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Abstract: Rutile TiO2, VO2, CrO2, MnO2, NbO2, RuO2, RhO2, TaO2, OsO2, IrO2, SnO2, PbO2, SiO2, and
GeO2 (space group P42/mnm) were explored for thermal shock resistance applications using density
functional theory in conjunction with acoustic phonon models. Four relevant thermomechanical
properties were calculated, namely thermal conductivity, Poisson’s ratio, the linear coefficient of
thermal expansion, and elastic modulus. The thermal conductivity exhibited a parabolic relationship
with the linear coefficient of thermal expansion and the extremes were delineated by SiO2 (the smallest
linear coefficient of thermal expansion and the largest thermal conductivity) and PbO2 (vice versa). It
is suggested that stronger bonding in SiO2 than PbO2 is responsible for such behavior. This also gave
rise to the largest elastic modulus of SiO2 in this group of rutile oxides. Finally, the intrinsic thermal
shock resistance was the largest for SiO2, exceeding some of the competitive phases such as Al2O3

and nanolaminated Ti3SiC2.
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1. Introduction

Rutile oxides (space group P42/mnm, prototype TiO2), including TiO2, VO2, CrO2, MnO2, NbO2,
RuO2, RhO2, TaO2, OsO2, IrO2, SnO2, PbO2, SiO2, and GeO2, are very common oxides and broadly
explored due to their interesting properties [1,2]. For example, TiO2 possesses a large band gap of
about 3 eV [3]. RuO2 is electrically conductive [4], which is highly unusual for oxides. On the one hand,
NbO2 exhibits the highest known Mott transition temperature of approximately 800 ◦C [5–7]. On the
other hand, VO2 undergoes the Mott transition at a low temperature of 68 ◦C [8], which is relevant for
some applications such as smart windows. SiO2, in its various forms, is known for high thermal shock
resistance [9]. In general, oxides are refractory solids [10,11], but still many of their high-temperature
properties are either unknown or not systematically explored. One of these is thermal shock behavior.

Thermal shock occurs when a system is subjected to rapid changes in temperature [9]. An abrupt
temperature increase gives rise to thermal gradients and hence stress gradients, which may in turn
result in damage and catastrophic failure [9]. Therefore, many applications where extreme temperature
gradients are required—such as spacecraft propulsion, spacecraft atmospheric entry, immobilization of
radioactive waste, combustion, thermoelectric devices, various metallurgical processes, and high-power
lasers—are prone to thermal shock [9,12]. Furthermore, physical properties governing the thermal
shock behavior are also relevant for other thermomechanical properties such as thermal fatigue [13].
Thermal shock resistance can be described by the thermal shock parameter (RT), which is defined as

RT =
σ fκ(1− ν)

αY
, (1)

where σf, κ, ν, α, and Y designate flexural strength, thermal conductivity, Poisson’s ratio, the linear
coefficient of thermal expansion, and elastic (Young’s) modulus, respectively [9,14]. To increase
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the thermal shock resistance, RT should be maximized, which can be achieved by maximizing the
numerator and/or minimizing the denominator in Equation (1). Hence, high σf is required to enhance
resistance to crack propagation, high κ conducts heat away from an active component and minimizes
temperature gradients, large νmay give rise to a more ductile response, as well as a combination of
low α and small Y leads to a thermal stress reduction [9,14]. It should be noted that an improvement of
one physical property in Equation (1) is often accompanied by the deterioration of another property.
For instance, a decreased Y is often associated with a larger α value [15], rendering the design of
novel thermal shock resistant solids challenging. A typical research strategy is to enhance RT by
concentrating on a single thermomechanical property in Equation (1). For instance, a large RT value of
fused SiO2 is enabled by very low α [14]. It should also be noted that quantum mechanical predictions,
beneficial and efficient in many cases [16], are very challenging for thermal shock behavior since there
is an interplay between phonons and electrons in these thermomechanical properties. Hence, to replace
the traditional trial-and-error approach—which aims to optimize one of the relevant properties to
enhance thermal shock resistance with the knowledge-based design of thermal shock-resistant solids
taking into account all (or most) key properties—presents a formidable challenge.

In this work, 14 binary oxides TiO2, VO2, CrO2, MnO2, NbO2, RuO2, RhO2, TaO2, OsO2, IrO2,
SnO2, PbO2, SiO2, and GeO2 are considered for thermal shock resistance applications using density
functional theory [17] in conjunction with the Slack [18] and Debye–Grüneisen model [19]. It should
be remarked that many of these thermomechanical properties are affected by extrinsic factors. One of
these is microstructure. Flexural strength [20], thermal conductivity [21,22], and the linear coefficient
of thermal expansion [23] depend on grain size. For instance, the flexural strength of bulk Ti3SiC2,
a promising nanolaminate for thermal shock resistance applications, is 330 and 600 MPa at room
temperature for grain sizes of 100–200 and 3–5 µm, respectively [20]. The extrinsic factors cannot
be straightforwardly addressed by quantum mechanical methods and hence are not considered
in the current work. In particular, due to a complex mechanical loading during flexural strength
measurements (standard three-point loading) [24], σf is not considered in this work. All other four
relevant parameters in Equation (1), namely κ, ν, α, and Y, are systematically explored for the common
rutile oxides in this study.

2. Methods

Density functional theory [17] was employed in the current work to calculate κ, ν, α, and Y for
TiO2, VO2, CrO2, MnO2, NbO2, RuO2, RhO2, TaO2, OsO2, IrO2, SnO2, PbO2, SiO2, and GeO2. The
Vienna ab initio simulation package (VASP) was used within the framework of the projector augmented
wave potentials [25–27] and generalized gradient approximation, which were parametrized by Perdew,
Burke, and Ernzerhof [28]. The Blöchl correction in the VASP code was applied [29] for these rutile
oxides and an integration in the Brillouin zone was carried out by employing the Monkhorst–Pack
approach [30] with a k-point mesh of 7 × 7 × 5 (2 × 2 × 2 tetragonal supercell, 48 atoms). The supercell
was considered rather than a primitive cell in order to allow for the treatment of diluted alloying
(2.1 at.%). No symmetry breaking was observed. Full structural optimization for these tetragonal
supercells was made by minimizing the interatomic forces and optimizing the lattice parameters, a and
c. The convergence criterion for the total energy was 0.01 meV and a cut-off energy was 500 eV. All
configurations were treated as nonmagnetic apart from CrO2. In the case of CrO2, spin polarization
(ferromagnetic ordering) was also taken into account. Electronic structure analysis of these oxides was
performed employing the VESTA software [31].

Two acoustic phonon models were considered. These two phonon models are complementary;
one regards the thermal conductivity and the other thermal expansion and temperature-dependent
elasticity. Taking Umklapp phonon–phonon scattering into account within the Slack model [18,32], κ
values were obtained as

κ = A
MD3

aδn1/3

γ2T
, (2)
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where A is a constant, which can be attained as

A =
2.43× 10−6

1− 0.514γ−1 + 0.228γ−2
, (3)

with γ designating the acoustic mode Grüneisen parameter [33,34]. M in Equation (2) is the average
atomic mass and Da is the Debye temperature (D) of acoustic phonons calculated as

Da = Dn−1/3. (4)

Further parameters used in Equation (2), δ3, n, and T are the volume per atom, number of atoms
in the 2 × 2 × 2 tetragonal supercell, and absolute temperature, respectively [32]. The values for γ and
Da can be extracted from elastic constants [33,35]. In particular, all tetragonal elastic constants, C11, C12,
C13, C33, C44, and C66, were calculated using a method described previously [36]. The tetragonal lattice
was strained using a different distortion for each elastic constant (maximum distortion 2%) and the
resulting total energy change (quadratic energy–distortion dependence) was utilized to calculate the
corresponding elastic constant at 0 K, as detailed in the literature [36]. The elastic constants were also
utilized to obtain ν and Y at 0 K within the Hill approximation [37].

The Debye–Grüneisen (acoustic phonon) model was employed for estimating α [19,38,39]. Within
the Debye–Grüneisen model [19], the Helmholtz free energy (F) is defined as

F = Etot − nkBT

3( T
D

)3 ∫ D/T

0

x3

ex − 1
dx− 3 ln

(
1− e−

D
T

)
−

9D
8T

, (5)

where Etot and kB are the total energy at 0 K and the Botzmann constant, respectively. These data were
fitted to the Birch–Murnagham equation of state [40] at each temperature to acquire the temperature
dependent equilibrium volume and bulk moduli data. The bulk moduli were then used to estimate the
temperature dependent Y values, using ν. In the original work on the Debye–Grüneisen model [19],
νwas assumed to be constant (0.33) since only metals were considered, but in this work, the ν value
was explicitly calculated for each compound minimizing possible errors. In particular, ν was obtained
from (3B − 2G)/(6B + 2G)), where B and G are bulk and shear modulus, respectively, within the
Hill approximation [37]. The value of αwas extracted from the temperature-dependent equilibrium
volume datasets. In this work, α was considered instead of volume expansion, since the original
Debye–Grüneisen model [19] contains α.

3. Results and Discussion

Figure 1 contains the calculated κ data at 300 K as a function of α for common rutile oxides
explored in this study, including TiO2, VO2, CrO2, MnO2, NbO2, RuO2, RhO2, TaO2, OsO2, IrO2, SnO2,
PbO2, SiO2, and GeO2. Based on the Debye–Grüneisen theory, α and γ are linearly proportional [41].
Hence, an inverse quadratic dependence (parabolic relationship) based on Equation (2) is expected for
κ and α. As α increases from 3.3 × 10−6 to 13.4 × 10−6 K−1, κ decreases from 35.4 to 1.4 W m−1 K−1.
The boundary of the data in Figure 1 is span by SiO2 (the smallest α value and the largest κ value) and
PbO2 (vice versa). The rest of the data exhibit the values between these two extremes in a parabolic
arrangement. The here calculated α and κ value for TiO2 deviates 29% and 17% from the measured
data in the literature [42,43]. It should be mentioned that α is typically within 30% deviated from
experiments when the Debye–Grüneisen model is employed [38]. The Slack model is typically less
precise, but it reaches a correct order of magnitude [22]. The influence of magnetism is present within
these deviations, as probed for CrO2. For accuracy reasons, the data in Figure 1 are not fitted at this
point, but the exact parabolic relationship is discussed below when more datasets are regarded. It
should also be noted that the theoretical data obtained by these models may deviate not only due
to approximations (single crystals are considered, only acoustic phonons are included in the Slack
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and Debye–Grüneisen model, no electronic contributions are taken into account within the Slack
model, etc.), but also due to difficulties in comparison with available experimental data (polycrystalline
samples, impurities, defects, etc.). Nevertheless, important trends are captured in Figure 1. It is also
feasible to affect the data in Figure 1 by dilute alloying. Adding 2.1 at.% of Si into TiO2, increases
its κ value by 10.2%. Oppositely, the same amount of Pb leads to a reduction of κ by 15.3%. It
should be noted that κ also scales with equilibrium volume in the same fashion as it does with α.
This is indicative that the equilibrium volume or bond length governs the thermal response of these
isostructural compounds. However, Umklapp phonon–phonon scattering is considered (parabolic
relationship between κ and α) as a major physical mechanism for the data shown in Figure 1.

To rationalize the behavior of the boundaries (extremes) in Figure 1, the electronic structure of
SiO2 (the smallest α value and the largest κ value) and PbO2 (vice versa) is explored in Figure 2. Both Si
and Pb are depleted and the majority of charge is attracted by O. This is consistent with ionic bonding.
There are important differences between these two rutile phases. While there is essentially no charge
localized between Pb and O in PbO2, a considerable number of electrons are shared by Si and O in
SiO2. Hence, SiO2 is characterized by ionic–covalent bonding and PbO2 possesses mainly the ionic
contribution to the overall bonding. This is also mirrored in the bond length values for these two
extremes, i.e., 1.78 vs. 2.21 Å, respectively. These electronic structure data are consistent with the
literature [44,45]. Due to the bonding nature, SiO2 is expected to have stronger bonds than PbO2.
Stronger bonds thus lead to low α and high κ, as observed in Figure 1 for SiO2. The opposite occurs
for PbO2.
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Figure 1. Calculated thermal conductivity as a function of the linear coefficient of thermal expansion for 
common rutile oxides. The data were obtained at 300 K. In the case of CrO2, nonmagnetic and ferromagnetic 
(FM) configurations were considered. 

Figure 1. Calculated thermal conductivity as a function of the linear coefficient of thermal expansion
for common rutile oxides. The data were obtained at 300 K. In the case of CrO2, nonmagnetic and
ferromagnetic (FM) configurations were considered.
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Figure 3 contains the calculated κ data at 300 K as a function of α for common rutile oxides
investigated in this study, previously included in Figure 1, as well as literature values for various
semiconductive and insulating phases, including diamond [46], Ge [46], Si [46], S [46], In2S3 [47],
SiC [48,49], GaN [50,51], Bi2Te3 [52], PbTe [13,53], HgTe [54], TiO2 [42,43], ZnO [55,56], SrTiO3 [57,58],
Kapton (poly-oxydiphenylene-pyromellitimide) [59], and polyvinyl chloride (PVC) [60]. As α increases
from 1 × 10−6 to 61 × 10−6 K−1, κ decreases from 1000 to 0.1 W m−1 K−1. The κ and α values for the
common rutile oxides explored herein are consistent with the functional dependence of the literature
data. The obtained inverse square fit for the data in Figure 3 at 300 K gives κ = 763 α−2, as provided
by the solid line, where κ is in units of W m−1 K−1 and α in units of 10−6 K−1. It is proposed that the
constant in the acquired relationship is predominantly determined by the product between the Debye
temperature and average atomic mass in Equation (2). These two factors change to a large extent,
unlike the other factors, but their product is approximately constant. For instance, this product for
isostructural diamond and Ge is 26,443 and 29,322 K u, respectively, where u is the unified atomic
mass unit. Furthermore, it is known that small changes in the bonding nature can give rise to a diverse
thermal response [61,62]. Since all rutile oxides explored in the current study are isostructural and
exhibit similar ionic–covalent bonding (see Figure 2 for extremes), the bond strength is likely the key
factor responsible for differences in the thermal properties (Figure 3). For instance, TiO2 [63] and
RuO2 [64] exhibit an equivalent phonon band structure. With the bond length of 1.97 and 1.99 Å
for TiO2 and RuO2, respectively, TiO2 exhibits stronger bonds and should thus possess a higher κ
and smaller α value. Indeed, this is observed herein (see Figure 1 for details). Extremes, SiO2 and
PbO2, undergo the same rationale, as discussed above. To vindicate the whole range of data shown in
Figure 3, lattice dynamics of all compounds should be considered. This is beyond the scope of this
work, since the Slack and Debye–Grüneisen model is employed instead of full phonon calculations,
but the important trends are captured, which is valuable for physical insights and further explorations.Physics 2019, 1 FOR PEER REVIEW  5 
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After discussing the behavior of κ and α in Equation (1), the elastic properties are considered.
Figure 4 shows the dependence of Y on T for the common rutile oxides explored herein. The Y value
slowly decreases with T, as expected, and the difference between the values for these binary oxides
is constant. The stiffest rutile oxide is SiO2 and the softest one is PbO2, which is in agreement with
the bonding analysis (see Figure 2) since SiO2 possesses the strongest bonds. The obtained elasticity
values at 300 K are consistent with the available experimental data, deviating by 7.8% for TiO2 [65],
2.4% for CrO2 [2], 16.1% for MnO2 [66], 2.6% for NbO2 [67], 5.4% for OsO2 [68], 9.9% for IrO2 [69], 0.3%
for PbO2 [70], and 7.9% for SiO2 [71]. This is acceptable based on the employed exchange-correlation
functional, since deviations are commonly within 20% [72]. The calculated internal free parameter for
the 4f Wyckoff site (O position) is in a narrow range from 0.345 to 0.348, being 11% deviated from the
experiment value [73], but due to the obtained consistency with the elasticity data, this is acceptable.
Moreover, the calculated values of Poisson’s ratio are in the range from 0.20 (SiO2) to 0.32 (PbO2).Physics 2019, 1 FOR PEER REVIEW  6 
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With calculated elasticity (Figure 4) and thermal properties (Figure 1), it is possible to estimate the
temperature behavior of RT, as defined in Equation (1), for the rutile oxides addressed in this study. As
argued above, σf is obtained under complex mechanical loading and it exhibits the strongest extrinsic
response (grain size dependence). Hence, the thermal shock behavior of the common rutile oxides is
herein described within density functional theory as RT/σf (units of W m−1 MPa−1 instead of W m−1)
and referred to as an intrinsic thermal shock parameter. Figure 5 contains such data as a function of
temperature. The intrinsic thermal shock parameter for SiO2 is the largest in the whole temperature
range and decreases from 16.2 to 2.6 W m−1 MPa−1 upon temperature increase from 300 to 900 K. It
exceeds the room-temperature value of 11.2 W m−1 MPa−1 measured for nanolaminated Ti3SiC2 [74,75]
and 7.7 W m−1 MPa−1 for corundum Al2O3 [14], which are commonly employed for thermal shock
resistance. The rest of the other rutile oxides in Figure 5 exhibit the intrinsic thermal shock parameter
lower than 6 W m−1 MPa−1, whereby PbO2 constitutes the lower bound. Hence, in applications where
thermal shock resistant phases are required, Si-based systems are expected to perform well based on
the data in Figure 5. At elevated temperatures and under atmospheric conditions, constituting Si is
likely to oxidize and enhance the thermal shock resistance. This of course requires an experimental
validation, indicating that this work may inspire future investigations. A clue that this notion is
correct can be found in the literature on ZrO2, claiming that additions of SiO2 enhance its thermal
shock resistance [76]. It should also be mentioned that some applications benefit from low κ, such as
energy generation and sensing by thermoelectric devices, so that Pb-based systems are of interest, but
an interplay with thermal shock resistance and thermal fatigue is challenging to capture and often
overlooked in many studies. Holistic approaches, including both primary and secondary properties,
are crucial for future design efforts of multifunctional solids.
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case of CrO2, nonmagnetic and ferromagnetic (FM) configurations were considered. The measured
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also added.

4. Conclusions

Fourteen rutile oxides have systematically been explored for thermal shock resistance applications
using density functional theory in conjunction with the Slack and Debye–Grüneisen model. Four
thermomechanical properties (κ, ν, α, and Y) were evaluated, omitting σf due to complex mechanical
loading and its compelling extrinsic response (grain size dependence). As α increases from 3.3 × 10−6

to 13.4 × 10−6 K−1, κ decreases from 35.4 to 1.4 W m−1 K−1, exhibiting a parabolic relationship. The
boundary of these data is span by SiO2 (the smallest α value and the largest κ value) and PbO2 (vice
versa). In a broad comparison with the literature data, an inverse square fit at 300 K was obtained
yielding κ = 763 α−2, where κ is in units of W m−1 K−1 and α in units of 10−6 K−1. The constant
in the acquired relationship may predominantly be determined by the product between the Debye
temperature and the average atomic mass. The boundary in the κ–α space for these rutile oxides may
be due to stronger bonding in SiO2 than PbO2, since SiO2 is characterized by ionic–covalent bonding
and PbO2 is mainly ionic. This also gives rise to the largest elastic modulus of SiO2 in the order of
500 GPa at a wide temperature range up to 900 K. Finally, the intrinsic thermal shock resistance is
the largest for SiO2, exceeding some of the competitive phases such as nanolaminated Ti3SiC2 and
corundum Al2O3. It may be argued that at elevated temperatures and under atmospheric conditions,
Si-containing systems oxidize, forming SiO2, and in turn enhance the overall thermal shock resistance.
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