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Abstract: Contrary to earlier assumptions, molecular evidence has demonstrated the presence 

of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. 

Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils 

using both culture-based and molecular techniques represent adapted and ecologically active 

biomass or spores transported by wind. Through a systematic and quantitative molecular 

survey, we identified significant heterogeneities in soil fungal communities across the  

Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. 

Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic 

spacer region revealed different levels of heterogeneity in fungal diversity within individual 

Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous 

studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. 

Critically, we identified significant differences in fungal community composition and 

structure of adjacent sites with no obvious barrier to aeolian transport between them. These 

findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local 

environments and represent an ecologically relevant (and possibly important) heterotrophic 

component of the ecosystem. 
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1. Introduction 

Located between the Polar Plateau and Ross Sea in Southern Victoria Land, the McMurdo  

Dry Valleys (hereinafter the Dry Valleys) are the largest contiguous ice-free area on the Antarctic 

continent. Dry Valley soils are known as some of the oldest, coldest, driest, and most oligotrophic soils 

on Earth [1]; consequently, the Dry Valley ecosystem is characterized by a lack of nutrients [2], low 

precipitation levels and biologically available water [3–5], high levels of salinity [6–8], large temperature 

fluctuations [5,9,10], steep chemical and biological gradients [11], and high incidence of UV-solar 

radiation [12–14]. Early studies suggested that Dry Valley soils contained very little microbial biota [1], 

but recent molecular evidence has demonstrated the presence of diverse and heterogeneous bacterial 

communities potentially driven by steep physicochemical gradients [1,10,15–19]. In contrast, comparatively 

limited molecular evidence exists on the distribution and drivers of fungal communities in Dry Valley 

soils [20–23]. 

Fungal identification in Dry Valley soils by means of a combination of culturing and molecular 

tools (i.e., denaturing gradient gel electrophoresis and DNA sequencing) has detected primarily members 

of Dikarya (i.e., Ascomycota and Basidiomycota), including both filamentous and non-filamentous 

species [24–27]. A survey of Dry Valley sites including Mt Flemming, Allan Hills, New Harbor,  

and Ross Island revealed the dominant free-living fungal genera in Dry Valley soils as Cadophora 

(Ascomycota), Cryptococcus (Basidiomycota), Geomyces (Ascomycota), and Cladosporium 

(Ascomycota) [22]. A study of cultivable fungi in Taylor Valley showed that filamentous fungi 

appeared to be associated with high soil pH and moisture, whereas yeasts and yeast-like fungi had 

wider distribution across habitats examined [23]. Basidiomycetous Cryptocococcus and Leucosporidium 

species were the most frequently isolated genera in a regional survey of yeasts and yeast-like fungi  

in the Dry Valleys [20]. The diversity of yeasts and yeast-like fungi was positively correlated with  

soil pH and negatively with conductivity [20]. The same study also revealed apparent segregation of 

Cryptococcus clades found in Taylor Valley and the Labyrinths of Wright Valley [20], hinting at the 

presence of localized communities adapted to environmental conditions, as has been reported for soil 

bacteria in the Dry Valleys [15]. A culture-based study of soils taken from McKelvey Valley detected 

no fungal colony-forming units (CFUs) in most of the samples [21], and a molecular survey of 

McKelvey Valley also detected no fungal signals in the soils [18]. However, sequences affiliated with 

genera Dothideomycetes (Ascomycota), Sordariomycetes (Ascomycota), and Cystobasidiomycetes 

(Basidiomycota) were found in endolithic and chasmolithic communities in McKelvey Valley [18]. 

The evidence so far suggests that the cultivable components of Dry Valley fungal communities are 

dominated by ascomycetous and basidiomycetous species, although their biogeography and factors 

that shape their distribution in the Dry Valleys remain unclear due to the lack of systematic and 

culture-independent evidence. Furthermore, the ecological relevance of fungi in Dry Valley soils remains 

unknown since neither cultivation nor molecular techniques can effectively distinguish active fungal 

cells from dormant spores. 

For this study, we carried out a molecular survey of Dry Valley soil fungi at six study sites 

(Battleship Promontory, Upper Wright Valley, Beacon Valley, Miers Valley, Alatna Valley, and 

University Valley) using terminal restriction fragment length polymorphism (tRFLP) and 454 

pyrosequencing analyses of the fungal ribosomal intergenic spacer. Soil physicochemical properties 

were also characterized to examine potential environmental drivers of fungal diversity. 
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2. Experimental 

2.1. Sample Collection 

Soil was collected at six different sites in the McMurdo Dry Valleys (Table 1 and Figure 1) as described 

previously [15]. Briefly, sampling sites were all located on a south facing, 0–20° slope. An intersection 

was made by two 50 m transects, with the intersection in the middle being the central sampling  

point (X or C). Four sampling points around the central point were marked (A–D with A being the 

southernmost point and the remaining points in an anti-clockwise order, or N, E, S, W). Five scoops  

of the top 2 cm of soil were collected and homogenized at each identified (1 m
2
) sampling point  

after pavement pebbles were removed. Samples were stored in sterile Whirl-Pak (Nasco International,  

Fort Atkinson, WI, USA) at −20 °C until returned to New Zealand, where they were stored at −80 °C 

until analysis. 

Table 1. List of sampling sites. 

Valley Coordinates Elevation Sampling Date  

Miers Valley 78°05.486'S, 163°48.539'E 171 m December 2006 

Beacon Valley 77°52.321'S, 160°29.725'E 1376 m December 2006 

Upper Wright Valley 77°31.122'S, 160°45.813'E 947 m January 2008 

Battleship Promontory 76°54.694'S, 160°55.676'E 1028 m January 2008 

Alatna Valley 76°54.816'S, 161°02.213'E 1057 m November 2010 

University Valley 77°51.668'S, 160°42.736'E 1680 m November 2010 

Figure 1. Antarctica is presented in the lower right corner, with the McMurdo Dry Valleys 

marked in a blue rectangle. The locations of the sampling sites within the McMurdo Dry 

Valleys are displayed by red dots. 
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2.2. Soil Chemistry 

Soil moisture content was determined by drying 6 g of soil at 35 °C until its weight stabilized and 

then at 105 °C until the sample reached constant weight. Soil pH and electrical conductivity were 

determined using the slurry technique, which is based on a 2:5 unground dried soil:de-ionized water 

mixture rehydrated overnight before measurement, using a Thermo Scientific Orion 4 STAR 

pH/Conductivity meter (Thermo Scientific, Beverly, MA, USA). For total and organic carbon and 

nitrogen contents, dried soils were ground to fine powders using an agate mortar and pestle and precisely 

weighed out to 100 mg. Samples were analyzed with an Elementar Isoprime 100 analyzer (Elementar 

Analysensysteme, Hanau, Germany). Sample preparation for elemental analysis was adapted from  

US EPA Analytical Methods 200.2 (Revision 2.8, 1994) and Lee et al. [15], in which ground dried soil 

samples were acid digested and analyzed using an E2 Instruments Inductively Coupled Plasma Mass 

Spectrometer (ICP-MS) (Perkin-Elmer, Shelton, CT, USA) at the Waikato Mass Spectrometry Facility 

following manufacturer protocols [15]. For soil grain size, 0.3–0.4 g of 2-mm-sieved dried soil was 

incubated overnight with 10% hydrogen peroxide. A second excess of hydrogen peroxide was then 

added to the sample and heated on a hotplate. Finally, 10 mL of 10% Calgon was added to the sample 

and left overnight before being placed in an ultrasonic bath for 5 min. Measurements were taken on a 

Mastersizer 2000 (Malvern, Taren Point, NSW, Australia). 

2.3. DNA Extraction 

DNA was extracted from soils using a modified version of a previously published cetyl 

trimethylammonium bromide (CTAB) bead beating protocol designed for maximum recovery of DNA 

from low biomass soils [15,28] (Supplementary Material Text). DNA quantification was done using 

the QuBit-IT dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). 

2.4. Terminal Restriction Fragment Length Polymorphism Analysis 

Terminal restriction fragment length polymorphism analysis (tRFLP) was utilized to identify fungal 

community structure and relative diversity by amplifying the intergenic spacer (ITS) between the 18S 

and the 28S genes of the fungal rrn operon. PCR was performed in triplicate and pooled together to 

reduce stochastic inter-reaction variability. PCR master mix included 1x PCR buffer (with 1.5 mM Mg
2+

) 

(Invitrogen, Carlsbad, CA, USA), 0.2 mM dNTPs (Roche Applied Science, Branford, CT, USA), 0.02 U 

Platinum Taq (Invitrogen, Carlsbad, CA, USA), 0.25 µM of both forward and reverse primer (Custom 

Science, Auckland, New Zealand) (ITS1-F and 3126R; Table S1), and 0.02 mg/mL bovine serum 

albumin (Sigma Aldrich, St. Louis, MO, USA) and was treated with ethidium monoazide at a final 

concentration of 25 pg/µL to inhibit contaminating DNA in the reagents [29]. PCR was carried out using 

the following thermal cycling conditions: 94 °C for 3 min; 35 cycles of 94 °C for 20 s, 52 °C for 20 s, 

72 °C for 1 min 15 s; and 72 °C for 5 min on a DNA Engine thermal cycler (Bio-Rad Laboratories, 

Hercules, CA, USA). Successful PCR was confirmed with 1% Tris-acetate-EDTA (TAE) agarose gels, 

and PCR products were cleaned using the Ultraclean 15 DNA Purification kit (MOBIO Laboratories, 

Carlsbad, CA, USA) according to manufacturer instructions. DNA was quantified using the QuBit-IT 

dsDNA HS Assay Kit. 40 ng of DNA was digested with 2 U of MspI and 1× restriction enzyme buffer 
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(Roche Applied Science, Branford, CT, USA) according to manufacturer instructions and purified  

with Ultraclean 15 DNA Purification kit. Lengths of fluorescent-labeled PCR amplicons (i.e., tRFLP 

fragments) were determined by capillary electrophoresis at the Waikato DNA Sequencing Facility 

using an ABI 3130 Genetic Analyzer (Life Technologies, Carlsbad, CA, USA) at 10 kV, a separation 

temperature of 44 °C for 2 h, and the GeneScan 1200 LIZ dye Size Standard (Life Technologies, 

Carlsbad, CA, USA). 

2.5. 454 Pyrosequencing 

PCR protocol for preparing amplicons for pyrosequencing was identical to that for tRFLP, except a 

different reverse primer (ITS4, Table S1) was used. PCR products were purified using gel extraction 

and the QuickClean 5M PCR Purification Kit (GenScript, Piscataway, NJ, USA). A second round of 

PCR using fusion primers containing adapters for 454 pyrosequencing was performed (Table S1). 

These products were purified using Agencourt AMPure XP Beads (Beckman Coulter, Inc., Brea, CA, 

USA) for PCR amplicon recovery and removal of unincorporated dNTPs, primers, primer dimmers, 

salts and other contaminants (Beckman Coulter, Beverly, MA, USA) according to manufacturer 

instructions. Quality of PCR amplicon libraries was checked using the Agilent High Sensitivity DNA 

Kit with a BioAnalyzer (Agilent 2100, Agilent Technologies, Santa Clara, CA, USA) and the Kapa 

Library Quantification Kit—454 Titanium (Kapa Biosystems, Wilmington, MA, USA). 454 

pyrosequensing was performed using a Roche 454 Junior sequencer at the Waikato DNA Sequencing 

Facility following manufacturer protocols. 

2.6. Data Analysis 

Environmental variables were log(x + c) transformed, where c is the 1st percentile value for the 

variable (except [Ag] where c is the mean due to low values), prior to analysis; pH values were not 

transformed. A Euclidean distance matrix was calculated in PRIMER 6 (PRIMER-E Ltd., Ivybridge, 

UK) from the transformed environmental variables and used for downstream analyses. tRFLP traces 

were first processed using PeakScanner 1.0 (Life Technologies, Carlsbad, CA, USA) to export all peaks 

above 5 relative fluorescence units (RFU). The resulting profiles were further processed using an in-house 

collection of python and R scripts (available from authors upon request) to identify true signal peaks  

as well as binning peaks based on their sizes. Briefly, peaks outside the size range of 50–1200 bp were 

excluded from analysis, and only peaks whose heights are greater than the 99% confidence threshold 

(i.e., alpha value of 0.01) within a log-normal distribution were considered to be non-noise. Additionally, 

peaks had to be greater than 50 RFU to be considered non-noise, and all peaks above 200 RFU were 

by default designated as non-noise peaks. Peaks were then binned to the nearest 1 bp, and only peaks 

whose relative abundance was greater than 0.1% were retained. The resulting matrix of peaks 

expressed as relative abundances was imported into PRIMER 6, and a Bray-Curtis similarity matrix 

was calculated for downstream analyses. Using these distance matrices, PRIMER 6 was used to 

generate non-metric multidimensional scaling (MDS) plots, perform group-average hierarchical 

clustering, and carry out one-way analysis of similarities (ANOSIM) and biota-environmental stepwise 

(BEST) analyses. 
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454 pyrosquencing flowgrams were denoised using AmpliconNoise v1.24 [30], including  

a SeqNoise step to remove PCR errors and a Perseus step to remove PCR chimeras [30]. Denoised  

reads were aligned pair-wise using ESPIRIT [31], which directly generated a distance matrix. Mothur 

1.26 was used to cluster the sequences at 0.15 distance with nearest neighbor clustering [32], and the 

representative sequences for the resulting operational taxonomic units (OTUs) were checked (blastn 

with word size of 7) against the GenBank nr database to allow manual identification of fungal ITS 

sequences (>250 bp and >80% similarity to known fungal ITS sequences). The curated sequences were 

then re-clustered using average neighbor at 0.05 distance. OTUs with fewer than 9 reads were excluded 

from downstream analysis as an aggressive filter against spurious OTUs that arose from non-specific 

PCR amplification and sequencing errors. 

3. Results and Discussion 

3.1. Soil Geochemistry 

Soils from six Dry Valleys were characterized as loamy sand or sand due to their low clay (<2%) 

and silt (<13%) contents (Table S2), which is congruent with Antarctica’s known slow and primarily 

physical weathering processes [7]. The coarse soil texture likely resulted from low erosivity of cold-based 

glaciers and salt weathering, which causes comminution of coarse fragments and provides a steady 

supply of sandy grains to the soils [7]. Consequently, these soils lack significant aggregation and have 

poor moisture retention capacity, which is consistent with their low gravimetric water content (Table S2). 

Water availability has been suggested to be a major factor controlling biomass and diversity of Antarctic 

vegetation [33,34]. Among the six study sites, Miers Valley soils contained the lowest average moisture 

content (0.53%, ANOVA p-value = 0.002; Table S2). But due to its low elevation (elev. 171 m) and 

variable wind direction, temperatures in Miers Valley can reach above 0 °C in austral summers [35]. 

This likely leads to increased water availability from melt streams of Miers and Adams Glaciers, 

which can trigger rapid responses from local microorganisms [16,34]. Water availability in austral 

summers is also elevated in Alatna Valley and Battleship Promontory, where transient ponds are 

formed from snow melt. This is in contrast with the low moisture content and water availability in higher 

(elev. >1500 m) and more inland valleys (e.g., University Valley). The high altitude of University 

Valley results in colder air temperatures all year round, leading to a lower net ice loss rate when 

compared to Beacon Valley (ca. 450 m below University Valley) [36]. Soil salt content is a proxy for 

water availability [37], and Miers Valley, Alatna Valley, and Battleship Promontory soils showed 

relatively low conductivity. Soil physicochemical properties (Table S2) were significantly different 

among the sampling sites (ANOSIM global R = 0.963, p-value = 0.001) with each valley clearly 

forming its own clade. In a broader view, distinct grouping patterns emerged for Miers Valley in the MDS 

plot (Figure 2), possibly due to its alkaline pH reflective of greater influence from salts of marine  

origin [38] and its higher C/N ratio. Overall, geochemical analysis revealed a wide range of soil 

salinity (107–3920 µS), low moisture content (1%–3% w/v), low levels of organic carbon (<0.46%) 

and nitrogen (<0.12%). 
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3.2. Community Fingerprinting with tRFLP 

DNA extractions from soils proved difficult, and DNA samples from Beacon, University, and 

Upper Wright Valleys were mostly below the detection limit of 0.05 ng/µL. The highest recovery yields 

were obtained from Miers Valley samples, followed by those from Battleship Promontory and Alatna 

Valley (Table 2). Fungal tRFLP analysis of extracted DNA returned positive signals for 12 of the  

30 soil samples, with no polymorphic fragments (PFs) detected in any of the samples from University 

Valley. A total of 33 PFs were obtained (Table 3), whose lengths varied between 145 and 781 bp. 

Samples from Battleship Promontory collectively returned the highest diversity (13 PFs), followed  

by Alatna Valley (11 PFs) and Miers Valley (5 PFs). ANOSIM analysis of PF profiles demonstrated 

statistically significant differences among valleys (ANOSIM global R = 0.731, p-value = 0.001), and 

there was no robust correlation between diversity (PF count) and biomass (averaged DNA yield from  

1 gram of soil) (R = 0.35, p-value = 0.06). 

Figure 2. Nonmetric multidimensional scaling (MDS) plot based on Euclidean distances 

between soil physicochemical profiles. Significant correlations (Pearson R > 0.25) between 

plot ordinations and soil physicochemical properties are represented as vectors in gray. 

 

Table 2. Average concentrations of DNA extracted from 1 g of soil. 

Valley Average Concentration ± S.D. 

Miers Valley 48.60 ± 27.79 ng/µL 

Beacon Valley 0.48 ± 0.55 ng/µL 

Battleship Promontory 20.87 ± 5.61 ng/µL 

Upper Wright Valley 3.68 ± 7.57 ng/µL 

Alatna Valley 15.84 ± 13.49 ng/µL 

University Valley 0.05 ± 0.09 ng/µL 



Biology 2014, 3 473 

 

 

Table 3. Summary of terminal restriction fragment length polymorphism (tRFLP) 

polymorphic fragments (PF). 

Valley Total PF Average PF ± S.D. 

Miers Valley 5 1.0 ± 1.2 

Beacon Valley 2 0.4 * 

Battleship Valley 13 2.6 ± 1.5 

Wright Valley 2 0.4 * 

Alatna Valley 11 2.2 ± 3.2 

University Valley 0 0 

* S.D. not calculated. 

Interestingly, a MDS plot of tRFLP data showed a clear separation of samples from Battleship 

Promontory and Alatna Valley (Figure 3), despite the fact that the two sampling sites are less than 5 km 

apart and within line-of-sight. This suggests that aeolian dispersal between these sites is very limited or 

outweighed by other environmental drivers that shape edaphic fungal diversity at these locations. 

There was only one sample each from Beacon and Upper Wright Valleys, but they were >50% similar 

to each other. Samples from Miers Valley were widely dispersed in the MDS plot, making Miers Valley 

a clear outlier. 

Figure 3. Nonmetric multidimensional scaling (MDS) plot based on Bray-Curtis similarities 

of tRFLP profiles. Samples used for 454 PCR amplicon pyrosequencing are labeled by 

name. Significant correlations (Pearson R > 0.25) between plot ordinations and soil 

physicochemical properties are represented as vectors in gray. 
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3.3. 454 Pyrosequencing 

To identify the fungal species present, three samples that represented the greatest diversity based on 

results from tRFLP analysis were chosen for 454 PCR amplicon pyrosequencing. DNA extracted from 

Battleship Promontory sample D, referred to as Battleship_D, Alatna Valley sample N (Alatna_N), and 

Miers Valley sample A (Miers_A) appeared to be most representative of each major cluster (Figure 3). 

Fungal signals in Beacon and Upper Wright Valley were considered unsequenceable due to very low 

DNA extraction and amplification yields and therefore excluded from pyrosequencing. After filtering, 

denoising, chimera removal, and quality control, 262 fungal OTUs (from 21,101 reads) were obtained, 

of which 37 contained more than 9 reads (i.e., >0.2% of the sample with fewest reads) and were used 

for downstream analysis. Species richness (Table 4) was highest in Miers Valley  

(31 OTUs from 1771 reads), followed by Battleship Promontory (18 OTUs from 2091 reads), and 

Alatna Valley (17 OTUs from 5081 reads). A Venn diagram illustrates the distribution of OTUs among 

the three samples (Figure 4). Nine OTUs (representing 8943 reads) were found in all three Valleys 

(Figure 4), including the five most abundant OTUs. 

Figure 4. Venn diagram of fungal OTUs. 

 

A significant number of OTUs were annotated as unclassified (Table 4 and Figure 5), which is 

likely reflective of the comparative lack of high quality annotated fungal ITS sequences in the GenBank 

nr database. Therefore, results that rely on classification of fungal sequences must be interpreted carefully. 

However, multiple studies identified Ascomycota and Basidiomycota as the dominant fungal phyla in 

the Dry Valleys [22,25,27,39], whereas our results showed an unexpected prominence of Chytridiomycota 

among all three valleys (Figure 5). It should be noted that Chytridiomycota were reported in a molecular 

survey on west Antarctic sites [40], including Signy Island, Mars Oasis, and Coal Nunatak, at significant 

abundances but not in the Dry Valleys. 
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Table 4. Overview of fungal OTUs from PCR amplicon pyrosequencing. 

 Read Count Best Match in GenBank nr Database  

OTU # AV_N BP_D MV_A Total GenBank ID Identity (%) Phylum Organism 

3 1852 407 1 2283 AB032673 99 Basidiomycota Cryptococcus consortionis 

4 841 728 191 1760 EF432821 93 Chytridiomycota Lobulomycetales sp. AF017 

6 1058 122 369 1542 EF060799 99 Ascomycota Herpotrichiellaceae sp. LM500 

7 505 68 233 806 JF747078 99 Ascomycota Exophiala equina 

10 129 351 61 541 EU480339 93 Unknown Uncultured clone 

11 0 0 372 372 GQ250013 92 Ascomycota Cordyceps sp. BCC22921 

14 246 0 0 246 EF535204 90 Ascomycota Candelaria crawfordii strain CHN265 

16 179 0 0 179 FJ827708 90 Chytridiomycota Powellomyces sp. PL 142 

20 0 109 0 109 EU352772 93 Chytridiomycota Chytridiales sp. JEL178 

22 0 0 109 109 DQ457086 85 Unknown Uncultured clone 

24 0 83 0 83 AM901700 97 Ascomycota Ascomycete sp. BF104 

25 0 0 81 81 FJ827708 94 Chytridiomycota Powellomyces sp. PL 142 

26 80 0 0 80 GU184116 96 Ascomycota Acarospora rosulata isolate ACABUL_USA2 

28 36 30 0 66 KC222134 83 Ascomycota Trichoglossum octopartitum 

29 0 0 61 61 EF585664 83 Chytridiomycota Betamyces americaemeridionalis 

35 0 0 54 54 EU352770 92 Chytridiomycota Lobulomyces poculatus 

39 0 47 0 47 AF106527 91 Ascomycota Arthrobotrys arcuata strain CBS 174.89 

40 8 33 1 42 DQ494379 94 Ascomycota Vermispora fusarina 

41 12 27 3 42 JX171180 94 Basidiomycota Meira sp. ANTCW08-165 

45 34 1 5 40 FJ827741 96 Chytridiomycota Gaertneriomyces sp. JEL 550 

48 29 1 0 30 HQ634632 97 Ascomycota Chaetothyriales sp. M-Cre1-2 

49 29 0 0 29 JX124723 98 Ascomycota Taphrina sp. CCFEE 5198 

51 0 0 28 28 JX036093 93 Ascomycota Polysporina frigida 

54 0 10 17 27 EU352770 92 Chytridiomycota Lobulomyces poculatus 

56 0 0 25 25 JF809853 99 Chytridiomycota Betamyces sp. PL 173 

59 0 0 23 23 AY373015 91 Unknown Olpidium brassicae 

60 0 22 0 22 JQ936330 99 Unknown Phaeosphaeriopsis sp. CBP21E 
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Table 4. Cont. 

 Read Count Best Match in GenBank nr Database  

OTU # AV_N BP_D MV_A Total GenBank ID Identity (%) Phylum Organism 

61 0 0 22 22 JX219783 91 Ascomycota Cortinarius callisteus 

62 0 0 22 22 JN416510 89 Basidiomycota Basidiobolus sp. BCU1 

64 1 19 1 21 JX173100 99 Ascomycota Cladosporium sp. AF13 

67 18 0 0 18 AY781244 89 Unknown Ascomycete sp. olrim401 

68 0 18 0 18 AY394892 94 Ascomycota Mycorrhizal sp. pkc11 

72 0 0 17 17 EF634250 80 Chytridiomycota Coralloidiomyces digitatus 

78 0 15 0 15 EU480016 90 Unknown Uncultured clone 

101 0 0 11 11 JN882333 94 Chytridiomycota Monoblepharis hypogyna 

102 0 0 11 11 DQ485612 93 Chytridiomycota Rhizophydium carpophilum 

105 0 0 10 10 JQ711836 99 Basidiomycota Russula nigricans 

Abbreviations: OTU, operational taxonomic unit; AV_N, Alatna Valley sample N; BP_D, Battleship Promontory sample D; MV_A, Miers Valley sample A. 
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Figure 5. Phylum-level distribution of fungal OTUs. 

 

Contrary to fungal tRFLP results, PCR amplicon pyrosequencing analysis of the fungal ITS region 

identified Miers Valley as having the highest level of diversity of the three valleys (Figure 4), despite 

the lowest sequencing depth. In particular, Miers Valley appeared to harbor a limited presence of 

Ascomycota compared to the other two valleys, but also the highest number of Chytridiomycota OTUs 

(Figure 5). 

The most abundant OTU (#3) was found in Alatna Valley (1875 reads), Battleship Promontory (407 

reads), and Miers Valley (1 read) (Table 4). Its best match in GenBank (99% identity) was the 

psychrotolerant species Cryptococcus consortionis (Basidiomycota), which was previously observed 

and commonly found in Dry Valley soils [22,41]. Cryptococcus consortionis is characterized by the 

combination of amylase production and inability to utilize nitrate, cellobiose, D-galactose, myo-inositol, 

and mannitol [41]. The second most abundant OTU (#4) was also found in all three Dry Valleys (Table 4). 

Its best match in GenBank (93% similarity) was Lobulomycetales sp. AF017 (Chytridiomycota), which 

has been reported to occur in barren alpine soil in Peru [42]. Two other OTUs (#35 and #54) appeared 

to be affiliated with this genus as well. 

Other abundant OTUs found in all three valleys (Table 4) were 99% similar to the species 

Herpotrichiellaceae sp. LM500 (Ascomycota) and 99.9% similar to Exophiala equine (Ascomycota), 

which was curiously reported to occur exclusively in waterborne cold-blooded animals [43]. Less 

abundant OTUs show similarity to fungal taxa described as Dry Valley lichen Polysporina frigida [44], 

Meira sp. ANTCW08-165 [45], and Tetracladium sp. ANTCW08-156 [45] which were previously 

detected in Antarctica. The genus Cladosporium has been reported as a dominant group by multiple 

studies [24,46,47] of pristine areas with little biotic influence [24,46], likely because of its prolific 

production of spores and high abundance in the air [24,47]. This is in contrast to our study, where 

Cladosporium species appear to be very rare (21 reads total). Notably, these fungi have been reported 

to survive repeated inoculations [24] and form spores, which can remain dormant for considerable 
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periods of time [26]. It should be stressed that no conclusions can be drawn as to whether these fungi 

are active based on PCR amplicon pyrosequencing, as the method only detects the presence of DNA 

and does not indicate the viability of the organism [48,49]. 

3.4. Biogeography and Local Adaptation 

The most important dispersal mechanisms for biomass in Antarctica have been suggested as aeolian 

transport [4,50,51]. If, as hypothesized previously [52], fungal species in the Dry Valleys are inactive 

spores that only respond to cultivation efforts and do not exhibit localized adaptations, neighboring 

valleys would be expected to harbor very similar fungal communities; for example, between Battleship 

Promontory and Alatna Valley and between Beacon and University Valley, which are located next  

to each other (<1 km) without any physical barrier. The tRFLP results indicated highly localized 

community structures, with Battleship Promontory and Alatna Valley forming statistically distinct 

clades (Figure 3). In addition, no fungal signals were detected in samples from University Valley while 

some were detected in Beacon Valley samples. Rao et al. previously hypothesized that the biogeography 

may be important for fungi in the Dry Valleys [52] and that fungal tolerance to saline conditions could 

confer selective advantage in high-elevation Dry Valleys [52]. Although the five most abundant OTUs 

reported here were found in all three samples sequenced, the relative abundances of individual OTUs 

were highly divergent. Since each of the sequenced samples can be considered representative of 

distinct diversity patterns found in the three Dry Valleys (Figure 3), the relative abundance patterns 

suggest that distinct fungal communities exist in each of these locations (Table 4). It should be noted 

that the limited spatial coverage in each Dry Valley and lack of replicates for sequencing analysis 

preclude definitive conclusions from being drawn, but these observations could indicate that aeolian 

transport plays a less important role than previous believed, or that Dry Valley fungal communities 

exhibit adaption to local conditions and thus are ecologically relevant. 

3.5. Environmental Drivers of Fungal Distribution 

Whether and how environmental factors shape fungal communities in Dry Valleys soils remains 

largely unexplored, but it has been suggested that both contemporary environmental conditions  

and historical contingencies play important roles in the distribution of fungal taxa in general [53].  

It has been shown that abiotic factors play the most dominant role in extremely simplified food  

webs [5,11,54,55]. This makes the Dry Valleys soil ecosystem, with its extreme environmental stress, 

an excellent model for resolving the influence of abiotic factors on soil microbiota [19,55,56]. Miers 

Valley and Battleship Promontory, whose soils generally have a lower salinity, were reported to harbor 

greater bacterial and cyanobacterial diversity [15]. This study reveals similar trends for edaphic fungal 

diversity in these Dry Valleys as well as Alatna Valley; compared with Beacon Valley, University 

Valley, and Upper Wright Valley, where the lack of amplifiable fungal signal in extracted DNA could 

indicate potential limits of fungal growth and distribution. Importantly, soil C/N ratios are higher in  

all three coastal and lower elevation valleys, which potentially indicate higher levels of primary 

productivity that can in turn sustain diverse populations of heterotrophic fungi [4,16,57]. Rao et al. 

suggested that substrate availability could limit diversity [52], since Dry Valley soils with higher 

carbon content harbored greater species richness [22,52]. Biota-environmental stepwise (BEST) analysis of 



Biology 2014, 3 479 

 

 

soil physicochemical properties and tRFLP results supported this view, identifying C/N ratio as the 

most consistent differentiator of fungal community structure, followed by As and Ca (Supplementary 

Table S3). Calcium can be considered as a proxy for the mineral composition of underlying soils. The 

influence of arsenic on fungal populations is not clear since its concentrations are very low in our 

samples (Supplementary Table S2). The complete/near absence of detectable fungal signal in samples 

from University Valley and Beacon Valley is intriguing. Compared with other valleys, Beacon Valley 

and University Valley have higher elevations, resulting in lower average temperature and possibly less 

ice melting [36]. Therefore, contrary to an earlier hypothesis [52], lower temperature and water availability, 

combined with lower C/N ratio and higher salinity, may create conditions in these inland Dry Valleys 

that restrict fungal growth while permitting bacterial presence [15]. However, given that our samples 

were taken within comparatively small areas (2500 m
2
) on south-facing slopes, the possibility that our 

observations are reflective of specific geographic features of the sampling sites cannot be ruled out. 

South-facing slopes of the Dry Valleys are generally colder due to the lack of solar radiation input [1] 

and possibly more oligotrophic (compared with north-facing slopes) [16], and as such may restrict the 

colonization and growth of fungi. 

4. Conclusions 

Soil physicochemical properties among the Dry Valley sites showed distinct grouping patterns, with 

each valley forming its own clade. tRFLP results revealed similar grouping patterns, with significant 

variations in relative abundances of fungal signals between sites. Miers Valley was identified as a clear 

outlier by geochemical and tRFLP analyses, which were corroborated by pyrosequencing results, 

showing that Miers Valley harbored the highest level of fungal diversity and an unexpected abundance 

of Chytridiomycota. This is in contrast with the relatively low abundance of Basidiomycota, which 

was previously reported as the most dominant fungal phyla in the Dry Valleys. In total, nine OTUs 

were found in all three valleys, including the five most abundant ones, indicating that a set of core 

fungal species is present throughout the Dry Valleys. However, the relative abundances of these dominant 

OTUs are notably different among the three sites, suggesting that there is significant biogeography for 

Dry Valley edaphic fungi and that they likely respond and adapt to local environmental conditions. 

This in turn implies that much of the fungal biomass in the Dry Valleys is biological active and 

ecologically relevant, rather than spores whose distribution pattern is largely dictated by aeolian 

transport. The comparative lack of fungal signals in the inland high elevation Dry Valleys suggests that 

environmental conditions at those locations may represent limits of fungal growth. 
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