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Abstract: In this work, we investigate a series of mathematical aspects for the fractional diffusion
equation with stochastic resetting. The stochastic resetting process in Evans–Majumdar sense has
several applications in science, with a particular emphasis on non-equilibrium physics and biological
systems. We propose a version of the stochastic resetting theory for systems in which the reset
point is in motion, so the walker does not return to the initial position as in the standard model, but
returns to a point that moves in space. In addition, we investigate the proposed stochastic resetting
model for diffusion with the fractional operator of Prabhakar. The derivative of Prabhakar consists
of an integro-differential operator that has a Mittag–Leffler function with three parameters in the
integration kernel, so it generalizes a series of fractional operators such as Riemann–Liouville–Caputo.
We present how the generalized model of stochastic resetting for fractional diffusion implies a rich
class of anomalous diffusive processes, i.e., 〈(∆x)2〉 ∝ tα, which includes sub-super-hyper-diffusive
regimes. In the sequence, we generalize these ideas to the fractional Fokker–Planck equation for
quadratic potential U(x) = ax2 + bx + c. This work aims to present the generalized model of
Evans–Majumdar’s theory for stochastic resetting under a new perspective of non-static restart points.

Keywords: Fokker–Planck equation; anomalous diffusion; fractional calculus; stochastic resetting;
exact solutions

1. Introduction

Presently, stochastic processes are a powerful tool in theories that maximize efficiency in
search processes [1,2] that range from looking for obstacles to models that include the process of
restarting [3–5]. In particular, restarting a search process can increase the chances of finding the target
since the target may be in a known region. However, the first search strategy may not be successful.
An example of a resetting process in biology is associated with a protein that walks on a strand of
DNA. Since DNA is a very long molecule it can bend so that the protein that walks on it can make
big jumps or even return to a specific position, which makes it easier for a protein to look for specific
sites in the DNA biomolecule [6–9]. The diffusive processes with resting or renewal have in fact been
intensely studied in recent years, and the main reason for this is in understanding and modelling
biological systems. The idea of stochastic resetting not is new, but the formula proposed by Evans
and Majumdar [10] in diffusion revived a series of discussions about how achievement is entailed in a
series of sophisticated mathematical models to describe a diffusive process with restart. The idea of
stochastic resetting came to be investigated in other formalisms such as stochastic processes associated
with the exponent of Hurst [11], coagulation diffusion process [12], non-equilibrium steady states [13],
RNA polymerase process [14] and others. However, these processes have gained great notoriety in the
context of the diffusion equation.
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In this context, the Fokker–Planck equation (FPE) successfully describes the irregular motion
of microscopic particles subjected to a force. The applicability of the FPE is undoubtedly of great
relevance in statistical physics [15]. In recent decades, FPE has gained several generalized formulations,
including nonlinear forms [16], fractal media [17], fractional [18,19], etc. In particular, in the last
decade the fractional FPE (or fractional diffusion) has found a special prominence in the description of
biological phenomena [20–23]. The main reason for the success of this formulation is associated with
the complex effects that the fractional calculation introduces in diffusive processes, such as memory
effect and non-locality [24–27].

The fractional approach in the diffusion process amplifies the concept of diffusion in several
aspects, such as non-locality, Non-Gaussian distributions, memory effects, ergodicity breaking [26–32].
The main characteristic of usual diffusion (or Brownian diffusion) is a linear evolution of time to the
mean square displacement (MSD), i.e., 〈(∆x)2〉 ∝ t. Nevertheless, the class of phenomena which is not
described by the usual diffusion is commonly known as anomalous diffusion (or fractional diffusion),
and can be classified by power-law function,

〈(x− 〈x〉)2〉 ∝ Kαtα, (1)

in which 〈(· · · )〉 =
∫
R(· · · ) f (x)dx ( f (x) is a distribution function), Kα is general diffusion coefficient

with fractional dimension [Kα] = cm2/[t]α. If 0 < α < 1 the system is sub-diffusive, for 1 < α < 2
the super-diffusion occurs. In particular cases, for α = 2 the diffusion is ballistic and for 2 < α

the hyper-diffusive process occurs. Equation (1) was first reported by Richardson in 1926, in the
study of diffusion in turbulent flows [33]. Scher and Montroll (1975) also reported Equation (1) in
a study about the transport of charge carriers in amorphous semiconductors [34]. Montroll’s works
reveal that the random walks are stochastic processes strongly connected with medium characteristics.
The Scher–Montroll theory is known as the continuous-time random walk (CTRW), and revealed
a natural connection between generalized random walker and diffusion equation in the presence
of fractional-order derivatives. Thus, the term “fractional dynamics” was originated [28]. Today,
fractional calculus is one of the most promising mathematical instruments for elegantly introducing
the concept of non-locality [17]. Daily, fractional derivatives are applied in physics. Among other
examples, there are chaotic systems [35], fractional FPE for non-singular kernels [29,36], the fractional
Schrödinger equation [37], and viscoelasticity theory [38]. In addition, we want to emphasize that
there is a class of derivatives that unifies the concept of tempered functions with the integral functions
of Prabhakar. This union has brought new formulations for fractional diffusive models, since they
render the Riemann–Liouville–Caputo fractional derivatives as individual cases.

In this work, we propose an extension of the stochastic resetting theory proposed by Evans
and Majumdar [10]. Our extension contains two factors that bring great novelty: (i) we incorporate
temperate fractional derivatives [39] into the model so that we can incorporate memory effects; and
(ii) we consider restart points that move in space. In Section 2 we introduce the definitions of fractional
derivatives and the concept of temperate derivatives. In Section 3, we write a brief introduction on the
model proposed by Evans and Majumdar to then introduce our ideas. We began the investigation of
the simplest (non-fractional) case to the most complex case associated with the temperate derivative of
Prabhakar [40]. In Section 3.4, we perform an analysis of MSD for the analyzed systems, showing in
which time regimes the dynamics of the walkers can present the phenomenon known as anomalous
diffusion. In addition, in Section 4, we consider a fractional FPE to generalize the diffusive analysis to
situations in which the system is in the presence of external forces, addressing the potential that has a
quadratic form in space. In addition, we investigate how the theory can include multiple resetting
points that move with constant velocities in space, and what are the implications of this for the diffusion
of walkers over time. Finally, in the Section 5 we address the conclusions and final considerations.
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2. Preliminary Concepts about Tempered Fractional Calculus

We review some notions and concepts used throughout the paper.
Fractional calculus is one of the most robust instruments to approach complex systems. The study

began after the discussion [41,42] between L’Hospital and Leibniz about the possibility of realizing a
non-integer derivative with order 1

2 under a f (x) function, example

d
1
2

dx
1
2

xn = What is the result? (2)

Presently there are several definitions and references that bring, in detail, mathematical and
applicable aspects of fractional derivatives [43]. The best-known definitions for the fractional derivative
are associated with formulations made by Riemann, Liouville, and Caputo.

Definition 1. For a continuous function f : R+ → R. The fractional derivative of Caputo, to arbitrary order
α ∈ [0,+∞) is defined by

CDα
t f (t) =

1
Γ[n− α]

∫ t

0

1
(t− t′)1+α−n

dn

dt′n
f (t′)dt′, t ∈ R, (3)

in which Γ[. . . ] is the Gamma function and n − 1 < α < n. Considering α ∈ [0, 1), the Laplace
transform implies

L{CDα
t f (t)} = sα f̃ (s)− sα−1 f (0), (4)

in which the Laplace transform is defined by
∫ ∞

0 dte−st f (t) = f̃ (s).

For α → n Equation (3) retrieves the usual n-order derivative. For more details see [43]. In the
same way that the fractional derivative was defined, a corresponding fractional integral can be
defined [43].

The definition (3) answers the question (Equation (2)) that L’Hospital put to Leibniz [42], which
for the case of a power-law function is given by

d
1
2

dt
1
2

tn =
Γ[n + 1]
Γ[n + 1

2 ]
tn− 1

2 , (5)

in which n > 0. To α ∈ [0, 1) we obtain

dα

dtα
tn =

Γ[n + 1]
Γ[n + 1− α]

tn−α. (6)

Therefore, the fractional derivative for power laws has a mathematical structure similar to that of
the integer-order derivative in Leibniz–Newton sense, i.e.,

lim
α→1

dα

dtα
tn = ntn−1. (7)

There are several other definitions of fractional derivatives, and these satisfy several mathematical
properties that are detailed in [44]. These derivatives applied in differential equations generate a series
of special functions [43], the Mittag–Leffler and Fox functions when applied in contexts associated with
particle diffusion. In fact, the versatility of the fractional index α introduces the concept of memory if
the derivative is applied to a temporal variable; an example occurs in CTRW [28], which brings a new
vision to approach dynamic in disordered mediums, trap systems, and others [45]. On the other hand,
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the fractional derivative can be applied to the spatial variable, which implies non-locality; an example
of this appears in the fractional Schrödinger equation [46].

The fractional derivatives, such as Riemann–Liouville, Letnikov, Riesz, and others, are constituted
by convolution integrals with power-law kernels. The concept of tempered derivative appears when
these kernels are multiplied by the exponential function [39,47–49] that corresponds to a truncated
kernel. These fractional derivatives generalize the random walk problem and imply a larger class of
non-Gaussian distributions.

Recently, the fractional Prabhakar derivative [40] has been the most complete and sophisticated
tool for describing complexity in physical systems. The tempered Prabhakar derivative in Caputo
sense is defined as follows

Dδ,ν,a
α,β,t f (t) =

∫ t

0
e−a(t−t′)℘δ,ν

α,β(t− t′)
d
dt′

f (t′)dt′, t ∈ R, (8)

with the Prabhakar kernel ℘δ,ν
α,β defined by

℘δ,ν
α,β[t] = tβ−1Eδ

α,β (−νtα) , (9)

in which Eδ
α,β(z) is the generalized Mittag–Leffler function for three parameters, given by [50]

Eδ
α,β (z) =

∞

∑
k=0

(δ)k
Γ[αk + β]

zk

k!
, (10)

(δ)k = Γ[δ + k]/Γ[δ] is the Pochhammer symbol, withR{β} > 0 and β, α, δ, z ∈ C. The function (10)
recoveries the two-parameter Mittag–Leffler function [43] to δ = 1, i.e., E1

α,β(z). The Mittag Leffler
function (10) is reduced from one parameter to β = 1 and δ = 1. Finally, the function (10) assumes
the exponential form when α = β = δ = 1, i.e., E1

1,1(z) = ez. Among the advantages of using the
Prabhakar derivative (Equation (8)), there is the fact that the Caputo derivative ( or Riemann–Liouville,
depending on how the Prabhakar derivative is defined) is a particular case of the Prabhakar derivative.
The Laplace transform of Equation (9) is summarized as follows

L
{

tβ−1Eδ
α,β (−νtα)

}
=

sαδ−β

(sα + ν)δ
R{s} < |ν| 1α , (11)

in which δ, α, β ∈ C andR{α},R{β} > 0. Equation (11) satisfies a series of mathematical proprieties
that were detailed in [51]. Please note that for δ = 0, a = 0 and β = 1− α, Equation (8) retrieves the
fractional derivative form of Caputo; see Equation (3). The Prabhakar fractional derivative has revealed
a class of interesting behaviors in the context of the viscoelasticity theory [52] and in anomalous
advection-dispersion transport [53]. On the other hand, the fractional Prabhakar derivative has been
an efficient tool in physical models to approach the transition among anomalous diffusions [54,55].
In particular, the first time that tempered Prabhakar derivative appears in diffusion context was in
articles [56,57]. In fact, in this scenario, the Prabhakar derivative has been a mathematical tool that has
been more understood day by day [38,58,59]. On the other hand, the Prabhakar derivative has as a
particular case the Mittag–Leffler kernels with one and two parameters that have many applications in
mathematical, physics, chemistry, and biology problems [35,36,60–62].

3. Non-Static Stochastic Resetting Theory

The stochastic resetting theory in the context of Brownian motion was introduced by Evans and
Majumdar in 2011. They proposed a simple equation [10] as follows

∂

∂t
p(x, t) = K ∂2

∂x2 p(x, t)− κp(x, t) + κδ(x), (12)
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with the following conditions

p(±∞, t) = 0 p(x, 0) = δ(x), (13)

in which walkers are described by the probability distribution p(x, t) and eventually restart at a
specific point in the system. The stochastic resetting proposed by Evans–Majumdar (Equation (12))
is constituted by diffusion equation with additional terms. The second and the third terms on the
right side of Equation (12) represent a sink function −κp(x, t) out of each point x and a corresponding
positive probability flux κδ(x) which represents the reset position [10]. The reestablishment condition
may be otherwise, or even associated with a previously specified probability distribution [10].
The theory proposed by Evans and Majumdar (12) has a certain mathematical similarity with the
linear irreversible-reaction-diffusion equation, except in the stochastic resetting theory the walkers are
never permanently removed from the system, i.e.,

∫ +∞
−∞ p(x, t)dx = 1. A consequence of this is that

Equation (12) has a stationary distribution given by

pst(x) =
e−
√

κ
K |x|

Z , (14)

Z = 2
√
K
κ , which occurs due to a delicate balance between the walkers removed and those

that are added in the initial position. In recent research, the theory of stochastic resetting in the
Evans–Majumdar sense had several implications in statistical theories applied in physical systems
ranging from Brownian motion approached through stochastic noises [63], diffusion with resetting and
memory [64], search strategy optimization [65], first-passage time problem [66], telegraphic processes
with stochastic resetting [67], diffusion with non-singular memory kernels [29], and others [68–70].

Our generalization consists of the combination of the fractional diffusion [28,54] and stochastic
resetting with memory [13]. To do this we consider the CTRW theory with an additional term g(x, t)
proposed by Henry and Wearne in [71]. This permits the removal or injection of walkers in the system.
In this context, we have

p(x, t) = φ(t)p(x, 0) +
∫ t

0

∫ ∞

−∞
dt′dx′Ψ(x− x′, t− t′)p(x′, t′) +

∫ t

0
dt′φ(t− t′)g(x, t′). (15)

In particular, Ψ(x, t) = λ(x)ψ(t) represents the transition probability function, in which λ(x) is
the step length distribution function and ψ(t) is the waiting time distribution. Now, we can define the
cumulative probability as φ(t) = 1−

∫ t
0 ψ(t′)dt′ [28]. Therefore, we can rewrite Equation (15) in the

Laplace space and Fourier space (p(k, t) = F{p(x, t)} =
∫ +∞
−∞ p(x, t)e−ixkdx) as follow

p̃(k, s) = φ̃(s)p(k, 0) + Ψ̃(k, s) p̃(k, s) + φ̃(s)g̃(k, s), (16)

as φ̃(s) = 1
s (1− ψ̃(s)) and Ψ̃(k, s) = λ(k)ψ̃(s), we obtain

sp̃(k, s) = (1− ψ̃(s))p(k, 0) + sλ(k)ψ̃(s) p̃(k, s) + (1− ψ̃(s))g̃(k, s). (17)

The distribution of jump lengths with variance σ2 can be approximated for λ(k) ∼ 1− σ2

2 k2 [28].
Here, we can consider a waiting time distribution which describes a more general class of random
walkers

ψ(s) =
1

1 + ℘̃δ,ν
α,β[s + κ]τs

, (18)
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in which ℘̃ς,ν
α,µ[s + κ] = (s+κ)ας−µ

(ν+(s+κ)α)ς . The Equation (18) was reported and analyzed in [54]. Using
Equation (18) in Equation (17), we obtain

sp̃(k, s) =
℘̃ς,ν

α,µ[s + κ]τs
1 + ℘̃ς,ν

α,µ[s + κ]τs

(
p(k, 0) + g̃(k, s)

)
+

s
1 + ℘̃ς,ν

α,µ[s + κ]τs

(
1− σ2

2
k2
)

p̃(k, s), (19)

this equation can be rewritten as

τs℘̃ς,ν
α,µ[s + κ] p̃(k, s) = τ℘̃ς,ν

α,µ[s + κ]
(

p(k, 0) + g̃(k, s)
)
− σ2

2
k2 p̃(k, s), (20)

thereby

s℘̃ς,ν
α,µ[s + κ] p̃(k, s)− ℘̃ς,ν

α,µ[s + κ]p(k, 0) = −Kk2 p̃(k, s) + ℘̃ς,ν
α,µ[s + κ]g̃(k, s), (21)

in which K = σ2

2τ . For the stochastic resetting problem, we have g̃ = −κ p̃(k, s) + κ
s+ivk . Performing the

inverse Fourier–Laplace transform of Equation (21), we obtain the fractional Prabhakar diffusion with
non-static stochastic resetting, as follows

Dς,ν,κ
α,µ,t p(x, t) = K ∂2

∂x2 p(x, t)

−
∫ t

0
dt′e−κ(t−t′)℘ς,ν

α,µ[t− t′]
(
κp(x, t′)− κδ(x− vt′)

)
, (22)

in which v ís the propagation velocity of the resetting point and Dς,ν,κ
α,µ,t -operator was defined in

Equation (8). This proposal considers two important factors in the diffusion process: tempered
fractional derivative and non-static resetting term ((· · · )× δ(x− vt′)). The latter is exclusively due to
the fact that the place where the particle restarts changes position in time. The principle for this change
in the resetting position xreset(t) = vt is that if we imagine the problem of DNA, it is biologically more
likely to assume a variable resetting position, because a protein walks over a long filament at different
positions because the DNA molecule is too complex and there may be significant alterations in the
resetting positions. On the other hand, we chose to investigate the fractional Prabhakar derivative in
diffusion with stochastic resetting because of their generality, but here we can emphasize two reasons:
(i) to solve the equation with fractional Prabhakar derivative corresponding to solving the usual
derivative (Leibniz–Newton), fractional Caputo derivative [43] and Atangana-Baleanu operator [60].
All these operators have many applications in physics systems, e.g., ergodicity [32,72,73], strange
kinetics of single molecules in living cells [74], relaxation in filled polymers [75], chaos in a simple
nonlinear system [35], etc.; and (ii) the fractional Prabhakar derivative is one of the most sophisticated
mathematical tools to approach the anomalous diffusion phenomena. However, is extremely difficult
of solve a problem with Prabhakar derivative [76,77].

Equation (22) has many situations that are relevant. In [54] the authors derived the tempered
Prabhakar diffusion equation making use of CTRW theory. For simplicity, in this section, we will
consider that the system is governed by an equation that is free of external forces. First, we find the
general solution in the Laplace–Fourier space, then make a directed analysis for each particular case.
Later, in this section, we include a discussion of how quadratic potentials influence the dynamics of
the system.

Applying Equation (22), we operate the Fourier transform in the spatial variable and Laplace in
the time variable, and we obtain as a solution in the following general form

p̃(k, s) =
(κ + s)ας−µ

(ν + (κ + s)α)ς

1 + κ
1

s + ikv
(κ + s)1+ας−µ

(ν + (κ + s)α)ς
+Kk2

, (23)
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note that p̃(k = 0, s) = s−1, so
∫ +∞
−∞ p̃(x, s) = s−1. In other words, the number of walkers is conserved.

From Equation (23) we calculate the solution for three cases: usual, fractional Caputo, and fractional
Prabhakar.

3.1. Non-Static Stochastic Resetting: Diffusion Equation

In this subsection, we present a non-fractional case to the non-static stochastic resetting model.
Here, we investigate the effect of the non-static restart point in diffusion.

The first case considers the usual diffusion, i.e., ς = µ = 0. It corresponds to Equation (11) when
the Prabhakar kernel tries the delta function, i.e., limς→0 limµ→0 ℘

ς,ν
α,µ(t) = δ(t). The purpose here

is to consolidate the simpler model, and to understand the effect of resetting that is non-static in
Equation (22). In this case, (ς = µ = 0), the solution decreases as follows

p̃(k, s) =
1 + κ

1
s + ikv

s +Kk2 + κ
. (24)

Realizing the inverse Laplace transform we obtain

p̃(k, t) = e−t(Kk2+κ) + κ
∫ t

0
dt′e−t′(Kk2+κ)−ikv(t−t′), (25)

now, realizing the inverse Fourier transform we obtain the exact solution:

p(x, t) =
e−

x2
4Kt−κt

2
√

πtK
+ κ

∫ t

0
dt′

e−
(x−v(t−t′))2

4Kt′ −t′κ

2
√

πt′K
, (26)

This solution generates a series of interesting behaviors that is illustrated in Figure 1. On the
other hand, for v = 0 we retrieve the usual Evans–Majumdar model, changing the notation t′ → τ, if
furthermore large time values, i.e., t→ +∞, we obtain

pst(x) =
∫ ∞

0
dτke−kτ e−

x2
4Kτ

2
√

τπK
, (27)

realizing the integration we obtain Equation (14). The Equation (27) is a typical equation of renewal
process [10]. In fact, if we consider that τ defines the time elapsed since the last renewal, such that
0 ≤ τ ≤ t with t→ ∞. The part Prob(τ) = κe−κτ defines how the renewal time (τ) is distributed, and

e−
x2

4Kτ /2
√

τπK is the Gaussian form that defines the position distribution. Thus, we prove that for the
case v = 0 we have the renewal process.

3.2. Non-Static Stochastic Resetting: Fractional Caputo Diffusion Equation

This case represents a fundamental limit to approach the fractional derivative of Caputo in the
problem (ς = 0). Therefore, Equation (23) can be written in the Fourier–Laplace space, as

p̃(k, s) = = (s + κ)−µ
1 + κ

1
s + ikv

(s + κ)1−µ +Kk2 . (28)

Performing the inverse Fourier transform, we have

p(x, s) =
e−
√

(s+κ)1−µ

K |x|

2
√
K(s + κ)

1+µ
2

+
∫ +∞

−∞
dx′

e−
√

(s+κ)1−µ

K |x′ |

2
√
K(s + κ)

1+µ
2

χ(x− x′, s) (29)
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in which χ(x, s) = F−1
{

1
s+ikv

}
, to perform the inverse Laplace transform we will introduce the

following form [78]

L−1 {s−σ exp[−zsγ]
}
= tσ−1H1,0

1,1

 |z|
tγ

∣∣∣∣∣
(σ,γ)

(0,1)

 . (30)
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Figure 1. This figure exemplifies the evolution of probability distribution on time for the system when
the velocity of the resetting points is given by v = 1, with the following values κ = 1 and K = 1.

The Fox H function (or H-function) may be defined in terms of the Mellin–Barnes type integral

Hm,n
p,q

[
x
∣∣∣(ap ,Ap)

(bq ,Bq)

]
=

1
2πi

∫
L

χ(ξ)x−ξ dξ (31)

with

χ(ξ) =

m

∏
j=1

Γ[bj − Bjξ]
n

∏
j=1

Γ[1− aj + Ajξ]

q

∏
j=m+1

Γ[1− bj + Bjξ]
p

∏
j=n+1

Γ[aj − Ajξ]

(32)

where m, n, p and q are integers satisfying 0 ≤ n ≤ p and 1 ≤ m ≤ q. It may also be defined by its
Mellin transform ∫ ∞

0
Hm,n

p,q

[
ax
∣∣∣(ap ,Ap)

(bq ,Bq)

]
xξ−1dx = a−ξχ(ξ) . (33)

Here, the parameters must be defined such that Aj > 0 and Bj > 0 and aj(bh + ν) 6= Bh(aj− λ− 1)
where ν, λ = 0, 1, 2, ..., h = 1, 2, ..., m and j = 1, 2, ..., m. The contour L separates the poles of Γ

(
bj − Bjξ

)
for j = 1, 2, ..., m from those of Γ

(
1− aj + Ajξ

)
for j = 1, 2, ..., n. The H-function is analytic in x if

either (i) x 6= 0 and M > 0 or (ii) 0 < |x| < 1/B and M = 0, where M = ∑
q
j=1 Bj − ∑

p
j=1 Aj and

B = ∏
p
j=1 A

Aj
j ∏

q
j=1 B

−Bj
j .

A closed-form solution for expression (28) can be found in terms of Fox functions
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p(x, t) = e−κt t
µ−1

2

2
√
K

H1,0
1,1

 |x|
√
Kt

1−µ
2

∣∣∣∣∣
(

µ, 1−µ
2

)

(0,1)


+

∫ t

0
dt′e−κt′ t′

µ−1
2

2
√
K

H1,0
1,1

 |x− v(t− t′)|
√
Kt′

1−µ
2

∣∣∣∣∣
(

µ+1
2 , 1−µ

2

)

(0,1)

 . (34)

This expression retrieves Equation (37) to µ→ 0.
As is the usual result obtained by us, we can assume a static stochastic resetting point, i.e., v = 0

and the limit t → ∞; the consequence of this is an expression that can be obtained by the renewal
process, the unique change in relation to Equation (27) is the substitution of the Gaussian function
by the solution of the fractional diffusion equation [19]. This particularity is interesting because it
connects the fractional stochastic resetting model with a renewal process governed by generalized
distributions. These results show that the proposed model Equation (22) connects the renewal process
to stochastic resetting process such that v = 0.

3.3. Non-Static Stochastic Resetting: Fractional Prabhakar Diffusion Equation

Finally, we will present the solution for Prabhakar diffusion. Solving the Prabhakar diffusion
equation is a matter of complex diffusion. The simplest case in our model (κ = 0) had the solution
found only in the Fourier space [51]. However, there are some techniques that we will present and
may enable us to see the complete solution taking into consideration non-stochastic resetting. To do
this, we can invert the Fourier transform in the general solution (Equation (23)); we obtain

p̃(k, s) =
(κ + s)−µ

(ν(κ + s)−α + 1)ς

1 + κ
1

s + ikv
(κ + s)1−µ

(ν(κ + s)−α + 1)ς
+Kk2

,

=
1

κ + s

1 + κ
1

s + ikv

1 +
(ν(κ + s)−α + 1)ςKk2

(κ + s)1−µ

, (35)

which can be rewritten as

p̃(x, s) = F−1
{

g(x, s)
κ + s

∫ ∞

0
dβe−β exp

[
−β

(ν(κ + s)−α + 1)ςKk2

(κ + s)1−µ

]}

=
∫ ∞

−∞
dx′

g(x− x′, s)
κ + s

∫ ∞

0
dβ

e−β

√
π

(κ + s)
1−µ

2√
4(ν(κ + s)−α + 1)ςKβ

(36)

× exp
[
− (κ + s)1−µ

4(ν(κ + s)−α + 1)ςKβ
x′2
]

,

in which g(k, s) = 1 + κF {L {δ(x− vt)}}. By doing the integration in β, we have

p̃(x, s) =
∫ ∞

−∞
dx′

g(x− x′, s)
κ + s

(κ + s)
1−µ

2√
4(ν(κ + s)−α + 1)ςK

Υ̃(x′, s), (37)

in which
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Υ̃(x, s) = exp

[
− (κ + s)

1−µ
2

(ν(κ + s)−α + 1)
ς
2
√
K
|x|
]

. (38)

This equation can be obtained directly from the inverse of Fourier transform of Equation (35); we
choose the path presented to bring more detail to the reader. Now, considering∣∣∣∣∣ (κ + s)

1−µ
2

(ν(κ + s)−α + 1)
ς
2
√
K
|x|
∣∣∣∣∣ < 1, (39)

at Equation (38) we obtain

Υ̃(x, s) =
∞

∑
n=0

(−1)n

(
(κ + s)

1−µ
2

(ν(κ + s)−α + 1)
ς
2

)n
|x|n
K n

2
. (40)

Performing this inverse Laplace transform not is such an easy task. To facilitate this process, we
will rewrite Equation (37) as follows

p(x, t) = e−κtL−1


∫ ∞

−∞
dx′

g(x− x′, s− κ)s−
1+µ

2√
4(νs−α + 1)ςK

∞

∑
n=0

(−1)n |x|n
K n

2

s
(1−µ)n

2

(νs−α + 1)
ςn
2


= e−κtL−1


∫ ∞

−∞
dx′

g(x− x′, s− κ)

2s
1+µ

2

∞

∑
n=0

(−1)n |x|n

K n+1
2

s
(1−µ)n

2

(νs−α + 1)
ς(n+1)

2

 . (41)

We need to make the inverse Laplace of this function with 0 < µ < 1. However, it is not possible
to use the relation (11) directly. To solve this problem, we use the formula

L−1
{√

π

s
G̃
[

1
4s

]}
= t−

1
2

∫ ∞

0
du cos[

√
tu]G[u], (42)

this formula was introduced by Prudnikov, Brychkov, and Marichev in [79]. So that we can use the
formula above, we rewrite Equation (41) as

p(x, t) = e−κtL−1

{∫ ∞

−∞
dx′

g(x− x′, s− κ)

2s
1+µ

2

Φ(x′, s)

}
, (43)

in which

Φ(x, s) =
∞

∑
n=0

(−1)n |x|n

K n+1
2

√
π

s
G̃(s), (44)

with

G̃(s) = 4−
n(1−µ)+1

2√
π

(
1
4s

) ας(n+1)
2

(ν4α
(

1
4s

)α
+ 1)

ς(n+1)
2

(
1
1
4s

) (1−µ)n+1
2 + ας(n+1)

2

, (45)

the G̃(s) function above has the structure of the function G̃
(

1
4s

)
defined by Formula (42). Using

Formula (42), and Equation (11), we can perform the inverse Laplace transform of the function Φ
(Equation (44)), we obtain
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Φ(x, t) =
∫ ∞

0
du

∞

∑
n=0

aς,ν
n,α,µ

|x|n

K n+1
2

t−
1
2 cos[

√
tu]u

ας(n+1)
2 +

n(1−µ)−1
2 E

(n+1)ς
2

α, n(1−µ)+1
2 + ας(n+1)

2

[
− uα

4αν

]
, (46)

in which

aς,ν
n,α,µ =

(−1)n

√
πν

ς(n+1)
2 4

ας(n+1)
2 +

n(1−µ)+1
2

(47)

using Φ(x, t) and theorem convolution, we have

p(x, t) =
e−κt

2

∫ ∞

−∞
dx′

∫ t

0
dt′g(x− x′, t− t′)

∫ t′

0
dt′′

t′′
µ+1

2 −1

Γ
[

µ+1
2

]Φ(x′, t′ − t′′) (48)

but g(x, t) = δ(t)δ(x) + κeκtδ(x− vt), therefore

p(x, t) =
e−κt

2

∫ t

0
dt′

t′
µ+1

2 −1

Γ
[

µ+1
2

]Φ(x, t− t′)

+
κ

2

∫ t

0
dt′
∫ t′

0
dt′′

t′′
µ+1

2 −1

Γ
[

µ+1
2

] e−κt′Φ(x− v(t− t′), t′ − t′′). (49)

This solution has several peculiarities. The case without stochastic resetting, i.e., κ = 0 already
yields a new result, since the equation of diffusion with the derivative of Prabhakar had been solved
only in the Fourier space; see Theorem 5.1 in [51]. When we consider κ > 0, the solution incorporates
“stochastic resetting”, for the usual static case, i.e., v = 0, we generalize the Evans–Majumdar model
for the case of the Prabhakar derivative. The generalized diffusive process and the solutions have
well-defined stationary forms that obey the structure of Equation (14). Finally, for κ > 0 and v 6= 0 we
have the process of stochastic resetting with non-static resetting as named by us. In this case, the peak
of the distribution propagates in space, and at the same time the total probability is conserved. For a
more detailed analysis of this and the other cases discussed previously, we will analyze the MSD of
these solutions.

3.4. MSD and Anomalous Diffusion Phenomena

The MSD is a very important quantity for analyzing the temporal evolution of diffusive and
probabilistic systems [19]. The MSD is defined by the following mathematical expression

〈(x− 〈x〉)2〉 =
∫ ∞

−∞
dxp(x, t)

(
x−

∫ +∞

−∞
dxp(x, t)x

)2
. (50)

When a physical system, for example in molecular dynamics, evolves linearly in time, i.e.,
〈(x− 〈x〉)2〉 ∼ t, the main feature is a random walk in Pearson sense [80]. Hence, if 〈(x− 〈x〉)2〉 ∼ tρ

we have the phenomenon known as fractional dynamics or anomalous diffusion [19]. To recap,
anomalous diffusion processes can be classified in the following ways: for ρ < 1 sub-diffusion, ρ > 1
over-diffusion, ρ = 1 ballistic diffusion, and for ρ > 1 hyper-diffusion.

For systems whose total probability is preserved, i.e.,
∫ +∞
−∞ p(x, t)dx = 1, we can rewrite the

expression (50) as 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2. Then, we just must determine 〈x〉 and 〈x2〉 separately. So

〈̃x〉(s) = i
{

∂

∂k
p̃(k, s)

} ∣∣∣∣∣
k=0

and 〈̃x2〉(s) = −
{

∂2

∂k2 p̃(k, s)
} ∣∣∣∣∣

k=0

, (51)
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in which the general solution is given by Equation (23), so we have

〈̃x〉(s) = κv
s2(κ + s)

, (52)

and

〈̃x2〉(s) =
2K(ν + (κ + s)α)ς

s(κ + s)1+ας−µ
+

2κv2

s3(κ + s)

=
2K(ν + (κ + s)α)ς

s(κ + s)1+ας−µ
+

2v2

s2

(
1
s
− 1

s + κ

)
=

2K(ν + (κ + s)α)ς

s(κ + s)1+ας−µ
+

2v2

s3 −
2v2

sκ

(
1
s
− 1

s + κ

)
=

2K(ν + (κ + s)α)ς

s(κ + s)1+ας−µ
+

2v2

s3 −
2v2

s2κ
+

2v2

κs(s + κ)
, (53)

the inverse Laplace transform in Equation (52) results in

〈x〉(t) = v
e−κt − 1

κ
+ tv. (54)

Considering the Formula (11), we can write the exact solution of Equation (53)

〈x2〉(t) = 2K
∫ t

0
dt′t′−µe−κt′E−ς

α,1−µ(−νt′α)

+ 2v2
(

t2

2
− t

κ
+

1− e−κt

κ2

)
. (55)

Thus, we can analyze some asymptotic limits. For long times (t→ ∞), we have the following form

lim
t→∞
〈(x− 〈x〉)2〉 = 2Kβ +

v2

κ2 , (56)

with β = 2 (κα+ν)ς

κ1−µ+ςα and κ > 0. For this asymptotic limit, v = 0 we retrieve the expected behavior for the
MSD that is constant. Nevertheless, for v 6= 0 the resetting point moves, which implies some changes in
the known behavior. Figures 2 and 3 show how the velocity of resetting points influences in the system.
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Figure 2. In this figure, we have the MSD to the system with stochastic resetting with zero velocity and
with the following values κ = 1, K = 1, ς = 0 and µ ∈ {0.01, 0.2, 0.6, 0.9}.
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Figure 3. In this figure, we have the MSD for system with stochastic resetting to v ∈
{10−1, 101, 102, 103}, and with the following values κ = 1, K = 1, ς = 0 and µ = 0.5.

4. The Non-Static Stochastic Resetting Theory on Presence of Forces and Multiple
Resetting Points

In the context presented for non-static stochastic resetting theory, we can incorporate the presence
of forces in the system, and make an analysis of the dynamics of the system through MSD. Before
we start this analysis, it is important to ask the following question: How does the model change if
there are more resetting points that move? The answer is simple: we change the variables vt by vnt in
Equation (22), and it follows the following form

Dδ,ν,κ
α,µ,t p(x, t) = − ∂

∂x
J (x, t)

−
∫ t

0
dt′e−κ(t−t′)℘δ,ν

α,µ[t− t′]

(
κp(x, t′)−∑

n
κwnδ(x− vnt′)

)
, (57)

in which

J (x, t) = −K ∂

∂x
p(x, t)−

{
d
dx

U(x)
}

p(x, t) (58)

ís the probability flux, with J (±∞, t) = 0. Here, we have n restart points for the system that is
resetting in point xn = vnt, in which each has a constant velocity, and may or may not be different. For
the system to remain normalized, we consider that Equation (57) obeys the following condition

∑
n

wn = 1. (59)

The term of probability flux (58) includes the presence of forces, let us consider the
following potential

U(x) = b0 + b1x + b2x2. (60)

Now, we can go on with our idea of calculating MSD, which consists of determining the quantities
〈x〉 and 〈x2〉. Therefore, by multiplying Equation (57) by x2 and then performing the integration in
x-variable, we have
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Dδ,ν,κ
α,µ,t〈x2〉 = 2

∫ +∞

−∞
dxxJ (x, t)

−
∫ t

0
dt′e−κ(t−t′)℘δ,ν

α,µ(t− t′)

(
κ〈x2〉+ κ ∑

n
wnv2

nt2

)
, (61)

the integral of the xJ (x, t) for a quadratic potential is given by

∫ +∞

−∞
dxxJ (x, t) = K+

∫ +∞

−∞
dxx(−b1 − b2x)p(x, t) (62)

= K− b1〈x〉 − b2〈x2〉, (63)

replacing this equation in Equation (61) and realizing the Laplace transform, we obtain

(κ + s)αδ−µs
(ν + ((κ + s)α)δ

〈̃x2〉 =
2K
s
− 2b1 〈̃x〉 − 2b2 〈̃x2〉

− (κ + s)αδ−µ

(ν + ((κ + s)α)δ
κ〈̃x2〉 (64)

− (κ + s)αδ−µ

(ν + ((κ + s)α)δ ∑
n

wnL
{

κv2
nt2
}

,

which implies

〈̃x2〉(s) = Ψ1(s)
(

2K
s
− 2b1 〈̃x〉

)
+ Ψ2(s)∑

n
wnL

{
κv2

nt2
}

, (65)

in which

Ψ1(s) =
(ν + ((κ + s)α)δ

(κ + s)1+αδ−µ + 2b2(ν + ((κ + s)α)δ
, (66)

and

Ψ2(s) =
(κ + s)αδ−µ

(κ + s)1+αδ−µ + 2b2(ν + ((κ + s)α)δ
. (67)

Now we need to determine the quantity 〈̃x〉, for this we simply multiply Equation (57) by x and
integrate in the same variable x, we obtain

(κ + s)αδ−µs
(ν + ((κ + s)α)δ

〈̃x〉(s) = − b1

s
− b2 〈̃x〉

− (κ + s)αδ−µ

(ν− ((κ + s)α)δ

(
κ〈̃x〉+ ∑

n
wnL {κvnt}

)
, (68)

this equation can be rewritten as

〈̃x〉(s) =
1

(κ + s)1−µ

(1 + ν(κ + s)−α)δ
+ b2

− b1

s
+

∑
n

wnL {κvnt}

(κ + s)µ−αδ(ν + ((κ + s)α)δ

 , (69)
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performing a power series expansion of the type (1− x)−1 = ∑∞
i=0 xi, which implies

〈̃x〉(s) = −
∞

∑
i=0

(−1)iγ̃1(s)bi
2

b1

s
+

∞

∑
i=0

(−1)iγ̃2(s)bi
2 ∑

n
wnL {κvnt} , (70)

with the following coefficients

γ̃1(s) = (κ + s)−(1−µ)(i+1)(1 + ν(κ + s)−α)(i+1)δ, (71)

γ̃2(s) = (κ + s)−(1−µ)i−1(1 + ν(κ + s)−α)iδ. (72)

Therefore, the quantity 〈̃x〉(s) has the following inverse Laplace transform

〈x〉(t) = −
∞

∑
i=0

(−1)i
∫ t′

0
dt′γ1(t′)bi

2b1

+
∞

∑
i=0

∑
n

wn(−1)ibi
2

∫ t

0
dt′γ2(t− t′)κvnt′, (73)

in which γ1(t) e γ2(t) can be determined by the Formula (11), the results are

γ1(t) = e−κtt(1−µ)(i+1)−1E−(i+1)δ
α,(1−µ)(i+1) (−νtα) , (74)

γ2(t) = e−κtt(1−µ)iE−(i+1)δ+1
α,(1−µ)i+1 (−νtα) . (75)

Thus, we can use Equation (65) and write the inverse transform as follows

〈x2〉(t) =
∫ t

0
dt′Ψ1(t′)

(
2K− 2b1〈x〉(t− t′)

)
+ L−1

{
Ψ2(s)∑

n
wnL

{
κv2

nt2
}}

, (76)

in which the function Ψi is defined in Equations (66) and (67). We can rewrite the Ψ1,2(s) functions in
power series

Ψ1,2(s) =
∞

∑
i=0

(−1)iγ̃1,2(s)2i−1bi
2 (77)

in which the inverse transform of γ̃1,2(s) is given by Equations (74) and (75). Thus, we have the
following expressed for Equation (76)

〈x2〉(t) =
∫ t

0
dt′Ψ1(t− t′)

(
2K− 2b1〈x〉(t′)

)
+

∞

∑
n

wn

∫ t

0
dt′Ψ2(t− t′)κv2

nt′2, (78)

in which

Ψ1(t) =
∞

∑
i=0

(−1)iγ1(t)2i−1bi
2, (79)

Ψ2(t) =
∞

∑
i=0

(−1)iγ2(t)2i−1bi
2, (80)

the γ1,2-functions was defined in Equations (74) and (75). These exact expressions for the moments
(〈xi〉 with i ∈ {1, 2}) reveal a strong dependence on the variable resetting point in the diffusion of
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these walkers, partly because of the presence of external forces that we add to the system through
the probability flux J (p(x, t)). This problem of multiple resetting points has an extreme degree of
complexity, but in this section we show the exact expressions to 〈x〉 and 〈x2〉 that allow us to write
the MSD, i.e., 〈x2〉 − 〈x〉2. This mathematical–physics application reveals the great potential that the
stochastic resetting model has in complex systems.

5. Conclusions

In this work we have investigated a non-static stochastic resetting theory to generalized FPE
with Prabhakar fractional operator. Using the Laplace transform, we have obtained general analytical
solutions of the fractional FPE in a more general context, i.e., tempered ℘δ,ν

α,β(t)-Prabhakar kernel.
The model proposed generalizes the stochastic resetting process (in an Evans–Majumdar sense) to

the non-static position of restart. In other words, we consider a non-fixed resetting point. In addition,
we take into account the fractional Prabhakar operator. We presented the exact analytic solutions to
non-static stochastic resetting theory for three cases

• Usual diffusion;
• Fractional Caputo diffusion;
• Fractional Prabhakar diffusion;

in addition to finding the exact solutions, we show how these solutions connect with the renewal
process. Through MSD to this model we show that the system presents anomalous diffusive regimes.
We show that considering the fractional case and the v 6= 0 (v is velocity) of the resetting position
the MSD has an initial sub-diffusive regime and then hyper-diffusive regime, before the MSD has
acquired a stationary form, i.e., MSD∼constant. Finally, we generalize the model to the case where it
admits multiple reset points that move with different velocities. In addition, we consider the presence
of external forces acting in the system, assuming the form F(x) = −b1 − b2x. We found the exact
expressions for the first moment and second moment.

We consider the results and techniques employed in this work to constitute important tools for
studying non-Markovian diffusive process with memory effects, thus opening new possibilities in
future research for fractional diffusion and stochastic resetting theory.
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