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Abstract: We determine the effective gravitational couplings in superspace whose components
reproduce the supergravity Higgs effect for the constrained Goldstino multiplet. It reproduces the
known Gravitino sector while constraining the off-shell completion. We show that these couplings
arise by computing them as quantum corrections. This may be useful for phenomenological studies
and model-building. We give an example of its application to multiple Goldstini.
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1. Introduction

The spontaneous breakdown of global supersymmetry generates a massless Goldstino [1,2],
which is well described by the Akulov-Volkov (A-V) effective action [3]. When supersymmetry is
made local, the Gravitino “eats” the Goldstino of the A-V action to become massive: The super-Higgs
mechanism [4,5].

In terms of superfields, the constrained Goldstino multiplet ΦNL [6–12] is equivalent to the A-V
formulation (see also [13–17]). It is, therefore, natural to extend the description of supergravity with
this multiplet, in superspace, to one that can reproduce the super-Higgs mechanism. In this paper we
address two issues—first we demonstrate how the Gravitino, Goldstino, and multiple Goldstini obtain
a mass. Secondly, by using the Spurion analysis, we write down the most minimal set of new terms in
superspace that incorporate both supergravity and the Goldstino multiplet in order to reproduce the
super-Higgs mechanism of [5,18] at lowest order in M̄Pl .

The usual presentation of the super-Higgs mechanism introduces Goldstino and Gravitino
self-couplings (or mass terms) by hand and shows that the resulting action is consistent under local
supersymmetry [2]. One then applies a shift of the Gravitino to obtain a massive Gravitino action
coupled to matter supercurrents. We review this approach in the Appendix A.

Instead, to obtain additional insight, we take one step back from this and will address the question
of “how” the Gravitino and Goldstino obtain these self-couplings. This approach is strongly analogous
to that of the Higgs mechanism presented by Englert and Brout [19] (see also an excellent review of
these topics [20]). In this approach we start from a classical action that contains only kinetic terms and
current couplings to fields. At this point, both the Gravitino and Goldstino are classically massless.
We then generate all the necessary terms from current correlators, which give the self-energies or
vacuum polarization amplitudes, and then, by resumming this series, obtain propagators.

What is perhaps surprising is that these terms arise from an interplay of the gravitational
cosmological constant that appears in the scalar component of the Anomaly multiplet Φ, i.e., 〈x〉.
We will refer to 〈x〉 as the “Goldstino condensate” as it is the vev around which the scalar term G2

of the Constrained Goldstino mutliplet f ΦNL fluctuates. If supersysymmetry is broken, Φ flows to
8 f
3 ΦNL in the Infrared Radiation (IR) [12], with f being the supersymmetry breaking order parameter.
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We then set the gravitational cosmological constant to cancel the F-term of the Goldstino, a prerequisite
for the super-Higgs mechanism. In retrospect this should not be so surprising: in supersymmetry all
coefficients should be promoted to background superfields and this includes the cosmological constant
(more precisely the Goldstino condensate, these being simply related by factors of M̄Pl). It is therefore
sensible to suspect that the cosmological constant is contained in a chiral superfield. In this paper we
show that the cosmological constant may naturally be contained within the scalar component of Φ
which flows in the Infrared to the Goldstino multiplet ΦNL. Furthermore, we show that all the soft
terms associated with the super-Higgs mechanism may be naturally written in terms of superspace
couplings involving ΦNL.

Furthermore, this approach emphasizes how the Goldstino couples to general matter
supercurrents, both through Goldberger-Treiman type derivative couplings and non-derivative
couplings. We will show how these non-derivative couplings are derived also, as an exchange of
a Gravitino mode between two supercurrents. There are corrections to our results at higher order in
1/M̄Pl , equivalent to full nonlinear supergravity, but for most applications including phenomenology
do not concern us. These can of course be derived by computing the higher orders in the quantum
effective action.

Our action may be useful for analyzing Goldstino couplings to U(1)R currents and may
be naturally extended to the use of Sαα̇ and Rαα̇ current multiplets [21]. It may also offer an in
principle phenomenological way to determine the correct supercurrent multiplet that describes nature.
Furthermore, this setup allows for straightforward analysis of models with many Goldstini [22] and
with Pseudo-Goldstini [23,24].

In Section 4, we extend the usual presentation of supersymmetric soft masses in superspace [25],
by treating ΦNL as a Spurion multiplet, to include also terms proportional to the Gravitino mass
m3/2. We then show that expanding these terms in components, and including previously well-known
terms associated with the scalar and Gaugino soft masses m2

0 and m1/2, reproduces the super-Higgs
mechanism at leading order. While our effective superspace action does not have the full complexity
of supergravity, including complicated expressions involving the Kähler metric, we gain a simpler
more transparent construction that constrains the off-shell completion. To find these new superspace
terms that we must add, we take suitable couplings of the Goldstino multiplet ΦNL, the supercurrent
multiplet J αα̇, the Graviton multiplet Hαα̇, M̄Pl and a constant term 〈x〉, constrained by dimensional
analysis. This is reasonable in a weak field expansion in 1/M̄Pl . For a theory without matter the
procedure is straightforward. For a theory with matter, to demonstrate the full shift of the super-Higgs
mechanism, the Goldberger-Treiman relation(s) should appear explicitly. These are identified with the
superspace terms proportional to m2

0 and m1/2 [25], and are then accounted for. We then demonstrate
the super-Higgs mechanism with matter supercurrents.

The outline of this paper is as follows: In the next section we will review the constrained
Goldstino multiplet ΦNL and its relation to the Ferrara-Zumino (F-Z) [26] supercurrent multiplet
J αα̇. We then compute the quantum corrections in components that reproduces the terms necessary
for the super-Higgs mechanism. Next we promote the component terms to a full superspace effective
action, by coupling the Goldstino multiplet to the supercurrent multiplet and determine that the
superspace formulation of these new terms correctly reproduces the components of the super-Higgs
mechanism. In the Appendix A we include a review of [18], which is the component formulation of
the super-Higgs mechanism. We adopt two-component spinor notation throughout.

2. Nonlinear Susy Coupled to Supergravity

It is well known that in a theory with supersymmetry one can describe the supersymmetric
current in terms of a general supermultiplet Jµ. As a bosonic completion this multiplet also contains
the R-symmetry and the conformal symmetry currents and satisfies the general relation

D̄α̇Jαα̇ = DαΦ, (1)
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where Jαα̇ = −2σ
µ
αα̇Jµ. The multiplet so formed is called the Ferrara-Zumino supercurrent

multiplet [26], which is a real linear multiplet: D2 J = D̄2 J = 0. The multiplet X on the right-hand side
is the Anomaly multiplet. In components the Anomaly multiplet contains the parameters describing
the quantum effects leading to non-conservation of the supersymmetry, R-symmetry and conformal
symmetry currents, supplemented by bosonic degrees of freedom in the form of an auxiliary field in
its scalar component. Therefore

Φ = x +
√

2θξ(x) + θθF(x) (2)

where x is an auxiliary field, ξα = σ
µ
αα̇S̄α̇

µ and F(x) = 2
3 T + i∂µ jµ. If the theory is superconformal,

then Φ = 0. The component form of the supercurrent multiplet is given by

Jµ = jµ + θα(Sµα +
1
3

σµαα̇σ̄να̇βSνβ) +
i
2

θ2∂µ x̄ + θ̄α̇(S̄α̇
µ +

1
3
(εα̇γ̇S̄νβ̇σ̄νβ̇ασµαγ̇))

− i
2

θ̄2∂µx + θασν
αα̇ θ̄α̇(2Tνµ −

2
3

ηµνT − 1
4

ενµρσ∂[ρ jσ]) + ... (3)

jµ is the R-current, Sα
µ the supercurrent, Tµν the stress energy tensor, the vacuum expectation value of

x, denoted 〈x〉, is in general non-zero and will play the part of a cosmological constant as shown in
the remainder of the paper. This x may be equivalent to the auxiliary terms found in [27–30] however
from this perspective it appears in the scalar component of Φ.

As discussed in [12] the supercurrent multiplet can also be studied in theories in which
supersymmetry is broken spontaneously. Even though the conserved charge of the global broken
symmetry does not exist, its conserved current and its commutators with the charge do. This allows
one to construct superspace and supermultiplets in the usual way and extends the above formalism
to the non-supersymmetric case. In this scenario, the large distance limit of the chiral superfield X is
identified with the Goldstino, also including the supersymmetry breaking order parameter f , the scale
of supersymmetry breaking. To describe the Goldstino supermultiplet we may start from a lefthanded
chiral superfield D̄α̇Φ = 0 and apply the constraint Φ2 = 0. The solution to this equation is given by
the nonlinear Goldstino multiplet [12,31]

ΦNL =
G2

2F
+
√

2θG + θ2F. (4)

The field Gα is the Goldstino and F the auxiliary field. In general one must integrate out F,
which may be complicated to do in practice, but will lead as

〈
F
〉
= f + ..., where the ellipses may often

be ignored due to terms with higher derivatives. The above result remains valid for both F-term and
D-term supersymmetry breaking as long as the chiral superfield Φ can be constructed.

In this formalism, the term 〈x〉 = 4
3 〈G2〉 is a Goldstino condensate and has been discussed before

in [32,33] (the coefficient appearing here was derived in [12] where in the IR Φ→ 8
3 f ΦNL). For 〈x〉 not

to vanish depends on the details of the supersymmetry breaking mechanism. In fact it is curious that
one may obtain 〈x〉 non-zero even when supersymmetry is not broken and f = 0 [34].

The ellipses in Equation (3) may be determined from a shift from yµ = xµ − iθασ
µ
αα̇ θ̄ β̇. Our metric

conventions are mostly minus, ηµν = (1,−1,−1,−1). The supersymmetry current algebra is

{Q̄α̇, Sαµ} = σν
αα̇(2Tµν + i∂ν jµ − iηµν∂λ jλ −

1
4

ενµρλ∂ρ jλ) (5)

{Qβ, Sµα} = 2iελβ(σµρ)
λ
α ∂ρ x̄ (6)

where the first term of Equation (5) is the conserved symmetric energy tensor and the remaining terms
are Schwinger Terms that vanish in the vacuum. It is straightforward to use the definition of the
Supercharge, Qα =

∫
d3xS0

α, to relate this expression to the super algebra

{Qα, Q̄α̇} = 2σ
µ
αα̇Pµ. (7)
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The simplest nonlinear Goldstino superfield ΦNL action that breaks supersymmetry
spontaneously is given by

L =
∫

d4θΦ†
NLΦNL +

∫
d2θ f †ΦNL +

∫
d2θ̄ f Φ†

NL. (8)

As shown in [12] this action, in the absence of other couplings involving the auxiliary field,
is equivalent to the full A-V action in components

LAV = −| f |2 + i∂µḠσ̄µG +
1

4| f |2 Ḡ2∂2G2 − 1
16| f |6 G2Ḡ2∂2G2∂2Ḡ2. (9)

Let us for the moment focus on only the first two terms, which comprise the A-V action,
ignoring terms with a higher number of derivatives. The relevant terms in the A-V action are the
supersymmetry breaking term and the Goldstino kinetic terms. The supersymmetry breaking term
−| f |2 in the action is a cosmological constant. The minimum of the scalar potential is Vmin = +| f |2
which is positive definite, and we see that global supersymmetry is broken. The supergravity action
will also generate a cosmological constant, but of opposite sign. If these are made to be equal, the overall
cosmological constant vanishes. This will appear shortly.

We introduce the linear supergravity action which provides kinetic terms for the Gravitino.
The supergravity fields are embedded in a real vector superfield. In Wess-Zumino gauge the
components are given by

Hµ = θασν
αα̇ θ̄α̇(hµν − ηµνh) + θ̄2θα(ψµα + σµαα̇σ̄ρα̇βψρβ)

+
i
2

θ2Mµ −
i
2

θ̄2M†
µ + θ2θ̄α̇(ψ̄

α̇
µ + σ̄α̇α

µ σ
ρ

αβ̇
ψ̄

β̇
ρ )−

1
2

θ2θ̄2 Aµ (10)

where Hµ = 1
4 σ̄α̇α

µ Hαα̇, hµν is the linear Graviton, ψα
µ is the Gravitino and Mµ, Aµ are auxiliary fields.

The kinetic terms of the supergravity action are given by [31]

−
∫

d4θHµEFZ
µ = −1

2
εµνρσ(ψµασ̄α̇α

ν ∂ρψ̄σα̇ − ψ̄µα̇σ̄α̇α
ν ∂ρψσα)−

1
3
|∂µ Mµ|2 + 1

3
Aµ Aµ... (11)

The ellipses include a linearized Graviton kinetic term. EFZ
αα̇ is defined as

EFZ
αα̇ = D̄τ̇ D2D̄τ̇ Hαα̇ + D̄τ̇ D2D̄α̇ Hτ̇

α + DγD̄2DαHγα̇ − 2∂αα̇∂γτ̇ Hγτ̇ . (12)

This gives a kinetic term for the Graviton and Gravitino, but the remaining fields are auxiliary,
and therefore not dynamical. The auxiliary field Aµ integrates out to give Aµ =

jµ
MPl

+ ..., with the
ellipses denoting higher order terms in 1/F and 1/M̄Pl . The complex field Mµ plays a role in generating
a cosmological constant once we weakly couple the supercurrent mutliplet to linear supergravity.

Now that we have introduced the Goldstino and supergravity actions, we would like to couple
the supercurrent multiplet to a linear supergravity muliplet [31]

1
8M̄Pl

∫
d4θJαα̇ Hαα̇ =

1
2M̄Pl

(hµνTµν + ψµSµ + ψ̄µS̄µ − jµ Aµ)

− 1
4M̄Pl

∂µ Mµx− 1
4M̄Pl

∂µ M†µ x̄. (13)

Also M̄Pl = Mpl/8π is the reduced Planck mass. It is useful here to recall that the supersymmetry
current multiplet Jαα̇ contains at order θβ a contribution from fermionic matter and a term proportional
to the supersymmetry breaking term,

Sµ = Sµ
matter + i

√
2 f σ

µ
αα̇Ḡα̇ , S̄µα̇ = S̄µ

matter + i
√

2 f †σ̄µα̇αGα. (14)
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We remind the reader that at this point, the Gravitino and Goldstino are massless in the
classical action.

3. Super-Higgs as an Effective Action

In this section, we focus on the component formalism and explicitly compute the relevant terms in
the effective action at tree level to realize the super-Higgs mechanism. We shall find that the necessary
terms all arise from couplings to the cosmological constant terms that we introduced in our definition
of the supercurrent multiplet.

Our approach is non-standard within the supergravity literature, in that rather than using the
local supersymmetry transformations, as outlined in the Appendix A, to generate a self-consistent
action, we instead use the approach of evaluating a quantum corrections to a classically massless
action. In Higgs type mechanisms the symmetry breaking is often a result of strong dynamics, in which
case the fundamental quantity to compute is the self-energy from evaluating the vacuum polarization
amplitude. Diagrammatically, at tree level, a single Goldstone mode is exchanged between two gauge
bosons to generate a transverse contribution to the gauge boson’s mass [19,20]. Our approach is
analogous and therefore puts the super-Higgs mechanism on a similarly equal footing to the other
forms of symmetry breaking phenomena. To demonstrate this our principle interest is in the evaluation
of the supercurrent correlator, which may also have interesting applications beyond the scope of
this paper.

All corrections to our approach are higher order in 1/M̄Pl and therefore does not necessitate a full
nonlinear analysis, although these corrections may also be generated as higher order corrections to the
quantum effective action.

The starting point is to interpret the classical action as only the massless kinetic terms of the
various fields. All remaining terms will be considered to be interaction terms.

3.1. The Cosmological Constant

First we focus on the overall cosmological constant. This will be found by collecting the relevant
contributions to the vacuum energy density by integrating out the auxiliary fields. Varying the
combination of Equations (11) and (13) with respect to M = ∂µ Mµ (treating M and M† as independent
fields) we find that

M† = − 3
4M̄Pl

x , M = − 3
4M̄Pl

x̄. (15)

Substituting this result back in the original action, and integrating out Aµ, gives the terms

Laux =
3xx̄

16M̄2
Pl
−

3jµ jµ

16M̄2
Pl

(16)

These are the relevant parts of the effective action which describes the 1
M̄2

Pl
back reaction of the

supergravity auxiliary fields on matter.
We can see that this mechanism provides a non-vanishing contribution to the vacuum energy

density of the form [27,35]

ρVac = −
3 〈x〉 〈x̄〉
16M̄2

Pl
. (17)

Taking the cosmological constant | f |2 from the Goldstino action we may cancel the overall
cosmological constant by setting

3 〈x〉 〈x̄〉
16M̄2

Pl
= | f |2, (18)
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and hence
〈x〉 = 4√

3
M̄Pl f . (19)

This unambiguously defines the gravitational cosmological constant contribution to the vacuum
energy as proportional to 〈x〉.

It has been shown in [5] that whether one generates a Gravitino mass, or not, depends on whether
these terms cancel, which is related to whether we are in Minkowski background or anti de Sitter space.
We take them to exactly cancel such that the massive Gravitino does appear. Expanding x around its
vev x → 〈x〉+ δx at this order in M̄Pl there is a contribution to the Goldstino self-coupling (We are
careful not to write mass as the Goldstino couples to the Gravitino and in the mass basis there is only
a massive Gravitino) coming from Equation (16), this takes the form

Laux ⊃
3(〈x〉+ 4

3 G2)(〈x̄〉+ 4
3 Ḡ2)

16M̄2
Pl

=
3

16M̄2
Pl
[〈x〉 〈x̄〉+ 4

3
G2 〈x̄〉+ 4

3
〈x〉 Ḡ2 +

(
4
3

)2
G2Ḡ2], (20)

which therefore arises from coupling to 〈x〉 directly.

3.2. The Component Terms

In this section, we will derive the tree level contributions of the effective action and explicitly
demonstrate how the Gravitino mass arises. First, to clarify notation, we define the time ordered
current correlators

〈T[Sµ
α (p)Sν

β(−p)]〉 = Π̃µν
αβG̃3/2(p2) (21)

〈T[Sµ
α (x)Sν

β(0)]〉 = Πµν
αβG3/2(x2) (22)

which are related by a Fourier Transform. In analogy with gauge theories, these are the linear response
functions or vacuum polarization amplitude of the Gravitino.

Next, considering the classical action to have only massless kinetic terms, and introducing the
linear current to field couplings Equation (13) it is straightforward to see that the effective action
generated from linear supergravity will give

L′ ⊃ i
8M2

pl
[G̃3/2(0)ψ

α
µ(σ

µν)
β
αψβν +

˜̄G3/2(0)ψ̄α̇µ(σ̄
µν)α̇

β̇
ψ̄

β̇
ν ] (23)

The terms comprise the Gravitino self-energy term (at zero momentum). It may be thought of as
the effect of the matter, more specifically the 〈x〉 term, on the gravity sector. The explicit evaluation of
this term is found in the next subsection and demonstrates how the Gravitino self-couplings arise in
this formalism. The result is a shifted pole at

m3/2 =
iG̃3/2(0)

8M2
Pl

=
3 〈x〉

16M̄2
Pl

=
f√

3M̄Pl
(24)

where the last equality is found only after cancelling the overall cosmological constant. Without matter,
we already have the relevant terms to achieve the super-Higgs mechanism and the overall action is
locally invariant. One may attempt a geometric sum of mass insertions to obtain the massive Gravitino
propagator found in [18].

Upon inclusion of matter the action is however not yet invariant under local supersymmetry.
For this to happen, it is necessary to generate a term of the form 1

M̄Pl
Gασ

µ
αα̇S̄α̇

µmattter. To obtain this term
we look to compute

L′ ⊃ i
8M̄2

Pl
(Sα

µD̃µν
αβ(0)S

νβ + S̄µ
α̇

˜̄Dα̇β̇
µν(0)S̄ν

β̇
), (25)
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these terms comprise the reaction of the Gravitino, back onto the matter sector, where the two point
function is given by (We wish to point out that this is not 〈ψ̄µ

α̇ (x)ψν
α(y)〉).

〈ψµ
α (x)ψν

β(y)〉 =
∫ d4 p

(2π)4 D̃µν
αβ(p2)e−ip.(x−y). (26)

In the zero-momentum limit, the relevant pieces are given by [18]

D̃µν
αβ(p2) =

2i
3

m3/2

p2 −m2
3/2

(
ηµνεαβ + i(εσµν)αβ

)
. (27)

Equivalently, one may instead use the local supersymmetry transformations to find the terms
that must be added to make the action invariant. Finally, collecting the terms, one recovers the
effective contributions

Leff = −i
(

m3/2ψα
µ(σ

µν)
β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
− f 2

3M̄2
Plm3/2

GαGα −
( f †)2

3M̄2
Plm

†
3/2

Ḡα̇Ḡα̇

+
i f †
√

2
12M̄2

Plm
†
3/2

Gασ
µ
αα̇S̄α̇

µmatter +
i f
√

2
12M̄2

Plm3/2
Ḡα̇σ̄µα̇αSαµmatter. (28)

From these we see that the cosmological constant factor 〈x〉
4M̄2

Pl
determines the Gravitino mass m3/2.

It is only after we require the vanishing cosmological constant, in the form of Equation (18), that we
find the relation m3/2 = f√

3M̄Pl
.

Finally, we note that the local supersymmetry transformations are also modified by the presence of
a non-vanishing 〈x〉, these become

δψµα = −
(

2M̄Pl∂µεα + i
〈x〉

4M̄Pl
σµαα̇εα̇

)
. (29)

Taking Equation (28) and also including the Goldberger Trieman relations one then has all the
necessary terms to apply the shifts Equation (36) and obtain the massive Gravitino action coupled to
matter supercurrents Equation (40). However, we will defer this until we have obtained these very
same terms from effective superspace terms, in the next section.

4. The Superspace Terms

In the previous section we demonstrated that certain terms needed for the super-Higgs mechanism
are generated in an effective action that combines linear supergravity and the Goldstino multiplet.
In this section we will promote the effective terms in components to full superspace terms in the
action. One may write the supersymmetry breaking soft masses in superspace [23,25] using a standard
Spurion analysis in which the Goldstino multiplet ΦNL acts as the Spurion multiplet. The sfermion
and Gaugino masses m2

0 and mλ are used as coefficients in these superspace terms though they may
be computed from tree [36,37] or loop level diagrams or may be encoded in current correlators when
one addresses the problem of supersymmetry breaking with strong coupling (e.g., [38–41]). These soft
mass terms are reproduced in Equations (37) and (38).

Our contribution is to introduce the additional superspace terms proportional to m3/2 and show
that the collection, in components, do indeed satisfy the super-Higgs mechanism. Our starting point
of this superspace effective action is to assume all the relevant pieces of Section 2. In particular we
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also assume the vanishing overall cosmological constant Equation (18). Next we introduce a new term,
we add to the supergravity action

− 1
64

∫
d4θ

(
m3/2ΦNL

f
+

m†
3/2Φ†

NL

f †

)[
D̄α̇Dα Hββ̇D̄α̇DαHββ̇ −

4
3
(D̄α̇Dα Hαα̇)2

]
(30)

which in components gives a Gravitino self-coupling

− i
(

m3/2ψα
µ(σ

µν)
β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
+ ... (31)

The second superspace term was introduced to remove terms of the form ψ2. The ellipses denote
some higher order terms or derivative couplings, which we will ignore. Different off-shell completions
will generate different couplings at this order, including couplings between the Goldstino and the
off-shell supergravity fields, which may be interesting to catalogue but deviate too far from the
present discussion.

Next we introduce the new superspace term

9
784

∫
d4θ

(
m3/2ΦNL

f
+

m†
3/2Φ†

NL

f †

)
Jαα̇J αα̇

| f |2 , (32)

which introduces the Goldstino couplings

i
2
√

6M̄Pl
(Gασ

µ
αα̇S̄α̇

µmatter + Ḡα̇σ̄µα̇αSαµmatter)−m3/2Ḡα̇Ḡα̇ −m†
3/2GαGα. (33)

There are also some higher order terms, mostly suppressed by higher orders in 1/F.
Collecting the relevant terms, one obtains

L = −1
2

εµνρσ(ψµασ̄α̇α
ν ∂ρψ̄σα̇ − ψ̄µα̇σ̄α̇α

ν ∂ρψσα)− i
(

m3/2ψα
µ(σ

µν)
β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
+

i
2
√

6M̄Pl
(Gασ

µ
αα̇S̄α̇

µmatter + Ḡα̇σ̄µα̇αSαµmatter)−m3/2Ḡα̇Ḡα̇ −m†
3/2GαGα

+
1

2M̄Pl
(ψµSµ + ψ̄µS̄µ) +

1
2

iGασ
µ
αα̇∂µḠα̇ +

1
2

iḠα̇σ̄µα̇α∂µGα + ... (34)

4.1. The Case of No Matter

We consider first the case of vanishing matter contributions, Sµ
αmatter = 0. The component

Lagrangian Equation (34) reduces to

L = −1
2

εµνρσ(ψµασ̄α̇α
ν ∂ρψ̄σα̇ − ψ̄µα̇σ̄α̇α

ν ∂ρψσα)− i
(

m3/2ψα
µ(σ

µν)
β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
−m3/2Ḡα̇Ḡα̇ −m†

3/2GαGα +
i√

2M̄Pl
(Fψα

µσ
µ
αα̇Ḡα̇ + F†ψ̄µα̇σ̄α̇αGα)

+
1
2

iGασ
µ
αα̇∂µḠα̇ +

1
2

iḠα̇σ̄α̇α∂µGα + ... (35)

In this case, we can realize the super-Higgs mechanism by applying the shifts [42]

Ψµα = ψµα −
i√
6

σµαα̇Ḡα̇ −
√

2
3

∂µGα

m 3
2

, Ψ̄α̇
µ = ψ̄α̇

µ −
i√
6

σ̄α̇α
µ Gα −

√
2
3

∂µḠα̇

m†
3
2

, (36)
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then one reproduces

L = −1
2

εµνρσ(Ψα
µσναα̇∂ρΨ̄α̇

σ − Ψ̄µα̇σ̄α̇α
ν ∂ρΨσα)− i

(
m3/2Ψα

µ(σ
µν)

β
αΨνβ + m†

3/2Ψ̄µα̇(σ̄
µν)α̇

β̇
Ψ̄β̇

ν

)
the Lagrangian of a massive Gravitino Weyl spinor Ψα

µ.

4.2. Coupling to Matter

To couple the massive Gravitino to the matter supercurrent requires that all components of the shift
of Equation (36) couple to the matter supercurrent. After integration by parts, one of these shifted terms
is the Goldberger-Treiman relation. These terms are the most useful for phenomenology [43]. In the
superspace formalism, the Goldberger-Treiman terms appear in components in their non-derivative
form [23,25] from superspace terms such as

∫
d2θ

mλ

2 f
ΦNLWαWα +

∫
d2θ̄

m†
λ

2 f † Φ†
NLW̄α̇W̄ α̇ (37)

and ∫
d4θ

m2
0
| f |2 Φ†

NLΦNLΦ†Φ (38)

where Φ represents some generic matter chiral superfield and Wα is the superfield strength tensor.
mλ and m0 are the soft supersymmetry breaking masses of Gauginos and scalars. Expanding out
these terms in superspace, first give the soft breaking mass terms and at linear order in the Goldstino,
give the Golberger Treiman relations. After collecting the components and use of the equation of
motion, this will supply

Gα

√
2 f

∂µSµ
αmatter +

Ḡα̇√
2 f †

∂µS̄µα̇
matter. (39)

Including these terms with the action given by Equation (34) and applying the shifts of
Equation (36) we find

L =
1
2

εµνρσ(Ψα
µσναα̇∂ρΨ̄α̇

σ − Ψ̄µα̇σ̄α̇α
ν ∂ρΨσα)− i

(
m3/2Ψα

µ(σ
µν)

β
αΨνβ + m†

3/2Ψ̄µα̇(σ̄
µν)α̇

β̇
Ψ̄β̇

ν

)
+

1
2M̄Pl

(Ψα
µ(S

µ
α )matter + Ψ̄µα̇(Sµα̇)matter) + ... (40)

The Lagrangian of a Majorana fermion coupled to matter.
We note here that the coefficients of the superspace terms added above are chosen by hand to

ensure detailed cancellations. They are therefore not fixed and should be understood as coming from
a higher energy completion. These terms should therefore be fixed by a string theory completion at
the Planck scale, and we understood the above action as an effective low energy description of this
completion. What the detailed high energy completion is we leave to further work.

5. Applications

In this section, we wish to demonstrate some of the uses that an effective action of the super-Higgs
mechanism in superspace may have. To demonstrate this we first write down the effective action
which, in components, will reproduce the linearized action that correctly describes the theory of
multiple Goldstini [22].

Goldstini

As a simple application, we would like to write an action whose components naturally reproduce
the effect of multiple supersymmetry breaking sectors, and hence, multiple Goldstini. We use an index
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i running from 1 to N, to label the supersymmetry breaking sectors, with Fi F-terms and Φi chiral
superfields. This is the interaction basis ηi. The mass basis we will label {G, ζa}. We define the
chiral superfields

ΦiNL =
η2

i
2Fi

+
√

2θηi + θ2Fi (41)

from which the components of the supercurrent may be found

Sα
µtotal = Sα

µmatter + ∑
i

i
√

2Fiσµαβ̇η̄
β̇
i = Sα

µmatter + i
√

2 fe f f σµαβ̇Ḡβ̇. (42)

It is straightforward to see that the uneaten Goldstino do not appear in the supercurrent, which is
a simple application of

Gα =
1

fe f f
∑

i
Fiη

α
i (43)

where f 2
e f f is the sum of the f 2

i . We now introduce the N Goldstino multiplet Lagrangian

∑
i

(∫
d4θΦiNLX†

iNL +
∫

d2θ f †
i ΦiNL +

∫
d2θ̄ fiΦ†

iNL

)
. (44)

The current supermultiplet to supergravity coupling is modified

1
M̄Pl

∫
d4θ Jαα̇Hαα̇ ⊃ − 1

4M̄Pl
∂µ Mµ ∑

i
(xi + 〈xi〉)−

1
4M̄Pl

∂µ M†
µ ∑

i
(x̄i + 〈x̄i〉) (45)

which after integrating out ∂µ Mµ, using xi =
4
3 η2

i and setting C = ∑i 〈xi〉, which is sum of all possible
contributions, therefore leads to

3(∑i
4
3 η2

i + C)(∑j
4
3 η̄2

j + C̄)

16M̄2
Pl

= ∑
i
(m†

3/2η2
i + m3/2η̄2

i ) +
3|C|2

16M̄2
Pl

+ ∑
i,j

1
3M̄2

Pl
η2

i η̄2
j (46)

which are the uneaten Goldstini masses and a contribution to the Goldstino self-coupling. Once the
overall cosmological constant is assumed to vanish C = 4√

3
fe f f M̄Pl , this sets m3/2 = C/4M̄2

Pl =

fe f f /
√

3M̄Pl . this also fixes the masses of the other ζi Goldstini which are proportional to C (and not
on their respective Fi as one might naively think from an effective theory approach). It is the vanishing
of the overall cosmological constant that sets ma = 2m3/2 (the factor of 2 arising as the Goldstini
above are two-component spinors that make a Majorana fermion): this seems to be the most intuitive
argument for the Goldstini mass formula.

Let us now compute the effective action. In fact no new computation is necessary: After applying
Equation (42) will reproduce exactly the same terms as found in Equation (28). Importantly, the uneaten
Goldstini do not appear.

It is interesting to ask what may be learned about multiple Goldstini coupling to supersymmetric
standard model matter. The Goldstini obey analogue Goldberger-Treiman type couplings from
a natural extension of Equations (37) and (38) and these have already been explored [22]. However,

interestingly the Goldstino to matter coupling of the form ηασ
µ

αβ̇
S̄β̇

µ/M̄Pl only appears for the true
Goldstino Gα and not for the Goldstini.

It is also interesting to consider locating different supersymmetry breaking sectors, and therefore
different ΦNL, in spatially separated regions of a higher dimensional space, such as on different
“branes”. If there were different values for the condensate in these different regions then at leading
order at least, one may be able to achieve a splitting between the Goldstini masses: we leave this for
future research.
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6. Discussion

In this paper, we attempted to derive an effective action, in superspace, that manifestly respects
global supersymmetry and whose components reproduce the super-Higgs mechanism. The coefficients
of these superspace terms appear to be chosen by hand to reproduce the necessary components but
we demonstrated that these coefficients arise from explicitly computing the quantum corrections in
components. After using this choice of coefficients, the components respect the necessary modified
local supersymmetry transformations. It is perhaps unfortunate that local supersymmetry does not
seem to fix the coefficients at the level of superfields but suggest that we should interpret our action as
an effective one, in any case.

Still we think this setup is useful as it achieves the super-Higgs mechanism of the Goldstino
multiplet and more interestingly, through the use of the supercurrent multiplet. Additionally, we have
outlined how an effective action may be written that reproduces the results of multiple Goldstini [22].

There is much interest in the literature on the constrained Goldstino superfield. In [44]
a supergravity setup is explored which leads to an explicit solution to the nilpotent Goldstino
superfield constraint Φ2 = 0. A similar result in the context of N = 2 supergravity is investigated
in [45], where the constrained linear superfield approach allows for de Sitter vacua in these models
(this general approach is reviewed in [46]). These investigations led to the discovery of new nilpotent
superfields in supergravity models, which are still a subject of active research [47]. More recently,
constrained superfields have been used in models of Goldstone boson inflation [48]. There is no doubt
that the field of constrained Goldstone superfields is an active research direction, and one that will
yield many new surprises in the future.
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Appendix A. The Super-Higgs Mechanism: A Review

In this section, we review the super-Higgs mechanism following closely the appendix of [18].
We choose to review this appendix for two principle reasons: first it makes apparent the importance of
couplings to the supercurrent Sµ

α , for example the term Equation (A12), and secondly because we wish
to connect the above work directly with phenomenology and observation.

In two-component spinor notation, if supersymmetry is broken by an F-term vacuum expectation
value, then the Goldstino must transform as δεχ =

√
2Fε and δεχ̄ =

√
2F† ε̄ where (ε, ε̄) are

supersymmetry transformation parameters and
√

2 is a convention. Treating supersymmetry as
a global symmetry, Noether’s theorem leads to a conserved supercurrent

δL = (∂µεα)Sµ
α + (∂µ ε̄α̇)S̄µα̇ = 0. (A1)

Integrating by parts one finds the variation of the action

δS = −
∫

d4x
[
εα(∂µSµ

α ) + ε̄α̇(∂µS̄µα̇)
]
= 0. (A2)

The action may be determined

SGT =
∫

d4x
[

χα

√
2F

∂µSµ
α +

χ̄α̇√
2F†

∂µS̄µα̇

]
. (A3)
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This gives the familiar Goldberger-Treiman relation and a kinetic term for the Goldstino.
The supercurrent should contain general matter contributions and a term proportional to the vev:

Sµ
α = Sµ

αmatter + i
√

2Fσ
µ
αα̇χ̄α̇ , S̄µα̇ = S̄µα̇

matter + i
√

2F†σ̄µα̇αχα. (A4)

Invariance of the action under supersymmetry transformations implies the canonically normalized
Goldstino kinetic terms

1
2

iχασ
µ
αα̇∂µχ̄α̇ +

1
2

iχ̄α̇σ̄µα̇α∂µχα, (A5)

these being related to each other by an integration by parts. The reader can verify that varying
the above kinetic contribution with respect to χα and χ̄α̇ independently will lead to the constraints
∂µSµα = 0 and ∂µS̄µα̇ = 0, as required in Equation (A2), thus avoiding double counting the kinetic
terms as would result by substituting Equation (A4) in Equation (A3) directly.

We now introduce the Gravitino

Skin = −1
2

∫
d4xεµνρσ(ψα

µσναα̇∂ρψ̄α̇
σ − ψ̄µα̇σ̄α̇α

ν ∂ρψσα) (A6)

and consider weakly gauging gravity by the introduction of a Gravitino that couples to the supercurrent

Sint1 =
∫

d4x
1

2M̄Pl
[ψα

µSµ
α + ψ̄α̇µS̄α̇µ]. (A7)

This term naturally leads to

iF√
2M̄Pl

ψα
µσ

µ
αα̇χ̄α̇ +

iF†
√

2M̄Pl
ψ̄µα̇σ̄µα̇αχα, (A8)

Additionally, one must introduce the term

Sint2 =
∫

d4x
i

2
√

6M̄Pl
[χασ

µ
αα̇S̄α̇

µ + χ̄α̇σ̄µα̇αSαµ], (A9)

to obtain

− 2F†
√

3M̄Pl
χαχα −

2F√
3M̄Pl

χ̄α̇χ̄α̇. (A10)

which is the first source of what will later become the Gravitino mass of the super-Higgs mechanism.
There is also a contribution from coupling directly to the cosmological constant to give the overall mass

− F†
√

3M̄Pl
χαχα −

F√
3M̄Pl

χ̄α̇χ̄α̇. (A11)

In addition, it generates a non-derivative coupling between the Goldstino and the supercurrent

i
2
√

6M̄Pl
χ̄α̇σ

µ
αα̇(S

α
µ)matter +

i
2
√

6M̄Pl
χασ

µ
αα̇(S̄

α̇
µ)matter. (A12)

In [18], it was commented that it may seem surprising to add this new term Equation (A12),
but that there is no contradiction as this new term vanishes when MPl → ∞. It is, therefore, interesting
to see that it arises quite naturally after one computes the effective action Equation (23) or instead
from Equation (32).
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To preserve local supersymmetry invariance under the modified [5] transformations

δψµα = −M̄Pl

(
2∂µεα + im 3

2
σµαα̇εα̇

)
(A13)

δχα =
√

2Fεα (A14)

one must add a Gravitino self-coupling term

Sm3/2 = −i
∫

d4x
(

m3/2ψα
µ(σ

µν)
β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
, (A15)

provided that

m3/2 =
F√

3M̄Pl
. (A16)

Gathering all the terms together the overall Lagrangian is therefore

L = −1
2

εµνρσ(ψα
µσναα̇∂ρψ̄α̇

σ − ψ̄µα̇σ̄α̇α
ν ∂ρψσα)− i

(
m3/2ψα

µ(σ
µν)

β
αψνβ + m†

3/2ψ̄µα̇(σ̄
µν)α̇

β̇
ψ̄

β̇
ν

)
+

i
2

χα∂µσ
µ
αα̇χ̄α̇ +

i
2

χ̄α̇∂µσ̄α̇αχα −
F†

√
3M̄Pl

χαχα −
F√

3M̄Pl
χ̄α̇χ̄α̇

+
1

2
√

6M̄Pl
iσµ

αα̇χ̄α̇(Sα
µ)matter +

1
2
√

6M̄Pl
iχασ

µ
αα̇(S̄

α̇
µ)matter

+
iF√
2M̄Pl

ψα
µσ

µ
αα̇χ̄α̇ +

iF†
√

2M̄Pl
ψ̄µα̇σ̄µα̇αχα

+
1

2M̄Pl
(ψα

µ(S
µ
α )matter + ψ̄µα̇(Sµα̇)matter)

+
χα

√
2F

∂µSµ
αmatter +

χ̄α̇√
2F†

∂µS̄µα̇
matter. (A17)

The super-Higgs mechanism is realized by applying the shift

Ψµα → ψµα −
i√
6

σµαα̇χ̄α̇ −
√

2
3

1
m 3

2

∂µχα (A18)

Ψ̄α̇
µ → ψ̄α̇

µ −
i√
6

σ̄αα̇
µ χα −

√
2
3

1
m†

3
2

∂µχ̄α̇ (A19)

so that the Gravitino eats the Goldstino degrees of freedom and the Lagrangian becomes that of the
massive Gravitino coupled to matter

L = −1
2

εµνρσ(Ψα
µσναα̇∂ρΨ̄α̇

σ − Ψ̄µα̇σ̄α̇α
ν ∂ρΨσα)− i

(
m3/2Ψα

µ(σ
µν)

β
αΨνβ + m†

3/2Ψ̄µα̇(σ̄
µν)α̇

β̇
Ψ̄β̇

ν

)
+

1
2M̄Pl

(Ψα
µ(S

µ
α )matter + Ψ̄µα̇(Sµα̇)matter), (A20)

with the Gravitino now carrying the right degrees of freedom for the self-interaction term to be correctly
identified with the Gravitino mass.

This review of the super-Higgs mechanism generates the same Lagrangian as that of
Deser-Zumino [5], which is a combination of the A-V action [3] plus linear supergravity, with one

addition: In their paper they additionally comment on the two cosmological constants − f 2

2 e + ce,
which are set to cancel. where e ≡ det(ea

µ) and ea
µ is the Vielbein of the Graviton. In this review and

in [18] this is implicitly assumed.
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Appendix B. Computing the Current Correlator

Here we demonstrate the evaluation of the time ordered current correlator appearing in
Equation (23)

〈T[Sµ
α (x)Sν

β(0)]〉 . (A21)

We wish to write this correlator in terms of the super algebra. To do this we take first the definition

〈T[Sµ
α (x)Sν

β(y)]〉 = θ(x0 − y0) 〈Sµ
α (x)Sν

β(y)〉 − θ(y0 − x0) 〈Sν
β(y)S

µ
α (x)〉 , (A22)

where θ(x0− y0) is the Heaviside function and the minus sign between the two terms on the right-hand
side is standard for fermionic operators. Using the standard manipulation

∂µ 〈T[Sµ
α (x)Sν

β(y)]〉 = δ(x0 − y0) 〈{S0
α(x), Sν

β(y)}〉+ 〈T[∂µSµ
β(x)Sν

α(y)]〉 (A23)

and then integrating by parts

− yρ∂µ 〈T[Sµ
α (x)Sν

β(y)]〉 = (∂µyρ) 〈T[Sµ
α (x)Sν

β(y)]〉 (A24)

with yρ as a four-vector, one obtains

〈T[Sρ
α(x)Sν

β(y)]〉 = −yρ
(

δ(x0 − y0) 〈{S0
α(x), Sν

β(y)}〉+ 〈T[∂µSµ
β(x)Sν

α(y)]〉
)

. (A25)

Using ∂µSµ = 0 to remove the second term then
∫

d3xS0
α(x) = Qα gives∫

d4x 〈T[Sρ
α(x)Sν

β(y)]〉 = −yρ 〈{Qα, Sν
β(y)}〉 . (A26)

Inserting
{Qβ, Sµα} = 2iελβ(σµρ)

λ
α ∂ρ x̄ (A27)

integrating by parts, we find∫
d4x 〈T[Sρα(x)Sνβ(y)]〉 = (∂σyρ)2iελα(σνσ)

λ
β x̄. (A28)

Thus, we see that the constant 〈x〉 will contribute to the current correlator. We mention that if one
instead evaluates the sum rule for {Q̄α̇, Sµ

α (x)} then one may show the massless Goldstino pole [2,49].
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