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Abstract: The proof of the Abramovsky—Gribov—Kancheli (AGK) theorem for black hole physics
is given. Based on the AGK relations, a formula for the luminosity of a black hole as a function of
the mass of the black hole is derived. The correspondence to experimental data is considered. It is
shown that the black holes of the galaxies NGC3842 and NGC4889 do not differ from those of the
other galaxies.
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1. Introduction

Observations of recent decades have shown that all massive galaxies have supermassive black
holes in their centers. In most cases, the calculation of the masses of these black holes is carried out
using empirical scaling relations between black hole mass, luminosity, and galaxy velocity dispersion.
These phenomenological empirical relations work quite well and allow us to calculate the masses
of black holes with quite a good rate of accuracy [1]. However, in [2], it is stated that two galaxies
with a mass of 9.7 billion solar masses and with a mass of 21 billion solar masses are not governed by
this phenomenological correlation. In [3], it is emphasized that in the future, with an increase in the
diameter of telescopes, it will be possible to more reliably determine these correlations.

In this paper, we will not touch on the phenomenological relationship between the black hole mass
and the galactic velocity dispersion. We will consider the relationship between the black hole mass and
luminosity, based on a quantum mechanical point of view. Taking the Abramovsky—Gribov—Kancheli
theorem (AGK) [4,5], we will show that the dependence of the luminosity of a black hole on its mass
has the form:

L = a MBH, (1)

where the parameter a does not depend on the black hole mass but depends only on the density of the
particles surrounding the black hole. Here, the mass of a black hole is expressed in units of solar mass,
and the luminosity of a black hole is expressed in units of solar luminosity.

The AGK theorem was derived 47 years ago for hadron–hadron interaction in Regge theory.
As an example, let us derive the first AGK relation. We consider the simplest amplitude diagram of a
two-reggeon branching (Figure 1). Here, we follow the work of [6].
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Figure 1. The simplest amplitude diagram of a two-reggeon branching in the interaction of two hadrons
with four-momenta pa and pb. The wavy lines designate reggeons, and the solid lines denote scalar
particles. See text for more details.

Figure 2. The simplest model of a reggeon. The lines are as in Figure 1.

Contribution of the diagram of Figure 1 to the amplitude of scattering is as follows:

i A(s, t) = s
∫
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Here, x1, x2, x′1, and x′2 are Feynman variables of partons that compose hadrons with four-momenta

pa and pb; w(x1, x2) and w
(
x′1, x′2

)
are probabilities that each hadron has two partons; s1 = s x1 x′1,

s2 = s x2 x′2, and s = (pa + pb)
2 are the squares of the total energy in the center-of-mass system,
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2 is the square of the transferred four-momentum.

The amplitudes of the one-reggeon exchange, i D j

(
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)
, where k⊥2
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of the square of the transferred reggeon momentum, we will present in the form of the simplest
multi-peripheral diagram, as shown in Figure 2. Phase volume of the two-reggeon branching is
as follows:
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Q is the transverse part of the total transferred four-momentum pa − p′a.
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Let us consider the inelastic processes corresponding to the exchange of one or more reggeons.
We apply the generalized Cutkosky unitarity bound [7], which defines the imaginary part of any
Feynman diagram as the sum of contributions:

Im A(s, t) =
1
2 i

∑
c
δcA(s, t) =

1
2

∫
dτncA(2→ nc)A(nc → 2), (3)

of all sorts of cuttings along some line to the associated amplitudes, the left A(2→ nc) and the right
A(nc → 2) = A∗(2→ nc). The discontinuity δcA(s, t) along s in the cutting is associated with the
production of the state c, dτnc is the partial phase volume, and nc is the number of lines in the diagram
cut by the contour c and displayed on a mass surface. The summation in Equation (3) runs over all
admissible cuttings. Since the contribution of any reggeon diagram is a convergent sum of the inputs of
Feynman diagrams, the generalized Cutkosky unitarity bound can be directly applied to any reggeon
diagram. It can be shown that the cutting line of a one-reggeon amplitude inside the reggeon diagram
should run along the entire reggeon, or not to cut it at all.

For the amplitude of the two-reggeon scattering, the absorption parts of the reggeon diagram can
be of the following three types:

1) The cutting line is drawn between the reggeons (Figure 3). This corresponds to the process of
diffraction dissociation of projectile particles. The absorption part F0

2 is equal to:
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The two terms in the integrand correspond to two possible positions of reggeons in relation to the
cutting line.

2) The cutting line is drawn along one of the reggeons (Figure 4). This is a contribution from the
interference of the amplitude of the formation of a multi-peripheral particle comb and the same
comb with an additional exchange of reggeon. The equation for the absorption part F1

2 looks like:
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Here, the first two terms correspond to the cut reggeon D2 and the position of the reggeon D1 to
the left and to the right of the cutting line, and the last two terms correspond to the reggeon cut
D1 and the position of the reggeon D2 to the left and to the right of the cutting line.

Figure 3. Cut of the double reggeon diagram between the reggeons. The lines are as in Figure 1.
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Figure 4. Cut along one of the reggeons. The lines are as in Figure 1.

3) The cut line is drawn simultaneously on both reggeons (Figure 5). This cutting corresponds to the
formation of two multi-peripheral combs. The corresponding absorption part F2

2 is represented as:
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Both reggeons are cut here.

Adding these three absorption parts, we obtain the doubled imaginary part of the amplitude of
the two-reggeon branching:
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Figure 5. Cut along both reggeons. The lines are as in Figure 1.
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Similarly, for the absorption parts of the amplitudes with a cutting of m from n reggeons:
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From Equation (8), the next relations follow:

n∑
m=1

m Fm
n (s, t) = 0 ,

. . . . . . . . .
n∑

m=l
m(m− 1) . . . (m− l + 1) Fm

n (s, t) = 0 .

(9)

These AGK relations were derived for hadron physics. The significant distances are determined
by the functions w(x1, . . . xn) and, in order of magnitude, are equal to 10−15 m. In the Appendix A, we
present a more general proof of the AGK theorem, which will not fix the distance. The proof comes
from the unitarity of the S-matrix. It proves the theorem not only for the case of elastic scattering but
also for any number of initial states. Therefore, it turned out that the theorem is valid for all particles
with different energies surrounding a black hole.

The standard scheme for constructing a theory is as follows. The external field is chosen so
that it is absent in the distant past and the distant future. In these in- and out-areas, it is possible
to unambiguously determine the state of the particle and vacuum. As a result of the action of the
external field in the process of evolution of the system in the initial vacuum state, the production of
particles starts, so that the result of the evolution of the state corresponding to the in-vacuum does not
coincide with the out-vacuum state. Complete information about the processes of particle production,
scattering, and annihilation is contained in a unitary operator connecting the in- and out- states, which
is called the S-matrix.

The applicability of the S-matrix theory to the black hole radiation problem was shown in [8].
Let us consider the simplest process of absorption of a charged particle (proton) by a black hole. At the
initial time, the particle is sufficiently distant from the black hole, so that its interaction is negligible.
This allows the establishment of an in-state, including a particle and a black hole. Subsequently,
the particle is attracted to a black hole, increasing its momentum and energy. From a certain moment,
the particle begins to emit photons in a bremsstrahlung, dumping a part of the energy received from a
black hole.

We cannot “turn off” the gravitational field of a black hole. As the particle approaches it,
the interaction will increase. The resulting state is a black hole, a particle, and photons will not be
an out-state. However, according to this state, we perform the convolution of the T-matrices in the
unitarity bound. So, we get diagrams in which there will be free particles in the initial and final states.

It should be noted that the remote observer will be able to register only those photons that
fly outside of the Schwarzschild radius. Particles that fall inside the Schwarzschild radius remain
“invisible” to an observer. Therefore, we must average on these states. That is, instead of pure
quantum-mechanical states, we must research inclusive cross-sections.

2. The Dependence of the Luminosity of a Black Hole on Its Mass

We consider the following picture of the dependence of a black hole on its mass. Let us consider
a proton on a long distance from a black hole. As it approaches the black hole, the momentum and
energy of this proton increase, and it begins to emit photons in a bremsstrahlung. The corresponding
Feynman diagram has the following form (Figure 6). We consider the simplest black hole consisting
only of neutrons. A part of the photons and the proton will pass through the Schwarzschild radius,
but a certain number of photons will be emitted into the surrounding space. These photons will carry
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the energy “sucked off” from the black hole. To determine the probabilities of the processes, we have
to multiply by the complex conjugate amplitude, as shown in Figure 7.

Figure 6. The amplitude of absorption of a proton by a black hole. Solid lines in curly brackets denote
the protons inside the black hole. Wavy lines represent photons.

We get the square of the amplitude modulus corresponding to the exclusive photon emission
cross-section in the field of a black hole by a proton. Integrating over the phase volume of all particles,
including black hole particles, we obtain the imaginary part of the amplitude of elastic scattering of a
proton by a black hole.

If a black hole attracts several protons, we get the Feynman diagrams in the form of Figure 8.

Figure 7. Square of the modulus of the absorption amplitude of a proton by a black hole. The lines are
as in Figure 6.
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Taking the square of the module of this diagram (Figure 9), we obtain an exclusive cross-section
for the production of photons from protons in the field of a black hole. Integrating over the phase
volume, we obtain the contribution into the total cross-section of this process.

From the presence of the imaginary parts shown in Figures 7 and 9, it follows that there are full
amplitudes corresponding to the elastic scattering of one or several protons on the black hole, as shown
in Figures 10 and 11.

Figure 8. Absorption amplitude of several protons by a black hole. The lines are as in Figure 6

Figure 9. Squared modulus of the amplitude of the absorption of several protons by a black hole.
The lines are as in Figure 6.
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Figure 10. The elastic scattering amplitude of a proton on a black hole. The lines are as in Figure 6.

In the Appendix A it is shown that the AGK theorem is valid for such diagrams.
An averaging is necessary over particles located within the Schwarzschild radius. Such averaging

can be carried out using the inclusive technique [9–12]. The inclusive cross-section is obtained from the
cut amplitudes, fixing the observed particle, integrating over the momentum of others, and summing
over all the remaining particles. Therefore, for inclusive cross-sections, cuts between amplitudes
do not provide any contributions. Equations (A30)–(A39) (see also (9)) imply that all diagrams for
single-particle inclusive cross-sections are cut down. Only the diagram such as one shown in Figure 10,
remains. Since both gravitons are connected to the same black hole particle, the input of this diagram
will be proportional to the sum of all black hole particles, i.e., to the mass of the black hole.

Figure 11. The elastic scattering amplitude of several protons on a black hole. The lines are as in Figure 6.
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The total energy carried away by the emitted particle is equal to the energy of the particle
multiplied by the inclusive cross-section of the production of such a particle and integrated over all
possible energy values. The luminosity is proportional to the energy carried away by a photon in a
certain frequency range of the photon. It can be determined as follows:

L ∝

w2∫
w1

dw
w

∫
d2k⊥ ·w f

(
w, k2

⊥

)
, (10)

where f
(
w, k2

⊥

)
is the inclusive cross-section of the photon radiation by a proton in the field of a black

hole. Considering that:
f
(
w, k2

⊥

)
∝MBH,

we will have for luminosity:
L = a MBH,

where the parameter a depends only on the amplitude of the graviton proton scattering.

3. Comparison with Experimental Data

The data are found to provide the dependence of the black hole mass on the black hole luminosity
such as [1]:

log10 MBH = (8.95± 0.11) + (1.11± 0.18) log10

(
LV/1011

)
, (11)

and [2]:
log10 MBH = 9.16 + 1.16 log10

(
LV/1011

)
. (12)

This goes along with the correspondences:

LV = 0.87 · 103M0.9
BH,

LV = 1.27 · 103M0.86
BH .

(13)

Such correspondences are very close to the one we obtained (1). In [2], it is also noted that the
black holes of the galaxies NGC 3842 and NGC4889 do not fit into the phenomenological formulas that
describe the black holes given in Table 4 of [2].

Using the quantum mechanical formula derived by us, we divided the data [2] into five groups as
given in Tables 1–5 and shown in Figures 12–16 along with the dependence (1).

Table 1. The first group of galaxies [2]: LV/MB H < 25.

Galaxy MB H MB H min MB H max log10LV LV/MB H

N4889 2.1 × 1010 5.5 × 109 3.7 × 1010 11.42 12.5
N3842 9.7 × 109 7.2 × 109 1.27 × 1010 11.20 16.3

N4486 (M87) 6.3 × 109 5.9 × 109 6.6 × 109 11.10 20.0
N4649 (M60) 4.7 × 109 3.7 × 109 5.8 × 109 10.99 21.2

N1332 1.45 × 109 1.25 × 109 1.65 × 109 10.14 9.5
N4291 9.2 × 108 6.3 × 108 1.21 × 109 10.20 17.2
N5845 5.4 × 108 3.7 × 108 7.1 × 109 9.84 12.8
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Table 2. The second group of galaxies [2]: 25 < LV/MB H < 40.

Galaxy MB H MB H min MB H max log10LV LV/MB H

N6086 3.8 × 109 2.6 × 109 5.5 × 109 11.18 39.7
IC1459 2.8 × 109 1.6 × 109 3.9 × 109 10.96 35.8
N3115 9.6 × 108 6.7 × 108 1.5 × 109 10.40 26.1
N4026 2.1× 108 1.7 × 108 2.8 × 108 10.35 34.5

Table 3. The third group of galaxies [2]: 90 < LV/MB H < 150.

Galaxy MB H MB H min MB H max log10LV LV/MB H

A1836-BCG 3.9 × 109 3.3 × 109 4.3 × 109 11.26 47
N1399 1.3 × 109 6.4 × 108 1.8 × 109 10.78 46
N524 8.3 × 108 7.9 × 108 9.2 × 108 10.67 56

N3608 4.7 × 108 3.7 × 108 5.7 × 108 10.35 47.8
N3379(M105) 4.6 × 108 3.4 × 108 5.7 × 108 10.37 50.9

N3377 1.9 × 108 9.0 × 107 2.9 × 108 9.98 50.3

Table 4. The fourth group of galaxies [2]: 90 < LV/MB H < 150.

Galaxy MB H MB H min MB H max log10LV LV/MB H

A3565-BCG 1.4 × 109 1.2 × 109 1.7 × 109 11.24 124
N4374 (M84) 8.5 × 108 7.7 × 108 9.4 × 108 10.91 96.4

N1399 5.1 × 108 4.4 × 108 5.8 × 108 10.78 118
N3585 3.4 × 108 2.8 × 108 4.9 × 108 10.65 131
N4697 2.0 × 108 1.8 × 108 2.2 × 108 10.45 141
N5576 1.8 × 108 1.4 × 108 2.1 × 108 10.44 143
N821 1.8 × 108 1.0 × 108 2.6 × 108 10.43 149

N221 (M32) 3.1 × 106 2.5 × 106 3.7 × 106 8.66 147

Table 5. The fifth group of galaxies [2]: 150 < LV/MB H < 350.

Galaxy MB H MB H min MB H max log10LV LV/MB H

N4261 5.5 × 108 4.3 × 108 6.6 × 108 11.02 190
N7052 4.0 × 108 2.4 × 108 6.8 × 108 10.87 185
N5128 3.0 × 108 2.8 × 108 3.4 × 108 10.66 152
N4473 1.0 × 108 5.0 × 107 1.5 × 108 10.39 245
N4459 7.4 × 107 6.0 × 107 8.8 × 107 10.36 310
N1023 4.6 × 107 4.1 × 107 5.1 × 107 10.18 330
N2549 1.4 × 107 1.0 × 107 1.47 × 107 9.6 284

N4486A 1.3 × 107 9.0 × 106 1.8 × 107 9.41 198
N4757 1.0 × 107 4.0 × 106 1.6 × 107 9.42 263
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Figure 12. Dependence of the luminosity of a black hole on its mass (Table 1). The data are taken
from [2]. LV = 17.87 MB H.

Figure 13. Figure 13. Dependence of the luminosity of a black hole on its mass (Table 2). The data are
taken from [2]. LV = 38.50 MB H.

Figure 14. Dependence of the luminosity of a black hole on its mass (Table 3). The data are taken
from [2]. LV = 48.58 MB H.
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Figure 15. Dependence of the luminosity of a black hole on its mass (Table 4). The data are taken
from [2]. LV = 116.56 MB H.

Figure 16. Dependence of the luminosity of a black hole on its mass (Table 5). The data are taken
from [2]. LV = 179.17 MB H.

We believe that the substance of the universe consists of 91% of hydrogen and 9% of helium.
We have considered only one charged particle. In reality, hydrogen and helium atoms fall on a black
hole. In hydrogen, there are two charged particles: a proton and an electron. In helium, there are four
charged particles and two neutrons. Therefore, we must take into account the bremsstrahlung of all
these particles together.

We can assume that the first group includes galaxies in which the substance is distributed around
a black hole, like in the whole Universe. Therefore, galaxies NGC3842 and NGC4889 do not differ from
other galaxies. In other groups, the density of the substance near the black hole is increased. Assuming
that the remaining parameters of the graviton-proton interaction are the same for all groups, then the
substance density is increased by two, three, six, and ten times. However, in this matter, more studies
are required, which are planned for the future.

4. Conclusions

It was shown a black hole can emit photons via a mechanism of Beckenstein—Hawking
radiation [13–16]. In this paper, we made the case that there is another possible process for emitting
photons from a black hole.
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We obtained a linear dependence of the luminosity of a black hole on the mass of a black hole.
It occurs because all inelastic processes of photon emission by several atoms falling on a black hole are
completely cut down by interference. Only the inclusive amplitude of photon emission by one atom
falling on a black hole remains. The quantum mechanical formula we derived actually coincides with
the phenomenological formulas described earlier in other papers. We believe that the difference in the
constant of proportionality in (1) is due to differences in the density of substance near the black hole.

We also believe that the dependence of the galaxy velocity dispersion σ on the mass of the
black hole: (

σ/km s−1
)
= 4.8 ·M0.2

BH,

most likely cannot be derived from a quantum-mechanical consideration.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of AGK Relations

We present the S-matrix as the product of several unitary operators. Each of these operators acts
only on its own states with certain quantum numbers.

S = S1 · S2 · . . . · Sn. (A1)

This, according to Mandelstam [17], immediately ensures the absence of planar diagrams.
First, let us consider the case when the S-matrix is the product of two operators:

S = S1 · S2. (A2)

Let us determine a T-matrix that describes the interaction:

S = 1 + i T ,
Sl = 1 + i Tl .

(A3)

In this case:
S = S1 · S2 = (1 + i T1)(1 + i T2) = 1 + i(T1 + T2) − T1 T2, (A4)

i.e.,
i T = i(T1 + T2) − T1 T2. (A5)

From the unitarity bound, it follows that:

i
(
T+
− T

)
= T T+. (A6)

We express the left side of this equality through T1 and T2:

i
(
T+
− T

)
= i

(
T+

1 − T1
)
+ i

(
T+

2 − T2
)

(A7)

+ T1 T2 + T+
1 T+

2 . (A8)

The right hand side of (A6) becomes:

T T+ = T1 T+
1 + T2 T+

2 (A9)

+ T1 T+
2 + T2 T+

1 (A10)

+ i
(
T1 − T+

1

)
T2 T+

2 + i
(
T2 − T+

2

)
T1 T+

1 (A11)

+ T1 T+
1 T2 T+

2 . (A12)
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Now, after we have considered unitary operators, let us turn to the scattering amplitudes.

Let us introduce the two-particle state
∣∣∣∣p(1)1 , p(1)2

〉
,
∣∣∣∣p(2)1 , p(2)2

〉
,
∣∣∣∣p(1)′1 , p(1)

′

2

〉
,
∣∣∣∣p(2)′1 , p(2)

′

2

〉
and the

complete system: ∑
l

∫
dτk l

∣∣∣∣k( j)
l

〉〈
k( j)

l

∣∣∣∣ = 1. (A13)

Here, dτk l is the phase volume of the complete system, and j is the corresponding quantum number.

We multiply the Equations (20) and (21) by
∣∣∣∣p(1)1 , p(1)2

〉
,
∣∣∣∣p(2)1 , p(2)2

〉
on the right and by
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′

1 , p(1)
′

2

∣∣∣∣,〈
p(2)

′

1 , p(2)
′

2

∣∣∣∣ on the left. In addition, we insert the complete systems between the operators T1 T+
1

and T2 T+
2 .

The first line of (A7)–(A8) will be equal to the first line of (A9)–(A12):

2ImT1(s1, t1) =
∑
l

∫
dτk l

∣∣∣T1, 2l
∣∣∣2,

2ImT2(s2, t2) =
∑
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∫
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(A14)

Here, s j =
(
p( j)

1 + p( j)
2

)2
is the square of the total energy in the center-of-mass system,

and t j =
(
p( j)

1 − p( j)′

1

)2
is the square of the momentum transferred. T j

(
s j, p j

)
is the two-particle

amplitude, and T j, 2l is the transition amplitude of two particles into l particles.
Then, Equation (A8) takes the form:

T1 T2 + T+
1 T+

2 = 2ReT1(s1, t1)ReT2(s2, t2) − 2ImT1(s1, t1)ImT2(s2, t2) . (A15)

This expression represents the total input to the amplitude of elastic scattering with the exchange
of two amplitudes, T1(s1, t1) and T2(s2, t2).

Equation (A10) is equal to:

T1 T+
2 + T2 T+

1 = 2ReT1(s1, t1)ReT2(s2, t2) + 2ImT1(s1, t1)ImT2(s2, t2). (A16)

In Equation (A11), we insert the complete systems into T1 T+
1 , T2 T+

2 and, using (A14), we get:

i
(
T1 − T+

1

)
T2 T+

2 + i
(
T2 − T+

2

)
T1 T+

1
= 2ImT1(s1, t1) · 2ImT2(s2, t2) − 2ImT2(s2, t2)2ImT1(s1, t1).

(A17)

For Equation (A12), using (A14), we find:

T1 T+
1 · T2 T+

2 = 2ImT1(s1, t1) 2ImT2(s2, t2) . (A18)

We obtained the coefficients following from the first AGK ratio for the exchange of two amplitudes
T1(s1, t1), T2(s2, t2). Summation of Equation (A16)–(A18) gives us (A15):

2ReT1(s1, t1)ReT2(s2, t2) − 2ImT1(s1, t1) ImT2(s2, t2). (A19)

Let us find the input to the inclusive cross-section from the exchange of two amplitudes. To
obtain it, we have to take one particle out of convolution (A14). Equation (A16) does not have such
convolutions. In Equation (A17), from the convolution T2 T+

2 in the first two terms, we choose one

particle. At the same time, T2 T+
2 is replaced by the corresponding inclusive cross-section, f2

(
→

k
)
, where
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→

k is the momentum of the selected particle. In the last two terms T1 T+
1 , is replaced by an inclusive

cross-section, f1
(
→

k
)
. Therefore, instead of Equation (A17), we have:

− 4ImT1(s1, t1) · f2
(
→

k
)
− 4ImT2(s2, t2) · f1

(
→

k
)

.

In Equation (A12), we replace both T1 T+
1 and T2 T+

2 .

4ImT1(s1, t1) · f2
(
→

k
)
+ 4ImT2(s2, t2) · f1

(
→

k
)
.

Both inputs go cut down, regardless of the magnitudes of the total energies s1 and s2, as it follows
from the AGK ratios.

Let us consider the unitarity bound with three S-matrices.

S = S1 · S2 · S3 = (1 + i T1)(1 + i T2)(1 + i T3)

= 1 + i(T1 + T2 + T3) − T1 T2 − T1 T3 − T2 T3 − i T1 T2 T3 .
(A20)

The result is:
i T = i(T1 + T2 + T3) − T1 T2 − T1 T3 − T2 T3 − i T1 T2 T3. (A21)

We omit the inputs corresponding to the convolutions of one or two T-matrices. Then:

i
(
T − T+

)
= i

(
T+

1 T+
2 T+

3 − T1 T2 T3
)

, (A22)

T T+ = i
(
T+

1 T2 T3 − T1 T+
2 T+

3

)
+ i

(
T+

2 T1 T3 − T2 T+
1 T+

3

)
+ i

(
T+

3 T1 T2 − T3 T+
1 T+

2

)
(A23)

+ T1 T+
1

(
T2 − T+

2

)(
T+

3 − T3
)
+ T2 T+

2

(
T1 − T+

1

)(
T+

3 − T3
)
+ T3 T+

3

(
T1 − T+

1

)(
T+

2 − T2
)

(A24)

+ i
[
T1 T+

1 T2 T+
2

(
T3 − T+

3

)
+ T1 T+

1 T3 T+
3

(
T2 − T+

2

)
+ T2 T+

2 T3 T+
3

(
T1 − T+

1

)]
(A25)

+ T1 T+
1 T2 T+

2 T3 T+
3 . (A26)

Using the previously introduced symbols, moving from the T-matrix to the scattering amplitudes,
we obtain for Equation (A22):

i
(
T1 T2 T3 − T+

1 T+
2 T+

3

)
= 2ImT1ImT2ImT3

−2[ReT1ReT2ImT3 + ImT1ReT2ReT3 + ReT1ImT2ReT3]
(A27)

and for the right hand side of Equation (A23):

i
(
T+

1 T2 T3 − T1 T+
2 T+

3

)
= −2ReT1ReT2ImT3 − 2ReT1ReT3ImT2 + 2ReT2ReT3ImT1

−2ImT1ImT2ImT3 ,
i
(
T+

2 T1 T3 − T2 T+
1 T+

3

)
= −2ReT1ReT2ImT3 − 2ReT2ReT3ImT1 + 2ReT1ReT3ImT2

−2ImT1ImT2ImT3 ,
i
(
T+

3 T1 T2 − T3 T+
1 T+

2

)
= −2ReT1ReT3ImT2 − 2ReT2ReT3ImT1 + 2ReT1ReT2ImT3

−2ImT1ImT2ImT3.

Then the r.h.s. of Equation (A23) reads:

− 2(ReT1ReT2ImT3 + ImT1ReT2ReT3 + ReT1ImT2ReT3) − 6ImT1ImT2ImT3. (A28)
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In Equation (A24), the convolution line passes either over T1 T+
1 :

T1 T+
1

(
T2 − T+

2

)(
T+

3 − T3
)
= 2ImT1 · 2ImT2 · 2ImT3,

or over T2 T+
2 :

T2 T+
2

(
T1 − T+

1

)(
T+

3 − T3
)
= 2ImT2 · 2ImT1 · 2ImT3,

or over T3 T+
3 :

T3 T+
3

(
T1 − T+

1

)(
T+

2 − T2
)
= 2ImT3 · 2ImT1 · 2ImT2.

Total Equation (A24) gives:

24ImT1(s1, t1)ImT2(s2, t2)ImT3(s3, t3). (A29)

Equation (A25) corresponds to the simultaneous convolution of two pairs of T-matrices:

i
[
T1 T+

1 T2 T+
2

(
T3 − T+

3

)
+ T1 T+

1 T3 T+
3

(
T2 − T+

2

)
+ T2 T+

2 T3 T+
3

(
T1 − T+

1

)]
=

−24ImT1(s1, t1)ImT2(s2, t2)ImT3(s3, t3).
(A30)

Finally, Equation (A26) corresponds to the simultaneous convolution of all three pairs of T-matrices.

T1 T+
1 T2 T+

2 T3 T+
3 = 8ImT1(s1, t1)ImT2(s2, t2)ImT3(s3, t3). (A31)

The summation of Equations (A28)–(A30) gives a contribution (A27), which corresponds to the
exchange contribution of three two-particle amplitudes into the amplitude of elastic scattering.

Continuing the similar procedure of convolutions with a large number of the T-matrices, we
obtain:

Fm
n = (−1)n−mCm

n

n∏
j=1

2ImT j
(
s j, t j

)
, (A32)

F0
n = (−1)nCm

n

n∏
j=1

2ImT j
(
s j, t j

)
+ 2Im

(−i)
n∏

j=1

i T j
(
s j, t j

). (A33)

Note that from (A32) follow the relations (9):

n∑
m=1

m Fm
n (s, t) = 0 ,

. . . . . . . . .
n∑

m=l
m(m− 1) . . . (m− l + 1) Fm

n (s, t) = 0 .

(A34)

We show that single-particle and two-particle inclusive cross-sections are cut down.
We cannot select and exclude single-particle inclusive cross-sections from Equation (A28).

In Equation (A29), we have:

8 f1(k)ImT2ImT3 + 8ImT1 f2(k)ImT3 + 8ImT1ImT2 f3(k). (A35)

From Equation (A30) one gets:

−8 f1(k)ImT2ImT3 − 8ImT1 f2(k)ImT3 − 8 f1(k)ImT2 ImT3

−8ImT1ImT2 f3(k) − 8ImT1 f2(k)ImT3 − 8ImT1ImT2 f3(k).
(A36)
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From Equation (A31) we have:

8 f1(k)ImT2ImT3 + 8ImT1 f2(k)ImT3 + 8ImT1ImT2 f3(k). (A37)

In summation, all these terms go cut down.
For a two-particle inclusive cross-section, Equation (A30) implies:

− 8 f1(k) f2(k)ImT3 − 8 f1(k) ImT2 f3(k) − 8ImT1 f2(k) f3(k). (A38)

Equation (A31) implies:

8 f1(k) f2(k)ImT3 + 8 f1(k) ImT2 f3(k) + 8ImT1 f2(k) f3(k). (A39)

In summation, two of these inputs go cut down.
The obtained results are based on the use of the S-matrix unitarity method — the requirements

are that the probability of all possible processes must be equal to 1. In this method, it is not essential
which space-time metric is used—the sum of the probabilities of all possible processes must be equal
to 1 in any metric.

In this article, we considered the proton and the hydrogen atom as whole objects for simplicity.
In the following articles, with explicit calculation of inclusive photon production cross-sections, we will
consider the interaction of a photon with quarks and an electron. We believe that only one graviton
will interact with any of the proton quarks. Therefore, we do not expect changes in the dependency (1).
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