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Abstract: In this paper, we dwell on three issues: (1) revisit the relation between vacuum fluctuations
and radiation reaction in atom-field interactions, an old issue that began in the 1970s and settled in the
1990s with its resolution recorded in monographs; (2) the fluctuation–dissipation relation (FDR) of the
system, pointing out the differences between the conventional form in linear response theory (LRT)
assuming ultra-weak coupling between the system and the bath, and the FDR in an equilibrated final
state, relaxed from the nonequilibrium evolution of an open quantum system; (3) quantum radiation
from an atom interacting with a quantum field: We begin with vacuum fluctuations in the field acting
on the internal degrees of freedom (idf) of an atom, adding to its dynamics a stochastic component
which engenders quantum radiation whose backreaction causes quantum dissipation in the idf of the
atom. We show explicitly how different terms representing these processes appear in the equations of
motion. Then, using the example of a stationary atom, we show how the absence of radiation in this
simple cases is a result of complex cancellations, at a far away observation point, of the interference
between emitted radiation from the atom and the local fluctuations in the free field. In so doing we
point out in Issue 1 that the entity which enters into the duality relation with vacuum fluctuations is
not radiation reaction, which can exist as a classical entity, but quantum dissipation. Finally, regarding
issue 2, we point out for systems with many atoms, the co-existence of a set of correlation-propagation
relations (CPRs) describing how the correlations between the atoms are related to the propagation
of their (retarded non-Markovian) mutual influence manifesting in the quantum field. The CPR is
absolutely crucial in keeping the balance of energy flows between the constituents of the system,
and between the system and its environment. Without the consideration of this additional relation in
tether with the FDR, dynamical self-consistency cannot be sustained. A combination of these two
sets of relations forms a generalized matrix FDR relation that captures the physical essence of the
interaction between an atom and a quantum field at arbitrary coupling strength.

Keywords: vacuum fluctuations; quantum radiation; quantum dissipation; quantum fluctuation–
dissipation relation

1. Introduction

In this paper, we address/readdress several fundamental issues related to the quantum vacuum [1]
in the context of atom-field interactions [2–4] pertaining to quantum radiative processes.

Vacuum fluctuations of a quantum field, described as quantum noise in the environment, impart
a stochastic component in the dynamics of the system, here, the internal degrees of freedom (idf) of an
atom/detector, interacting with a quantum field. Quantum dissipation ensues [5], obeying a quantum
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fluctuation-dissipation relation (FDR) (Note two sets of FDRs are involved. When we address the
vacuum fluctuations vs. radiation reaction, we refer to the FDR of the free environment field (in its
initial state). However, when we compare the FDR in linear response theory vs. nonequilibrium
dynamics, it is the FDR of the system (in its final equilibrium state)) of the field [6–9], on balance with
the quantum noise associated with the vacuum fluctuations in the field. Under specific conditions to
be expounded later, radiation of a quantum nature is emitted from the atom. This paper highlights the
key issues across this spectrum from vacuum fluctuations in a quantum field to stochastic dynamics of
the idf of a moving atom to its emitted quantum radiation. We divide these issues into two groups.

Group A is about the relation of vacuum fluctuation and quantum dissipation, which is often
misconstrued as radiation reaction of classical radiation theory. (1) It is the dissipation in the quantum
dynamics of atomic system’s internal degree of freedom engendered by the vacuum fluctuations of the
environmental field. Vacuum fluctuation is intrinsically quantum in nature while radiation reaction
exists at the classical level. When referring to this dualism, for conceptual clarity, we suggest replacing
the term ‘radiation reaction’ by quantum dissipation, or adding the word ‘quantum’ to it. (2) Vacuum
fluctuations are related to quantum dissipation by a fluctuation-dissipation relation. This relation
does not connect vacuum fluctuations with classical radiation reaction. Vacuum fluctuations can be
viewed (and for Gaussian fields, equated with, by way of the Feynman-Vernon functional identity)
as quantum noise. What spanned two decades of debates (from the early 70s to 90s [10–13]) mixed
with some degree of confusion on this issue stems from the protagonists not recognizing that a distinct
level of structure, namely, the stochastic, is organically tied to the quantum. Many introduced noise
as an ad hoc entity added in by hand to the classical narrative. To avoid confusion it is important
to place each issue under discussion in its appropriate level of theoretical structure. This theme is
discussed in Section 2. Group A issues were already expounded in the work of Johnson and Hu [5,14].
We lay out these issues here for the sake of conceptual clarity, leaving much details to these earlier
work. Here we wish to highlight the FDR in two aspects: (a) showing the differences between FDRs
defined in the context of the nonequilibrium (NEq) dynamics of open quantum systems and FDRs
defined conventionally in linear response theory (LRT). (b) the existence of a FDR for a system strongly
coupled with its environment, here represented by an atom interacting with a quantum field. This is
discussed in Section 3.

Group B issues are (3) non-Markovian effects between two atoms, and (4) the nature and origin of
quantum radiation. On (3) between pairs of atoms, we show the necessity of including a companion
relation, the correlation-propagation relation (CPR) of the field describing how the correlations
between the atoms are related to the propagation of their (retarded non-Markovian) mutual influence
manifesting in the quantum field. It augments the FDR into a set of generalized matrix FDRs which
capture completely the interaction between an atom and a quantum field at arbitrary coupling. On (4)
We focus on how the quantum dynamics of the idf of the atom is related to emitted quantum radiation.
Two noteworthy points are: it is quantum radiation, not classical, and it is emitted radiation, detectable
at the far field zone a distance from the atom, not thermal radiance from a black body, as sensed
by a uniformly accelerated detector (UAD) (the word ‘detector’ is used in the general relativity and
relativistic quantum information community following [15]. It usually refers to a source with internal
degrees of freedom in motion. However, in radiation theory detector usually refers to the receiver
at a distance from the source. In the present context, to avoid confusion, we shall reserve the term
detector for the receiver and refer to the source as the atom, although we may keep the name of a
Unruh-DeWitt [16] detector and refer to a uniformly accelerated atom as UAD) in the Unruh effect.
In fact we shall focus on the simplest possible set up, that of a stationary atom in a quantum field, thus
there is no Unruh effect [15] involved.

Quantum radiation is different by nature and origin (from quantum interference) from classical
radiation, which can be viewed as the emitted quanta in the limiting condition of a coherent state.
Quantum radiation from an accelerated electron under strong external electric field from a high power
laser is described by Schützhold et al. [17,18]. Note the characteristics of quantum radiation from
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an accelerated electron—the photons are created in pairs (squeezed state) whose polarizations are
perfectly correlated, engendering a nonthermal spectrum. They are very different from the Unruh
effect proper, albeit both are quantum in nature. Recently Landulfo, Fulling and Matsas [19] found a
relation between Unruh thermal radiance in, and Larmor radiation emitted by, a uniformly accelerated
charge, the latter can be seen as entirely built from zero-Rindler-energy modes, thus bridging the
quantum and classical. As will be seen below, the conceptual scheme here will be at the level between
the quantum and the semiclassical, namely, stochastic effects of vacuum fluctuations playing the role
of quantum noise, and their backreaction on the idf of the atom. Technically, everything is done at the
quantum field theory level. There is no need to introduce noise or stochasticity. In this paper we shall
restrict our attention to stationary harmonic atoms, known as Unruh-DeWitt detectors in a relativistic
context, not to moving charges.

One way to decipher whether there is quantum radiation is to calculate the stress–energy tensor
of the quantum field. This quantity is of central importance in quantum effects of atom-optical and
opto-mechanical systems such as dynamical Casimir effect [20,21] and quantum field theory in curved
space [22–25]. Since this is a physical quantity defined in all space, if it vanishes then one can safely
conclude there is no emitted radiation. This was done for a proof of the absence of emitted radiation
from a UAD in a two-dimensional (2D) spacetime [26], as first suggested by Grove [27] and investigated
by several groups of authors, e.g., [28–32] (for a brief history of this theme and references in the first
decade of its development, see, e.g., the Introduction of [6], and for the general issues associated with
UAD references [33,34].) However, it is not clear whether emitted quantum radiation exists in the
four-dimensional (4D) case. In [35], based on the perturbative argument for a two-level atom, Unruh
and Wald argued that expected field energy does not increase from the viewpoint of an inertial observer.
More detailed analysis for a harmonic atom with exact, analytical calculations [36,37] showed that an
inertial observer in the far-field region at late times sees a net outward energy flux from the atom at its
retarded position. The followup investigations [38,39] further show that this residual radiated energy
seems to be related to the entanglement resulting from the decomposition of the Minkowski modes of
the field into the Rindler modes in the right and the left wedges. In our companion paper [40], we
wish to offer a different perspective to understand quantum radiation from a uniformly accelerated
atom by tracking down the energy flow with the help of the FDR and CPR. Here, as a prerequisite,
since with a stationary atom, no radiation of any kind is expected, we use this simple fact to illustrate
how the different contributing parts of energy sources add up to cancel each other. It is instructive
to dissect this problem into parts so we can see the quantum and stochastic components of the atom,
the field, and their interplay. We shall present the results of a calculation of the power delivered by
different sources which add up to give us the anticipated result of net-zero energy in the far-field
region. Namely, the emitted energy in the quantum radiation generated by the stochastic component
in the dynamics of the system (the idf of the atom) induced by vacuum fluctuations of the quantum
field is balanced by the vacuum fluctuations at all spatial points far away from the source. This is
presented in Section 5.

2. Theoretical Constructs

It is convenient to address these three aspects: vacuum fluctuations, radiation reaction/quantum
dissipation and quantum radiation using three levels of theories—quantum, stochastic and
semiclassical—as described in [5,41,42]. First, we show the existence of a fluctuation-dissipation
relation linking vacuum fluctuations with quantum dissipation, not classical radiation reaction.
We mention in passing the fundamental difference between thermal radiance in a UAD—the celebrated
Unruh effect [15]—and emitted radiation from a moving charge or atom. We then focus on quantum
radiation of a very different nature and origin from classical (Larmor) radiation—the differences show
up in photon statistics, spectral and angular distributions [17]. Because quantum radiation is weaker
by at least an order of h̄, for its detection [43], all the more one needs to know the particular signatures
of its existence in the midst of classical radiation. We also distinguish between the case of a charge,
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like an electron, and the case of a neutral atom, which in relativistic context is often called a detector.
We work with the so-called Unruh-DeWitt detector [15,16] modeled by a harmonic oscillator.

Classical, Quantum and Stochastic

Classical (Lamor) radiation back-reacts on the moving atom or charge giving rise to classical
radiation reaction, leading to alternation of its state or trajectories. This well-known effect is described
in standard textbooks [44] at the classical level and we urge it to stay at that level. A popular wisdom
purports that vacuum fluctuations are responsible for radiation reaction, thus one can choose to
interpret it either way. This is sometimes used by “dualists” as an example that one can always
find a classical explanation for any quantum phenomena. Convenient as it may sound this folklore
generates unnecessary confusion because these two entities belong to two different worlds—vacuum
fluctuations are quantum in nature but radiation reaction already exists at the classical level. A simple
fact debunks this myth: A charge, be it moving or stationary, feels the effect of vacuum fluctuations,
as would any physical object in all circumstances, but radiation reaction is absent for a uniformly
accelerated (UA) charge. This can be demonstrated explicitly by use of the Abraham–Lorentz–Dirac
equation (e.g., as argued and shown in [14]). We urge saving the term “radiation reaction” for classical
processes, as in classical electromagnetism and gravitation theory, and not using it in a quantum context.
For a quantum system to appear classical, the process of decoherence (a discussion of decoherence
in UAD is given by [45]) is required, and noise in the system’s environment (here the quantum
field) is instrumental in this. Therefore at the interface between the quantum and (semi-) classical
theoretical levels rests the stochastic level. This is well-recognized. The difference is, in conventional
treatments, one often adds a stochastic source, e.g., noise, to the classical equations of motion and
the noise is regarded as a statistical component attached to the classical construct. This may explain
why the aforementioned (misplaced) duality matches (quantum) vacuum fluctuations with (classical)
radiation reaction.

Quantum. Turning to the effects of a purely quantum nature, we wish to bring up three issues:
Issue (1) is quantum dissipation, the reactive effect on the atom due to the backreaction of the vacuum
fluctuations of the quantum field on the atom or charge [5] even when it is at rest. For a moving atom,
issue (2) is the Unruh effect [15] in a uniformly accelerated atom. (3) Quantum radiation, a subtle
entity which is the main focus of this paper.

On Issue 1, the relation between vacuum fluctuations and “radiation reaction”, to avoid the
confusion in mixing up the effects at the classical and the quantum levels we reiterate the suggestion
by Johnson and Hu [5,41] that the term “radiation reaction” when referring to effects at the quantum
level—such as when the physical observables are treated as operators—be called “quantum radiation
reaction” or replaced by quantum dissipation. This quantum dissipative reactive effect, not the classical
radiation reaction, is the part which can be considered on the same footing as vacuum fluctuations,
when one regards them as “two sides of the same coin”. As noticed earlier (e.g., [46,47]) the underlying
reason for this connection is the existence of a fluctuation-dissipation relation between the quantum
fluctuations of the field (the environment) and the quantum reactive dissipation in the internal degree
of freedom of the atom (the system), an ingrained relation of backreaction in quantum open system
dynamics [6,7]. “Fluctuation” refers to the vacuum fluctuations represented by the Hadamard function
(expectation of the anti-commutator of the field) and “dissipation” represented by the retarded Green
function (expectation of the commutators of the field) refers to the reactive effect of the field on the
atom’s idf dynamics.

Stochastic. Usually a FDR manifests at the stochastic level, as pointed out in [5,41], because when
we represent vacuum fluctuations as quantum noise (e.g., using the Feynman–Vernon functional
identity for Gaussian systems) and uses a stochastic equation of motion (Langevin, master or
Fokker–Planck equation) to describe the open system (atom’s idf) we are operating at the stochastic
level between the quantum and the semiclassical. Semiclassical equations of motion are obtained from
averaging over the stochastic distributions. This separation is not academic, the difference is physical.
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Here we show in a quantum operator language the existence of the FDR. There is no need to ‘convert’
the vacuum fluctuations to quantum noise. As was shown in [7] for linear systems, the fluctuations
and dissipation are represented by the Hadamard and retarded Green’s functions.

3. FDR in NEq Dynamics vs. Liner Response Theory

Since the fluctuation-dissipation relation (FDR) is the centerpiece in both sets of issues we
indicated in the Introduction, namely, (A) the duality between vacuum fluctuations and quantum
dissipation/quantum radiation reaction; and (B) the origin and nature of quantum radiation, as a
sum of two parts (shown explicitly in the next section): one purely originating from the stochastic
dynamics of the source (idf of the atom), and the other as the consequence of the interference between
the radiated field from the source and the vacuum fluctuations of the field at the point of detection,
it is useful to present a fuller description of the features, scopes and implications of FDRs.

Whilst FDR is traditionally presented in the context of linear response theory (LRT) [48–53] of
systems in stationary configurations under weak disturbance, we feel that a new perspective of FDR
versed in the context of nonequilibrium (NEq) dynamics is desirable to meet the new challenges of our
time, when real time measurements of experimental results are becoming available which enable a
broader scope in our understanding of the system’s properties. This is the approach we have adopted
in treating a range of problems from atom-field interactions to quantum processes in black holes and
the early universe. (For a glimpse of the scope of problems whose essences FDR can help to capture,
see [21,54] and the Introduction of [8,9].)

3.1. Differences in the Set-Ups and the Main Features

Differences in the set-ups

Conventional FDR under LRT operates under the following assumptions: the system of interest
(i) has been in equilibrium with the bath (say, in the Gibbs state) for a sufficiently long time that
a stationary condition is established, and (ii) is subjected to a weak disturbance and its responses
recorded. By contrast, in the nonequilibrium (NEq) formalism, the system can be in any arbitrary
state, far from the thermal state at the bath temperature β−1 or the equilibrium state the system finally
settles in. Once the initial state of the system and the properties of the bath are given, for any specified
system-bath interaction, we let go of both and let their interaction determine the outcome at late times.
The ensuing dynamical evolution of the system under the influence of fluctuations from the bath can
be captured by different methods in NEq dynamics of open quantum systems. The commonly used
approaches include the quantum Langevin equation [55] (for detector-field systems, see, e.g, [36] and
references therein) or influence functional methods [56] (see [57] and references therein). Fluctuations
in the quantum field lead to quantum dissipation in the atom’s idf. After the system relaxes to a final
equilibrium state their interlocked behavior is captured by the FDR.

Main features: FDR is an emergent relation in NEq

Since in LRT the FDR is formulated in terms of perturbative theory with respect to the equilibrium
state of the system, it holds for all times. In the NEq case, the FDR in a strict sense is not available until
the final equilibrium state is reached.

It might be useful at this point to make this statement: although LRT has a more restricted
specified condition than NEq, they both belong to open system set-ups, which is formally different
from the close system set-up of eigenvalue thermalization. For a depiction of the differences between
the two formulations, see, e.g., the Introduction of [58].
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Weak coupling necessary for LRT, not required of NEq

Weak coupling is assumed in LRT to ensure the weak disturbance and validity of the perturbative
treatment from an otherwise free system dynamics. No detailed knowledge of the system and the
bath is need. Thus, similar to conventional thermodynamics, the formalism can be applied to a wide
class of configurations as long as the aforementioned assumptions are met. For NEq dynamics, if the
system and its coupling with the bath are linear in nature, Gaussian dynamics is exactly solvable for
arbitrarily strong coupling strength as long as it stays within the realm of dynamical stability.

3.2. FDRs in System-Environment Interaction with Finite Coupling

Final equilibrated state not a Gibbs form

In contrast to LRT where the system remains in a thermal state at the bath temperature, in
NEq dynamics, the system undergoes nonequilibrium evolution, and in most cases evolves to a
final equilibrium state. In general, this equilibrium state is not a Gibbs (thermal) state unless
the coupling strength between the system and the bath is vanishingly small. In the open-system
conceptual framework, at finite coupling strength, there is a marked difference between equilibration
and thermalization.

End state temperature in NEq not the same as the bath.

Since in the NEq formalism the final state does not necessarily assume a Gibbs form, the system
temperature, identified from the equilibrated reduced density matrix of the system, is at best ‘effective’,
because it depends on the details of the system and the bath parameters, far from being universal.
Only in the vanishing coupling limit will the reduced system’s temperature approach the initial
temperature of the bath. However, the bath has evolved away from its initial thermal configuration,
albeit the difference is not so significant if the system has fewer degrees of freedom. Thus, only in
this limit, where LRT operates, the system temperature, synonymous to the bath temperature, is
independent of the system and the bath.

Different proportionality factor

In LRT, the proportionality factor coth βκ/2 in FDR depends on the system/bath temperature,
while in the NEq formalism this factor depends on the initial temperature of the bath, which in general
is not equal to the effective temperature of the final equilibrium state of the system, nor the temperature
of the bath, identified in its later evolution.

3.3. FDR in a Dynamical Setting

In LRT, the FDR plays a rather passive, spectator role, relating the weak response of the system to
an external agent’s disturbance. By contrast, in the NEQ formalism, FDR has a dynamical significance
in that it ensures that the energy flow into the reduced system via the quantum fluctuations of
the environment is balanced by the energy flow dispersed back to the environment in the form of
quantum radiation. This energy rate or power balance shows how the FDR regulates the environment’s
fluctuations and the system’s dissipation in a dynamical way. It also signifies the existence of an
equilibrium state in this case.

In summary, owing to the requirement of self-consistency in the dynamics of the system and
the bath, in the NEq theory the FDR at finite coupling strength cannot be given in an ad hoc manner.
Existence of the FDR is conditional upon the system reaching equilibrium, which is not known a priori,
but determined by the dynamics of the reduced system. Beside, At finite coupling strength if it exists,
this equilibrium state is not by default the Gibbs thermal state.
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4. Correlation-Propagation Relations (CPR) and Non-Markovian Mutual Influence

In the case that the system contains spatially-separated constituents, the FDR can be generalized to
include the correlation-propagation relations (CPR) between the constituents. The quantum radiation
coming from any constituent will propagate along the null cone reaching the other constituents,
modifying their dynamics, and in turn affecting the ensuing radiations from each of them. This process
will continue to multiply and reverberate, interlacing the constituents until the overall dynamics
of the system finally settles down to equilibrium. This implies several important features: (1) any
influence received by any one constituent depends on the state of all other constituents’ motions at
earlier moments. This history-dependent influence is non-Markovian; (2) the retarded kernel of the
environment describing the quantum radiation between constituents is connected to the correlation
between the quantum fluctuations of the environment at the locations of the constituents; (3) The effect
on the motion of each constituent due to the non-Markovian influence will then be nontrivially
correlated with the action of the local quantum fluctuations of the environment. These features
self-organize the motion of all constituents involved in accord at late times, and thus allow an emergent
relation between the constituents. The CPR is absolutely crucial in keeping the balance of energy flows
between the constituents of the system, and between the system and its environment. Without the
consideration of this additional relation in tether with the FDR, dynamical self-consistency cannot
be sustained. A combination of these two sets of relations forms a generalized matrix FDR relation.
For further details on this point see [8,9].

5. Quantum Radiation from an Atom in 4D Minkowski Spacetime

We now present a calculation to show the relation between vacuum fluctuations, in the form of
quantum noise, and quantum radiation and the role played by the FDR. Consider a static Unruh–DeWitt
detector, whose internal degree of freedom (idf) is modeled by a simple harmonic oscillator, coupled to
a massless scalar field (a note on the difference between an oscillator bath and a field bath with regard
to quantum radiation. In the case of a bath made of harmonic oscillators, the system will transfer
its energy to the bath through its coupling to the bath constituents. When the bath has an infinite
number of constituents, the energy transferred from the system to the bath goes one way and does
not return for a long, essentially infinite (Poincare) time. This is the dissipative effect in the system’s
dynamics. If the bath oscillators occupy definite spatial points, e.g., forming a three-dimensional
(3D) grid, and are coupled, then those closest to the atom will absorb the energy from the atom, and
this energy will be transferred to the next closest neighbors spreading outwards. An observer at a
finite distance from the atom will report on some of the bath oscillators getting excited when they
absorb the energy and getting de-excited when the energy is transferred out. In this sense she see a
(elastic) wave pattern of energy propagating away from the source, a situation resembling the quantum
radiation from an atom in a field bath). We shall call this a harmonic atom, or simply the atom, to avoid
confusion with a detector placed at a distance to measure emitted radiation. The field is initially in its
thermal state, but the atom can assume any state. We assume the initial state of the total system is in a
product form. Since such a prepared initial state is usually not an energy eigenstate of the combined
atom-field system, there will be energy fluctuations and exchanges between the atom and the field.
The field fluctuations will drive the idf of the atom into random motion, which in turn emits quantum
radiation to the surrounding. Similar considerations have been implemented in the context of the
moving mirror/dynamical Casimir effect problem [59–63]. However, from the perspective of energy
conservation, in particular if the field is initially in its vacuum state, then there is no energy reservoir
that can sustain such radiated energy. Thus, we expect that there is no quantum radiation from a
stationary atom. We shall reveal the energy budget of such a system and the role the FDRs play to
balance the budget.

Earlier in [8,9,58], we have studied the mechanism of energy flow, or power balance, from the
viewpoint of the atom. There, we find that the reactive force from quantum radiation counters the
motion of the atoms’ idf, driven by quantum fluctuations of the field. As the idfs gradually settle
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down, the system reaching an equilibrium state, the energy flow funneled in from the field fluctuations
is balanced by the dissipated energy flow from the idf of the atom due to the frictional reactive force.
The FDRs of the field and the atom ensure this balance. Here, focusing on the field, we explain how the
energy balance can be reached even though no apparent conduit seems to exist to balance the radiated
energy, thus highlighting the role of the FDRs in this ‘arrangement’.

5.1. Quantum Langevin Equation

From the simultaneous set of Heisenberg equations of motion of the internal degree of freedom Q̂
of the harmonic atom moving along a prescribed trajectory z(t) and the massless scalar field φ̂ in 1 + 3
unbounded Minkowski space,

d2

dt2 Q̂(t) + ω2
0 Q̂(t) =

e
m

φ̂(z, t) , (1)( ∂2

∂t2 −∇
2
)

φ̂(x, t) = e Q̂(t) δ(3)(x− z) , (2)

we find the formal solution of the field operator as

φ̂(x, t) = φ̂0,h(x, t) + e
∫

d4x′ G(φ)
0,R(x, x′) Q̂(t′) δ(3)(x′ − z′) , (3)

in which e is the coupling constant, z′ = z(t′), and φ̂0,h(x, t) is the homogeneous solution to the wave

Equation (2). The retarded Green’s function G(φ)
0,R(xµ, x′µ) of the free field, denoted by a subscript 0 to

distinguish it from the interacting case, satisfies

( ∂2

∂t2 −∇
2
)

G(φ)
0,R(x, x′) = δ(4)(x− x′) , with xµ = (t, x) . (4)

Equation (3) clearly shows that the total field at the observation point x comprises of the vacuum
fluctuations of the free field and the radiation field produced by the quantum dynamics of the atom
(further explanation later).

Putting (3) back to (1), we arrive at

d2

dt2 Q̂(t) + ω2
0 Q̂(t) =

e
m

φ̂0,h(z, t) +
e2

m

∫
dt′ G(φ)

0,R(z, t; z′, t′) Q̂(t′) . (5)

On the right hand side of this equation we see two source terms: The first term depicts vacuum
field fluctuations φ̂0,h(t, z) at the location z of the atom. It will induce stochastic motion in the internal
degree of freedom of the atom. The second term contributing a nonlocal action in the equation of
motion of the Q̂ operator accounts for radiation from the atom. When the configuration involves only
a single atom in the massless scalar field, this nonlocal term reduces to two local contributions: one
accounts for frequency renormalization and the other is a local damping term, such that (5) takes a
rather simple form

d2

dt2 Q̂(t) + 2γ
d
dt

Q̂(t) + ω2 Q̂(t) =
e
m

φ̂0,h(z, t) , (6)

where γ = e2/8πm is the damping constant, whose inverse gives the time scale of relaxation, and ω

is the physical frequency, which includes the bare frequency ω0 and the renormalization correction.
Thus, the quantum radiation from the atom will introduce damping in the equation of motion of the
idf of the atom, and this is the reactive force of quantum radiation we referred to earlier. Equation (6)
then says that the internal degree of freedom of the atom essentially behaves like a driven damped
oscillator [58,64]—driven by the quantum fluctuations of the field, but is damped by the reactive force
of quantum radiation.
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The solution to (5) or (6) is given by

Q̂(t) = Q̂h(t) +
e
m

∫ t

0
ds G(Q)

R (t− s) φ̂0,h(zs, s) . (7)

with zs = z(s). Here, the homogeneous part Q̂h(t) satisfies

d2

dt2 Q̂h(t) + ω2
0 Q̂h(t)−

e2

m

∫ t

0
dt′ G(φ)

0,R(z, t; z′, t′) Q̂h(t′) =
d2

dt2 Q̂h(t) + 2γ
d
dt

Q̂h + ω2 Q̂h(t) = 0 . (8)

The corresponding Green’s function G(Q)
R (t− t′) for the internal degree of freedom of the atom

has a Fourier transform of the form

G(Q)
R (κ) =

1
−κ2 + ω− i 2γ κ

=
1

−κ2 + ω2
0 −

e2

m
G(φ)

0,R(0; κ)

, (9)

where the Fourier transformation of a function f (t) is defined by

f (κ) =
∫ ∞

−∞
dt f (t) e+iκt . (10)

From (7), we see the dynamics of the internal degree of freedom Q̂ of the atom contains two
stochastic components: One comes from the homogeneous part of the solution, denoted by Q̂h, which
depends on the initial conditions. This part is intrinsic in the sense that it is still present when the
coupling is turned off, but will decay with time due to damping when the interaction is turned on.
The other component is the inhomogeneous part in (7), induced by the quantum fluctuations of the
free field. The joint random motion of the idf, both of quantum origin, will give off quantum radiation
to the atom’s surrounding, as can be seen from the second term on the right hand side of (3).

If we want to investigate the properties of the field, Equation (3) is an easier start. Since it is
driven by the full Q̂ operator, we may substitute (7) into (3) and write the interacting field (3) as

φ̂(x, t) = φ̂0,h(x, t) +
e2

m

∫
dt′ G(φ)

0,R(x, t; z′, t′)
∫ t′

0
ds G(Q)

R (t′ − s) φ̂0,h(zs, s)

+ e
∫ t

0
dt′ G(φ)

0,R(x, t; z′, t′) Q̂h(t′) (11)

= φ̂0,h(x, t) + φ̂R(x, t) + φ̂TR(x, t) , (12)

where φ̂R in the second term on the right hand side is the radiation field caused by the driven stochastic
motion of the idf of the atom, and the third term on the right hand side, denoted by φ̂TR is the transient
radiation field from the homogeneous solution of Q̂. The Hadamard function of the interacting field is
readily given by

G(φ)
H (x, x′) =

1
2
〈
{

φ̂(x), φ̂(x′)
}
〉

=
1
2
〈
{

φ̂0,h(x), φ̂0,h(x′)
}
〉+ 1

2
〈
{

φ̂0,h(x), φ̂R(x′)
}
〉+ 1

2
〈
{

φ̂R(x), φ̂0,h(x′)
}
〉

+
1
2
〈
{

φ̂R(x), φ̂R(x′)
}
〉+ 1

2
〈
{

φ̂TR(x), φ̂TR(x′)
}
〉 . (13)

We see that on the right hand side the first term of (13) results from the free field at the observation
point, and the fourth term purely from the radiation field due to the induced stochastic motion of
the internal degree of freedom. The second and third terms are of interest because they represent
the interference between the free field and the radiation field at the observation point. The last term
in (14) does not contribute at late times because the homogeneous solution of the driven and damped
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oscillator exponentially decays with time, and for a given observation point, the radiation due to this
component does not interfere with the local vacuum field and decreases with time.

Putting in the explicit expressions of φ̂(x) into (13), we obtain

G(φ)
H (x, x′) = G(φ)

0,H(x, x′) +
e2

m

∫ t′

0
ds′1 G(φ)

0,R(x
′, t′; z′1, s′1)

∫ s′1

0
ds′2 G(Q)

R (s′1 − s′2) G(φ)
0,H(x, t; z′2, s′2)

+
e2

m

∫ t

0
ds1 G(φ)

0,R(x, t; z1, s1)
∫ s1

0
ds2 G(Q)

R (s1 − s2) G(φ)
0,H(x

′, t′; z2, s2)

+
e4

m2

∫ t

0
ds1

∫ t′

0
ds′1 G(φ)

0,R(x, t; z1, s1)G
(φ)
0,R(x

′, t′; z′1, s′1)

×
∫ s1

0
ds2

∫ s′1

0
ds′2 G(Q)

R (s1 − s2)G
(Q)
R (s′1 − s′2) G(φ)

0,H(z2, s2; z′2, s′2)

+
e2

2

∫ t

0
ds
∫ t′

0
ds′ G(φ)

0,R(x, t; zs, s)G(φ)
0,R(x, t; z′s, s′) 〈

{
Q̂h(s), Q̂h(s′)

}
〉 , (14)

where G(φ)
0,H(x, x′) is the Hadamard function of the free field

G(φ)
0,H(x, x′) =

1
2
〈
{

φ̂0,h(x), φ̂0,h(x′)
}
〉 , (15)

and we have assumed that the initial state of the atom’s internal degree of freedom does not have cross
correlation in the canonical variables.

The correlation function (14) will be used to construct the stress-energy tensor of the interacting
field φ̂, based on which we will compute the late-time energy flow of the scalar field at an observation
point far away from the atom.

5.2. A Stationary Atom

We consider the simplest case of an atom placed at a fixed location so that z is independent of time.
Let r1 = x′ − z, r2 = x− z. For t, t′ � γ−1 and t, t′ � r1, r2, we can use the fluctuation–dissipation
relations of the atom and the free field [58]

G(Q)
H = coth

βκ

2
Im G(Q)

R (κ) , G(φ)
0,H = coth

βκ

2
Im G(φ)

0,R(κ) , (16)

in the expression

G(φ)
0,H(0; κ) G(Q)

R (κ) G(Q)∗
R (κ) =

m
e2

G(φ)
0,H(0; κ)

Im G(φ)
0,R(0; κ)

Im G(Q)
R (κ) =

m
e2 coth

βκ

2
Im G(Q)

R (κ) , (17)

to greatly simplify the Hadamard function (14) of the interacting field,

G(φ)
H (x, x′) = G(φ)

0,H(x, x′) +
e2

m

∫ ∞

−∞

dκ

2π
G(φ)

0,H(r2; κ) G(φ)∗
0,R (r1; κ) G(Q)∗

R (κ) e−iκ(t−t′)

+
e2

m

∫ ∞

−∞

dκ

2π
G(φ)

0,H(r1; κ) G(φ)
0,R(r2; κ) G(Q)

R (κ) e−iκ(t−t′)

+
e2

m

∫ ∞

−∞

dκ

2π
coth

βκ

2
Im G(Q)

R (κ) G(φ)
0,R(r2; κ) G(φ)∗

0,R (r1; κ) e−iκ(t−t′) . (18)

The last term in (14) has been discarded. Application of the FDR in (17) reduces the contribution
purely from the radiation to a form that resembles those from the interference terms. This may not
be a surprise on account that the late-time dynamics of the internal degree of freedom of the atom is
predominantly governed by the quantum fluctuations of the free field in close proximity of the atom.
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A quick check shows that Equation (18) satisfies the invariant property of the Hadamard function
under the exchange of the coordinate points xµ = (t, x) and x′µ = (t′, x′). Also note that in (16),
we have assumed that the field is initially in a thermal state of temperature β−1, so the FDR of the free
field is formulated for its initial state. By contrast, the FDR of the atom is obtained when the idf of the
atom has relaxed to equilibrium after interacting with the field, despite their formal identity. In the
case that the field is initially in a vacuum state, i.e., β → ∞, just replace the factor coth βκ/2 by the
sign function sgn(κ).

5.3. Stress-Energy Tensor of Field

The classical stress-energy tensor of a massless scalar field is given by

Tµν(x) = φ,µ(x)φ,ν(x)− 1
2

gµνgαβφ,α(x)φ,β(x) . (19)

We will use the correlation function (18) to find the expectation value of the normal-ordered
stress-energy tensor operator T̂µν(x) by

〈: T̂µν(x) :〉 = lim
x′→x

{
∂2

∂xµ∂x′ν
− 1

2
gµνgαβ ∂2

∂xα∂x′β

}[
G(φ)

H (x, x′)− G(φ)
0,H(x, x′)

]
. (20)

The radiated power far away from the atom is then given by

dWRAD

dτ
= −

∫
dΩ r2nµ〈: T̂µν(x) :〉 vν(τ−) , (21)

where vµ(τ−) is the four-velocity of the (motion of the center of mass of the) atom at the retarded time
τ− from the observation point x, and nµ is a spacelike unit radial vector, so that the spatial distance r
between the observation point and the atom at the retarded time is given by

r = nµ
[
xµ − zµ(τ−)

]
, (22)

that is, the radius of the spherical shell passing through the observation point xµ with the origin at the
retarded source point zµ(τ−) of the atom. In the case of a static atom, the location zµ is fixed, so the
four-velocity is a constant timelike unit vector along the time axis, whereby (21) becomes

dWRAD

dτ
= −

∫
dΩ r2 〈: Trt(x) :〉 = − lim

x′→x

∫
dΩ r2 ∂2

∂r∂t′
[

G(φ)
H (x, x′)− G(φ)

0,H(x, x′)
]

, (23)

where dΩ is the solid angle subtended over the spherical shell.
The coincidence limit of the derivatives

lim
x′→x

∂2

∂r∂t′
[

G(φ)
H (x, x′)− G(φ)

0,H(x, x′)
]
, (24)

at late times is given by

∫ ∞

−∞

dκ

2π

{
iκ
[
κ coth

βκ

2
Re G(φ)

0,R(r; κ)− 1
r

G(φ)
0,H(r; κ)

]
G(φ)∗

0,R (r; κ) G(Q)∗
R (κ)

+ iκ
(

iκ − 1
r

)
G(φ)

0,H(r; κ) G(φ)
0,R(r; κ) G(Q)

R (κ)

+ i κ
(

iκ − 1
r

)
coth

βκ

2
Im G(Q)

R (κ) G(φ)
0,R(r; κ) G(φ)∗

0,R (r; κ)

}
. (25)
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Since we are interested in the flux at large distance from the atom, we keep only the far-field
component in (25), and obtain

∫ ∞

−∞

dκ

2π

{
iκ2 coth

βκ

2
Re G(φ)

0,R(r; κ) G(φ)∗
0,R (r; κ) G(Q)∗

R (κ)− κ2 G(φ)
0,H(r; κ) G(φ)

0,R(r; κ) G(Q)
R (κ)

− κ2 coth
βκ

2
Im G(Q)

R (κ) G(φ)
0,R(r; κ) G(φ)∗

0,R (r; κ)

}
=
∫ ∞

−∞

dκ

2π
κ2 coth

βκ

2

{
i Re G(φ)

0,R(r; κ) G(φ)∗
0,R (r; κ) G(Q)∗

R (κ)− Im G(φ)
0,R(r; κ) G(φ)

0,R(r; κ) G(Q)
R (κ)

+ i G(Q)
R (κ) G(φ)

0,R(r; κ) G(φ)∗
0,R (r; κ)

}
. (26)

Here we have used the FDR of the free field to re-write (26). It then can be further reduced to

=
∫ ∞

−∞

dκ

2π
κ2 coth

βκ

2

{
−i Re G(φ)

0,R(r; κ) G(φ)
0,R(r; κ) G(Q)

R (κ)− Im G(φ)
0,R(r; κ) G(φ)

0,R(r; κ) G(Q)
R (κ)

+ i G(Q)
R (κ) G(φ)

0,R(r; κ) G(φ)∗
0,R (r; κ)

}
=
∫ ∞

−∞

dκ

2π
κ2 coth

βκ

2

{
−i G(φ)∗

0,R (r; κ) G(φ)
0,R(r; κ) G(Q)

R (κ) + i G(Q)
R (κ) G(φ)

0,R(r; κ) G(φ)∗
0,R (r; κ)

}
, (27)

where we have used the property that Im G(Q)
R (κ) is odd in κ, Re G(Q)

R (κ) even in κ and GR(−κ) =

G∗R(κ). Equation (27) gives a vanishing result. Thus we find

dWRAD

dτ
= 0 , (28)

that is, there is no net radiated energy at large distance from the atom at late times t� r.

5.4. Energy Flow Balance

This result is as expected. But this immediately prompts a question about how the radiated energy
due to the stochastic motion of the internal degrees of freedom of the atom gets canceled? To track
down the inner workings it will be more instructive to write the net radiated power (28) as a sum of
Pr and P×, which are the energy flows associated with the second and the first terms inside the curly
brackets, respectively, on the right hand side of (27). They can further be reduced to

Pr = −i
e2

m

∫ ∞

−∞

dκ

2π

κ2

4π
coth

βκ

2
G(Q)

R (κ) = +
e2

m

∫ ∞

−∞

dκ

2π

κ2

4π
coth

βκ

2
Im G(Q)

R (κ) , (29)

P× = − e2

m

∫ ∞

−∞

dκ

2π

κ2

4π
coth

βκ

2
Im G(Q)

R (κ) . (30)

The radiation generated by the induced stochastic motion of the atom’s internal degree of freedom
gives a power Pr at large distance from the atom at late times. This comes solely from the far-field
component of the radiated field, and it gives an outward energy flow. However, we note that the
radiated fields also interfere with the local vacuum fluctuations. This results, at infinity, in a net
incoming flux of the same magnitude which cancels the aforementioned outgoing flux—an inertial
observer in the distance will not measure any net energy flow. The generalized FDR, in particular
the CPR, of the free field used in (26) tells us that at an observation point far away from the atom,
the radiation field is correlated with the vacuum field at that point in a nontrivial way, according to
Section 4 that their interference can concoct up an incoming flux to enable a perfect balance in the
energy flow. Physically, this is a consequence of energy conservation. In particular, if the surrounding
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field is initially in the vacuum state, and if there is no external agent to supply energy, then there is no
source/drain of energy to support a net energy flow in or out when the whole system settles down
into equilibrium.

It will be more interesting to compare Pr and P× with the power Pγ dissipated by the atom and
the power Pξ supplied to the atom by the local vacuum fluctuations of the free field around the atom,
at late times [9,58],

Pγ = − e2

m

∫ ∞

−∞

dκ

2π
κ Im G(Q)

R (κ) G(φ)
H (0; κ) = − e2

m

∫ ∞

−∞

dκ

2π

κ2

4π
coth

βκ

2
Im G(Q)

R (κ) = −Pξ , (31)

where we have used the FDR of the atom (17), and the fact that

G(φ)
H (0; κ) = lim

r→0
G(φ)

H (r; κ) = lim
r→0

coth
βκ

2
sin κr
4πr

=
κ

4π
coth

βκ

2
. (32)

Equation (31) explicitly shows that when the motion of the internal degrees of freedom of the atom
reach equilibrium, the energy flow out of the atom due to the dissipative reactive force of quantum
radiation is balanced by the power input from the local vacuum fluctuations of the free field. Therefore,
comparison of Equations (29)–(31) tells us that this dissipated energy is radiated outward to infinity,
i.e., Pγ = Pr. If we inadvertently ignore the contribution from the interference between the radiated
field and the vacuum at the faraway location, then we will have a net energy output to infinity, which
violates energy conservation. The interference contribution results in an inward energy flow which
on one hand cancels the outgoing radiated energy and on the other hand replenishes the energy that
is dumped into the atom from the vacuum field around it, that is, P× = Pξ . Thus the energy flow,
from the viewpoint of either the atom or the field, is perfectly balanced at late times. Performing these
cross-checks enables us to present an integrated and comprehensive picture of how the energy transfers
from the atom to the surrounding field and back to the atom, meeting the stringent self-consistency
constraint conditions ingrained in the FDRs-CPRs.

Author Contributions: Conceptualization, B.L.H.; Formal Analysis, J.-T.H.; Investigation, J.-T.H.; Writing, B.L.H.
and J.-T.H.

Funding: This research received no external funding.

Acknowledgments: J.-T.H. acknowledges the hospitality at the MCFP and JQI of the University of Maryland
where this work is carried out.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics; Academic Press: Cambridge,
MA, USA, 1993.

2. Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University
Press: Cambridge, UK, 1995.

3. Cohen-Tannodji, C.; Diu, B.; Laloe, F. Quantum Mechanics; Wiley: Hoboken, NJ, USA, 1991.
4. Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1998.
5. Johnson, P.R.; Hu, B.L. Stochastic theory of relativistic particles moving in a quantum field: Scalar

Abraham-Lorentz-Dirac-Langevin equation, radiation reaction, and vacuum fluctuations. Phys. Rev. D 2002,
65, 065015 [CrossRef]

6. Raval, A.; Hu, B.L.; Anglin, J. Stochastic theory of accelerated detectors in a quantum field. Phys. Rev. D
1996, 53, 7003. [CrossRef] [PubMed]

7. Raval, A.; Hu, B.L.; Koks, D. Near-thermal radiation in detectors, mirrors, and black holes: A stochastic
approach. Phys. Rev. D 1997, 55, 4795. [CrossRef]

8. Hsiang, J.-T.; Hu, B.L.; Lin, S.-Y. Fluctuation-dissipation and correlation-propagation relations from the
nonequilibrium dynamics of detector-quantum field systems. Phys. Rev. D 2019, 100, 025019. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.65.065015
http://dx.doi.org/10.1103/PhysRevD.53.7003
http://www.ncbi.nlm.nih.gov/pubmed/10019987
http://dx.doi.org/10.1103/PhysRevD.55.4795
http://dx.doi.org/10.1103/PhysRevD.100.025019


Physics 2019, 1 443

9. Hsiang, J.-T.; Hu, B.L.; Lin, S.-Y.; Yamamoto, K. Fluctuation-dissipation and correlation-propagation relations
in (1+3)D moving detector-quantum field systems. Phys. Lett. B 2019, 795, 694. [CrossRef]

10. Ackerhalt, J.R.; Knight, P.L.; Eberly, J.H. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett.
1973, 30, 456. [CrossRef]

11. Milonni, P.W.; Smith, W.A. Radiation reaction and vacuum fluctuations in spontaneous emission. Phys. Rev.
A 1975, 11, 814. [CrossRef]

12. Dalibard, J.; Dupont-Roc, J.; Cohen-Tannodji, C. Vacuum fluctuations and radiation reaction: Identification
of their respective contributions. J. Phys. (Paris) 1982, 43, 1617. [CrossRef]

13. Dalibard, J.; Dupont-Roc, J.; Cohen-Tannodji, C. Dynamics of a small system coupled to a reservoir: Reservoir
fluctuations and self-reaction. J. Phys. (Paris) 1984, 45, 637. [CrossRef]

14. Johnson, P.R.; Hu, B.L. Unruh effect in a uniformly accelerated charge: From quantum fluctuations to
classical radiation. Found. Phys. 2005, 35, 1117. [CrossRef]

15. Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [CrossRef]
16. DeWitt, B.S. General Relativity: An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge

Press: Cambridge, UK, 1979.
17. Schützhold, R.; Schaller, G.; Habs, D. Signatures of the Unruh effect from electrons accelerated by ultrastrong

laser fields. Phys. Rev. Lett. 2006, 97, 121302. [CrossRef] [PubMed]
18. Schützhold, R.; Schaller, G.; Habs, D. Tabletop creation of entangled multi-keV photon pairs and the Unruh

effect. Phys. Rev. Lett. 2008, 100, 091301. [CrossRef] [PubMed]
19. Landulfo, A.G.S.; Fulling, S.A.; Matsas, G.E.A. Classical and quantum aspects of the radiation emitted by a

uniformly accelerated charge: Larmor-Unruh reconciliation and zero-frequency Rindler modes. Phys. Rev. D
2019, 100, 045020. [CrossRef]

20. Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr. 2010, 82, 038105. [CrossRef]
21. Dalvit, D.A.R.; Neto, P.A.M.; Mazzitelli, F.D. Fluctuations, dissipation and the dynamical Casimir effect.

In Lecture Notes in Physics, Vol. 834: Casimir Effect; Dalvit, D.A.R., Milonni, P.W., Roberts, D., da Rose, F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011.

22. DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295. [CrossRef]
23. Birrell, N.D.; Davies, P.C.W. Quantum Field in Curved Space; Cambridge University Press: Cambridge,

UK, 1984.
24. Parker, L.; Toms, D. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity; Cambridge

University Press: Cambridge, UK, 2009.
25. Hu, B.L.; Verdaguer, E. Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime;

Cambridge University Press: Cambridge, UK, 2020.
26. Hu, B.L.; Raval, A. Is there emitted radiation in Unruh effect? arXiv 2000, arXiv:quant-ph/0012134.
27. Grove, P.G. On an inertial observer’s interpretation of the detection of radiation by linearly accelerated

particle detectors. Class. Quantum Gravity 1986, 3, 801. [CrossRef]
28. Ford, G.W.; O’Connell, R.F. Is there Unruh radiation? Phys. Lett. A 2006, 350, 17. [CrossRef]
29. Raine, D.J.; Sciama, D.W.; Grove, P. Does a uniformly accelerated quantum oscillator radiate? Proc. R. Soc.

Lond. A 1991, 435, 205. [CrossRef]
30. Unruh, W.G. Thermal bath and decoherence of Rindler spacetimes. Phys. Rev. D 1992, 46, 3271. [CrossRef]

[PubMed]
31. Hinterleitner, F. Inertial and accelerated particle detectors with back-reaction in flat space-time. Ann. Phys.

(N.Y.) 1993, 226, 165. [CrossRef]
32. Massar, S.; Parentani, R.; Brout, R. On the problem of the uniformly accelerated oscillator. Class. Quantum

Gravity 1993, 10, 385. [CrossRef]
33. Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2018,

80, 787. [CrossRef]
34. Frodden, E.; Valdés, N. Unruh Effect: Introductory notes to quantum effects for accelerated observers. Int. J.

Mod. Phys. A 2018, 33, 1830026. [CrossRef]
35. Unruh, W.G.; Wald, R.M. What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D

1984, 29, 1047. [CrossRef]
36. Lin, S.-Y.; Hu, B.L. Accelerated detector–quantum field correlations: From vacuum fluctuations to radiation

flux. Phys. Rev. D 2006, 73, 124018. [CrossRef]

http://dx.doi.org/10.1016/j.physletb.2019.06.062
http://dx.doi.org/10.1103/PhysRevLett.30.456
http://dx.doi.org/10.1103/PhysRevA.11.814
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1051/jphys:01984004504063700
http://dx.doi.org/10.1007/s10701-005-6404-1
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRevLett.97.121302
http://www.ncbi.nlm.nih.gov/pubmed/17025949
http://dx.doi.org/10.1103/PhysRevLett.100.091301
http://www.ncbi.nlm.nih.gov/pubmed/18352690
http://dx.doi.org/10.1103/PhysRevD.100.045020
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1016/0370-1573(75)90051-4
http://dx.doi.org/10.1088/0264-9381/3/5/010
http://dx.doi.org/10.1016/j.physleta.2005.09.068
http://dx.doi.org/10.1098/rspa.1991.0139
http://dx.doi.org/10.1103/PhysRevD.46.3271
http://www.ncbi.nlm.nih.gov/pubmed/10015272
http://dx.doi.org/10.1006/aphy.1993.1066
http://dx.doi.org/10.1088/0264-9381/10/2/020
http://dx.doi.org/10.1103/RevModPhys.80.787
http://dx.doi.org/10.1142/S0217751X18300260
http://dx.doi.org/10.1103/PhysRevD.29.1047
http://dx.doi.org/10.1103/PhysRevD.73.124018


Physics 2019, 1 444

37. Iso, S.; Oshita, N.; Tatsukawa, R.; Yamamoto, K.; Zhang, S. Quantum radiation produced by the entanglement
of quantum fields. Phys. Rev. D 2017, 95, 023512. [CrossRef]

38. Iso, S.; Tatsukawa, R.; Ueda, K.; Yamamoto, K. Entanglement-induced quantum radiation. Phys. Rev. D 2017,
95, 045001. [CrossRef]

39. Higuchi, A.; Iso, S.; Ueda, K.; Yamamoto, K. Entanglement of the vacuum between left, right, future, and
past: The origin of entanglement-induced quantum radiation. Phys. Rev. D 2017, 96, 083531. [CrossRef]

40. Hsiang, J.-T.; Hu, B.L. Quantum radiation from a moving atom and vacuum fluctuations in a quantum field.
(in preparation).

41. Hu, B.L.; Johnson, P.R. Beyond Unruh effect: Nonequilibrium quantum dynamics of moving charges. arXiv
2000, arXiv:quant-ph/0012132.

42. Johnson, P.R.; Hu, B.L. Worldline influence functional: Abraham-Lorentz-Dirac-Langevin equation from
QED. arXiv 2000, arXiv:quant-ph/0012135.

43. Chen, P.; Tajima, T. Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 1999, 83, 256. [CrossRef]
44. Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1998.
45. Su, D.; Ralph, T.C. Decoherence of the radiation from an accelerated quantum source. Phy. Rev. X 2019,

9, 011007. [CrossRef]
46. Milonni, P.W. Different ways of looking at the electromagnetic vacuum. Phys. Scr. 1988, T12, 102. [CrossRef]
47. Audretsch, J.; Müller, R. Spontaneous excitation of an accelerated atom: The contributions of vacuum

fluctuations and radiation reaction. Phys. Rev. A 1994, 50, 1755. [CrossRef]
48. Callen, H.B.; Welton, T.A. Irreversibility and generalized noise. Phys. Rev. 1951, 83, 34. [CrossRef]
49. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [CrossRef]
50. Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical Mechanics; Springer:

Berlin/Heidelberg, Germnay, 2012.
51. Kadanoff, L.; Baym, G. Quantum Statistical Mechanics; Benjamin: New York, NY, USA, 1962.
52. Fetter, A.L.; Walecka, J.D. Quantum Theory of Many-Particle Systems; Dover: Redwood City, CA, USA, 2003.
53. Ford, G.W. The fluctuation-dissipation theorem. Contemp. Phys. 2017, 58, 244. [CrossRef]
54. Sciama, D.W. Thermal and quantum Fluctuations in special and general relativity: An Einstein synthesis.

In Centenario di Einstein; Editrici Giunti Barbera Universitaria: Florence, Italy, 1979.
55. Ford, G.W.; Lewis, J.T.; O’Connell, R.F. Quantum Langevin equation. Phys. Rev. A 1988, 37, 4419. [CrossRef]
56. Feynman, R.P.; Vernon, F.L. The Theory of a general quantum system interacting with a linear dissipative

system. Ann. Phys. 1963, 24, 118. [CrossRef]
57. Calzetta, E.; Hu, B.L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge,

UK, 2008.
58. Hsiang, J.-T.; Hu, B.L. Quantum thermodynamics from the nonequilibrium dynamics of open systems:

Energy, heat capacity, and the third law. Phys. Rev. E 2018, 97, 0125135. [CrossRef] [PubMed]
59. Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: conformal

anomaly. Proc. R. Soc. Lond. A 1976, 348, 393. [CrossRef]
60. Jaekel, M.-T.; Reynaud, S. Quantum fluctuations of position of a mirror in vacuum. J. Phys. I (France) 1993,

3, 1. [CrossRef]
61. Cole, C.K.; Schieve, W.C. Resonant energy exchange between a moving boundary and radiation modes of a

cavity. Phys. Rev. A 2001, 64, 023813. [CrossRef]
62. Galley, C.R.; Behunin, R.O.; Hu, B.L. Oscillator-field model of moving mirrors in quantum optomechanics.

Phys. Rev. A 2013, 87, 043832. [CrossRef]
63. Wang, Q.; Unruh, W.G. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D

2014, 89, 085009. [CrossRef]
64. Hsiang, J.-T.; Hu, B.L. Distance and coupling dependence of entanglement in the presence of a quantum

field. Phys. Rev. D 2015, 92, 125026. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevD.95.023512
http://dx.doi.org/10.1103/PhysRevD.96.045001
http://dx.doi.org/10.1103/PhysRevD.96.083531
http://dx.doi.org/10.1103/PhysRevLett.83.256
http://dx.doi.org/10.1103/PhysRevX.9.011007
http://dx.doi.org/10.1088/0031-8949/1988/T21/019
http://dx.doi.org/10.1103/PhysRevA.50.1755
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1080/00107514.2017.1298289
http://dx.doi.org/10.1103/PhysRevA.37.4419
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1103/PhysRevE.97.012135
http://www.ncbi.nlm.nih.gov/pubmed/29448480
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1051/jp1:1993114
http://dx.doi.org/10.1103/PhysRevA.64.023813
http://dx.doi.org/10.1103/PhysRevA.87.043832
http://dx.doi.org/10.1103/PhysRevD.89.085009
http://dx.doi.org/10.1103/PhysRevD.92.125026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Constructs
	FDR in NEq Dynamics vs. Liner Response Theory
	Differences in the Set-Ups and the Main Features
	FDRs in System-Environment Interaction with Finite Coupling
	FDR in a Dynamical Setting

	Correlation-Propagation Relations (CPR) and Non-Markovian Mutual Influence
	Quantum Radiation from an Atom in 4D Minkowski Spacetime
	Quantum Langevin Equation
	A Stationary Atom
	Stress-Energy Tensor of Field
	Energy Flow Balance

	References

