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Abstract: We consider a finite-size spherical bubble with a nonequilibrium value of the q-field, where
the bubble is immersed in an infinite vacuum with the constant equilibrium value q0 for the q-field
(this q0 has already cancelled an initial cosmological constant). Numerical results are presented for
the time evolution of such a q-bubble with gravity turned off and with gravity turned on. For small
enough bubbles and a q-field energy scale sufficiently below the gravitational energy scale EPlanck,
the vacuum energy of the q-bubble is found to disperse completely. For large enough bubbles and a
finite value of EPlanck, the vacuum energy of the q-bubble disperses only partially and there occurs
gravitational collapse near the bubble center.
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1. Introduction

The energy density of the vacuum, the dark energy, and the cosmological constant are highly
debated topics today, as quantum field theory suggests a typical number that is some 120 orders of
magnitude larger [1,2] than what has been observed [3]. The mismatch is so large and so significant
as to make it the main outstanding problem of modern physics. However, a similar vacuum energy
problem exists in condensed-matter systems, and its solution may provide a hint for the solution of the
cosmological constant problem. In condensed matter, the zero-point energy of the quantum fields is
fully cancelled by the microscopic (atomic) degrees of freedom, if the system is in its ground state. If the
system is slightly out of equilibrium, the vacuum energy is not fully compensated, but its magnitude
is determined by the infrared energy scale rather than by the ultraviolet (atomic) energy scale.

Still, in order to apply this condensed-matter scenario of the cancellation of the vacuum energy
to the quantum vacuum of our Universe, we need to know the proper variables to describe this
quantum vacuum. One example of such a variable is the four-form field strength used by Hawking in
particular [4]. The nonlinear extension of this approach, which goes under the name of q-theory [5–7],
demonstrates the nullification of the vacuum energy density in a full-equilibrium vacuum without
matter present. A small cosmological constant appears if the vacuum is out of equilibrium. Its value is
then determined by infrared physics and is proportional either to the matter content of the Universe or
to the Hubble expansion rate.
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While q-theory solves the main cosmological problem (other realizations of the q variable are
presented in Refs. [8,9] and a one-page review appears as Appendix A in Ref. [10]), the dynamical
process of equilibration of the vacuum towards the full equilibrium is still under investigation.
The previously obtained results [6] concern the decay of an initially homogeneous high-energy state
emerging immediately after the Big Bang. These calculations demonstrated that, with generic initial
conditions, the high-energy state prefers to relax to a de-Sitter vacuum rather than to the Minkowski
vacuum. On the other hand, the possibility of the final decay of the de-Sitter vacuum to the Minkowski
vacuum is under intensive debate. This is because of the special symmetry of de-Sitter spacetime; see,
e.g., Refs. [11,12] and references therein.

One way to circumvent this de-Sitter controversy is to consider the case that the Big Bang
takes place not over the whole of space but only in a finite region of space, which is surrounded
by equilibrium Minkowski vacuum. This possibility is also suggested by condensed-matter
experiments [13], where a hot spot created within the equilibrium state finally relaxes to the full
equilibrium by radiating the extra energy away to infinity.

Concretely, we propose to calculate, in the q-theory framework [5,6], the time evolution of a
finite-size spherical bubble with q 6= q0, which is immersed in an infinite equilibrium vacuum with
q = q0, where q0 has already cancelled an initial cosmological constant Λ. The expectation is that the
interior field q(t, r) relaxes to q0, while the bubble wall (or its remnant) ultimately moves outwards.
However, gravity may hold surprises in store. Remark that our proposed calculation corresponds to
the scenario discussed in the second paragraph of Sec. V A in Ref. [6], which mentioned the possibility
that “the starting nonequilibrium state could, in turn, be obtained by a large perturbation of an
initial equilibrium vacuum.” We emphasize that the calculation of the present article is the first-ever
calculation of the inhomogeneous dynamics of the quantum vacuum in the q-theory framework.

Before we start with this calculation, we have three clarifying comments. The first comment is
that it may be instructive to compare our q-bubble to the vacuum bubble as discussed by Coleman
and collaborators [14–16]. That discussion starts from a classical field theory of a fundamental scalar
field φ(x) with nonderivative interactions. The interactions are, in fact, determined by a potential term
V(φ) in the action. The potential V(φ) is assumed to have various local minima: one or more “false”
vacua φ+,n and the single “true” vacuum φ−, where the “false” vacua have a larger energy density
V(φ+,n) than the value V(φ−) of the “true” vacuum. Coleman’s vacuum bubble, then, corresponds to
a finite-size spherical bubble with “true” vacuum inside and “false” vacuum outside (in other words,
the energy density inside is lower than outside). The dynamic behavior of a single vacuum bubble
is that the bubble expands (cf. Figure 4 in Ref. [14]) with the true-vacuum region increasing but, at a
given finite time, the far-away region remaining in a false-vacuum state. Such a vacuum bubble is
essentially different from our q-bubble which has an infinite equilibrium vacuum with q = q0 outside
(in Coleman’s terminology, “true” q-vacuum outside). In a way, the q-bubble resembles Coleman’s
vacuum bubble with interior and exterior regions switched. It is clear that, already energetically,
the dynamic behavior of the q-bubble will be different from that of Coleman’s vacuum bubble.

The second comment concerns the different role of a fundamental scalar field φ(x) and the
vacuum variable q(x) for the cosmological constant problem. In the fundamental-scalar-field approach,
the nullification of the energy density ε(φ) in the equilibrium vacuum requires fine-tuning [2]. In the
q-field approach, the vacuum is a self-sustained system, which, in equilibrium, automatically acquires a
zero value for the thermodynamic potential ε̃(q) = ε(q)− q dε(q)/dq that enters the Einstein equation
by a cosmological-constant-type term. See, in particular, the discussion of Section 2 in Ref. [8].

The third comment expands on the second and concerns the actual dynamics of the q-field. At first
glance, the dynamical equations used in the present article are identical to the equations of general
relativity coupled to a “scalar” field q(x) with a potential ρV(q) to be defined later. The dynamics of
a fundamental scalar field φ(x) interacting with gravity has been extensively studied, in particular
by Choptuik and collaborators [17–19] (see also Refs. [20,21] for two recent reviews on numerical
relativity). In general, however, the q-field has only locally the property of a scalar field, while it
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globally obeys a conservation law. It is precisely this conservation law that makes the four-form field
strength appropriate for the description of the phenomenology of the quantum vacuum. All this makes
the dynamics of the quantum vacuum essentially different from the dynamics of a fundamental scalar
field. This issue will be discussed further in Section 2.

We, now, turn to the calculation of the time evolution of a q-bubble. After a brief review of the
theory, we, first, consider a q-bubble with gravity effects turned off and, then, with gravity effects
turned on. Throughout, we use natural units with c = h̄ = 1 and take the metric signature (−+++).

2. Theory and Setup

In this article, we use q-theory in the four-form-field-strength realization with explicit derivative
terms of the q-field in the action [22–25]. Specifically, we take the simplest possible theory with the
following action [23]:

S = −
∫
R4

d4x
√
−g

(
R

16πG
+ ε(q) +

1
2

C(q) gαβ (∇α q) (∇β q)
)

, (1a)

ε(q) = σ(q) + Λ,
dσ(q)

dq
6= 0, (1b)

Fαβγδ ≡ ∇[α Aβγδ], Fαβγδ = q
√
−g εαβγδ, (1c)

where g is the determinant of the metric gαβ, R the Ricci curvature scalar, G a gravitational coupling
constant, and A a three-form gauge field with corresponding four-form field strength F ∝ q (see
Refs. [5,6] and further references therein). In Equation (1a), C(q) > 0 and σ(q) are generic even
functions of q. We use the same conventions for the curvature tensors as in Ref. [26]. For the moment,
we have omitted in the integrand on the right-hand side of Equation (1a) the Lagrange density of the
fields of the Standard Model of elementary particle physics.

The Hamilton principle for variations δAαβγ and δgµν of the action (1) produces two field
equations, a generalized Maxwell equation involving dε(q)/dq and the Einstein equation involving a
particular combination of energy-density terms,

ε̃(q) ≡ ε(q)− q
dε(q)

dq
. (2)

These Maxwell-type and Einstein field equations are given by Equations (3) and (5), respectively,
in Ref. [23]. One particular solution has the flat-spacetime Minkowski metric,

gµν(x) = ηµν, (3a)

and the constant nonvanishing q-field,

q(x) = q0 > 0, (3b)

where the equilibrium value q0 gives

ε̃(q0) = ρV(q0) = −PV(q0) = 0, (3c)

with ρV and PV , respectively, the vacuum energy density and vacuum pressure entering the Einstein
equation (see below). Note that the mass dimension of q0 is 2 in the four-form-field-strength realization.
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The solution of the generalized Maxwell equation introduces an integration constant µ and is
given by Equation (4) in Ref. [23]. A particular value for µ is µ0, which corresponds to the constant
equilibrium value q0 of the q-field [obtained from the condition ε̃(q0) = 0] and is explicitly defined by:

µ0 ≡
dε(q)

dq

∣∣∣∣
q=q0

. (4)

The solution of the generalized Maxwell equation now takes the form of a nonlinear Klein–Gordon
equation for the special case of constant C(q),

C(q) = (q0)
−1 . (5)

This nonlinear Klein–Gordon equation then reads [23]:

(q0)
−1� q =

dρV(q)
dq

, (6)

in terms of the vacuum energy density ρV(q) defined by:

ρV(q) ≡ ε(q)− µ0 q, (7)

with the constant µ0 from Equation (4). Precisely, this vacuum energy density ρV(q) enters the Einstein
equation [23],

Rαβ −
1
2

gαβ R = −8πG T (q)
αβ , (8a)

T (q)
αβ = −

(
ρV(q) +

1
2
(q0)

−1∇γ q∇γq
)

gαβ + (q0)
−1∇α q∇β q, (8b)

where Rαβ is the Ricci curvature tensor and T (q)
αβ the energy-momentum tensor of the q-field.

As mentioned in Section 1 and in Ref. [23], the final dynamic equations (6) and (8) are identical to
those of a gravitating fundamental scalar field φ(x) with a potential ρV(φ) from (7) with q replaced
by φ. However, the constant µ0 entering our two dynamic equations via ρV arises as an integration
constant for the solution of an underlying dynamic equation, namely, the generalized Maxwell equation
obtained by variation of the three-form gauge field A in the action. Concretely, the equilibrium value
q0 is found to depend on the cosmological constant Λ from Equation (1b),

q0 = q0(Λ), (9a)

and the same holds for the integration constant µ0 from Equation (4),

µ0 = µ0(Λ) . (9b)

This point will be clarified by an example in the penultimate paragraph of this section.
Remark also that the nonlinear Klein–Gordon Equation (6) only appears for the special case

of constant C(q) and constant G(q) (here, we have taken G(q) = G = constant). The advantage of
considering this simplified case of q-theory is that, if necessary, we may appeal to established numerical
methods [17–21] for a gravitating fundamental scalar field φ(x). But, here, we will only perform an
exploratory numerical analysis, leaving refinements to the future.

Using q0, we introduce the dimensionless coordinates (τ, ρ) for (t, r), the dimensionless function
f (τ, ρ) for q(t, r), the dimensionless constant u0 for µ0, the dimensionless cosmological constant
λ for the cosmological constant Λ, and the dimensionless vacuum energy density rV( f ) for ρV(q).
By abuse of notation, we also have the dimensionless vacuum energy density ε( f ) for the dimensional
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quantity ε(q). Recall that µ0 is the equilibrium value of the “chemical potential” µ(q) ≡ dε(q)/dq
corresponding to the conserved vacuum variable q; see Ref. [5] for further discussion.

In order to be specific, we take the following Ansatz for the dimensionless energy density ε( f )
appearing in the action of Equation (1a):

ε( f ) =
1
2

f 2
(

1
3

f 2 − 1
)
+ λ, (10)

with a dimensionless bare cosmological constant λ ≥ 0 (the case of an arbitrary-sign initial cosmological
constant λ has been considered in Ref. [7]). The equilibrium condition

ε̃( f ) ≡ ε( f )− f
dε( f )

d f
= 0 (11)

gives the following constant equilibrium value f0 of the f -field ( f0 is taken to be positive) and
corresponding “chemical potential” u0:

f0 =

√(
1 +
√

1 + 8 λ
)

/2 = 1 + λ + O(λ2), (12a)

u0 ≡ dε( f )
d f

∣∣∣∣
f= f0

=
1

3
√

2

(
−2 +

√
1 + 8 λ

) √
1 +
√

1 + 8 λ = −1
3
+ λ + O(λ2) . (12b)

The dimensionless gravitating vacuum energy density rV( f ) corresponding to Equation (7) is given by:

rV( f ) ≡ ε( f )− u0 f , (13)

where the numerical value for u0 from Equation (12b) holds for the specific Ansatz (10). At equilibrium,
the function rV( f ) has

rV( f0) = 0, (14a)[
drV( f )

d f

]
f= f0

= 0, (14b)

[
f 2 d2rV( f )

d f d f

]
f= f0

≡ (χ0)
−1 =

1 + 8 λ +
√

1 + 8 λ

2
= 1 + 6 λ + O(λ2), (14c)

where χ0 in Equation (14c) is the dimensionless version of the equilibrium vacuum compressibility [5].
Observe that rV( f ) as defined by Equation (13) has a direct λ dependence from the energy

density (10) and an indirect λ dependence from the equilibrium value (4) of the chemical potential,
explicitly given by Equation (12b). Let us briefly discuss the implications of this indirect λ dependence.
Write the energy density from Equation (10) as

ε( f ; λ) = s( f ) + λ (15a)

and the gravitating energy density from Equation (13) as

rV( f ; λ) = s( f ) + λ− u0(λ) f . (15b)

Now, consider
λ̂ = λ1 + λ2, (16)
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for generic positive λ1 and λ2. It then follows that

ε( f ; λ̂) = ε( f ; λ1) + λ2 . (17a)

But the rV behavior is different,
rV( f ; λ̂) 6= rV( f ; λ1) + λ2, (17b)

simply because of the shift of the q-field equilibrium value q0 if λ1 is changed to λ̂ and the
corresponding shift of the equilibrium chemical potential (4), as shown by the explicit dimensionless
expression (12a). The additive behavior (17a) is what is expected for a fundamental scalar field, but the
behavior (17b) from the composite scalar field q is different. Precisely this nontrivial behavior of ρV(q),
different from the behavior of ε(φ) for a fundamental scalar φ, allows for the natural compensation of
an initial cosmological constant Λ, as mentioned in the second comment of Section 1.

Our numerical calculations will be performed for the case λ = 1 with f0 =
√

2 and u0 =
√

2/3
from Equations (12a) and (12b), respectively. The two vacuum energy densities are shown in Figure 1.

-3 -2 -1 0 1 2 3
f0

1

2

3

4

5

Ε Λ = 1

-3 -2 -1 0 1 2 3
f0

1

2

3

4

5

rV Λ = 1

Figure 1. Vacuum energy densities ε( f ) (on the left) and rV( f ) (on the right) for nonzero cosmological
constant λ = 1. The relevant expression for these vacuum energy densities are given by Equations (10)
and (13), with the constant (12b). The vacuum energy density rV( f ) is the quantity that gravitates.

3. Bubble without Gravity

3.1. Preliminaries

It is relatively easy to get a result for a special case. First, we set:

G = 0, (18)

so that we just have Minkowski spacetime to consider.
Second, we recall from Section 2 that the generalized Maxwell equation [5,6] gives rise to the

nonlinear-Klein–Gordon Equation (6), which reads explicitly:

� q = q0
dρV
dq

, (19)

with the flat-spacetime d’Alembertian � ≡ ηαβ ∂α∂β = −∂2
t +∇2.

Third, introducing spherical coordinates, the q-field of a spherical bubble is given by:

q = q(t, r) . (20)

Fourth, we start from a bubble with essentially qinside = q̂ 6= q0 and qoutside = q0. Outside the
bubble, the q-field has already compensated the initial cosmological constant Λ ≥ 0 (the case of an
arbitrary-sign initial cosmological constant Λ has been considered in Ref. [7]). The question, now,
is how the inside q-field evolves with time.
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3.2. Numerics

The numerical solution will be obtained by use of the dimensionless variables introduced in
Section 2. The partial differential equation (PDE) from Equation (19) for the spherically symmetric
q-field (20) then reads:

∂2
τ f (τ, ρ)− 1

ρ2 ∂ρ

[
ρ2 ∂ρ f (τ, ρ)

]
= −

[
d

d f
rV( f )

]
f= f (τ, ρ)

, (21)

where rV( f ) is given by Equation (13) with Equations (10) and (12b). The initial values at τ = 0 and
the boundary conditions at ρ = 0 and ρ = ∞ are:

f (0, ρ) = fstart(ρ), (22a)

∂τ f (0, ρ) = 0, (22b)

∂ρ f (τ, 0) = 0, (22c)

f (τ, ∞) = f0 . (22d)

Practically, we restrict the ρ range to {ρmin, ρmax} with ρmin ≥ 0 and ρmax < ∞. In addition, we use
the following explicit start function:

fstart(ρ) =


f̂ for ρ ∈ (0, ρ− 1/2),

f̂ + sin4
[(

ρ− ρ + 1/2
)
π/2

] (
f0 − f̂

)
for ρ ∈ [ρ− 1/2, ρ + 1/2],

f0 for ρ ∈ (ρ + 1/2, ∞),

(23a)

where, for now, we set ρ = 1 and take

f̂ = 0 . (23b)

Note that the fourth power of the sine-function in Equation (23) makes for a continuous second-order
derivative at ρ = ρ± 1/2.

The general behavior of the numerical solution is displayed in Figures 2 and 3 and four time-slices
are given in Figure 4. These results show the disappearance of the bubble “domain-wall” and the start
of the outward motion of its remnant. Observe, in Figure 3, both spatial rV oscillations (for example,
at τ = 4) and temporal rV oscillations (for example, at ρ = 0). The temporal rV oscillations were first
observed for a homogeneous context in Ref. [6], but new here is that energy can escape towards the
surrounding unperturbed space.

These numerical results demonstrate that the out-moving rV disturbance has a rapidly decreasing
amplitude. Incidentally, the quality of the numerical solution can be monitored by evaluating the
numerical value of the integral of motion (energy) corresponding to the field equation (21); see also
Section 4.2.
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Figure 2. Numerical solution of the flat-spacetime PDE from Equation (21) for the case of a nonzero
cosmological constant, λ = 1. The initial values are Equation (22a) from the start function (23) with
ρ = 1 and Equation (22b). The boundary conditions are Equation (22c) at ρmin = 0 and Equation
(22d) at ρmax = 4. The f (τ, ρ) field is calculated over a relatively short time interval, τ ∈ [0, 1]. The
corresponding energy density rV is also plotted, using the shift-log function defined by SL(x) ≡
log10(x + 0.01) ∈ [−2, ∞) for x ≥ 0. This vacuum energy density rV [ f ] for λ = 1 is given by Equation
(13) with Equations (10) and (12b). The vacuum energy density rV [ f ] is, in fact, the quantity that would
gravitate if G were nonzero.
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Figure 3. Same as Figure 2, but now evolved over a larger time interval, τ ∈ [0, 4].
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Figure 4. Four time-slices from the numerical solution of Figure 3.
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3.3. Discussion

The numerical results of Section 3.2 show two characteristics of the q-bubble time evolution in the
absence of gravitational effects:

1. initially, the bubble wall gives rise to both out-moving and in-moving disturbances of the
dimensionless vacuum energy density rV , where the in-moving disturbance makes for an
increased energy density at the center;

2. ultimately, there is an out-moving rV disturbance with a rapidly diminishing amplitude
(asymptotically, rV ∼ 1/ρ2 ∼ 1/τ2 from energy conservation).

Even for the simple case of zero gravity, this makes the numerical calculation of large bubbles difficult.
There are, then, two very different scales, namely the bubble radius (ρ � 1) and the width of the
bubble wall (∆ρ ∼ 1).

Remark, finally, that the above two characteristics of the q-bubble dynamics are very different
from those of Coleman’s vacuum bubble, as mentioned already in Section 1. Indeed, Coleman’s
vacuum bubble [14] has no in-moving disturbance and an essentially constant domain-wall profile in
its rest-frame, energy being supplied by the “false” vacuum.

4. Bubble with Gravity

4.1. Preliminaries and Ansätze

From now on, we set:
G = GN , (24)

where GN is Newton’s gravitational coupling constant [3].
The spherically symmetric Ansatz for the metric in Kodama–Schwarzschild coordinates (t, r, θ, φ)

reads [27]:

gαβ =

[
diag

(
−e−2Φ(t, r)

[
1− 2 GN m(t, r)

r

]
,
[

1− 2 GN m(t, r)
r

]−1

, r2, r2 sin2 θ

)]
αβ

(25)

and the spherically symmetric Ansatz for the matter field is simply:

q = q(t, r) . (26)

It is a straightforward exercise to insert these Ansätze into the field equations (6) and (8) from
the action (1). In this way, the reduced nonlinear-Klein–Gordon equation and the reduced Einstein
equations are obtained (these expressions will be given in Section 4.2).

4.2. Dimensionless PDEs

As mentioned in Section 2, specifically in the paragraph above Equation (10), we make all variables
dimensionless by use of q0 > 0, which we now take to have the following numerical value:

q0 ≡ g (G)−1 = g (GN)
−1 ≡ g (EPlanck)

2 ≈ g
(

1.22× 1019 GeV
)2

. (27)

With q0 ≡ (Eq-field)
2, the number g here can be interpreted as a hierarchy factor,

g =
(
Eq-field/EPlanck

)2 . (28)
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Added to our previous dimensionless q-field Ansatz function f (τ, ρ), we now have two
dimensionless metric Ansatz functions, making for a total of three Ansatz functions:{

f (τ, ρ)Φ(τ, ρ) µ(τ, ρ)
}

. (29)

A useful definition is
B(τ, ρ) ≡ 1− 2 µ(τ, ρ)/ρ, (30)

as precisely this combination enters the metric Ansatz (25) by the square bracket factors in gττ and gρρ,
using dimensionless coordinates τ and ρ instead of t and r.

The reduced nonlinear-Klein–Gordon equation corresponds to the following PDE:

e2Φ

B
f̈ − B

1
ρ2 ∂ρ

(
ρ2 f ′

)
+

e2Φ

B

(
Φ̇ +

2 µ̇

ρ B

)
ḟ +

(
B Φ′ +

2 µ′

ρ
− 2 µ

ρ2

)
f ′ = −drV

d f
, (31)

where an overdot stands for differentiation with respect to the dimensionless time coordinate τ and a
prime for differentiation with respect to the dimensionless radial coordinate ρ. The reduced Einstein
equations give the following first-order PDEs:

µ′

ρ2 = 4π g
[

rV + B
1
2
(

f ′
)2

+
e2Φ

B
1
2
(

ḟ
)2
]

, (32a)

µ̇

ρ2 B
= 4π g f ′ ḟ , (32b)

Φ′

ρ
B = 8π g rV − 2 µ′/ρ2, (32c)

and the following second-order PDE:

µ′′

ρ
+

eΦ

ρ
√

B
∂ρ

[
ρ B3/2 e−Φ Φ′

]
+

eΦ

ρ
∂τ

[
eΦ

B2 µ̇

]
= 8π g

{
rV + B

1
2
(

f ′
)2 − e2Φ

B
1
2
(

ḟ
)2
}

. (33)

Note that we have used Equation (32a) to get the expression on the right-hand side of Equation (32c).
The following consistency check holds: the second-order PDE (33) is solved by the solutions of

the first-order PDEs (32) and the second-order PDE (31). It is a well-known fact that the same holds
for the reduced ordinary differential equations (ODEs) of the standard Friedmann–Robertson–Walker
universe. Specifically, the second-order reduced Einstein ODE follows from the first-order reduced
Einstein ODE (a.k.a. the Friedmann equation) by use of the energy-momentum-conservation relations
of the perfect fluid considered. Ultimately, this redundancy of the reduced field equations traces back
to the invariance of the theory under general coordinate transformations; cf. Section 15.1, p. 473 of
Ref. [26].

We can also obtain a useful g-independent relation from Equations (32a) and (32b) in three
steps. First, we extract µ′ from Equation (32a) and take the τ derivative. Second, we extract µ̇ from
Equation (32b) and take the ρ derivative, Third, we equate the two expressions for µ̇′. The obtained
relation is

∂τ

(
ρ2
[

rV + B
1
2
(

f ′
)2

+
e2Φ

B
1
2
(

ḟ
)2
])

= ∂ρ

(
ρ2 B f ′ ḟ

)
, (34)
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which may be interpreted as a current-conservation relation. Indeed, for the setup of our initial-value
problem (with f = f0 = constant for ρ ≥ ρ + 1/2 at τ = 0), the integral of Equation (34) gives the
following conserved energy E:

E =
√

q0

∫ ∞

0
dρ 4πρ2 e, (35a)

e = rV + B
1
2
(

f ′
)2

+
e2Φ

B
1
2
(

ḟ
)2, (35b)

where the equilibrium value q0 of the q variable in the four-form-field-strength realization (1c) has been
used to make lengths and times dimensionless (Section 2). Incidentally, the relation (34) reproduces
the reduced nonlinear-Klein–Gordon equation (31) upon use of (32).

Consistent with the expected de-Sitter behavior m(t, r) ∝ r3 near the center and the expected
Schwarzschild behavior m(t, r) ∼ constant towards spatial infinity, we take the following boundary
conditions on the dimensionless metric function µ(τ, ρ):

µ(τ, 0) = 0, (36a)

∂ρ µ(τ, ∞) = 0. (36b)

For the other metric function Φ(τ, ρ), we take

Φ(τ, 0) = 0, (36c)

∂ρ Φ(τ, ∞) = 0. (36d)

The boundary conditions on f (τ, ρ) have already been given in Equations (22c) and (22d). From the
boundary conditions (36), we find that the reduced Einstein equations (32) and (33), for the case g = 0,
give µ(τ, ρ) = 0 and Φ(τ, ρ) = 0, so that Equation (31) reproduces the flat-spacetime PDE (21).

4.3. Numerics

4.3.1. Numerical Procedure

Finding the numerical solution of the PDEs (31)–(33) is a nontrivial task. In the following local
approach, we are inspired by the discussion of Appendix A.

The coordinates ρ and τ are put on a finite grid with Nρ and Nτ = 2 Nρ points, respectively.
The PDEs (31), (32c) and (33) are then solved with time-derivatives of f and µ replaced by forward
time-differences and the time-derivative of Φ replaced by a backward time-difference.

4.3.2. Numerical Solutions

For the presentation of our numerical results, we will employ time-slice plots (cf. Figure 4) rather
than surface plots (cf. Figures 2 and 3). The various time-slices will be collected in a single plot by
color-coding the different time values.

The numerical solution for g = 0 (Figure 5) can now be compared with the one for g = 1/400
(Figure 6). For the last case, in particular, it has been verified that the numerically obtained functions
f (τ, ρ), µ(τ, ρ), and Φ(τ, ρ) give residuals of the first-order PDEs (32a) and (32b) that drop to zero as
the number of grid points increases.

For somewhat larger g values, a Schwarzschild-type horizon is formed, as the energy density
e becomes large close to the center ρ = 0. This horizon is apparently different from a de-Sitter-type
horizon that arises from a constant vacuum energy density far away from the center; see Appendix B
for a brief discussion of the de-Sitter-type spacetime near the q-bubble origin. With the setup and
boundary conditions from Figure 6, we estimate horizon formation to occur for g & 0.006. The regular
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numerical solution at g = 1/300 is shown in Figure 7. The evolution towards the formation of a
horizon, with B(τ, ρ) from Equation (30) dipping to zero, is illustrated in Figure 8.

For a large bubble, we expect that, from the ingoing rV disturbance (cf. Figures 2 and 3), the rV
peak close to the origin will be higher than the one for a small bubble. This behavior is confirmed by
comparing Figure 9 with Figure 6. The f -panel in Figure 9 also shows that the quantities ( ḟ )2 and
( f ′)2 are large at (τ, ρ) ∼ (1.5, 0), with both terms contributing significantly to the energy density e
close to the center ρ = 0.
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Figure 5. Numerical solution of the PDEs (31)–(33): plots of f (τ, ρ), rV(τ, ρ), µ(τ, ρ), and Φ(τ, ρ) at
different time slices, with τ values given in the legend on the left-hand side. The model parameters are
λ = 1 and g = 0. The initial values are: f (0, ρ) as given by Equation (23) with ρ = 1 and ḟ (0, ρ) = 0.
The metric functions µ(τ, ρ) and Φ(τ, ρ) vanish identically. The vacuum energy density rV is plotted
as log10(rV + 0.01).
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Figure 6. Same as Figure 5, again with λ = 1 but now for g = 0.0025. The initial values are: f (0, ρ)

as given by Equation (23) with ρ = 1, ḟ (0, ρ) = 0, µ(0, ρ) from Equation (32a), and Φ(0, ρ) from
Equation (32c).
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Figure 7. Same as Figure 6, but now for g = 0.0063.
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Figure 9. Same as Figure 6, but now with ρ = 1.2 instead of ρ = 1. Two additional panels show
the metric quantity B(τ, ρ) from Equation (30) and the energy density e(τ, ρ) from Equation (35b).
The energy densities e and rV are plotted using the same scale function log10(x + 0.005) but with
different over-all factors. The rV peak at (τ, ρ) ∼ (1.34, 0) of the ρ = 1.2 solution is significantly larger
than the corresponding peak of the ρ = 1 solution in Figure 6. Similarly, the B dip of the ρ = 1.2
solution is significantly lower than the corresponding dip of the ρ = 1 solution in the B panel of the
middle row of Figure 8.

4.4. Discussion

The numerical results of Section 4.3.2 show that the vacuum energy density of a nonequilibrium
q-bubble embedded in the equilibrium vacuum with q = q0 = constant evolves in a complicated way.
For a sufficiently small q-bubble, part of the vacuum energy density rV of the bubble wall first moves
inwards towards the center and then rapidly disperses (cf. Figures 2 and 3).

The numerical calculations were performed for the case with gravity turned off (G = 0) and
turned on (G > 0). Qualitatively, the main effect of gravity is to give a larger maximum value of the
vacuum energy density at the center ρ = 0 (compare the rV panels of Figure 5 and 6).

If the hierarchy ratio g from Equation (28) is approximately equal to or somewhat above 0.006,
the particular solution develops a Schwarzschild-type horizon near the center ρ = 0 and different
coordinates need to be chosen (cf. Appendix B). We postpone this analysis to a future publication,
as the focus of the present article is on the dispersion of vacuum energy if the Big Bang occurs in a
finite region of space surrounded by equilibrium vacuum (where any form of initial vacuum energy
has already been cancelled [5–7]).

5. Conclusions

In the present article, we have obtained a first glimpse of the inhomogeneous dynamics of the
gravitating vacuum energy density ρV(q) as described by the vacuum variable q originating from a
four-form field strength (earlier work [6,7] considered the time-evolution of spatially-constant q-fields).
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In this new probe of q-theory, we start from a large vacuum energy density in a finite region of space
surrounded by equilibrium vacuum, and follow the time evolution of the vacuum energy density.

Our numerical results show the possibility of obtaining different evolution scenarios depending
on the initial conditions and the parameters of the vacuum energy. These results suggest that there may
be de-Sitter expansion within a finite region of space, gravitational collapse of the vacuum medium
with the formation of a singularity, and formation of cosmological and/or black-hole horizons.

It may also be of interest to study the vacuum structure at the black hole singularity.
The singularity may be smoothened, as the gravitational coupling depends, in general, on the value
of the q variable and gravity may be effectively turned off near the center. We leave this study to a
future investigation.
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Appendix A. Integro-Differential Equations

The role of Φ(τ, ρ) in the PDEs (31)–(33) is rather subtle. From Equation (32c), we have

Φ′ =
8π g ρ rV − 2 µ′/ρ

1− 2 µ/ρ
, (A1)

which can be integrated to give

Φ̂(τ, ρ) =
∫ ρ

0
dρ̃

8π g ρ̃ rV [ f (τ, ρ̃)]− 2 µ′(τ, ρ̃)/ρ̃

1− 2 µ(τ, ρ̃)/ρ̃
, (A2)

where the prime in the numerator of the integrand stands for differentiation with respect to ρ̃. Hence,
Φ̂(τ, ρ) is determined nonlocally by the functions f (τ, ρ̃) and µ(τ, ρ̃) at the same time slice τ.

The PDEs (31) and (33) still involve Φ and its time-derivative Φ̇ [the spatial derivatives Φ′ and Φ′′

can be eliminated by use of Equation (32c)]. Replacing Φ(τ, ρ) by Φ̂(τ, ρ) from Equation (A2), these
two equations become

integro-differential equations solely involving the functions f (τ, ρ) and µ(τ, ρ). Explicitly, these
equations read:

e2Φ̂

B
f̈ − B

1
ρ2 ∂ρ

(
ρ2 f ′

)
+

e2Φ̂

B

(
∂τΦ̂ +

2 µ̇

ρ B

)
ḟ +

(
B Φ̂′ +

2 µ′

ρ
− 2 µ

ρ2

)
f ′ = −drV

d f
, (A3a)

µ′′

ρ
+

eΦ̂

ρ
√

B
∂ρ

[
ρ B3/2 e−Φ̂ Φ̂′

]
+

eΦ̂

ρ
∂τ

[
eΦ̂

B2 µ̇

]
= 8π g

{
rV + B

1
2
(

f ′
)2 − e2Φ̂

B
1
2
(

ḟ
)2
}

, (A3b)

with Φ̂ given by the expression (A2) and ∂τΦ̂ having the τ-derivative pulled inside the ρ̃ integral.

Appendix B. Bubble Interior

The q-bubble setup considered in this article has a start configuration f (0, ρ) determined by
Equation (23) and the further initial condition ḟ (0, ρ) = 0. Then, the reduced field equation (32a) gives
that the metric Ansatz function µ(τ, ρ) behaves near the center as µ(τ, ρ) ∝ ρ3. This behavior of µ

allows for the following definition of the quantity h(τ):

lim
ρ→0

2 µ(τ, ρ)

ρ3 ≡ h2(τ). (A4)
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Near the spacetime origin (ρ = τ = 0) of the q-bubble considered, we have

h2(τ) ∼ h2(0) ≡ h2
0, (A5a)

Φ(0, 0) ∼ 0, (A5b)

rV(0, 0) ∼ rV0 > 0, (A5c)

with constants rV0 and h0. In fact, the reduced field equation (32a) gives

h2
0 = (8π/3) g rV0, (A6)

where g has been defined in Equation (27). The resemblance of Equation (A6) with the spatially flat
Friedmann equation [26] of a universe with constant vacuum energy will become clear later on.

Writing the metric (25) in terms of dimensionless variables gives

ds2 = −e−2Φ(τ, ρ)

[
1− 2 µ(τ, ρ)

ρ

]
dτ2 +

[
1− 2 µ(τ, ρ)

ρ

]−1

dρ2

+ρ2
(

dθ2 + sin2 θ dφ2
)

. (A7)

With the behavior (A4) and (A5), the metric (A7) near the spacetime origin of the q-bubble (ρ = τ = 0)
becomes

ds2
∣∣∣
origin

∼ −
[
1− h2

0 ρ2
]

dτ2 +
[
1− h2

0 ρ2
]−1

dρ2 + ρ2
(

dθ2 + sin2 θ dφ2
)

, (A8)

which corresponds to the metric of de-Sitter spacetime in so-called static coordinates [28–30]. Note that,
if ρ were allowed to be large enough, the metric on the right-hand side of Equation (A8) would display
a coordinate singularity at ρ = 1/h0.

Now, introduce new dimensionless coordinates (denoted by a hat) from the following relations:

exp(h0 τ̂) =
√
(1− h2

0 ρ2)
[

cosh(h0 τ) + sinh(h0 τ)
]
, (A9a)

h0 ẑ =
h0 ρ cos θ√

(1− h2
0 ρ2)

[
cosh(h0 τ) + sinh(h0 τ)

] , (A9b)

h0 ŷ =
h0 ρ sin θ cos φ√

(1− h2
0 ρ2)

[
cosh(h0 τ) + sinh(h0 τ)

] , (A9c)

h0 x̂ =
h0 ρ sin θ sin φ√

(1− h2
0 ρ2)

[
cosh(h0 τ) + sinh(h0 τ)

] . (A9d)

With these new coordinates, the metric (A8) near the spacetime origin of the q-bubble (τ̂ = ẑ = ŷ =

x̂ = 0) becomes

ds2
∣∣∣
origin

∼ −(dτ̂)2 +
[
a(τ̂)

]2 [
(dx̂)2 + (dŷ)2 + (dẑ)2

]
, (A10a)

a(τ̂) ≡ exp(h0 τ̂). (A10b)

Note that the spatially-flat Robertson–Walker metric on the right-hand side of Equation (A10a) with
the scale factor (A10b) no longer has the nontrivial coordinate singularity. From the scale factor a(τ̂) in
Equation (A10b), we obtain (da/dτ̂)/a = h0, so that the quantity h0, which was originally defined by
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Equations (A4) and (A5), can be interpreted as a Hubble constant. The scale factor a(τ̂) of Equation
(A10) displays, for h0 τ̂ � 1, the well-known exponential expansion of de-Sitter spacetime [28–30].

The numerical solution of Figure 6, however, has h0 ≈ 0.14 for τ . 0.4 and does not show the
exponential expansion. Needed is an initial bubble (23) with ρ� 1 (the required order of magnitude
for ρ is 1/h0 ∼ 1/

√
g rV0 ). But there are three problems with such large bubbles. First, as noted in

Section 3.3, the numerics of a large q-bubble are challenging.
Second, the coordinate singularity of Equation (A8) at ρ = 1/h0 suggests that the metric

Ansatz (A7) is inappropriate. Most likely, this problem can be evaded by use of another metric
Ansatz, possibly inspired by Painlevé–Gullstrand coordinates [31–34].

Third, large bubbles may give gravitational collapse close to the center ρ = 0, as the energy
density e from Equation (35b) becomes large at the center. See Figure 2, where the initial (τ ∼ 0)
bubble-wall disturbance of the vacuum energy density rV separates around τ ∼ 0.3 into an outgoing
and ingoing disturbance, the latter giving a peak of rV at ρ = 0 for τ ∼ 1. See also Figure 9, which
shows that the numerical solution with a somewhat larger value of ρ has a significantly larger rV peak
at the origin than the numerical solution of Figure 6.
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