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Abstract: In this paper, we have obtained an analytical solution to the problem of unsteady free
convection and mass transfer flow of an incompressible fluid through a vertical channel in the
presence of Dufour effect (or diffusion thermo). The bounding plates are assumed to have ramped
wall temperature as well as specie concentration. The mathematical model responsible for the physical
situation is presented in dimensionless form and solved analytically using the powerful Laplace
Transform Technique (LTT) under relevant initial and boundary conditions. In order to cross check the
accuracy of the analytical results, numerical solutions are obtained using PDEPE solver in MATLAB.
The expressions for temperature, concentration, and velocity are obtained. The effects of Dufour
parameter, Prandtl number (Pr), Schmidt number (Sc), and dimensionless time are described during
the course of these discussions. The temperature, concentration, and velocity profiles are graphically
presented for some realistic values of Pr = 0.025, 0.71, 7.0, 11.62, 100.0 and Sc = 0.22, 0.60, 1.00, 2.62,
while the values of all other parameters are arbitrarily taken.

Keywords: natural convection; mass transfer; ramped temperature and concentration; Laplace
Transform Technique

1. Introduction

Fluid flow, and the combined heat and mass transfer through a channel, have received less
attention than the case of a single plate. This configuration is very frequently encountered in numerous
applications, such as fire engineering, combustion modelling, nuclear energy, petroleum reservoir
etc. Transport phenomena, involving the combined influence of thermal and concentration buoyancy,
are often seen in many engineering systems. They are frequently encountered in the design of modern
electric circuits, heat exchangers, solar panels, ventilation system in buildings, chemical distilleries,
and thermal protection systems [1–11]. Most of these studies are directed towards the effects of various
fluid dynamical processes and flow geometry. Moreover, most of the previous studies were carried out
by either numerical or experimental methods.

Study on free convection flow, due to the effect of temperature change has drawn significant interest
recently [12–16]. Authors in [17] formulated the problem of coupled heat and mass transfer by natural
convection from a vertical, semi-infinite flat plate, embedded in a porous medium in the presence of
an external magnetic field and internal heat generation or absorption effects. In this paper, the plate
surface was maintained at either, constant temperature or constant heat flux, and was permeable
to allow for possible fluid wall suction or blowing. Chamkha [18] considered unsteady, laminar,
double-diffusive, natural convection flow inside a rectangular enclosure filled with a uniform porous
medium with cooperating temperature and concentration gradients. Ismail et al. [19] investigated
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unsteady magnetohydrodynamics natural convection flow through a porous medium, with ramped
boundary conditions, over an infinite inclined wall in the presence of thermal radiation. Authors in [20]
showed how heat and mass transfer were affected, by introducing a perfectly thin conducting baffle in
a vertical channel, filled with electrically conducting and chemically reacting fluid. After inserting the
baffle, the fluid is concentrated in each stream with different chemically reacting agents. The basic
governing equations were solved by perturbation method and also by Differential Transformation
Method (DTM). The effects of Joule-heating, chemical reactions, and thermal radiation on unsteady
magnetohydrodynamic (MHD) natural convection, from a heated vertical porous plate in a micropolar
fluid, were analyzed by [21]. The partial differential equations, governing the flow and heat and mass
transfer, were solved numerically using an implicit finite-difference scheme. The case corresponding
to vanishing of the anti-symmetric part of the stress tensor, that represents weak concentrations,
was considered. Authors in [22] studied the steady laminar magneto-hydrodynamic thermosolutal
Marangoni convection, in the presence of a uniform applied magnetic field, in the boundary layer
approximation. They assumed that the surface tension varies linearly with both the temperature
and concentration, and that the interface temperature and concentration are quadratic functions of
the interface arc length x. Exact analytical solutions for the velocity, temperature, and concentration
boundary layers were obtained.

Two important phenomena in heat and mass transfer processes are Dufour and Soret effects.
Dufour effect (also diffusion-thermo) is the transfer of heat, generated by a concentration gradient,
while Soret effect (also thermal diffusion) is the mass transfer generated by temperature gradient.
When compared to the effect illustrated by Fourier’s or Fick’s law, the magnitudes of Dufour and Soret
effects are smaller and usually considered negligible [23]. Nonetheless, these effects have enormous
applications, such as in separation of isotopes and in mixing gases of insubstantial and average
molecular weights [24]. Jha and Ajibade [25] analytically investigated the free-convection and mass
transfer flow in a vertical channel formed by two vertical parallel plates. Fully developed laminar
flow was considered with uniform temperature and concentration on the plates. The Dufour effect
was taken into consideration. The analytical solutions for velocity, temperature, and concentration
were obtained, using LTT and were used to compute the shear stress, Nusselt number, and mass flux.
In [26], the authors investigated Dufour and Soret effects on mass transfer flow within the boundary
layer, with mixed free-forced convection. The observation they made was that the occurrence of
heat and mass transfer concurrently, in non-static fluids, makes the relationship between the driving
force and fluxes more complex. They concluded that it is possible to produce an energy flux by
concentration gradients too. Sheremet [27] numerically analyzed the influence of Dufour and Soret
effects, on non-stationary regimes of conjugate convective heat and mass transfer in an enclosure, in the
presence of heat conductive walls of finite thickness. Authors in [28] presented a numerical solution to
the general problem of MHD flow, heat, and mass transfer of viscous incompressible nano-fluid past a
uniformly stretching sheet through a porous media with heat generation/absorption, thermal radiation,
chemical reaction, Dufour effect, and Soret effect.

Practical problems often involve wall conditions that are non-uniform or arbitrary. To understand
such problems, it is useful to investigate problems which are subjected to step change in wall temperature.
Several attempts in this direction were made by various authors. In [29], the authors investigated
the natural convective flow through double infinite vertical walls having ramped temperature at one
boundary with specie concentration as well as thermal radiation. In this paper, the analysis on the
influence of some embedded parameters was presented. By applying LTT and including ramped wall
temperature condition, Asma et al. [30] carried out research on natural convective flow of nanofluids
past an oscillating wall. The ramped and isothermal cases were compared. Authors in [31] studied
the free convection flow over a single vertical wall with ramped wall temperature. Narahari and
Raghavan [32] obtained an analytical solution to the free convective flow, of an incompressible fluid
through a channel, as a result of ramped heating at one boundary using LTT. Narahari et al. [33]
presented the effect of ramped temperature on unsteady MHD natural convection flow past an infinite
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inclined plate in the presence of radiation, heat source, and chemical reaction. The natural convection
due to ramped wall temperature was also compared with that of the isothermal plate. It was found
that the velocity and skin friction decreases with increasing radiation parameter, magnetic field
parameter, and the angle of inclination in both ramped and isothermal cases. The authors in [12]
investigated the Dufour effect on free convective flow with heat absorption, thermal radiation, chemical
reaction, and magnetic field with ramped wall temperature over a single vertical plate contained in a
permeable medium.

The objective of the present work is to provide an analytical solution for the unsteady free
convection and mass transfer flow, in a vertical channel, with ramped wall temperature and ramped
wall specie concentration, in the presence of Dufour effect. The influences of the ramped walls are
analysed with different parameters embedded in the problem. The main benefits resulting from the
analytical approach is a transparent dependence of the quantity of engineering interest of the governing
parameters. The accuracy of the analytical solutions is ensured by making a comparison with the
numerical solutions. Furthermore, the results presented here are compared with existing literature
Singh et al. [34], where the boundary conditions are constant and Dufour effect is absent. In fact,
the solutions obtained by Singh et al. is a particular case of the solutions obtained in the present work.
The present results will have specific applications in the design of solar energy collectors, geothermal
systems, cooling of electronic equipment, and in the design of chemical processing equipment.

2. Governing Equations

Mathematical model responsible for transient free convection and mass transfer flow in a vertical
channel in the presence Dufour effect is considered. Let x-axis be along the vertical direction and y-axis
normal to it (Figure 1).
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Figure 1. Physical configuration.

At the initial state t′ ≤ 0, the two bounding walls as well as the fluid are at rest and considered
to have the same constant temperature T′l and concentration C′l . At t′ > 0, the temperature and
concentration at the wall y′ = 0 have, respectively, a temporally ramped function given by T′l +(
T′0 − T′l

)
t′/t0 and C′l +

(
C′0 −C′l

)
t′/t0 at t′ ≤ t0, and then, at t′ > t0, the temperature and concentration

are maintained at T′0 and C′0 respectively. The temperature and concentration at the other wall y′ = l
remain the same as the initial temperature T′l and concentration C′l giving raise to free convection
currents. The system of equations shows that the temperature is influenced by specie concentration
which leads to Dufour effect. We presume that the heat flux that radiates along the vertical axis is
negligible relative to that along the horizontal axis. Since both the two walls are of infinite length, all
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the physical quantities will depend only upon y′ and t′. Within the framework of such assumptions,
the equations which govern free convection and mass transfer flow in the presence of Dufour effect
under Boussinesq approximation are:

∂u′

∂t′
= ν

∂2u′

∂y′2
+ gβ

(
T′ − T′l

)
+ gβ∗

(
C′ −C′l

)
(1)

∂T′

∂t′
= α

∂2T′

∂y′2
+ D∗

∂2C′

∂y′2
(2)

∂C′

∂t′
= Dm

∂2C′

∂y′2
(3)

Subject to the following initial and boundary conditions

t′ ≤ 0 : u′ = 0, T′ = T′l , C′ = C′l for 0 < y′ ≤ l

t′ > 0 :



at y′ = 0 :



u′ = 0 T′ = T′l +
(T′0−T′l )t′

t0
, 0 < t′ ≤ t0

T′ = T′0, t′ > t0 C′ = C′l +
(C′0−C′l)t′

t0
, 0 < t′ ≤ t0

C′ = C′0, t′ > t0

at y′ = l :


u′ = 0

T′ = T′l t′ > t0

C′ = T′l

(4)

To change Equations (1)–(3) to non-dimensional forms, we make the following substitutions:

t = t′
t0

, t0 = l2
ν , y =

y′

l , Pr = ν
α ,

θ =
T′−T′l
T0−T′l

, φ =
C′−C′l
C0−C′l

, u = u′ν
gβ(T′0−T′l )l2

,

D f =
D∗(C′0−C′l)

T′0−T′l
, Sc = ν

Dm
, N =

β∗(C′0−C′l)
β(T′0−T′l )

.


(5)

Thus, Equations (1)–(3) can be written as

∂u
∂t

=
∂2u
∂y2 + θ+ Nφ (6)

∂θ
∂t

=
1

Pr
∂2θ

∂y2 +
D f

Pr
∂2φ

∂y2 (7)

∂φ

∂t
=

1
Sc
∂2φ

∂y2 (8)

Therefore, Equation (4) becomes
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t ≤ 0 : u(t, y) = 0, θ(t, y) = 0, φ(t, y) = 0; 0 ≤ y ≤ 1

t > 0 :


u(t, 0) = 0, u(t, 1) = 0{

θ(t, 0) = t, φ(t, 0) = t; 0 < t ≤ 1
θ(t, 0) = 1, φ(t, 0) = 1; t > 1

θ(t, 1) = φ(t, 1) = 0

(9)

The heat transfer coefficient (Nu), mass transfer coefficient (Sh) and the coefficient of Skin-friction(
C f

)
are vital numbers in the study of boundary layer flow and are defined respectively as

C f = −

(
∂u
∂y

)
y=0

(10)

Nu = −

(
∂θ
∂y

)
y=0

(11)

Sh = −

(
∂φ

∂y

)
y=0

(12)

3. Solutions

The ramped BCs for temperature and concentration given in Equation (9) can be written in linear
form using the Heaviside step function H(t) as

θ(t, 0) = φ(t, 0) = t[H(t)] − (t− 1)[H(t− 1)] (13)

Then applying LTT to (6)–(8) in conjunction with (9) and taking (13) into consideration we obtain

θ(ω, y) =
(

1−e−ω
ω2

) ∞∑
k=0
{ρ1

[
e−(2k+y)

√
ωPr
− e−(2+2k−y)

√
ωPr

]
−ρ2

[
e−(2k+y)

√
ωSc
− e−(2+2k−y)

√
ωSc

]} (14)

φ(ω, y) =
(

1− e−ω

ω2

) ∞∑
k=0

[
e−(2k+y)

√
ωSc
− e−(2+2k−y)

√
ωSc

]
(15)

u(ω, y) =
(

1−e−ω
ω2

) ∞∑
k=0
{σ1

[
e−(2k+y)

√
ω
− e−(2+2k−y)

√
ω
]

−σ2
[
e−(2k+y)

√
ωSc
− e−(2+2k−y)

√
ωSc

]
−σ3

[
e−(2k+y)

√
ωPr
− e−(2+2k−y)

√
ωPr

]} (16)

where, ω denotes the Laplace parameter and

ρ1 =
1+D f Sc
Sc−Pr

ρ2 =
D f Sc
Sc−Pr

σ1 =
(
N −

D f Sc
Sc−Pr

)(
1

Sc−1

)
+

(
1

Pr−1

)(
1 +

D f Sc
Sc−Pr

)
σ2 =

(
N −

D f Sc
Sc−Pr

)(
1

Sc−1

)
σ3 =

(
1

Pr−1

)(
1 +

D f Sc
Sc−Pr

)
Pr , Sc , 1

(17)
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By taking the inverse transforms of (14)–(16) and applying the second shift theorem [35–37],
we obtain the following solutions:

θ(t, y) =
∞∑

k=0
{ρ1[G1(t, y) −G2(t, y) − G1(t− 1, y) −G2(t− 1, y) H(t− 1) ]

−ρ2[G3(t, y) −G4(t, y) − G3(t− 1, y) −G4(t− 1, y) H(t− 1) ]
} (18)

φ(t, y) =
∞∑

k=0

{
Υ1(t, y) −Υ2(t, y) − [Υ1(t− 1, y) −Υ2(t− 1, y)][H(t− 1)]

}
(19)

u(t, y) =
∞∑

k=0

{
σ1[L1(t, y) − L2(t, y) − L1(t− 1, y) − L2(t− 1, y) H(t− 1) ]

−σ2[L3(t, y) − L4(t, y) − L3(t− 1, y) − L4(t− 1, y) H(t− 1) ]
−σ3[L5(t, y) − L6(t, y) − L5(t− 1, y) − L6(t− 1, y) H(t− 1)

} (20)

where
Υ1(t, y) =

[
t + Sc(2k+y)2

2

]
erfc

( √
Sc(2k+y)

2
√

t

)
−

√
tSc
π (2k

+y) exp
(
−

Sc(2k+y)2

4t

) (21)

Υ2(t, y) =
[
t + Sc(2+2k−y)2

2

]
erfc

( √
Sc(2+2k−y)

2
√

t

)
−

√
tSc
π (2 + 2k

−y) exp
(
−

Sc(2+2k−y)2

4t

) (22)

G1(t, y) =
[
t + Pr(2k+y)2

2

]
erfc

( √
Pr(2k+y)

2
√

t

)
−

√
tPr
π (2k

+y) exp
(
−

Pr(2k+y)2

4t

) (23)

G2(t, y) =
[
t + Pr(2+2k−y)2

2

]
erfc

( √
Pr(2+2k−y)

2
√

t

)
−

√
tPr
π (2 + 2k

−y) exp
(
−

Pr(2+2k−y)2

4t

) (24)

G3(t, y) = Υ1(t, y) (25)

G4(t, y) = Υ2(t, y) (26)

L1(t, y) = 1
2

[
(2k+y)4

12 + (2k + y)2t + t2
]
erfc

(
2k+y
2
√

t

)
−

1
6

√
t
π (2k

+y)
[
(2k+y)2

2 + 5t
]

exp
(
−

(2k+y)2

4t

) (27)

L2(t, y) = 1
2

[
(2+2k−y)4

12 + (2 + 2k− y)2t + t2
]
erfc

(
2+2k−y

2
√

t

)
−

1
6

√
t
π (2 + 2k− y)

[
(2+2k−y)2

2

+5t] exp
(
−

(2+2k−y)2

4t

) (28)

L3(t, y) = 1
2

[
Sc2(2k+y)4

12 + Sc(2k + y)2t + t2
]
erfc

( √
Sc(2k+y)

2
√

t

)
−

1
6

√
tSc
π (2k + y)

[
Sc(2k+y)2

2 + 5t
]

exp
(
−

Sc(2k+y)2

4t

) (29)
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L4(t, y) = 1
2

[
Sc2(2+2k−y)4

12 + Sc(2 + 2k− y)2t

+t2
]
erfc

( √
Sc(2+2k−y)

2
√

t

)
−

1
6

√
tSc
π (2 + 2k− y)

[
Sc(2+2k−y)2

2

+5t] exp
(
−

Sc(2+2k−y)2

4t

) (30)

L5(t, y) = 1
2

[
Pr2(2k+y)4

12 + Pr(2k + y)2t + t2
]
erfc

( √
Pr(2k+y)

2
√

t

)
−

1
6

√
tPr
π (2k + y)

[
Pr(2k+y)2

2 + 5t
]

exp
(
−

Pr(2k+y)2

4t

) (31)

L6(t, y) = 1
2

[
Pr2(2+2k−y)4

12 + Pr(2 + 2k− y)2t

+t2
]
erfc

( √
Pr(2+2k−y)

2
√

t

)
−

1
6

√
tPr
π (2 + 2k− y)

[
Pr(2+2k−y)2

2

+5t] exp
(
−

Pr(2+2k−y)2

4t

) (32)

3.1. Solution for the Temperature When Pr = Sc

It can be observed in (18) that the solution for temperature does not hold when the Prandtl and
Schmidt numbers are the same. However, setting Pr = Sc right from (8) we obtain

θ(t, y) =
∞∑

k=0
{D f
√

Sc(k + 1)[P4(t, y) − P2(t, y)] + P3(t, y) − P1(t, y)

+[P1(t− 1, y) − P3(t− 1, y)
+D f

√
Sc(k + 1)P2(t− 1, y) − P4(t− 1, y)] [H(t− 1)]

} (33)

where
P1(t, y) =

[
t + Sc(2+2k−y)2

2

]
erfc

( √
Sc(2+2k−y)

2
√

t

)
−√

tSc
π (2 + 2k− y) exp

(
−

Sc(2+2k−y)2

4t

) (34)

P2(t, y) = 2
√

t
π exp

(
−

Sc(2+2k−y)2

4t

)
−
√

Sc(2 + 2k− y)erfc
( √

Sc(2+2k−y)
2
√

t

) (35)

P3(t, y) =
[
t + Sc(2k+y)2

2

]
erfc

( √
Sc(2k+y)

2
√

t

)
−√

tSc
π (2k + y) exp

(
−

Sc(2k+y)2

4t

) (36)

P4(t, y) = 2

√
t
π

exp

−Sc(2k + y)2

4t

− √Sc(2k + y)erfc

 √Sc(2k + y)

2
√

t

 (37)
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3.2. Solution for the Velocity When Pr = Sc , 1

It is clear that (20) does not hold when Pr = Sc , 1. Thus, if Pr , 1, then putting Pr = Sc in (6)–(8),
the solution for velocity becomes

u(t, y) = 1
Pr−1

∞∑
k=0

{
(N + 1)[Q1(t, y) −Q3(t, y) + Q5(t, y) −Q7(t, y)]

+(k + 1)D f
√

Pr[Q2(t, y) −Q4(t, y) + Q6(t, y) −Q8(t, y)]
+(N + 1)Q3(t− 1, y) −Q1(t− 1, y) + Q7(t− 1, y) −Q5(t− 1, y)

+(k + 1)D f
√

PrQ4(t− 1, y) −Q2(t− 1, y) + Q8(t− 1, y)
−Q6(t− 1, y)][H(T − 1)]}

(38)

Here
Q1(t, y) = L1(t, y) (39)

Q2(t, y) = 1
3 [4t + (2k + y)2]

√
t
π exp

(
−

(2k+y)2

4t

)
−

[
(2k+y)3

6 + (2k + y)t
]
erfc

(
2k+y
2
√

t

) (40)

Q3(t, y) = L2(t, y) (41)

Q4(t, y) = 1
3 [4t + (2 + 2k− y)2]

√
t
π exp

(
−

(2+2k−y)2

4t

)
−

[
(2+2k−y)3

6 + (2 + 2k− y)t
]
erfc

(
2+2k−y

2
√

t

) (42)

Q5(t, y) = L4(t, y) (43)

Q6(t, y) = 1
3 [4t + Pr(2 + 2k− y)2]

√
t
π exp

(
−

Pr(2+2k−y)2

4t

)
−

[
Pr

3
2 (2+2k−y)3

6 +
√

Pr(2 + 2k− y)t
]
erfc

( √
Pr(2+2k−y)

2
√

t

) (44)

Q7(t, y) = L3(t, y) (45)

Q8(t, y) = 1
3 [4t + Pr(2k + y)2]

√
t
π exp

(
−

Pr(2k+y)2

4t

)
−

[
Pr

3
2 (2k+y)3

6 +
√

Pr(2k + y)t
]
erfc

( √
Pr(2k+y)

2
√

t

) (46)

3.3. Solution for the Velocity When Pr = Sc = 1

In the case of fluids with Pr = Sc = 1, then

u(t, y) = y
∞∑

k=0

{(
1+N

2

)
[W1(t, y) −W3(t, y)]

+(k + 1)D f [W2(t, y) −W4(t, y)]
+

[(
1+N

2

)
W3(t− 1, y) −W1(t− 1, y)

+(k + 1)D f W4(t− 1, y) −W2(t− 1, y)]H(T − 1)
} (47)
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Here,
W1(t, y) = Q4(t, y) (48)

W2(t, y) =
[
t + (2+2k−y)2

2

]
erfc

(
2+2k−y

2
√

t

)
−√

t
π (2 + 2k− y) exp

(
−

(2+2k−y)2

4t

) (49)

W3(t, y) = Q2(t, y) (50)

W2(t, y) =
[
t + (2k+y)2

2

]
erfc

(
2k+y
2
√

t

)
−√

t
π (2k + y) exp

(
−

(2k+y)2

4t

) (51)

4. Results and Discussions

The Dufour effect on the flow of a viscous fluid, through a vertical channel with ramped boundary
conditions, is investigated. The analytical and numerical solutions to the system of governing
Equations (6)–(8) with appropriate ICs and BCs given in (9) have been obtained using LTT and
pdepe in MATLAB respectively. The results are obtained by varying the values of the embedded
parameters. The buoyancy ratio (N) and Dufour parameter

(
D f

)
are arbitrarily taken. During the

course of numerical computations of the velocity, temperature, concentration, coefficient of skin-friction,
coefficient of heat transfer and coefficient of mass transfer, the values of Prandtl number are chosen
for Mercury (Pr = 0.025), air (Pr = 0.71), water (Pr = 7.0), water at 4 ◦C (Pr = 11.62) and engine oil
(Pr = 100). Similarly, the values of Sc are chosen for the gases representing diffusing chemical species
of most common interest in air namely hydrogen (Sc = 0.22), water-vapour (Sc = 0.60), ammonia
(Sc = 0.78), methanol (Sc = 1.00) and propyl-benzene (Sc = 2.62) at 20 ◦C and one atmospheric
pressure [38].

The solutions for temperature, concentration, velocity, Nuselt number, Sherwood number and
wall Skin-friction are graphically reported in Figures 2–14, thereby revealing the influence of the
embedded parameters on the flow.

In order to highlight the accuracy of the analytical and numerical results, comparison is made
and presented in Table 1. From the table, it is clear that the analytical and numerical results are in
good agreement.

From Figure 2, it can be observed that the temperature descents from the ramped state on the wall
to the free stream state. As t increases, the temperature also increases. Likewise, when the Schmidt
number increases, the temperature rises as well for all t. In Figure 3, concentration is seen to reduce as
the Schmidt number increases, while it increases with increase in time.

Table 1. Comparison of numerical and analytical results for temperature (θ), concentration (φ) and
velocity (u) profiles for N = 2, Pr = 0.71, Sc = 0.78, D f = 0.01, t = 0.8.

y
Numerical Solution Analytical Solution

θ φ u θ φ u

0.00 0.80000 0.80000 0.00000 0.80000 0.80000 0.00000
0.25 0.56160 0.55735 0.10584 0.56160 0.55735 0.10579
0.50 0.35611 0.35125 0.11583 0.35611 0.35125 0.11577
0.75 0.17257 0.16953 0.07047 0.17257 0.16953 0.07043
1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Similarly, it can be seen in Figure 5, that the species concentration is greater in the case of 
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fluid temperature demonstrates significant change over time than the concentration. 

Dufour effect with both ramped and constant boundary conditions are respectively presented 
in Figures 6–9. It is observed that the temperature rises when 𝑡 and 𝐷  increase. Moreover, the 
particular case of 𝐷 = 0 in Figure 8 corresponds to the work of Singh et al. [34] and it indicates that 
the energy flux is not caused by specie concentration gradient. Thus, we see that Dufour effect has 
the tendency to change the fluid’s temperature. So also, it is clear that the temperature is higher in 
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Figure 4 shows that the isothermal wall temperature is greater than the ramped wall temperature
(or they are at least the same). This happens because heating of the fluid takes place more slowly in the
case of ramped boundary conditions than the case of constant boundary conditions.
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Similarly, it can be seen in Figure 5, that the species concentration is greater in the case of isothermal
plate than in the case of ramped temperature at the plate. However, it is observed that the fluid
temperature demonstrates significant change over time than the concentration.

Physics 2019, 1 FOR PEER REVIEW  12 

 

 

Figure 3. Concentration profile for various 𝑡 and 𝑆𝑐. 

Figure 4 shows that the isothermal wall temperature is greater than the ramped wall 
temperature (or they are at least the same). This happens because heating of the fluid takes place 
more slowly in the case of ramped boundary conditions than the case of constant boundary 
conditions. 

 

Figure 4. Temperature profile with ramped and constant boundary conditions. 

Similarly, it can be seen in Figure 5, that the species concentration is greater in the case of 
isothermal plate than in the case of ramped temperature at the plate. However, it is observed that the 
fluid temperature demonstrates significant change over time than the concentration. 

Dufour effect with both ramped and constant boundary conditions are respectively presented 
in Figures 6–9. It is observed that the temperature rises when 𝑡 and 𝐷  increase. Moreover, the 
particular case of 𝐷 = 0 in Figure 8 corresponds to the work of Singh et al. [34] and it indicates that 
the energy flux is not caused by specie concentration gradient. Thus, we see that Dufour effect has 
the tendency to change the fluid’s temperature. So also, it is clear that the temperature is higher in 

Figure 4. Temperature profile with ramped and constant boundary conditions.

Dufour effect with both ramped and constant boundary conditions are respectively presented in
Figures 6–9. It is observed that the temperature rises when t and D f increase. Moreover, the particular
case of D f = 0 in Figure 8 corresponds to the work of Singh et al. [34] and it indicates that the energy
flux is not caused by specie concentration gradient. Thus, we see that Dufour effect has the tendency to
change the fluid’s temperature. So also, it is clear that the temperature is higher in the case of constant
boundary conditions compared to when ramped wall conditions are used since heating of the fluid is
slower in the latter than in the former.

However, we can observe from Figures 7 and 9 that the concentration is not affected by Dufour
effect in both cases of Ramped and constant boundary conditions. This is expected considering
the settings of the governing Equations (6)–(8). The concentration Equation (8) is independent of
Dufour parameter.

Figure 10 shows the influence of Dufour effect on the velocity over time. As t increases, the velocity
also increases and has higher value when the boundary conditions are constant, but has lower value
with ramped wall conditions. This is because in the latter, the buoyancy force increases slowly as t
increases. Figure 11 shows that increase in D f causes the velocity to rise and apparently the time taken
for the velocity to reach steady-state is very short compared to the work of Singh et al. [34].



Physics 2019, 1 122

Physics 2019, 1 FOR PEER REVIEW  13 

 

the case of constant boundary conditions compared to when ramped wall conditions are used since 
heating of the fluid is slower in the latter than in the former. 

 

Figure 5. Concentration profile with ramped and constant boundary conditions. 

 

Figure 6. Dufour effect on the temperature with ramped wall boundary conditions. 

However, we can observe from Figures 7 and 9 that the concentration is not affected by Dufour 
effect in both cases of Ramped and constant boundary conditions. This is expected considering the 
settings of the governing Equations (6)–(8). The concentration Equation (8) is independent of Dufour 
parameter. 

Figure 5. Concentration profile with ramped and constant boundary conditions.

Physics 2019, 1 FOR PEER REVIEW  13 

 

the case of constant boundary conditions compared to when ramped wall conditions are used since 
heating of the fluid is slower in the latter than in the former. 

 

Figure 5. Concentration profile with ramped and constant boundary conditions. 

 

Figure 6. Dufour effect on the temperature with ramped wall boundary conditions. 

However, we can observe from Figures 7 and 9 that the concentration is not affected by Dufour 
effect in both cases of Ramped and constant boundary conditions. This is expected considering the 
settings of the governing Equations (6)–(8). The concentration Equation (8) is independent of Dufour 
parameter. 

Figure 6. Dufour effect on the temperature with ramped wall boundary conditions.



Physics 2019, 1 123Physics 2019, 1 FOR PEER REVIEW  14 

 

 
Figure 7. Dufour effect on the concentration with ramped wall boundary conditions.  

 

Figure 8. Dufour effect on the temperature with constant boundary conditions. 

Figure 7. Dufour effect on the concentration with ramped wall boundary conditions.

Physics 2019, 1 FOR PEER REVIEW  14 

 

 
Figure 7. Dufour effect on the concentration with ramped wall boundary conditions.  

 

Figure 8. Dufour effect on the temperature with constant boundary conditions. 
Figure 8. Dufour effect on the temperature with constant boundary conditions.



Physics 2019, 1 124Physics 2019, 1 FOR PEER REVIEW  15 

 

 

Figure 9. Dufour effect with constant boundary conditions. 

Figure 10 shows the influence of Dufour effect on the velocity over time. As 𝑡 increases, the 
velocity also increases and has higher value when the boundary conditions are constant, but has 
lower value with ramped wall conditions. This is because in the latter, the buoyancy force increases 
slowly as 𝑡 increases. Figure 11 shows that increase in 𝐷  causes the velocity to rise and apparently 
the time taken for the velocity to reach steady-state is very short compared to the work of Singh et al. 
[34]. 

 
Figure 10. Velocity profile with ramped and constant boundary conditions. 

Figure 9. Dufour effect with constant boundary conditions.

Physics 2019, 1 FOR PEER REVIEW  15 

 

 

Figure 9. Dufour effect with constant boundary conditions. 

Figure 10 shows the influence of Dufour effect on the velocity over time. As 𝑡 increases, the 
velocity also increases and has higher value when the boundary conditions are constant, but has 
lower value with ramped wall conditions. This is because in the latter, the buoyancy force increases 
slowly as 𝑡 increases. Figure 11 shows that increase in 𝐷  causes the velocity to rise and apparently 
the time taken for the velocity to reach steady-state is very short compared to the work of Singh et al. 
[34]. 

 
Figure 10. Velocity profile with ramped and constant boundary conditions. Figure 10. Velocity profile with ramped and constant boundary conditions.



Physics 2019, 1 125
Physics 2019, 1 FOR PEER REVIEW  16 

 

 

Figure 11. Dufour effect on the velocity profile with constant boundary conditions.  

 

Figure 12. Nusselt number profile with ramped and constant boundary conditions. 𝑁𝑢, 𝑆ℎ and 𝐶  are presented in Figures 12–14 respectively. 𝑁𝑢 and 𝐶  depend on 𝑃𝑟 and 𝑡 
while 𝑆ℎ  depends on 𝑆𝑐  and 𝑡 . From Figure 12, it is clear that for all 𝑃𝑟  and with ramped 
boundary conditions, 𝑁𝑢 ascends for 0 < 𝑡 ≤ 1 and descends when 𝑡 > 1. However, 𝑁𝑢 decreases 
generally in the case of constant boundary conditions. Likewise, for all 𝑆𝑐  and with ramped 
boundary conditions, 𝑆ℎ ascends for 0 < 𝑡 ≤ 1 and descends for 𝑡 > 1. Moreover, 𝑆ℎ decreases 
generally with constant boundary conditions. 𝐶  demonstrates an insignificant change over time for 
fluids with large Prandtl number (𝑃𝑟). However, 𝐶  variations become pretty responsive to minor 
change in time for fluids with smaller 𝑃𝑟. Moreover, 𝐶  is higher in the case of constant boundary 
condition. 

Figure 11. Dufour effect on the velocity profile with constant boundary conditions.

Physics 2019, 1 FOR PEER REVIEW  16 

 

 

Figure 11. Dufour effect on the velocity profile with constant boundary conditions.  

 

Figure 12. Nusselt number profile with ramped and constant boundary conditions. 𝑁𝑢, 𝑆ℎ and 𝐶  are presented in Figures 12–14 respectively. 𝑁𝑢 and 𝐶  depend on 𝑃𝑟 and 𝑡 
while 𝑆ℎ  depends on 𝑆𝑐  and 𝑡 . From Figure 12, it is clear that for all 𝑃𝑟  and with ramped 
boundary conditions, 𝑁𝑢 ascends for 0 < 𝑡 ≤ 1 and descends when 𝑡 > 1. However, 𝑁𝑢 decreases 
generally in the case of constant boundary conditions. Likewise, for all 𝑆𝑐  and with ramped 
boundary conditions, 𝑆ℎ ascends for 0 < 𝑡 ≤ 1 and descends for 𝑡 > 1. Moreover, 𝑆ℎ decreases 
generally with constant boundary conditions. 𝐶  demonstrates an insignificant change over time for 
fluids with large Prandtl number (𝑃𝑟). However, 𝐶  variations become pretty responsive to minor 
change in time for fluids with smaller 𝑃𝑟. Moreover, 𝐶  is higher in the case of constant boundary 
condition. 

Figure 12. Nusselt number profile with ramped and constant boundary conditions.



Physics 2019, 1 126

Nu, Sh and C f are presented in Figures 12–14 respectively. Nu and C f depend on Pr and t while
Sh depends on Sc and t. From Figure 12, it is clear that for all Pr and with ramped boundary conditions,
Nu ascends for 0 < t ≤ 1 and descends when t > 1. However, Nu decreases generally in the case of
constant boundary conditions. Likewise, for all Sc and with ramped boundary conditions, Sh ascends
for 0 < t ≤ 1 and descends for t > 1. Moreover, Sh decreases generally with constant boundary
conditions. C f demonstrates an insignificant change over time for fluids with large Prandtl number
(Pr). However, C f variations become pretty responsive to minor change in time for fluids with smaller
Pr. Moreover, C f is higher in the case of constant boundary condition.Physics 2019, 1 FOR PEER REVIEW  17 
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5. Conclusions

A mathematical model, that investigates the Dufour effect on unsteady free convection, and mass
transfer flow of an incompressible fluid, through a vertical channel, in the presence of Dufour effect, has
been developed. Influences of the ramped walls are analysed with various parameter values. The study
shows that incorporating ramped BCs makes the fluid temperature, specie concentration, flow velocity,
coefficient of rate of heat transfer, coefficient of rate of mass transfer and coefficient of Skin-friction to
be lower compared to the case of constant BCs. Moreover, Dufour effect changes the fluid temperature.
This happens because specie concentration gradient which occur as a combined effect of a permanent
process can also generate heat flux. The velocity as well is affected by the Dufour effect. However,
from the settings of the governing equations, the concentration cannot be influenced by the Dufour
parameter. The results could have immediate relevance in the separation of isotopes, cooling of vertical
printed circuit boards, geothermal systems and in the design of chemical processing equipment.
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Nomenclature

C′ Fluid specie concentration
C′0 Fluid specie concentration near the wall y′ = 0
C′l Fluid specie concentration near the wall y′ = l
Dm Coefficient of mass diffusivity
g Gravitational acceleration
N Buoyancy ratio
l Distance between the two walls
Pr Prandtl parameter
Sc Schmidt parameter
D f Dimensionless Dufour number
t′ Dimensional time
t0 Ramped time
t Dimensionless time
T′ Fluid temperature
T′0 Wall temperature at y′ = 0
T′l Wall temperature at y′ = l
D∗ Dimensional Dufour parameter
u′ Fluid velocity
u Dimensionless fluid velocity
x′ Axis along the wall at y′ = 0
y′ Axis perpendicular to the walls
y Dimensionless axis in y′-direction
C f Coefficient of Skin-friction
Nu Nusselt number
Sh Sherwood number
H Heaviside step function
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ω Laplace transform parameter
erfc Complementary error function
exp Exponential function
Greek letters
β Coefficient of thermal expansion
β∗ Coefficient of concentration expansion
α Coefficient of thermal diffusivity
θ Dimensionless temperature
φ Dimensionless concentration
ν Kinematic viscosity
ρ Density
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