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Abstract: We study Gaussian wave beam and wave packet types of solutions to the linearized cold
plasma system in a toroidal domain (tokamak). Such solutions are constructed with help of Maslov’s
complex germ theory (short-wave or semi-classical asymptotics with complex phases). The term
“semi-classical” asymptotics is understood in a broad sense: asymptotic solutions of evolutionary and
stationary partial differential equations from wave or quantum mechanics are expressed through
solutions of the corresponding equations of classical mechanics. This, in particular, allows one to use
useful geometric considerations. The small parameter of the expansion is h = λ/2πL where λ is the
wavelength and L the dimension of the system. In order to apply the asymptotic algorithm, we need
this parameter to be small, so we deal only with high-frequency waves, which are in the range of
lower hybrid waves used to heat the plasma. The asymptotic solution appears to be a Gaussian
wave packet divided by the square root of the determinant of an appropriate Jacobi matrix (“complex
divergence”). When this determinant is zero, focal points appear. Our approach allows one to write
out asymptotics near focal points. We also claim that this approach is very practical and leads to
formulas that can be used for numerical simulations in software like Wolfram Mathematica, Maple,
etc. For the particular case of high-frequency beams, we present a recipe for constructing beams
and packets and show the results of their numerical implementation. We also propose ideas to treat
the more difficult general case of arbitrary frequency. We also explain the main ideas of asymptotic
theory used to obtain such formulas.
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1. Introduction

The equations describing the propagation of an electromagnetic wave in a tokamak plasma are
more manageable when the frequencies of the electric field are much higher than the electron cyclotron
frequency in the plasma. In this framework, an application of asymptotic methods is quite appealing,
if we consider the exact formulation [1–7]. We show in this paper how to work it out, under the
assumption that the frequency of the wave is significantly higher than the electron cyclotron frequency,
with wavelength varying among 10−4 m and 1 m, i.e., for a frequency of the order of terahertz.

This analysis is particularly useful in order to predict the behavior of a broadband terahertz
(THz) pulse in a non-uniform and dispersive plasma. This is mainly oriented toward a new plasma
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diagnostic system based on THz time-domain spectroscopy that simultaneously provides high time
resolution and THz bandwidth coverage, allowing an analysis of wide ranges of plasma density
variations without incurring opacity. Moreover, a possible application of high-power and -frequency
sources for reactors like ITER (International Thermonuclear Experiment Reactor) and DEMO ( Demo
project will pave the way for commercial fusion electricity) (characterized by high beta due to the
high temperature of the plasma) would allow the use of the first or second harmonic of the electron
cyclotron resonance in extraordinary wave polarization from the outboard side of the torus. This could
avoid the complication, for the wave accessibility to the plasma center, of a launching from the high
field side of the tokamak. Heating and current drive systems are extremely relevant matters in a
thermonuclear plasma, magnetically confined in tokamak devices, as they provide a tool to reach,
sustain, and control burning conditions. Due to the high intensity of the confinement magnetic field,
devices such as ITER or DEMO will require a higher frequency for the electron cyclotron resonance
heating (ECRH) at fundamental harmonics.

On the other hand, experimental plasma physics has relied on a variety of diagnostics tools to
probe physical features like temperature and density. One of the most important diagnostic techniques
is based on the use of electromagnetic waves, and terahertz bandwidth pulses can be used as a very
sensitive probe of widely-varying plasma parameters. Therefore, low- and high-power (≥1 MW)
RF (Radio Frequency) sources with output frequency in the THz range would be necessary in order
to reach this goal [8]. The propagation of the THz pulse (monochromatic or bandwidth pulse) in
a magnetically-confined plasma in tokamak structures can be conveniently studied by solving the
Maxwell-fluid system of equations via asymptotic techniques.

Asymptotic methods are powerful mathematical techniques to solve the Maxwell equations in
strongly anisotropic and dispersive media like magnetically-confined plasma; they mostly rely on
the WKB (Wentzel-Kramers-Brillouin)expansion of the field without explicitly solving the coupled
partial differential equations by numerical methods. In a tokamak plasma (i.e., confined by an external
magnetostatic field), Maxwell equations must be coupled with the linearized equations of the electron
and ion fluid elements (essentially the mass and momentum conservation equations) having neglected
the thermal and collisional effects on the wave propagation, which for this particular kind of waves is
a well-justified hypothesis. Asymptotic techniques applied to the propagation of the electromagnetic
pulse highlight very well the geometric characteristic of the wave propagation and allow putting
in evidence the singular points like cut-offs, mode conversions, geometrical reflections (caustics),
etc. In view of the application to the ITER and DEMO, we study the propagation of an electric field.
The corresponding asymptotic expansions is given.

In tokamak reactors, the use of high-frequency waves excited by antennas located outside
the plasma and accommodated in the ports of the vessel is crucial for both diagnostic (terahertz
(THz) pulse, which allows studying wide ranges of plasma density variations [9]) and (or) plasma
heating (high-power frequency waves for plasma heating in fusion-oriented devices like ITER and
DEMO [8]). For this reason, the knowledge of the propagation of the electric field inside the plasma
assumes a crucial role in planning the experiments and interpreting the results. The Maxwell equations
describing the propagation of an electromagnetic wave in a plasma, in the presence of an external
magnetic field, have an easily worked form when the frequencies of the electric field are much higher
than the ion cyclotron frequencies in the plasma, because the cold plasma assumption is well satisfied
for the plasma dielectric tensor. This last assumption can be naively justified considering that the
wavelength λ of the electromagnetic wave involved in the process satisfies the following inequality
λ� L, where L is the variation scale length of the macroscopic plasma parameters, i.e., density and
confining magnetic field.

In this framework, it is quite appealing to try to apply asymptotic methods using the formulation
as given in [10–13]. We study the propagation of Gaussian wave packets and Gaussian beams inside the
tokamak under the assumption of its localization and use the theory in [10] for finding the asymptotic
form of the electric field using the small expansion parameter h = λ

L . In view of the application to the
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plasma heating in tokamaks, we take the wavelengths in the interval 10−6 m < λ < 1 m corresponding
to the microwave frequency interval (3× 108 Hz, 3× 1012 Hz) typical of the lower hybrid waves (LWH)
used for plasma heating.

In the special case of high frequencies, namely much greater than 1010 Hz, the analysis becomes
significantly simpler. The reason is that the initial 12× 12 system of equations is reduced to a treatable
scalar equation. This allows us to construct explicit formulas for Gaussian packets and beams, which are
given in Section 3. These formulas may be implemented numerically using software like Wolfram
Mathematica, Maple, etc. We also underline that the formulas are elementary. Their understanding and
practical use do not require any special knowledge of differential geometry, analysis, pseudo-differential
calculus, asymptotic methods, etc.

In the general case (frequencies less than 1010 Hz), the reduction to a scalar case becomes quite
a complicated task. This reduction can be done with the help of the trick proposed in [13] called
scalarization. Its idea is to study a system whose Hamiltonian is a determinant of the matrix principal
symbol. The reduced Hamiltonian system is very cumbersome, and so far, we have no explicit formulas
for Gaussian packets and beams. The main steps of the scalarization are described in Section 4.

In Section 5, we give a brief description of the general theory. In the other sections, we present the
results and outline the main proofs of the proposed algorithms. For the details, the reader should look
at the papers where this material is explained in more detail.

2. Linearized System of Plasma Equations

In this section, we write out the cold plasma linearized system of equations. This system is
reduced to a dimensionless form containing a small parameter. Such a form is standard for using
Maslov’s asymptotic theory and methods [14–17]. With the help of this approach, one can describe
Gaussian beams and packets in a tokamak region (see [11,12,18]). For references concerning physics of
electromagnetic waves in plasma, see [19–26].

Let us consider an ionized gas consisting of electrons and protons. Let q1 < 0 and q2 > 0 be the
charges of the electron and the proton and m1, m2 their masses. In the cold plasma model, the particles
are described by their densities n1(x, t), n2(x, t), functions of coordinate x = (x1, x2, x3) ∈ R3 and
the time t, and by their velocities fields v1(x, t), v2(x, t), three-dimensional vector functions of x and
t: vs = ((vs)1, (vs)2, (vs)3) for s = 1, 2. The expression of the current is J(x, t) = n1q1v1 + n2q2v2.
The densities satisfy the continuity equation ∂ns

∂t + 〈∇, nsvs〉 = 0, where s = 1, 2, 〈·, ·〉 is the scalar
product: 〈∇, nsvs〉 = ∂

∂x1
(ns(vs)1) +

∂
∂x2

(ns(vs)2) +
∂

∂x3
(ns(vs)3). Then:

∂J
∂t

= n1q1
∂v1

∂t
+ n2q2

∂v2

∂t
− q1〈∇, n1v1〉v1 − q2〈∇, n2v2〉v2. (1)

We make a hypothesis that the magnetic field B applied to the plasma is much stronger than the
magnetic field generated by the motion of the charges. The equation for the electric field is obtained
after eliminating the magnetic field B:

c2∇∧∇∧ E +
1
ε0

∂J
∂t

+
∂2E
∂t2 = 0, (2)

where c is the speed of light, ε0 is the electric constant, and ∧ is the vector product. This equation is
coupled with Newton’s equation for the two types of charged particles:

dv1

dt
=

q1

m1
(E + v1 ∧ B),

dv2

dt
=

q2

m2
(E + v2 ∧ B) (3)

This system is nonlinear because
dvj
dt =

∂vj
∂t + 〈vj,∇〉vj. We linearize it by omitting terms 〈vj,∇〉vj

from
dvj
dt and from (1). Then, using these linearized equations and (1), we can rewrite (2) and (3) in

the form:
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∂2E
∂t2 + c2∇∧∇∧ E +

n1q2
1

ε0m1
(E + v1 ∧ B) + n2q2

2
ε0m2

(E + v2 ∧ B) = 0,
∂v1
∂t −

q1
m1

(E + v1 ∧ B) = 0, ∂v2
∂t −

q2
m2

(E + v2 ∧ B) = 0.
(4)

By passing to dimensionless variables, we put Equation (4) in a different framework with small

parameter h > 0. To do this, we define the following objects. Let ω2
1,2 =

q2
1,2

ε0m1,2
n1,2(r) be squared

frequencies of protons and electrons and ω2
p = ω2

1 + ω2
2 be squared plasma frequency. We introduce

the characteristic size L of the problem, the time T = L/c, the beam frequency ω = 2πc/λ, the beam
wavelength λ, the electric field E , and the magnetic field B. The typical tokamak radius is about 0.9 m,
so we put L = 0.5 m. Let Ω1,2 = − q1,2B

m1,2
be the cyclotron frequencies of the charges.

Introduce dimensionless parameters h = c
Lω = λ

2πL = 1
Tω and also µ1,2 =

Ω1,2ω2
1,2

hω3 . The parameter
h is assumed to be small. Then, in the dimensionless variables x′, t′, E′, B′, u, where x = Lx′, t = Tt′,

E = EE′, B = BB′, vs =
ΩsE
ωB Us µ1,2 =

Ω1,2ω2
1,2

ω3 , after omitting primes, Equation (4) becomes:

h2 ∂2E
∂t2 + h2∇∧∇∧ E +

ω2
pl

ω2 E + µ1U1 ∧ B + µ2U2 ∧ B = 0,
h ∂U1

∂t − (E + Ω1
ω U1 ∧ B) = 0, h ∂U2

∂t − (E + Ω2
ω U2 ∧ B) = 0.

(5)

In order to use semi-classical methods [14–16], we need to re-write Equation (5) in a standard
form. We introduce the new variable W = −ih ∂E

∂t and the unknown vector-column function Ψ =

(E, W, U1, U2)
T with 12 components. Then, one has the “standard” form:

ihΨt = ĤΨ, Ĥ = H( p̂, x, h) = H0( p̂, x) + hH1(x, h), p̂ = −ih
∂

∂x
= −ih∇, (6)

where:

H( p̂, x)Ψ =


−W

p̂ ∧ p̂ ∧ E−
ω2

pl
ω2 E− hµ1U1 ∧ B− hµ2U2 ∧ B
i Ω1

ω (E + hU1 ∧ B),
i Ω2

ω (E + hU2 ∧ B)

 , (7)

H0( p̂, x)Ψ =


−W

p̂ ∧ p̂ ∧ E−
ω2

pl
ω2 E

i Ω1
ω (E + hU1 ∧ B),

i Ω2
ω (E + hU2 ∧ B)

 , H1(x)Ψ =


0

−ω2
1

ω2 U1 ∧ B− ω2
2

ω2 U2 ∧ B
0
0

 . (8)

As soon as we have presented the system of equations in the standard form, we can use the
algorithm (see [14,15,17]) for constructing its solutions in a form of Gaussian wave packets and
Gaussian beams.

3. Gaussian Packets and Beams for High Frequencies

In this section, we assume that the characteristic wavelength is high enough (ω � 1010 Hz).
In this case, the partH1Ψ is negligible, which significantly simplifies the consideration. The case of
lower frequencies leads to much more complicated constructions, and we discuss it in Section 4. We are
interested in solutions associated with the “electric mode”. They can be described with the help of one
of two Hamiltonian systems:

ṗj = −Hxj , ẋj = Hpj , H = H± = ±

√
p2 +

ω2
p

ω2 (9)
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Let us denote by Γ(k, x0) = {p = P(t), x = X(t)} the trajectory of, say, Hamiltonian system H+

issued from the point k, x0:

ṗ = −H+
x , ẋ = H+

p , p|t=0 = k, x|t=0 = x0. (10)

The projection of this trajectory is the ray γ+(k, x0) = {x = X(t)}. We assume that the point x0 is
placed outside of the tokamak camera D and choose the vector k in such a form that Γ+(k, x0) intersects
D with the positive parameter (time) t. Note that before meeting the tokamak camera, γ+(k, x0) (as
well as Γ+(k, x0)) is just the straight line:

γ+(k, x0) = {x =
k
|k| t + x0}. (11)

Due to this assumption and conservation of the Hamiltonian H+ on Γ+(k, x0), we have H+|γ+ =√
P2(t) + ω2

pl(X(t))/ω2 = |k|.

Remark 1. One can construct the trajectories Γ− defined by the Hamiltonian H− = −H+ and starting from
the same point. Then, the trajectories Γ− and Γ+ are the same curves in the phase space. They only differ in
orientation with respect to time t. That is why we restrict ourselves only to Γ+.

3.1. Gaussian Beams

By Gaussian beams, we understand the stationary solutions Ψ = e−iωtΨ0(x) of the Equation (6)
localized in the neighborhood of rays γ±(k, x0). Now, we construct a 2× 2 diagonal matrix B̃ =(

b1 0
0 b2

)
with complex entries having positive imaginary part: Im bj > 0. Let m1, m2 be 3D unit

orthogonal vectors such that m1 ∧m2 = k
|k| and M is the matrix consisting of the vector columns m1,m2:

M = (m1, m2). The choice of M is not unique, and along with the parameters b1, b2, it characterizes the
structure of Gaussian beams.

We construct now the 3× 3 matrix B0 = MB̃MT and denote by B(t), C(t) the matrix solution to
the Cauchy problem for variational system as follows:

Ḃ = −H+
ppB− H+

pxC, Ċ = H+
xpB + H+

xxC, B|t=0 = B0, C|t=0 = E, (12)

where arguments of the matrix-functions H+
pp, H+

px, H+
xp, H+

xx are P(t), X(t) and E is the 3× 3 unit
matrix.

Later on, we will use letter τ for time and call it “the proper” time. Note that B, C depend also on
k, x0, b1, b2, M, so we omit this dependence to simplify notation.

The matrices B, C have the following properties (see [14], §7–§8, Chapter II, §2, Chapter IV):
(1) for each τ: BTC− CT B = 0, B∗C−C∗B

2i ≥ 0.

(2) for each τ:

(
B
C

)
k
|k| =

(
Ṗ
Ẋ

)
. Indeed, both sides are the vector solutions for the variational

system, and we have B|t=0k = B0k = 0, C|t=0k = k and Ṗ|t=0 = −Hx(k, x0) = 0, Ẋ|t=0 = Hp(k, x0) =

k due to the definition of the matrices B and C and trajectory P, X. This implies the equalities
ẊT B− ṖTC = 0.

(3) For any fixed τ, one has det C 6= 0 if and only if Ẋ(τ) 6= 0. The point where Ẋ(τ) = 0 (or
which is the same P = 0) is the focal one on the Gaussian beam. In what follows, we assume that
there are no focal points. However, we also show graphically what happens in the situation with focal
points without showing the formulas (see [17]).
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(4) One can define the complex continuous function
√

det C(τ) putting
√

det C(0) = 1 and
the complex symmetric matrix BC−1(τ) with degenerate nonnegative imaginary part 1

2i
(

BC−1 −
(C∗)−1B∗

)
, having rank two.

Let us fix some neighborhood of the ray γ(k, x0); due to the assumption Ẋ(τ) 6= 0, we can define
the solution τ(x) to the equation:

〈Ẋ(τ), x− X(τ)〉 = 0, (13)

which says that X(τ(x)) is a point on the ray γ such that the vector x− X(τ(x)) is perpendicular to γ

in X(τ(x)). Now, we can construct the phase S, which is a function of variables x = (x1, x2, x3) and all
parameters k, x0, b1, b2, M omitted to simplify the notation:

S(x) = s(τ(x)) + 〈P(τ(x)), x− X(τ(x))〉+
1
2
〈x− X(τ(x)), B(τ(x))C−1(τ(x))(x− X(τ(x)))〉, s(τ) =

∫ τ

0
〈P, dX〉, (14)

the “phase of the polarization” (the Berry phase) Φ(τ) by the formula:

Φ(t) =
∫ t

0

(µ1(X(η))

2k2

〈 P(η)
|P(η)| , B(X(η))

〉
+
〈

p⊥2 (η),
dp⊥1
dt

(η)
〉)

dη, (15)

and vector amplitudes A1(τ), A2(τ) by the formulas:

A1(t) = A0
1 cos Φ(t)− A0

2 sin Φ(t), A2(t) = A0
2 cos Φ(t) + A0

1 sin Φ(t). (16)

The vector functions p⊥1 , p⊥2 are arbitrary smooth functions on the trajectory, which together with
vector p organize the right-oriented orthogonal basis p⊥1 , p⊥2 , p: 〈p⊥1 , p⊥2 〉 = 〈p⊥1 , p〉 = 〈p⊥2 , p〉 = 0,
p⊥1 ∧ p⊥2 = p

|p| .
Let us introduce two 12-vector functions:

χ1,2(p, x) =
(

p⊥1,2,−Hp⊥1,2, [B ∧ · − θ1]
−1(Ω1/ω)−1 p⊥1,2, [B ∧ · − θ2]

−1(Ω2/ω)−1 p⊥1,2

)
(17)

where θ1,2 = −i|k|(Ω1,2/ω)−1 and:

[B∧ · − θ]−1 = −θ−1
(

1 +
θ−1

1 + θ−2B2 [B∧ ·] +
θ−2

1 + θ−2B2 [B∧ B∧ ·]
)

.

The Gaussian beam is a solution of Equation (5) as follows.

Theorem 1. There is an asymptotic solution to (5) of the form:

Ψ(x, t) = e−
i
h |k|tΨ0(x), Ψ0 =

1√
C(τ(x))

exp (
i
h

S(x))×(
A1(τ(x))χ+

1 (P(τ(x)), X(τ(x))) + A2(τ(x))χ+
2 (P(τ(x)), X(τ(x)))

)
. (18)

3.2. Gaussian Wave Packets

Let B0 be a complex symmetric matrix with the strictly positive imaginary part B0−B0∗

2i and A0 be
a 2D complex vector column with the components A0

1, A0
2. Let B0 be a complex symmetric matrix with

the strictly positive imaginary part B0−B0∗

2i and 12-vector functions χ+
1,2(k, x) be equal to zero outside a

neighborhood of x = x0. Now, we construct an initial value of Ψ of a special form:

Ψ0 = exp
( i

h
(
〈k, x− x0〉+ 1

2
〈x− x0, B0(x− x0)〉

))(
χ1(k, x)A0

1 + χ2(k, x)A0
2

)
, (19)
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with a Gaussian wave packet localized in a neighborhood of the point x = x0. We want to construct
the asymptotic solution of Equation (5) to the special Cauchy problem:

Ψ|t=0 = Ψ0. (20)

Let us define complex matrices B(t) and C(t) as solutions to the Cauchy problem (12). Then,
the matrix BC−1 is symmetric and has a positive imaginary part (compare with the case of Gaussian
beams from Section 3.1). These two properties are implied by the following equalities (see [14] §7,8,
Chapter II):

(BC−1)T − BC−1 = (CT)−1(BTC− CT B)C−1,

1
2i

(
(BC−1)∗ − BC−1

)
= (C∗)−1 (B∗C− C∗B)

2i
C−1. (21)

t = 0 BTC− CT B = (B0)T − B0 = 0 and (B∗C−C∗B)
2i = ((B0)∗−B0)

2i > 0. Furthermore, BTC− CT B
and B∗C− C∗B are preserved with time t because the elements of these matrices are the skew inner
product of the solutions to a linear variational Hamiltonian system.

Now, we introduce the complex phase of the Gaussian packet:

S(x, t) = s(t) + 〈P(t), x− X(t)〉+ 1
2
〈x− X(t), B(t)C−1(t)(x− X(t))〉,

s(t) =
∫ t

0
(〈P, H+

p 〉 − H+)dτ = − 1
|k|

∫ t

0
ω2

pl(X(η))dη. (22)

The polarization phaser and the amplitude A are defined by (15), (16).

Theorem 2. The leading term of the asymptotic solution to the Cauchy problem (5) and (20) has the form:

Ψ(x, t) =
1√
C(t)

exp
( i

h
(
s(t) + 〈P, x− X(t)〉+ 1

2
〈x− X(t), BC−1(t))(x− X(t))〉

))
×(

A1(t)χ+
1 (P(t), X(t)) + A2(t)χ+

2 (P(t), X(t))
)

. (23)

Remark 2. 1. For each time t, the matrix BC−1 is symmetric and nondegenerate, and its imaginary part is
positive (see [14]). Due to these properties of the matrices B and C, the following estimates are true:

c1|x− X(t)|2 < Im
[1

2
〈x− X(t), BC−1(t)(x− X(t))〉

]
< c2|x− X(t)|2, (24)

where c1, c2 are positive constants. This means that the function Ψ is localized like a Gaussian function in
a neighborhood of the point X(t) moving along the ray γ±(k, x0) (see Figure 1).

2. The first scalar factor in (23) depends on the parameters of (k, x0) of the ray γ±(k, x0) and the parameters
B0 of the Gaussian packet. The second, vector factor depends on the parameters of the ray (k, x0) (also on the
plasma frequency and the magnetic field) and do not depend on the parameters B0 of the Gaussian packet.

3. If |k| � |ωpl/ω|, then one can change P by k, X by k
|k| t + x0, B by B0, and C by Hpp(k)B0t + E,

where E is the 3× 3 unit matrix and Hpp is the matrix of second derivatives of H(p, x), which is equal to:

Hpp = − 1
|k|3

 −k2
2 − k2

3 k1k2 k1k3

k1k2 −k2
1 − k2

3 k2k3

k1k3 k2k3 −k2
1 − k2

2

 . (25)
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Figure 1. Gaussian wave packet.

3.3. Numerical Simulation

Let us choose values of physical parameters that are typical for real tokamaks. We consider our
system in a toroidal domain D (the tokamak) with major and minor radii as follows: R0 = 0.90 m, a =
0.3 m. We assume that the magnetic field in the toroidal coordinates (r, θ, ϕ) has the form:

Br = 0, Bθ =
Bra2

1 + r
R0

cos θ(R0(a2 + 2r2))
, Bφ =

B
1 + r

R0
cos θ

(26)

We also assume that n1 = n2 = 5× 1019
(

1− 0.2× 10−2 ( r
a
)2
)2

m−3 and B = 3.4T. Let |Ωe| ∼

− qeB
me

= 6× 1011 and Ωp =
qpB
mp
� |Ωe| be the characteristic cyclotron frequency for electrons and protons.

Their numerical values are ω2
1 = 3174.86n(r)m3s−2, ω2

2 =
q2

p
ε0mp

np(r) = 1.73n(r), ωpl = 56.36
√

n(r)
1 m−3 Hz

Using software like Wolfram Mathematica, Maple, etc., it is possible to visualize the trajectories
of the Gaussian beams by applying the asymptotic formulas. The geometry and the magnetic field
are those defined in the text, together with the other parameters. For this simulation, we chose also
λ = 20× 10−3 m, h = 1

500π , b1 = b2 = b = 25, x0 = (−1.5, 0, 0), k = P(0) = (1, 0, 0). The boundary of
the torus is located at x1 = −1.2 m; the focal point: x1 = −1.00275 m.

The trajectory in the tokamak is shown in Figure 2. The asymptotic solution till the entrance in
the tokamak is in Figure 3.

Figure 2. The ray enters the torus and then leaves in the opposite direction. The right arrow indicates
the initial direction of the ray. The left arrow is the direction of the ray after the reflection. The focal
point (marked with a thick black dot) is the right end of the ray. The intersection of the ray with the
border is marked with a thick red dot. The distance is in meters. The ray lies on the line x2 = x3 = 0.
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Figure 3. (a) Modulus of the wave function before entering the plane x3 = 0: |Ψ(x1, x2, 0)|. (b) Real
part of the wave function on the line x2 = x3 = 0 before entering the tokamak: Re Ψ(x1, 0, 0).

We underline that our method also allows one to treat the case with focal points (see [12]). In this
case, the formula is more complicated than the one given in Theorem 1, and it contains the Airy
function; we do not present it here. Nevertheless, this formula is still constructive from the viewpoint
of numerical calculations. The result of calculations in a neighborhood of the focal point is presented in
Figure 4. However, it should be noted that for the physical values of the parameters in real tokamaks,
the trajectories have no focal points. They go through the tokamak since their energy is quite large.
For further details, we refer the reader to [11,12].

(a)
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-0.0004

-0.0002

0.0002

0.0004
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(b)

Figure 4. In a neighborhood of the focal point. (a) Modulus of the wave function in the plane x3 = 0:
|Ψ(x1, x2, 0)|. Focal point (x1 = −1.00275, x2, 0). (b) Real part of the wave function on the line
x2 = x3 = 0: Re Ψ(x1, 0, 0). Focal point (x1 = −1.00275, x2 = 0, x3 = 0).

4. The Case of Lower Frequencies

Now, we turn to the general case, when the characteristic frequency is not assumed to be large.
The main difficulty is that we cannot say anymore that in Equations (6), (7), and (8), the part with H1

is negligible.
This case was studied in [12], and it is much more complicated than the case described above.

We describe it here in less detail, just mentioning the main underlying ideas and methods.
We recall that the algorithm [10,27] for constructing semi-classical asymptotics starts from finding

eigenvalues and eigenvectors of the principal symbol matrix H. The eigenvalues (which are the
functions of p and x) are called modes or effective Hamiltonians, and they define the classical systems
to be studied. In the high-frequency case, we actually deal with the matrixH0, and the eigenvalues and
eigenvectors can be calculated explicitly. The former associated with the electric mode are Hamiltonians
H = H± given by (9), and the corresponding eigenvectors are given by (17).

In the general case, such straightforward calculations are impossible. Hence, first of all, we reduce
the 12× 12-system to the 3× 3 system by eliminating W, U1, and U2. As a result, we arrive at the
equation as follows:

H( p̂, x, ω)E = p̂ ∧ p̂ ∧ E + aE + ibB ∧ E + cB ∧ B ∧ E,

where a, b, c are some real-valued functions of x and ω. Therefore, the reduction took place, but the
price we paid was that the spectral problem was reduced to a problem for an operator pencil. Note that
in the literature, usually, one goes the opposite way: reducing an operator pencil to a spectral problem
(see [27]). Unfortunately, the formulas for a, b, c are quite cumbersome, and one cannot write an explicit
formula for eigenvalues of H(p, x, ω). Of course, we could use the Cardano formula, but it leads to
Hamiltonians that are impossible to work with. On the other hand, the determinant det H, which is
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a product ∏3
j=1 Hj of effective Hamiltonians Hj, could be calculated by means of arithmetic operations.

Choose some effective Hamiltonian, say, H1 ≡ H, and denote F = ∏3
j=2 Hj. Then, the Gaussian

beams and packets are associated with the trajectories of the Hamiltonian system H lying on the
zero energy level Σ = {(p, x) : H = 0}. Assume that in a domain of interest in the phase space,
F
∣∣
Σ 6= 0. Then, one can use the Maupertuis–Jacobi principle stating that the solution of the system with

Hamiltonians H and det H lying on the zero energy coincide up to the time reparameterization. One can
also calculate the semi-classical correction entering the transport equation without the knowledge of H.
This procedure helps to scalarize the initial vector problem and reduces it to studying a classical system
with the Hamiltonian:

H(p, x, ω) = a3 − 2a2cB2 − 2a2 p2 − ab2B2 + ac2B4 + 3acp2B2 − ac〈p, B〉2+
+ap4 + b2 p2B2 − b2〈p, B〉2 − c2 p2B4 + c2〈p, B〉2B2 − cp4B2 + cp2〈p, B〉2.

(27)

Remark 3. Studying the Hamiltonian of Equation (27) may be interesting not only for tokamak studies. It can
be useful in other applications of plasma physics, e.g., in cosmology.

Note that this Hamiltonian has three degrees of freedom, but in the case of a tokamak, due to the
symmetry of the magnetic field, it can be reduced to a two degrees of freedom system. Such a system is
generically non-integrable, but one can try to apply averaging methods to obtain an integrable system.

If the system is integrable, one can construct different types of asymptotic solutions of (5). Firstly,
it is Gaussian beams, which are associated with trajectories of the Hamiltonian system. However, also,
one can try to find spectral series associated with Liouville tori according to [10]. We plan to treat this
problem in the future.

As we have said, this system is quite cumbersome. We did not construct Gaussian beams for real
tokamaks. Instead, we constructed such solutions for a model example when the magnetic field is:

B =

Br(r, θ)

Bθ(r, θ)

0

 ≡ B0

a2 + r2 − 2ar cos θ

 −a sin θ

r− a cos θ

0

 ,

and the Hamiltonian system becomes integrable. For further details, we refer the reader to [13].

5. The Maslov Complex Germ Theory in a Short-Wave Approximation

In this section, we give an introduction to the asymptotic methods applied to the linear systems
of partial differential equations in view of the applications to the plasma problems treated in the
previous sections.

5.1. Linear System of Partial Differential Equations with a Small Parameter

Let us view a multidimensional system of linear partial differential equations as an equation,
defined by a matrix whose elements are differential operators. We study the system of equations
for m-vector-column functions u(x) = (u1(x), . . . , um(x))T in n − D space with coordinates x =

(x1, x2, . . . , xn) presented in the form:

ih
∂u
∂t

= Ĥu, (28)

or:

h2 ∂2u
∂t2 = Ĥu. (29)

These systems with first-order (Schrödinger-type equation) and second-order (wave-type
equation) derivatives by t are treated in similar ways in our context. If we move to the stationary case
by replacing the operator ih ∂

∂t by parameter E dual to t, we arrive at the spectral problems:
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Eu = Ĥu, (30)

−E2u = Ĥu. (31)

related to Equations (28) and (29).
Here, Ĥ is the matrix-operator with elements in a form of differential scalar operators:

Ĥ = H(
1
p̂,

2
x, h), H(

1
p̂,

2
x, h) =

∥∥∥∥∥∥∥∥
H11(

1
p̂,

2
x, h) . . . H1m(

1
p̂,

2
x, h)

. . . . . . . . .

Hm1(
1
p̂,

2
x, h) . . . Hmm(

1
p̂,

2
x, h)

∥∥∥∥∥∥∥∥ , p̂ = −ih∇ = −ih
∂

∂x
.

We introduce coordinates p = (p1, . . . , pn) dual to x = (x1, . . . , xn). The complex-valued matrix

H(p, x, h) with components Hij(p, x, h) is called the matrix symbol of the operator Ĥ = H(
1
p̂,

2
x, h).

The componentsHij(p, x, h) in turn can be viewed as scalar symbols of operators Ĥij = Hij(
1
p̂,

2
x, h).

Numbers over x and p̂ denote the order of application for the operator of multiplication by x
and for differential operator p̂ = −ih ∂

∂x . For example, in the one-dimensional case (n = m = 1), if

f (p, x) = p2 sin(x), then f (
1
p̂,

2
x)u(x) = −h2u′′(x) sin x. The variables t and h are treated as parameters.

Remark 4. This brief account covers the basic notions of differential operators (i.e., operators defined by symbols,
which are polynomial in p). For a more complete description of differential and pseudodifferential operators (i.e.,
operators defined by symbols of more general classes than polynomials in p), see [15].

We assume that for the symbolH(p, x, h), the following expansion is true:

H(p, x, h) = H0(p, x) + hH1(p, x) + . . . . (32)

We want to construct some asymptotic solutions to Equations (28), (29). In the semi-classical
theory, the typical form of the ansatz (outside of focal points and caustics) is:

u = A(x, t)e
i
h S(x,t) (33)

and sums of such functions (the so-called WKB ansatz). The function S(x, t) if real defines the oscillatory
(in the limit h→ 0) property of the asymptotics. In the complex case, the imaginary part Im S(x, t) of
S(x, t) should be nonnegative (Im S(x, t) ≥ 0) to define asymptotics that does not tend to infinity as
h→ 0. In points where Im S(x, t) > 0, the asymptotic function is decreasing to zero with infinite order
by h. For example, in the one-dimensional case, if S(x, t) = x− t, we have the plane wave; if S(x, t) =
x − t + i(x − t)2, we have the wave packet for each t centered at point x = t and oscillating and
simultaneously decreasing as the Gaussian function. Vector functionA(x, t) defines the amplitude part
of the asymptotic solution. One can consider series A(x, t, h) = A0(x, t) + hA1(x, t) + h2A2(x, t) + . . .,
but we restrict ourselves only to the principal part of the amplitude, which gives a reasonably accurate
description of the underlying physical process.

Let us discuss the effect of many dimensions in Systems (28) and (29). In order to apply the
approximation methods to the system of equations, we should diagonalize the zero-order matrix
H0(p, x). The matrix H0(p, x) splits the space Cm into the eigenspaces (which obviously depend
on coordinates p, x), and H0 acts on each of them as a multiplication by a scalar. In a similar way,

the operator Ĥ0 = H0(
1
p̂,

2
x) acts as a scalar differential operator on vector functions from these

eigenspaces. Then, for the differential equation with the principal part being a scalar operator,
the method of the complex germ (see [14,15,17]) is applied.
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Reducing in this way the problem to the scalar case, we can obtain then the oscillatory part of
asymptotic approximation, i.e., the function S(x, t), which will be different for each eigenspace.

Then, the amplitude part of the asymptotic solution should be obtained. At this step,
the non-diagonal perturbations would play their part in asymptotics construction.

5.2. Step 1. Factorization to Modes (Diagonalization of the Main SymbolH0(p, x))

Consider the main symbol H0(p, x), and assume that for each (p, x), there exists a real-valued
eigenvalue H(p, x) with multiplicity k for each (p, x) and such that the distance between H(p, x) and
other eigenvalues is greater than some positive number δ. We assume that the corresponding invariant
subspace consists only of eigenvectors (i.e., the matrix H0(x, p) does not have non-trivial Jordan
blocks corresponding to this eigenvalue). Such functions H(p, x) are known as effective Hamiltonians.
They give rise to solutions (of the initial problem (28) or (29)) called modes or terms.

Considering all effective Hamiltonians that satisfy the assumptions given above, we obtain
a solution of the original problem as a sum of modes.

The situation when the multiplicity k changes with (p, x) is called the mode conversion. There is
no general theory for this case, and there are very few examples where this problem has been solved.

Remark 5. For plasma system, we mainly consider the mode corresponding to electromagnetic waves. For this
case, we have k = 2.

We fix the basis χ1(p, x), . . . , χk(p, x) in eigenspace corresponding to eigenvalue H(x, p) such that:

H0χj = Hχj (34)

and assume that all vectors χj(p, x) are smooth with respect to (p, x). We denote χ as the k× n matrix
consisting of vector-column (χ1(p, x), . . . , χk(p, x)). It is well known from linear algebra that there is a
set of eigenvectors (χ∗1(p, x), . . . , χ∗k (p, x)) of adjoint complex-valued matrixH∗0(p, x) with the same
(real-valued) eigenvalue H, such that:

(χj, χ∗i ) = δji, (35)

where the scalar product of vectors a, b ∈ Cm is defined by (a, b) = ∑m
s=1 asbs and δji is the Kronecker

delta. Vectors (χ1(p, x), . . . , χk(p, x)) and (χ∗1(p, x), . . . , χ∗k (p, x)) form a biorthogonal system. We can
also construct the eigenvectors (χ̃1(p, x), . . . , χ̃k(p, x)) of transposed matrix HT

0 (p, x) with the same
eigenvalue H and introduce the k×m matrix χ̃ consisting of vector-column (χ̃1(p, x), . . . , χ̃k(p, x)).
Then, (35) is equivalent to a matrix equality:

χ̃Tχ = Ek, (36)

where Ek is the k× k unit matrix. Note that Condition (35) (or (36)) does not give the unique choice of
the vectors (χ1(p, x), . . . , χk(p, x)), and one can always take any nondegenerate smooth matrix σ(p, x)
and construct the products χσ and χ̃(σ−1)T , which have the same properties as χ and χ̃. In the case,
whenH0(p, x) is self-adjoint, it is natural to choose χ̃ = χ, then the system χ consists of orthonormal
vectors, and the matrix σ should be the unitary one.

Remark 6. There is no mathematical prescription for how to fix a choice of χ except the easiness of the answer
or some physical reasons. For instance, if the matrix H0(p, x) is real, then sometimes (but not always!), it is
possible to choose χ as a real-valued matrix, then σ should be an orthogonal matrix.

Now, we present some solution of the original Equations (28) and (29) in the form:

u = (χ̂ + hη̂)w, χ̂ = χ(
1
p̂,

2
x) (37)



Physics 2019, 1 313

where w is a new unknown k-D column-vector function with components w1, . . . , wk and η̂ is some
pseudodifferential operator that gives just small corrections. The function w should satisfy the
“reduced” equation with diagonal leading term:

ih
∂w
∂t

=
(

H(
1
p̂,

2
x) + hL(

1
p̂,

2
x) + Ô(h2)

)
w, (38)

or:

h2 ∂2w
∂t2 =

(
H(

1
p̂,

2
x)w + hL(

1
p̂,

2
x) + Ô(h2)

)
w. (39)

Here, Ô(h2) is a “correcting” operator, and the k× k matrix symbol L is:

L = (χ∗,H1χ)− i
(

χ∗,
dχ

dt

)
− i

(
χ∗,

n

∑
j=1

[
∂H0

∂pj
− ∂H

∂pj

]
∂χ

∂xj

)
≡ (40)

χ̃TH1χ− iχ̃T dχ

dt
− iχ̃T

n

∑
j=1

[
∂H0

∂pj
− ∂H

∂pj

]
∂χ

∂xj
, (41)

where:
d
dt

=
n

∑
j=1

( ∂H
∂pj

∂

∂xj
− ∂H

∂xj

∂

∂pj

)
(42)

while (·, ·) is a (complex) inner product in m− D complex Euclidean space.
The WKB ansatz for w has the form:

w = a(x, t)e
i
h S(x,t), (43)

where a(x, t) is a vector function of length k. The m–D vector solution of Equation (28) or Equation (29)
is obtained by the action of the operator (37) on w.

Remark on the Choice of Eigenvector System (χ1, . . . , χk)

Let us discuss the question of choosing the matrix χ. As we said above, this choice is not unique,
although the final formula is unique modulo small correction. The various choices of χ simultaneously
change the operator L̂ and in turn the vector-amplitude a. However, the formulas for the amplitude a
could have a quite complicated form especially in hydrodynamic problems. It can happen that it is
difficult to justify the boundedness of a in time t and study the stability problem of the solution. That
is why although the choice of χ is not very important from the theoretical point of view, it is important
in applications.

One of the recipes for how to normalize the matrix χ is the following. Assume that the leading

term of the original system is conservative and that there exists the matrix operator Q(
1
p̂,

2
x, h) such

that the functional: ∫
Rn

(
u, Q(

1
p̂,

2
x, h)u

)
d xn (44)

is preserved in time t. We substitute (37) into this form and obtain:

∫
Rn

(
w, χT(

2
p̂,

1
x, h)Q(

1
p̂,

2
x, h)χ(

1
p̂,

2
x, h)w

)
d xn = const. (45)
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Using the formulas from the operator analysis, we find the principal symbol of the operator

χT(
2
p̂,

1
x)Q(

1
p̂,

2
x, h)χ(

1
p̂,

2
x, h). It is χT(p, x)Q(p, x, 0)χ(p, x), and we require:

χT(p, x)Q(p, x, 0)χ(p, x) = Ek, (46)

where Ek is the k× k unit matrix. This condition could be used to choose the vectors χ1, . . . , χk. We
stress that the last condition does not change if one multiplies the matrix χ by any smooth unitary
matrix U(p, x). Finally we say that the last condition could be used in the case when the full original
system is not conservative; just its principal term can have such a property.

5.3. Step 2. Hamilton–Jacobi Equation, Hamiltonian System, Lagrangian Submanifolds, Complex Germ, and
Transport Equations

5.3.1. Short-Wave Asymptotics with Real Phases: Hamilton–Jacobi Equation, Hamiltonian System,
Lagrangian Manifolds

In order to construct some WKB-type solution of the form of (43) for Equation (38) or (39), one
should find the solution of the Hamilton–Jacobi equation:

∂S
∂t

+ H(∇S(x, t), x) = 0, (47)

if we consider (38), or the equation:(
∂S
∂t

)2
+ H(∇S(x, t), x) = 0, (48)

if we consider (39).
We can move from Equation (39) to (38) by applying the square root operation. Inverting the direction

of the time corresponds to a different choice of the branch of the root. Therefore, we will consider the
problem in terms of (38) and will not explicitly write formulas in the notation of Problem (39).

The theory of Hamilton–Jacobi equations includes the following geometric objects. Every smooth
function S0(x) of x = (x1, . . . , xn) ∈ Rn

x defines the smooth n-dimensional surface Λ = {p = ∂S0/∂x}
in the space R2n

p,x of values (p, x) = (p1, . . . , pn, x1, . . . , xn). This surface is Lagrangian, which means
that the differential form dp ∧ dx = dp1 ∧ dx1 + . . . + dpn ∧ dxn in R2n

p,x restricted to it is zero.
Conversely, every Lagrangian surface Λ (often called the Lagrangian manifold), which is nicely
(i.e., diffeomorphically) projectable on the coordinate space Rn

x , uniquely defines the function S0(x)
such that Λ = {p = ∂S0/∂x}.

Let Λ be the Lagrangian manifold defined by the function S0(x). It can be included in the
one-parameter family of Lagrangian manifolds Λt where for time t = 0, we have Λ0 = Λ, and Λt is
defined by translation of Λ0 by the Hamiltonian system:

ṗ = −Hx, ẋ = −Hp. (49)

In the coordinate notation, this family can be defined as:

Λt = {p = P(α, t), x = X(α, t)}, (50)

where multidimensional parameter α ∈ Rn is the coordinate of Λt and coordinate functions P(α, t),
X(α, t) are the solutions of Hamiltonian Equation (49).

Lagrangian manifold Λ is nicely projectable on Rn
x ; so are Λt, at least for times t sufficiently close

to t0. This means that the Jacobian J(α, t) = det(∂X/∂α) 6= 0. Hence, the unique function S(x, t) can
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be defined satisfying condition Λt = {p = ∂S/∂x} and for which S(x, 0) = S0(x). It can be defined by
the formula:

S(x, t) = S(α(x, t), t), (51)

S(α, t) =
∫ t

0

[
P(α, τ)Ẋ(α, τ)− H(P(α, τ), X(α, τ))

]
dτ + S0(α), (52)

S0(α) ≡ S0(X(α, 0)), Ẋ(α, τ) ≡ ∂X(α, τ)

∂τ
, (53)

where the function α(x, t) is the solution of the equation:

X(α, t) = x, (54)

which is defined because J(α, t) 6= 0. This function is the solution of (47) with initial condition
S(x, 0) = S0(x).

In many physically-important situations, the phase function S(x, t) becomes multivalued after
some period of time when manifolds Λt become not nicely projectable on Rn

x . In this case, the amplitude
function a(x, t) in (43) becomes infinite. This fact is related to the appearance of focal points that can
form curves or surfaces known in geometrical optics as caustics. It does not mean that the solution
becomes infinite. It means that the form of asymptotics (43) becomes inappropriate in the vicinity of
focal points. Analytically, focal points can be described by means of the Jacobian J(α, t) = det(∂X/∂α).
For each focal point α∗ at the time t, we have J(α∗, t) = 0.

Unlike the phase function S(x, t), the Lagrangian manifold almost always exists regardless of
the presence of focal points and caustics. Following Maslov’s method, we should go to (partial)
momentum representation:

w̃ = ã(y, t)e
i
h S̃(y,t), (55)

where y is n-dimensional variable where at the ith position, we have coordinate xi or coordinate pi.
For example, for n = 2, it can be y = (x1, x2), y = (x1, p2), y = (p1, x2), y = (p1, p2). The atlas on
the Lagrangian manifold can be introduced such that for each chart from it, there is coordinate y of
the type defined above for which this chart can be uniquely projected on the space Rn

y of values of y.
Functions S and S̃ corresponding to domains where both x- and y-representation are valid are related
by the Legendre transformation.

From the point of view of classical mechanics, moving from coordinate xi to pi corresponds
to canonical transformation, which is defined by rotation by angle ±π/2 in the plane (pi, xi).
Returning from y-presentation to usual x-presentation is the compensation of this transformation in
quantum or wave mechanics, which according to V. A. Fock [28] (and the ideas of P. Dirac), is defined
by the unitary operator (quantization of canonical transformation) that acts on (55). Rotation by ±π/2
corresponds to the h-Fourier transform, so the unitary operator is its inverse, defined by formula:

w(x, t) =
e−iπ/4
√

2πh

∫
R|I|

e
i
h pI xI w̃(y, t)dpI . (56)

Here, I is the list of increasing integer numbers consisting of indices i for which transition from xi
to pi presentation was made. Number |I| is the length of I. Product pI xI is the dot product of vectors
formed by taking i-components, i ∈ I, from vectors p, x. For example, for n = 3, y = (p1, x2, p3),
we have I = (1, 3), |I| = 2, pI xI = p1x1 + p3x3, dpI = dp1dp3.

Then, some gluing procedure should be applied to functions w corresponding to different charts
of the Lagrangian manifold. This procedure consists of introducing factors by which local functions w
should be multiplied to be compatible in intersections of charts. These factors are defined using the
notion of the Maslov index.
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5.3.2. Short-Wave Asymptotics with Complex Phases: Isotropic Manifolds with the Complex Germ

The use of the WKB method leads to the appearance of the Hamilton–Jacobi equation and the
Hamiltonian system, for which it is required to find complex solutions. Such solutions may not
exist at all. However, given the fact that the solution rapidly decays outside the set of zeros of the
imaginary part of the phase S, we can restrict ourselves to considering an isotropic (a low-dimensional
Lagrangian) manifold, at each point of which there is an n-dimensional complex plane (tangent to an
imagined complex manifold).

In more detail, a manifold is isotropic, if its dimension is less than n, and it has the property that
the restriction of differential form dp ∧ dx to it is equal to zero. The projection of the isotropic manifold
onto Rn

x is the set in the neighborhood of which the asymptotic solution is localized. The function
S in points near this projection will be defined up to the quadratic term with a positive imaginary
part. It means that the asymptotic solution in this case decays as a Gaussian function in the transverse
direction of projection. This allows us to solve Equation (47) with error up to O((Im S)3/2).

The counterpart of the full dimensionality of the Lagrangian submanifold in the isotropic case is
the smooth assignment of some complex n-dimensional plane to each point of the isotropic submanifold
(see Figure 5). This object is called the complex germ (see [14]).

Remark 7. Such structures are called vector bundles. Here, the base space is the isotropic submanifold. The
fiber at each point of the base space here is the n-dimensional complex vector space.

Remark 8. Here, we make some notes about the definition of the complex germ. The space tangent to the phase
space R2n

p,x at the point (p, x) ∈ R2n
p,x is the space R2n

p,x again. We then complexify this tangent spaces at all
points (which gives us the space C2n

p,x at each point (p, x)). Let α be the coordinate in this submanifold. Then, the
complex germ is the smooth assignment rn(α) of the n-dimensional complex subspace of the complexified
tangent space C2n

p,x to each point α on the isotropic submanifold. The complex subspace rn(α) should have the
following properties: (1) it should contain the complexified tangent space to the isotropic submanifold; (2) the
bilinear prolongation of the real form dp ∧ dx to the complex space C2n

p,x should restrict to zero on rn(α); (3)
the sesquilinear prolongation of the real form dp ∧ dx to the complex space C2n

p,x divided by i should restrict
to the nonnegative defined form on rn(α) with complexified tangent space to the isotropic submanifold as its
kernel. Property (1) says that the complex germ over the isotropic submanifold should in some sense extend the
isotropic submanifold to the n-dimensional structure. Property (2) says that C2n

p,x should be zero on rn(α) as in
the Lagrangian case. Property (3) is the geometrical counterpart of the inequality Im S ≥ 0.

The isotropic submanifold with the complex germ should (in the time-dependent case) be
translated by the dynamics of Hamiltonian Equation (49) or (in the stationary case) be invariant
under this translation.

We will be concerned with zero-dimensional isotropic submanifolds in the time-dependent case
(Gaussian wave packets) and with one-dimensional isotropic submanifolds in the time-independent
case (Gaussian beams).

The complex germ mathematical structure is more complicated than the Lagrangian submanifold,
but the dynamics and calculations are much simpler in this case.
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Figure 5. One-dimensional isotropic submanifold with complex planes attached to each point.

The isotropic submanifold is moved by Hamiltonian Equation (49), and the complex germ
dynamics is described by the variational system along trajectory (P(t), X(t)) for n-sized square
matrices B(t), C(t):

Ḃ = −HxpB− HxxC, Ċ = HppB + HpxC, B(0) = B0, C(0) = C0, (57)

where we should put P(t) and X(t) as arguments of Hxp, Hxx, Hpp, Hpx. Matrix B corresponds to
coordinate p, and matrix C corresponds to coordinate x. Then, in order to obtain the dynamics of the

complex germ, we should build the matrix

(
B0

C0

)
of coordinate columns of some n basis vectors of the

complex germ at the initial time t = 0 and solve the variational system, which will give us the basis
vectors of the complex germ for other times.

We want to construct solution w in a form of a Gaussian wave packet, so we put on the function
S(x, t) the initial condition:

S(x, 0) = S0 + p0(x− x0) +
1
2
〈x− x0, B0(x− x0)〉, Im B0 =

1
2i
(B0 − B∗0 ) > 0, C0 = Em (58)

defining the Gaussian packet in the vicinity of the point x0 with momentum p0 and with matrix B0

with a positive defined imaginary part. Value S0 is a real constant. Then, we should find the trajectory
of Hamiltonian Equation (49) with initial conditions x0, p0 and solve variational Equation (57) along
this trajectory with initial conditions C(0) = C0 = En, B(0) = B0, where En is the unit matrix of size n.

We define the phase S in the form:

S(x, t) = S0 +
∫ t

0

(
〈p, Hp〉 − H

)∣∣∣
p=P(τ),x=X(τ)

d τ+

+ P(t)(x− X(t)) +
1
2
〈x− X(t), BC−1(t)(x− X(t))〉. (59)

5.3.3. Transport Equation and the Solution of the Equation on the Eigenspace

The transport equation on the trajectory (P(t), X(t)) for the vector A with k components Aj(t, α)

has the form:
dA
dt
− 1

2
tr

∂2H
∂x∂p

A + iLA = 0, A = A0, (60)

where the arguments of tr ∂2 H
∂x∂p and L are p = P(t), x = X(t). In complex WKB theory, it is sufficient to

solve Equation (60) only by mod O((Im S)1/2)). One can easily integrate Equation (60) if k = 1:

A = A0 exp
∫ t

0

(1
2

tr
∂2H
∂x∂p

− iL
)∣∣∣

p=P(τ),x=X(τ)
d τ. (61)
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For k > 1, Equation (60) is multidimensional and as a rule is not integrated in quadratures.
Expression (16) gives the solution of it in our case of a plasma system.

5.3.4. Construction of the Solution of the Equation

The solution u of Equation (28) corresponding to the eigenspace with eigenvalue H with initial
condition u0(x) = χ(p0, x0)A0e

i
h S(x,0) is given by the expression:

u(x, t) = e
i
h S(x,t)χ

(
P(t), X(t)

) A(t)√
det C(t)

. (62)

The solution of (28) with the initial condition being the superposition of initial conditions
corresponding to different eigenspaces u0 = u0

1 + . . . + uk is given by combination u(x, t) =

u1(x, t), . . . , uk(x, t) of solutions for each eigenspace. We remind that for each eigenspace, functions H
and matrices L will be different; hence, the equations for S and A will be different.

Remark 9. The phase function (59) can be presented as the sum:

S = S1 + S2, (63)

S1 = S0 +
∫ t

0

(
〈p, Hp〉 − H

)∣∣∣
p=P(τ),x=X(τ)

d τ, (64)

S2 = P(t)(x− X(t)) +
1
2
〈x− X(t), BC−1(t)(x− X(t))〉. (65)

The function:

e
i
h S2(x,t) A(t)√

det C(t)
(66)

is the solution of the parabolic Fock–Leontovich equation (see [1]).

5.3.5. Stationary Case

Here, we describe stationary solutions of the Gaussian beam-types corresponding to
one-dimensional isotropic manifolds (i.e., curves). They should be invariant under Hamiltonian
Equation (49), so they should be its trajectories P(t), X(t). The complex germ over this trajectory
should be also invariant under the Hamiltonian system. It means that it is defined by the matrix
function: (

B(t)
C(t)

)
=

(
w1(t) . . . wn−1(t) Ṗ(t)
z1(t) . . . zn−1(t) Ẋ(t)

)
(67)

which should include the derivative of the trajectory radius vector as its column, and it should be
the solution of the variational Equation (57). The matrix −i(C∗B− B∗C) should be nonnegative and
should have rank n− 1 for every t. The last condition is satisfied if it is satisfied for initial time t = 0.
Let A(t) be the solution of transport Equation (60).

We assume that the trajectory is not closed, i.e., it is homeomorphic to real line R. Such a case
takes place in our plasma system. For the case of closed curve questions of invariance of the complex
germ and the functions S and A under, making turnings around the curve should be considered.

Then, we define the phase function S by:

S(x) =

[ ∫ t

0

(
〈p, Hp〉 − H

)∣∣∣
p=P(τ),x=X(τ)

d τ+

+ P(t)(x− X(t)) +
1
2
〈x− X(t), BC−1(t)(x− X(t))〉

]∣∣∣∣∣
t=t(x)

, (68)
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where t(x) is the solution of the equation:

〈Ẋ(t), x− X(t)〉 = 0. (69)

Then, the stationary solution of (30) corresponding to asymptotic spectral value E = H is:

u(x) = e
i
h S(x)χ

(
P(t(x)), X(t(x))

) A(t(x))√
det C(t(x))

. (70)

In the case when there is a focal point t∗, i.e., the point where Ẋ(t∗) = 0, the general theory [10,14,15]
proposes integral representation of the asymptotical solution near this point in a form of the Fourier
transform. There is also more effective representation in the form of the special Airy function [12,29].

6. Conclusions

The paper presented an algorithm for constructing Gaussian wave packets and Gaussian wave
beams with focal points based on the example of plasma physics equations. The algorithm was based
on the Maslov canonical operator in a situation with complex phases (the Maslov complex germ theory)
and on geometric objects, which are curves in phase space, defining oscillations along the “axes” of the
beams, and the complex planes added to them, which determine the decay along the normal direction
to these axes. The former were determined with the help of the trajectories of a suitable Hamiltonian
system and the latter with the help of the variational system. Another necessary object, the amplitude
of the Gaussian packet or beam, was found as a result of the integration of the scalar (or sometimes the
vector) transport equation. Hamiltonian systems, variational equations, and transport equations were
determined by the symbols of the original system of equations under study, that is by matrix-valued
functions defining the differential operators of the original system. The eigenvalues, which are effective
Hamiltonians, determined the corresponding Hamiltonian systems, and the corrections to them (matrix,
in the case when the effective Hamiltonians have multiplicity greater than one) determined the transport
equations (in particular, the Berry phase). For wave packets and wave beams in the absence of focal
points (turning points) on the “axes” of the beams, there were relatively simple effective formulas that
could be easily implemented using Mathematica or MATLAB. The formulas presented contained, in
particular, the solutions obtained using the method of the parabolic Fock–Leontovich equation, while
part of the solution of the latter moved into the complex phase, which is more convenient for the
numerical implementation of formulas for wave Gaussian beams. In addition, the Maslov complex
germ theory allows one to construct asymptotic solutions in situations with focal points (turning points).
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