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Abstract: The question of constructing models for the evolution of clusters that differ in shape based
on the Boltzmann’s H-theorem is investigated. The first, simplest kinetic equations are proposed and
their properties are studied: the conditions for fulfilling the H-theorem (the conditions for detailed
and semidetailed balance). These equations are to generalize the classical coagulation–fragmentation
type equations for cases when not only mass but also particle shape is taken into account. To construct
correct (physically grounded) kinetic models, the fulfillment of the condition of detailed balance
is shown to be necessary to monitor, since it is proved that for accepted frequency functions, the
condition of detailed balance is fulfilled and the H-theorem is valid. It is shown that for particular and
very important cases, the H-theorem holds: the fulfillment of the Arrhenius law and the additivity
of the activation energy for interacting particles are found to be essential. In addition, based on the
connection of the principle of detailed balance with the Boltzmann equation for the probability of
state, the expressions for the reaction rate coefficients are obtained.

Keywords: coagulation–fragmentation equations; Becker–Döring equations; H-theorem; entropy;
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1. Introduction

The H-theorem was a subject of study of Ludwig Boltzmann [1]. He connected it with the
entropy increase.

Boltzmann devotes the first chapter to an equation that we now term as the spatially homogeneous
Boltzmann equation with the dependence of the distribution function only on the magnitude of the
velocity (on the square of the velocity or energy, which he calls “living force”). It is for this equation
that Boltzmann proves the H-theorem.

The second chapter of this work is remarkable for its simplicity and is called a “replacement of
integrals by sums”—the simplest discrete models of the Boltzmann equation appear there. One is
similar to the three velocities model, which we now term as the Godunov–Sultangazin model [2].

In the same chapter, the principle of maximum entropy appears, but only as a hint, as an example
for one model. Thus, Boltzmann defines the simplest discrete model as what we now term as the
Boltzmann extremals [3] (see also [4,5]). In [3–10], it was shown that the stationary solution can be
obtained without solving the equation in different cases such as for discrete Boltzmann equations, for
general chemical kinetics and for Liouville equations. It is also interesting to note that Boltzmann
generalized his H-theorem for chemical kinetics in his work, but modern generalization of chemical
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kinetic equations was found 100 years later in [11–14]. The theory was also generalized to the quantum
case; see [5,15,16] for review.

Therefore, the classical H-theorem not only substantiates the second law of thermodynamics for
the described systems but also provides information about the behavior of solutions. The proof of the
H-theorem makes the behavior of solutions of equations clear, since it allows us to find out where they
converge with time tending to infinity. This can be done without solving the equations and finding
the Boltzmann extremal—the argument of the minimum of the H-function (the functional decreasing
along the solutions), provided that the values of the linear conservation laws are fixed. The H-theorem
ensures the stability of the obtained stationary solutions (Boltzmann extremals).

We continue the line of Boltzmann’s work, trying to expand the class of equations for which the
law of entropy increase can hold, and to investigate the conditions under which the H-theorem is valid.
The H-function for the systems considered by Boltzmann is “minus” entropy. The interpretation of
entropy as a thermodynamic potential, which increases for an isolated system, suggests a course of
action in other situations: considering generalizations of the H-theorem for other models, the physical
meaning of the H-function should be specified in each case. Regardless of the physical meaning,
H-functions in mathematics are called Lyapunov functionals.

In this paper, we consider a mathematical model designed to describe a supersaturated vapor or
solution in which clusters of matter originate and grow. The task is to find out how a solid substance is
formed from a multitude of molecules. What we call original particles are what the clusters consist
of (these are, for example, molecules and identical nanoparticles), and we consider the problem of
aggregating the original particles. The term “solid particle” as a synonym for the terms “cluster”
and “aggregate of original particles” is not suitable, since the solid phase does not form immediately:
aggregates from a small number of initial particles are not a solid phase. In this case, the equations
should generalize the coagulation–fragmentation equations taking into account the shape, being a
special case of the general equations of physicochemical kinetics (see Section 2). Immediately, we note
that in the considered models of formation of a solid substance the bonds between the original particles
may not be chemical, but all the equations considered in the present work have the form of equations
of physicochemical kinetics.

Discrete coagulation–fragmentation equations describe the kinetics of cluster growth in which
particles can coalesce by pairwise interaction, forming clusters with a larger number of molecules, and
can fragment particles with a smaller number of molecules [6,17–19]:

dN(m,t)
dt = 1

2

m−1∑
l=1

[C(l, m− l)N(l, t)N(m− l, t) − F(l, m− l)N(m, t)]

−

+∞∑
l=1

[C(l, m)N(l, t)N(m, t) − F(l, m)N(m + l, t)], m ≥ 2.
(1)

Here, N(m, t) is a numerical density (concentration) of particles consisting of m molecules at
time moment t, C(l, m) is a kernel (a constant) of coagulation, and F(l, m) is a kernel (a constant)
of fragmentation.

Equation (1) was first derived by Marian Smoluchowski [17] for F(l, m) ≡ 0 for all l, m (the
Smoluchowski case). If only one original particle can attach to or separate from another particle, i.e.,
C(l, m) = F(l, m) = 0 when min{l, m} > 1, then Equation (1) represents the Becker–Döring equations:

dN(1,t)
dt = −

+∞∑
l=1

[C(l, 1)N(l, t)N(1, t) − F(l, 1)N(l + 1, t)] ,

dN(2,t)
dt = 1

2

[
C(1, 1)N2(1, t) − F(1, 1)N(2, t)

]
− [C(1, 2)N(1, t)N(2, t) − F(1, 2)N(3, t)],

dN(m,t)
dt = [C(1, m− 1)N(1, t)N(m− 1, t) − F(1, m− 1)N(m, t)]
−[C(1, m)N(1, t)N(m, t) − F(1, m)N(m + 1, t)], m > 2.

(2)
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The conditions of the H-theorem for Equation (1) have been investigated in [18,19], and those for
the Becker–Döring equations, Equation (2), in [20,21]. It is interesting to rewrite the results of [18–21]
in terms of the Boltzmann extremals [1,4,5], which is the argument of the conditional minimum the
H-function, provided that the constants of linear conservation laws are fixed. Namely, according to
the H-theorem solutions of the equations converge to the Boltzmann extremals as soon as time tends
to infinity.

The description of the nucleation and growth of clusters using Equations (1) and (2) is greatly
simplified. Usually, the coefficients in the equations of (1) and (2) do not take into account even the
shape of the aggregates and the relief of their surfaces, and therefore such models do not provide the
so-called magic numbers of atoms. In the Becker–Döring case, taking into account the shape of clusters
should give the magical numbers of atoms [22], and, if properly generalized, equations in (1) describe
the coalescence (and fragmentation) of not only the clusters, formed according to the Becker–Döring
condition, but also the aggregates formed by aggregates [22,23]. Therefore, we propose, in addition to
the number of original particles constituting a cluster, to take the shape as the other parameter.

The objective of this paper is to consider evolutionary models that take into account the shapes
of the clusters and investigate the H-theorem for them. This is done in order to create a theory of
the emergence of such aggregates from the original particles. The results of this paper demonstrate
a way to solve the issue of building the correct (physically justified) models of evolution of clusters
having different shapes. This result is not affected by the fact that all the models considered in this
paper are spatially homogeneous just as it was in the case of the Boltzmann equation and its discrete
models [1,6]. Moreover, although we mean nanoparticles or molecules as the original particles, the
results are suitable for any similar structures having a shape with the same interaction as described
in the present work. The latter is due to the fact that we never distinguish between the sizes of the
original particles (nano- or macro-).

The layout of the paper is as follows. In the second section, we describe the general physicochemical
kinetics system of equations and the conditions on the sections are determined when the H-theorem
holds [6,7,11], with the results following. In Section 3.1, we derive the simplest models of the evolution
of aggregates consisting of the original particles, which differ in shape. Here simplifying the model we
reduce the number of parameters in description. In Section 3.2, we investigate the conditions on the
coefficients of the equations for validity of the H-theorem. In Section 3.3 it is deduced, that for special
but very important cases, the H-theorem is still satisfied: the fulfillment of the Arrhenius law and the
additivity of the activation energy for interacting particles are essential here. In this case, we obtain a
simple equation for the limit stationary solution. It is the result of Sections 3.4 and 3.5. In addition, in
Section 3.3 we connect the Boltzmann equation for the probability of state with the principle of detailed
balance and obtain as for the coefficients of the rates of the processes.

In the simplest models, we present the original particles in the shape of cubes. Of course, the
molecules do not have a shape, and the modeling of the original particles in the shape of cubes means
that for simplicity we restrict ourselves to only a simple Bravais cubic crystal lattice. This is done for
ease of consideration and presentation when considering the simplest models and for illustrations.
The main result of the present work (Sections 3.3–3.5), generally speaking, does not depend on the
shape of the original particles: all that is required is that the original particles be the same size and
shape. The rigorous formulation of our assumptions is provided in Section 3.3.

2. The Method and Definitions

Here, we describe the general physicochemical kinetics and how the H-theorem holds [6,7,11].
Let there be a mixture of chemically or physically interacting substances or states with spatially

homogeneous concentrations. Let us denote the concentration of the i-th substance or state,
i = 1, 2, . . . , n, at the time t as Ni(t).

The equations for complex physicochemical processes in the general form are written
as [6,7,11,12,24,25]:
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dNi
dt

=
1
2

∑
(α,β)∈=

(βi − αi)
(
Kα
βNα

−Kβ
αNβ

)
, i = 1, 2, . . . , n. (3)

Here, Nα denotes the product Nα = Nα1
1 Nα2

2 · . . . ·N
αn
n , the summation is carried out over some

finite set = of multi-indices (α,β), and α = (α1,α2, . . . ,αn) and β = (β1, β2, . . . , βn) are vectors with
non-negative integer components. (α,β) corresponds to the elementary reaction or physical process:

α1S1 + α2S2 + . . .+ αnSn
Kα
β
→ β1S1 + β2S2 + . . .+ βnSn, (α,β) ∈ =, (4)

where in chemistry, Si is the chemical symbol of the i-th reacting substance, in physics, Si is i-th state,
and Kα

β
≥ 0 are the coefficients of reaction rates (reaction constants) in chemistry or process velocity

in physics. The coefficients αi, βi are called stoichiometric coefficients in chemistry or number of
states in physics. Without loss of generality, we can assume that the set = is symmetric with respect
to permutations α and β. Meanwhile, some couples (α,β) may correspond to the zero reaction
(processes) rate coefficients: Kα

β
= 0, despite that Kβ

α > 0 (the irreversibility of reactions or processes
is allowed).

For clarity, let us consider an example of system of equations of physicochemical kinetics that
describes one reversible reaction A + BC→ AB + C , where A, B, and C are symbols denoting some
atoms or complexes of atoms that are different between themselves, which do not change themselves
during the reaction. We have that the set= consists of two pairs: (α,β) and (β,α), whereα = (1, 1, 0, 0)
and β = (0, 0, 1, 1). Their components have striking physical and chemical meaning. The first indexes
(α1 = 1 and β1 = 0) correspond to the number of molecules of the substance A participating in the
reaction, the second ones (α2 = 1 and β2 = 0) are the numbers of molecules BC, and the third and
fourth ones (α3 = α4 = 0 and β3 = β4 = 1) are the numbers of molecules AB and C, respectively. We
write the system of equations according to the general Equation (3):

dN1
dt = (0− 1)

(
Kα
β

N1N2 −Kβ
αN3N4

)
,

dN2
dt = (0− 1)

(
Kα
β

N1N2 −Kβ
αN3N4

)
,

dN3
dt = (1− 0)

(
Kα
β

N1N2 −Kβ
αN3N4

)
,

dN4
dt = (1− 0)

(
Kα
β

N1N2 −Kβ
αN3N4

)
,

where N1(t), N2(t), N3(t), and N4(t) are the concentrations of molecules of substances A, BC, AB, and
C, respectively, at a moment of time t, and the values of vectors α and β are written out above. There
are three linear conservation laws: N1 + N3 = const, N2 + N3 = const, and N2 + N4 = const. The first
of them formulates the conservation law of the number of atoms (or complexes of atoms) of the form A:
N1+N3, the second one is the number of atoms of the form B, the second one is the number of atoms of
the form B: N2 +N3, and the third law is the number of atoms of the form C: N2 +N4. It is easy to verify

that a linear operator: Iµ(t) =
n∑

i=1
µiNi(t) = (µ, N) is conserved along the solutions of the system under

consideration then and only then when the vectorµ is orthogonal to all Boltzmann–Orlov–Moser–Bruno
vectors [12,24–27] α−β. In this example, the Boltzmann–Orlov–Moser–Bruno vector is unique up to a
factor: α−β = (1, 1,−1,−1).

Thus, the stoichiometric coefficients are the numbers of molecules participating in the reaction (4).
Si, i = 1, 2, . . . , n, are the chemical symbols of the reacting molecules. Linear invariants of a system of
physicochemical kinetics equations are the conservation laws of the number of atoms of each type
entering into the composition of at least one of the substances Si participating in the reaction, or a linear
combination of these linear conservation laws. More precisely, instead of atoms of each type, different
complexes of atoms should be considered, which themselves do not change during the reaction. Note
that if the number of molecules Si, i = 1, 2, . . . , n, in an elementary reaction of the Equation (4) is
preserved, then |α| = |β|, where |α| ≡ α1 + α2 + . . .+ αn.
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Consider another example, when not only the composition and mass of clusters, but also shape of
clusters is taken into account. We confine ourselves to the case of aggregates consisting of no more
than three original particles (molecules) and the shapes shown in Figure 1. The original particles
are cubes here. We introduce the notation for the cluster concentrations, as shown in Figure 1: N1 is
a concentration of individual molecules, N2 the aggregates of two molecules, and N31 and N32 are
clusters of two shapes of the three molecules, and arrows indicate three possible reversible reactions.

Then, the evolution equations for these quantities read as:

dN1
dt = −2

(
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,2))

N1
2
−K(2,(1,1,2))

(1,(1,1,1))(1,(1,1,1))
N2

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

N1N2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

N31

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

N1N2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

N32

)
,

dN2
dt =

(
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,2))

N1
2
−K(2,(1,1,2))

(1,(1,1,1))(1,(1,1,1))
N2

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

N1N2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

N31

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

N1N2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

N32

)
,

dN31
dt =

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

N1N2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

N31

)
,

dN32
dt =

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

N1N2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

N32

)
.

(5)

Instead of the first equation of (5), we can take the conservation law of the number of all molecules
in the system:

N1 + 2N2 + 3N31 + 3N32 ≡ Nall = const.

In (5), K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,2))

, K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

, and K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

are the constants (cross-sections,

frequency functions) of the coalescence, and K(2,(1,1,2))
(1,(1,1,1))(1,(1,1,1))

, K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

, and K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

are frequencies of fragmentation. Hereinafter, we write the rate constants of the processes as coefficients
in equations as in Equation (3). The meaning of the indices in the coefficients in Equation (5) are
clarified in the next section, where we define the notion of a shape consisting from cubes and write out
a more general model via Equations (8)–(10).

Note that the systems in Equations (1) and (2) represent the physicochemical kinetics equations
with an infinite number of reactions. The constants C(l, m) and F(l, m) in (1) and (2) are the rate
coefficients of the processes if l , m, and, if l = m, then each of them gives a doubled reaction constant
(in terms of Equation (3)). It is these constants (and not the coefficients of rates of the processes) that
were introduced for the convenience of the writing of Equation (1).

In [6,7,11], a classification of the equations of physicochemical kinetics (3) is given according to the
entropy principle: S ⊂ D ⊂ E ⊂ C. Here C denotes the class of all systems of Equation (3) with a finite
number of reactions. E is the class of systems for which the condition of semidetailed balance, or complex
balance condition, or dynamical equilibrium is satisfied. This, as shown in [6,7,11,28], guarantees an
increase of entropy. Boltzmann introduced the semidetailed balance condition for collisions in 1887 [28]
and proved that it guarantees the positivity of the entropy production. The microscopic background
for the semidetailed balance was found by Ernst Stueckelberg [29] in the Markov microkinetics of the
intermediate compounds present in small amounts and whose concentrations are in quasiequilibrium
with the main components. Under these microscopic assumptions, the semidetailed balance condition is
just the balance equation for the Markov microkinetics according to the Michaelis–Menten–Stueckelberg
theorem formulated by Gorban [30]. For chemical kinetics, this condition (known as the complex
balance condition) was introduced by Horn and Jackson in 1972 [11]. D is the class of systems of
Equation (3) with detailed balance, and S is the class of systems with symmetric reaction constants (i.e.,
systems for which Kα

β
= Kβ

α). The concepts of detailed and semidetailed balance are explained below.
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Then, the evolution equations for these quantities read as: 

Figure 1. The aggregates, consisting of no more than three original particles (cubes), and their
concentrations. N1 is a concentration of individual molecules, N2 are aggregates of two molecules,
and N31 and N32 are clusters of two shapes of the three molecules. The arrows indicate three possible
reversible reactions.

3. Results

3.1. The Simplest Models for the Evolution of Clusters Differing in Shape

We call the original particles constituting the cluster as adjacent if they have a common face. We
assume that a cube attaches to an aggregate or to another original particle only in such a way that it
becomes adjacent at least to one other original particle.

In the first simplest model we restrict ourselves to the investigation of modeling the evolution of
clusters, differing in shape, for the Becker–Döring case, i.e., when only the original particles coalesce
with and fragmentize from the cluster.

Each aggregate is characterized by the number n of constituting original particles. Moreover, for
each cluster, we determine the minimum rectangular parallelepiped in which this cluster is placed so
that the faces of the cubes, its components, are parallel to the corresponding faces of this parallelepiped.
Such rectangular parallelepipeds are characterized by length, width, and height, i.e., the numbers a1,
a2, a3, defining the vector a ∈
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Figure 2. The example of the vector a , characterizing the shape of the particle consisting of n  

original particles. Here,  3,2,1a , 5n . 

For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . 

3, and we consider permutations of triplets of numbers (a1, a2, a3) as
indistinguishable vectors. It is obvious that:

n ≤ a1·a2·a3. (6)

It makes sense to consider not only the 3-dimensional aggregates of the original particles, but also
2-dimensional ones, since the growth of clusters on the surface and the growth of films are of interest.
Then, instead of cubes, we have squares that are connected to each other so that their edges coincide,
and the analogue of condition (6) has the form:

n ≤ a1·a2. (7)

In the 1-dimensional case, however, we obtain that n = a1, which returns us to the system of
Equations (6) and (7). Therefore, we consider a ∈
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d, where d = 2, 3. Figure 2 shows an example of
a vector a. Note that in the 1-dimensional case (d = 1), we get the chains consisting of the original
particles, and the breaking of one bond between two neighboring original particles in the chain leads to
its breaking. This means the processes of agglomeration and fragmentation of chains become essential
along with the processes of coalescence and fragmentation of individual original particles to the chain.
Therefore, the 1-dimensional case of the evolution of clusters of different mass and shape under the
Becker–Döring constraint makes sense to consider only when the growth of chains occurs on the
surfaces, and then the system of equations describing the evolution has the form of (2).
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Consider the evolution of the concentrations (or numbers) of the clusters having the shape 
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Figure 2. The example of the vector a, characterizing the shape of the particle consisting of n original
particles. Here, a = (1, 2, 3), n = 5.

For each n ∈
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Consider the evolution of the concentrations (or numbers) of the clusters having the shape (n, a):

N(n, a, t), t ∈ [0,+∞). Without loss of generality, we assume here that d = 3.
We need to write a system of equations of the type of the physicochemical kinetics with all

interactions of the form:
(n, a) + (1, (1, 1, 1))↔ (n + 1, a + ei), (8)

where n ∈
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, i = 0, 1, 2, 3, e0 = (0, 0, 0) is the zero vector, and e j ( j = 1, 2, 3) is a vector with one in j-th
place and zeros in the others. Here the vectors a ∈
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and in any other cases, the coefficients of the direct and reverse reactions are assumed to be zero. If
i = 0, then a does not vary, but n is increased by one in all four cases: i = 0, 1, 2, 3.

For brevity, we introduce the notation for the number of individual original particles: N1(t) ≡
N(1, (1, 1, 1), t).

The system of equations is:

dN1(t)
dt = −2

3∑
i=1

(
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,1)+ei)

N1
2(t) −K(2,(1,1,1)+ei)

(1,(1,1,1))(1,(1,1,1))
N(2, (1, 1, 1) + ei, t)

)
−

+∞∑
n=2

∑
a∈
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3∑
i=0

(
K(1,(1,1,1))(n,a)
(n+1,a+ei)

N1(t)N(n, a, t) −K(n+1,a+ei)

(1,(1,1,1))(n,a)
N(n + 1, a + ei, t)

)
,

(9)

dN(n,a,t)
dt = F(n, a, t) ≡

≡

3∑
i=0

[(
K(1,(1,1,1))(n−1,a−ei)

(n,a)
N1(t)N(n− 1, a− ei, t) −K(1,(1,1,1))(n−1,a−ei)

(n,a)
N(n, a, t)

)
−

(
K(1,(1,1,1))(n,a)
(n+1,a+ei)

N1(t)N(n, a, t) −K(n+1,a+ei)

(1,(1,1,1))(n,a)
N(n + 1, a + ei, t)

)]
,

n = 2, 3, . . . , a ∈
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(10)

Thus, here, K(1,(1,1,1))(n,a)
(n+1,a+ei)

is the cross-section (frequency function, reaction rate coefficient) of such

coalescence of the original particle (1, (1, 1, 1)) with the shape (n, a), at which a increases by the value
ei, so the shape (n + 1, a + ei) is obtained; K(1,(1,1,1))(n−1,a−ei)

(n,a)
is the frequency of fragmentation of the

shape (n, a) into the original particle and the shape (n− 1, a− ei).
If for each n ∈
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original particles. Here,  3,2,1a , 5n . 

For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n), we do not distinguish the shapes (n, a) and (n, b), then
Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task is to distinguish
the aggregates consisting of the original particles not only in mass, but also in shape.

In the second simplest model, we assume that, on the contrary, only rectangular parallelepipeds
can coalesce with their identical faces, so that the result is a rectangular parallelepiped again. Thus,
clusters without voids are obtained, i.e., Equations (1) and (2) become equalities. In the 3-dimensional
case, we have:

n = a1·a2·a3. (11)

For each n ∈
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Thus, here,  
   a

ea

,1,1,1,1

1

n

,n i
K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 




  i,n ea1  is obtained;  

   in

nK
ea

a

 ,11,1,1,1

,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n) as the set of all triples of natural numbers (a1, a2, a3)

satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is described by a
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triple of numbers (a1, a2, a3) ∈
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Thus, here,  
   a

ea

,1,1,1,1

1

n

,n i
K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 




  i,n ea1  is obtained;  

   in

nK
ea

a

 ,11,1,1,1

,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n) ⊂
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Nn ,   dn NJ a . The set of all such pairs we denote by G . 

3. The concentration (or the number) of aggregates having the
shape (a1, a2, a3) in time moment t is denoted by N(a1, a2, a3, t).

Define the function:

θ̂(x, y) =
{

2, x = y,
1, x , y.

We obtain the following evolution equation for the concentration of the original particles or shape
(1, 1, 1):

dN(1, 1, 1, t)
dt

=
+∞∑
b=1

θ̂(l, 1)
[
K(b+1,1,1)
(b,1,1)(1,1,1)

N(b + 1, 1, 1, t) −K(b,1,1)(1,1,1)
(b+1,1,1)

N(b, 1, 1, t)N(1, 1, 1, t)
]
. (12)

For the evolution of the concentration of the shape (2, 1, 1), we have:

dN(2,1,1,t)
dt =

[
K(1,1,1)(1,1,1)
(2,1,1)

N2(1, 1, 1, t) −K(2,1,1)
(1,1,1)(1,1,1)

N(2, 1, 1, t)
]

+
+∞∑
b=1

θ̂(b, 2)
[
K(b+2,1,1)
(b,1,1)(2,1,1)

N(b + 2, 1, 1, t) −K(b,1,1)(2,1,1)
(b+2,1,1)

N(b, 1, 1, t)N(2, 1, 1, t)
]

+
+∞∑
b=1

θ̂(b, 1)
[
K(2,b+1,1)
(2,b,1)(2,1,1)

N(2, b + 1, 1, t) −K(2,b,1)(2,1,1)
(2,b+1,1)

N(2, b, 1, t)N(2, 1, 1, t)
]
.

(13)

Writing down a similar equation for the evolution of the concentration of an arbitrary shape
(a1, a2, a3), we obtain:

dN(a1,a2,a3,t)
dt =

a1−1∑
b = 1,

b ≤ a1/2

[
K(b,a2,a3)(a1−b,a2,a3)

(a1,a2,a3)
N(b, a2, a3, t)N(a1 − b, a2, a3, t)

−K(a1,a2,a3)

(b,a2,a3)(a1−b,a2,a3)
N(a1, a2, a3, t)

]
+

+∞∑
b=1

θ(b, a1)
[
K(a1+b,a2,a3)

(b,a2,a3)(a1,a2,a3)
N(a1 + b, a2, a3, t)

−K(b,a2,a3)(a1,a2,a3)

(a1+b,a2,a3)
N(b, a2, a3, t)N(a1, a2, a3, t)

]
+ . . . , (a1, a2, a3) ∈
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For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n), n = 1, 2, . . .

(14)

The last term here denotes the similar terms for a2 and a3, which is written for a1. To avoid a
repetition, such terms should be written out only for different numbers from a triplet (a1, a2, a3). In
Equations (12)–(14), the coefficients represent the reaction (process) constants.

The second simplest model (14) is a vectorial version of the classical discrete Smoluchowski
coagulation–fragmentation equations [17], where some compatibility condition of the vectors is
demanded. The compatibility is that the only vectors that can merge are those which differ in
one component.

If there is an upper limit for n: n ≤M (M = 2, 3, . . .), then we have the finite–dimensional system
consisting from M equations, which we call the M-th approximation of Equations (9) and (10):

dN1(t)
dt = −2

3∑
i=0

(
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,1)+ei)

N1
2(t) −K(2,(1,1,1)+ei)

(1,(1,1,1))(1,(1,1,1))
N(2, (1, 1, 1) + ei, t)

)
−

M−1∑
n=2

∑
a∈

Physics 2019, 1 FOR PEER REVIEW  7 

 

3. Results 

3.1. The Simplest Models for the Evolution of Clusters Differing in Shape 

We call the original particles constituting the cluster as adjacent if they have a common face. 

We assume that a cube attaches to an aggregate or to another original particle only in such a way 

that it becomes adjacent at least to one other original particle. 

In the first simplest model we restrict ourselves to the investigation of modeling the evolution 

of clusters, differing in shape, for the Becker–Döring case, i.e., when only the original particles 

coalesce with and fragmentize from the cluster. 

Each aggregate is characterized by the number n of constituting original particles. Moreover, 

for each cluster, we determine the minimum rectangular parallelepiped in which this cluster is 

placed so that the faces of the cubes, its components, are parallel to the corresponding faces of this 

parallelepiped. Such rectangular parallelepipeds are characterized by length, width, and height, i.e., 

the numbers 
1a , 

2a , 3a , defining the vector 
3Na , and we consider permutations of triplets of 

numbers  321 ,, aaa  as indistinguishable vectors. It is obvious that: 

321 aaan  . (6) 
 

It makes sense to consider not only the 3-dimensional aggregates of the original particles, but 

also 2-dimensional ones, since the growth of clusters on the surface and the growth of films are of 

interest. Then, instead of cubes, we have squares that are connected to each other so that their edges 

coincide, and the analogue of condition (6) has the form: 

21 aan  . (7) 
 

In the 1-dimensional case, however, we obtain that 
1an  , which returns us to the system of 

Equations (6) and (7). Therefore, we consider 
dNa , where 3,2d . Figure 2 shows an example 

of a vector a . Note that in the 1-dimensional case (d = 1), we get the chains consisting of the 

original particles, and the breaking of one bond between two neighboring original particles in the 

chain leads to its breaking. This means the processes of agglomeration and fragmentation of chains 

become essential along with the processes of coalescence and fragmentation of individual original 

particles to the chain. Therefore, the 1-dimensional case of the evolution of clusters of different mass 

and shape under the Becker–Döring constraint makes sense to consider only when the growth of 

chains occurs on the surfaces, and then the system of equations describing the evolution has the 

form of (2). 

 

Figure 2. The example of the vector a , characterizing the shape of the particle consisting of n  

original particles. Here,  3,2,1a , 5n . 

For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)

3∑
i=0

(
K(1,(1,1,1))(n,a)
(n+1,a+ei)

N1(t)N(n, a, t) −K(n+1,a+ei)

(1,(1,1,1))(n,a)
N(n + 1, a + ei, t)

)
,

dN(n,a,t)
dt = F(n, a, t), n = 2, 3, . . . , M− 1, a ∈

Physics 2019, 1 FOR PEER REVIEW  7 

 

3. Results 

3.1. The Simplest Models for the Evolution of Clusters Differing in Shape 

We call the original particles constituting the cluster as adjacent if they have a common face. 

We assume that a cube attaches to an aggregate or to another original particle only in such a way 

that it becomes adjacent at least to one other original particle. 

In the first simplest model we restrict ourselves to the investigation of modeling the evolution 

of clusters, differing in shape, for the Becker–Döring case, i.e., when only the original particles 

coalesce with and fragmentize from the cluster. 

Each aggregate is characterized by the number n of constituting original particles. Moreover, 

for each cluster, we determine the minimum rectangular parallelepiped in which this cluster is 

placed so that the faces of the cubes, its components, are parallel to the corresponding faces of this 

parallelepiped. Such rectangular parallelepipeds are characterized by length, width, and height, i.e., 

the numbers 
1a , 

2a , 3a , defining the vector 
3Na , and we consider permutations of triplets of 

numbers  321 ,, aaa  as indistinguishable vectors. It is obvious that: 

321 aaan  . (6) 
 

It makes sense to consider not only the 3-dimensional aggregates of the original particles, but 

also 2-dimensional ones, since the growth of clusters on the surface and the growth of films are of 

interest. Then, instead of cubes, we have squares that are connected to each other so that their edges 

coincide, and the analogue of condition (6) has the form: 

21 aan  . (7) 
 

In the 1-dimensional case, however, we obtain that 
1an  , which returns us to the system of 

Equations (6) and (7). Therefore, we consider 
dNa , where 3,2d . Figure 2 shows an example 

of a vector a . Note that in the 1-dimensional case (d = 1), we get the chains consisting of the 

original particles, and the breaking of one bond between two neighboring original particles in the 

chain leads to its breaking. This means the processes of agglomeration and fragmentation of chains 

become essential along with the processes of coalescence and fragmentation of individual original 

particles to the chain. Therefore, the 1-dimensional case of the evolution of clusters of different mass 

and shape under the Becker–Döring constraint makes sense to consider only when the growth of 

chains occurs on the surfaces, and then the system of equations describing the evolution has the 

form of (2). 

 

Figure 2. The example of the vector a , characterizing the shape of the particle consisting of n  

original particles. Here,  3,2,1a , 5n . 

For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n),
dN(M,a,t)

dt =
3∑

i=0

[
K(1,(1,1,1))(M−1,a−ei)

(M,a)
N1(t)N(M− 1, a− ei, t)

−K(1,(1,1,1))(M−1,a−ei)

(M,a)
N(M, a, t)

]
, a ∈
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Then, the shape is described by a pair (n, a), where n = 1, 2, 3, . . . , M, a ∈
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Instead of the first equation of (15), we can write the conservation law of all original particles in

the system:
M∑

n=1

∑
a∈
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(n·N(n, a, t)) = const.

For the second model, the M-th approximation of (14) reads:

dN(a1,a2,a3,t)
dt =

a1−1∑
b = 1,

b ≤ a1/2

[
K(b,a2,a3)(a1−b,a2,a3)

(a1,a2,a3)
N(b, a2, a3, t)N(a1 − b, a2, a3, t)

−K(a1,a2,a3)

(b,a2,a3)(a1−b,a2,a3)
N(a1, a2, a3, t)

]
+

+∞∑
b = 1,

(a1 + b)a2a3 ≤M

[
K(a1+b,a2,a3)

(b,a2,a3)(a1,a2,a3)
N(a1 + b, a2, a3, t)

−K(b,a2,a3)(a1,a2,a3)

(a1+b,a2,a3)
N(b, a2, a3, t)N(a1, a2, a3, t)

]
+ . . . , (a1, a2, a3) ∈
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Thus, here,  
   a

ea

,1,1,1,1

1

n

,n i
K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 




  i,n ea1  is obtained;  

   in

nK
ea

a

 ,11,1,1,1

,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n), n = 1, 2, . . . , M.

(16)

Then, instead of the equation for the evolution of N(1,1,1,t) in (16), we can write the conservation
law of all the original particles in the system:

a1a2a3≤M∑
a1,a2,a3=1

a1a2a3N(a1, a2, a3, t) = const.

Thus, we obtain the systems of Equations (9), (10) and (14), as well as their M-th approximations
(15) and (16). Now let us address the H-theorem point.

We consider the H-theorem for a finite system of equations. This faces the same difficulties with
convergence of series for the infinite systems as discussed in [18–21]. It is important to point out
that the detailed study of the H-theorem in this case is a problem for a separate paper. Nevertheless,
our results involve the detailed balance and so are valid regardless of the finiteness of the systems
in question.

3.2. The Conditions of Detailed and Semidetailed Balance

The condition of the detailed balance for the general system of equations of physicochemical
kinetics (3) is actually the condition for the coefficients: let there exist at least one positive solution of
the following system of equations:

Kα
βξ

α = Kβ
αξ

β, (α,β) ∈ =.

This assumes that the rate of the direct reaction is equal to the rate of the reverse reaction for all
the reactions. The number of equations in the detailed balance condition is equal to the number of
reactions which is half of the number of pairs (α,β) in set =, while the number of unknowns ξi equals
n.

The condition of detailed balance in the case of Equations (9) and (10) takes the following form:
let there be at least one solution (ξ(n, a) > 0) of the system:

K(1,(1,1,1))(n,a)
(n+1,a+ei)

ξ1ξ(n, a) = K(n+1,a+ei)

(1,(1,1,1))(n,a)
ξ(n + 1, a + ei), (17)
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where ξ1 > 0 and ξ(n, a) > 0 for all (n, a) ∈
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The condition of semidetailed balance [6,7,11,24,28,29] is a condition when there is at least one

positive solution ξ of the following system of equations:∑
β

Kα
βξ

α =
∑
β

Kβ
αξ

β.

Here, α is defined so that (α, β) ∈ = with some β. The sum runs only over those multi-indices β

for which either Kα
β
, 0 or Kβ

α , 0. The sum of the rates of all reactions with initial state α is equal
to the sum of all rates of reactions with final state α. The number of equations in the condition of
semidetailed balance is half of the number of different vectors α in pairs (α,β) ∈ =.

The condition of semidetailed balance in the case of Equations (9) and (10) leads to the two types
of relations:

ξ(n, a)
3∑

i=0

K(n,a)
(1,(1,1,1))(n−1,a−ei)

=
3∑

i=0

K(1,(1,1,1))(n−1,a−ei)

(n,a)
ξ1ξ(n− 1, a− ei) (18)

and:

ξ(n− 1, b)ξ1

3∑
j=0

K(1,(1,1,1))(n−1,b)
(n,b+e j)

=
3∑

j=0

K
(n,b+e j)

(1,(1,1,1))(n−1,b)
ξ
(
n, b + e j

)
. (19)

Note that the relations of the form of (18) determine the recursion: ξ(n, a) expresses through ξ1

and ξ(n− 1, . . .) if
3∑

i=0
K(n,a)
(1,(1,1,1))(n−1,a−ei)

, 0.

The condition of detailed balance as well as the condition of semidetailed balance imposes
restrictions on the cross-sections. If we consider these conditions for the M-th approximation of the
Equations (9) and (10), i.e., for (15), then, this case contains some restrictions of the original case
remaining unchanged. Therefore, it is advisable to consider examples of systems of the form (15).

Consider an example when M = 4: each of shapes with n = 1 and n = 2 is unique, there are two
shapes with n = 3, and there are three shapes with n = 4 in the 2-dimensional case and four shapes in
the 3-dimensional case.

Natural shapes from cubes with n ≤ 4 and reactions are shown in Figure 3, and a similar scheme
(graph) for our model for the 3- and 2-dimensional cases is shown in Figure 4a,b, respectively. The
naturalness is defined as follows: the clusters have the same shape if they are transferred into each
other by transformation of motion that does not change the orientation in space. The fact that the
original particles have a reaction with a specific shape is not depicted here.

Due to the condition of detailed balance in this example (M = 4), we have the following restriction
on cross-sections for d = 3 (Figure 4a):

K(1,(1,1,1))(3,(1,1,3))
(4,(1,2,3))

K(4,(1,2,3))
(1,(1,1,1))(3,(1,1,3))

K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

=
K(1,(1,1,1))(3,(1,2,2))
(4,(1,2,3))

K(4,(1,2,3))
(1,(1,1,1))(3,(1,2,2))

K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

, (20)

which comes from the fact that starting from the node (2, (1, 1, 2)) one gets the node (4, (1, 2, 3)) in two
different ways. Restrictions on the cross-sections come in play as soon as the resulting graph is not a
tree, i.e., contains various reaction paths.

In the case of shapes, the graph in Figure 3 is different, and the condition of detailed balance leads
to the two relations (similar to (20)).

The case of a stationary solution, when there are neither detailed nor semidetailed balances, is
shown in Figure 5, which corresponds not only to Figure 3 but also to Figure 4.
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Figure 4. The shapes of aggregates, consisting of no more than four original particles, for the first
simplest d-dimensional model: (a) d = 3, (b) d = 2.
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replacing the evolution equation of concentration 1N  with the conservation law of the number of 
all original particles in the system: 

constNNNNNN all  4323121 4332 . (22) 
 

Figure 5. The minimum set of aggregates, for which the condition of detailed and semidetailed balance
can be not valid, and their concentrations. Directions of the arrows indicate which of the direction of
the process prevails: coalescence with the original particle or fragmentation.

Let us consider an example for this situation, i.e., a system of equations where only aggregates
shown in Figure 5 are considered. Simply let us record the equations by entering notations for cluster
concentrations, as shown in Figure 5 (and as it was given in the example in the introduction): N2 is the
number of aggregates of two original particles, N31 and N32 are the concentrations of aggregates of
two types of three original particles, and N4 of four. Then, we obtain a counterpart of (15):
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dN2
dt =

(
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,2))

N1
2
−K(2,(1,1,2))

(1,(1,1,1))(1,(1,1,1))
N2

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

N1N2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

N31

)
−

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

N1N2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

N32

)
,

dN31
dt =

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

N1N2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

N31

)
−

(
K(1,(1,1,1))(3,(1,1,3))
(4,(1,2,3))

N1N31 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,1,3))

N4

)
,

dN32
dt =

(
K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

N1N2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

N32

)
−

(
K(1,(1,1,1))(3,(1,2,2))
(4,(1,2,3))

N1N32 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,2,2))

N4

)
,

dN4
dt =

(
K(1,(1,1,1))(3,(1,1,3))
(4,(1,2,3))

N1N31 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,1,3))

N4

)
+

(
K(1,(1,1,1))(3,(1,2,2))
(4,(1,2,3))

N1N32 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,2,2))

N4

)
,

(21)

replacing the evolution equation of concentration N1 with the conservation law of the number of all
original particles in the system:

N1 + 2N2 + 3N31 + 3N32 + 4N4 ≡ Nall = const. (22)

Obviously, the condition that the vector ξ = (ξ1, ξ2, ξ31, ξ32, ξ4) is a stationary solution of (21)
and (22) is equivalent to the fact that, for some number k ∈
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and:  

  
     

     
   02

2,1,1,2

1,1,1,11,1,1,1

2

1

1,1,1,11,1,1,1

2,1,1,2   KK . (24) 
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In general, for equations of the type of coagulation–fragmentation equations, it is typical that 

the condition of semidetailed balance coincides with the condition of detailed balance. 

In the simplest models in Section 3.1, it is not yet clear what to take as a section, and it can be 

considered that the conditions of detailed or semidetailed balances are valid. Thus, we first need to 

consider the natural shapes of the original particles such as in Figure 3 and sections for them 

resulting from the physical models. Although we do not know how many shapes and how many 

ways there are of obtaining each of them from others, it is possible to prove that the condition of 

detailed balance for a specific physical model of the sections is fulfilled. First, we consider an 

anisotropic original particle; for these, the validity of condition of detailed balance is proven. Then, 

, the vector ξ satisfies the system

K(1,(1,1,1))(3,(1,1,3))
(4,(1,2,3))

ξ1ξ31 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,1,3))

ξ4 = −k,

K(1,(1,1,1))(3,(1,2,2))
(4,(1,2,3))

ξ1ξ32 −K(4,(1,2,3))
(1,(1,1,1))(3,(1,2,2))

ξ4 = k,

K(1,(1,1,1))(2,(1,1,2))
(3,(1,1,3))

ξ1ξ2 −K(3,(1,1,3))
(1,(1,1,1))(2,(1,1,2))

ξ31 = −k,

K(1,(1,1,1))(2,(1,1,2))
(3,(1,2,2))

ξ1ξ2 −K(3,(1,2,2))
(1,(1,1,1))(2,(1,1,2))

ξ32 = k,

(23)

and:
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,2))

ξ1
2
−K(2,(1,1,2))

(1,(1,1,1))(1,(1,1,1))
ξ2 = 0. (24)

In Figure 5, the directions of the arrows indicate the direction of the process: coalescence prevails
with the original particle or fragmentation. If and only if all four reactions in Figure 5 have the same
magnitude of “dominance”, then one obtains the stationary solution that satisfies (23). Indeed, the
number of arrows “up” is equal to the number of arrows “down” and, therefore, the number of original
particles is preserved. For the aggregates from the original particles, this is also immediately apparent
from Figure 5, where exactly one arrow comes and goes to each vertex of the graph. The directions of
the arrows in Figure 5 correspond to k > 0 in (23). The detailed balance (the semidetailed balance) is
the case when the value of the “predominance” of all reactions is zero: k = 0.

If the of value ξ1 is fixed, then (23) becomes a linear system. The condition of detailed balance of
Equation (20) is the condition that the determinant of this system is zero.

In its turn, if the determinant of this system is zero, one obtains positive stationary solutions that
satisfy the detailed balance condition, which is the solution of Equations (23) and (24) with k = 0. By
virtue of the H-theorem, we obtain that such a stationary solution is unique and stable, if the value of
the constant Nall in (22) is fixed according to the initial data.

If the determinant is not zero, then there are no stationary solutions satisfying the condition of the
detailed balance (except a trivial one when the vector ξ is zero). However, in this case, for each positive
value of Nall in (22), we can find the stationary solution (21). As soon as the system of (23) is solved, as
a linear system for fixed ξ1, the value of the constant k is uniquely determined by the relationship (24)
through the value ξ1, and so the value ξ1 is calculated according to (22).
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For Equation (14), the condition of semidetailed balance coincides with the condition of the
detailed balance and has the form:

K(a1+b,a2,a3)

(b,a2,a3)(a1,a2,a3)
ξ(a1 + b, a2, a3) = K(b,a2,a3)(a1,a2,a3)

(a1+b,a2,a3)
ξ(b, a2, a3)ξ(a1, a2, a3),

K(a1,a2+b,a3)

(a1,b,a3)(a1,a2,a3)
ξ(a1, a2 + b, a3) = K(a1,b,a3)(a1,a2,a3)

(a1,a2+b,a3)
ξ(a1, b, a3)ξ(a1, a2, a3),

K(a1,a2,a3+b)
(a1,a2,b)(a1,a2,a3)

ξ(a1, a2, a3 + b) = K(a1,a2,b)(a1,a2,a3)

(a1,a2,a3+b)
ξ(a1, a2, b)ξ(a1, a2, a3),

(a1, a2, a3) ∈
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Thus, here,  
   a

ea

,1,1,1,1

1

n

,n i
K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 




  i,n ea1  is obtained;  

   in

nK
ea

a

 ,11,1,1,1

,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n), n = 1, 2, . . . , b = 1, 2, . . .

(25)

In general, for equations of the type of coagulation–fragmentation equations, it is typical that the
condition of semidetailed balance coincides with the condition of detailed balance.

In the simplest models in Section 3.1, it is not yet clear what to take as a section, and it can be
considered that the conditions of detailed or semidetailed balances are valid. Thus, we first need to
consider the natural shapes of the original particles such as in Figure 3 and sections for them resulting
from the physical models. Although we do not know how many shapes and how many ways there are
of obtaining each of them from others, it is possible to prove that the condition of detailed balance for a
specific physical model of the sections is fulfilled. First, we consider an anisotropic original particle; for
these, the validity of condition of detailed balance is proven. Then, we do a transition to the isotropic
case. We prove that the condition of detailed balance is maintained. This gives a method of obtaining
kinetic equations describing the evolution of clusters of different masses and shapes.

After that, we prove the H-theorem under the condition of semidetailed balance (18) and (19).
Then, the H-theorem is obtained under the condition of detailed balance, since Equations (18) and (19)
are a consequence of the condition of Equation (17). For the second model, we consider the H-theorem
under the condition of detailed balance (25), which coincides with the condition of semidetailed balance.

3.3. The Condition of Detailed Balance, the Arrhenius Law and the Model of the Evolution of Clusters Differing
in Shape

The condition of detailed balance for the general system of physicochemical kinetics Equation (3)
is:

Kα
βξ

α = Kβ
αξ

β, (α,β) ∈ =. (26)

If we (formally) put:

ξi =
1
Z

exp
(
−

Ei
kBT

)
, (27)

Equation (26) can be rewritten in the following form:

Kα
β = Kβ

αZ|α|−|β| exp
(
(α−β, E)

kBT

)
, (α,β) ∈ =, (28)

where E = (E1, E2, . . . , En), Ei is the energy of the state Si participating in reactions of the form (4), kB is

the Boltzmann constant, T is the temperature of the medium, and Z =
n∑

i=1
exp

(
−

Ei
kBT

)
is the canonical

partition function. Equation (27) is the Boltzmann equation for the probability of a given state. We
connect the Boltzmann equation with the principle of the detailed balance and obtain that as soon as
the principle of detailed equilibrium is satisfied, then the reaction constants can be written in the form:

Kα
β = AαβZ

|α|−|β|
2 exp

(
(α−β, E)

2kBT

)
, (α,β) ∈ =, (29)

where Aαβ = Aβα are symmetric coefficients.
In 1889, in “On the reaction rate of the inversion of cane sugar under the influence of acids”,

Svante Arrhenius posited the relationship of the dependence of the rate constant of the chemical
reaction on temperature [31], which today is called the Arrhenius equation or Arrhenius law (actually
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originally proposed by Vant Goff) [32,33]. The Arrhenius law for the system of equations of chemical
kinetics (3) has the form:

Kα
β = Aα

β exp

− Eα
β

kBT

, (α,β) ∈ =. (30)

Here, Eα
β

is the activation energy of the reaction in Equation (4). The activation energy is the energy
of molecules in a collision, the level of which is sufficient to carry out the chemical reaction of Equation
(4). Here, as is shown below, the coefficients Aα

β
are asymmetric: Aα

β
, Aβ

α, unlike Aαβ = Aβα in
Equation (29).

From (30), we obtain that, for the equilibrium, the following relations for the reaction rate constants
hold true:

Kα
β

Kβ
α

=
Aα
β

Aβ
α

exp

−Eα
β
− Eβ

α

kBT

, (α,β) ∈ =. (31)

Note that (31) is a more general condition than (30) in cases, where the rate constants of all
reactions are given.

Let for all (α,β) ∈ =:
Eα
β − Eβ

α = (β−α, E), (32)

i.e., the activation energy is an additive quantity. Then, relationship (31) takes the form:

Kα
β

Kβ
α

=
Aα
β

Aβ
α

exp
(
(α−β, E)

kBT

)
, (α,β) ∈ =. (33)

Comparing Equations (28) and. (33), we obtain that Aα
β

/Aβ
α = Z|α|−|β|.

Generally, one can explain the relationship (32) and follow more closely the concept of the
activation energy as soon as the concept of the so-called energy diagrams of reactions is used.

If the activation energy of reaction in Equation (4) Eα
β
≡ EA (see Figure 6), then the activation

energy of the inverse reaction is Eβ
α = Eα − Eβ + EA, where Eα = (α,E) is the energy of the initial

complex α and Eβ = (β, E) is the energy of the final product β. Therefore, relationship (32) is satisfied:
Eα
β
− Eβ

α = Eβ − Eα = (β−α, E) ≡ ∆H. This is the variation in enthalpy as a result of the reaction (see
Figure 6).

Theorem 1. Let relationship (33) hold for all (α,β) ∈ =. Let, then, that for the system:

dNi
dt

=
1
2

∑
(α,β)∈=

(βi − αi)
(
Aα
βNα

−Aβ
αNβ

)
, i = 1, 2, . . . , n, (34)

there is a positive stationary solution η that satisfies the condition of detailed balance: Aα
β
ηα = Aβ

αη
β,

(α,β) ∈ =.
Then:
(a) For Equation (3),

dNi
dt

=
1
2

∑
(α,β)∈=

(βi − αi)
(
Kα
βNα

−Kβ
αNβ

)
, i = 1, 2, . . . , n,

there is a stationary solution ξ: ξi = ηi exp
(
−

Ei
kBT

)
, satisfying the detailed balance condition (26);

(b) The H-function for Equation (3) differs from the H-function for Equation (34):

H(N) =
n∑

i=1

Ni

(
ln

Ni
ηi
− 1

)
,
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by the amount
n∑

i=1

Ei
kBT Ni, i.e., has the form:

H(N) =
n∑

i=1

Ni

(
ln

Ni
ξi
− 1

)
=

n∑
i=1

Ni

(
ln

Ni
ηi
− 1

)
+

n∑
i=1

Ei
kBT

Ni. (35)

The H-function (35) does not increase by the solution of Equation (3): dH
dt ≤ 0. All stationary solutions of

Equation (3) satisfy equalities of Equation (26);
(c) Equation (3) has n− r conservation laws of the form

∑
µk

i Ni(t) = Ak = const (k = 1, . . . , n− r), where r
is the dimension of the linear envelope of the vectors α−β (Boltzmann–Orlov–Moser–Bruno vectors [16,26,27]),
and the vectors µk are orthogonal to all α−β:

∑
µk

i (αi − βi) = 0. The stationary solution of Equation (3) is
unique, all the constants Ak are fixed, and it is given by:

N0i = ξi exp

∑
k

µk
iλ

k

 ≡ ηi exp

− Ei
kBT

+
∑

k

µk
iλ

k

, (36)

where λk are determined by the Ak values;
(d) Such a stationary solution exists if Ak is determined by the initial condition—a vector with non-negative

components N(0): Ak =
∑
µk

i Ni(0). A solution N(t) with this initial condition exists for all t > 0, is unique,
and tends to the stationary solution (36).

Proof. The H-theorem for the chemical kinetics equations with a finite number of reactions under the
condition of detailed balance was considered in [6,7]. By virtue of it, the Theorem 1 is obvious. �

From (31) and the detailed balance conditions, Aα
β
ηα = Aβ

αη
β, we obtain the basic equation of

thermodynamics:

− kBT ln
Kα
β

Kβ
α

=
(
Eα
β − Eβ

α

)
− T(β−α, s) = (β−α, E) − T(β−α, s),

where s = kB(ln η1, ln η2, . . . , ln ηn). (β−α, s) is entropy change as a result of the reaction.
Now we consider the frequency functions for our case, analyze them in terms of relationships (30)

and (32), and check the fulfillment of the condition of detailed balance for them.
Frequency functions in general form are unknown, but according to numerous observations, in

the case of gases (vapors) they look like (40) and (41) below, see [23]. In this section, we show that the
condition of detailed balance is satisfied for such sections.
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Figure 6. The energy diagram of the reaction: EA is the activation energy of reaction, Eα = (α,E) is the
energy of the initial complex α, Eβ = (β, E) is the energy of the final product β, and ∆H ≡ Eβ − Eα =

(β−α, E) is the variation in enthalpy as a result of the reaction.
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In addition, we explain how the frequency functions are obtained from theoretical considerations.
There are two main theories of molecular kinetics, namely, the theory of active collisions and the theory
of an activated complex [32–37].

According to the first of these, so-called active collisions lead to chemical reactions—collisions of
those particles for which the value of the energy of relative motion along the line of the centers of the
colliding particles exceeds a certain value, the activation energy.

The basic equations of the theory of active collisions were obtained by Max Trautz in 1916 [34] and
William Lewis in 1918 [35]. A comparison of the total number of collisions and the number of active
collisions shows that a large number of inactive collisions occur between the acts of reactions that
require activation energy. Therefore, it is assumed that the particle velocity distribution functions are
equilibrium or Maxwellian, and chemical transformations do not violate this statistical equilibrium.

Then, within the framework of the theory of active collisions, the equations of chemical kinetics
(for the case of pairing interactions) can be obtained from the Boltzmann equation [10] as in the
transition to hydrodynamics in the case of a zero order approximation in the Chapman–Enskog method
(transition to Euler equations) [6]. Indeed, we present the collision integral as a sum of all elastic
(inactive) collisions and the integral of inelastic (active) collisions. Then, substituting the Maxwell
distribution into such equations (written for each i-th type of particles), integrals of the first type
vanish, and the second (after integrating both parts of the equation over the space of velocities) gives
the right-hand side of the i-th equation of the system of (3). As a result, in spatially homogeneous
cases, one obtains equations of (3).

For simplicity, we restrict ourselves to the study of modeling the evolution of clusters, which
differ in shape, for the Becker–Döring case, i.e., when only the original particles coalesce with and
fragmentize from the aggregate.

Thus, in our problem, the cross-section for coalescence is a shape with the original particle that can
be modeled using the theory of active collisions (see below). When considering the fragmentation, one
has to apply the theory of an activated complex: the original particles fragmentize from the aggregates
not because they are knocked out by environmental particles by direct collision, but because the entire
aggregate is in a disturbed state due to collisions with particles of the medium and emits those initial
particles off their surface, the energy of which is greater than the activation energy of the process, the
binding energy with the rest of the aggregate particles.

The surface of an aggregate consisting of n original particles defines a set of “seats” for coalescence
with a single original particle, which results in the aggregate consisting of the (n + 1) original particles.

Let us introduce the notation for the combinatorial numbers, which arise in the consideration of
shapes and transitions between them as a result of coalescence with or departure of a single original
particle. Let a shape Y be obtained from a shape X by the addition of one original particle. Let C(1)X

Y
denote the number of ways to obtain shape Y from shape X (the number of “seats” of shape X, which
after coalescence with a single original particle gives shape Y). Here, the superscript “(1)” denotes the
original particle. We denote a number of ways of obtaining X from Y in the result of the fragmentation
of a single original particle from Y through CY

(1)X.

For example, from Figure 1, we can see that C(1)(1)
(2)

= C(2)
(1)(1)

= 6 for d = 3 and C(1)(1)
(2)

= C(2)
(1)(1)

= 4
for d = 2, where“(2)” denotes dimmer, because a cube has six faces, i.e., six “seats”, and a square has
four sides, i.e., four “seats” in the 2-dimensional case.

Generally speaking, C(1)X
Y , CY

(1)X. Indeed, as can be seen from Figure 1, for the reaction of
formation of one (left) of the shapes of aggregates, consisting of three original particles, as a result of
coalescence an original particle with an aggregate of the two original particles, both these numbers are
equal to two, and for the reaction of formation of the other (right) shape CY

(1)X = 2, and C(1)X
Y = 8 for

d = 3 (C(1)X
Y = 4 for d = 2).

Let us consider the case of anisotropic particles. First, let us define what the anisotropy means
using an example where the original particles are cubes, and then get a common definition of the
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anisotropic particles. Anisotropic shapes can be represented, for example, by means of the following
mental model. We can represent anisotropic shapes as particles consisting not of cubes but of rectangular
parallelepipeds, whose length, width, and height are different and the opposite faces are numbered “1”
and “2”. The point is that all faces of original particles are different. These particles coalesce with a
single original particle only so that faces of integrating original particles are the same by size and have
different numbers: a face numbered “1” can merge with a face with the same size numbered “2” (or “2”
vs. “1”). In this case, one obtains: C(1)X

Y = CY
(1)X = 1.

For shapes, consisting of such original particles, C(1)X
Y and CY

(1)X are equal to 1. Here, we notice a

feature where, for straight chains of molecules, they are equal to 2, while the relationship C(1)X
Y = CY

(1)X
is always satisfied. This gives a generalization of the definition of anisotropy from the case of cubes to
the arbitrary shapes of the original particles. The definition is simple: C(1)X

Y = CY
(1)X = 1.

For the coalescence of an aggregate, consisting of n original particles, with a single original particle
that results into the aggregate consisting of the (n + 1) original particles, each “seat” corresponds to
an effective section of interaction. As a result, an original particle occupies the “seat” if its energy is
sufficient for such a reaction. We use the assumption that all such sections can be considered identical,
i.e., independent of the “seat”. We denote them through σ.

Let us calculate the number of collisions of the “seat” with the flow of original particles falling onto
the aggregates at a relative speed and consider the velocity distributions to be Maxwell distribution.
Then, the corresponding average number of collisions of the original particles of mass m with aggregate

of n original particles is equal to σN1〈|u|〉, where 〈|u|〉 ≡
(

8kBT
πµ

)1/2
is the average of the absolute value of

the relative velocity of original particles and aggregates, µ = µ(n) ≡ m n
n+1 is their reduced mass, and

here N1 is the concentration, but not the number of original particles.
Therefore, if all the collisions result in the attachment of the original particle to the aggregate, then

the rate constant for the reaction of coalescence of a shape X with an original particle, which results in
a shape Y, is equal to

C(1)X
Y σ〈|u|〉, (37)

since the number of “seats” of shape X, resulting in shape Y, as soon as the original particle is attached,
is equal to C(1)X

Y .
According to the theory of active collisions, it is believed that only those original particles for which

the kinetic energy of relative motion along the line of centers of the colliding particles is greater than
the activation energy E1 enter the reaction. Therefore, to calculate the rate constant K(1)X

Y coalescence
of shape X with the original particle, we obtain the value (37) multiplied by some function of E1/(kBT).
This function has the form:

g(E1/(kBT)) exp(−E1/(kBT)), (38)

where g is a certain function, g(0) = 1, and significant dependence upon E1/(kBT) is included in the
second factor. Therefore, by virtue of Equations (37) and (38), we have:

K(1)X
Y = C(1)X

Y A(n) exp(−E1(n)/(kBT)). (39)

The activation energy E1 may depend on the mass of an aggregate, E1 = E1(n), but we suppose
that there is no dependence on the shape. Note that A(n) ≡ σ〈|u|〉g(E1/(kBT)) depends on n even if
E1 = const, since 〈|u|〉 depends on the µ = µ(n).

Therefore, calculating the coalescence cross-sections K(1)X
Y , we restrict ourselves to the case of

gases and the Maxwell–Smoluchowski model, since there are still no well-founded models for liquids.
According to Maxwell, the collision cross-sections (for gases) are proportional to the surface area, and
therefore a multiplicative coefficient C(1)X

Y appears in Equations (37) and (39). Smoluchowski accepted
that if only the fraction of molecules falling on a particle leads to their coalescence with the particle,
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then the rate of coalescence must also change the factor (38) [17]. From the point of view of the theory
of active collisions, this factor returns us to the Arrhenius law in the relationship (39).

If we neglect the difference of the function g from one (due to the fact that g(0) = 1), then only
exp(−E1/(kBT)) in Equation (39) determines the fraction of active collisions. We assume that only the
exponential factors in (30) determine the portion of active collisions. Then, Equation (34) describes the
case with each collision leading to a reaction.

The frequency of fragmentation of shape Y to the original particle and shape X is equal to [23]:

KY
(1)X = χ

kBT
h

CY
(1)X∑
j=1

exp
[
−E j,XY/kBT

]
= χ

kBT
h

CY
(1)X exp[−EXY/kBT], (40)

where h is the Planck’s constant, χ is the correction factor, indices j = 1, 2, . . . , CY
(1)X number original

particles, constituting shape Y, the fragmentation of each of which gives shape X, and E j,XY is the
activation energy of separation of the j-th original particles of such type. In the second equality in (40),
we have taken into account that E j,XY does not depend on j: E j,XY = EXY is the activation energy for
the fragmentation of the original particle from shape Y, a result of which is shape X. The theoretical
substantiation of the expression of (40), as already noted, is given by the theory of the activated
complex [32,33,36,37].

At the same time, the activation energy of fragmentation EXY is advisable to search in the form of
the sum of activation energies required to break the connection with each of the KXY nearest neighbors
(close-range interaction): EXY,k, k = 1, 2, . . . , KXY, and overcome the attraction to all the original
particles constituting the cluster (long-range interaction), the energy of which is E(n):

EXY =

KXY∑
k=1

EXY,k + E(n). (41)

E(n) is sought in the form:
E(n) = E∞

{
1− α∞/

(
n1/3 + α0

)}
,

which allows an extrapolation to the Gibbs–Thomson equation [23]. This equation forms the basis of
the classical theory of nucleation. Here, E∞ is the activation energy of overcoming the attraction to an
infinitely large particle, and α∞ and α0 are the coefficients describing the decrease in attraction due to
the decrease of n. As is shown below, the form of the long-range interaction is completely irrelevant.

So far, we considered a pair of arbitrary shapes, one obtained from another by coalescence or
fragmentation of one original particle, and termed them X and Y. Now, consider a single arbitrary
shape, which, in particular, may coincide with X or Y, and term it Z.

Consider in a shape Z for each original particle, its component, the sum of the activation energies
necessary for breaking the connection with each of the nearest neighbors. Let us sum them over all the
original particles of shape Z and divide the obtained value by two, so that there are no duplicates in
the summation of energies. Then, the energy calculated in this way can be called the energy of the
close-range interaction of shape Z, EZ. Thus, for every shape Z, the energy of close-range interaction
EZ is determined.

Then, the first term in (41) is the difference between the energies of the close-range interaction of
shapes Y and X. The second term, E(n), can be interpreted as the increment of energy of the long-range
interaction in the transition from the shape, consisting of n original particles, to the shape consisting of
(n + 1) original particles.

One may not separate the energies of the close-range and long-range interactions. This corresponds
to the fact that in Equation (41), the neighbors closest to the considered original particle of the cluster,
consisting of n original particles, are all n − 1 of its other original particles, i.e., KXY = n − 1, and
E(n) ≡ 0.
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Thus, generally speaking, for each shape Z we attribute the energy of the close-range interaction
EZ, for which the following condition of the additivity is fulfilled:

EY − EX = EXY. (42)

Then, by virtue of Equations (40) and (42), we obtain that:

KY
(1)X = CY

(1)XB exp
[
−

EY − EX

kBT

]
, (43)

where B ≡ χ kBT
h = const.

In virtue of Equations (39) and (43) for equilibrium constants K(1)X
Y /KY

(1)X, the following form of
relations (33) is valid:

K(1)X
Y

KY
(1)X

=
C(1)X

Y A(n)

CY
(1)X

B
exp

[
−E1 − EX + EY

kBT

]
.

If E1 = E1(n), then it is impossible to talk about the fulfillment of additivity Equation (32), and
Theorem 1 cannot be directly applied. However, dependence E1(n) can be made in the pre-exponential
factor A(n). As such, Theorem 1 is applicable, and the only thing that remains to be checked is the

implementation of the detailed balance for the equilibrium constants
C(1)X

Y A(n)

CY
(1)X

B
, corresponding to the

equilibrium constants K(1)X
Y /KY

(1)X.
The condition of detailed balance for some model of shapes is satisfied if all possible relations

are similar to Equation (20) for this model. We must prove that these relations are valid for any two
(different) paths along the edges of the graph from the shapes (as in Figure 3) such that their beginnings
and their ends coincide: X1 → X2 → X3 → . . .→ Xr−1 → Xr and X1 → X2

→ X3
→ . . .→ Xr−1

→ Xr .
The number of fractions on the right and left sides of such relations is the same and equal to the
difference in the number of original particles in Xr and X1, i.e., (r− 1). For anisotropic original particles
(C(1)X

Y = CY
(1)X) in the right and left parts of such relations, there are identical expressions, and therefore

the condition of detailed balance is satisfied, even if B in (43) depends on n. For isotropic particles, it is
to show that the following relations are valid:

C(1)X1
X2

CX2
(1)X1

·

C(1)X2
X3

CX3
(1)X2

· . . . ·
C(1)Xr−1

Xr

CXr
(1)Xr−1

=
C(1)X1

X2

CX2

(1)X1

·

C(1)X2

X3

CX3

(1)X2

· . . . ·
C(1)Xr−1

Xr

CXr
(1)Xr−1

. (44)

For each isotropic shape X, we consider the set of all different anisotropic forms that give shape X.
We denote the cardinality of this set as

∣∣∣
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Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X) with vertices from
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
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 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X), is
∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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of an original particle by  
Y
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system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X)
∣∣∣C(1)X

Y , and this number is
∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 
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system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(Y)
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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of an original particle by  
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(Y). Therefore:∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X)
∣∣∣C(1)X

Y =
∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 
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Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(Y)
∣∣∣CY
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
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Y
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X)

are identified, and the sum of all their concentrations is the concentration of shape X. Then, by virtue
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of (45) equations for isotropic forms with correct cross-sections (containing the correct values of the
coefficients C(1)X

Y , CY
(1)X) are obtained from the evolution equations for anisotropic forms.

In virtue of the relationship (45), Equation (44) is equivalent to:∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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1 MM  . (45) 
 

Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X1)
∣∣∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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1 MM  . (45) 
 

Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X2)
∣∣∣ ·
∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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1 MM  . (45) 
 

Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1
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Y

XC 1 ) are obtained from the evolution equations for 
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In virtue of the relationship (45), Equation (44) is equivalent to: 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X2)
∣∣∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 
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anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X3)
∣∣∣ · . . . ·

∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 
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belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(Xr−1)
∣∣∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
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 ways, and X  is obtained from Y  by fragmentation 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
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,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 

 
 

 
 

 
 

 

 
 
 

 
 r

r

r

r

X

X

X

X

X

X

X

X

X

X

X

X

M

M

M

M

M

M

M

M

M

M

M

M
1

3

2

2

11

3

2

2

1



   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X1)
∣∣∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 

correct values of the coefficients 
 X
YC 1

,  
Y

XC 1 ) are obtained from the evolution equations for 

anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X2)
∣∣∣ ·
∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 
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 X
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(
X2

)∣∣∣∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
YCX 1M , and this number is    

Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(X3)
∣∣∣ · . . . ·

∣∣∣∣
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 

 YM . The number of such edges, emanating from the vertices belonging to  XM , is 

   X
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Y

XCY 1M  for the edges which emanate from the vertices 

belonging to  YM . Therefore: 
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 
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Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 
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   ,  

which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 
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For each isotropic shape X , we consider the set of all different anisotropic forms that give 

shape X . We denote the cardinality of this set as  XM . 

Consider two isotropic shapes: X  and Y , where Y  is obtained from X  by the 

attachment of original particles (with 
 X
YC 1

 ways, and X  is obtained from Y  by fragmentation 

of an original particle by  
Y

XC 1  ways). Consider a graph consisting of a set of vertices 

   X YM M  and all edges (reactions) connecting vertices from a set  XM  with vertices from 
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   X
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Note that it is namely due to the fact of the validity of the relations of the form of (45) that the 

system of kinetic equations for isotropic shapes can be derived from the evolution equations for 

anisotropic shapes. For this, for each isotropic shape X  all the anisotropic shapes from the set 

 XM  are identified, and the sum of all their concentrations is the concentration of shape X . 

Then, by virtue of (45) equations for isotropic forms with correct cross-sections (containing the 
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anisotropic forms. 

In virtue of the relationship (45), Equation (44) is equivalent to: 
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which actually seems to be obvious. 

This means that the condition of detailed balance is valid for the kinetic equations of evolution 

of both anisotropic and isotropic shapes from the original particles. 

Therefore, the following is proven.  

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by 

Equations (39) and (43), being customary for gases (i.e., calculated according to the theory of active collisions 

and the theory of an activated complex), namely: 
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Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid. 

Then the conditions of detailed balance and the H-theorem are fulfilled. 

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium 

(Xr)
∣∣∣ ,

which actually seems to be obvious.
This means that the condition of detailed balance is valid for the kinetic equations of evolution of

both anisotropic and isotropic shapes from the original particles.
Therefore, the following is proven.

Theorem 2. Let the Becker–Döring case be considered, and the frequency functions are defined by Equations (39)
and (43), being customary for gases (i.e., calculated according to the theory of active collisions and the theory of
an activated complex), namely:

K(1)X
Y = C(1)X

Y A(n) exp(−E1(n)/(kBT)), KY
(1)X = CY

(1)XB(n) exp
[
−

EY − EX

kBT

]
. (46)

Let the assumption of independence of values of the cross-sections from the “seats” formulated above be valid.
Then the conditions of detailed balance and the H-theorem are fulfilled.

3.4. The Linear Conservation Laws and the Convergence to the Equilibrium

The consequence of the H-theorem for the equations is the convergence of solutions to the
Boltzmann extremal [1,3], i.e., to the argument of the conditional minimum of the H-function, provided
that the constants of linear conservation laws are fixed. The role of linear laws remains somewhat
mysterious, but they turn out to be regulators in various situations [1,3,6].

Lemma 1. The number (concentration) of all original particles is the only linear conservation law for the
system in Equation (15):

M∑
n=1

∑
a∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)

(n·N(n, a, t)) = const,

and for Equation (16):
M∑

n=1

∑
a∈
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Thus, here,  
   a

ea

,1,1,1,1

1

n

,n i
K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 




  i,n ea1  is obtained;  

   in

nK
ea

a

 ,11,1,1,1

,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n)

(n·N(a, t)) = const,

if the condition of detailed or semidetailed balance is valid.

Proof. We first consider the first of our models—the system in Equation (15). Reactions (8) can be
written in the form of (18):

M∑
n=1

∑
a∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)

α(n,a)(n, a)↔
M∑

n=1

∑
a∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 
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The linear functional for Equation (15) has the form:

IM =
M∑

n=1

∑
a∈
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It is preserved along the solutions of (15) if vector µ is orthogonal to all the
Boltzmann–Orlov–Moser–Bruno vectors α−β (see Section 2 and Theorem 1c) [6,7,16,26,27]. Here, the
condition of orthogonality gives the relations µ(n,a) + µ(1,(1,1,1)) − µ(n+1,a+ei)

= 0, where (n, a) ∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . M. All such relations lead to an arithmetic progression on n, and for any
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M∑
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∑
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condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)
(n·N(n, a, t)), is the unique linear conservation law (up to a multiplicative constant). �

Similarly, for Equation (16), for the conditions of orthogonality of vector µ to the
Boltzmann–Orlov–Moser–Bruno vectors, one obtains the following relations for any shape (a1, a2, a3) ∈
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Thus, here,  
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K   is the cross-section (frequency function, reaction rate coefficient) of such 

coalescence of the original particle   1,1,1,1  with the shape  a,n , at which a  increases by the 

value ie , so the shape 
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,  is the frequency of 

fragmentation of the shape  a,n  into the original particle and the shape  in ea  ,1 . 

If for each Nn  and every  nJba, , we do not distinguish the shapes  a,n  and 

 b,n , then Equations (9) and (10) become the Becker–Döring case, Equation (2). However, our task 

is to distinguish the aggregates consisting of the original particles not only in mass, but also in 

shape. 

In the second simplest model, we assume that, on the contrary, only rectangular 

parallelepipeds can coalesce with their identical faces, so that the result is a rectangular 

parallelepiped again. Thus, clusters without voids are obtained, i.e., Equations (1) and (2) become 

equalities. In the 3-dimensional case, we have: 

321 aaan  . (11) 
 

For each Nn , we define a finite set  nI  as the set of all triples of natural numbers 

 321 ,, aaa  satisfying the condition (11). Thus, due to the condition (11) in this model, a shape is 

(n), n = 1, 2, . . . , M:
µ(a1,a2,a3) = µ(b,a2,a3) + µ(a1−b,a2,a3),
µ(a1,a2,a3) = µ(a1,b,a3) + µ(a1,a2−b,a3),
µ(a1,a2,a3) = µ(a1,a2,b) + µ(a1,a2,a3−b),

where 1 ≤ b ≤ a1/2. From these by induction we get that µ(a1,a2,a3) = a1a2a3, i.e., the only linear
conservation law is the conservation law for the number of all original particles.

It is clear that for more complex models than those represented by Equations (15) and (16), the
uniqueness of the conservation law of the number of all original particles can be proven the same way.

3.5. The Boltzmann Principle for the Simplest Model of the Evolution of Clusters of Different Masses and Shapes

Consider the system of equations in (15).
Let us show, for example, that the H-function:

H =
M∑

n=1

∑
a∈
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N(n, a, t)
(
ln

N(n, a, t)
ξ(n, a)

− 1
)
, (49)

decreases by the nonstationary solutions of Equation (15) under the condition of detailed balance (3):

dH
dt =

M∑
n=1

∑
a∈
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ln N(n,a,t)

ξ(n,a)
dN(n,a,t)

dt

=
3∑

i=0

(
ln N(2,(1,1,1)+ei,t)

ξ(2,(1,1,1)+ei,t)
− 2 ln N1(t)

ξ1

)
K(1,(1,1,1))(1,(1,1,1))
(2,(1,1,1)+ei)

ξ1
2
((

N1(t)
ξ1

)2
−

N(2,(1,1,1)+ei,t)
ξ(2,(1,1,1)+ei,t)

)
+

M−1∑
n=2

∑
a∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
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condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)

3∑
i=0

(
ln N(n+1,a+ei,t)

ξ(n+1,a+ei)
− ln N1(t)

ξ1
− ln N(n,a,t)

ξ(n,a)

)
×K(1,(1,1,1))(n,a)

(n+1,a+ei)
ξ1ξ(n, a)

(
N1(t)
ξ1

N(n,a,t)
ξ(n,a) −

N(n+1,a+ei,t)
ξ(n+1,a+ei)

)
≤ 0.

The H-theorem for physicochemical kinetics equations with a finite number of reactions, under
the condition of semidetailed balance was considered in [6,7,11]. Taking into account Lemma 1, we
obtain the following formulation for the first of our simplest models.

Theorem 3. Let the coefficients for Equation (15) be such that there exists at least one positive solution
{
ξ(n, a)

}
of the system of Equations (18) and (19).

Then:
(a) H-function (49) decreases by the solutions of (15): dH

dt ≤ 0. All stationary solutions of Equation (15)
satisfy the equalities of Equations (18) and (19);

(b) Equation (15) has a unique linear integral (an invariant of the form IM =
M∑

n=1

∑
a∈
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For each Nn , we define a finite set  nJ  as the set of all vectors 
dNa  satisfying the 

condition (6) when 3d  ((7) when 2d ). Thus, a shape is described by a pair  a,n , where 

Nn ,   dn NJ a . The set of all such pairs we denote by G . (n)
µ(n,a)N(n, a, t)),

and it is the conservation law of the number of all original particles:
M∑

n=1

∑
a∈
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The stationary solution of the system of Equation (15) is unique if we fix a constant Nall and is given by the
equation for the Boltzmann extremals (the argument of the minimum of H-function, provided that the constants
of linear conservation laws are fixed):

NB(n, a) = ξ(n, a) exp(λn), ∀(n, a) ∈
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where λ is uniquely determined by the value of Nall;
(c) Such a stationary solution exists if the constant of the conservation law of the number of all initial particles

is determined by the initial condition
{
N(n, a, 0) ≥ 0 : (n, a) ∈
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. A solution

{
N(n, a, t) ≥ 0 : (n, a) ∈
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with this initial condition exists for all t > 0, is unique, and tends to a stationary solution (50).

For the second of our simplest models, i.e,. for Equation (16), by Lemma 1, Theorem 3 is valid
without changing, provided that there exists at least one positive solution of the system of Equation (25).

Thus, we obtain what the arbitrary solution of Equations (15) and (16) tends toward as soon
as time tends to infinity. It is important to stress that this is deduced directly from the Boltzmann
variational principle without solving the systems.

4. Conclusions

The main results are as follows: (1) we proposed a new model (or even a group of models)
describing the shape of crystals; (2) we clarified the conditions for the applicability of the H-theorem to
this group of models; (3) it was found that the Arrhenius condition implies a detailed balance for the
new proposed simple models and for the general case of models.

Thus, we considered the issue of building correct (physically grounded) models of the evolution of
cluster distribution functions for shapes based on the H-theorem (Boltzmann), which is being actively
studied and is currently used in many mathematical problems of the natural sciences. We show that
when building the models, it is necessary to monitor the fulfillment of the condition of detailed balance.

For simplicity, in Section 3, our study is limited to modeling the evolution of clusters that differ
in shape for the Becker–Döring case, that is, when only the original particles coalesce with and are
fragmented from the aggregate. It is interesting to generalize the result obtained (Theorem 2) to the
case of the formation (and fragmentation) of aggregates consisting of agglomerates.

The simplest models of evolution of clusters, differing by shapes, are proposed in Section 3.1.
The significance of these models is that the form of equations is the same as in the case of more
detailed models.

It is of interest to generalize the results obtained to nonlinear systems with discrete time, in
particular, even to construct discrete models of the Boltzmann equation with discrete time and to
transfer the condition of semidetailed balance to discrete time. Consideration of the H-theorem for
nonlinear systems with discrete time, in particular, even for the system of Becker–Döring equations,
becomes an extremely important and urgent task, since computer modeling plays a key role in solving
the fundamental problem of creating new materials [22,23]. In the linear case, when passing from
continuous to discrete time, we have a transition from a Markov process to a Markov chain, and the
H-theorem in this case is valid, as investigated earlier (see [8] and references therein). In the nonlinear
case, it is valid in rare cases for explicit time discretization [8], and for the implicit case as investigated
in [9].

These questions, as well as the results of the current work, clarify the point of constructing
correct (physically grounded) kinetic models for the evolution of clusters differing in mass and
other parameters.

At the same time, both for experimenters and calculators who deal with problems of modeling
the evolution of such structures (for example, the problem of their optimal synthesis [22,23,38]), is
extremely important that the number of parameters (numbers or functions) remain minimal (we have
A, B, and activation energy in (46)), since the addition of at least one parameter or correction factor
significantly increases the computational complexity of the problem.
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