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Abstract: The canonical formulation of general relativity (GR) is based on decomposition space–time
manifold M into R× Σ, where R represents the time, and Σ is the three-dimensional space-like surface.
This decomposition has to preserve the invariance of GR, invariance under general coordinates, and local
Lorentz transformations. These symmetries are associated with conserved currents that are coupled to
gravity. These symmetries are studied on a three dimensional space-like hypersurface Σ embedded in a
four-dimensional space–time manifold. This implies continuous symmetries and conserved currents by
Noether’s theorem on that surface. We construct a three-form Ei ∧ DAi (D represents covariant exterior
derivative) in the phase space (Ea

i , Ai
a) on the surface Σ, and derive an equation of continuity on that

surface, and search for canonical relations and a Lagrangian that correspond to the same equation of
continuity according to the canonical field theory. We find that Σ0a

i is a conjugate momentum of Ai
a and

Σab
i Fi

ab is its energy density. We show that there is conserved spin current that couples to Ai, and show
that we have to include the term FµνiFµνi in GR. Lagrangian, where Fi = DAi, and Ai is complex SO(3)
connection. The term FµνiFµνi includes one variable, Ai, similar to Yang–Mills gauge theory. Finally we
couple the connection Ai to a left-handed spinor field ψ, and find the corresponding beta function.
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1. Introduction

Gravity can be formulated based on gauge theory by gauging the Lorentz group SO(3, 1) [1]. For
this purpose, we need to fix some base space and consider that the Lorentz group SO(3, 1) acts locally on
Lorentz frames which are regarded as a frame bundle over a fixed base space. We can consider this base
space as an arbitrary space–time manifold M with coordinates xµ, and consider the local Lorentz frame
as an element in the tangent frame bundle over M. By that we have two symmetries; invariance under
continuous transformations of local Lorentz frame, SO(3, 1) group, and invariance under diffeomorphism
of the space–time M, which is originally considered as a base space [2].

Since the group SO(3) is a subgroup of SO(3, 1), the Lagrangian of gravity has an internal gauge
symmetry group SO(3). Thus the elements of SO(3) act locally on some spacial Lorentz orthonormal
frames (e1, e2, e3), we consider these frames as a basis of the tangent vector bundle on the three-dimensional
space-like hypersurface Σ. Using some local coordinate system σa, a = 1, 2, 3 on Σ, we expand these
basis vectors into ei = ei

adσa, so defining the gravitational field ei
a with metric gab = δijei

aej
b on Σ. Using

the isomorphism between Lie algebra of SU(2) and that of SO(3), one can regard ei
a also as a local

su(2)-valued one-form. So we have an SU(2) vector bundle with real spin connection ωij [3]. These facts
can be generated into self-dual and anti-self-dual formalism of general relativity (GR) with complex
connection Ai and complex conjugate one-form field Ei.
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This paper proceeds as follows: We start with the four-dimensional (4D) Palatini Lagrangian and
perform a 3 + 1 decomposition based on the decomposition M → R× Σ, where R represents the time,
and Σ is the three-dimensional (3D) space-like surface, thus we specify the Lagrangian part L1(gab) on Σ.
Then we try to show that L1(gab) is independent of time on this surface, we try to prove this fact using the
fact that there are no dynamics in the space-like region of M. After that we use d

dt L1(gab) = 0 to get an
equation of continuity on Σ, and search for canonical relations and Lagrangian that correspond to the same
equation of continuity according to the canonical field theory. We find that Σ0a

i is a conjugate momentum
of Ai

a and Σab
i Fi

ab is its energy density. We obtain a Lagrangian for the connection Ai in 4-manifold M, then
we couple it to a left-handed fermion field and find the beta function.

2. Decomposition Space–Time Manifold M into R× Σ

The formulation of GR based on decomposition space–time manifold M into R× Σ is needed for
expressing the metric of space–time as a solution of an equation for time evolution, such as in the
Hamiltonian formulation. Thus the time evolution is the changing of the geometry of this surface. This
decomposition preserves the continuous symmetries (gauge invariance and diffeomorphism invariance)
of GR and its canonical quantization, so we can use it for the gauge theory of GR [4–7].

We define gravitational field as a one-form eI = eI
µ(x)dxµ that is related with metric gµν(x) on an

arbitrary space–time manifold M by gµν = ηI JeI
µeJ

ν, with spin connection ω I J(x) ∈ Ω1(M, so(3, 1)), where
so(3, 1) is Lie algebra of Lorentz group SO(3, 1). The spin connection defines covariant derivative Dµ that
acts on all fields which have Lorentz indices (I, J, ...):

DµvI = ∂µvI + ω I
µJv

J .

We start with the GR Lagrangian of the form

L(e, ω) = (16πG)−1eµ
I eν

J (Rµν)
I Je, (1)

where
RI J = dω I J + ω I

K ∧ωKJ

is the Riemannian curvature tensor and eµ
I satisfies eI

µeµ
J = δI

J .
By the decomposition M→ R× Σ, we decompose this Lagrangian into

L(e, ω) = (16πG)−1ea
i eb

j (Rab)
ije + (16πG)−1ea

0eb
J (Rab)

0Je + (16πG)−1e0
I ea

J (R0a)
I Je, (2)

where i and j are Lorentz indices for I = i = 1, 2, 3, and a = 1, 2, 3. The part

L1 = (16πG)−1ea
i eb

j (Rab)
ije

has the gauge symmetry of the group SO(3), which is a subgroup of SO(3, 1), it also relates to the geometry
of the surface Σ(σa) under the variation in the direction of Σ(σa) subject to δea

0 = 0, δω
ij
0 = 0, since it

depends only on the metric gab = δijei
aej

b which is defined on Σ(σa), which is intrinsic geometry.
Since (Rab)

ij is an anti-symmetric tensor, we can introduce a new one-form field Ek
c , the Hodge dual

of ei ∧ ej in the internal spin space on the surface Σ(σa); Ei = Ei
adσa, it is called the gravitational electric

field [8,9]
1
2

(
ea

i eb
j − ea

j eb
i

)
= εabcεijkEk

c .
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In self-dual formalism of GR, Ea
i is complex given by [10,11]

Eia =
1
2

εabcPi
I Je

I
beJ

c , with Ei
ab = Σi

ab = Pi
I Je

I
aeJ

b (3)

where Pi
I J is a self-dual projector given by

Pi
I J =

1
2

εi
jk, for I = i, J = j, and Pi

0j = −Pi
j0 =

i
2

δi
j, for I = 0, J = j 6= 0. (4)

For example E1a = 1
2 εabc(e2

be3
c + ie0

be1
c ).

For the Lagrangian part L1 on Σ(σa), we use the first one:

L1 = (16πG)−1Ek
c εabcεijk(Rab)

ije. (5)

The remaining part

L2 = (16πG)−1ea
0eb

J (Rab)
0Je + (16πG)−1e0

I ea
J (R0a)

I Je,

associates with the time evolution under the variation in the normal direction of Σ(σa), it is subject to
δea

i = 0, δω
ij
a = 0, and changes the geometry of the surface Σ(σa) during the time. Dynamics, such as

propagation gab(x)→ gab(x′) in the time-like region (∆x)2 = gµν(x)∆xµ∆xν < 0, and determines how the
surface Σ(σa) is embedded into the 4D manifold M, which is extrinsic geometry. But the surface Σ(σa)

is embedded in a space-like region in M; V1, V2 ∈ TpΣ(σa), g(V1, V2) > 0, so there are no dynamics on
TpΣ(σa). We can see this fact by noting that ∇tgab = 0 (the covariant derivative of the metric is zero), so

dL1(gab)

dt
dt =

∂L1(gab)

∂gab
∇tgabdt = 0.

We will rewrite ∇tgab = 0 as tatb∇tgab = 0, for ta ∈ TpΣt(σa). The formula tatb∇tgab = 0 is more
general than ∇tgab = 0 since there is ∇tgab /∈ Γ (T∗Σt(σa)× T∗Σt(σa)), and so its projection onto TpΣ(σa)

is zero. This case appears in the diffeomorphism maps of Σ(σa) into another space-like surface, as we will
see.

We can study the embedding of Σ(σa) by letting the time derivative of a position vector on its tangent
space be in the direction of the normal to this tangent space TpΣ(σa). We can see this by considering
a position vector ta ∈ TpΣt(σa) that satisfies ṫata = ṫata = 0. Let ṫa ∈ NpΣt(σa), where NpΣt(σa) is the
normal space to Σt(σa) = {t} × Σ(σa), and ṫa = ∇tta is a covariant derivative of ta with respect to the
time t ∈ R ⊂ R× Σ(σa). From ta = gabtb, we obtain ṫa = ġabtb + gab ṫb, so ta ṫa = ta ġabtb + tagab ṫb. Since
ṫa ∈ NpΣt(σa), we have tagab ṫb = 0, thus we get ġabtatb = tatb∇tgab = 0 which means that the points of
M do not expand nor contract covariantly in the space-like TpΣt(σa), but tatb∂tgab 6= 0 is possible.

Therefore, for a diffeomorphism map of Σ(σa) into another space-like surface (consider this as time
evolution), it must be

∇t(gab) /∈ Γ (T∗Σt(σ
a)× T∗Σt(σ

a)) ,

and
∇t(gab) ∈ Γ(N∗Σt(σ

a)× T∗Σt(σ
a))⊕ Γ(N∗Σt(σ

a)× N∗Σt(σ
a)).
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This means for each x, x′ ∈ Σt(σa), the covariant propagation gab(x) → gab(x′) ≡ gab(x) +
ξµ∇µgab(x) does not occur in T∗p Σt(σa)× T∗p Σt(σa), but it occurs in

N∗p Σt(σ
a)× T∗p Σt(σ

a)⊕ N∗p Σt(σ
a)× N∗p Σt(σ

a).

This is a changing in the embedding of Σ(σa) in M. Let ta ∈ T∗p Σt(σa) satisfy (ṫa) = n, where
(·) is matrix notation and n is the normal to Σt(σa). This normal is in the direction of the time, so
it carries one index; n = n0, thus (ṫa) = n0. It must also satisfy (ṫa) /∈ TpΣt(σa), so (gab)(ṫb) = 0.
Using this in (ṫa) = (ġab)(tb) + (gab)(ṫb), we obtain (ṫa) = (ġab)(tb), so we get n0 = (ġab)0btb. Thus we
get n0n0 = n0(ġab)0btb, and by n0n0 = 1, we obtain n0(ġab)0btb = 1. This formula is for determining
(ġab) = ∇t(gab) ∈ Γ(N∗Σt(σa)× T∗Σt(σa)).

Let us suggest a formula for determining (ġab) ∈ Γ(N∗Σt(σa)× T∗Σt(σa)) like

∇tgab = f c
abg0c, f c

ab = f c
ba, tatb f c

ab = 0,

where g0c ∈ Γ(N∗Σt(σa)× T∗Σt(σa)), and gµν = (g00, g0a, gab) is the full metric. Let us write f a
bc using

matrix notation f a, its elements are ( f a)bc = f a
bc. Let f̃a satisfy ( f̃a)bc( f a′)bc = δa′

a . Thus we get the inversion

( f̃c)
ab∇tgab = ( f̃c)

ab( f c′)abg0c′ = δc′
c g0c′ = g0c, (6)

this is obtaining the metric component g0a from ∇tgab; the changing of the metric gab with respect to
the time. Thus if we fix the metric component g00, like g00 = −1, we obtain the map gab(t) → gµν =

(−1, g0a, gab). So we have an immersion Γ(T∗Σ(σa)) → Γ(N∗Σt(σa)× T∗Σt(σa)) ⊂ Γ(T∗M). In another
words, for an immersion M(n) → M(n+1), and under some hypotheses, we can construct a metric on
M(n+1) using the metric on Mn. Our hypothesis here is tatb∇tgab = 0.

First we find the matrices f a then f̃a. The matrices f a are symmetric and satisfy tbtc( f a)bc = t>( f a)t =
0, where the vector t> = (t1, t2, t3)p is the unit vector in TpΣt(σa)), we can write them in a simple form like

f 1 =

 0 0 0
0 cos(θ1) sin(θ1)

0 sin(θ1) − cos(θ1)

 , f 2 =

 cos(θ2) 0 sin(θ2)

0 0 0
sin(θ2) 0 − cos(θ2)

 ,

f 3 =

 cos(θ3) sin(θ3) 0
sin(θ3) − cos(θ3) 0

0 0 0

 ,

the angles θ1, θ2 and θ3 can be determined to satisfy tatb( f c)ab = 0, thus we obtain

tan(θ1) =
t2
3 − t2

2
2t3t2

, tan(θ2) =
t2
3 − t2

1
2t3t1

, tan(θ3) =
t2
2 − t2

1
2t2t1

.
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Therefore the matrices f̃a can be written in the form

f̃1 =

 0 c1 cos(θ3) 0
c1 cos(θ3) 2c1 sin(θ3) sin(θ1)

0 sin(θ1) 0

 , f̃2 =

 −2c1 sin(θ3) c1 cos(θ3) cos(θ3)

c1 cos(θ3) 0 c2 cos(θ1)

cos(θ3) c2 cos(θ1) 2c2 sin(θ1)



f̃3 =

 0 cos(θ3) 0
cos(θ3) −2c3 sin(θ1) c3 cos(θ1)

0 c3 cos(θ1) 0

 ,

the constants c1, c2 and c3 are determined to satisfy

( f̃1)
ab( f 1)ab = ( f̃2)

ab( f 2)ab = ( f̃3)
ab( f 2)ab = 1.

We can consider that as a continuous changing in the embedding of Σt(σa) in M;which is a
diffeomorphism map. Since the Lagrangian L1 depends only on gab while the term L2 depends on
(g00, g0a, gab), thus by the previous discussing we have a map L1(gab)→ L2(g00, g0a, gab) (time evolution),
with g00 = −1, g0a = ( f̃a)bc∇tgbc. As illustrated in the following Figure 1.

Figure 1. Propagation of space-like surface.

Let ` ⊂ Σt1 which propagated to `′ ⊂ Σt1<t<t2 , both surfaces are space-like, but the trajectories of the
propagation p1 → p′1 and p2 → p′2 lie in the time-like region. The length of ` is also increased. Thus, this
means that the 3D metric gab mapped to 4D metric (g00, g0a, gab) by Equation (6), which means the length
`′ is given by

`′2 =

p′2∫
p′1

(
−dtdt + g0adtdσa + gabdσadσb

)
,

which again can be mapped into a space-like surface Σt2 by an isometric map such −dtdt + g0adtdσa +

gabdσadσb = g′a′b′dσa′dσb′ . which results in Figure 2:
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Figure 2. Changing distance between two space-like points after propagation.

`′2 − `2 =

p′2∫
p′1

(−dtdt + g0adtdσa).

The limit `′2 − `2 = 0 corresponds to dt = 0 and dσa = 0, not to −dtdt + g0adtdσa = 0 (with dt 6= 0
and dσa 6= 0). For example, if two particles P1 and P2 exchange photons with wavelength λ = ` ≈ σa

2 − σa
1

in t = t1, then in t = t2 they measure a different wavelength, namely λ + ∆λ = `′. The difference is given
by 2λ∆λ = −λ2 + g0aλ2, where we set dt = dσa = λ. Thus the two particles P1 and P2 measure after a
time dt = λ the difference 2∆λ/λ = −1 + g0a, where g0a is given in Equation (6).

Thus we study the embedding of 3D surface Σt and its changing in 4D manifold M using the 3D
metric gab on Σt and its derivative with respect to the time.

The Lagrangian L1(gab) is a function on the space-like space T∗p Σt(σa), therefore, it is independent of
time, d

dt L1(gab) = 0 on T∗p Σt(σa). We can see this by using the fact

∇t(gab) ∈ Γ(N∗Σt(σ
a)× T∗Σt(σ

a))⊕ Γ(N∗Σt(σ
a)× N∗Σt(σ

a)),

we have

L1(gab(t + dt))− L1(gab(t)) =
d
dt

L1(gab(t))dt =
∂L1(gab)

∂gab
∇t(gab)dt,

which is a function on N∗p Σt(σa) × T∗p Σt(σa) ⊕ N∗p Σt(σa) × N∗p Σt(σa), not on T∗p Σt(σa); which means
there are no dynamics on the space-like region (∆x)2 > 0.

Let us write dt∂tL1(gab) = (Σ(σa), dθ), where (Σ, V) is a projection of V ∈ ∧4T∗p M onto a surface Σ,
the inner product of V with tangent basis in TpΣ, defined below in Equation (17), and θ is three-form in
the phase space (Ei, ωij) on Σ(σa). Thus we write(

Σ(σa), dt ∧ d
dt

θ

)
= dt

d
dt

L1(gab) = 0.

If we write θ as
θ(E, ω, Σt(σ

a)) = (16πG)−1/2εijkEk ∧ Rij, (7)

with Rij = (Rab)
ijdσa ∧ dσb and Ei = Ei

adσa, we obtain(
Σ(σa), dt ∧ d

dt
θ

)
= (16πG)−1/2dt

d
dt
(Ek

c εabcεijk(Rab)
ije)

= (16πG)1/2dt
d
dt

L1 = 0.
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Since θ is three-form on Σ(σa), so dσa ∧ ∂
∂σa θ = 0, if we add it to the last formula, we get(

Σ(σa), dt ∧ ∂

∂t
θ + dσa ∧ ∂

∂σa θ

)
= (Σ(σa), dθ) = 0.

This relates the Lagrangian L1 and θ with this surface. Under arbitrary transformation (t, σa)→ xµ,
the two Lagrangian parts L1 and L2 will mix. Thus dσa = ∂σa

∂xµ dxµ and the basis on Σ transforms as

∂a ∧ ∂b ∧ ∂c →
∂xµ

∂σa
∂xν

∂σb
∂xρ

∂σc ∂µ ∧ ∂ν ∧ ∂ρ. (8)

Therefore, the components of three-form θ transforms as

θabc → θµνρ = θabc
∂σa

∂xµ

∂σb

∂xν

∂σc

∂xρ .

To keep the invariance under this transformation, that is (Σ, dθ) = 0 still holds, we write the three-form
θ in the phase space (Ei, ωij) on M, and let (Σ, dθ) be its projection onto Σ. Therefore we write

θ(E, ω) = (16πG)−1/2εijkEk ∧ Rij, (9)

thus we get three-form θ in the phase space (Ei, ωij) on M, it has internal SO(3) symmetry. Its projection
onto Σt(σa) is

(Σt(σ
a), θ(E, ω)) = (16πG)−1/2Ek

c εabcεijkRij
ab.

We write θ using self-dual formalism (Plebanski formalism) [11] in which the connection Ai is a
three-complex one-form given by

ω I J → Ai = Pi
I Jω

I J , (10)

where Pi
I J is self-dual projector given by Equation (3). The curvature which associates with this connection

is
Fi = dAi + εi

jk Aj ∧ Ak.

On the surface Σt(σa), it is

Fi
ab =

1
2

(
∂b Ai

b − ∂b Ai
a + εi

jk Aj
a Ak

b

)
.

Also
e[aI eb]

J → PI J
i e[aI eb]

J = Eab
i = εabcEic. (11)

Thus we have self-dual plus anti-self-dual projection:

ea
I eb

J R(ω)I J
ab → εabcEiaFi

bc + εabcĒia F̄i
bc, (12)

where Ēia and F̄i
bc are the Hermitian conjugate of Eia and Fi

bc. This projection relates to the decomposition
of Lie algebra of the Lorentz group SO(1, 3) into two copies of Lie algebra of SL(2, R) [12].

We write the components of the curvature as

Fi
ab =

1
2

(
Da Ai

b − Db Ai
a

)
=

1
2

(
∂a Ai

b − ∂b Ai
a + εi

jk Aj
a Ak

b

)
, (13)
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where
Da Ai

b = ∂a Ai
b +

1
2

εi
jk Aj

a Ak
b,

which motivates introducing a notation of the covariant derivative like [7]

DVi = dVi +
1
2

εi
jk Aj ∧Vk,

or
DµVi

ν = ∂µVi
ν +

1
2

εi
jk Aj

µVk
ν = ∂µVi

ν −
i
2

Aj
µ(T

j
A)

ikVk
ν ,

so
Dµ = ∂µ −

i
2

Aj
µ(T

j
A),

where the matrix elements (T j
A)

ik = −iεjik are the elements of the generators T j
A in the adjoint

representation of the group SU(2) [13]. The coupling constant here is g = 1. In general we write
this covariant derivative as

Dµ = ∂µ −
i
2

gAj
µ(T

j
A). (14)

Using the projection in Equation (12), we rewrite θ in the complex phase space (Ea
i , Ai

a) as

θ(E, ω, Σ(σa)) = (16πG)−1/2εabcEicFi
ab(A)ed3σ,

where we take in consideration only the first part, the second is obtained by taking the Hermitian conjugate.
We can write it as three-form on M as done in Equation (9), we obtain

θ(E, A) = (16πG)−1/2Ei ∧ DAi. (15)

Its projection onto Σt(σa) is

(Σt(σ
a), θ) = (16πG)−1/2εabcEiaFi

bc(A),

where Ai is complex SO(3) connection, and Ei is a complex one-form as defined in Equation (11).

3. Equation of Continuity on the Hypersurface Σt(σa)

We have showed that the Lagrangian L1(gab) is independent of time, d
dt L1(gab) = 0 on Σ(σa) since

∇t(gab) /∈ Γ(T∗Σt(σa)× T∗Σt(σa)). This relates to the fact that there are no dynamics in the space-like
TΣt(σa)); the points of M do not expand nor contract covariantly in this region, ∇µta 6= 0. Note that
although ∇µta = 0, but it may be ∂µta 6= 0. We had

∇t(gab) ∈ Γ(N∗Σt(σ
a)× T∗Σt(σ

a))⊕ Γ(N∗Σt(σ
a)× N∗Σt(σ

a)),

which shows that the two parts of the Lagrangian L1 and L2 mix by time evolution. Then we wrote
dt d

dt L1(gab) = 0 as (Σ(σa), dθ) = 0, where θ is three-form in the phase space (Ei, ωij) on M (Equation (7)),
its projection onto Σt(σa) is Equation (17)

(Σt(σ
a), θ(E, ω)) = (16πG)−1/2εijkεabcEi

aRjk
bc(ω).
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In self-dual formalism, we obtained θ(E, A) = (16πG)−1/2Ei ∧ DAi, with

(Σt(σ
a), θ(E, A)) = (16πG)−1/2εabcEiaFi

bc(A).

Our condition (Σ(σa), dθ) = 0 makes sense here because of the decomposition R× Σ and fixing a
coordinate system σa on the hypersurface Σ, this yields to an equation of continuity on this surface. For
this purpose, we take the inner product of the four-form dθ with a tangent basis on the surface Σt(σa) at
an arbitrary point, we get a one-form co-vector (Σ(σa), dθ) in the direction of the normal to this surface at
that point. Then we set (Σ(σa), dθ) = 0, we obtain an equation of continuity on Σt(σa).

Now taking the exterior derivative of Equation (15), we obtain

(16πG)1/2dθ = d
(

Ei ∧ DAi
)
= (DEi) ∧ DAi − Ei ∧ DDAi, (16)

where E0i = 0. The tri-tangent basic on Σt(σa) is ∂a ∧ ∂b ∧ ∂c, we rewrite it as (1/3!)εabc∂a∂b∂c. The
projection of dθ onto this basic is

(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
=
(
(DEi) ∧ DAi, εabc∂a∂b∂c

)
−
(

Ei ∧ DDAi, εabc∂a∂b∂c

)
where (·, ·) is contraction pairing defined by(

Vµνρσdxµ ∧ dxν ∧ dxρ ∧ dxσ, εabc∂a∂b∂c

)
= εabcVµνρσdx[µδν

c δ
ρ
b δ

σ]
a , (17)

where the bracket [....] is anti-symmetrization of the indices. Although DDAi is zero in 4D manifold M,
but the contraction pairing of Ei ∧ DDAi with 3D basis εabc∂a∂b∂c is not zero as we will see, since we do
not sum over the time index µ = 0 as we sum over the spatial indices µ = 1, 2, 3, because we regard dx0 as
normal to the surface Σt(σa).

For cotangent basis {dxµ} and tangent basis {∂a}, this pairing can be defined simply by using inner
product like [14]

(dxµ, ∂a) = δ
µ
a ,

in which we consider dxa = dσa for a = 1, 2, 3, so E0i = 0 regarding to our gauge.
Starting with the first term(

(DEi) ∧ DAi, εabc∂a∂b∂c

)
= εabcDµEνiDρ Ai

σ (dxµ ∧ dxν ∧ dxρ ∧ dxσ, ∂a∂b∂c)

we get

4
(
(DEi) ∧ DAi, εabc∂a∂b∂c

)
=

− εabcDaEbiDc Ai
µdxµ + εabcDaEbiDµ Ai

cdxµ − εabcDaEµiDb Ai
cdxµ + εabcDµEaiDb Ai

cdxµ.

The second term is(
Ei ∧ DDAi, εabc∂a∂b∂c

)
= εabcEµiDνDρ Ai

σ (dxµ ∧ dxν ∧ dxρ ∧ dxσ, ∂a∂b∂c) .
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Doing the same thing, we get

4
(

Ei ∧ DDAi, εabc∂a∂b∂c

)
=

− εabcEaiDbDc Ai
µdxµ + εabcEaiDbDµ Ai

cdxµ − εabcEaiDµDb Ai
cdxµ + εabcEµiDaDb Ai

cdxµ.

Adding the two terms, we obtain

4(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
=

−εabcDaEbiDc Ai
µdxµ + εabcDaEbiDµ Ai

cdxµ − εabcDaEµiDb Ai
cdxµ + εabcDµEaiDb Ai

cdxµ

+εabcEaiDbDc Ai
µdxµ − εabcEaiDbDµ Ai

cdxµ + εabcEaiDµDb Ai
cdxµ − εabcEµiDaDb Ai

cdxµ.

We define the curvature by using the covariant derivative from Equation (13) as

Fi
µc =

1
2

(
Dµ Ai

c − Dc Ai
µ

)
=

1
2

(
∂µ Ai

c − ∂c Ai
µ + gεi

jk Aj
µ Ak

c

)
, (18)

therefore
Fρνi = gρµgνcFi

µc =
1
2

(
Dρ Aνi − Dν Aρi

)
; Dρgµν = 0.

Its Hodge dual on the surface Σ with respect to the coordinates (σa) is

Fai = εabcFi
bc.

Also we define the complex two-form field from Equation (3) as

Σbc
i = Ebc

i = εbcaEai = εabcEai.

Using them in the last formula, we get

4(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
= 2εabc(DaEbi)Fi

µcdxµ − 2(DaEµi)Faidxµ

+ 2(DµEai)Faidxµ + 2Ebc
i DbFi

cµdxµ + 2EaiDµFaidxµ − 2EµiDaFaidxµ.

And using
εabc(DaEbi)Fi

µcdxµ = −εacb(DaEbi)Fi
µcdxµ = −(DaEac

i )Fi
µcdxµ,

we obtain

2(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
=

− (DaEac
i )Fi

µcdxµ − (DaEµi)Faidxµ+ (DµEai)Faidxµ − Ebc
i DbFi

µcdxµ

+EaiDµFaidxµ − EµiDaFaidxµ.

With
−(DaEac

i )Fi
µcdxµ − Ebc

i DbFi
µcdxµ = −Da

(
Eac

i Fi
µcdxµ

)
,

it becomes

2(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
= −Da(Eac

i Fi
µc)dxµ − Da(EµiFai)dxµ + Dµ(EaiFai)dxµ.
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As we suggested before, we let the normal of the surface Σt(σa) be in direction of the time dx0, so(
dθ, εabc∂a∂b∂c

)
is in direction of the time. Therefore we set µ = 0, thus we get

2(16πG)1/2
(

dθ, εabc∂a∂b∂c

)
= −Da(Eac

i Fi
0c)dx0 − 2Da(E0iFai)dx0 + D0(EaiFai)dx0.

The vector
(

dθ, εabc∂a∂b∂c

)
is one-form in the direction of the normal to the surface Σt(σa). It is zero

as we mentioned before, thus we get

−Da(Eac
i Fi

0c)dx0 − Da(E0iFai)dx0 + D0(EaiFai)dx0 = 0,

or
−Da(Eac

i Fi
0c)− Da(E0iFai) + D0(EaiFai) = 0.

We write it as
Da(Eac

i Fi
c0)− Da(E0iFai) + D0(EaiFai) = 0.

The term (EaiFai) is scalar, so D0(EaiFai) = ∂0(EaiFai), the vector Eab
i Fi

b0 is a usual vector field on Σ, it
does not carry a Lorentz index, so Da(Eab

i Fi
b0) = ∂a(Eab

i Fi
b0) and E0i = 0, thus we get

∂a(Eab
i Fi

b0) + ∂0(EaiFai) = 0,

using EaiFai = 1
2 EabiFabi = 1

2 ΣabiFabi

∂a

(
Σab

i Fi
b0

)
+ ∂0

(
1
2

ΣabiFabi
)
= 0. (19)

This equation shows that there is a relation between Σi and Fi in the space (Σi, Fi) on 3 + 1 manifold
R × Σ. Usually this relation is written as Fi = ψi

jΣj + ψ̄i
jΣ̄j. We can find that relation by regarding

this equation as an equation of continuity with respect to a Lagrangian like L(F0ai, DAi) that satisfies
the action principle δS(DAi) = 0 and the invariance under continuous symmetries of GR. Therefore we
regard 1

2 cΣabiFabi as energy density T00, and cΣab
i Fi

b0 as momentum density T0a, where c is constant for
satisfying the units. Then we search for a suitable Lagrangian and Hamiltonian with canonical relations
that correspond to the same continuity equation according to the quantum fields theory, we do this at the
flat-space–time limit and generalize it to an arbitrary curved space–time.

In scalar field φ theory, the Lagrangian is [15]

L(φ, ∂φ) = π∂0φ− H(π, φ),

the conjugate momentum is π = ∂0φ = −∂0φ. The conserved momentum–energy tensor is

T00 = H(π, φ) = π∂0φ− L(φ, ∂µφ) and T0a = Pa = ∂0φ∂aφ = −π∂aφ.

In the flat limit of the space–time, our momentum–energy tensor is

T0a = cΣa
biF0bi = −cΣab

i Fi
0b = cΣab

i Fi
b0,

and
T00 =

1
2

cΣab
i Fi

ab =
1
4

cea
i eb

j Fij
ab, (20)
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comparing it with the momentum ∂0φ∂aφ = −π∂aφ, we conclude that our conjugate momentum is
πbi ∼ −F0bi [16–19].

By considering a Lagrangian of the form L(F0ai, DAi) with corresponding Hamiltonian like
H(πai, DAi) and using the action principle δS(DAi) = 0 and the diffeomorphism invariance on the
surface Σt(σa), we obtain the momentum–energy tensor like [16–18]

T00 = πaiF0ai − L(F0ai, DAi) and T0a = cπbiFabi.

Comparing them with our momentum–energy tensor T00 = 1
2 cΣabiFabi and T0a = cΣa

biF0bi,
we conclude

T0a = πbiFabi = cΣa
biF0bi. (21)

In general, the curvature Fi
µν can be written as [20,21]

Fi
µν = ψi

jΣ
j
µν + ψ′ i jΣ̄

j
µν, (22)

so Σµν
i Fi

µν = ψi
i since Σµν

i Σj
µν = δ

j
i and Σµν

i Σ̄j
µν = 0.

Using Equation (22) in Equation (21), we get

T0a = πbiψ
i
jΣabj + πbiψ

′ i
jΣ̄abj = cΣa

biF0bi,

therefore we set ψ′ i j = 0, so Fi
µν = ψi

jΣ
j
µν, and Σi

µν = (ψ−1)i
jF

j
µν, we obtain

πbiψ
i
jΣabj = −cΣabiF0bi so πbi = c(ψ−1)i

jF0bj = cΣ0bi, (23)

which means that Σ0bi is conjugate momentum of Ai
a. Using it in the Hamiltonian H = T00:

H = πaiF0ai − L(F0ai, DAi) = −cΣ0aiF0ai − L(F0ai, DAi),

then using our energy density 1
2 cΣabiFabi, we get the Lagrangian

L(E, F0ai, DAi) = πaiF0ai − H = −cΣ0aiF0ai − 1
2

cΣabiFabi. (24)

Therefore
L(E, F) = −1

2
c(Σ0aiF0ai + Σ0aiFa0i)− 1

2
cΣabiFabi,

so
L(E, A) = −1

2
cΣµνiFµνi, or L(E, A) = −1

2
cΣµνiFµνi√−gd4x,

where Σi = Ei and Fi are defined in Equations (3) and (18). This Lagrangian has a symmetry of the complex
group SO(3) and the self-dual of Lorentz group SO(3, 1). The contraction is defined by using the metric
gµν = ηI JeI

µeJ
ν. This Lagrangian corresponds to self-dual part of Equation (12). To get the total Lagrangian,

we add the Hermitian conjugate, we obtain Ldual GR(E, A, Ē, Ā) = LLe f t GR(E, A) + LRight GR(Ē, Ā):

Ldual GR(Σ, A, Σ̄, Ā) =
−c
2

Σµν
i Fi

µνe +
−c
2

Σ̄µν
i F̄i

µνe, (25)

the curvature F̄i is the Hermitian conjugate Fi = Pi
I J RI J (10). The Lorentz group is SO(3, 1),

its Lie algebra is reducible and can be decomposed into two copies of the Lie algebra of SU(2):
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SO(3, 1, C) ∼= SO(3, C)Le f t × SO(3, C)Right.

The complex connection Ai = Pi
I Jω

I J takes values in Lie algebra of SO(3, C)Le f t, while its Hermitian
conjugate Āi = P̄i

I J RI J takes values in Lie algebra of SO(3, C)Right. Thus the Lorentz invariance is satisfied
by the uni-variance under the two groups SL(2, R)Le f t and SL(2, R)Right [11,12].

To determine the constant c, we write this Lagrangian in the form

(16πG)−1eµ
I eν

J (Rµν)
I Je,

by using properties of the projection Pi
I J

PI J
i Pi

KL + P̄I J
i P̄i

KL =
1
2
(δI

KδJ
L − δI

LδJ
K), and Pi

I J P̄I J
k = 0, (26)

the Lagrangian (Equation (25)) becomes (−c/2)eµ
I eν

J (Rµν)I Je, thus −c/2 = (16πG)−1. Therefore

Ldual GR(A, Σ, Σ̄, Ā) =
1

16πG
Σµν

i Fi
µνe +

1
16πG

Σ̄µν
i F̄i

µνe, (27)

this Lagrangian is similar to the Plebanisky Lagrangian, but it is not multiplied by the imaginary number i
and does not include the cosmological constant term.

4. Yang–Mills Theory of Gravity

By regarding the local Lorentz symmetry as a gauge symmetry with spin connection ω I J (or Ai) as
gauge fields, we recognize Yang–Mills theory in gravity. But not full gravity, since in the Yang–Mills theory,
the variables are connections and conserved currents, while in the gravity the metric is also variable.
The local Lorentz symmetry generates locally conserved currents, and those currents are coupled to spin
connection ω I J . This makes the local Lorentz symmetry a gauge symmetry with the Lorentz group as a
gauge group. Also, these currents must be conserved and vanish in the vacuum.

From the formula Fi = ψi
jΣj + ψ̄i

jΣ̄j, we can get the inversion Σi = ξ i
jFj + ξ̄ i

j F̄j by inserting it back,
we obtain

ψi
jξ

j
k + ψ̄i

j ξ̄
j
k = δ

j
k and ψi

j ξ̄
j
k + ψ̄i

j ξ̄
j
k = 0.

We can get the equation of motion Σi = ξ i
jFj + ξ̄ i

j F̄j from this Lagrangian (Equation (27)) by adding
terms like

16πGLdual GR(A, Σ, Σ̄, Ā) = Σµν
i Fi

µνe− ψijΣµνiΣj
µνe− ψ′ijΣ̄

µνiΣj
µνe + C.C,

therefore the δL/Σµν
i = 0 and δL/δFi

µν = 0 yields Fi = ψi
jΣj + ψ̄i

jΣ̄j and DΣi = 0. But by using properties

of the self-dual projection from Equation (26), we obtain Σ̄µνiΣj
µν = 0 and ΣµνiΣj

µν = δij, but this does not
change the equations of motion.

But as we will see, if there is a Lorentz current, like the spin current of the spinor field, then δL/δFi
µν 6=

0, therefore to keep DΣi = 0, and to also keep DeI = 0, we add a term like FµνiFµνie. This is done in order

to insert back Σi ∼ Fi in ψijΣµνiΣj
µν into the Lagrangian. Therefore we write

Ldual GR(E, Σ, Σ̄, Ā) = (16πG)−1(Σµν
i Fi

µνe− ψijΣµνiΣj
µν)e + kFµν

i Fi
µνe + ... + C.C,

where k is a constant can relate to a coupling constant of Lorentz current with the spin connection Ai.
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This Lagrangian includes FµνiFi
µνe, Fi is given in Equation (18), similarly to Lagrangian in Yang–Mills

theory with gauge group SO(3), and the self-dual of Lorentz group SO(3, 1). It depends only on the
connection Ai, thus it describes the changing of the local Lorentz basis. Therefore FµνiFi

µνe reads the
invariance only under the local Lorentz transformations. Also, it is a topological invariance, so it allows
the free propagation of spin connection Ai. But by relating Ai with the triad eI , and relating eI with the
metric gµν by gµν = ηI JeI

µeJ
ν, this breaks the free propagation of spin connection Ai as free waves, except

in the background approximation of the metric, the result is gravitational waves. Similarly to the free
electromagnetic field.

By using the properties of self-dual projection, this Lagrangian can be written using the Riemannian
tensor R(ω) as

L =
1

16πG
Re + kR2e + ....

We find the role of the term FµνiFi
µνe by including the interaction of mass-less spinor particles with

gravity. Since they are massless, their energies are small so that their interaction with the gravitational
field eI is weak, but their interaction with spin connection takes place. The interaction term is

ω I J
µ eµ

Kψ̄γKSI Jψe = ω I J
µ Jµ

I Je, (28)

where Jµ
I J = eµ

K JK
I J = eµ

Kψ̄γKSI Jψ is Lorentz current. If we add this term to the Lagrangian

(16πG)−1eµ
I eν

J (Rµν)
I Je,

we get
(16πG)−1eµ

I eν
J (Rµν)

I Je + ω I J
µ Jµ

I Je.

So the equation of motion for ω I J
µ is

−(16πG)−1Dµ(e
µ

[Ie
ν
J]e) + Jµ

I J = 0.

In self-dual formalism, this equation becomes

−(16πG)−1DµΣµνi + Jνi = 0.

These two equations say that the Lorentz current is the source for the gravitational field eI , but this is
not right since the energy is the source for it, also we choose DeI = 0. Thus, these equations do not hold.
But if we use the Lagrangian

L = (16πG)−1Σµν
i Fi

µνe + kFµν
i Fi

µνe + Ai
µ Jµ

i e + C.C, (29)

the equation of motion for Ai becomes

−(16πG)−1Dµ(Σµνie)− 1
2

kDµFµνie + Jνi = 0.

Thus we choose Dµ(Σµνie) = 0 and

− 1
2

kDµFµνi + Jνi = 0. (30)
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The term DµFµνi includes only the spin connection Ai, so the Lorentz current eν
I ψ̄γISiψ contributes as

a source for the spin connection Ai, and so interacts with it. This relate to the fact that we can regard the
local Lorentz symmetry as a gauge group with spin connection ω I J (or Ai) as gauge fields. The Lorentz
current is conserved since

DνDµFµνi =
1
2
[Dν, Dµ]Fµνi = −1

2
εi

jkFj
µνFµνk = 0→ Dν Jνi = 0.

Furthermore, Equation (30) allows us to calculate a Lorentz current for a given curvature Fi
µν, although

the curvatures RI J
µν and Fi

µν are calculated using only the energy–momentum tensor. Although there are
Lorentz currents associated with matter, those currents relate to the local Lorentz symmetry.

We need to prove ∇µRµνρσ = 0 in the vacuum, where Rµνρσ is Riemann curvature tensor, it satisfies
Rµνρσ = −Rνµρσ, Rµνρσ = −Rµνσρ and Rµνρσ = Rρσµν. In the vacuum, we have the equality

Rµν = constant× Rgµν,

where Rµν is a Ricci tensor and R = gµνRµν. This equality is equivalent to another equality [11]:

Rµν = constant× Rgµν ⇔ ∗Rµνρσ = R∗µνρσ,

with Hodge operator
∗Rµνρσ =

1
2

εµν
µ′ν′Rµ′ν′ρσ, R∗µνρσ =

1
2

Rµνρ′σ′ε
ρ′σ′

ρσ,

the anti-symmetric tensor εµνρσ is the volume four-form for metric gµν. Therefore in the vacuum, we have

εµν
µ′ν′Rµ′ν′ρσ = Rµνρ′σ′ε

ρ′σ′
ρσ, so εµνµ′ν′R

µ′ν′
ρσ = Rµν

ρ′σ′ερ′σ′ρσ,

acting by ∇γ on both sides, with ∇γεµνρσ = 0 we get

εµνµ′ν′∇γRµ′ν′
ρσ = ∇γRµν

ρ′σ′ερ′σ′ρσ.

The summing here is over µ′, ν′, ρ′ and σ′, while µ, ν, ρ, σ and γ are fixed. Then multiplying both sides
by εγµνα:

εγµναεµνµ′ν′∇γRµ′ν′
ρσ = εγµνα∇γRµν

ρ′σ′ερ′σ′ρσ.

We note that by summing over γ, µ, ν in εγµνα∇γRµν
ρ′σ′ for each fixed ρ, σ, α, we obtain the Bianchi

identity εγµνα∇γRµν
ρ′σ′ = 0, therefore

εγµναεµνµ′ν′∇γRµ′ν′
ρσ = 0.

It becomes

2(δα
µ′δ

γ
ν′ − δ

γ
µ′δ

α
ν′)∇γRµ′ν′

ρσ = 0→ 2∇γRαγ
ρσ − 2∇γRγα

ρσ = −4∇γRγα
ρσ = 0,

so ∇µRµνρσ = 0 in the vacuum. Therefore the Lorentz current J I J
ν = ∇µRI J

µν = eIρeJσ∇µRµνρσ vanish in
the vacuum. Using the self-dual projection, we find

Ji
ν = ∇µFi

µν = Pi
I J∇µRI J

µν
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also vanish in the vacuum. Therefore this current associates only with matter. We can also prove this by
using the formula Fi = ψi

jΣj + ψ̄i
jΣ̄j, and by setting ψ̄i

j = 0 in the vacuum [11]. Using

(∗d ∗ Fi)µ = ∇νFi
νµ,

with ∗Fi = ψi
j(∗Σj) + ψ̄i

j(∗Σ̄j), and

∗ Σj = −iΣj, ∗ Σ̄j = iΣ̄j, (31)

Hodge operator here is with respect to the metric gµν, we get

∇νFi
νµ = i(∗(−dψi

jΣj + dψ̄i
jΣ̄j))µ.

The first term becomes

d(ψi
jΣj) = d(ψi

jΣj + ψ̄i
jΣ̄j)− d(ψ̄i

jΣ̄j), so d(ψi
jΣj) = dFi − d(ψ̄i

jΣ̄j),

and by Bianchi identity dFi = 0, we obtain d(ψi
jΣj) = −d(ψ̄i

jΣ̄j). Therefore

∇νFi
νµ = i(∗(d(ψ̄i

jΣ̄j) + dψ̄i
jΣ̄j))µ = 2i(∗d(ψ̄i

jΣ̄j))µ = −2i(∗d(ψi
jΣj))µ. (32)

Since ψ̄i
j = 0 in the vacuum, we get ∇νFi

νµ = 0.

Therefore for a Lorentz Ji
µ current that associates with matter, we get

∇νFi
νµ = 2i(∗d(ψ̄i

j)Σ̄j)µ = Ji
µ, so − 2idψ̄i

j ∧ Σ̄j = ∗Ji,

Where we used dΣ̄j = 0 and Ji = Ji
µdxµ, with property of Hodge dual twice operation on p-form V in n

dimensions: ∗ ∗ V = (−1)pq+tV, where q = n− p, and t is the number of negative eigenvalues of the
metric tensor [14]. In our case we have n = 4, p = 3, t = 1.

Same thing we get for ψi
j, (Equation (32)):

∇νFi
νµ = −2i(∗(dψi

j ∧ Σj))µ = Ji
µ, so − 2idψi

j ∧ Σj = ∗Ji.

Therefore
−2i(Dµψi

j)Σ
j
νρdxµ ∧ dxν ∧ dxρ = Jiσεµνρσdxµ ∧ dxν ∧ dxρ/3!,

so
2i(Dµψi

j)Σ
j
νρεµνρσ = Jiσ.

But
Σj

νρενρµσ/3! = (∗Σj)µσ = (−iΣj)µσ,

(we used self-dual properties Equation (31)), we obtain

(Dµψi
j)Σjµν =

Jiν

2× 3!
. (33)
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The quantity 2(Dµψi
j)Σjµν depends on the triads eI , and on spin connection ω I J , while Jiν relates

matter. Therefore by solving this equation for a given Lorentz current Jiσ, we get solutions for eI and
ω I J . But this formula reads only the contributing of Lorentz current in ψi

j, there is a contributing of
cosmological constant and matter in symmetric part of ψ; tr(ψ) = −Λ − 2πGT, where T is trace of
energy-momentum tensor Tµν [12,22]. Since Lorentz current generates local Lorentz transformation, we
expect that Dµψi

j in Equation (33) is anti-symmetric, this distinguishes contributing of Jiσ from those of
cosmological constant and matter. So we write

2(Dµψk)ε
ki

jΣjµν = Jiν, (34)

thus Jiν contributes in anti-symmetric part of ψi
j := ψkεki

j, where ψi is vector field in local Lorentz frame.

Let us write Dµψi = Pi
IK J IK

µ , with Lorentz current J IK
µ = J IK

L eL
µ defined in Equation (28). The

relationship (linear) between J IK
µ and Jiν = Ji

Ie
Iν can be determined by inserting Dµψi = Pi

IK J IK
µ in

Equation (34). It is easier to solve
Dµψi = Pi

IK J IK
µ

in region away from matter where J IK
µ = 0, so we can solve it in background approximation, g ≈ η, thus

ψi → (ψr, ψθ , ψφ) in spherically coordinates. If we assume that the vector field ψr depends only on the
radius r, we get

1
r2 ∂r(r2ψr(r)) = 0→ ψr(r) =

ar

r2 ,

where ar is constant vector. Therefore the contributing of Lorentz current Jiν in the curvature Fi
µν is

Fi
µν :=

1
r2 akεki

jΣ
j
µν,

therefore the contributing of Jiν in F2 is

Fi
µνFµν

i :=
2
r4 a2, with Σµν

i Σj
µν = δ

j
i .

This formula satisfies
∮

S

∥∥∥Fi
µν

∥∥∥ dS = 4π
√

2a2 = constant, it is similar to electric field
∮

S
~E · d~S = Q/ε0.

This is similarity between GR and Yang-Mills theory.

The Lorentz current is not associated only with spinor particles, the Lorentz symmetry for arbitrary
field produces a global conserved Lorentz current like ([15], section 22)

MI JK = x J T IK − xKT I J .

T IK is energy-momentum tensor in flat space–time. Locally we write this as

MµJK = aν(eJ
νTµK − eK

ν TµJ),

where aν is constant, therefore

∇µ MµJK = 0; ∇µeJ
ν = 0, ∇µTµK = 0, TµK = eK

ν Tµν.
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The existence of a conserved spin current Ji
µ that couples to Ai lets us to believe in local Lorentz

symmetry as a gauge group with spin connection ω I J (or Ai) as gauge fields similarly to Yang–Mills theory.

5. Beta Function

We assume that the interaction of mass-less particles with the gravity is dominated by interaction
of their spin current (Lorentz current) with the connection Ai

µ. We can use the Lagrangian FµνiFµνi to
describe the interaction of left-handed fermions with the connection Ai

µ. We choose a representation of
SL(2, C) in which we have Ki = i Ji, where Ki are boost generators and Ji are rotation generators [23]. Our
connection Ai is a one-form complex given by the self-dual projection Ai

µ = Pi
I Jω

I J
µ of the spin connection

ω I J
µ according to the decomposition so(3, 1 : C) = so(3 : C)⊕ so(3 : C) [24]. Therefore

Ai Ji = Re(Ai)Ji + iIm(Ai)Ji = Re(Ai)Ji + Im(Ai)Ki,

or Ai Ji + A′iKi, where Ai and A′i are real.

For simplicity let us choose A′i = γAi, with a constant γ ∈ R. Thus the connection becomes

Ai Ji + A′iKi = Ai Ji + iγAi Ji = Ai
(

Ji + iγJi
)
= AiTi ∈ Ω1(M, sl(2, C)),

with new generators Ti = Ji + iγJi = (1 + iγ) Ji ∈ sl(2, C).
Therefore the coupling of the connection Ai with left-handed spinor field is 1

2 gAi
µeµ

I ψ+σ̄I Tiψe, where
g is coupling constants comes from using the covariant derivative seen in Equation (14). So we write the
fermion-gravity Lagrangian as

L(A, ψ) = ieµ
I ψ+σ̄I∂µψe +

1
4

FµνiFµνie +
1
2

gAi
µeµ

I ψ+σ̄I Tiψe.

Using the metric gµν = ηI JeI
µeJ

ν, we obtain

FµνiFµνi = gµµ′gνν′F
µ′ν′iFµνi = eI

µeIµ′ e
J
νeJν′F

µ′ν′iFµνi.

In background space–time, we have ei
µ(x) = δi

µ + hi
µ(x), so gµν(x) = ηI Jδ

I
µδJ

ν + ..., where η is the
Minkowski metric. Therefore the gravity and spinor Lagrangian approximates to

L(A, ψ) = iψ+σ̄µ∂µψ +
1
4

ηµ′µην′νFµ′ν′iFµνi +
1
2

gAi
µψ+σ̄µTiψ + ....

The remaining term includes the interaction with the fluctuated gravitational field hi
µ(x), this

interaction relates with local invariance under diffeomorphism of M. Let us consider only the part

L(A, ψ) = iψ+σ̄µ∂µψ +
1
4

ηµ′µην′νFµ′ν′iFµνi +
1
2

gAi
µψ+σ̄µTiψ,

which is invariant under local Lorentz transformation, the compatible currents take values in sl(2, C),
thus Ai is coupled to Lorentz currents. By that we have included only the invariance under local Lorentz
transformation and excluded the local invariance under diffeomorphism of M. Thus we describe the GR
using Lorentz frames as vector bundle over basis space M with connection Ai ∈ T∗p M× sl(2, C).

It is similar to the Lagrangian of Yang–Mills theory for spinor field, but with the generators 1
2 Ti =

1
2 (1 + iγ) Ji, so to get results from the usual theory, we just replace the generators Ji with 1

2 (1 + iγ) Ji.
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For example, to get the beta function β(g) = ∂g/∂ln(M) for our Lagrangian, we use the beta function of
Yang–Mills theory for spinor field with symmetry group like SU(N), it is given by [15,25]

β(g) = −
[

11
3

T(A)− 4
3

n f T(R)
]

g3

16π2 + O(g5).

The numbers T(A) and T(R), are given in

Tr(Ja
R Jb

R) = T(R)δab and Tr(Ja
A Jb

A) = T(A)δab,

where Ja
R are generators for the fundamental representation of SU(N) and Ja

A are generators for the
adjoint representation. To get them for our Lagrangian, we have to start with the commutation relation
[Ja, Jb] = i f abc Jc and note that we can multiply both sides by 1

4 (1 + iγ)2 to get[
1
2
(1 + iγ) Ja,

1
2
(1 + iγ) Jb

]
= i

1
2
(1 + iγ) f abc 1

2
(1 + iγ) Jc,

thus we get new anti-symmetric structure constants 1
2 (1 + iγ) f abc, although the new generators are not

hermitian, but this does not violates the methods of deriving the beta function, the necessary thing in
deriving it is keeping T(A), T(R) and f abc constants [15,26,27]. Anyway, we will absorb the modification
factor 1

2 (1 + iγ) into the coupling constant g, so we have SU(2) gauge group with complex coupling
constant like 1

2 (1 + iγ) g. Therefore we obtain

Tr[Ja
R Jb

R] = T(R)δab → Tr
[

1
2
(1 + iγ) Ja

R
1
2
(1 + iγ) Jb

R

]
=

1
4
(1 + iγ)2 T(R)δab

and

Tr[Ja
A Jb

A] = T(A)δab → Tr
[

1
2
(1 + iγ) Ja

A
1
2
(1 + iγ) Jb

A

]
=

1
4
(1 + iγ)2 T(A)δab.

Thus to get beta function for our Lagrangian, we replace T(A) with 1
4 (1 + iγ)2 T(A) and T(R) with

1
4 (1 + iγ)2 T(R), so using this in the beta function

β(g) = −
[

11
3

T(A)− 4
3

n f T(R)
]

g3

16π2 + O(g5),

we get

β(g) = −1
4
(1 + iγ)2

[
11
3

T(A)− 4
3

n f T(R)
]

g3

16π2 + O(g5).

For the group SU(2), we have T(A) = 2 and T(R) = 1
2 , so for n f = 1, we obtain beta function like

β(g) = −5
3
(1 + iγ)2 g3

16π2 + O(g5).

Taking in consideration the first statement we obtain

∂g
∂ln(M)

= −5
3
(1 + iγ)2 g3

16π2 ,
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which can be solved for energy scale M as

g−2(M) =
10

3 · 16π2 (1 + iγ)2 ln
(

M
M0

)
+ g−2(M0).

Usually the coupling constant is real, so for our one, we consider that the interaction strength is
governed by the real part of the coupling constant g, this is

g−2
int (M) =

10
3 · 16π2

(
1− γ2

)
ln
(

M
M0

)
+ g−2

int (M0),

thus the behavior of interaction of the left-fermions with the spin connection Ai according to our
Lagrangian depends on γ, if γ > 1, then β(g) > 0, which means that this interaction becomes stronger as
the energy increases, until breaking the perturbation at some energy scale. It is natural to consider γ > 1
since we expect A′i = Ai

boost > Ai
rotation = Ai in nature; the gravity effects the particles by changing their

energies (like accelerating a particle via a gravitational field) not by changing their angular momentums.
So from A′ = γA, we have γ > 1 for this case.

But when does the case γ > 1; β(g) < 0 appear? it appears when Ai
rotation > Ai

boost, in this case,
the gravity induces a rotation of the inertial frame (the Lorentz frame moves with a particle, or the
Lorentz frame in which the particle has a constant speed) more than changing the energy of that particle
(accelerating). This occurs when there is the smallest distance between two particles which interact by
their gravitational field. At this distance, the velocities of the two particles are constant, so the interaction
by the gravity is dominated by changing their angular momentum, thus A′ > A so γ > 1. This situation
appears in the back holes; which is a confinement of β(g) < 0.

6. Conclusions

We have considered the spacial Lorentz orthonormal basis (e1, e2, e3) as an element in a vector
bundle with real spin connection ωij, which takes values in the Lie algebra of group SO(3) or SU(2). We
considered this vector bundle as a tangent vector bundle on the 3D hypersurface of constant time Σt(σa),
this allowed us to define three-form θ = constant× εijkEi ∧ Rjk in the phase space (Ea

i , ω
ij
a ) on this surface.

By arbitrary transformation of xµ, the three-form θ becomes on M, but (Σ(σa), dθ) = 0 is always satisfied.
By doing the same thing, we obtained the equation (Σ(σa), dθ) = 0 using self-dual and anti-self-dual
formalism. This equation produces an equation of continuity on the hypersurface Σt(σa). We found that
Σ0a

i is a conjugate momentum of Ai
a where Σab

i Fi
ab is its energy density. We saw that we have to include the

term L(DAi)ed4x = (1/4)FµνiFµνied4x in the GR Lagrangian, since there is a conserved spin current that
couples to Ai. This is the similarity between GR and Yang–Mills theory of gauge fields. If we can solve
the GR equations using only spin current, we may consider GR as Yang–Mills theory of gauge fields on a
curved space–time manifold with spin connection Ai as a gauge field.
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