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Abstract: McArdle disease (glycogen storage disease Type V; MD) is a metabolic 

myopathy caused by a deficiency in muscle glycogen phosphorylase. Since muscle 

glycogen is an important fuel for muscle during exercise, this inborn error of metabolism 

provides a model for understanding the role of glycogen in muscle function and the 

compensatory adaptations that occur in response to impaired glycogenolysis. Patients with 

MD have exercise intolerance with symptoms including premature fatigue, myalgia, and/or 

muscle cramps. Despite this, MD patients are able to perform prolonged exercise as a result 

of the ―second wind‖ phenomenon, owing to the improved delivery of extra-muscular fuels 

during exercise. The present review will cover what this disease can teach us about 

exercise physiology, and particularly focuses on the compensatory pathways for energy 

delivery to muscle in the absence of glycogenolysis. 
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1. Introduction 

McArdle disease (glycogen storage disease Type V; MD) is a myopathy caused by genetic defects 

in myophosphorylase, the skeletal muscle isoform of the enzyme glycogen phosphorylase. The first 

case was described in 1951 by Brian McArdle [1]. MD is now known as one of the most common 

disorders of muscle metabolism, with an estimated prevalence of approximately 1 per 100,000.  

The genetic defects that result in MD are autosomal recessive, and heterozygotes are usually 

asymptomatic. The myophosphorylase gene (PYGM) is on chromosome 11q13 [2,3], and more than 

100 mutations have been detected according to the Human Gene Mutation Database [4]; this number is 

continually increasing as genetic technology advances. Currently, the p.R50X nonsense mutation 
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(originally known as p.R49X) is the most frequently found mutation among Caucasian patients in North 

America [5] and Europe [6–10]. Other mutations are seen in specific ethnic groups; for example, 

p.F709del/F710del is the predominant mutation in Japanese patients [11,12]. Almost all of these 

mutations result in the total absence of functional enzyme and complete disruption of glycogen 

breakdown in muscle; however, in very rare cases a mild phenotype with minimal residual 

myophosphorylase activity (1%–2.5% of normal) occurs [13]. Patients with MD typically have 

childhood onset of exercise intolerance with symptoms including premature fatigue, myalgia, and/or 

muscle cramps [14–16]. Basal serum creatine kinase (CK) activity is elevated in MD patients, which 

indicates skeletal muscle damage. Older patients occasionally have muscle weakness and wasting [17]. 

2. Compensatory Energy Transfer Pathways  

2.1. Adenine Nucleotide Degradation 

Skeletal muscles use three major metabolic processes to produce adenosine triphosphate (ATP): 

(1) oxidative phosphorylation; (2) glycolysis; and (3) adenylate kinase and creatine kinase (CK) 

reactions. The store of ATP in skeletal muscle is limited, and it would be used up in a few seconds of 

sprinting if not replenished; therefore the rate of ATP resynthesis must closely match the rate of 

consumption. More energy is available from oxidative phosphorylation (aerobic ATP production) than 

from glycolysis and adenylate kinase/CK reactions, but these anaerobic processes can be activated 

more rapidly than oxidative phosphorylation. In the adenylate kinase pathway, two adenosine 

diphosphate (ADP) molecules combine to regenerate ATP, and adenosine monophosphate (AMP) is 

produced as a by-product. This reaction is coupled with AMP deamination, resulting in the production 

of inosine monophosphate (IMP) and ammonia (NH3). IMP is metabolized to inosine and then to 

hypoxanthine, xanthine, and uric acid via xanthine oxidase (Figure 1). 

During exercise, patients with MD have severely limited ATP resynthesis owing to both the 

absence of glycogenolysis and limited mitochondrial oxidative phosphorylation because of reduced 

substrate availability. Thus, the exercise intolerance in MD patients is caused by an imbalance between 

muscle energy demand and supply. The forearm exercise test has demonstrated that plasma lactate 

concentrations are not elevated in MD patients [1,16], which indicates increased alternative anaerobic 

pathway flux. Reports have shown abnormally large increases in muscle ADP [18], and plasma NH3 

and hypoxanthine [19,20], in exercising MD patients; this suggests an increased adenine nucleotide 

degradation. This ―emergency‖ mechanism for energy generation is blunted in healthy subjects. It has 

been shown that reliance on adenine nucleotide degradation during exercise leads to myogenic 

hyperuricemia in MD patients [21,22]. In addition, the reduction of hypoxanthine and xanthine to uric 

acid, which is catalyzed by xanthine oxidase, generates reactive oxygen species as a by-product;  

we recently found that MD patients experience elevated levels of oxidative stress [23]. 
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Figure 1. Adenine nucleotide degradation. ATP, adenosine triphosphate; ADP, adenosine 

diphosphate; IMP, inosine monophosphate; NH3, ammonia. 

 

2.2. Carbohydrate Metabolism 

The breakdown of muscle glycogen is catalyzed by the enzyme myophosphorylase, which 

hydrolyzes α-1,4 glycosidic units to yield glucose 1-phosphate. The absence of this enzyme makes MD 

patients depend heavily on blood-borne fuels during exercise. Thus, it is well known that MD patients 

can perform prolonged exercise as a result of the ―second wind phenomenon‖ that occurs owing to the 

improved delivery of extra-muscular fuels during exercise; intravenous glucose [24] or sucrose [25] 

administration also dramatically improves exercise tolerance in MD patients. Thus, the skeletal 

muscles of MD patients are able to take up glucose from the bloodstream via the glucose transporter 

GLUT4. Glucose is converted to glucose 6-phosphate and subsequently to pyruvate through 

glycolysis. It has been reported that MD patients take up more glucose during exercise than control 

subjects [24,26], possibly because of elevated GLUT4 protein content [27]. This improved glycolytic 

flux is very important when the availability of glycolytic metabolites is limited.  
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A recent study demonstrated that the protein content of the monocarboxylate transporter MCT1, 

which facilitates the uptake of lactate, was higher in the skeletal muscles of MD patients than in 

healthy controls [28]. Lactate was once thought of as a metabolic waste product, but it is now known 

to be an oxidizable substrate after its conversion to pyruvate [29,30]. Moreover, lactate is oxidized 

more rapidly than other carbohydrates (fructose and glucose) during exercise in healthy subjects [31]. 

Therefore, lactate uptake via MCT1 could be an important mechanism by which MD patients increase 

the availability of pyruvate in their skeletal muscle. 

2.3. Fat Metabolism 

Enhanced fat oxidation may also help to compensate for the impaired muscle glycogenolysis in MD 

patients. It has been reported that the activity of β-hydroxyacyl CoA dehydrogenase—the key enzyme 

in the β-oxidation of fatty acids—was elevated in MD patients [32]. Likewise, a more recent study 

showed that fat mobilization and oxidation were higher in MD patients than healthy subjects [33]. 

Importantly, the same group also reported that the increased availability of free fatty acids during 

exercise did not augment fat oxidation in MD patients [34]. This is likely caused by the limitation in 

the flux of tricarboxylic acid cycle intermediates due to the limited intra-muscular pyruvate 

availability; in their words, ―fat burns in the flame of carbohydrate‖ [33]. Thus, fatty acid availability 

alone does not determine the capacity for fat oxidation. It should be noted that another possible factor 

that may limit fatty acid oxidation is the transport of fatty acids into muscle and/or mitochondrial 

membranes via plasma membrane-associated fatty acid binding protein (FABPpm), fatty acid transport 

protein (FATP), and fatty acid translocase (FAT/CD36) [35,36]. However, at this time the expression 

of these fatty acid transporters has not been measured in MD patients. 

2.4. Creatine-Phosphocreatine Shuttle 

The ATP yield from oxidative phosphorylation is transferred from the mitochondria to the cytosol 

by CK through the transfer of phosphate from phosphocreatine to creatine [37]. A recent study found 

specific up-regulation of mitochondrial CK (mt-CK) protein in MD patients without changes in total 

mitochondrial volume [28]. The enhancement of creatine-phosphocreatine flux by increased mt-CK is 

important for maintaining the phosphocreatine concentration and thus local ATP availability  

under the condition of reduced energy availability [38]. A previous study has shown that creatine 

supplementation improves skeletal muscle function in five of the nine MD patients [39]. However, the 

same group also reported that high dose creatine worsened the clinical features of exercise intolerance 

in patients with MD [40]. The authors speculated that this was due to insufficient physiological 

adaptation to the improvement in muscular electromechanical efficiency that occurs with creatine 

supplementation, leading to muscle hypercontractility during exercise and consequent worsening of the 

clinical symptoms of MD. Patients with MD compensate for their limited oxidative capacity not only 

by extra-muscular fuel uptake via metabolite transporters, but also through intra-muscular energy 

transfer between mitochondria and the site of energy consumption (Figure 2). 
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Figure 2. Schematic of metabolic pathways in the skeletal muscle of patients with 

McArdle disease. The dotted line indicates impaired glycogenolysis. Previous studies by 

the Tarnopolsky group have demonstrated increased GLUT4, MCT1, and MtCK protein 

levels in McArdle disease (MD) patients [27,28] FABPm, plasma membrane-associated 

fatty acid binding protein; FATP, fatty acid transport protein; G-6-P, glucose 1-phosphate; 

MCT, monocarboxylate transporter; mtCK, mitochondrial creatine kinase 

 

3. Exercise Training as a Possible Treatment 

Since exercise triggers the clinical symptoms of MD, affected patients tend to avoid exercise and 

live sedentary lifestyles. Paradoxically, however, recent evidence has shown that carefully supervised 

exercise may help to reduce symptoms of exercise intolerance in MD [41,42]. For example, 14 weeks 

of moderate aerobic exercise training (cycling for 30–40 minutes at an intensity corresponding  

to 60%–70% of maximal heart rate, 4 times per week) increased the peak cardiac output of MD 

patients by 15% and the activity of mitochondrial enzymes, citrate synthase and hydroxyacyl CoA 

dehydrogenase, by 60%–80% [43]. In healthy subjects, it is well known that exercise training increases 

the expression of glucose [44,45], lactate [46,47], and fatty acid transporters [48,49] in muscle; in 

contrast, physical inactivity decreases the expression of these substrate transporters [50–52]. Although 

the effects of exercise training on metabolite transporters in MD patients have not yet been 

investigated, these data suggest that the capacity for delivery and oxidation of blood-borne fuels 

increases with exercise training in MD patients. Another study reported that MD patients who 

performed 8 months of low- to moderate-intensity aerobic exercise training (walking and/or cycling  
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for 10–60 minutes at an intensity corresponding to 60% of maximal heart rate, 5 times per week) 

increased their peak power output by 25% and their peak oxygen uptake (VO2peak) by 44% [53]. Serum 

CK levels were also decreased after the training intervention, which likely indicates that less muscle 

damage was occurring as an adaption to the exercise program. Moreover, surprisingly, it has been 

reported that a 38-year-old male patient with MD was able to run 10 km in 60 minutes after 4 months 

of training; his VO2peak increased from 14.6 to 30.8 mL/kg/min over the training period [54]. Finally, 

resistance (weight lifting) exercise may also have positive effects for MD patients; a recent report 

showed that 6 weeks of resistance training at 60%–75% of the one-repetition-maximum (2 sessions per 

week) resulted in a 27% increase in bench press performance in a 15-year-old male patient with 

MD [55]. Collectively, exercise training with pre-exercise carbohydrate ingestion may benefit MD 

patients, whereas isometric exercise should be discouraged. 

4. Conclusions 

Previous studies have revealed some novel energy transfer mechanisms that partially compensate 

for the absence of glycogenolysis in patients with MD. Since MD patients rely on blood-borne fuels 

during exercise, their capacity for extra-muscular fuel uptake via specific substrate transporters is 

elevated. This ultimately results in increased pyruvate availability within the muscle. Consequently, 

pre-exercise carbohydrate ingestion is at present considered the most beneficial intervention for MD 

patients. In combination with this nutritional intervention, carefully supervised exercise training may 

benefit MD patients. Finally, knock-in mice for the R50X mutation in the PYGM gene have been 

developed [56]. This genetically modified animal model of MD will hopefully reveal new therapeutic 

approaches for this disease in future studies. 
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