All other test systems undergo time-dependent changes by multiple coupling
to parallel biochemical processes (for example, transport processes). Another criti-
cal point is the existence of transport phenomena and diffusion gradients underlying
all biological data. One has to bear in mind that all 3D-QSAR approaches were
developed to describe only one interaction step in the lifetime of ligands. In all
cases, where non-linear phenomena result from drug transport and distribution, any
3D-QSAR technique should be applied with caution. The biological activities of
the molecules used in a CoMFA study should ideally span a range of at least three
orders of magnitude. For all molecules under study, the exact 3D structure has to
be reported. If no information on the exact stereochemistry of the tested compounds
is given (mixtures of enantiomers or diastereomers), these compounds should be
excluded from a CoMFA study.

The search for the bioactive conformation and a molecular alignment consti-
tutes a serious problem within all 3D-QSAR studies. It is one of the most important
sources of incorrect conclusions and errors in all 3D-QSAR analysis. The risk of
deriving irrelevant geometries can be reduced by considering rigid analogs. Even
then, the alignment poses problems, because there are some cases of different bind-
ing modes of seemingly closely related compounds [8]. Even if the binding modes
are comparable, choice of wrong ligand conformations may dramatically influence
the result of a 3D-QSAR analysis. Problems in the generation of conformations and
the correct alignment could be avoided by deriving them from the 3D structures of
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ligand—protein complexes which are known from X-ray crystallography, NMR, or
homology modeling [34].

The final stage of a 3D-QSAR analysis consists of statistical validation in order
to assess the significance of the model and hence its ability to predict biological
activities of other (novel) compounds. In most 3D-QSAR case studies published
in the literature, the leave-one-out (LOO) cross-validation procedure has been used
for this purpose. The output of this procedure is the cross-validated ¢> which is
commonly regarded as an ultimate criterion of both robustness and predictive ability
of a model. The simplest cross-validation method is LOO, where one object at a
time is removed from the data set and predicted by the model generated. A more
robust and reliable method is the leave-several-out cross-validation. For example, in
the leave-20%-out cross-validation, five groups of approximately the same size are
generated. Thus, 80% of the compounds are randomly selected for the generation
of a model, which is then used to predict the remaining compounds. This operation
must be repeated numerous times in order to obtain reliable statistical results. The
leave-20%-out or also the more demanding leave-50%-out cross-validation results
are much better indicators for the robustness and the predictive ability of a 3D-
QSAR model than the usually used LOO procedure [47, 48].

Despite the known limitations of the LOO procedure, it is still uncommon to
test 3D-QSAR models for their ability to correctly predict the biological activi-
ties of compounds not included in the training set. Regardless, many authors claim
that their models, showing high LOO ¢> values, have high predictive ability in
the absence of external validation (for a detailed discussion on this problem, see
[48-52]). Contrary to such expectations, it has been shown by several studies that
a correlation between the LOO cross-validated ¢> value for the training set and the
correlation coefficient > between the predicted and observed activities for the test
set does not exist [49, 51].

In an attempt to get an idea of the predictive nature of 3D-QSAR models,
Doweyko has analyzed 61 models from 37 papers published in the last decade [52].
These papers were selected in a near random manner, focusing on those models for
which LOO and externalized test set data were listed. The average 3D-QSAR model
of the study contained 48 training set ligands, which showed good internal consis-
tency (2 = 0.93) and appeared to be reasonably predictive (¢> = 0.67). The average
test set consisted of a smaller number of 17 compounds with an rzpred equal to 0.46.
Doweyko then analyzed the correlation between q2 of the training set and the rzpred
for the test set and tried to answer the question whether a 3D-QSAR model with
high ¢* value is predictive.

The author found that there is no obvious correlation between q2 and rzpred, an
observation, which has been already reported in the literature as the “Kubinyi para-
dox” [53]. Poor ¢ models as well as good g> models were found to be well spread
between high and low test set rzpred, indicating that there is no relationship between
¢* and the model’s ability to predict an external test set. The author stated that
this may be due to several reasons: (1) a low ¢ value for a small training set may
simply reflect the importance of each member of the training set to the model and
have nothing to do with predictivity and (2) a high ¢> may reflect redundancy in the
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training set, and once again have nothing to do with predictivity. It is also reported in
the literature that the predictive ability of a 3D-QSAR model is strongly dependent
on the structural similarity between the training and test set molecules. Therefore,
instances where a high ¢? is associated with a high rzpred may be attributed to the
care taken to choose a test set that covers the same descriptor space as utilized by
the training set.

4.6. RECEPTOR-BASED 3D-QSAR

The combination of ligand-based and receptor-based approaches has been shown
to provide an interesting strategy for ligands for which the binding site is known,
but the exact binding mode has not been determined experimentally. This has been
demonstrated by a variety of applications published within the last 10 years. One
of the earliest approaches in this field was published by Marshall et al. [54]. The
VALIDATE program uses 12 physico-chemical and energetic parameters, including
the electrostatic and steric interaction energy between a receptor protein and ligands
computed with the AMBER force field to correlate these descriptors with biological
activities. The method has been validated on 51 diverse protein—ligand X-ray struc-
tures. The ligands ranged in size from 24 to 1512 atoms and spanned a pK; range
from 2.47 to 14.0. The best-fit equation, using PLS analysis, yielded an > = 0.85
with a standard error of 1.0 log units and a cross-validated > = 0.78. This QSAR
was found to be predictive for at least two of three test sets of enzyme inhibitor
complexes: 14 structurally diverse crystalline complexes (predictive r* = 0.81), 13
HIV protease inhibitors (predictive 72 = 0.57), and 11 thermolysin inhibitors (pre-
dictive > = 0.72). VALIDATE has also been successfully applied to the design of
non-peptidic HIV-1 protease inhibitors [55].

Another approach which utilizes the molecular interaction energy between the
receptor and ligand is the COMBINE approach developed by Wade et al. [56]. It
employs a unique method that partitions the interaction energy between receptor
and ligand fragments and subjects them to a statistical analysis. This is proposed
to enhance contributions from mechanistically important interaction terms and to
tune out noise due to inaccuracies in the potential energy functions and molecular
models. For a set of 26 phospholipase A2 inhibitors, the direct correlation between
interaction energies computed using the CFF91 DISCOVER force field and percent
enzyme inhibition was very low, r = 0.21. However, with the COMBINE approach,
employing PLS fitting and the GOLPE variable selection procedure, good corre-
lations with the percent inhibition rate were observed (qL002 = 0.82). Predictive
models were also obtained for a variety of other biological targets and their lig-
ands: acetylcholinesterase (AChE) inhibitors (n = 35, qL002 = 0.76) [57], factor
Xa inhibitors (n = 133, gLoo> = 0.61) [58], periplasmic oligopeptide binding com-
ponent (OppA) ligands (n = 28, gLoo* = 0.73) [59], neuraminidase inhibitors (n =
39, gLoo” = 0.78) [60], cyclooxygenase-2 inhibitors (n = 58, gL 00> = 0.64) [61],
and cytochrome P450 1A2 ligands (n = 12, gLoo? = 0.74) [37]. A comprehensive
review on a variety of COMBINE applications has been recently published [62].
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Recent approaches that primarily employ the combination of structure-based
alignment strategies and comparative molecular field analysis to predict ligand affin-
ity have included studies of ligand binding to enzymes and receptor X-ray structures,
as well as protein homology models. Garland Marshall was one of the first who
applied this technique. He studied the binding of 59 HIV-1 protease inhibitors
from different structural classes [63]. The availability of X-ray crystallographic data
for at least one representative from each class bound to HIV-1 protease provided
information regarding not only the active conformation of each inhibitor, but also
via superposition of protease backbones, the relative positions of each ligand with
respect to one another in the active site of the enzyme. The molecules were aligned
and served as templates on which additional ligands were field-fit minimized. The
predictive ability of the derived models was subsequently evaluated using external
test set molecules, for which X-ray structural information was available.

Tropsha et al. used the X-ray structures of the three AChE inhibitors bound to the
enzyme as a template onto which other structurally analogous AChE inhibitors were
superimposed. In order to obtain quantitative relationship between the structure
and biological activities of the inhibitors, COMFA in combination with a variable-
selection method (cross-validated guided region selection (¢*>-GRS) routine [64])
was applied. Using the resulting alignment of 60 AChE inhibitors and CoMFA/g?-
GRS yielded a highly predictive QSAR model with a ¢*> of 0.73. Whereas in
the latter two studies, manually derived protein-based alignments were used as
input for a 3D-QSAR analysis, several case studies have been recently reported
where an automated docking procedure was applied for structure-based alignment
generation.

Miigge et al. have generated a series of CoMFA models from docking-based
and atom-based alignments for biphenyl carboxylic acid matrix-metalloproteinase-2
(MMP-3) inhibitors [65]. The underlying statistics of these approaches was assessed
in order to determine whether a docking approach can be employed as an automated
alignment tool for the development of 3D-QSAR models. The docking-based align-
ment provided by a DOCK/PMF scoring protocol yielded statistically significant,
cross-validated CoMFA models. Field-fit minimization was successfully applied to
refine the docking-based alignments. The statistically best CoOMFA model has been
created by the ligand-based alignment that has been found, however, to be incon-
sistent with the stromelysin crystal structure. The refined docking-based alignment
has resulted in a final alignment that is consistent with the crystal structure and only
slightly statistically inferior to the ligand-based aligned CoMFA model.

Pelliciari et al. used the combination of ligand docking and 3D-QSAR analysis
to build a predictive model for 46 poly (ADP-ribose) polymerase (PARP) inhibitors
[66]. The PARP inhibitors were docked into the crystallographic structure of the
catalytic domain of PARP by using the AutoDock 2.4 software. The docking study
provided an alignment scheme that was crucial for superimposing all the remaining
inhibitors. Based on this alignment, a 3D-QSAR model was established [67]. The
resulting statistical analysis yielded a predictive model which was able to explain
much of the variance of the 46-compound data set (¢> = 0.74).
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Matter et al. examined a series of 138 inhibitors of the blood coagulation enzyme
factor Xa using CoMFA and CoMSIA [68]. To rationalize biological affinity and
to provide guidelines for further design, all compounds were docked into the factor
Xa binding site. Those docking studies were based on X-ray structures of factor Xa
in complex with literature-known inhibitors. The docking results were validated by
four X-ray crystal structures of representative ligands in factor Xa. The 3D-QSAR
models based on a superposition rule derived from these docking studies were
validated using conventional and cross-validated ¢> values. This led to consistent
and highly predictive 3D-QSAR models with which were found to correspond
to experimentally determined factor Xa binding site topology in terms of steric,
electrostatic, and hydrophobic complementarity (¢> = 0.75). The same strategy was
successfully applied to a data set of 90 MMP-8 matrix-metalloproteinase inhibitors
(g% = 0.57) [69].

Poso et al. examined the binding of 92 catechol-O-methyltransferase inhibitors
(COMT) [70]. They used a combination of FlexX molecular docking method with
a GRID/GOLPE 3D-QSAR to analyze possible interactions between COMT and
its inhibitors and to encourage the design of new inhibitors. The GRID/GOLPE
models were made using bioactive conformations from docking experiments, which
yielded a ¢° value of 0.64. The docking results, the COMT X-ray structure, and the
3D-QSAR models were found to be in good agreement with each other. Interest was
also focused on how well the calculated FlexX total energy scores correlated with
the experimental biological activity. FlexX total energy scores for the 92 compounds
were correlated with the corresponding pICs values resulting in an 2 value of 0.30,
indicating the problem of the used scoring function.

In a study from the same group, receptor-based alignment techniques for 3D-
QSAR have been analyzed and compared with traditional atom-based approaches.
A set of 113 HIV-1 protease inhibitors was used to generate CoMFA and CoMSIA
models [71]. Inhibitors that were docked automatically with GOLD were in agree-
ment with information obtained from existing X-ray structures. The protein- as well
as the ligand-based alignment strategy produced statistically significant CoOMFA and
CoMSIA models (best g value of 0.65 and best predictive 7> value of 0.75), whereas
the GOLD-based alignment gave more robust models for predicting the activities of
the molecules of the external test set.

Several groups have applied the docking-based alignment strategy to develop 3D-
QSAR models for nuclear hormone receptor ligands. During the last decade several
X-ray structures of nuclear hormone receptors in complex with hormones, agonist,
and antagonists have been resolved and used for structure-based drug design [72].
In general, automated docking programs were shown to be successful in docking
ligands to this receptor class [34, 73, 74]. Therefore, it was quiet appealing to use
structure-based 3D-QSAR approaches also for this class of targets. Predictive and
robust receptor-based 3D-QSAR models have been reported for estrogen receptor
agonists (n = 30, gLoo> = 0.90, g150%0° = 0.82) [34] and (n = 36, gr.oo> = 0.63)
[75], as well as for androgen receptor ligand (n = 67, qL002 = 0.66) [76] and
(n =25, gqLoo? = 0.78) [77].

Moro et al. used a homology model of the A3 adenosine receptor to generate
a target-based alignment [78]. Docking-based structure superimposition was used
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to perform a 3D-QSAR analysis using the CoMFA program. A correlation coef-
ficient ¢ of 0.84 was obtained for a set of 106 A3 receptor ligands. Both steric
and electrostatic contour plots, obtained from the CoMFA analysis, were found to
be in agreement with the hypothetical binding site achieved by molecular dock-
ing. Following the reported computational approach, 17 new ligands were designed,
synthesized, and tested. The predicted K; values were consistently very close to the
experimental values.

The near exponential growth of the Protein Data Bank in the last few years has
resulted in a huge number of 3D structures of interesting target proteins which can
be analyzed by means of structure-based drug design methods. It has also been
shown on numerous high-resolution protein—ligand structures that docking methods
are now able to predict the position of ligands in the corresponding binding sites
with reasonable accuracy. Therefore, it is not surprising that an increasing number
of receptor-based 3D-QSAR models are now published. Combination of docking
and comparative molecular field analysis has been successfully applied to enzyme
inhibitors of the following pharmaceutically relevant targets: non-nucleoside HIV-1
reverse transcriptase inhibitors (n = 29, qL002 = 0.72) [79], Raf-1 kinase inhibitors
(n =91, gLoo? = 0.53) [80], aldose reductase inhibitors (n = 45, g1.00> = 0.56)
[81], cyclooxygenase-2 inhibitors (n = 88, groo> = 0.84) [82], HIV-1 reverse tran-
scriptase inhibitors (n = 70, CILooz = 0.84) [83], EGFR kinase inhibitors (n = 96,
qL00? = 0.64) [84], Yersinia protein tyrosine phosphatase YopH inhibitors (n = 34,
6]L002 = 0.83) [85], HIV-1 integrase inhibitors (n = 66, qL002 =0.72) [86], HIV-1
reverse transcriptase inhibitors (n = 50, QL002 = 0.78) [87], dihydrofolate reduc-
tase inhibitors (n = 240, quo%oz = 0.65) [88], and type-B monoamine-oxydase
inhibitors (n = 130, gr.10%0> = 0.73) [89].

Sippl et al. applied the combination of receptor-based 3D-QSAR to several drug
design projects [34, 35, 90-95]. The ultimate goal was a prediction of biological
activities and a prioritization of synthesis of proposed compounds a priori. The
receptor-based 3D-QSAR approach was applied for the design of novel AChE
inhibitors [94]. AChE has been the focus of many drug discovery projects aimed
at maintaining the acetylcholine level in Alzheimer patients via mild or reversible
inhibition [96]. They started with a series of morpholine derivatives including
minaprine which were shown to be weak AchE inhibitors. Starting with the lead
structure minaprine and the available X-ray structures of AChE in complex with
inhibitors [97], a variety of minaprine derivatives were synthesized [98]. In order to
obtain ideas for the synthesis of modified, more potent, inhibitors, a combination of
automated docking and 3D-QSAR was applied. AutoDock in combination with a
force-field refinement yielded good results when docking the AChE inhibitors [94].
The docked minaprine derivatives showed an interaction with both the catalytic and
the peripheral anionic site and showed mainly hydrophobic and w—m interactions
with the residues of the binding pocket (Figure 4-2).

The docking positions were subsequently extracted from the protein environ-
ment and were taken as an input for a GRID/GOLPE analysis. Applying the
variable-selection strategy incorporated within GOLPE, a significant model was
obtained. The significance was tested applying a variety of validation procedures,
such as leave-20%-out cross-validation (q2 = 0.91), leave-50%-out cross-validation
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Figure 4-2. Receptor-based alignment of all investigated AChE inhibitors as obtained by the docking
analysis. The Conolly surface of the binding pocket is displayed. The most potent inhibitor 4j is colored
magenta

(¢*> = 0.90), or scrambling tests. The statistical results gave confidence that the
derived model could also be useful to guide the further optimization process.

To get an impression of which parts of the AChE inhibitors are correlated with
variation in activity, the PLS coefficient plots (obtained by using the water and
the methyl probe) were analyzed and compared with the amino acid residues of
the binding pocket. The plots indicate those lattice points where a particular prop-
erty significantly contributes and thus explains the variation in biological activity
data (Figure 4-3). The plot obtained with the methyl probe indicated that, close to
the arylpyridazine moiety, a region with positive coefficients exists (region A in
Figure 4-3). The interaction energies in region A are positive; therefore the decrease
in activity is due to a steric overlap within this region. Thus, it should be possible
to get active inhibitors by reducing the ring size compared to compound 4j (which
is shown in Figure 4-3 together with the PLS coefficient maps). For that reason,
several novel ligands containing hydrophobic groups were proposed (Table 4-1).
A second interesting field was observed located above the arylpyridazine moi-
ety in the model obtained using the water probe. Here a region exists where
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Region A

Figure 4-3. PLS coefficient maps obtained using the water probe (left side) and the methyl probe (right
side). Green and cyan fields are contoured at —0.003, yellow and orange fields are contoured at +0.003
(compound 4j is shown for comparison)

polar interactions increase activity (region B in Figure 4-3). After analysis of the
entrance of the binding pocket (the interaction site for the arylpyridazine system),
we rationalized the design of compounds bearing polar groups. In the calculated
AChE-aminopyridazine complexes, we observed two polar amino acid residues
(Asn280 and Asp285) located at the entrance of the gorge, which could serve as
an additional binding site for the substituted arylpyridazine system. To test this
hypothesis, several inhibitors possessing polar groups with hydrogen bond donor
and acceptor properties were synthesized and tested. The designed inhibitors were
docked into the binding pocket applying the developed procedure and their biolog-
ical activities were predicted using the PLS models. In Table 4-1 the predicted and
experimentally determined inhibitor activities are listed for the novel compounds. In
general, good agreement between predicted and experimentally determined values
was observed, indicated by the low SDEPey; values of 0.40. The reduction of the
size of the aminopyridazine ring system resulted in highly potent inhibitors 4g—4i.
The molecules of the second series of designed inhibitors containing polar groups
were also predicted accurately. The gain in activity compared to the non-substituted
compound is moderate, indicating that the potential interaction with the two polar
residues at the entrance does not play an important role. Since the two residues are
located at the entrance of the binding pocket, it is suggested that these residues have
a stronger interaction with water molecules than with the protein side chains.
Further support for the reported docking study came from the crystal structure
of AChE in complex with donepezil [99]. Similar to the most potent inhibitors of
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Table 4-1. Predicted and experimentally determined activities of novel AChE inhibitors

pICso pICso pICso

Compound Structure observed® predicted” predicted®
4g 8.00 7.00 7.20
N = I
NS
H
4h 7.41 7.62 7.66
Q/\'O\/\ 4 |
N SN
H

4i ‘O 7.66 7.48 7.56
X N
N~ N
H

6g OO 7.24 6.90 6.77
N Z I
N \N/N
H

6h o 724 7.05 7.11
N Z NJ\
SAA
N~ N7
H
6i 7.27 7.25 7.2
X N (o}
N~ N
H
6j o] 7.14 6.88 6.92

E] x N
N7 N7
I

*Inhibitory activity measured on the AChE of Torpedo californica.

® Predicted activity using the GRID/GOLPE model (water probe).

¢ Predicted activity using the GRID/GOLPE model (C3 probe).
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the series, donepezil also contains a benzylpiperidine moiety. The comparison of
docking positions and crystal structures revealed that both kinds of inhibitors adopt
a comparable conformation in the narrow binding pocket [94].

4.7. CONCLUSION

In this contribution several studies have been reviewed where a combination of 3D-
QSAR and receptor-based alignments has led to predictive and meaningful models.
Apart from good predictive ability, the derived models are also able to indicate
which interaction sites in the binding pocket might be responsible for the variance
in biological activities. Therefore, it is not surprising that more and more studies
are published where receptor-based 3D-QSAR is applied [100-117]. In the last
decade, structure-based methods have become major tools in drug design, including
lead finding and optimization. It has also been shown that structure-based meth-
ods are now able to predict, with a reasonable degree of accuracy, the position
of a ligand in its binding site. Apart from the accurate prediction of experimental
data, modern docking methods have become more and more efficient. Meanwhile,
docking programs have been developed which accomplish the docking of highly
flexible ligands in a few seconds/minutes on modern PCs. The major problem is
still the prediction of the binding affinity, probably limited by the approximation
used in today’s scoring and force field methods [18]. The application of 3D-QSAR
methods may facilitate the prediction of binding affinities if one has a series of
compounds, which bind in a similar way to a target protein. Up until now, the impre-
cise nature of docking and scoring makes blind virtual screening of a large number
of compounds, without any information about true actives or known experimental
complex structures, a risky exercise. It has been recently shown by Norinder et al.
that limited experimental information and proper multivariate statistical treatment
of the scoring data dramatically increases the value of these kinds of computations
[118]. They generated scoring matrices for known actives and potential inactives
for four different targets, using docking followed by scoring with seven different
scoring functions. Based on these matrices multivariate classifiers were generated
and evaluated with external test sets, and compared to classical consensus scor-
ing and single scoring functions. It was found that proper multivariate analysis of
scoring data is very rewarding in terms of recall of known actives and enrichment
of true actives in the set of predicted actives. It is suggested that the combination
of different approaches as described, e.g., by Norinder [118] or Klebe [44] might
represent a way out of the known limitations of 3D-QSAR (such as the “Kubinyi
paradox” [53]).
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Abstract:

Keywords:

This chapter is devoted to the hierarchical QSAR technology (HiT QSAR) based on
simplex representation of molecular structure (SiRMS) and its application to different
QSAR/QSPR tasks. The essence of this technology is a sequential solution (with the use
of the information obtained on the previous steps) of the QSAR paradigm by a series of
enhanced models based on molecular structure description (in a specific order from 1D to
4D). Actually, it’s a system of permanently improved solutions. Different approaches for
domain applicability estimation are implemented in HiT QSAR. In the SiRMS approach
every molecule is represented as a system of different simplexes (tetratomic fragments
with fixed composition, structure, chirality, and symmetry). The level of simplex descrip-
tors detailed increases consecutively from the 1D to 4D representation of the molecular
structure. The advantages of the approach presented are an ability to solve QSAR/QSPR
tasks for mixtures of compounds, the absence of the “molecular alignment” problem, con-
sideration of different physical-chemical properties of atoms (e.g., charge, lipophilicity),
and the high adequacy and good interpretability of obtained models and clear ways for
molecular design. The efficiency of HiT QSAR was demonstrated by its comparison with
the most popular modern QSAR approaches on two representative examination sets. The
examples of successful application of the HiT QSAR for various QSAR/QSPR inves-
tigations on the different levels (1D—4D) of the molecular structure description are also
highlighted. The reliability of developed QSAR models as the predictive virtual screening
tools and their ability to serve as the basis of directed drug design was validated by sub-
sequent synthetic, biological, etc. experiments. The HiT QSAR is realized as the suite of
computer programs termed the “HiT QSAR” software that so includes powerful statistical
capabilities and a number of useful utilities.

HiT QSAR, Simplex representation, SiRMS

Abbreviations

A/I/EVS
ACE

Automatic/Interactive/Evolutionary Variables Selection
Angiotensin Converting Enzyme

127

T. Puzyn et al. (eds.), Recent Advances in QSAR Studies, 127-176.
DOI 10.1007/978-1-4020-9783-6_5, © Springer Science+Business Media B.V. 2010



128 V.E. Kuz’min et al.

AchE Acetylcholinesterase

CoMFA Comparative Molecular Fields Analysis QSAR approach

CoMSIA Comparative Molecular Similarity Indexes Analysis QSAR
approach

DA Applicability Domain

DSTP dispirotripiperazine

EVA Eigenvalue Analysis QSAR approach

GA Genetic Algorithm

HiT QSAR Hierarchical QSAR Technology

HQSAR Hologram QSAR approach

HRV Human Rhinovirus

HSV Herpes Simplex Virus

MLR Multiple Linear Regression statistical method

PLS Partial Least Squares or Projection on Latent Structures statistical
method

0? cross-validation determination coefficient

QSAR/QSPR  Quantitative Structure-Activity/Property Relationship

R? determination coefficient for training set

R%est determination coefficient for test set

SD Simplex Descriptor

SI Selectivity Index

SiRMS Simplex Representation of Molecular Structure QSAR approach

TV Trend-Vector statistical method

5.1. INTRODUCTION

Nowadays the creation of a new medicine costs more than one billion dollars and
the price of this process is growing steadily day by day [1]. During recent decades
different theoretical approaches have been used to facilitate and accelerate the pro-
cess of new drugs creation that is not only very expensive, but also is a multistep
and long-term activity [2]. The choice of approaches depends on a presence or
absence of information regarding a biological target and the substances interacting
with it. A situation, when we have a set of biologically active compounds (ligands)
and have no information about a biological target (e.g., receptor) is the most com-
mon. Different quantitative structure—activity relationship (QSAR) approaches are
used in this case. For many years, QSAR has been used successfully for the anal-
ysis of huge variety of endpoints, e.g., antiviral and anticancer activity, toxicity
[3-14]. Its staying power may be attributed to the strength of its initial postulate
that activity is a function of structure and the rapid and extensive development of
the methodology and computational techniques. The overall goals of QSAR retain
their original essence and remain focused on the predictive ability of the approach
and its receptiveness to mechanistic interpretation [15].

Many different QSAR methods [16-20] have been developed since the second
half of the last century and new techniques and improvements are still being created
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[21]. These approaches differ mainly by the principles and levels of representa-
tion and description of molecular structure. The degree of adequacy of molecular
structure models varies from 1D to 4D level:

* 1D models consider only the gross formula of a molecule (for example, glycine —
C>H4NO3y). Actually, such models reflect only a composition of a molecule.
Obviously, it is quite impossible to solve adequately the “structure—activity” tasks
using such approaches. So, usually these models have an auxiliary role only, but
sometimes they can be used as independent virtual screening tools [22].

* 2D models contain information regarding the structure of a compound and are
based on its structural formula [20]. Such models reflect only the topology of
the molecule. These models are very popular [3, 23]. The capacity of such
approaches is due to the fact that the topological models of molecular struc-
ture, in an implicit form, contain information about possible conformations of
the compound. Our operational experience shows that 2D level of representation
of the molecular structure is enough for the solution of more than 90% of existing
QSAR/QSPR tasks.

* 3D-QSAR models [16, 17, 19, 20] give full structural information taking into
account composition, topology, and spatial shape of molecule for one conformer
only. These models are widespread. However, the choice of the conformer of the
molecule analyzed is mostly accidental.

The description of the molecular structure is realized more adequately by 4D-
QSAR models [10, 24]. These models are similar to 3D models, but compared to
them the structural information is considered for a set of conformers (conditionally
the fourth dimension), instead of one fixed conformation (also see Chapter 3).

The description of compounds from 1D to 4D models reflects the hierarchy of
molecular structure representation. However, it’s only one of the principles of HiT
QSAR. In this work the hierarchic strategy related to all the aspects of the QSAR
models development has been considered.

The developed strategy has been realized as a complex of computer programs
known as the “HiT QSAR” software. Innovative aspect and main advantages of HiT
QSAR involve

* Simplex representation of molecular structure that provides universality, diver-
sity, and flexibility of the description of compounds related to different structural
types.

* HiT QSAR that, depending on the concrete aims of research, allows for the con-
struction of the optimal strategy for QSAR model generation, avoiding at the
same time superfluous complications that do not result in an increase in the
adequacy of the model.

* HiT QSAR does not have the restrictions of such well-known and widely used
approaches as COMFA, CoMSIA, and HASL. Usage of such methods is limited
by the requirement for a structurally homogeneous set of molecules and the use
of only one conformer.
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e HiT QSAR does not have the HQSAR restrictions that are related to the
ambiguity of descriptor system formation.

e At every stage of HiT QSAR use, we can determine the molecular structural
features that are important for the studied activity and exclude the rest. It
shows unambiguously the limits of QSAR models’ complication and ensures that
resources are not wasted on needless calculations.

The efficiency of the HiT QSAR has been demonstrated through the example of
various QSAR tasks, e.g., given in [3, 10-12, 22, 25-37].

5.2. MULTI-HIERARCHICAL STRATEGY OF QSAR
INVESTIGATION

5.2.1. HiT QSAR Concept

In this chapter, the hierarchic QSAR technology (HiT QSAR) [31, 32, 36, 37] based
on the simplex representation of molecular structure (SiRMS) has been consid-
ered. This method has proved efficient in numerous studies for solving different
“structure—activity/property” problems [3, 10-12, 22, 25-37]. The essence of the
strategy presented is based on the solution of QSAR problems via the sequence of
the permanently improved molecular structure models (from 1D to 4D) (Figure 5-1).
Thus, at each stage of the hierarchical system, the QSAR task is not solved ab
ovo, but with the use of the information received from a previous stage. In fact,
it is proposed to deal with a system of permanently improved solutions. It leads
to more effective interpretation of the obtained QSAR models because the approach
reveals molecular fragments/models for which the detailed development of structure
is important.

The main feature of the strategy presented consists of the multiple-aspect
hierarchy (Figure 5-1), related to

* models describing molecular structure (1D — 2D — 3D — 4D);

* scales of activity estimation (binomial — nominal — ordinal — continual);

* mathematical methods used to establish structure—activity relationships [pattern
recognition — rank correlation — multivariate regression — partial least squares
(PLS)];

* final aims of the solution of the QSAR task (prediction — interpretation —
structure optimization — molecular design).

The set of different QSAR models that supplement each other results from the
HiT QSAR application. These models altogether, in combination, solve the prob-
lems of virtual screening, evaluation of the influence of structural factors on activity,
modification of known molecular structures, and the design of new high-potency
potential antiviral agents or other compounds with desired properties.

The scheme for HiT QSAR is shown in Figure 5-1. The information from the
lowest level QSAR models has been transferred (curved arrow) to the highest
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Figure 5-1. Scheme of the hierarchical QSAR technology

level models following corresponding statistical processing (‘““Statistic block” in
Figure 5-1), during which the most significant structural parameters have been
chosen. It is necessary to note that after the 2D modeling, the QSAR task is solved
at the 4D level, because there is no a priori information available about a “pro-
ductive” conformation (the conformer that interacts with a biological target most
effectively) for 3D-QSAR models. This information comes only after the develop-
ment of 4D-QSAR models and activity calculation for all conformers considered.
Then the information about the “productive” (the most active) conformation is trans-
ferred to the 3D-QSAR level. This is the main difference between HiT QSAR
and ordinary 3D-QSAR approaches, where the investigated conformers have been
chosen through a less vigorous process. When an investigated activity is mainly
determined by the interaction of the exact “productive” conformation (not by the set
of conformers) with a biological target, it is possible to construct the most ade-
quate “structure—property” models at this stage. In all cases (1D—4D), different
statistical methods can be used to obtain the QSAR models (the “Statistic block™
in Figure 5-1).

The principal feature of the HiT QSAR is its multi-hierarchy, i.e., not only the
hierarchy of different models but also that the hierarchy of the aims has been taken
into account (Figure 5-1, unit —“Final Aims”). Evidently, it is very difficult to obtain
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a model that can solve all the problems related to the influence of the structure of
the studied molecules to the property examined. Thus, to solve every definitive task,
it is necessary to develop a set of different QSAR models, where some of them are
more suitable for the prediction of the studied property, the others for the interpreta-
tion of the obtained relationships, and the third for molecular design. These models
altogether, in combination, solve the problem of the creation of the new compounds
and issue relating to the desired set of properties. The important feature of such an
approach is that the general results obtained from a few different independent mod-
els always are more relevant. It’s also necessary to note that these resulting QSAR
models have been chosen in accordance with the QECD principles for the validation
of (Q)SARs [38], i.e., they have a defined endpoint, an unambiguous algorithm, a
defined domain of applicability (DA), mechanistic interpretation, have good statis-
tical fit, and are robust and predictive. Thus, we assume that the proposed strategy
provides a solution to solve all problems dealing with virtual screening, modeling
of functional (biological) targets, advancement of hypotheses regarding mechanisms
of action, and, finally, the design of the new compounds with desired properties.

5.2.2. Hierarchy of Molecular Models

5.2.2.1. Simplex Representation of Molecular Structure (SiRMS)

In the framework of SiRMS, any molecule can be represented as a system of differ-
ent simplexes (tetratomic fragments of fixed composition, structure, chirality, and
symmetry) [29, 31, 32, 39] (Figure 5-2).

1D models. At the 1D level, a simplex is a combination of four atoms con-
tained in the molecule (Figure 5-2). The simplex descriptor (SD) at this level is
the number of quadruples of atoms of the definite composition. For the compound
(AyBpCcDyEcFt. . .), the value of SD (A;B;C/D,,) is K = f{i)-f(j)-f(1)-f(im), where,
for example Eq. (5-1),

al
(a—0!-1!

f@ (5-1)

The values of f{j), f{(l), fim) have been calculated analogically. It is possible to
define the number of smaller fragments (“pairs,” “triples”) by the same scheme. In
this case some of i, j, /, m parameters are equal to zero.

2D models. At the 2D level, the connectivity of atoms in simplex, atom type, and
bond nature (single, double, triple, aromatic) has been considered. Atoms in simplex
can be differentiated on the basis of different characteristics, especially

 atom individuality (nature or more detailed type of atom);

 partial atom charge [40] (see Figure 5-2) (reflects electrostatic properties);

¢ lipophilicity of atom [41] (reflects hydrophobic properties);

* atomic refraction [42] (partially reflects the ability of the atom to dispersion
interactions);
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Figure 5-2. Examples of simplex descriptors generation for alanine at the 1D—4D levels
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» amark that characterizes the atom as a possible a Hydrogen donor or acceptor (A
— Hydrogen acceptor in H-bond, D — Hydrogen donor in H-bond, I — no bond).

For atomic characteristics, which have real values (charge, lipophilicity, refrac-
tion, etc.) the division of values range into definite discrete groups is carried out at
the preliminary stage. The number of groups (G) is a tuning parameter and can be
varied (as a rule G = 3-7).

The usage of sundry variants of simplex vertexes (atoms) differentiation repre-
sents an important part of SIRMS. We consider that specification of atoms only by
their nature (actually reflects atom identity, for example, C, N, O) realized in many
QSAR methods limits the possibilities of pharmacophore fragment selection. For
example, if the -NH- group has been selected as the fragment (pharmacophore)
determining activity and the ability of H-bond formation is a factor determining
its activity, H-bonds donors, for example, the OH-group will be missed. The use
of atom differentiation using H-bond marks mentioned above avoids this situation.
One can make analogous examples for other atomic properties (lipophilicity, partial
charge, refraction, etc.).

Thus, the SD at the 2D level is a number of simplexes of fixed composition and
topology. It is necessary to note that, in addition to the simplex descriptors, other
structural parameters, corresponding to molecular fragments of different size, can be
used for 1D and 2D-QSAR analysis. The use of 1-4 atomic fragments is preferable
because further extension of the fragment length could increase the probability of
the model overfitting and decrease its predictivity and DA.

2.5D models. 1t’s well known that the stereochemical moieties of the inves-
tigated compounds could affect biological activity to at least at the same level
as their topology. Although the most adequate description of stereochemistry of
compounds is possible only on 3D and 4D levels of molecular structure model-
ing, 2D models of molecules can also provide stereochemical information. In the
case when a compound contains a chiral center on the atom X (X = C, Si, P,
etc.), the special marks X?, XR, X5 (A — achiral X atom, R — “right” surrounding
of X atom, S — “left” surrounding of X atom) can be used to reflect the stereo-
chemistry information of such a center. In each case, the configuration (R or S)
of a chiral center can be determined by the Kahn-Ingold—Prelog rule [43]. For
example, in the situation where atom X has been differentiated to three different
types depending on its stereochemical surroundings, i.e., X*, XR, X5, the differ-
ent types are analyzed in the molecular model as separate atoms. Conventionally,
such molecular models can be considered as 2.5D because not only topologi-
cal (molecular graph) but also stereochemical information has been taken into
account. If simplex vertexes (X atoms) have been differentiated by some physical—
chemical properties (e.g., partial charges, lipophilicity) then the differences between
atoms X2, XR, X3 will be leveled as in normal 2D models. For subsequent
QSAR analysis, the simplexes differentiated by atom individuality have been
used separately and in combination with those differentiated by physical-chemical
properties.
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3D models. At the 3D level, not only the topology but also the stereochemistry
of molecule is taken into account. It is possible to differentiate all the simplexes as
right (R), left (L), symmetrical (S), and plane (P) achiral. For example:

H H
| | Ne” —c
o n N i T

|
Br Br

R P
R) O ) P)

The stereochemical configuration of simplexes is defined by modified Kahn—
Ingold—Prelog rules [39]. A SD at this level is a number of simplexes of fixed
composition, topology, chirality, and symmetry.

4D models. For the 4D-QSAR models, each SD is calculated by the summation
of the products of descriptor values for each conformer (SDy) and the probability of
the realization of the corresponding conformer Eq. (5-2) (Pk).

N

SD = Z (SDy. - Py), (5-2)
k=1

where N is a number of conformers being considered.
As is well known [44], the probability of conformation Py is defined by its energy
equation (5-3):

1
—(E: — E
Pe={1+) EXP (%) LY Pe=1, (5-3)
i#k k

where E; and Ej are the energies of conformations i and k, respectively.

The conformers are analyzed within an energy band of 5-7 kcal/mol. Thus,
the molecular SD at the 4D level takes into account the probability of the real-
ization of the 3D-level SD in the set of conformers. At the 4D level the other
3D whole-molecule parameters, which are efficient for the description of spatial
forms of the conformer (e.g., characteristics of inertia ellipsoid, dipole moment),
can be used along with SD. An example of the representation of a molecule as
sets of simplexes with different levels of structure detailed (1D—4D) is depicted in
Figure 5-2.

Double nD models. The interaction of a mixture with a biological target can-
not normally be described simply as the average between interactions of its
parts, since the last interactions have different reactivity. It is also applicable for
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mixtures of compounds with synergetic or anti-synergetic action [45]. Because
of these issues, the SiRMS approach has been developed and improved in order
to make this method suitable for the execution of QSAR analysis for molecular
mixtures and ensembles. With this purpose it’s necessary to indicate whether the
parts of unbound simplexes belong to the same molecule or to a different one.
In the latter case, such unbound simplex will reflect the structure not of a single
molecule, but will characterize a pair of different molecules. Simplexes of this kind
are structural descriptors of the mixtures of compounds (Figure 5-3). Their usage
allows for the analysis of synergism, anti-synergism, or competition in the mix-
ture’s interaction with the biological target. Obviously, such an approach is suitable
for different nD-QSAR models, where n = 1-4!. If in the same task both mixtures
and single compounds have been considered, it’s necessary to represent individ-
ual compounds as the mixture of two similar molecules for the correct description
of such systems [46]. Thus, this approach has been named by authors as “double
nD-QSAR.” Although such methodic is suitable only for binary mixtures, it can be
easily extended to more complicated tasks. For molecular ensembles (associates), it
is necessary to use one more simplex type — simplexes with intermolecular bonds.

2\ N

_, A'B \
~
—= AB —= A4+B
Simplexes Simplexes
corresponding to characterizing the
A > individual molecules ~A+8 mixture only
Aand B
G2~ EPRIE
e
—c

Figure 5-3. Example of structure description of the mixture of antagonists of histamine H3 — receptors
(A-imphetamine, B-iodoproxiphane)

I For 1D-QSAR models unbounded simplexes characterize only the mixtures.
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In this chapter, the application of the “double nD-QSAR” approach is demonstrated
with the example of chiral AChE inhibitors [46] (see Section 5.4.4).

5.2.2.2. Lattice Model

The lattice model (LM) approach has been developed by the authors [19] using
similar principles as CoMFA and CoMSIA (see Chapter 4), which utilize a more
elaborated description of the molecules and consider parameters reflecting peculiar-
ities of the intermolecular interaction of the compounds analyzed and their spatial
structure. However, in addition, molecular properties are described with a vari-
ety of complementary parameters. The whole set of parameters generated ranges
from the most simple, such as the presence or absence of particular atoms in the
molecule, to more sophisticated parameters that could be used for the considera-
tion of the stereochemistry of the analyzed molecule and its interaction with the
environment.

The description of compounds includes several steps. In the first, the spa-
tial structure of the analyzed molecules is obtained from experimental data (i.e.,
X-ray analysis) or from quantum mechanical calculations. In the case of flexible
molecules, it is necessary to select one of the stable conformations. This may be
achieved using a conformational search [47] or some complementary information
regarding the biologically active conformation of the molecule. The conformation
of each molecule is placed into a lattice of cubic cells. The size of a cell can be
varied, by default it equals 2 A, that corresponds approximately to the average van
der Waals radius of an organogenic atom. The invariant disposition of the molecule
in the lattice is achieved by the superposition of the center of mass of the molecules
with the origin of the coordinates. In addition, the principal axes of inertia of the
molecule are also superimposed with the coordinate axes of the lattice. If the ana-
lyzed structures contain a large common structural fragment, their alignment is
carried out mainly according to this fragment.

All structural parameters in the LM can be classified as follows:

* Integral parameters describing properties of the whole molecular structure;
* Local parameters describing the separate fragments of the molecule;
* Field parameters describing the influence of the molecule on the enclosing space.

Integral parameters are characteristics of inertia ellipsoid, dipole moment,
molecular refraction, lipophilicity, parachor, and average polarizability. If avail-
able, some information about the environment and mutual disposition of the
pharmacophores can be also included into the analysis [48].

Local parameters were used to describe the properties of cells occupied by
atoms. They include parameters corresponding to the presence or absence of some
atoms in the cell (i.e., the presence of C or O), average lipophilicity, refraction,
polarizability, electrostatic charge, and electronegativity of fragments and atoms.
All charge characteristics were calculated using the Jolly-Perry [40, 49] method of
smoothing of electronegativity.
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Field parameters describe the characteristics of vacant cells. They include

(1) An electrostatic potential in the vacant cell [Eq. (5-4)]:

EP; = Z 4 (5-4)

Tij

where i is the number of the cell, j is the number of the atom, g; is the charge
of the atom j [40, 49], and 7;; is the distance between the atom j and the

cell i;
(2) A lipophilicity potential [S0] in the vacant cell [Eq. (5-5)]:
fi
LP; = — (5-5)
’ ; (14 ry)

where i is the number of the cell, j is the number of the atom, f; is the lipophilic-
ity of the atom (group), and r;; is the distance between the atom j and the
cell i;

(3) A probability of an occupancy of a vacant cell by different atoms i, k (“probe-
atoms”) or probability of it to be empty [Eq. (5-6)]:

-1
Py = 1+ZEXP< (Bi — Ek)) L Y P=1 (56
k

i#k

where E; or Ej is the energy of interaction between the molecule and the
corresponding probe-atom i or k in the analyzed cell.

A set of atoms Csp3, Nsp3, Osp3, Cspz, Nsp2, Osp2 Cl, H and the absence
of any atom (“vacuum”) were used as probes. If CoMFA [16] uses energy
attributes to characterize the analyzed cells, in LM the probabilities of the
occupancy of a cell represents a different approach for the description of inter-
actions between the molecule and the biological target. It might be argued
that a probability-based scheme offers improvements over an energy-based
method.

(4) A possibility of the presence of hydrogen bond donor or acceptors in the cell.
It is assumed that such a hydrogen bond can be formed between this donor or
this acceptor and the analyzed molecule.

All structural parameters, i.e., integral, local, and field parameters contain an
exhaustive description of the molecular structure. Thousands of descriptors (their
exact number depends on the characteristics of the lattice) are generated within
the proposed approach for each analyzed molecule. This reduces the probability of
missing the most significant parameters required to correlate activity of the analyzed
molecules with their structure.
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The efficiency of the LM approach has been demonstrated on different tasks, e.g.,
[19, 48, 51, 52].

5.2.2.3. Whole-Molecule Descriptors and Fourier Transform of Local
Parameters

SDs at all levels of differentiation (1D-4D) are the fragmentary parameters which
describe not a molecule as a whole, but its different parts. In order to reflect the
structural features of a whole molecule, it is necessary to carry out the Fourier trans-
formation [53] for the spectrum of structural parameters. The spectrum of structural
parameters is the discrete row of values arranged in a determined order. The mode of
ordering is not crucial (frequently descriptors are lexicographically ordered), but it
must be the same for all compounds of an investigated task. As a result of the Fourier
transformation, the high-frequency harmonics characterize small fragments while
the low-frequency harmonics correspond to the global molecule properties. The
Fourier transformation of a discrete function of parameters P(i) can be presented
as Eq. (5-7):

S

oy M k(i — 1) 2wk — 1) ,
Pi)=—+ ag C0S ————— + by sin ——— ) +ay 2 cos (7w (i — 1))
2 P N N
(5-7)
where
N . N .
2 27 -k-(i—1) 2 (2 k-G—1)
akﬁ . Z;Pi - cos <T> , b= N Z;Pi - sin (T)
= =
(5-8)
or in an alternative form [Eq. (5-9)]
M—1 .
. C[27k(i—1) .
p) = % + Z (Qk sin [— + I/IkD +gnpcos[m(i—1D],  (5-9)
k=1 N

The amplitudes and phase angle in Eq. 5-9 are defined as follows:

Amplitudes: gy = /a? + b, Phase angle: Y = arctan ((ax)/by). (5-10)

where k is the number of harmonics, N is the total number of simplex descriptors,
M = int(N-1)/2 is the total number of harmonics, a; and by are the coefficients of
expansion procedure, g, = 0 for even N.
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Values of amplitudes (ay, bk, gi) can be used as the parameters for the solution of
QSAR tasks [19, 54]. PLS equations containing amplitudes a; and by can be mech-
anistically interpreted, because they can be represented as a linear combination of
source structural parameters (5-7). Amplitudes gx have poor mechanistic interpreta-
tion because of the more complex dependence from the source structural parameters
(5-9). However, all the amplitudes (ax, bx, i) separately or together allow for well-
fitted, robust, and predictive models to be obtained; hence, they can be used as an
additional (completely different) tool for the virtual screening.

Such whole-molecule parameters, such as characteristics of inertia ellipsoid
(moments of inertia Ix, Iy, Iz and its ratio Ix/ly, Iy/lz, Ix/Iz), dipole moment,
molecular refraction, lipophilicity, also can be used for different levels of represen-
tation of the molecular structure.

All mentioned integral parameters can be united with SD which usually leads
to the most adequate model that unites the advantages of molecular descriptors of
every mentioned type.

5.2.3. Hierarchy of Statistical Methods

As was mentioned above, different statistical methods have been used in HiT
QSAR to establish the structure—activity relationship depending on the scale of the
investigated property (binomial — nominal — ordinal — continual).

5.2.3.1. Classification Trees

The classification tree (CT) approach is a non-parametric statistical method of
analysis [55]. It allows for the analysis of data sets regardless of the number of
investigated compounds and the number of their characteristics (descriptors). In the
CT approach, the models obtained represent the hierarchical sets of rules based on
descriptors selected for the description of the investigated property. The rule rep-
resents “IF-THEN” logical construction. For example, a simple rule can be “IF
lipophilicity > 3 THEN compound is active.” In fact, such model is presented by
a set of consecutive nodes, and each of them contains certain sets of compounds
which correspond to this node rule. The CT method has several advantages: obtain-
ing of intuitively understandable models using natural language, quick learning and
predicting processes, non-linearity of obtained models, and the ability to develop
models using ranked values of the activity (it allows for the analysis of sets of
compounds with heterogeneous experimental activity values).

The usage of CT methods for QSAR analysis is limited due to the poor mecha-
nistic interpretation of the models. It is difficult to make quantitative estimation of
the influence of descriptors used in the model and to determine structural fragments
interfering or promoting activity.

A new approach for the interpretation of CT models, based on a trend-vector
procedure (see Section 5.2.3.3), has been proposed to solve this problem. It allows
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for the determination of the quantitative influence of descriptors used in the model
built on the investigated property [Eq. (5-11)]:

|
Iy = m Zl [(Ai — Amean)] (5-11)

where Tj is the relative influence of jth descriptor on investigated property, m is the
number of compounds in the certain node, A; is the activity rank of ith compound,
and Amean 1S the mean value of activity rank for the whole set of compounds.

The relative influence (7)) of each descriptor used in the CT model are calcu-
lated by applying Eq. (5-11) to each node of the model (excepting the root node).
Furthermore, each calculated influence has a corresponding range of descriptor val-
ues (D) according to node rule, within which this influence has been implemented.
As a result of such analyses, ranges of descriptor values and corresponding relative
influences can be determined. When descriptor has several overlapping ranges of
values then the relative influence values should be summarized in the overlapping
interval.

The approach described is valid only for models with classification scale of activ-
ity. It can be considered as a restriction of the method. However, estimation of
activity level is an appropriate result in many cases relating to the investigation of
biological activity. In the case of the usage of simplex (fragmentary) descriptors for
the representation of molecular structure, 7} values obtained in this manner are the
cumulative influences of all simplexes of a certain type in the molecule. It allows
for the calculation of the relative atomic influences for each investigated compound
according to Eq. (5-12).

T, = —L (5-12)

where T}, is the relative influence of each atom included in the jth simplex of certain
molecule, 7; is the relative influence of the jth simplex, 4N; is the number of jth
simplexes (value of jth descriptor) in certain molecules multiplied by four (number
of atoms in a simplex).

Calculated relative atom influences can be visualized on the investigated com-
pounds. They allow for the determination of the relative influences of separate
molecular fragments by summarizing the influences of individual atoms included
in certain fragments.

5.2.3.2. Trend-Vector

The trend-vector (TV) procedure [19, 56, 57] does not depend on the form of cor-
responding dependence and can use many structural parameters. This method can
predict the properties of analyzed molecules only in a rank scale and can be used
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if biological data are represented in an ordinal scale (see Figure 5-1). Similar to a
dipole moment vector, TV characterizes a division of “conventional charges” (corre-
sponding to active and inactive classes) in the multi-dimensional space of structural
parameters S;; (I = T,n — number of molecules, Jj = 1,m — number of structural
parameters). Each component of a TV is determined by Eq. (5-13)

R~ -
Tj=-- > @i -4y, (5-13)
i=1

and reflects a degree and direction of influence of the jth structural parameter on the
magnitude of a property A. The prediction of activity is obtained using the following
relation:

m
rank(4;) = rank | ) " T;Sj; (5-14)
j=1

It is important to note that each component of the TV is calculated independently
from the others and its contribution to a model is not adjusted. Thus, the influence
on the reliability of the model of the number of structural parameters used is not
so critical, as in the case of the regression methods. The quality of the structure—
property relationship can be estimated by the Spearman rank correlation coefficient
calculated between ranks of the experimental and calculated activities A;.

The search for models using the TV method in HiT QSAR is achieved by the
methods of exhaustive or partial search after the removal of mutual correlations.
It was discovered by the authors [10, 32] that descriptors involved in the best TV
models (several decades of models with approximately identical quality) form a
good subset for the subsequent usage in PLS. Noise elimination can be one of the
probable explanations of the success of the TV procedure.

5.2.3.3. Multiple Linear Regression

The greatest number of QSAR/QSPR investigations has been made using linear
statistic methods [58]. In such approaches, the investigated property is represented
as a linear function of calculated descriptors [Eq. (5-15)]:

n
Y =ao+ ) ai (5-15)
i=1

where y' is the calculated values of investigated property (y), x; is the structural
descriptors (independent variables), a; is the regression coefficients determined dur-
ing the analysis by the least squares method, n is the number of variables in the
regression equation.
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The use of linear approaches is very convenient for investigations because the
theory of selection of the most important attributes and obtaining of the final equa-
tions is well developed for such methods. The quality of the obtained model is
estimated by the correlation coefficient R between the observed values of the inves-
tigated property (y) and those predicted by Eq. (5-15) (/). The R? value is explained
by regression measure of the part of common scatter relative to average y. The term
of adequacy of the obtained regression model with the chosen level of risk o will be
F [Eq. (5-16)] [58]:

2
:%zﬂp n—1,m—n,a), (5-16)
where m is the number of molecules in the training set and Fy, (n—1, m—n, 1-a) is
the percent points of the F-distribution for given level of significance 1-«.

The relative simplicity of regression approaches is also their shortcoming;
they show poor results during the extrapolation of complicated structure—activity
relationships. Their usage is further hampered in the case of large numbers of
descriptors, since the total number of descriptors in a MLR equation must be at
least ten times fewer than the number of training set compounds [59].

5.2.34. Partial Least Squares or Projection to Latent Structures (PLS)

A great number of simplex descriptors have been generated in HiT QSAR. The PLS-
method has proved efficient for working with a great number of variables [60—62].
The PLS regression model may be written as Eq. (5-17) [62]:

N
Y =bo+ ) b (5-17)

i=1

where Y is an appropriate activity, b; are the PLS regression coefficients, x; is the ith
descriptor value, and N is the total number of descriptors.

This is not apparently different from MLR (see Section 5.2.3.3), except that the
values of the coefficients b are calculated using PLS. However, the assumptions
underlying PLS are radically different from those of MLR. In PLS one assumes the
x-variables to be collinear and PLS estimates the covariance structure in terms of a
limited number of weights and loadings. In this way, PLS can analyze any number
of x-variables (K) relating to the number of objects (N) [62].

5.2.4. Data Cleaning and Mining

The removal of highly correlated and constant descriptors, the use of genetic algo-
rithms (GA) [63], trend-vector methods [56, 57], and automatic variable selection
(AVS) strategies that are similar to interactive variable selection (IVS) [61] and evo-
lutionary variable selection (EVS) [60] have been used for selection of descriptors in
PLS. The removal of highly correlated descriptors is not necessary for PLS analysis,
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since descriptors are reduced to series of uncorrelated latent variables. However, this
procedure frequently helps to obtain more adequate models and reduce a number of
used variables up to five times. During this procedure one descriptor from each pair
having a pair correlation coefficient r satisfying || > 0.90 has been eliminated.

5.24.1. Automatic Variable Selection (AVS) Strategy in PLS

The AVS strategy in PLS is used to obtain highly adequate models by removing the
“noise” data, i.e., systematic variations in X (descriptors space) that are orthogonal
to Y (investigated property). This strategy is similar to IVS [61], EVS [60], OSC
[64], and O-PLS [65] and has the same objective but uses different means.

The essence of AVS consists of the following: at the first step of the AVS the
model containing all descriptors is obtained. Then variables with the smallest nor-
malized regression coefficients (b;, Eq. (5-17)) are excluded from the X-matrix
and in the next step the PLS model is obtained. This procedure has been repeated
stepwise until the amount of variables equals 1. The AVS strategy can be used
either for all structural parameters or after different variable selection procedures
(e.g., removal of highly correlated descriptors, TV procedure, GA). An application
of the AVS procedure resulted in the decreasing of the model complexity (num-
ber of descriptors and latent variables) and an increase in model predictivity and
robustness.

5.2.4.2. Genetic Algorithms

GA imitates such properties of living nature as natural selection, adaptability, hered-
ity. The use of the heuristic organized operations of “reproduction,” “crossing,” and
“mutation” from casual or user-selected starting “populations” generates the new
“chromosomes” — or models. The utility of the GA is its flexibility. With adjust-
ment of the small set of algorithm parameters (number of generations, crossover
and mutation type, crossover and mutation probability, and type of selection), it is
possible to find a balance between the time for search and the quality of decision. In
the HiT QSAR, GA is used as a tool for the selection of adequate PLS, MLR, and
TV models. Descriptors from the best model obtained by the preliminary AVS pro-
cedure have usually been used as the starting “population.” GA is not a tool for the
elucidation of the global maximum or minimum, and very often a subsequent AVS
procedure and different enumerative techniques allow one to increase the quality of
the obtained PLS models.

5.2.4.3. Enumerative Techniques

As mentioned above, the usage of the methods of exhaustive or partial searching
(depending on the number of selected descriptors) after AVS or GA very often allow
one to increase the quality of the obtained models (PLS, MLR, and TV). After the
statistical processing model or models with the best combinations of statistic charac-
teristics (R, 0%) have been selected from the obtained resulting list, and they may be
submitted for subsequent validation using an external test set. The general scheme
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Figure 5-4. General scheme of the PLS models generation and selection applied in the HiT QSAR

of the PLS model generation and selection applied in the HiT QSAR is presented
in Figure 5-4. This procedure can be repeated several times using as input an initial
set of SD of different levels of molecular structure representation (usually 2D-4D)
and/or with various kinds of atom differentiation (see above) with the purpose to
develop several resulting “predictive” QSAR models for consensus modeling. This
approach is believed to yield more accurate predictions.

5.2.5. Validation of QSAR Models

To have any practical utility, up-to-date QSAR investigations must be used to make
predictions [66]. The statistical fit of a QSAR can be assessed in many easily avail-
able statistical terms (e.g., correlation coefficient R?, cross-validation correlation
coefficient Qz, standard error of prediction S).

Cross-validation is the statistical practice of partitioning a sample of data into
subsets such that the analysis is initially performed on a single subset, while the
other subset(s) are retained for subsequent use to confirm and validate the initial
analysis. The initial subset of data is called the training set; the other subset(s) are
called validation sets. In QSAR analysis, only two types of cross-validation are used:

(1) K-fold cross-validation. In K-fold cross-validation, the original sample is parti-
tioned into K subsamples. Of the K subsamples, a single subsample is retained
as the validation data for testing the model and the remaining K — 1 subsamples
are used as training data. The cross-validation process is then repeated K times
(the folds), with each of the K subsamples used exactly once as the validation
data.
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(2) Leave-one-out cross-validation. As the name suggests, leave-one-out cross-
validation (LOOCYV) involves using a single observation from the original
sample as the validation datum and the remaining observations as the training
data. This is repeated such that each observation in the sample is used once as
the validation data. This is the same as a K-fold cross-validation with K being
equal to the number of observations in the original sample.

The determination coefficient (Qz) calculated in cross-validation terms is the
main characteristic of model robustness. Q2 is calculated by the following formula:

Z (Ypred - Yactual)2
Y

Z (Yactual - Ymeam)2
Y

0> =1 (5.18)

where Ypreq is a predicted value of activity, Yacwal is an actual or experimental value
of activity, and Ypean is the mean activity value.
The shortfalls of cross-validation are the following:

(1) The training task must be solved N times leading to substantial calculative
expenses in time and resources.

(2) The estimation of cross-validation assumes that the training algorithm is already
given. It has no idea how to obtain “good” algorithms and which properties must
be inherent to them.

(3) An attempt to use cross-validation for training as an optimizable criterion leads
to loss of its unbiasedness property and there is a risk of overfitting.

At the same time statistical fit should not be confused with the ability of a model
to make predictions. The only method to obtain a meaningful assessment of statisti-
cal fit is to utilize the so-called “test set”. During this procedure a certain proportion
of the data set molecules (10-85%) are removed to form the test set before the mod-
eling process begins (remaining molecules form the training set). Once a model has
been developed, predictions can be made for the test set. This is the only method by
which the validity of a QSAR can be more or less truly assessed. However, one must
understand that sometimes it means only the model ability to predict the certain test
set. It is important that both training and test sets cover the structural space of the
complete data set as much as possible.

In the HiT QSAR, the following procedure has been used for the formation of
the test set: a dissimilarity matrix for all initial training set molecules has been
developed on the basis of relevant structural descriptors. Such a descriptor set can
be obtained using different procedures for descriptor selection (for example, see
Chapter 4) or directly from the model generated for all investigated compounds. In
our opinion the use of the whole set of descriptors generated at the very beginning
is not completely correct, because during QSAR research we are interested not in
structural similarity by itself, but from the point of view of the investigated activity
and the descriptor selection will help the avoidance of some distortions caused by
the insignificance of structural parameters from the initial set for this task.
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A dissimilarity matrix is based on the estimation of structural dissimilarity
between all investigated molecules. A measure of the structural dissimilarity for
molecules M, M’ can be calculated using the Euclidean distance in the multidimen-
sional space of structural parameters S [Eq. (5-19)]:

SDM, M) =

D (Si— S (5.19)
i=1

where 7 is the a number of molecules in data set.

Thus, total structural dissimilarity toward the rest of initial training set com-
pounds could be calculated for every molecule from a sum of the corresponding
Euclidean distances. In the meanwhile, all the compounds were divided into groups
depending on their activity, where the number of groups equals the number of
molecules that one wants to include into test set. Then one compound from each
group has been chosen to go to the test set according to its maximal (or mini-
mal) total Euclidean distance from the other molecules in this group, or by random
choice. Most likely, the use of several (three is the enough minimum) test sets con-
structed by different principles and subsequent comparison and averaging of the
obtained results is more preferable than the use of only one set for the model valida-
tion. In that way, the first test set has been constructed to maximize its diversity from
the training set, i.e., the compounds with maximal dissimilarity were chosen. This
is the most rigorous estimation, sometimes it can lead to the elimination of all of
the dissimilar compounds from the training set, i.e., such splitting of the training set
when the test set structures would not be predicted correctly by the developed model
and would be situated outside of DA. The second test set is created in order to min-
imize its diversity from the training set, i.e., less dissimilar compounds from each
group were removed. The last test set has been chosen in random manner taking into
account activity variation only.

5.2.6. Hierarchy of Aims of QSAR Investigation

HiT QSAR provides not only hierarchy of molecular models, systems of descrip-
tors, and statistical models, but also the hierarchy of the aims of QSAR investigation
(Figure 5-1). Targets of the first level are activity prediction or virtual screening. Any
descriptors could be used here, even those that are only poorly interpretable or non-
interpretable, e.g., different topological indices, informational-topological indices,
eigenvalues of various structural matrices. In other words, at this level descrip-
tors which are not expected to be used for subsequent analysis of structural factors
promoting or interfering with activity can be used.

The aims of the second level must include the interpretability of obtained
QSAR models. Only descriptors which have clear physico-chemical meaning, e.g.,
reflecting such parameters of the molecule such as dipole moment, lipophilic-
ity, polarizability, van der Waals volume, can be used at this level. Analysis of
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QSAR models corresponding to this level allows one to reveal structural factors
promoting or interfering with the investigated property. Such information can be
useful for the generation of hypotheses about mechanisms of biological action
and assumptions about the structure of biological target. Finally, the presence of
information useful for molecular design is expected from QSAR models corre-
sponding to the third level of purposes. As a rule, fragmentary descriptors have
been used in such models. In this case, the analysis of the degree and direction
of influence of such descriptors on activity can give immediate information for
the optimization of known structures and design of novel substances with desired
properties.

5.2.6.1. Virtual Screening (Including Consensus Modeling and DA)

As mentioned above, QSAR investigations must be used to make predictions for
compounds with unknown activity values (so-called “virtual screening”). In order to
increase the quality of predictions, these authors recently started to apply consensus
QSAR modeling which has become more and more popular [67]. It also represents
one of the crucial concepts of HiT QSAR [31, 36] and can be briefly described by
the statement “More models that are good and different.” The efficiency of this tech-
nique can be easily explained by the fact that nearly the same predictions obtained
by different and independent methods (either statistical or descriptors generation)
are more reliable than single prediction made by even the best fitted and predictable
model.

From another aspect, in order to analyze the predictivity of PLS models and
according to the OECD QSAR principles [38], different DA procedures have been
included in the HiT QSAR. The first procedure is an integral DA called “ellipsoid”
developed by the authors [11]. It represents a line at the 1D level; an ellipse at
the 2D level; an ellipsoid at the 3D level; and multidimensional ellipsoids in more
complicated n-dimensional spaces. Its essence consists of the following: the dis-
tribution of training set molecules in a space of latent variables T{—Ta (axes of
coordinates) can be obtained from PLS. For each coordinate axis (T| and T in our
case) the root-mean-square deviations St; and St have been determined. DA rep-
resents an ellipsoid that is built from the molecules of the training set distribution
center (T = 0; T, = 0) with the semi-axes length 3ST; and 3St,, respectively [11]
(Figure 5-5). Further, the correct positions in relation to this center have been cal-
culated for every molecule (including molecules from prediction set). If a work set
molecule does not correspond to the DA criteria, it is termed “influential,” i.e., it has
unique (for given training set) structural features that distinguish it from the other
compounds. If a new molecule from the prediction set is situated out of the DA
(region outside ellipsoid), its prognosis from the corresponding QSAR model is less
reliable (model extrapolation). And, naturally, the prognoses for molecules nearest
to the center of the DA are most reliable.

The second approach — the integral DA rectangle has been also developed by the
authors [11]. Two extreme points (so-called virtual activity and inactivity etalons)
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Figure 5-5. Different domain applicability procedures in the HiT QSAR: integral (ellipsoid, rectangle)
and local

are determined in a space of structural features. The first one has maximal val-
ues of descriptors (training set data) promoting activity and minimal interfering.
This point corresponds to a hypothetic molecule — the peculiar activity etalon. The
second point, analogically, is an inactivity etalon, i.e. contains maximal values of
descriptors interfering activity and minimal promoting. Vectors that unite these
points (directed from inactive to active) depict the tendency of activity change in
the variable space. This vector is a diagonal for the rectangle that determines DA
[11] (Figure 5-5). All the mentioned trends concern the “influential” points from
the training set and model extrapolation for new molecules from the prediction set
remain and for the DA rectangle approach.

The third method is based on the estimation of leverage value h; [68]. It has
been visualized as a Williams plot [69] and is described in detail in [70]. For lever-
age, a value of 3 is commonly used as a cut-off value for accepting predictions,
because points that lie +3 standard deviations from the mean cover 99% of the
normally distributed data. For training set molecules high leverage values do not
always indicate outliers from the model, i.e., points that are outside the model
domain. If high leverage points (h; > h.,, separated by vertical bold line) fit the
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model well (i.e., have small residuals), they are called “good high leverage points”
or good influence points. Such points stabilize the model and make it more pre-
cise. High leverage points, which do not fit the model (i.e., have large residuals)
are called “bad high leverage points” or bad influence points. They destabilize the
model [70]. A new molecule is situated out of the DA (model extrapolation) if it has
h; > her = 3(A+1)/M, where A — number of the PLS latent variables and M — number
of molecules in a work set.

Recently, a local (Tree) approach for DA estimation has been developed by
authors in order to avoid the inclusion of hollow space into the DA that is the lack
of integral DA methods. The following are required for its realization:

(1) Obtaining of a distance matrix between the training set molecules in the struc-
tural space of descriptors of the QSAR model. The molecules in the given
approach have been analyzed in the coordinates of the latent variables of the
PLS model considered.

(2) Detection of the shortest distances between molecules using the above-
mentioned matrix. Building of an extreme short distance tree for all training
set molecules.

(3) Finding of average distance (d,y) and its root-mean-square deviation (o) for
inclusion in the tree average values. Such a distance is the characteristic of
average density of molecules distribution in the structural space.

Following this procedure, all the points corresponding to test set molecules have
been taken into account in the structural space. If any of test set molecules have
been situated on the distance bigger than d,y+30 from the nearest training set point,
it means that this test set molecule is situated outside DA. Respectively, molecules
belonging to the DA are situated on the distance less than dyy+30 from the training
set points. The scheme of DA estimation has been depicted in Figure 5-5.

Such an approach for DA estimation is similar, to some extent, to methods
described in [70]. As opposed to integral approaches, e.g. [11], where the convex
region (polyhedron, ellipsoid) which could contain vast cavities has been deter-
mined in the structural space, the approach presented here is local. The space of
the structural parameters has been analyzed locally, i.e., regions around every train-
ing set point are analyzed. The presence of cavities in the structural space which
correspond to DA is undesirable and it has been eliminated in the given approach.

Summarizing, it’s necessary to note that if a new structure is lying inside the DA,
it is not a final argument for a correct prediction; rather, it is an indication of the
reduced uncertainty of a prediction. In exactly the same way, the situation of the
compound outside the DA does not lead to the rejection of the prediction; it is just
an indication of the increased uncertainty of the subsequent virtual screening predic-
tion. Naturally, such compounds could be predicted (by model extrapolation) with
great accuracy, but it will be more by co-incidence than design. Unfortunately, there
is currently no unbiased estimation of prognosis reliability, and the relative character
of any DA procedure was reflected in [11, 70]. Thus, it should be remembered that
the DA is not a guide to action but only a probable recommendation.
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All of the mentioned DA procedures together, or separately, are applied to
selected single models before being averaged in consensus model. The accuracy
of the DA consensus model has been compared with the adequacy of consensus
models without DA consideration. The authors recommend the use of consen-
sus DA models for subsequent virtual screening excepting the case of substantial
loss of coverage of training and prediction sets with only a limited benefit in
predictivity.

5.2.6.2. Inverse Task Solution and Interpretation of QSAR Models

Using Eq. (5-15) it is not difficult to make the inverse analysis (interpretation of
QSAR models) in the frameworks of the SIRMS approach. The contribution of each
J-atom (C;) in the molecule can be defined as the ratio of the sum of the PLS regres-
sion coefficients (b;) of all simplexes this atom contains (M) to a number of atoms
(n) in the simplex (or fragment) [Eq. (5-20)]:

M
1
Ci = - ; b;, (forsimplexn = 4) (5-20)

According to this formula, the atom contribution depends on the number of sim-
plexes which include this atom. This value (number of simplexes) is not constant;
it varies in different molecules and depends on other constituents (surroundings),
and hence, this contribution is non-additive. Atoms that have a positive or negative
influence on the studied biological activity of compounds can be colored. It helps
to present the results and to determine visually (additionally to the automate search)
the groups of atoms affecting the activity in different directions and with varying
strength. The example of the representation of the obtained results on the molecule
using color-coding according to the contribution of atoms into antirhinoviral activity
[11] is represented in Figure 5-6. Atoms and structural fragments reducing antiviral
activity are colored in red (dark gray in printed version) and that enhance antiviral

Figure 5-6. Color-coded structure according to atoms contributions to activity against HRV-2 [11].
Atoms and structural fragments reducing antiviral activity are colored in dark gray and that enhancing
antiviral activity in light gray and white
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activity in green (light gray and white in printed version). Atoms and fragments
with no effect are colored in gray.

The automatic search procedure for pre-defined fragments from the data set and
their relative effect on activity has been realized in HiT QSAR. The procedure of
the fragment searching in molecule is based on a fast algorithm for solving the
maximum clique problem [71]. Some molecular fragments promoting and interfer-
ing anti-influenza activity [12, 29, 34] are represented in Table 5-1 as well as their
average relative influence on it.

Table 5-1. Molecular fragments governing the anti-influenza activity change (A 1gTIDs() and their
average relative influence on it [12, 29, 34]

Enhance the activity

o o
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5.2.6.3. Molecular Design

It is possible to design compounds with a desired activity level from the SIRMS via
the generation of allowed combinations of simplexes determining the investigated
property. The simplest way is soft drug design [72] that consists of replacing of
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undesired substituents by more active ones, or by the insertion of fragments, pro-
moting the activity instead of non-active parts of molecule or hydrogen atoms. The
use of this technique allows one to retain newly designed compounds in the same
region of structural space as the training set compounds. The accuracy of progno-
sis can be estimated using the DA techniques (see below). However, the use of soft
drug design keeps within the limits of the initial chemical class of training set com-
pounds. More drastic drug design is, certainly, more risky, but it allows for much
more dramatic results. Almost certainly, new structures would lie outside the DA
region. That, however, does not mean uncertainty of prediction, but extrapolation
of the model predictivity and a certain lack of any DA procedure. However, at the
same time, we can receive compounds of completely different (from initial training
set) chemical classes as the output of such design. It was demonstrated in [12, 28,
29], where, in searching for a new antiviral and anticancer agents, we started our
investigations from macrocyclic pyridinophanes and through several convolutions
of QSAR analyses came out with nitrogen analogues of crown ethers in the first and
acyclic aromatic structures with the azomethine fragment in the second case.

5.2.7. HiT QSAR Software

The HiT QSAR software for Windows has been designed and developed as
an instrument for high-value QSAR investigations including the solution of the
following tasks:

* Creation of QSAR projects;

 Calculation of lipophilicities and partial atom charges;

* Molecules superposition in the lattice approaches;

* Generation of different integral, simplex, lattice (local and field), and harmonic
descriptors;

* Data mining (see Section 5.2.4);

* Obtaining of statistical models by PLS, MLR, and TV approaches with the usage
of total and partial enumeration methods, GA, AVS strategy, etc.

* Inverse task solution — interpretation of the equations developed as color-coded
diagrams for the molecules or their fields;

e Determination of the contributions (increments) of the fragments in the property
investigated;

* Consensus modeling of the property investigated taking into account the DA of
the model.

Graphic visualization of molecules, the atoms’ influence on the investigated
properties, lattice models, different fields, etc. was implemented using the open
graphic language (OpenGL) library from Silicon Graphics©. HiT QSAR software
is accessible on your request. Please contact the authors if you have any questions
about its usage. Summarizing the information above, the HiT QSAR workflow
(Figure 5-7) has recently been developed and used by authors for the solution of
different QSAR/QSPR tasks.
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Figure 5-7. HiT QSAR workflow

As was mentioned above, the proposed technology operates on a set of different
models. At the preliminary stage “Model 0” (Figure 5-7) is generated for the initial
division of investigated molecules into training and test sets. Subsequent generation
of sets 1-K is required for the development of consensus QSAR models. In all cases,
such statistical characteristics as R2, QZ, R? s have been taken into account as well
as the model DA.

5.3. COMPARATIVE ANALYSIS OF HiT QSAR EFFICIENCY

The HiT QSAR based on SiRMS has proved efficient in numerous studies
to solve different “structure—activity/property” problems [3, 10-12, 25-30, 33,
35] and it has been interesting to compare it with the other successful QSAR
approaches and software. The results of a comparative analysis are shown in
Table 5-2. Obviously, HiT QSAR does not have the problem of the optimal
alignment of the set of molecules considered that is inherent to CoMFA and its
analogues [16-19]. The SiRMS approach is similar to HQSAR [20] in certain
ways, but has none of its restrictions (only topological representation of molecu-
lar structure an ambiguity of descriptor formation during the molecular hologram
hashing). In addition, contrary to HQSAR, different physical and chemical prop-
erties of atoms (charge, lipophilicity, etc.) can be taken into account in SiRMS
(Table 5-2).
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Table 5-2. Comparison of different QSAR methods
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design

Thus, main advantages of the HiT QSAR are the following:

* The use of different (1D—4D) levels of molecular modeling;

e The absence of the “molecular alignment” problem;
» Explicit consideration of stereochemical features of molecules;

* Consideration of different physical and chemical properties of atoms;
* Clear methods (rules) for molecular design.

5.3.1. Angiotensin Converting Enzyme (ACE) Inhibitors

After such a theoretical comparative analysis, it was logical to test the efficiency
of the proposed HiT QSAR on real representative sets of compounds. All such
sets only contain structurally similar compounds to avoid the “molecular align-
ment” problem and, therefore, to facilitate the usage of the “lattice” approaches
(CoMFA and CoMSIA). One hundred and fourteen angiotensin converting enzyme
(ACE) inhibitors [73] represent the first set. Different statistic models obtained by




156 V.E. Kuz’min et al.

HiT QSAR have been compared with those published in [73]. The structure of
enalaprat — a representative compound from the ACE data set is displayed below:

COOH

0  COOH

The ability of ACE inhibition (pICsp) has been investigated. The training set
consists of 76 compounds and 38 structures were used in a test set [73]. In the given
work, we have compared the resulting PLS-models built with the use of descriptors
generated from the following QSAR approaches:

(a) CoMFA - comparative molecular fields analysis [16];

(b) CoMSIA - comparative molecular similarity indexes analysis [18];

(c) EVA - eigenvalue analysis [74];

(d) HQSAR — hologram QSAR [20];

(e) the Cerius 2 program (Accelrys, Inc., San Diego, CA) — method of traditional
integral (whole-molecule) 2D and 2.5D? descriptors generation;

(f) HiT QSAR based on SiRMS [3, 11, 32].

Because all the mentioned approaches compare parameters generated at 2D or
3D levels of molecular structure representation, the corresponding SD, the Fourier
parameters, and united models with mixed (simplex + Fourier) parameters were
taken for comparison. The advantage of HiT QSAR over other methods is revealed
by the comparison of such statistical descriptions of the QSAR models, as the
determination coefficient for training (R?) and test (thest) sets; the determination
coefficient calculated in the cross-validation terms (Q%) as well as the standard
errors of prediction for both sets (see Table 5-3). For example, for SIRMS 0*=
0.81-0.87, for the Fourier models Q2= 0.73-0.80, and for the other methods
Q% = 0.65-0.72. It is necessary to note that the transition to 3D level allows
for the improvement of the quality of the QSAR models obtained. At the same
time, the usage of the Fourier parameters does not lead to good predictive mod-
els (thest = 0.37-0.51) for this task. United models (simplex + Fourier) have the
same predictive power as the simplex ones, but, because of the presence of inte-
gral parameters, they are sufficiently different to provide another aspect of the

property.

5.3.2. Acetylcholinesterase (AChE) Inhibitors

The second set used for comparative analysis consisted of 111 acetylcholinesterase
(AChE) inhibitors. The structure of E2020 — a representative compound from the
AChE data set is displayed below:

2 This classification is offered by the authors of Cerius2.
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The ability to model AChE inhibition (pICsp) has been investigated. The train-
ing set consists of 74 compounds and 37 structures were used as a test set [73].
The methods compared and the principles of comparison are similar to the ones
described above. The main trends revealed for the ACE set were also the same
for the AChE inhibitors. The advantage of HiT QSAR over other methods have
been observed with all statistical parameters (Table 5-3), but especially on predic-
tivity of the models: for SIRMS R2 et = 0.74-0.82, for the Fourier models RZ g
= 0.59-0.61, and for the other methods R%est = 0.16-0.47. As in the previous
case, consideration of the spatial structure of investigated compounds improved the
quality of the models obtained.

Table 5-3. Statistical characteristics of the QSAR models obtained for ACE and AChE data sets by
different methods

R? 0? R? (st Sws Stest A

QSAR

method ACE AChE ACE AChE ACE AChE ACE AChE ACE AChE ACE AChE
CoMFA* 0.80 0.88 0.68 052 049 047 104 041 154 095 3 5
CoMSIA(basic)* 0.76 0.86 0.65 045 0.52 044 1.15 045 148 098 3 6
CoMSIA(extra)* 0.73 0.86 0.66 0.46 049 0.44 122 045 153 098 2 4
EVA* 0.84 096 070 041 036 028 093 023 172 1.11 4 4
HQSAR* 0.84 072 072 033 030 037 095 064 180 101 4 5
Cerius 2* 0.82 038 072 03 051 016 100 095 150 12 4 1
Simplex 2D 0.87 081 0.81 065 073 074 086 053 1.13 067 2 2
Simplex 3D 092 089 0.87 084 085 082 068 041 085 056 2 2
Fourier 2D 0.83 071 0.80 0.61 037 061 09 066 17 08 5 4
Fourier 3D 078 081 073 071 051 059 11 053 15 084 4 4
Mix** 2D 0.86 0.81 0.80 0.69 0.75 0.74 09 053 1.07 067 2 2
Mix** 3D 090 0.89 0.88 084 085 082 074 04 083 056 2 2
where

R? — correlation coefficient

Q2 — cross-validation correlation coefficient (10-fold, see Chapter 5)
R2test — correlation coefficient for test set

Sws — standard error of a prediction for training set

Stest — standard error of a prediction for test set

A —number of PLS latent variables

*Statistic characteristics from [73] were shown

**Mix = Simplex + Fourier descriptors
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Summarizing, it is necessary to note that we understand that the advantage of
simplex descriptors generated in HiT QSAR may be partially a result of some of
the differences in the statistical approaches applied (e.g., in addition to GA, TV and
AVS procedures have been used). However, these mathematical differences are not
responsible for all the improvements in the investigated approaches. Thus, it is obvi-
ous from the results obtained that HiT QSAR simplex models are well-fitted, robust
and, in the main, they are much more predictive than QSAR models developed by
other approaches.

54. HiT QSAR APPLICATIONS

The application of HiT QSAR for the solution of different QSAR/QSPR tasks on
different levels of representation of molecular structure is highlighted briefly below.
The PLS method has been used for the development of QSAR models in all the
cases described below.

54.1. Antiviral Activity

Because a lot of different viral serotypes and strains exist, vaccine development for
prevention of a wide variety of viral infections is considered to be impracticable. The
present treatment options for such infections are unsatisfactory [75-77]. However,
there are ongoing attempts to develop antiviral drugs [78—84]. That is why compu-
tational approaches, which can distinguish highly active inhibitors from less useful
compounds and predict more potent substances, have been used for the analysis of
antiviral activity for many years [4, 6, 7, 12, 13, 29].

54.1.1. Antiherpetic Activity of N,N’-(bis-5-nitropyrimidyl)
Dispirotripiperazine Derivatives® (2D)

HiT QSAR was applied to evaluate the influence of the structure of 48 N,N'-(bis-
S-nitropyrimidyl)dispirotripiperazines (see structures below) on their antiherpetic
activity, selectivity, and cytotoxicity with the purpose to understand the chemico-
biological interactions governing their activities, and to design new compounds with
strong antiviral activity [3].

o K e (OO
\_/\_/\_/ N\J\ N
20r 2cr

3 The authors express sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O.
Riabova, Mr. N. Kovdienko and Mr. A. Hromov for fruitful cooperation that made the development of
this task possible.
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The common logarithms of 50% cytotoxic concentration (CCso) in GMK cells,
50% inhibitory concentration (ICs) against HSV-1, and the selectivity index (SI =
CCs0/ICs0) were used to develop 2D-QSAR models. Spirobromine — a medicine
with a nitrogen-containing dispiro structure possessing anti-HSV-1 activity was
included in the training set. The statistic characteristics of QSAR models obtained
are quite high (R?> = 0.84-0.91; Q% = 0.61-0.68; R%s = 0.68-0.71) and allow
for the prediction of antiherpetic activity, cytotoxicity, and selectivity of new
compounds. Electrostatic factors (38%) and hydrophobicity (25%) were the most
important determinants of antiherpetic activity (Figure 5-8). The results of the
QSAR analysis demonstrate a high impact of individual structural fragments for
antiviral activity. Molecular fragments that promote and interfere with antiviral
activity were defined on the basis of the models obtained. Thus, for example,
the insertion of non-cationic linkers such as N-(2-aminoethyl)ethane-1,2-diamine,
ethylenediamine, or piperazine instead of dispirotripiperazine leads to a complete
loss of activity while the presence of methyloxirane leads to a strong increase. Using
the established results and observations, several new dispirotripiperazine deriva-
tives — potential antiviral agents — were computationally designed. Two of these new
compounds (1 and 2, Table 5-4) were synthesized. The results of biological tests
confirm the predicted high values of antiviral activity and selectivity (they are about
two logarithmic units more active and one order more selective than spirobromine)
as well as low toxicity of these compounds.

atom
individuality
(nature) 19%
electrostatic;
38%
dispersion
: Q
hydrophobic; H-bonding; 8%

25%

Figure 5-8. Relative influence of some physico-chemical factors on variation of anti-HSV-1 activity
estimated on the basis of QSAR models

5.4.1.2. Antiherpetic Activity of Macrocyclic Pyridinophanes®

The antiherpetic data set was similar to that for the anti-influenza study and was also
characterized by essential structural variety: different macrocyclic pyridinophanes
and their acyclic analogues plus well-known antiviral agents including acyclovir as
a reference compound:

4 Anti-influenza and antiherpetic investigations described below were carried out as a result of fruitful
cooperation with Dr. V.P. Lozitsky, Dr. R.N. Lozytska, Dr. A.S. Fedtchouk, Dr. T.L. Gridina, Dr. S. Basok,
Dr. D. Chikhichin, Mr. V. Chelombitko and Dr. J.-J. Vanden Eynde. The authors express sincere gratitude
for all mentioned above colleagues.
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Table 5-4. Perspective potent compounds — results of computer-assisted molecular design
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The antiherpetic activity against HSV-1 strain US was expressed as a percentage
of the inhibition of HSV reproduction in treated cell cultures (Hep-2) in comparison
with untreated ones. As in previous cases, the antiherpetic study has a multistep
cyclic character: synthesis — biological tests — QSAR analysis — virtual screening
and computer-assisted drug design — synthesis —, etc. [25, 28, 29, 34]. Initially, 14
compounds (mostly macrocyclic pyridinophanes and their acyclic analogues) have
been investigated for antiherpetic activity [29]. At the present stage [25], after the
several QSAR convolutions, 37 compounds were divided between training and test
sets (26 and 11 compounds respectively) and the set of QSAR models with different
adequacy levels (2D, 4D, and 3D) has been obtained as a result of the investigations.
All the obtained QSAR models were well fitted, robust, predictive (R2 =0.82-0.90,
Q2 = 0.60-0.65, R% (et = 0.70-0.78), and have a defined DA and clear mechanistic
interpretation. For the 3D-QSAR investigations the set of “productive” conformers
has been used. They were determined as the most active from the results of 4D-
QSAR modeling.

All the models developed (2D-4D) indicate the impact of hydrophobic (~50%)
and electrostatic (~20%) factors on the variation of antiherpetic activity. The strong
promotion of antiherpetic activity by aminoethylene fragments was revealed. It was
also discovered that an important factor for the HSV inhibition is the presence of
an amino group connected to aliphatic fragment. A tendency of antiviral activity
increasing with the strengthening of acceptor properties of compound’s aromatic
rings was revealed. This information was used for the design of potent antiherpetic
agent 1 (Table 5-4). The use of SiRMS allows to progress in searching for new
antiherpetic agents starting from macrocyclic pyridinophanes [29] and finishing
in symmetric piperazine containing macroheterocycle 1,4,7,10,13,16,19,22,25,28-
Decaaza-tricyclo[26.2.2.2*13,16* tetratriacontane (1).

5.4.1.3. [(Biphenyloxy)propylisoxazole Derivatives — Human Rhinovirus
2 Replication Inhibitors® (2D)

QSAR analysis of antiviral activity of [(biphenyloxy)propyl]isoxazole derivatives

\

N—O

was developed using HiT QSAR based on SiRMS to reveal chemico-biological
interactions governing their activities as well as their probable mode of action, and to
design new compounds with a strong antiviral activity [11]. The common logarithms

5 The authors express sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O.
Riabova and Ms. Volineckaya for fruitful cooperation that made possible the development of this task.
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of 50% cytotoxic concentration (CCsg) in HeLa cells, the 50% inhibitory concen-
tration (ICsp) against human rhinovirus 2 (HRV-2), and the selectivity index (SI =
CCs50/ICs0) of [(biphenyloxy)propyl]isoxazole derivatives were used as cytotoxic-
ity, antiviral activity, and selectivity assessments, respectively. The set of molecules
consists of 18 compounds including pleconaril as a reference compound. They have
not been divided into training and test sets because of the low number of com-
pounds (i.e., the structural information contained in each molecule in this case is
unique and useful). The statistic characteristics of the resulting 2D-QSAR models
are quite satisfactory (R? = 0.84-0.92; Q2 = 0.70-0.87) for the prediction of CCs,
ICs0, and SI values and permit the virtual screening and molecular design of new
compounds with high anti-HRV-2 activity. The results indicate the high influence of
atom’s individuality on all the investigated properties (~40%), electrostatic factors
on selectivity (~50%), where these factors along with atom individuality play the
determining role, and hydrophobic interactions on the antiviral activity (~40%). The
presence of terminal 5-trifluoromethyl-1,2,4-oxadiazole and p-fluorophenyl frag-
ments in a molecule leads to strong enhancement of its useful properties, i.e.,
increase of activity toward HRV-2 as well as selectivity and decrease of cytotoxic-
ity. An additional terminal aromatic ring — naphthalene or phenyl — strongly reduces
activity toward HRV-2 and, to a lesser degree, SI. The virtual screening and molec-
ular design of new well-tolerated compounds with strong anti-HRV-2 activity has
been performed on the basis of QSAR results. Three different DA approaches (DA
rectangle and ellipsoid as well as leverage) give nearly the same results for each
QSAR model and additionally allow for the estimation of the quality of the predic-
tion for all designed compounds. A hypothesis to the effect that external benzene
substituent must have negative electrostatic potential and definite length L (approx-
imately 5.5-5.6 A) to possess strong antiviral activity has been suggested. Most
probably, the fluorine atom in the para-position of terminal aromatic ring (com-
pounds 2-4, Table 5-4) is quite complementary (L = 5.59 A) to the receptor cavity
for such an interaction. It is necessary to note that pleconaril (L = 5.54 A) com-
pletely satisfies the indicated criteria. In the case of nitroaromatics, the accumulation
of nitro groups in the region of receptor cavity will lead to strengthening of elec-
trostatic interactions with the biological target and, therefore, to an increase in
activity.

Several new compounds have been designed computationally and predicted as
having high activity and selectivity. Three of them (2-4, Table 5-4) were syn-
thesized. Subsequent experimental testing revealed a strong coincidence between
experimental and predicted anti-HRV-2 activity and SI. Compounds 2—4 are similar
in their cytotoxicity level to plecanoril, but they are more active and selective.

54.14. Anti-influenza Activity of Macrocyclic Pyridinophanes* (2D—4D)

All the advantages of HiT QSAR were demonstrated during the investigation of
anti-influenza activity on the data set possessing structural variety: different macro-
cyclic pyridinophanes, their acyclic analogues, and well-known antiviral agents
(deiteforin, remantadine, ribavirin, ambenum, and others) [12, 29]:
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Anti-influenza activity (virus A/Hong Kong/1/68 (H3N2)) was expressed in
1gTID5( and reflected the suppression of viral replication in “experimental” samples
in comparison with “controls.” The structures investigated were divided between
training and test sets (25 and 6 compounds, respectively).

In accordance with the hierarchical principles of the approach offered, the
QSAR analysis was solved sequentially on the 2D, 4D, and 3D levels.® The set
of QSAR models with different adequacy levels (2D, 4D, and 3D) was obtained
as a result of the investigations. All the obtained QSAR models were well fitted,
robust, predictive (R? = 0.94-0.98, 0% = 0.85-0.95, and R? s = 0.98-0.99)7, and
have defined DA and clear mechanistic interpretation. For 3D-QSAR investigations
the set of “productive” conformers has been used. They were determined as the
most active from the results of 4D-QSAR modeling. The results indicate the great
impact of atom individuality on the variation of anti-influenza activity (37-50%).
Hydrophobic/hydrophilic and electrostatic interactions also played an important role
(15-22%). The shape of molecules (4D and 3D models) also effects anti-influenza
activity but has the smallest influence (11 and 16%, respectively). The cylindrical
form of molecules (Ix/Iy — 1) with small diameters (Iy — min) promotes anti-
influenza activity. The molecular fragments governing the change of anti-influenza
activity and their average relative influence (Table 5-1) were determined. For
example, the presence of oxyethylene or 2-iminomethylphenol fragments promotes
antiviral activity and aminoethylene fragments decreases it.

The purposeful design of new molecules 5-7 (Table 5-4) with adjusted activ-
ity level was developed by obtained results. The high level of all predicted (all
the resulting 2D-4D models show the strong coincidence of predictions) val-
ues of anti-influenza activity was confirmed experimentally. Thus, during the
QSAR investigations [12, 29] the search for active compounds began from macro-

cyclic pyridinophanes and finally results in benzene derivatives containing the
2-iminomethyl-phenol fragment (5-7, Table 5-4).

ribavirin

remantadine

© In this and antiherpetic research 1D modeling were not performed.

7 We are aware that these models can approximate not only variation of activity but also variation of
experimental errors. The high values of RZ(es¢ can be explained by the fact that test compounds are very
similar to those in the training set, that there are only few compounds in test set, by high quality of
obtained models, by simple good luck or by combination of all mentioned factors.
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5.4.2. Anticancer Activity of MacroCyclic Schiff Bases® (2D and 4D)

The investigation of influence of the molecular structure of macrocyclic Schiff bases
(see structures below) on their anticancer activity has been carried out by

us)

means of the 4D-QSAR SiRMS approach [10]. The panel of investigated human
malignant tumors includes 60 lines of the following nine cell cultures: leukemia,
CNS cancer, prostate cancer, breast cancer, melanoma, non-small cell lung cancer,
colon cancer, ovarian cancer, and renal cancer. Anticancer activity was expressed
as the percent of the corresponding cell growth. The training set is very structurally
dissimilar and consists of 30 macrocyclic pyridinophanes, their analogues, and some
other compounds.

The use of simple topological models generated by EMMA [85] allows the
description of the anticancer activity of macrocyclic pyridinophanes (MCP) for only
five cell cultures [86]. These studies show that even within the simple topological
model it is possible to detect some patterns of the relationship between the struc-
ture of MCP and their activity. The consideration of spatial structure improves the
situation, but only at the 4D level reliable QSAR models (R?> = 0.74-0.98; Q? =
0.54-0.84) were obtained for all of the investigated cells (except leukemia, where
0? <0.5; however, even in this case the designed compound was predicted correctly)
and averaged activity (most of lines and cells are highly correlated) that indicate
the importance of not the most active or favorable single conformer but the set of
interacting conformers within the limits of energy gap of 3 kcal/mol. It was dis-
covered that the presence of the N ,N3-dimethylenepropane-1,3-diamine fragment
strongly promotes anticancer activity. This fragment was used as a linker between
two naphthalen-2-oles that leads to the creation of universal anticancer agent active
against all mentioned tumors except prostate cancer. It is necessary to note that the
use of SiRMS allow one starting from 12 macrocyclic pyridinophanes [86] in the
search for anticancer agents to finally result in symmetric open-chained aromatic
compounds connected by above-mentioned linker [10].

7" The authors express sincere gratitude to Dr. V.P. Lozitsky, Dr. R.N. Lozytska and Dr. A.S. Fedtchouk
for fruitful cooperation during the development of this task.
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5.4.3. Acute Toxicity of Nitroaromatics

5.4.3.1. Toxicity to Rats® (1D-2D)

HiT QSAR based on 1D and 2D simplex models and some other approaches for
the description of molecular structure have been applied for (i) evaluation of the
influence of the characteristics (constitutional and structural) on the toxicity of 28
nitroaromatic compounds (some of them belonging to a widely known class of
explosives, see structures below); (ii) prediction of the toxicity of new nitroaromatic
derivatives; (iii) analysis of the effects of substitution in nitroaromatic compounds
on in vivo toxicity

NO
R =H, F, Cl, OH, NO,,
R COOH, CH,, CH,Cl

The 50% lethal dose to rats (LDsg) has been used to develop the QSAR models
based on simplex representation of molecular structure. The preliminary 1D-QSAR
results show that even the information on the composition of molecules reveals the
main characteristics for the variations in toxicity [87].

A novel 1D-QSAR approach that allows for the analysis of the non-additive
effects of molecular fragments on toxicity has been proposed [87]. The necessity
of the consideration of substituents’ impact for the development of adequate QSAR
models of nitroaromatics’ toxicity was demonstrated.

The statistic characteristics for all the 1D-QSAR models developed, with the
exception of the additive models, were quite satisfactory (R> = 0.81-0.92; Q° =
0.64-0.83; R%et = 0.84-0.87). Successful performance of such models is due to
their non-additivity, i.e., the possibility of taking into account the mutual influence
of substituents in a benzene ring which governs variations in toxicity and could be
mediated through the different C—H fragments of the ring.

The passage to 2D level, i.e., consideration of topology, allows for the improve-
ment of the quality of the obtained QSAR models (R* = 0.96-0.98; 0% = 0.91-0.93;
R% et = 0.89-0.92) to predict the activity for 41 novel compounds designed by the
application of new combinations of substituents represented in the training set [37].
The comprehensive analysis of variations in toxicity as a function of the position and
nature of the substituent was performed. Among the contributions analyzed in this
work are the electrostatic, hydrophobic, and van der Waals interactions of toxicants
to biological targets. Molecular fragments that promote and interfere with toxicity
were defined on the basis of models obtained. In particular, it was found that in
most cases, insertion of fluorine and hydroxyl groups into nitroaromatics increases
toxicity, whereas insertion of a methyl group has the opposite effect. The influence

8 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. M. Quasim for
fruitful cooperation during the development of this task.
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of chlorine on toxicity is ambiguous. Insertion of chlorine at the ortho-position to
the nitro group leads to substantial increase in toxicity, whereas the second chlorine
atom (at the para-position to the first) results in a considerable decrease in toxicity.
The mutual influence of substituents in the benzene ring is substantially non-additive
and plays a crucial role regarding toxicity. The influence of different substituents on
toxicity can be mediated via different C—H fragments of the aromatic ring.

The correspondence between observed and predicted toxicity obtained by the
1D and 2D models was good. The single models obtained were summarized in the
most adequate consensus model that allows for an improved accuracy of toxicity
prediction and demonstrate its ability to be used as a virtual screening tool.

5.4.3.2. Toxicity to Tetrahymena Pyriformis9 (2D)

The present study applies HiT QSAR to evaluate the influence of the structure of
95 various nitroaromatic compounds (including some widely known explosives, see
structures below) to the toxicity to the ciliate 7. pyriformis (QSTR — quantitative
structure—toxicity relationship); for the virtual screening of toxicity of new nitroaro-
matic derivatives; analysis of the characteristics of the substituents in nitroaromatic
compounds as to their influence on toxicity.

NO,

R =H, F, Cl, OH, NO,,

R COOH, CH;, OAL,
CHO, CN, NH2, etc.

The negative logarithm of the 50% inhibition growth concentration (IGCs) was
used to develop 2D simplex QSTR models.

During the first part of the work the whole initial set of compounds was divided
into three overlapping sets depending on the possible mechanism of action [88].
The 2D-QSTR PLS models obtained were quite satisfactory (R> = 0.84-0.95; 0> =
0.68-0.86). The predictive ability of the QSTR models was confirmed through the
use of three different test sets (maximal similarity with training set, also minimal
one and random choice, taking into account toxicity range only) for any obtained
model (R?cg = 0.57-0.85).

The initial division into different sets was confirmed by the QSTR analysis,
i.e., the models developed for structures with one mechanism (e.g., redox cyclers)
cannot satisfactorily predict the others (e.g., those participating in nucleophilic
attack). However, the reliable predictive model can be obtained for all the com-
pounds, regardless of mechanism, when structures of different modes of action are
sufficiently represented in the training set.

In addition, the classification and regression trees (CRT) algorithm has been used
to obtain models that can predict possible mechanism of action. The quality of the

9 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb, Dr. M. Quasim and Prof.
A. Tropsha for fruitful cooperation during the development of this task.



Virtual Screening and Molecular Design 167

CRT models obtained is also quite good. The final models had only 15-20% mis-
classification errors. The obtained models have correctly predicted mechanism of
action for compounds of the test set (76-81%).

The comparative analysis of similarity/difference of all nine selected QSAR
models has been carried out using the correlation coefficient and Euclidean distance
between the sets of toxicity predicted values. It has been shown that all of them are
quite close between themselves and the vector of observed activity values. Hence,
T. pyriformis toxicity by nitroaromatic compounds is complicated and multifactorial
process where, most probably, factors determining penetration and delivery of tox-
icant to biological target play the most important role. Reactivity of nitroaromatics,
seemingly, only has an auxiliary role. This was confirmed by the absence of any cor-
relation between toxicity and Hammett constants of substituents. In this regard, the
difference in the mechanisms of toxicant interaction with biomolecules (reactions
of nucleophylic substitution or radical reduction of nitro group) is important but do
not determine for the value of its toxicity.

Molecular fragments that promote and interfere with toxicity were defined
using the interpretation of the PLS models obtained. For example, oxibutane and
aminophenyl substituents promote the toxicity of nitroaromatics to 7. pyriformis but
carboxyl groups interfere with toxicity. It was also shown that substituent interfer-
ence in the benzene ring plays the determining role for toxicity. Contributions of
the substituents to toxicity are substantially non-additive. Substituents interference
effects the activation of aromatic C—H fragments with regard to toxicity.

The structural factors of nitroaromatics which characterize their hydrophobicity
and ability to form electrostatic interactions are the most important for the toxic
action of the compounds investigated; local structural characteristics (presence of
one or other fragments) are more important than integral (whole-molecule) ones.

All the nine selected models were used for consensus predictions of toxicity of
an external test set which consists of 63 nitroaromatics. PLS models based on com-
pounds from one mechanism of action were used for consensus predictions only
in the case when the CRT model was able to predict such a mechanism. Thus, the
predictivity of the consensus model on the external test set was quite satisfactory
(R*test = 0.64).

5.4.4. AChE Inhibition!? (2.5D, Double 2.5D, and 3D)

HiT QSAR has been used for the consensus QSAR analysis of AChE inhibition
by various organophosphate compounds. SIRMS and LM QSAR approaches have
been used for descriptor generation. Different chiral organophosphates represented
by their (R)- and (S)-isomers, racemic mixtures, and achiral structures (totally 42
points) have been investigated. A successful consensus model (R? = 0.978) based
on 14 best QSAR models (R? = 0.91-0.99; 0? = 0.86-0.98; R%.st = 0.82-0.97),

10 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. J. Wang for fruitful
cooperation during the development of this task.
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obtained using different QSAR approaches and training sets for several levels and
methods of molecular structure representation (2.5D, double 2.5D, and 3D), was
used for the prediction of AChE inhibition of new compounds. The trend established
on the training set compounds [(S)-isomers are more active than (R)-ones] applies
to all new predicted structures.

Atom individuality (including stereochemistry of the chiral surroundings of the
asymmetric phosphorus atom) plays the determining role in the variation of activity
and is followed by the dispersion and electrostatic characteristics of the OPs.
The molecular fragments promoting or interfering with the activities investigated
were determined. Identical fragments in the achiral compounds have smaller
contributions to activity in comparison with their role in chiral molecules. The
influence of phosphorus on the AChE inhibition has a wide range of variation and
is very dependent on its surroundings. The substitution of oxygen in > P = O by
sulfur leads to decreasing AChE inhibition. The presence of the 2-sulphanylpropane
fragment facilitates a decrease in activity. Oxyme-containing fragments are
actively promoting with activity. The most active predicted compound (2-[(E)-
({[cyano(cyclopentyloxy)phosphoryl]oxy }imino)methyl]-1-methylpyridinium)
contains oxyme and cyclopentyl parts and is more toxic than oxyme-containing
OPs from the training set.

It was also shown in the given work that the topological models of molecular
structure (2.5D and double 2.5D) with the identification of stereochemical center
of investigated compounds allow for the description of the OPs’ ability to inhibit
AChE.

5.4.5. 5-HT 4 Affinity (1D-4D)'!

This work was devoted to the analysis of the influence of the structure of N-alkyl-
N'-arylpiperazine derivatives (see structures below) on their affinity for the 5-HT 5

receptors (5-HT1aR).
X
O
n n=1-6

Several PLS and MLR models have been obtained for the training set contain-
ing 42 ligands of 5-HT AR represented on the 1D—4D levels by SiRMS [32]. All
the models obtained have acceptable statistical characteristics (R* = 0.71-0.96, Q*
= 0.66-0.88). There is improvement in the models from 1D — 2D — 4D — 3D.
Molecular fragments which have an influence on the affinity for 5-HTsR have
been identified. Analysis of the spatial structure of “productive” conformers deter-
mined according to 4D-QSAR model shows considerable similarity to the existing
pharmacophore models [§9-91] and has allowed for improvement.

1" The authors express sincere gratitude to Academician S.A. Andronati and Dr. S.Yu. Makan for
fruitful cooperation during the development of this task.



Virtual Screening and Molecular Design 169

The 2D-QSAR classification task has been solved using the PLS and CRT meth-
ods for the set of 364 ligands of 5-HTj4R (284 in the training set and 62 in the
test set) [92]. The PLS model showed a 65% accuracy for the prediction of test
set compounds and the CRT model — 74%. The results of these models have a
considerable correspondence between each other that additionally confirmed their
validity. It has been shown that, in general, a polymethylene chain comprising three
or fewer CH; groups has a negative influence on affinity for 5-HT sR and a chain
comprising four or more CH; groups has a positive influence. Electron-donating
substituents (0-OCH3z, 0—OH, 0-Cl) at the ortho-position of phenyl ring strongly
promoted affinity. A 2,3-dihydrobenzodioxin-5-yl residue has a similar influence
on affinity. Electron-accepting substituents (m-CF3) in phenyl have high affinity.
Electron-accepting substituents at the para-position of the phenyl ring (p-NOy, p-F)
have a stronger negative influence on affinity to 5-HT 4R than electron-donating
ones (p—OCH3). The following conclusions have been made about the influence of
the terminal fragments (substituents of N-alkyl group) on affinity. Saturated poly-
cyclic fragments and small aromatic residues demonstrated positive influence on
affinity and larger aromatic fragments show a negative effect. According to the fol-
lowing analysis, the optimal van der Waals volume for the terminal moiety must be
approximately 500 A3 or less.

Molecular design and virtual screening of new potential ligands of 5-HT AR has
been developed on the basis of the obtained results. Several most promising com-
pounds have been chosen for subsequent investigations, two of them are represented
in Table 5-4 (8 and 9).

5.4.6. Pharmacokinetic Properties of Substituted Benzodiazepines (2D)

The influence of the structure of substituted benzodiazepines (27 compounds, see
below)!? on the variation of their pharmacokinetic properties including bioavailabil-
ity, semi-elimination period, clearance, and volume of distribution in the organism
of man has been studied [94].

N
X=0,5.NH, 2H
O \/&RZ RI=H, Alc, etc.
R4

—N R2=H, OH, COOH, OCOAIc

R3,R4=H, halogen
O R3

Simplex descriptors in addition to some integral parameters generated by the
Dragon software [93] were used for the development of statistic models.

12 The authors express sincere gratitude to Dr I.Yu. Borisyuk and Acad. N.Ya. Golovenko for a fruitful
collaboration.
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Reasonably adequate quantitative “structure-pharmacokinetic properties” rela-
tionships were obtained using the PLS and MLR statistical approaches (R*> =
0.91-0.95, Q2 = 0.81-0.94) [94]. Structural factors affecting the change of phar-
macokinetic properties of substituted benzodiazepines were revealed on the basis of
the obtained models.

Bioavailability. Although there is no correlation between absolute bioavailability
(F) and lipophilicity (R~0), the trend of increasing of molecular fragments’ con-
tribution to common bioavailability alongside with increasing of its lipophilicity is
observed quite clearly. This trend is the most evident in case of aromatic fragments.
Pentamerous aromatic heterocycles have the greatest influence on bioavailability.

Thus, the presence of benzene rings in a molecule increases its bioavailability in
a series of substituted benzodiazepines and substitution on the aromatic rings leads
to a decrease in bioavailability. Also one can note that the more oxygen atoms in
a molecule, the lower the bioavailability. It has been determined that the oxygen
atoms are hydrogen bond acceptors. This is in agreement with Lipinski’s “rule of
five” [24], whereby good bioavailability is observed when the drug corresponds to
the following physico-chemical characteristics: molecular weight < 500; log P < 5;
number of groups — proton donors < 5; number of groups — proton acceptors < 10.

Clearance. For clearance (Cl) of the investigated series, the trend is opposite to
that for bioavailability. Thus, the presence of H-donors in a molecule, substitution
in aromatic rings as well as an increase of molecule saturation leads to an increase
in clearance.

Time of semi-elimination. The influence of structural fragments on the variation
of the time of semi-elimination is similar to that described for bioavailability. Thus,
all lipophilic aromatic fragments have high values for increasing semi-elimination
time.

Volume of distribution. During the analysis of the influence of structure of ben-
zodiazepines on their volume of distribution, the same trends as for clearance
were revealed. Thus, refraction (electronic polarizability) increases the volume of
distribution and high aromaticity and hydrophilicity decrease it.

The resulting PLS models have been used for the development of virtual screen-
ing of pharmacokinetic properties of novel compounds belonging to bezdiazepines
family [94].

54.7.  Catalytic Activity of Crown Ethers'? (3D)

HiT QSAR was applied to develop the QSPR analysis of the phase-transfer catalytic
properties of crown ethers in the reaction of benzyl alcohol oxidation by potassium
chlorochromate:

Crown Ether

3PhCH,0OH + 2KCrO3Cl ————  3PhCHO + 2KC1 + Cr,03 + 3H,0 (5-21)

CH,Cl,

13 The authors express sincere gratitude to Prof. G.L. Kamalov, Dr. S.A. Kotlyar and Dr. G.N. Chuprin
for fruitful cooperation during the development of this task.
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The objects of the investigation were 66 structurally dissimilar crown ethers,
their acyclic analogues and related compounds. The compounds were not divided
into training and test sets. Catalytic activity was expressed as the percentage of
conversion acceleration.

The distinctive feature of this study is the absence of any reliable relationship
between topololgical (2D) structure of crown ethers and their catalytic properties.
At the 4D level a not very robust (0% = 0.46) relationship was obtained and, only
at the 3D level, after the selection of the conformations with the most acceptable
formation of complexes with potassium, was a reliable model formed (R2 =0.87; Q2
= 0.66). Alongside the positive effect of biphenyl and diphenyloxide fragments on
catalytic activity of the investigated compounds, the slight preference of “transoid”
on cis-conformations of crown ethers containing mentioned fragments was shown.
The undesirability of the cyclohexyl fragment was determined as well as the certain
limits of crown ether dentacy (4-8). These findings, as well as the predominant role
of electrostatic factors in investigated process (~50%), correspond to the known
mechanisms of catalytic action of the crown ethers. Two potent catalysts 10 and 11
(Table 5-4) were designed and introduced as a result of the QSPR analysis.

5.4.8. Aqueous Solubility'* (2D)

This work was devoted to the development of new QSPR equations which will accu-
rately predict S,, for compounds of interest to the US Army (explosives and their
metabolites) using the SIRMS approach with subsequent validation of the obtained
results using a broad spectrum of available experimentally determined data.

The series of the different QSPR models that supplement each other excludes the
application of additive schemes and provides a solution to the problems of virtual
screening, the evaluation of influence of the structural factors on solubility, etc., have
been developed and used with the consensus part of hierarchical QSAR technology.

The training set consists of 135 compounds and the test set includes 156
compounds. Two-dimensional simplex and derived from them Fourier integral
descriptors have been used to obtain the set of well-fitted, robust, and predictive
(internally and externally) QSPR models (R* = 0.90-0.95; 0% = 0.85-0.91; R?oq; =
0.78-0.87). External validation using four different test sets also reflects a high level
of predictivity (R?est1 = 0.7-0.87; R%es2 = 0.82-0.88; R (es3 = 0.66-0.76; R?c54
= 0.86-0.91). Here test; — mixed set of 27 compounds from different chemical
classes; testy — set of 100 pesticides; test3 — McFarland set of 18 drugs and pesti-
cides; and tests — Arthursson set of 11 drugs. When all 156 compounds have been
united in one external set, R%y = 0.87 has been reached. The application of DA
estimated by the two different approaches (Ellipsoid DA and Williams Plot) leads to
aloss of coverage but does not improve the quality of the prediction (R? sy = 0.87).

14" The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. M. Quasim for
fruitful cooperation during the development of this task.
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Special attention was paid to the accurate prediction of the solubility of polynitro
military compounds, e.g., HMX, RDX, CL-20. Comparison of the solubility values
for such compounds predicted by our QSPR results and EPI SuiteTM and SPARC
techniques indicates that both DoD and Environmental Protection Agency will have
considerable advantage using the SIRMS models developed here.

5.5. CONCLUSIONS

In summary, it can be concluded that the QSAR technology considered is a universal
instrument for the development of effective QSAR models which provide reliable
enough virtual screening and targeted molecular design of various compounds with
desired properties. This is a result of its hierarchical structure and wide descriptor
system.

The comparative analysis of HiT QSAR with the most popular modern QSAR
approaches reflects its advantage, especially in predictivity. The efficiency of HiT
QSAR was demonstrated on various QSAR/QSPR tasks at different (1D-4D)
levels of molecular modeling. HiT QSAR is under permanent development and
improvement. Currently the system of descriptors devoted to adequate description
of structure of nanomaterials on the basis of carbon polyhedrons (fullerenes, nan-
otubes, etc.), algorithms of consensus modeling, and procedures for QSAR analysis
of complex mixtures are under development. The technology developed has been
realized as a complex of computer programs “HiT QSAR.” The trial version is
available on request for everyone who is interested in it.
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Abstract: A large progress in the development of robust methods as an efficient tool for processing
of data contaminated with outlying objects has been made over the last years. Outliers
in the QSAR studies are usually the result of an improper calculation of some molecular
descriptors and/or experimental error in determining the property to be modelled. They
influence greatly any least square model, and therefore the conclusions about the biologi-
cal activity of a potential component based on such a model are misleading. With the use
of robust approaches, one can solve this problem building a robust model describing the
data majority well. On the other hand, the proper identification of outliers may pinpoint
a new direction of a drug development. The outliers’ assessment can exclusively be done
with robust methods and these methods are to be described in this chapter

Keywords:  Outliers, Robust PCA, Robust PLS

6.1. INTRODUCTION

The chemical behavior of a given molecule and its ability to interact with the
surrounding environment are determined by its molecular properties. Most of the
molecular properties related to the electronic configuration of the molecule, to its
different conformational and steric effects, and to its physico-chemical and topo-
logical properties cannot be measured directly. Therefore, molecular descriptors
are developed as a numerical expression of the molecular properties (Chapter 3).
The properties that can be obtained experimentally, e.g., biological activity or toxic-
ity are another expression of the molecular properties. These observed properties
are related back to the intrinsic properties in order to predict the behavior of a
molecule from its structure and physico-chemical properties. Construction of a
quantitative/qualitative model that describes this relationship is the main goal of
any quantitative/qualitative structure—activity relationship (QSAR) study. In this
context, the chemometric calibration techniques are highly valued. Specifically prin-
cipal component regression (PCR) and partial least squares regression (PLS) [1, 2]
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have become the usual methods of choice where a large number of descriptors are
used. In addition to the quantitative issues, one is interested in identifying groups of
molecules with similar properties as quantified by a set of molecular descriptors or
by a certain observed property (e.g., biological activity, toxicity). Cluster analysis
and principal component analysis have proven to be excellent methods for the explo-
ration and visualization of the huge numbers of descriptor data generated, whereas
with classification and/or discriminant methods one can create logic rules for the
classification of molecules.

In this chapter, we will focus on the principles of “robust” data exploration and
modeling. In the standard QSAR applications, the term “robust” is used to describe
a model with good predictive properties for a relatively broad collection of new
molecules. However, in the context of robust statistics the term “robust” is reserved
for a group of methods that provide good estimates for the majority of data. The sta-
tistical term “robust” will be used exclusively in this chapter and the robust variants
of some classic methods applied for the exploration and modeling of QSAR data
will be introduced.

The motivation for using the robust over the classic methods stems from the
nature of QSAR data, where atypical observations are often present. Such atyp-
ical observations are called outliers. They are usually the result of the improper
calculation of some molecular descriptors and/or experimental error in determin-
ing the property to be modelled. The use of three-dimensional descriptors requires
an alignment of molecules, which is another potential source of error in the calcu-
lated descriptor data. The presence of outliers in the QSAR data matrix influences
the performance of classic statistical methods with the so-called least squares loss
function [3]:

m
V:mianl-2 (6-1)
i=1

where r; is the residual of the ith object obtained from the least squares model.

Classic principal component analysis (PCA) and partial least squares regression
[4] are typical methods with such a loss function.

Two strategies are usually followed to handle outliers. The first strategy consists
of the identification and subsequent elimination of outliers from the data matrix.
Then a classic approach can be used to model the “clean” data. Alternatively,
one may perform diagnostics on the residuals obtained from the classic model to
identify outliers. However, such an investigation is rather misleading, since the
outliers strongly influence the fit of any classic model [S]. The problem is even
further complicated when the data contain many outliers and the so-called masking
and swamping effects (see the explanation given in Section 6.6.3) may take place.
Therefore, a less popular, but a more appropriate and efficient strategy in the QSAR
field is to apply robust methods directly to the data.

For instance, down-weighting the influence of outliers can diminish the risk of
distorting the least squares model constructed for the complete data set to a great
extent.
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Even though outliers are considered as to be unique molecules that cause consid-
erable difficulties during data processing, they can identify important information
about an eventual source of error or about possible reasons for their unique behav-
ior, which is especially valued in the QSAR studies. Let us first describe the types
of outlying objects that may be present in the QSAR data.

6.2. OUTLIERS AND THEIR GENESIS IN THE QSAR STUDIES

Several types of outliers can be distinguished depending on the QSAR problem that
is being investigated. Molecules with structures that are different compared to the
structures of the remaining molecules are outliers in the space of molecular descrip-
tors (X-space). The X-data characterize in a specific way either the structure of the
molecule or its binding strength to the specific target, e.g., to the active site of an
enzyme. A number of descriptors can be used for this purpose [6], including those
which characterize the three-dimensional nature of molecules. Calculation of three-
dimensional descriptors requires minimizing the molecules’ energy using docking
or alignment procedures, as is performed in the comparative molecular field analysis
(CoMFA, see Chapter 4) [7]. An example of such a philosophy can be found in [8],
where a set of selected HIV reverse transcriptase inhibitors were docked into the
binding pocket of the reverse transcriptase using the pharmacophore-based docking
algorithm [9]. To define the inhibition strength, the non-bond interaction energies
between the candidate inhibitor and 93 amino acid residues forming 16 different
reverse transcriptase binding pockets were then computed. The procedures used for
minimizing the molecules’ energy, as well as docking and alignment methods, are
considered as time-consuming and error-prone approaches. Their optimal perfor-
mance is crucial in obtaining high-quality data. In practice, the presence of outliers
in X-data caused by the sub-optimal performance of these methods is not an excep-
tion. The molecules can be aligned differently with respect to their shape and charge
distribution [10]. As pointed out in [11], the large flexibility of the binding site can
also be a possible source of outliers.

Docking of molecules is not an easy task. The difficulties are mainly associated
with the choice of the crystallographic structure of a target protein. At present, the
protein data bank contains more than ten X-ray crystallographic structures of the
HIV reverse transcriptase and choosing which of them should be used for docking
of putative inhibitors is not straightforward. Moreover, docking of inhibitors in all
known target structures may be unfeasible [8]. In practice, the docking procedure is
performed either by the use of a “compromise” target structure (average of all known
target structures) or by subsequent docking of molecules to the target structures fol-
lowed by averaging the computed interaction energies. Both approaches possess
some docking uncertainties due to which outliers can be introduced into X-data.
An inappropriate choice of molecular descriptors might be another reason that
X-data contain outliers.

Furthermore, some molecules may have a specific mechanism of chemical behav-
ior [12] associated with their unique binding properties [13]. For instance, some
molecules may have multiple binding modes resulting in higher overall interaction
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energies in comparison with molecules with a single binding mode. Such a molecule
can be attractive as a potential drug and its identification as an outlier can pinpoint
new directions for future research.

Outliers identified according to the dependent variable (e.g., biological activ-
ity, toxicity), y, belong to another type of outliers. These are molecules that have
generally high or low values of the determined property due to typographical or
experimental error.

In summary, two types of outliers may be present in the collected data:

(i) outliers in the X data and
(ii) outliers in calibration or experimental determination.

The choice of methodology for analysis depends strongly on the aim of the
QSAR study and the collected data. Supervised models such as principal compo-
nent regression (PCR) and PLS are constructed when the goal of the study is to
model the relationship between X and y. In this case, one is interested in finding
all types of outliers bearing in mind that the molecules found as outliers in the X-
space are not necessarily outliers in y. Outliers in calibration are objects that do
not follow the model appropriate for data majority [3]. Three types of calibration
outliers can be distinguished, i.e., good and bad leverage objects as well as high
residual objects (see Figure 6-1). Compared to the good leverage objects that are far
from the data center in the X-space and in y, the bad leverage observations do not
fit the model. The high residual outliers are objects with large absolute differences
between the observed and predicted values of y. One can also look for the same
types of outliers in the descriptor X-data, which are explored by the unsupervised
chemometric approach. Here the residuals from the constructed robust PCA model
and the distances of objects from the robust data center in the space of robust scores
are considered.
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Figure 6-1. Tllustration of the regular and outlying objects in calibration: good leverage, bad leverage,
and high residual objects
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Before introducing the robust versions of PCA and PLS and discussing their
use in the QSAR studies, some major concepts of robustness will be presented. In
the following section, the term “estimator” is used in a somewhat general sense to
refer to any function that aims to estimate a value characterizing the data (e.g., data
location, scatter).

6.3. MAJOR CONCEPTS OF ROBUSTNESS

Robust properties of estimators are evaluated in different ways, but using a single
measure of robustness is usually insufficient to obtain a complete picture of their
performance. Here only the concepts of the breakdown point [14], influence func-
tion [15], efficiency, and equivariance properties [3], which are probably the most
popular and frequently used measures to assess the robustness of an estimator, will
be discussed briefly. A more detailed description of various robustness measures can
be found in [3, 16, 17].

6.3.1. The Breakdown Point of an Estimator

The breakdown point, which is defined as the smallest fraction of outliers that can
make the estimator useless, seems the most intuitive and appealing robustness mea-
sure. It is said that the estimator has a 0% breakdown point when a single outlier
completely distorts the result obtained from the estimator. For example, two well-
known classic estimates of data location and scatter, namely data mean and standard
deviation perform well when data are normally distributed. However, if even one
data sample (data object) has a very different value compared to the remaining ones,
these two classic estimators “breakdown.” Similar to the data mean and standard
deviation, any least squares estimator has a breakdown point of 0%. Estimators hav-
ing the highest possible breakdown point of 50% are called high breakdown point
estimators. Many estimators have a breakdown point somewhere between the two
extremes (0 and 50%) and its exact value depends on the type of estimator used and
its properties.

6.3.2. Influence Function of an Estimator

Another quantitative measure of the robust properties of an estimator is the influence
function. As the name of this function suggests, it measures the influence of a single
observation on the outcome of the estimator. When the influence function of an
estimator is bounded, i.e., takes values only in a certain interval, then the estimator
is robust, otherwise it is not. A few commonly used influence functions, ¥, bounded
and unbounded ones, are presented in Figure 6-2.

6.3.3. Efficiency of an Estimator

The efficiency of an estimator is a measure of its performance with contaminated
and uncontaminated data. It is defined as the ratio of the mean squared error of the
robust estimator to the mean squared error of the classic estimator when they are
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Figure 6-2. Examples of: (a) unbounded influence function of the least squares estimator and bounded
influence functions such as (b) “fair,” (¢) Huber, and (d) Cauchy

both applied to uncontaminated data (normally distributed data). In other words, an
efficient estimator neither ignores outliers nor treats regular observations as if they
were outliers.

6.34. Equivariance Properties of an Estimator

The estimator is said to be equivariant when a systematic change in the data
causes an analogical impact on the estimator [3]. In general, one speaks about the
equivariance properties of location, scale, and the regression estimators.

Affine equivariant estimators are the most desired ones. They are independent
of affine data transformations such as rotation, scaling, and translation, which
are linear data transformations. The affine transformation preserves the collinear-
ity between objects as well as the ratio of distances. Three types of equivariance
properties are discussed for regression estimators: regression, scale, and affine
equivariance. A regression estimator is the regression equivariant when an addi-
tional linear dependence results in an appropriate modification of the regression
coefficients. Regression estimators belonging to the family of scale equivariant esti-
mators are independent of the measurement scale. Last, but not the least, the affine
equivariance of the regression estimator is the most difficult to fulfill. In this con-
text, any affine data transformation causes a corresponding change in the regression
coefficients. Practically, the affine equivariance of the regression estimators is not
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always required. For instance, the scale and orthogonal equivariance are sufficient
to obtain a robust PLS model [18].

6.4. ROBUST ESTIMATORS

Over the years, different families of robust estimators have been proposed for an
estimation of data location and scatter. They can differ greatly with respect to their
robust properties. Here, for the sake of brevity, several estimators will be briefly
reviewed. In general, the usual problems that are the direct focus in various QSAR
studies rely on a robust estimation of data location and scatter (covariance) under the
presence of outliers. An appropriate estimation of data location and covariance is of
great importance and is required in many methods which actively use the covariance
matrix. To emphasize the scale of this problem, it is probably sufficient to mention
at this point that principal components are the eigenvectors either of the covariance
or correlation matrix and that the covariance matrix is required for the construction
of the PLS model.

6.4.1. Robust Estimators of Data Location and Scatter

Among different robust data location estimators, the median is the simplest to define
the robust center of a univariate distribution [3]. Even though the median is a highly
robust estimator with the maximum breakdown point of 50%, it is not very efficient.
In multivariate settings, several median generalizations can be used, including the
Li-median, also called the “spatial” median. The problem of estimating the L;-
median center of the data relies on finding a point, i1, in the multivariate data
space that minimizes the sum of Euclidean distances between this point and all of
the data points [3]. The differences among the mean (magenta dot), the robust data
center estimated using the coordinate-wise median (blue dot), and the Lj-median
center (red dot) are illustrated in Figure 6-3 for a contaminated set of 30 objects
described by two variables. The data set contains five outlying objects.

The L;-median center can be obtained using an iterative procedure in which the
following criterion is minimized:

n
min ) % — g (6-2)
L1
i=1

where ||e|| is the L{-norm and » is the number of variables.
The consecutive steps of the iterative approach can be summarized as follows:

(i) set the Li-median as the median of the parameters, e.g., use the coordinate-
wise median as the initial estimate;
(i1) center the data using the current estimates of the L-median, pp1;
(iii) compute the weight for each data object as [Eq. (6-3)]:
X;

Wp = — (6-3)
Il
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Figure 6-3. Tllustration of the difference among three data location estimators applied to two-
dimensional data set with five outlying observations: classic mean (magenta dot), median (blue dot),
and L -median (red dot)

(iv) compute the new data center for m objects as [Eq. (6-4)]:

di -X
g Joew X (6-4)
> Wi
i=1
(v) check the convergence limit, d [Eq. (6-5)]:
n
d=>"|uLi, — &l (6-5)
j=1
(vi) calculate new estimates of the Li-median using Eq. (6-6):
Rep =Ky +¢ (6-6)

(vii) return to step (ii) if d is larger than the predefined limit.

The Lj-median estimator and the standard median have the highest possible
breakdown point of 50%. It is worth noting that the L;-median is reduced to the
standard median in a one-dimensional space.

A parameter that describes data distribution or scale is the standard deviation.
This estimator is also non-robust because it is highly influenced by arithmetic mean.
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There are several robust variants of this estimator. The median of absolute deviation
about the median, also called the median absolute deviation (MAD), and the Qn
estimators are usually applied [19]. The robust scale estimator MAD is defined as:

OMAD = cMAD - median; - |x; — median; (x;)| (6-7)

where cmap is the correction factor which is equal to 1.483. The correction factor
is required to increase the efficiency of the MAD estimator for the uncontaminated
data following the normal distribution. The MAD estimator is highly robust and
relatively simple to compute, but in some applications its efficiency can be unsatis-
factory. Therefore, another robust scale estimator called the Qn estimator [19] was
proposed. It has a relatively high efficiency for normally distributed data and can
deal with up to 50% of outliers in the data. The Qn estimator for a single vari-
able is defined as the value of the element corresponding to the first quartile of
the sorted absolute pair-wise differences between objects. More formally it can be
expressed as:

oqn = 2.2219 - con - { i — x5 i < j[} ) (6-8)

where k = (4) ~ (3) /4 and h = [n/2]+1.

Similar to the MAD estimator, the value obtained is modified to achieve better
efficiency with a normal distribution. In general, the constant factor, cqn, depends
on the number of objects and tends to 1 with the increasing number of elements.

In contrast to the estimators already discussed, there are robust estimators that
estimate data location and scatter simultaneously. These are the M estimator, MVT
(multivariate trimming), MVE (minimum volume ellipsoid), the Stahel-Donoho
estimator, and MCD (minimum covariance determinant) [3]. They provide robust
estimates of data covariance.

6.4.2. Robust Estimators for Multivariate Data Location and Covariance

Historically, the Stahel-Donoho estimator of multivariate data location and scatter
was proposed first. This estimator, known as the “outlyingness-weighted median”
[20, 21], is a highly robust and affine equivariant estimator. As its name sug-
gests, the influence of outliers is discarded by down-weighting each object, x;,
by a weight defined from the outlyingness measure, o0j, using a positive and
decreasing weight function. The outlyingness of an object is determined as the
maximum value obtained from the projection of an object onto a set of normalized
directions p:

T T
0r — max x;p" — median (x;p")| 69)
Ipl=1 omap (xipT)
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In the original version of the Stahel-Donoho estimator, MAD was used to esti-
mate the scale of projections. However, MAD can be replaced by a more efficient
estimator of scale, e.g., the Qn estimator. The concept of the Stahel-Donoho
estimator is closely related to the principle of the projection pursuit method [22].
With the Stahel-Donoho estimator, one assumes that the outlying observations
should be uncovered on some univariate projections. This assumption is very
attractive, but in practice the computation of this estimator requires solving an
optimization problem, which is a very time-consuming task. Consequently, only
an approximated solution of the Stahel-Donoho estimator given by Eq. (6-9) is
obtained [23]. The breakdown point of the estimator attains 50% when m > 2n+1.
Using the outlyingness measure, a weight can be attributed to each object and in
this way, a robust estimation of the multivariate data location and scatter [24, 25] is
derived.

Another concept of a robust data covariance estimator was introduced in [26].
The MVT estimator, known as the multivariate trimming approach, is an itera-
tive procedure of computing the Mahalanobis distance for each object to obtain
a so-called “clean” subset of objects. The clean subset contains a specified frac-
tion of objects with the smallest Mahalanobis distances that is used to obtain robust
estimates of the data mean and covariance. The iterative procedure is continued
while the mean of retained objects changes. The MVT estimator reaches conver-
gence relatively quickly and is affine equivariant. In [21], it was reported that
the MVT estimator has a breakdown point of at most 1/n and its robust prop-
erties greatly depend on the data dimensionality which is a serious drawback.
When the number of data variables outnumbers the number of objects, which
is often the case in the QSAR studies, the MVT estimator cannot be applied
directly.

The minimum volume estimator (MVE) proposed in [27] is also a robust esti-
mator of data location and covariance. With this affine equivariant estimator, the
“clean” subset of p objects is found as a population of objects that define an ellip-
soid of the smallest volume (where p = m/2 + 1). There are several algorithms
for MVE [28-30]. The breakdown point of 50% of the MVT estimator is expected
when the number of samples tends toward infinity. To achieve a better efficiency at
the normal distribution, the covariance estimate obtained for the “clean” subset is
multiplied by a suitable correction factor. The MVE estimator is computationally
demanding for large data sets.

The minimum covariance determinant (MCD) estimator is yet another highly
robust estimator of data covariance [3], which has gained much attention in recent
years. MCD was frequently used to make robust variants of methods used in chemo-
metrics [31]. Using MCD, the “clean” subset of objects with the covariance matrix
of the smallest possible determinant is determined. The estimator has a break-
down point of 50%. It has a relatively good efficiency compared to its predecessors
and its solution can be found relatively quickly using the FAST-MCD algorithm
[25]. The MATLAB code of the FAST-MCD algorithm is available from [32].
Moreover, other estimators, which are more efficient than MCD, have been proposed
in [33, 34].
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The main steps of the MCD algorithm can be summarized as follows:
The following process is repeated through 500 iterations:

(1) select p objects randomly. The p value can be set by default as 0.5-(m+n+1),
where m is the number of objects in the data and » is the number of variables
in the data;

(ii) compute mean, covariance, and the Mahalanobis distances using a subset of p
objects and perform the next step two times;

(iii) select p objects with the smallest Mahalanobis distances and on the basis
of these objects compute the data mean, covariance, and the Mahalanobis
distances for all of the objects;

(iv) retain ten subsets of objects, for which the determinant of the covariance matrix
is the smallest;

(v) after 500 iterations, perform step (iii) on the best “clean” subset of objects as
long as convergence is not reached;

(vi) use the “clean” subset of objects in order to detect outliers using diagnostics
based on the Mahalanobis distance.

Similar to MVT, where the Mahalanobis distances are used to define the “clean”
subset, the MCD estimator can only be computed if the number of objects in the
“clean” subset exceeds the number of data variables. Otherwise, a data dimension-
ality reduction is required. A further increase of MCD efficiency can be gained using
a weighting scheme [4]. In the re-weighted variant of MCD, only objects with the

Mahalanobis distances below a definite cut-off value ( / an 0975 ) receive weights

equal to one, and thus, only they are considered in defining the final estimate of
robust covariance matrix:

: 2
by { 1A MD; = /32000 610)

0 otherwise

6.5. EXPLORING THE SPACE OF MOLECULAR DESCRIPTORS

The aim of the exploration of the space of molecular descriptors, X-space, is to
reveal the similarities/differences among the molecules studied, to obtain informa-
tion about the correlation among various descriptors, and eventually to investigate
whether the data contain molecules that are very different in terms of the selected
descriptors, in comparison with the remaining ones. Principal component analysis
(PCA) and its robust variants can be applied successfully for the exploration of
X-data. Therefore, the following section is devoted to these methods.

6.5.1. Classic Principal Component Analysis

PCA [35, 36] allows for a representation of multivariate data into a low-dimensional
space spanned by new orthogonal variables, which are obtained as linear combina-
tions of the original variables by maximizing the description of data variance. For
any centered data matrix X, (m, n), the PCA decomposition can be presented as
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X, =TPT (6-11)

where T (m, r) is the matrix containing the data scores, P is the loading matrix
of dimension (n, r), and r is the mathematical rank of the data that is equal to
min (m, n).

Each orthogonal component (eigenvector) constructed is associated with its cor-
responding eigenvalue. The total sum of eigenvalues is equal to the total data
variance. The eigenvalue of the ith eigenvector can be calculated as the sum of
its squared score elements when the data are centered. Principal components are
ordered according to the magnitude of the corresponding eigenvalues. The first
component describes the largest part of the data variance and the consecutive ones
account for a smaller part of the data variance than the preceding principal com-
ponent. For data exploration, a plot of eigenvalues or a plot of the cumulative data
variance described by the models of increasing complexity is a standard tool which
helps to distinguish the significant components from the non-significant ones asso-
ciated only with the data noise. The number of significant components, denoted as
£, is usually much lower than the number of original variables, n, and expresses the
degree of data compression. The higher the degree of correlation among the origi-
nal variables the better the compression of the studied data set, which results in a
smaller number of significant principal components. The number of significant PCs
can be determined on the basis of a cross-validation procedure [36].

Projection of objects onto the plane defined by the main principal components
(e.g., PC1 and PC2 or PC1 and PC3), the so-called score plot, allows the distribu-
tion of objects and their similarity or dissimilarity in the space of parameters to be
studied. Analogous projection of data variables enables sub-groups of correlated and
independent variables to be found. Simultaneous interpretation of score and load-
ing projections gives the possibility to draw conclusions for the objects’ structure in
terms of the variables studied. In QSAR studies, the score matrix, T, contains infor-
mation about the studied molecules, while the loading matrix, P, holds information
about the studied molecular descriptors.

6.5.2. Robust Variants of Principal Component Analysis

Similar to any least square method, this basic tool of data compression and visual-
ization is very sensitive to outliers (see Figure 6-4). One or a few outlying objects
can greatly influence the results of PCA and the final data interpretation.

There are several robust variants of PCA that fall into one of the following three
categories:

* Methods that make use of a robust covariance matrix. The classic covariance
matrix is replaced by its robust estimate obtained using the robust estimates of
data location and spread. A PCA decomposition of the robust covariance matrix
provides a set of robust eigenvectors and eigenvalues.

* Methods that provide robust estimates of eigenvectors and eigenvalues directly
without the need to obtain the robust estimate of the covariance matrix. Generally,
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these methods are based on a projection pursuit search for a data structure in
high-dimensional data. In fact, the experimental data are projected from a high-
dimensional onto a lower-dimensional space by maximizing a robust measure of
data spread called the projection index.

* Hybrid methods that combine the two above listed procedures for dealing with
outliers.
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Figure 6-4. A projection of simulated data containing five outliers onto the two-dimensional space
spanned by original variables, x| and xp. The first two principal components constructed for the data
are shown with red lines and the PCs obtained after removing the outliers are illustrated with blue lines

Some of the robust PCA methods can efficiently handle only a restricted num-
ber of variables. A comparison of different robust PCA methods can be found in
[37, 38]. We will limit our presentation to three robust PCA procedures that are
suitable for processing high-dimensional data. These PCA methods are selected to
demonstrate the properties of one approach from each category.

6.5.2.1. Spherical and Elliptical PCA

Spherical PCA (sPCA) [39] belongs to the first category of robust PCA methods.
It is the simplest and most intuitively appealing approach. With sPCA, all objects
receive weights proportional to the inverse of their distances to the robust center of
the data. In this way, the potential influence of outliers is diminished. This is equiv-
alent to a projection of all objects onto a sphere of unit radius measured from the
robust data center (see Figure 6-5). The robust scores, T, are then found by pro-
jecting centered X-data onto the loadings obtained from the standard PCA applied
to the weighted data, X%.
More formally, the sSPCA algorithm can be summarized as follows:
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Figure 6-5. Projection of a two-dimensional data set containing 20 objects onto a sphere of unit radius
centered at the Lj-median

(i) center the data, X (m, n), using the L-median estimator of data location;
(i1) calculate weights for all objects, defined as in Eq. (6-12):

1
Wi= ——— (6-12)

n
3 (x)°

J

(iii) perform PCA on the weighted data matrix:
X% = diag(w) X (6-13)
XV = TVpWT (6-14)
where operation “diag” transforms the vector of weights w into a diagonal matrix,

the diagonal elements of which are the weights;
(iv) use loadings P¥ to calculate robust scores:

T = XP" (6-15)

A variant of this method called elliptical PCA (ePCA) in which different scales
of the data variables were taken into the account, has also been proposed. In this
approach, the objects are projected onto a hyperellipse, the radii of which are propor-
tional to the Qn scale estimator of each variable. The MATLAB code for estimation
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of the Qn scale was implemented in the LIBRA toolbox [40], which is available
from [41].

6.5.2.2. Projection Pursuit with the On Scale

Many approaches based on projection pursuit (PP) have been presented, e.g., [42—
47]. The main difference among them is in the type of projection index used. For
instance, Li and Chen [43] applied the M estimator of scale, whereas Xie et al.
[46] as well as Galpin and Hawkins [45] proposed optimizing the Lj-norm of the
data variance as a robust measure of data spread. On the other hand, Xie et al.
[46] applied the generalized simulated annealing method as an optimization algo-
rithm to identify the global minimum, while Croux and Ruiz-Gazen [47] developed
the C-R algorithm with the Lj-median for estimation of data center and the robust
Qn scale estimator as a projection index. The main idea of the PP-Qn method is
based on finding directions in the experimental space that maximize the Qn scale
(a robust equivalent of the standard deviation). In the algorithm, first the data are
centered about their Li-median center and all objects are then projected onto a set
of directions defined by the normalized vectors passing through the objects and data
origin. Next the Qn scale is estimated for each projection and the direction with
the maximum Qn value is selected as the first loading vector. The X-residuals are
further analyzed as long as the desired number of factors is constructed. Since the
considered directions are restricted to pass through the center and data points, a sub-
optimal solution might be obtained when the number of objects in the studied data
set is small. A remedy for this problem is to add random directions to the data. The
method described is easy to implement, the estimates are defined explicitly, good
efficiency with a smooth and bounded influence function and the maximum break-
down point are achieved as well as a quick estimation of the first g eigenvectors
without the need to compute them all.

6.5.2.3. ROBPCA — A Robust Variant of PCA

The ROBPCA method proposed in [48] belongs to the third category of robust PCA
approaches. It is a hybrid procedure combining the idea of projection pursuit with
the robust estimation of data location and covariance in a low-dimensional space.
The PCA method is used in the preliminary step for data dimensionality reduction.
Then the robust data center and covariance is found using the re-weighted MCD
estimator in the reduced space of the projected samples. Finally, the estimates of
data location and covariance are transformed back to the original data space and
the robust estimates of multivariate data location and scatter are calculated. The
ROBPCA method can be summarized in the following four steps:

(i) perform PCA for preliminary data dimensionality reduction;

(i) compute the outlyingness measure (i.e., the projection index) for every object
and construct the initial H-subset (Hp) containing /4 objects with the smallest
outlyingness measure (the choice of & determines the robustness of the method
and its efficiency; the default value of 4 is set to 75% of the total number of
objects in the data);
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(iii) perform a further data dimensionality reduction by projecting the data onto
k-dimensional subspace spanned by the first k eigenvectors of the empirical
covariance matrix obtained for objects in Hy;

(iv) compute the robust data center and covariance in the k-dimensional subspace
and apply the re-weighted MCD estimator to the projected data.

The MATLAB implementation of the ROBPCA algorithm is available from [49].
The original algorithm of ROBPCA is designed to construct an optimal PCA sub-
space of a definite dimensionality, f. The solutions obtained are not nested, which
means that the model with f+1 components should be recalculated. A faster ver-
sion called ROBPCA-fmax, which handles data sets of dimension up to 100 and
Jfmax = 10, was proposed by Engelen et al. [38].

6.6. CONSTRUCTION OF MULTIVARIATE QSAR MODELS

In the majority of the QSAR studies, the number of descriptors used greatly outnum-
bers the number of available samples thereby increasing the possibility of obtaining
a high correlation among descriptors. Construction of a model that describes the
relationship of the highly correlated X-data with a property y (toxicity, biological
activity) is then problematic when applying the classic multiple linear regression
(MLR) approach, since the regression coefficients cannot be calculated. A possi-
ble remedy for this problem is to select several orthogonal variables either using
some preliminary knowledge or using a variable selection scheme, e.g., the step-
wise MLR approach. Another more general and efficient strategy to deal with the
multicollinearity in X-data is to obtain a few orthogonal variables that describe the
covariance between X-data and y. The partial least squares (PLS) regression has
proved to be a successful tool for this purpose. There are several algorithms that
can be used to construct a PLS model among which the non-iterative partial least
squares (NIPALS) method [1] is the oldest. An improved variant of the classic PLS
algorithm called SIMPLS [50] allows for the quick and efficient processing of a
large number of descriptors by performing the calculations on the economic size of
the X-matrix.

To make the presentation easier to understand, a description of the classic PLS
algorithm is presented in the next section.

6.6.1. Classic Partial Least Squares Regression

With the partial least squares (PLS) model, one aims to describe the linear relation-
ship between a set of explanatory variables, X [1, 2] and a response variable, y. As
mentioned before, PLS is capable of providing a solution when variables in the data
are highly correlated. This is possible because the original variables are represented
by a few new orthogonal latent factors, T, obtained by maximizing the covariance
of X with y. The model can be presented mathematically as follows:

X=TP' +E (6-16)
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y=Tq+r=Xb+r (6-17)

In these equations, X is the original centered data matrix with m rows (molecules)
and n columns (descriptors), q holds f regression coefficients associated with f PLS
factors, T. The residual matrix E represents the differences between observed and
predicted X, while r holds the differences between observed and predicted y. The
regression coefficients, b, are obtained according to Eq. (6-18):

b=WEP'W) lq (6-18)

in which W is the matrix of loadings maximizing the covariance criterion and P
is the product of X and T. As was already mentioned, the classic PLS regression
estimator has a breakdown point of 0% and it provides an inadequate solution when
outliers are present in the data. Therefore, robust versions of PLS are of great value.

6.6.2. Robust Variants of the Partial Least Squares Regression

There are several versions of robust PLS which differ in the way outliers are han-
dled. Some of the first proposals for the robust PLS method [51] are considered as
partially robust [52] since only some of the steps in the algorithm are made robust.
This does not entirely guarantee the dealing with multivariate outliers properly. The
first robust PLS method based on a robust sample covariance matrix and cross-
covariance of X and y was presented in [52]. In order to derive the robust covariance
matrices, the authors adopted the robust Stahel-Donoho estimator of data scatter
with the Huber’s weight function [16]. However, the method is computationally
demanding which strongly limited its use. Therefore, the method did not gain pop-
ularity and was rather neglected. The next proposal was the iteratively re-weighted
PLS (IRPLS) method [53]. As the name of the method suggests, the objects are
iteratively weighted according to their residuals from the model. The authors of the
method used various weight functions and evaluated their robust properties. They
showed that with the use of the “fair” function, the highest breakdown point of
44% was obtained. The main drawback of this method is that only the outliers with
respect to y are down-weighted, diminishing their influence on the model. In some
applications this could be sufficient, but in general abnormal samples can also be
found in the generated or experimentally obtained X-data. A natural and necessary
continuation in development of the robust PLS method is a method that is (i) capable
of handling outliers in both X and y data, (ii) computationally fast, (iii) statistically
efficient, and (iv) highly robust in terms of breakdown point. Several approaches
possessing such properties are described in the next section.

6.6.2.1. Partial Robust M-Regression

The robust properties of partial robust M-regression (PRM) introduced in [54] are
obtained by weighting the objects in a way which guarantees that the calibration
model built is representative for the majority of the data. Two types of continuous
weights are considered, namely the leverage and residual weights. For the ith object,
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the leverage weight w7 is defined for the frobust factors in the following way:

¥i= (medy:;,- o n(xTL)IH(T)n ’C> 1
and
D(z,0) = L (6-20)
(1+[2)°

where ||e|| is the Euclidean norm, t; represents f PLS scores for the ith object,
“median” denotes the median estimate, || is the Li-median robust estimator of
the location [19], and c is the tuning constant which is equal to four for majority of
applications [54].

The residual weights, wf, are found according to Eq. (6-21):

W= (gc> (6-21)

In this Eq. (6-21), r; is the residual element, i.e., the squared differences between
observed and predicted response values for the ith object that are obtained from the
model with ffactors and o is the MAD estimator of data scale [3] defined as:

o = med (6-22)

1

ri — med (1)
J

Finally, the objects are weighted by the inverse of global weights, w;, which are
obtained as a combination of both weights:

Wi = m (6-23)

Similar to IRPLS, in PRM the weights are estimated iteratively as long as the
algorithm convergence is not reached. The convergence criterion is fulfilled when
the difference between the norm of the regression coefficients associated with the
robust PLS factors, q, of two consecutive steps is negligible, e.g., 107>. The main
steps of the PRM algorithm can be summarized in the following way:

(1) initialize the global weights, w;, according to Egs. (6-19, 6-20, 6-21, 6-22, and
6-23);
(ii) build a PLS model for the X rows weighted using w;;
(iii) calculate the residuals, r;, for all objects according to the interim PLS model
and update the values of the global weights; and
(iv) repeat the estimation from step (ii) to (iii) as long as the convergence criterion
is not met.
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The PRM routine is implemented in the recently presented toolbox for multivari-
ate calibration (TOMCAT). The toolbox developed in the MATLAB environment is
available from [55].

6.6.2.2. Robust Version of PLS via the Spatial Sign Preprocessing

Another concept to make the PLS method robust has been proposed by Serneels
et al. [56]. The idea is to project the multivariate data objects onto a sphere of unit
radius in the direction passing through the robust data center as illustrated in Figure
6-6 and then to construct a classic PLS model for the transformed data. This method
is known as a spatial sign preprocessing PLS. Figure 6-6shows an object (black dot)
and its projection (red dot) onto the sphere with a center in the robust center of
the data.

variable 2
o
o [(6)]

I
o
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Figure 6-6. Projection of an object (black dot) with coordinates [-1.5 1.5] onto a unit sphere with

center in the Lj-median. The red dot represents the object transformed with new coordinates given as
[-0.71 0.71]

A spatial sign transformation is a method to obtain a robust covariance
estimate, X, and this can be expressed as

. 1 &
Y = p— Z sgn (X; — L) sgn (X; — pn)’ (6-24)

i=1

with the sign function defined as

en (x) — {xi/ Ixillif x; # 0 6.25)

0 if x,=0
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In Eq. (6-24) the Li-median is used to center the data, but generally different
estimators of data location can be applied. Compared to PRM and RSIMPLS, the
method proposed is only moderately robust in terms of the breakdown point as this is
confirmed by the simulation study presented in [57]. Nevertheless, this simple mod-
eling approach has a number of very useful features. It can easily be implemented
within the PLS framework with no extra computational cost. The model obtained is
relatively efficient providing satisfactory estimates for the normally distributed data.
Therefore, it can be considered as an attractive alternative to more computationally
demanding robust PLS variants for data with a moderate data contamination.

6.6.2.3. RSIMPLS and RSIMCD — Robust Variants of SIMPLS

The popularity of the SIMPLS algorithm [50] is due to its fast performance for
wide-type data (where the number of variables exceed the number of samples) as
found in many QSAR analyses. Two empirical covariance matrices are used in the
algorithm. One is computed for the input X data, and the other one is the cross-
covariance of X and y which makes the classic SIMPLS algorithm sensitive to
outliers. To obtain the robust variant of SIMPLS, both covariance matrices have to
be replaced with their robust counterparts. Two robust approaches, RSIMPLS and
RSIMCD that consist of two steps were proposed. The step common to both meth-
ods is the use of ROBPCA to obtain robust scores. Specifically, this step is important
to derive the robust cross-covariance matrix. Then the robust regression is carried
out. This step is performed differently in both methods. Re-weighted multiple linear
regression is used in RSIMPLS, while the MCD-based regression [57] is applied in
RSIMCD. Both approaches are characterized by a breakdown point of 50% which
makes them highly robust, but RSIMPLS is computationally faster in comparison
with the RSIMCD approach.

6.6.3. Outlier Diagnostics Using Robust Approaches

Another important issue to be discussed is how to identify the outlying samples.
The simplest univariate approach is to compare the z-transformed values of objects
x; with a definite cut-off value, e.g., 2.5 [4]:

R d
o = i = median®)| (6-26)
O0On

In this Eq. (6-26), the robust Qn estimator of data scale is used.

In the multivariate case, detection of outliers is based on the robust version of the
Mahalanobis distance which is defined as the distance of each object to the robust
center of the multivariate data. The robust variant of the Mahalanobis distance can
be obtained when the location and scatter of multivariate data, CR, are derived using
the robust estimator of data location and scatter, e.g., MCD.

MD; = \/ (xi — )" Cr(x; — 1) (6-27)
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The chi-square distribution with two degrees of freedom and a 97.5% confidence
level is used as the cut-off value, e.g., ¢ =,/ X220.975- The confidence level defines

the proportion of objects with the Mahalanobis distances below the cut-off level, c.

As was pointed out before, outlier identification is not an easy task because the
masking and swamping effects can take place. When the data contain many out-
liers they can hide each other’s influence and it can happen that some of them may
be unnoticed if a non-robust approach is applied. On the other hand, some regular
objects may be recognized as outliers as a result of the swamping effect.

Let us consider data presented in [58] containing 188 measured values of
log Kow and toxicity (log LCsp). A total of 13 outliers (red dots in Figure 6-7)
were deliberately introduced into the data by setting log LCsq values to zero for
those compounds for which LCsy was undetermined. Their negative influence upon
the data covariance can be noticed immediately since the covariance ellipse (red
line) drawn for a confidence level of 97.5% has changed its orientation toward
them. However, after down-weighting the influence of outliers, the orientation of
the covariance ellipse (green line) indicates a correct correlation.

log(Kow)
M W A OO N ®

8 7 6 5 4 3 =2 1 0 1
log(LCsy)

Figure 6-7. Two covariance ellipses green and red lines with a confidence level of 97.5% constructed for
clean data (green objects) and contaminated data (green and red objects), respectively. The data contain
188 measured values of log LCsq and log Kow

The identification of outliers is usually performed on the basis of the so-called
distance—distance plot or outliers’ map. Regardless of the technique used, robust
PCA or robust PLS, both plots display the residuals from the robust model as a
function of the corresponding Mahalanobis distance (a robust distance) computed
in the space of robust scores. The cut-off values are defined differently for the resid-
uals and for the robust distances. The cut-off line of the residuals is defined for their
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robust z-transformed values (see Eq. 6-26) and is set to 2.5 or 3, which corresponds
to a confidence level of 97.5 or 99.9%. The cut-off line for the robust distances is
determined using the chi-squared test with f degrees of freedom (models’ complex-

ity) and a confidence level, p, ¢ =,/ Xf% > Four types of objects can be distinguished

with respect to their position in the space of f robust factors and residuals from the
robust model in the plot (see Figure 6-8):

* regular objects that are below the corresponding cut-off lines, i.e., objects with
short robust distances and small absolute residuals;

* high residual objects that are above the cut-off line of absolute residuals, i.e.,
objects with large absolute residuals from the model and short robust distances;

* good leverage objects are characterized by long robust distances, but small
absolute residuals from the model; and

* bad leverage objects are those with long robust distances and large absolute
residuals.
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Figure 6-8. Outlier map obtained using a robust approach

6.7. EXAMPLES OF APPLICATIONS

6.7.1. Description of the Data Sets Used to Illustrate Performance
of Robust Methods

Data set 1: inhibitors of HIV reverse transcriptase. Data set 1 contains the van der
Waals and Coulomb interactions energies calculated between 208 inhibitors and the
side chain and backbone parts of the selected 93 amino acid residues forming the
reverse transcriptase binding pocket. Prior to calculation of the interaction energies,
the inhibitors were docked into 16 binding pockets using a pharmacophore-based
docking algorithm [9]. The crystal structures of HIV-RT complexed with several
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inhibitors were mostly taken from the Protein Data Bank [59]. A total of 208
inhibitors successfully bind in 10 of the 16 binding pocket structures with inter-
action energies below —30 kcal-mol~'. The van der Waals and Coulomb interaction
energies were averaged resulting in a data table with the dimensions 208 x372. The
weakest interactions in terms of energies were removed and the final data set con-
tains 54 columns. The data set was described in [8] in detail and can be obtained
from [60].

Data set 2: group of baseline toxicity aquatic pollutants. Data set 2 contains 50
compounds that are a subset of a large collection of xenobiotics known as aquatic
pollutants [58]. The aquatic pollutants belong to the same groups of chemical
compounds including phenols, anilines, and mononitrobenzenes. Each compound
is described by 11 molecular descriptors, including an energy level of the high-
est and the lowest occupied orbital, electronegativity, hardness, a dipole moment,
polarizability, solvent accessible molecular surface area, molecular volume, the
most negative charge and the most positive charge on any non-hydrogen atom, and
log Kow. The acute toxicity for all of the compounds, a dependent variable, was
determined and reported as log LCsg.

6.7.2. Identification of Outlying Molecules Using the Robust PCA Model

Projection of inhibitors on the plane defined by the first two robust scores obtained
using the C-R algorithm is presented in Figure 6-9a. Two groups of inhibitors
and a few inhibitors that are relatively far away from the groups can be distin-
guished. The natural grouping of inhibitors is due to a different mechanism of
binding to the active site of the HIV reverse transcriptase. Inhibitor no. 83 is
close to the blue-type inhibitors (e.g., inhibitors nos. 149, 160, and 187), while
inhibitors nos. 149, 160, and 187 are more distant from the majority of the blue-
type inhibitors. Using the robust loading plot, see Figure 6-9b, the contribution of
original data variables to the construction of robust principal components can also
be studied. Variable no. 20, which describes the van der Waals interaction ener-
gies computed between the side chain of amino acid no. 318 and inhibitors, has the
largest absolute loading value and consequently plays an important role in explain-
ing the docking behavior of the blue- and the red-type of inhibitors along the first
robust PC. Compared with the red-type inhibitors, the blue-type inhibitors interact
with the side chain of amino acid no. 318 via the van der Waals interaction more
strongly.

In general, some of the inhibitors may be incorrectly docked into the reverse
transcriptase binding pocket, since the docking of molecules is not an easy task.
However, such information can hardly be deduced using the classic score plot.
Therefore, construction of an outlier map that takes into account the location of
an object in the space of the robust PCA model and its residuals from this model
is required. The outlier map is obtained for a definite number of robust principal
components which can be selected in various ways [61]. Here, the complexity of
the robust PCA model was decided on the basis of a scree plot of robust eigenval-
ues (see Figure 6-10a). Eight robust principal components can be considered for the
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example studied. The outlier map shown in Figure 6-10b indicates the presence of
six high residual objects, i.e., inhibitors (nos. 2, 80, 83, 179, 185 and 198) that do
not fit the robust PCA model well. All of them have high residuals from the robust
PCA model. Inhibitor no. 140 can be regarded as a good leverage object because it
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Figure 6-9. Results of the robust principal component analysis: (a) projection of two types of inhibitors
(blue and red) on the plane defined by the first two robust principal components and (b) projection of
variables onto the first two robust PCs
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Figure 6-10. (a) Scree plot of the first ten robust eigenvalues and (b) outlier map constructed for eight
robust PCs

is located relatively far from the data majority in the robust score space, but it still
fits the model having a standardized absolute residual value below the cut-off
line.

It should be emphasized that many outliers may be neglected due to possible
masking and swamping effects, but their presence will be revealed when the outlier
map is built for the robust model.
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6.7.3. Construction of the Robust QSAR Model with the PRM Approach

Let us consider that a calibration model is required for data set 2. First, the data
were split into a calibration and a test set. The Kennard and Stone algorithm [62]
was adopted in order to include all sources of the data variance into the calibration
set. Using this algorithm, the samples of the calibration set are selected so that they
cover the experimental domain uniformly. A total of 40 objects were included into
the calibration set and the remaining ten samples formed the test set used to test the
predictive power of the model. Here the performance of the PRM method will be
presented due to its conceptual simplicity. To demonstrate the efficiency of PRM, it
is compared with the classic PLS model. From a practical point of view, the perfor-
mance of the robust model should be virtually the same as the classic approach for
uncontaminated data. In this context, classic PLS and its robust counterpart PRM
perform equally well in terms of prediction error for the studied data set with four
factors as shown in Figure 6-11.

The optimal complexity of the PLS and PRM models is found by the Monte
Carlo cross-validation approach. With the Monte Carlo cross-validation procedure,
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Figure 6-11. Two calibration models: (a) PLS and (b) PRM constructed for data set 2. Two calibration
models: (¢) PLS and (d) PRM constructed for contaminated data set 2 with calibration samples colored
in blue and the test set samples shown with red circles
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a number of objects is selected randomly at each step and omitted. Then the values
for the omitted objects are predicted using the PLS model built for the remain-
ing objects. In this way, calibration models of different complexities are built. This
procedure is repeated k times, and the k prediction errors obtained for models of
definite complexity are averaged. To estimate the prediction error of contaminated
data with PRM, the so-called trimming procedure is adopted, which means that the
error estimate is obtained after removing the largest fraction of residuals, e.g., 5%.

For the studied data, the Monte Carlo procedure was repeated 160 times. The
leave-10-objects-out scheme was used in the case of the PLS model, while the leave-
20-objects-out procedure with the trimming fraction of 5% was used in PRM. The
root mean square error (RMSE) of calibration and the root mean square error of
prediction (RMSEP) obtained from both models are given in Table 6-1.

Table 6-1. Results obtained from PLS and PRM models of f factors which are constructed for clear and
contaminated data set 2. The trimming fraction of PRM is assumed to be 5%

Data Method f RMSE RMSECV RMSEP
Clean data PLS 4 0.27 0.27 0.35
PRM 4 0.28 0.36 0.35
Contaminated PLS 2 0.61 0.63 0.47
data
PRM 4 0.29 0.40 0.36

Of course when the calibration data contain outliers, the robust modeling tech-
nique outperforms the classic approach. To illustrate this property, a single outlier
was deliberately introduced into the calibration set and the PLS and PRM mod-
els were again constructed. The same input settings were used as before, i.e., the
same number of Monte Carlo iterations and the same number of objects to be
left out. However, the complexity of PLS was now found to be two. Figure 6-11c
illustrates a clear deterioration of the classic model properties in terms of fit and
prediction power, while better results are obtained with the robust approach. The
PRM model has again complexity of four. Figure 6-11d shows that compound
no. 2 has a very large residual from the model, and it can be easily distinguished
from the remaining compounds. This distinction is impossible when the classic
model is constructed (see Figure 6-11c) since the model is highly influenced by this
compound.

With the PRM model, it is possible to distinguish among the different types of
molecules with respect to their potential influence upon the model. This can be done
either using the weights attained during the model’s construction or by analyzing the
outlier map. Even though the plots are constructed differently, the conclusions about
the outlying character of objects are similar.

The leverage and residual weights of objects that are used to construct the model
are shown in Figure 6-12a. Object no. 2 has the smallest weight since its high-
est influence on the model is the most diminished. The outlying character of this
object is mainly apparent in the space of the model’s residuals. Using the outlier
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Figure 6-12. (a) Plot representing the inverse of the leverage weights vs. the inverse of residual weights
used to down-weight the negative influence of outliers in the four-factor PRM model constructed for
contaminated data set 2 and (b) an outliers map with the horizontal and vertical cut-off lines set for the
normal and xz distribution with four degrees of freedom and a confidence level of 97.5%

map shown in Figure 6-12b for the PRM model, it can also be deduced that object
no. 2 has the largest outlying character since its robust distance and its standard-
ized value of the residual from the robust model are very large and their values
exceed the defined cut-off lines. According to the outlier categorization, object
no. 2 is a bad leverage object, while object no. 1 is a high residual object. The
standardized absolute residual value for the latter object exceeds only the horizontal
cut-off line. The presence of good leverage objects in the data has a positive impact
on the model since they can reinforce the model extending its calibration range (see
Figure 6-1). For the studied data, object no. 9 is a good leverage observation because
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it is relatively far away from majority of the data, but still fits the robust model (see
Figure 6-12b).

6.8. CONCLUDING REMARKS AND FURTHER READINGS

In general, modeling of multivariate contaminated data and the identification of
unique molecules are not easy tasks. As has been presented in this chapter, a suc-
cessful identification of outliers can only be expected with robust techniques that are
specially designed to describe the majority of data well. The robust approach cho-
sen for this purpose should be highly efficient, which guarantees that such methods
have virtually the same performance as the classic approaches for uncontaminated
data. Owing to the attractive properties of robust techniques, they are highly val-
ued and well-suited for handling various QSAR data in which outliers are expected
to be present. In particular, robust data exploration of molecular descriptors space,
identification of outlying molecules, and construction of robust calibration and clas-
sification/discrimination models are of great interest. Some of these applications
have been demonstrated in this chapter.

To date many handbooks [3, 16, 17] have presented the principles of robust statis-
tics and robust methods. During the last decade, the robust techniques have been
intensively popularized in the chemical sciences and their usefulness seems to be
acknowledged already. For further reading, there are a number of tutorial papers and
book chapters [4, 5, 63—65] that present a detailed overview of the robust methods
applied in chemical sciences.
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CHAPTER 7

CHEMICAL CATEGORY FORMATION AND
READ-ACROSS FOR THE PREDICTION OF TOXICITY
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Abstract: The aim of this chapter is to outline the principles of chemical category formation and the
use of read-across methods to fill data gaps to aid regulatory toxicological decision mak-
ing. The chapter outlines the Organisation for Economic Co-operation and Development
(OECD) principles for the design of a chemical category. This section aims to give a
flavour of the steps that need to be considered when forming a chemical category. This is
followed by a description of the advantages that considering chemicals within categories
bring in risk assessment. The importance of how to define chemical similarity and sev-
eral commonly used methods is discussed. Finally a brief review of the limited literature
available showing actual examples of read-across methods is presented

Keywords:  Chemical categories, Read-across

7.1. INTRODUCTION

Chemical category formation and subsequent read-across analysis have been sug-
gested as being essential if the objectives of REACH are going to be achieved
without the excessive use of animals [1, 2]. The use of the chemical category
approach is already common in a number of regulatory environments outside of
the European Union namely in the United States and Canada. In terms of the
Organisation for Economic Co-operation and Development (OECD) a chemical
category has been defined as “a group of chemicals whose physiochemical and tox-
icological properties are likely to be similar or follow a regular pattern as a result of
structural similarity, these structural similarities may create a predictable pattern in
any or all of the following parameters: physicochemical properties, environmental
fate and environmental effects, and human health effects” [2]. On a practical level,
this process involves treating a closely related (or similar) group of chemicals as a
category. Within the category toxicological data will exist for some, but not all of the
chemicals for the endpoints of interest. Thus data gaps are likely to exist for some
of the properties or endpoints for each chemical, with it being likely that differing
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data gaps will exist for different chemicals within the category. It is for these data
gaps that structure—activity relationship methods (such as read-across) will have to
be utilised to make predictions for the missing toxicological data.

7.2 BENEFITS OF THE CATEGORY FORMATION

The recent OECD documentation detailing category formation highlighted a num-
ber of key benefits of the approach when applied to regulatory decision making
about the safety of chemicals [2]. These can be summarised as follows:

1. Animal testing is reduced by the interpolation and/or extrapolation to other
chemicals in the category. The use of existing data further reduces the need for
additional testing.

2. Evaluation of chemicals using a category approach involves the use of a greater
volume of data than assessing chemicals individually (as has been carried out in
the past).

3. Development of a category aids the evaluation of chemicals which otherwise
might not be assessed.

4. Chemicals which might not be able to be assessed in standard animal protocols
can be investigated using the category approach [3, 4].

5. The category approach has the potential to aid in the risk assessment of chemicals
for which animal tests do not reliably predict effects in humans [4].

As a practical benefit of the utilisation of such category approaches, the US EPA
needed to conduct new animal tests for only 6% of 1257 chemicals assessed as part
of the High Production Volume Challenge (HPVC) Program [5]. In this programme,
existing data were available for 50% of the chemicals; a further 44% of the data
required was estimated using methods such as read-across.

7.3. CHEMICAL SIMILARITY

The fundamental requirement for category formation is the ability to assess how
similar a group of chemicals are that might form a category. Unfortunately no single
measure of chemical similarity exists which can be universally applied across any
endpoint. Instead one can consider a number of general approaches that have been
suggested to be beneficial in the formation of a chemical category, with each one
of them trying to ensure that for differing scenarios the resulting category contains
chemicals acting via the same mechanism of action [2].

The first of these methods, and perhaps the simplest, is based upon forming a cat-
egory around a common functional group such as an aliphatic aldehyde or aromatic
ketone, the so-called “common functional group approach”. The second approach,
generally suitable for categories dealing with physicochemical properties such as
boiling point, aims to make use of simple counts of carbon chains lengths.

The third and fourth methods are more complex and aim to deal with category
formation for complex mixtures and metabolically related chemicals. In terms of
complex substances or biological material in which a single chemical substance
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does not exist, it has been suggested that common constituents, similar carbon
ranges or chemical class are likely to be useful in the formation of suitable cat-
egories. Such substances are referred to as “substances of unknown or variable
composition, complex reaction products or biological material” (UVCB). Finally,
chemicals can be grouped into a common category if they have a common precur-
sor and/or common breakdown products; this can be thought of as the metabolic
pathway category approach.

A related approach to chemical similarity that has been suggested to form useful
chemical categories is the “mechanism-based approach”, with it being suggested
that a number of toxicological endpoints can be understood in terms of a common
initialising event, usually a chemical reaction between an electrophilic chemical and
a nucleophilic side chain in either amino or nucleic acids. A number of authors have
documented such approaches [6-8].

Finally, it has been suggested that chemoinformatic approaches are able to form
useful categories, especially in the identification of less obvious analogues from
larger data sets [9]. Such methods rely upon the use of computational indices to
encode structural information about chemicals; these indices can then be compared
and chemicals within a certain distance located [10].

Given the numerous methods for developing chemical categories, it is unlikely
a single method will always be the most appropriate, in contrast it being likely that
more than a single method will be utilised in the formation of a single category.
For example, a suitable category might be formed by the combination of assigning
chemicals to a single electrophilic mechanism and then further restricting the chem-
icals within the category by the length of the carbon chains. Such decisions need to
be made based on category by category basis with constant reference to the avail-
able experimental data. The aims of the remainder of this chapter are to highlight a
general method by which chemical categories can be formed. In addition, the chap-
ter will draw several examples from the literature to illustrate the differing ways of
forming a chemical category, highlighting examples in which read-across has been
used to fill data gaps.

74. GENERAL APPROACH TO CHEMICAL CATEGORY
FORMATION

The recently published OECD guidelines for chemical category formation outlined
nine steps required for the robust definition of a chemical category [2]. The first of
these is to consider whether the chemical/chemicals of interest have already been
assigned a category by other workers. A number of organisations provide resources
for existing chemical categories for high volume chemicals, including the US EPA,
OECD and the UN [11-13]. Assuming that the chemical of interest has not already
been assigned to a category, eight further steps are suggested by the OECD; briefly
these are

1. Development of a category hypothesis as the basis for the grouping of the chem-
icals. This definition should fully document the chemicals (names, structures)
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and the endpoints that the category is applicable to. Care should be taken to fully
document the structural domain that the category is applicable to. This definition
covers molecular features such as chain lengths, molecular weight ranges, and
the types of chemicals which should be included or excluded.

2. Gather data for each category member. This step involves the acquisition of
all available toxicological and physicochemical data for each of the category
members.

3. Evaluation of the quality and adequacy of the data available for each category
member.

4. Construction of a data matrix showing the available data and crucially identifying
gaps in the available data.

5. Evaluate the category hypothesis and if possible perform read-across to fill data
gaps. This step aims to ensure that the hypothesis put forward in step 1 is fully
valid and if so, and provided sufficient data exist, then the missing data in the
data matrix be filled using appropriate read-across methods. Crucially if the data
gathered in step 3 cannot or do not support the hypothesis proposed in step 1,
then an alternate category might be required.

6. Should the data in step 5 support the category hypothesis but be insufficient for
one or more of the endpoints covered by the category, further testing might need
to be undertaken. Such testing should be designed in order to minimise animal
usage whilst maximising information content.

7. If additional testing has been undertaken then a further assessment of the
category should be undertaken. This is essentially a repeat of step 5.

8. If the category assessment is found to acceptable then the new category should
be fully documented according to the OECD guidelines [2].

A common way to view the data matrix and how read-across methods might be
used to fill any gaps in the data matrix is shown in Table 7-1.

Table 7-1. Schematic representation of data matrix required for a chemi-
cal category (X represents data points which are known and O represents
missing data)

Chemical 1 Chemical 2 Chemical 3 Chemical 4

Property 1 X (6] X X
Property 2 (6] X X (6]
Endpoint 1 X (6] X X
Endpoint 2 X X (¢} X

7.5. EXAMPLES OF CATEGORY FORMATION AND READ-ACROSS

The above guidelines show the idealised methodology that should be employed in a
regulatory environment for the formation of a chemical category. The remainder of
the chapter will highlight studies in the literature into the development of categories
of chemicals and then, in some cases, to perform read-across within these categories.
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The focus of these sections is the illustration of three types of similarity method
that can be used to aid category formation: these being chemical class, common
mechanism of action and chemoinformatic approaches.

7.5.1. Chemical Class-Based Categories

A recent study utilised the category approach to assess the developmental toxicity of
a group of phthalates esters with varying side carbon chain lengths [14]. The study
used a further five phthalate esters of differing benzene substitution patterns and
chain lengths to test the category hypothesis. The authors showed that differences in
physicochemical properties, absorption rates or metabolism between the phthalate
esters could not explain the differing reproductive toxicity profiles. The analysis of
the chemicals in the study enabled a strict definition of the applicability domain of
the category to be made, this being ortho-phthalate esters with carbon chain lengths
between four and six carbons. The authors suggested that such chemicals acted via
a common mechanism of action, most likely through binding to the anti-androgenic
receptor. The study highlighted the use of both a chemical class and chain length
restrictions in the formation of a suitable category. In addition, it showed that a clear
mechanistic rationale could be offered for a complex endpoint within a well-defined
chemical category.

7.5.2. Mechanism-Based Categories

A number of authors have demonstrated the use of mechanistic categories (rather
than chemical class-based categories) for skin sensitisation and acute fish toxicity
[6-8, 15-18]. Research has suggested that five principle organic chemistry mech-
anisms can be used as the basis for categorisation [15]. Briefly these mechanisms
involve the attack by nucleophilic amino acid side chains (typical sulphur or nitro-
gen) on electrophilic fragments of potentially toxic chemicals; the mechanisms are
summarised in Figure 2-1. Methods to enable chemicals to be assigned to these
so-called reactive mechanisms have been published in the literature [19, 20] and
included in the OECD (Q)SAR Application Toolbox which is freely available from
the OECD website.

Additional studies have highlighted the ability of both QSAR and read-across
methods to fill data gaps within these reactive mechanisms for both skin sensitisa-
tion and acute fish toxicity [18, 21-24]. One recent study demonstrated the utility
of a computational measure of electrophilicity in making quantitative read-across
predictions for a series of skin sensitising chemicals within the Michael mechanis-
tic domain [21]. The study suggested the following methodology should be used to
make a prediction for a “query chemical”:

1. Calculate the electrophilicity for a database of chemicals in the Michael mech-
anistic domain with known EC3 values. The database was ranked based on
electrophilicity (Table 7-1).
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2. Select the two closest chemicals to the “query chemical” in terms of electrophili-
city, one with a lower electrophilicity value, the other a higher electrophilicity
value. Given that the database was ranked by electrophilicity the closest chem-
ical with lower electrophilicity would be the chemical immediately preceding
the “query chemical”, whilst the closest chemical with greater electrophilicity
would be the one immediately following the “query chemical”. For example, to
make the prediction for chemical 3 in Table 7-2, chemicals 2 and 4 would be
chosen.

. Linear extrapolation between electrophilicity and pEC3 using the two closest
chemicals selected in step 1 allows a prediction to be made for the “query chem-
ical”. This step is equivalent to plotting electrophilicity against pEC3 for the two
closest chemicals and using the electrophilicity value of the “query chemical” to
predict its pEC3 value.

. The predicted pEC3 value is then converted into an EC3 value.

Examples of the predictions possible from this methodology are shown in
Table 7-2.

Table 7-2. Examples of read-across predictions made using the method described in the text. NP
means a prediction has not been made as there is not a chemical more electrophilic (larger w) or less
electrophilic (smaller w) in this small, four-chemical, example database

Experimental | Predicted
Name Structure EC3 EC3 )
trans-2-hexenal SoNNFO0 55 NP 1.608
1-(4-methoxyphenyl)-1-penten-3-one X (o) 9.3 9.87 1.734
o

Safranal N 7.5 5.29 1.796

o

O O
diethyl maleate oUo 58 NP 1.804

Y =/
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Protein ~ S
EC3=1.8
(0]
(0] (0]
Furanone
Protein””
O\R - o o\R EC3 =28
(0] (0]
Methacrylate

Figure 7-1. Ring strain release leading to increased skin sensitisation in 5,5-dimethyl-3-methylene-
dihydro-2(3H)-furanone

Also highlighted was the need for sub-categories within the Michael domain,
as 5,5-dimethyl-3-methylene-dihydro-2(3H)-furanone was found to be a signifi-
cantly more potent skin sensitiser than would be suggested from its calculated
electrophilicity. The authors suggested that upon reaction with a skin protein the
furanone ring undergoes release of ring strain energy and thus is more reactive
than the equivalent aliphatic molecules (Figure 7-1). It is therefore likely that for
chemicals such as these, in which additional factors such as the release of ring
strain energy are important, separate categories within the Michael domain will be
required.

The use of calculated electrophilicity to make read-across predictions demon-
strated that for good quality, interpretable predictions to be made requires subtle
mechanistic understanding and appropriate categories and sub-categories to be
formed. This suggested use of sub-categories within a mechanistic category is in
keeping with the phthalates study in which sub-categories were used within a larger
chemical class-based category [14].

Another study [25] grouped compounds containing o,-unsaturated carbonyl
compounds together. Such compounds are believed to be able to interact cova-
lent with proteins, enzymes and DNA through various mechanisms. As such,
they are able to stimulate a range of environmental toxicities and adverse health
effects. Koleva et al. [26] assume that compounds in this category (aldehydes
and ketones) act by a common mechanism of action (Michael-type addition). The
acute aquatic toxicities to Tetrahymena pyriformis of compounds within the cate-
gory were obtained in an effort to develop approaches for (qualitative) read-across.
In addition, Salmonella typhimurium (strain TA100) mutagenicity data were anal-
ysed to establish the structural differences between mutagenic and non-mutagenic
compounds. These structural differences were compared with the structural charac-
teristics of molecules associated with acute aquatic toxicity in excess of narcosis as
well as other end points, for example, skin sensitisation. The results indicate that
a category can be formed that allows structural information and boundaries to be
elucidated.
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7.5.3. Chemoinformatics-Based Categories

Chemoinformatics-based similarity measures have also been suggested for its use
in the development of chemical categories [9, 26]. The primary example of this
approach in the scientific literature makes use of a range so-called fingerprint meth-
ods. Such methods involve encoding the structural information within a molecule
as a bit string in which each “bit” indicates the presence (if the bit is set as 1) or
absence (if the bit is set as 0) of a particular molecular feature. These methods have
been widely used in the drug discovery paradigm for locating similar chemicals
from large chemical inventories [10, 27].

A recent study highlighted the usefulness of such approaches by using the
freely available Toxmatch software (freely available from http://ecb.jrc.it/qsar/gsar-
tools) to develop a small category of chemicals starting from a query chemical of
interest [9]. The starting point for the study was a Schiff base chemical whose pEC3
was not known. By using the in-built fingerprint and similarity functions the soft-
ware was able to locate three analogues from the 210 chemical local lymph node
assay database [28] (Table 7-3).

Table 7-3.  Schiff base category formation and subsequent read-across
predictions using similarity indices

Chemical

EC3 (% wt)

Similarity

At

1.07 (predicted)

“query chemical”

@/vo 3.00 0.60
6.30 0.60
o
Q 1.30 0.87
WO
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The authors then used the similarity measures to perform linear extrapolation
between the similarity measures and pEC3 values of the three most similar chemi-
cals. It was then possible to use this relationship to obtain a predicted pEC3 value
for the query chemical (Table 7-3). Additional category formation and subsequent
read-across examples were also presented using the bioaccumulation and fathead
minnow data sets. A further study [10] has illustrated the use of the Toxmatch to
form groupings of compounds from which it is possible to make assessment of
teratogenicity.

7.6. CONCLUSIONS

This chapter has demonstrated the general concepts that are required for the regu-
latory usage of chemical categories. It is clear from the material presented that the
formation of a chemical category is a complex process requiring expert knowledge
about both the physicochemical properties of the suggested group of chemicals and
crucially their mechanisms of action across the endpoints of interest. In addition,
the chapter has highlighted a number of read-across examples from the literature.
Whilst examples of read-across predictions in the wider literature are currently lim-
ited, those presented in this chapter show that given a well-defined category (or
indeed sub-category) good quality read-across predications can be made. These pub-
lications support the category hypothesis and help show that within these categories
simple read-across methods enable mechanistically interpretable predictions to be
made for complex toxicological endpoints.
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CHAPTER 8

QSAR IN CHROMATOGRAPHY: QUANTITATIVE
STRUCTURE-RETENTION RELATIONSHIPS (QSRRs)

ROMAN KALISZAN AND TOMASZ BACZEK

Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdarisk,
Gen. J. Hallera 107, 80416 Gdarisk, Poland

Abstract: To predict a given physicochemical or biological property, the relationships can be
identified between the chemical structure and the desired property. Ideally these relation-
ships should be described in reliable quantitative terms. To obtain statistically significant
relationships, one needs relatively large series of property parameters. Chromatography
is a unique method which can provide a great amount of quantitatively precise,
reproducible, and comparable retention data for large sets of structurally diversified
compounds (analytes). On the other hand, chemometrics is recognized as a valuable
tool for accomplishing a variety of tasks in a chromatography laboratory. Chemometrics
facilitates the interpretation of large sets of complex chromatographic and structural
data. Among various chemometric methods, multiple regression analysis is most often
performed to process retention data and to extract chemical information on analytes.
And the methodology of quantitative structure—(chromatographic) retention relationships
(QSRRs) is mainly based on multiple regression analysis. QSRR can be a valuable
source of knowledge on both the nature of analytes and of the macromolecules forming
the stationary phases. Therefore, quantitative structure—retention relationships have been
considered as a model approach to establish strategy and methods of property predictions.

Keywords:  QSRR, Retention predictions, Characterization of stationary phases

8.1. INTRODUCTION
8.1.1. Methodology of QSRR Studies

At the current state of development of chemistry, it appears easier to synthesize a
compound with a definite chemical structure than with a required property. Usually,
reaction pathways can correctly be estimated for established chemical structures,
whereas predicting properties of specific product(s) of the reaction is still a matter
of scientific guesswork [1].

Chemical reactivity, in the sense of forming the new chemical bonds or breaking
of the existing ones, seems to depend mostly on the compound’s structure itself.
On the other hand, valid predictions from chemical formula of even the simplest
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properties, such as anesthetic potency, boiling point, or chromatographic retention,
can only be obtained within series of homologues or otherwise closely congeneric
compounds by extrapolation or interpolation of the measured property of several
representatives of the series.

A compound’s properties depend strongly on the environment in which it is
placed. It is not only the molecular structure of compounds, but also their interac-
tions with molecules forming their environment, which justifies them being called
drugs, toxins, cosmetics, hormones, pheromones, odorants, detergents, pesticides,
herbicides, environmental pollutants, conductors, building materials, and so on.
Unlike chemical reactions, the interactions of molecules which form the environ-
ment in which the molecules are placed cause neither the breaking of existing bonds
nor the formation of new bonds.

To predict a given biological or physicochemical property, the relationships must
be identified between the chemical structure and the desired property. Optimally,
these relationships should be described in reliable quantitative terms. To obtain
statistically significant relationships, one needs relatively large series of property
parameters. Chromatography (especially high-performance liquid chromatography,
HPLC) is a unique method which can yield a great amount of quantitatively
comparable, precise, and reproducible retention data for large sets of structurally
diversified compounds (analytes). These data can be mutually related because all
of them are determined at the same experimental conditions (or can be standard-
ized by simple interpolation or extrapolation). Therefore, quantitative structure—
(chromatographic) retention relationships (QSRRs) have been considered as a
model approach to establish strategy and methods of property predictions.

In 1977 the first three publications appeared on what is now termed QSRR [2—4].
A monograph on QSRR published in 1987 considered several hundred publications
[5]. Since then, reviews [6—8] and several books [9—13] have dealt with the topic.

Reliable QSRR methods have been established to predict retention and to elu-
cidate molecular mechanism of retention on diverse stationary phases. These could
be useful during HPLC method development and to rationally design new HPLC
stationary phases of required properties. QSRR analysis has also been applied
to facilitate protein identification in proteomics. The QSRR-processed chromato-
graphic data have been proposed to preselect the most promising drug candidates
from a multitude of synthesized or computer-designed structures. All these issues
deserve a comprehensive review to better understand and employ in practice the
rules of chemistry.

First, QSRR reports resulted from the application of the methodology used for
studies of quantitative structure—(biological) activity relationships (QSARs) —so-
called Hansch approach [14] —to the analysis of chromatographic data. The presently
applied methodology and goals of QSRR studies is schematically presented in
Figure 8-1.

To perform a QSRR study, one needs a set of quantitatively comparable retention
parameters for a sufficiently large series of analytes and a set of their struc-
tural descriptors. Through the use of computerized statistical and chemometric
techniques, retention parameters are characterized in terms of various analyte
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Figure 8-1. Methodology and goals of QSRR studies

descriptors. If statistically significant and physically meaningful QSRR are obtained
then they can be applied to

)
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(iii)

chromatographic system;

(iv)

graphic columns;

)

such as lipophilicity and dissociation constants; and

(vi)

as material properties of members of a family of chemicals.

identify the most useful (regarding properties) structural descriptors;
predict retention for a new analyte and to identify unknown analytes;
gain insight into molecular mechanism of separation operating in a given
quantitatively compare separation properties of individual types of chromato-

evaluate other than chromatographic physicochemical properties of analytes,

estimate relative bioactivities within sets of drugs and other xenobiotics as well

To obtain reliable QSRRs appropriate input data are necessary and statistical
analysis must be carried out. Chromatography can provide large amounts of suitable
input data. That is in a chromatographic analysis conditions may be kept constant
for many separated analytes. Thus, the analyte structure is the single variable in the

system.

QSRR analysis seems to be especially attractive from the general chemometric
point of view. That is because QSRRs provide the best testing of the applicability of
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individual structural parameters for property description. The skill and knowledge
gained from QSRR studies may be applicable to other chemometric studies.

A number of QSRR reports deserve the interest of physical, analytical, medic-
inal, and environmental chemists. The fact is, however, that not every published
QSRR provides worthy information. Some QSRRs are statistically invalid, and
occasionally statistically valid correlations are developed for chemically invalid
principles.

8.1.2. Intermolecular Interactions and Structural Descriptors of Analytes

First, it must be emphasized that intermolecular interactions governing chromato-
graphic separation are not the interactions causing definite chemical alterations of
the analyte molecules. These are not the protonation, oxidation, reduction, complex
formation nor other stoichiometric processes. Only in ion-exchange chromatog-
raphy, where the separation determining forces are ionic in nature, can discrete
chemical alterations be said to occur. In other chromatographic techniques and
modes only the forces that can occur between closed-shell molecules are involved.
The known intermolecular interaction types are given in Table 8-1.

Formulae defining the potential energy of individual types of interactions
between two molecules are described in physical chemistry textbooks. However,
their application to actual chromatographic separation processes is not that straight-
forward.

Table 8-1. Binding types and binding energies with example systems. Compiled after Albert [15] and
Seydel and Schaper [16]

Type of interaction Energy of interaction Example system
(kJ/mol)
Covalent bondin — (170460
¢ (170-460) CH,-OH
Strong ionic bonding —40 HR—‘T “-H--0 . s
H® - 20/
. " _ @ e
Tonic bonding 20 RN®-—-Cl
®
Ion — dipole interactions — (417 R4N e :NR_‘
| &
pa— +, B
Dipole-dipole and dipole induced dipole interactions —(4-17) O=C"---NR,

(Keesom effect and Debye effect, respectively) |

Hydrogen bonding interactions —(4-17) —OH---0=

SE
Electron pair donor- —(4-17) —OH--~ ||
Electron pair acceptor interactions (charge transfer /C\‘
effect) : [ )
i o SO

Dispersive interactions (London — Hall effect) -24) -~ | | b

R.“CH;~.CH,-R
Hydrophobic interactions (a hybride of nonpolar and -4 : -

polar interactions) R.~CH;~CH;.~ R
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Let’s consider, for example, the so-called reversed-phase high-performance
liquid chromatography (RP HPLC) on a chemically bonded hydrocarbon-silica sta-
tionary phase. One has to consider the following mutually interacting entities: the
analyte, the hydrocarbon bonded to silica matrix, the mobile phase components pref-
erentially adsorbed on the stationary phase, the silanol groups of the silica support,
and all the components of the eluent. In view of system complexity, no satisfac-
tory model is known which would permit quantitative prediction of retention. A
rational explanation of the observed retention differences in terms of intermolecular
interactions appears possible, however.

An increase in logarithm of retention factor, log k, of an analyte with an increas-
ing number of carbon atoms for homologous series is typically observed in RP
HPLC. Considering first the interactions of analytes with the hydrocarbon chain
bond to stationary phase, one will identify the dispersive forces (London-Hall effect)
as differentiating the homologues. At the same time, one can assume the input
to separation due to the orientation interactions (Keesom effect) of homologues
as negligible, because the polarity (dipole moment) of the hydrocarbon part of
the molecules is practically negligible. Also the dipole-induced dipole interactions
(Debye effect) should be similar for all homologues because the dipole moments
within homologues series are similar. On the other hand, the magnitude of disper-
sion interactions (London-Hall effect) increases with increasing polarizability of the
analytes, which actually reflects their molecular size (‘“bulkiness”). In the case of
analyte interactions with the eluent (which is polar in RP HPLC), for homologous
analytes the orientation effects and the inductive effects are undoubtedly stronger
than the interactions of the analyte with the non-polar hydrocarbon of stationary
phase. Of course, the dipole—dipole and dipole-induced dipole interactions with the
eluent are similar for all homologues due to the similarity of their dipole moments.

The attraction of homologous analytes by a mobile phase resulting from the
dispersive and dipole inductive interactions is mostly affected by the analyte polar-
izability. Because the dispersive interactions usually prevail among intermolecular
interactions and the polarizability of hydrocarbon, e.g., octadecyl chains of the
stationary phase, is greater than the polarizability of the small molecules of typi-
cal eluents used in RP HPLC, the net effect of all the van der Waals interactions
(Keesom, Debye, and London-Hall effects) will be the increased retention of larger
homologues. Of course, the interactions of analytes with the components of a chro-
matographic system are normally further complicated by the non-van der Waals
interactions listed in Table 8-1, in particular hydrogen bonding and charge transfer
interactions.

The observed decreasing of analytes’ retention in RP HPLC with their increasing
degree of ionization can also be explained in terms of known intermolecular inter-
actions. One can assume that the dispersive interactions of analyte ions with both
phases do not differ significantly from these interactions for non-ionized analyte
molecules. However, in the case of analyte ions the ion—dipole interactions became
dominating. Such attractive interactions are of practical importance between analyte
ions and the polar molecules of the eluent used in RP HPLC as opposed to interac-
tions of ions with non-polar hydrocarbon moieties of stationary phase. That is true
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especially since the ion—dipole long-distance interactions are stronger than regular
short-range van der Waals interactions and decrease with the second power of the
distance between the interacting species. Thus, eluent pH strongly affects retention
of weak acids and bases in RP HPLC.

In 1937 Hammett formulated the well-known relationships for the calculation
of substituent effects on reaction rates and chemical equilibria. By analogy to the
Hammett electronic substituent constant in 1964, Hansch and Fuijta [14] introduced
the substituent hydrophobic constant . Already by 1965 Iwasa et al. [17] reported
the correlation between 7 and a substituent linked to thin-layer chromatographic
retention, ARy;. Another linear free-energy related substituent constant defined
from chemical reactivities was the Taft steric constant, E;. These classical empirical
structural descriptors found little application in QSRR analysis [12, 13, 18].

Furthermore, Taft, Carr, Abraham and co-workers [19-21] studied the nature of
RP HPLC separations and developed an approach based on solvatochromic com-
parison method, the so-called linear solvation energy relationships (LSERs). That
approach is based on a general Eq. (8-1) describing logarithm of analyte retention
factor, log k:

log k = constant+M(82 —82)V,/100+S(w ) — 7)1 +A(Bs — Br)etx+B(ats — ) B

(8-1)
where the subscript x designates an analyte property such as molar volume, Vi,
polarizability/dipolarity, 7 *, hydrogen bonding acidity, «,, and hydrogen bonding
basicity, B,. Each analyte property is multiplied by a term, which represents the
difference in complementary solvent properties of the mobile (subscript m) and the
stationary (subscript s) phases. Thus, «,, and o are the abilities of the phases (bulk
or bonded) to donate a hydrogen bond. These properties complement the analyte’s
ability to accept a hydrogen bond, B,. Similarly, 8,,> and 8,2, the squares of the
Hildebrand solubility parameter or cohesive energies of the two phases, complement
the analyte intrinsic molar volume, V.

However, solvatochromic parameters are empirically obtained and therefore
available only for a limited number of compounds. There is no such limitation
for structural parameters, which can be derived by computational chemistry based
solely on the structural formula of a compound. The constitutive—additive param-
eters such as molar refractivity, n-octanol-water partition coefficients calculated
by fragmental methods (CLOGP), quantum-chemical and molecular mechanics
indexes, and parameters derived from molecular graphs can also be treated in this
manner. Examples of structural descriptors employed in QSRR analysis are given
in Table 8-2.

The number of structural descriptors which can be found for an individual ana-
lyte is practically unlimited. The first commercially available software introduced
by Hasan and Jurs [22] processed some 200 different structural descriptors. In their
comprehensive review published in 1996, Katritzky and co-workers [23] described
numerous quantum-chemical descriptors. Further reports from Katritzky’s labora-
tory enlarged the number of methods of quantifying the structural information about
the molecule [24-26].
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Table 8-2. Exemplary structural descriptors used in QSRR studies

Molecular bulkiness-related descriptors

Carbon number

Molecular mass

Refractivity

Polarizability

van der Waals volume and area
Solvent-accessible volume and area
Total energy

Calculated partition coefficient (clog P)

Molecular geometry-related (shape) descriptors

Lenght-to-breadth ratio
STERIMOL parameters

Moments of inertia
Shadow area parameter

Physicochemical empirical and semiempirical
parameters

Hammett constants

Hansch constants

Taft steric constants

Hydrophobic fragmental parameters
Solubility parameters

Molecular polarity-related (electronic)
descriptors

Dipole moments

Atomic and fragmental electron excess charges
Orbital energies of HOMO and LUMO
Partially charged areas

Local dipoles

Sub-molecular polarity parameters

Combined molecular shape/polarity parameters

Comparative molecular field analysis (CoMFA)
parameters

Comparative molecular surface (CoMSA)
parameters

Molecular graph-derived (topological)
descriptors

Molecular connectivity indices
Kappa indices

Information content indices
Topological electronic index

Indicator variables
Zero-one indices

Linear solvation energy relationship (LSER)
parameters

Partition coefficienct (log P)

Boiling temperatures

pKa values

Ad hoc designed descriptors

A tremendous work was completed in 2000 by Todeschini and Consonni
[27] who thoughtfully analyzed 3300 references and collected about 1800 known
descriptors in a form of encyclopedia. That valuable monograph gives detailed
characteristics of the descriptors known in the chemical literature, whether they
are physicochemical or topological in their nature. Appropriate software [28] for
the calculation of individual descriptors is currently widely used all over the world.
After the Todeschini and Consonni monograph [28] some new descriptors have been
proposed [29, 30] but still there is a space for the invention and imagination of the
individual researcher.

When proposing specific ad hoc descriptors the requirement is that these
descriptors are well defined and identified, even if their physical meaning is unclear.
An example may be the so-called topological electronic index TF proposed in 1986
[31]. That index gave rise to a number of modifications compiled by Todeschini
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and Consonni [27]. Its originality consisted in accounting for electron excess
charge distribution in three-dimensional space. To get T for an energy-optimized
structure, the distances r;; between each pair of atoms are calculated based on the
atom coordinates. Then, for every pair of atoms, the absolute value of the excess
charge difference is divided by the square of the respective interatomic distance.
The resulting numbers are summed for all possible atomic pairs in the molecule.

Descriptors calculated from molecular formula or molecular graph appear attrac-
tive. The problem is if they are actually related to a molecular property of a
compound or are only casually related. From a chemistry point of view, except-
ing perhaps chemical documentation, only the mathematical properties of chemical
structures are of interest, which are related to the physicochemical or biological
properties of compounds. Although several non-empirical structural descriptors
were reported to contribute to numerous multivariable QSRR equations, it cannot
be said that any outstandingly reliable, property-specific structural descriptor was
found that was universally applicable to various chemical families.

Generally, chemical formulae represent molecules as sets of balls (atoms) con-
nected by stronger or weaker, longer or shorter springs (bonds and interatomic
interactions). In a collision of one ball and spring system with another, the crack-
ings and fusions leading to a new entity can be easily understood. Hence, reactivity
seems to emerge as an innate feature of a molecule. However, a molecule is a def-
inite physical entity different from the component atoms. Molecular properties are
constitutive rather than additive regarding the composing atoms. That constitutive-
ness remains a kind of mystery not accounted for neither by conventional structural
formula nor by quantum chemistry models. One can subsequently invent thousands
of descriptors based on established chemical coding without improving the design
of materials with desired properties.

8.2. CHROMATOGRAPHIC RETENTION PREDICTIONS

Although the physical meaning of the applied descriptors is often disputable, there
are QSRRs in literature, which are able to predict retention well. These QSRRs
are derived statistically. There are advanced statistical techniques available for
proper descriptor selection, precluding at the same time deriving of formally invalid
models.

A good prediction of retention of structurally defined analytes by QSRR has been
documented in the literature. Even if “predictions” are demonstrated retrospectively
and applied to members of closely congeneric families of analytes only, there is
no doubt that at least those reported more recently are not artifacts. Since Randi¢’s
original paper [32] several proposed structural descriptors have permitted the predic-
tion of the gas-liquid chromatographic (GLC) retention of saturated hydrocarbons,
including isomers. More recent multivariable QSRR cannot be questioned formally
as regards the retention prediction potency within series of related compounds.

The problem is that complex predictive QSRRs are of limited value for the actual
design of compounds with a desired property. Of course, any structure can be drawn
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and its property calculated. However, there is no way to identify the specific struc-
ture with a set of dozen or more descriptors to provide a definite retention factor or
other more valuable property, such as bioactivity. What is worse, such a structure
may not exist at all because adjusting one or more descriptors leads to unfavorable
changes of other QSRR descriptors.

8.2.1. Retention Predictions in View of Optimization of HPLC Separations

QSRRs derived for high-performance liquid chromatographic (HPLC) retention
data are generally of lower statistical quality than those reported in GLC. That is due
to a greater complexity of phase systems in LC than in GLC. The structure-retention
relationships in LC are often semi-quantitative rather than quantitative. Regardless,
they may as such be useful for the confirmation of the identification of the proper
analyte, separation conditions optimization, and elucidation of mechanism of reten-
tion at molecular level. However, oversimplification such as plotting retention vs.
molecular mechanics calculated energy of analyte-stationary phase model interac-
tion [33] shows nothing but a poor correlation and certainly does not mean that
solvent effects are unimportant in LC.

The QSRRs in HPLC published up until 1997 have been reviewed previously
[12]. None had retention prediction potency of actual practical value. That also
applies to later published QSRRs, such as those relating RP HPLC retention and
micellar electrokinetic capillary chromatographic (MECC) retention of 32 steroid
hormones to sets of complex topological indexes [34]. Contrary to GLC, the poor
performance of both topological and quantum-chemical descriptors in prediction of
HPLC retention was found by Makino [35]. The QSRR reported [36] for as few
as eight hydroxybenzoic acid derivatives subjected to RP HPLC cannot be treated
as reliable, because as many as three sophisticated topological indexes had to be
used. Also, the QSRR equations [37] describing RP HPLC retention of O-aryl,
O-(methylthioethylideneamino)-phosphates (13 compounds chosen of total 20 stud-
ied) in terms of calculated molecular refractivity (CMR), and energy of core—core
repulsion (ECCR), are of highly disputable value for any prediction. At first sight, a
strong intercorrelation is evident between CMR and ECCR (Table 3 in reference 37)
precluding their joint use in the same regression equation.

The QSRR derived by Ledesma and Wornat [38] makes good physical sense
and has correct statistics. The RP HPLC retention of 12 polycyclic aromatic hydro-
carbons (PAH) was related to the maximum excess charge difference between two
atoms in a molecule, A [39], and analyte polarizability, «. That way two types of
intermolecular interactions which govern retention are accounted for polar forces
resulting from permanent or induced dipoles from the analyte, stationary phase, and
mobile phase molecules and non-polar forces resulting from dispersive interactions.

However, the QSRR obtained by Ledesma and Wornat [38] cannot be extended
beyond closely the series of congeneric PAHs. Long ago the effect of molecular
shapes (degree of elongation) of individual PAH on chromatographic retention
of isomers was noted and quantified, first in GLC [40], then also in HPLC [41].
Recently, Wise and co-workers [42] derived a predictive QSRR to identify PAH
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and methyl-substituted PAH chromatographed on monomeric and polymeric
C18 HPLC stationary phases. A large set of calculated electronic, topological
spatial, and thermodynamic molecular descriptors was examined through the use
of the partial least squares (PLS) statistical technique. A reduced set of abstract
descriptors (the PLS components) was derived from the initial series of molecular
descriptors to maximize their correlation with the retention properties while keeping
them mutually orthogonal. The obtained QSRR model accounts well for retention
differences among analytes and discerns differences in analyte shape selectivity
between the two stationary phases studied.

Considering RP HPLC data, PLS modeling was also applied to 17 chalcones. The
authors [43] derived a QSRR with five PLS components obtained after the process-
ing of 20 molecular graph-derived descriptors. Such QSRRs are claimed to provide
chalcone retention prediction on RP HPLC stationary phases of different polarity.
A poor description of retention was obtained when using calculated octanol-water
partition coefficient, CLOGP, in combination with a count of O—H and N-H bonds.
Also, QSRRs of moderate quality were obtained by Luco and co-workers [44] for
amino acids chromatographed on three reversed-phase columns. The molar volume
of the side chain, a polarity factor, and the energy of the lowest unoccupied molec-
ular orbital, Ey ymo, were the descriptors employed. Using PLS analysis of the RP
HPLC data, the same authors attempted to model amino acid transport across the
blood-brain barrier and in pigeon erythocytes.

Another multivariate data processing method, i.e., principal component analy-
sis (PCA) was used in QSRR studies on liquid chromatographic (TLC and HPLC)
retention data of ditetrazolium salts [45]. The first two principal components
obtained after PCA of 14 topological and quantum-chemical analyte descriptors
accounted for the retention differences observed in the liquid chromatographic
systems studied.

An original approach in terms of QSRRs was reported by Aberg and Jacobsson
[46]. Three-dimensional images of molecules with a pulse-coupled neural network
(PCNN), thus obtaining a short time series representation of the molecules, were
processed. Such a representation appeared suitable for QSRR modeling with PLS
of a series of 24 steroids. No report was noted to develop the approach further,
however.

On the other hand, artificial neural networks (ANN) were employed to obtain a
QSRR to predict RP HPLC retention in the gradient mode of phenylthiocarbamoyl
amino acids derivatives [47]. The molecular structure of each amino acid was
encoded with 36 descriptors calculated from the molecular formula. A lipophilic-
ity parameter, along with three molecular size and shape parameters, was found to
be important for analyte retention. However, dominating for differences in retention
data analyzed was the effect of mobile phase composition.

ANN have also been reported to predict the retention of a series of herbicides
in RP HPLC at various pHs and compositions of water—methanol mobile phases
[48]. Within congeneric herbicides the lipophilicity parameter, log P, and the dipole
moment, w, accounted for the effect of molecular structure of the analyte. That
series was too short (four analytes) to draw any conclusion, however. The effect of
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methanol content on logarithm of retention coefficient is linear and pH was kept
within narrow range providing a full analyte ionization. Therefore, the findings are
as expected. The claimed advantage of ANN over multilinear regression (MLR) in
deriving QSRR model cannot be considered as proven.

In comparative studies performed in the authors’ laboratory [49, 50], the predic-
tive power of ANN was observed to be similar to that of MRA. For a structurally
diverse series of predesigned test analytes gradient retention times were determined
on three modern columns. Then, based on linear solvent strength (LSS) theory
of Snyder [51, 52], retention parameters were related to eluent composition. Both
isocratic and gradient retention times for any structurally defined analyte could be
calculated based on LSS and on the QSRR models derived for the test series of
analytes. Three such QSRR models were considered: one based on linear solvation
energy relationships (LSERs) [19-21], another relating retention to logarithm
of n-octanol-water partition coefficient, log P, and third describing retention in
terms of water accessible molecular surface area, dipole moment, and minimum
atomic excess charge [53]. Using both ANN and MRA, the combined LSS/QSRR
approach was demonstrated to provide approximate, yet otherwise unattainable, a
priori predictions of retention of analytes based solely on their chemical formulae.
That way a rational chemometric basis for a systematic optimization of conditions
of chromatographic separations has been elaborated as an alternative to the
trial-and-error method normally applied before.

A paper reflecting the current stage of development of predictive QSRR is pro-
vided by Schefzick et al. [54]. These authors chromatographed 62 structurally
diverse analytes on 15 modern reversed-phase columns at five acetonitrile con-
centration gradient conditions. The LC/MS data obtained were related to 2419
molecular descriptors of the analytes calculated by currently available commercially
software (identified in the report). A genetic algorithm selected the 20 most predic-
tive descriptors. According to the original authors, all the descriptors selected can
be explained physically. That is somewhat surprising, considering the large number
of descriptors available for the analysis and the considerable variable reduction due
to removing of the correlated and invariant descriptors. The claim might be gener-
ally true but the physical sense of a descriptor such as the “absolute value of the
difference between CASA* (positive charge weighted surface area, ASA* times max
{gi>0}), and CASA~ (MOE)” lacks interpretability. The paper by Schefzick et al.
[54] might be recommended as methodologically instructive and representing the
state of the art in predictive QSRR. The only problem is that the verification of
its reliability is almost impossible as 48 