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Abstract: Memory consists of various individual processes which form a dynamic system 
co-ordinated by central (executive) functions. The episodic buffer as direct interface  
between episodic long-term memory (LTM) and working memory (WM) is fairly well 
studied but such direct interaction is less clear in semantic LTM. Here, we designed a verbal 
delayed-match-to-sample task specifically to differentiate between pure information 
maintenance and mental manipulation of memory traces with and without involvement of 
access to semantic LTM. Task-related amplitude differences of electroencephalographic 
(EEG) oscillatory brain activity showed a linear increase in frontal-midline theta and linear 
suppression of parietal beta amplitudes relative to memory operation complexity. Amplitude 
suppression at upper alpha frequency, which was previously found to indicate access to 
semantic LTM, was only sensitive to mental manipulation in general, irrespective of LTM 
involvement. This suggests that suppression of upper EEG alpha activity might rather reflect 
unspecific distributed cortical activation during complex mental processes than accessing 
semantic LTM. 
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1. Introduction 

Memory is a complex system which consists of various functions and cognitive processes. It can be 
divided into sub-systems defined by the length a mental representation is kept activated, i.e., short-term 
memory (STM) and long-term memory (LTM). Additionally, working memory (WM) is a short-term 
storage system [1] which also encompasses the utilisation of information no longer available in the 
environment and importantly, is updated with information from LTM (episodic and semantic) in order 
to successfully complete the task at hand [2]. Baddeley [2,3] introduced the concept of WM being 
divided into two modality specific storage components (visuo-spatial sketchpad and phonological loop) 
which are more or less independent from LTM. In contrast, memory models by Cowan [4,5], Ruchkin 
and colleagues [6] or Fuster [7–9] assume that WM is not independent from LTM but just a subset 
thereof that is currently under attentional focus. A common feature of virtually all WM models, however, 
is the central executive (CE) which is a highly flexible attentional master component monitoring and  
co-ordinating all cognitive processing and is located at frontal brain areas (e.g., [3,6]). 

Another consensus between the above mentioned memory models is that memory is not located at 
one single area in the brain but spans a vast network mainly comprising prefrontal cortex and temporal 
and posterior parietal areas [10,11]. Furthermore, EEG oscillatory activity has repeatedly been suggested 
as energy-efficient physical mechanism for temporal co-ordination of cognitive processes, locally as 
well as interregionally (for a review see [12]). Increase in oscillatory activity in the theta frequency range 
(4–8 Hz) over medial frontal brain sites (frontal midline theta, FMtheta) for instance is reported as likely 
candidate for representing the neural correlate of the central executive monitoring component which is 
essential to all memory models [13]. Sustained increase in FMtheta is suggested to reflect the active 
maintenance of information in WM by attentional control processes [14]. More specifically, FMtheta 
has been found to signal that more attentional resources and cognitive effort need to be allocated to a 
task (e.g., [15–19]). 

In contrast, suppression of upper alpha (10–12/13 Hz) oscillatory activity over posterior brain areas 
has been reported to reflect processing of information from semantic LTM, more specifically the access 
to semantic LTM [20,21]; with the strength of upper alpha suppression positively correlating with the 
performance in tasks targeting semantic LTM specifically (for a review see [17]). Moreover, it was found 
that the more semantically integrated the information to be retrieved is, the more upper alpha is 
suppressed over posterior brain areas [22]. It was also shown that increase in upper alpha activity reflects 
active inhibition and protection of activated memory traces from interfering, task irrelevant LTM traces. 
The inhibition-timing hypothesis [23] highlights upper alpha increase and suppression as mechanism 
that actively inhibits interference from task-irrelevant information (upper alpha increase) and gradually 
releases this inhibition as access to LTM is needed to integrate information from LTM into WM in a 
given situation ([24–28] for a more recent review). Further supporting the claim of upper alpha 
reflecting a general gating mechanism for information from semantic LTM are findings by Sauseng 
and colleagues [29] who conducted a visuo-spatial delayed-match-to-sample WM experiment and 
showed that under increased cognitive effort upper alpha increases over posterior brain areas. Similarly, 
Jensen et al. [30] found an increase in upper alpha being correlated to load in a WM experiment. This 
indicates that if a situation does not require access to semantic LTM, upper alpha activity increases to 
prevent information from LTM being activated and from possibly interfering with the current task. 
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More recently oscillatory activity in the beta frequency range (13–30 Hz), which had been linked 
mainly to motor functions in the past, was associated with general higher cognitive processing (for a 
review see [31]) and memory processes [32] and specifically semantic memory [33]. Also, there is strong 
evidence that gamma oscillations (40–80 Hz) play an important role in information maintenance and 
utilisation both in humans and animal models (for a review see [34]). 

However, an important but unresolved issue is how WM and semantic LTM communicate with each 
other since a major part of successfully completing a task is the constant update of WM with information 
held in LTM. The episodic buffer which forms a direct interface between episodic LTM and WM and 
co-ordinates the interaction between these two memory systems is fairly well studied [2]. Such direct 
interaction is less clear between WM and semantic LTM, however. Given the association of FMtheta 
with cognitive resource allocation (e.g., [16]) and monitoring of higher cognitive processes [3] FMtheta 
was suggested to be a prime candidate for representing the interfacing between different memory 
systems (for a review see [22]). More specifically, synchronisation in the theta frequency range over 
frontal areas indicates and monitors utilisation of information from LTM in WM at posterior brain 
sites ([3,17,35,36]). Kizilirmak et al. [37] for example showed that systematic manipulation of the 
complexity of the LTM retrieval processes (more specifically, LTM search) was associated with stronger 
slow wave negativity over the mid-frontal cortex suggesting an involvement of the anterior cingulate 
cortex (ACC). Since the ACC is repeatedly found as generator of FMtheta [16,35,38] this makes the 
assumption of FMtheta oscillations being the interface between WM and LTM all the more plausible. 
Similarly, Khader and Roesler [39] conducted an experiment where they systematically manipulated the 
number of items from different material types (objects and locations) that needed to be retrieved from 
LTM. They found a linear effect in both, FMtheta increase and posterior upper alpha suppression, with 
memory load; but only the upper alpha suppression was also sensitive to material type. They interpret 
their results in a way that FMtheta depicts retrieval related control processes whereas upper alpha is 
functionally related to the activation of information stored in LTM. 

In order to investigate the oscillatory correlates of the interfacing between WM and LTM we designed 
a verbal WM experiment similar to the one used by Griesmayr et al. [40]. There, the authors used a 
verbal delayed-match-to-sample WM task where participants had to either retain a string of four 
consonant letters (maintenance) or re-arrange them according to alphabetical order (semantic manipulation 
with LTM access). During the delay interval they found increased FMtheta activity for the manipulation 
condition and attributed it to increased attentional demand. Unfortunately, Griesmayr and colleagues did 
not report results in the upper alpha range. In order to disentangle WM operations and semantic LTM 
utilisation, we added a third condition; a pure WM manipulation condition where participants had to  
re-arrange the consonants backwards as presented on the screen (backwards manipulation without LTM 
access). This should enable us to dissociate retention of information in WM from the manipulation 
thereof in WM. Furthermore, by comparing the two manipulation conditions we should be able to extract 
the neural signatures of WM accessing semantic LTM contents. 
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2. Experimental Section 

2.1. Participants 

Data were collected from 19 participants after they gave written informed consent; 11 were female 
(Mage = 20.18, SDage = 1.78) and eight were male (Mage = 22.5, SDage = 2.07). They had normal or 
corrected to normal vision and reported to have no prior neurological conditions. All but three were right 
handed (handedness was assessed with the Edinburgh Handedness Inventory, [41]). The study was 
approved by the University of Surrey Ethics Review Board. 

2.2. Stimulus Presentation 

Participants were comfortably seated at a standardised distance of 150 cm in front of a 19 inch Dell 
flat screen monitor with a total resolution of 1280 × 1024 pixels in a well lit room. Presentation Version 
0.71 (Neurobehavioural Systems, Inc., Berkeley, CA, USA) was used to control visual stimulation. 

2.3. Experimental Task and Trial Setup 

In the present experiment participants had to perform a verbal delayed-match-to-sample-task (see 
Figure 1). The verbal material consisted of visually presented consonant letter strings (target letter sting) 
with four items each, shown simultaneously for a period of 1000 ms against a black background centrally 
on the computer screen (font = Arial; font size = 80). The letters were either coloured in grey, red or 
blue with the colour serving as indication of which condition had to be performed in the respective trial. 
When the letters were grey (retention condition) participants had to simply retain the letters in their exact 
order during the following retention interval of 2000 ms before comparing them to a probe letter sting. 
When the letters were red (backwards manipulation condition), participants needed to re-order them 
backwards during the retention interval and retain the newly arranged letter sequence until the probe 
letters appeared on screen. When the letters were presented in blue (semantic manipulation condition) 
participants were instructed to re-arrange the letters according to alphabetical order. After the retention 
interval a probe letter string appeared on the monitor and participants had to decide and indicate by 
button press (left- or right-click on a computer mouse) whether it matched their mental representation 
of the target letter string (either retained or manipulated, depending on instruction) or not. The inter-trial 
interval varied between 2000 and 3000 ms (see Figure 1). 

All participants carried out a practice run which consisted of 30 trials in total with 10 for each condition 
and an equal amount of match and non-match trials. The actual experiment consisted of 54 trials per 
condition, resulting in a total number of 162 trials with 50% of them being a match and 50% being a 
non-match between target and probe. All 162 trials were presented in a completely randomised order. 
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Figure 1. Experimental design of the delayed-match-to-sample task with examples of match 
trials for the conditions “retention” (RET), “semantic manipulation” (SEM) and “backwards 
manipulation” (BACK). Participants had to either simply retain the letter string in memory (a), 
re-arrange the letter string according to alphabetical order (b) or re-order the letter string 
backwards (c) during the retention interval and compare it with a probe letter string. Target 
presentation was 1000 ms, retention interval 2000 ms and probe presentation 1000 ms.  

2.4. EEG Acquisition 

EEG data were continuously recorded from 30 Ag-AgCl electrodes inserted into an electrode cap 
(Easy-cap) according to the 10-10 international system; recording sites were FP1, FP2, F7, F3, AFz, Fz, 
F4, F8, FC5, FC1, FC2, FC6, T3, C3, Cz, C4, T4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, 
O1 and O2. Scalp electrodes were referenced against a ring-electrode placed on the tip of the nose and 
the ground electrode was placed on the forehead. EEG signals were registered with a Brain Products 
BrainAmp MR+ 32-channel EEG amplifier within the bandwidth of 0.016 and 80 Hz and a sampling 
rate of 1000 Hz. The impedance of each of the electrodes was kept below 6 k�. Vertical and horizontal 
eye movements and blinks were monitored with two electrodes placed above and next to the left eye 
(EOGs). Stimulus presentation and EEG acquisition were synchronised, and coded event triggers marked 
the onset of each stimulus, response screen and the participants’ responses in the EEG signal recorded 
with BrainVision Recorder software (Brain Products, Gilching, Germany). 
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2.5. EEG Analysis 

For the analysis of the EEG signals Brain Vision Analyzer 2.0 (Brain Products, Gilching, Germany) 
was used. Data were filtered with a high- and a low-cutoff of 1 Hz and 80 Hz, respectively, and a  
Notch-filter was set to 50 Hz. Semi-automatic Ocular Correction with Independent Component Analysis 
(Ocular Correction ICA) was used to correct for eye blink artefacts. The ocular correction function as 
implemented in the Analyzer 2.0 is an ICA-based correction process and uses a simplified version of 
ICA allowing ocular artefacts in the EEG signal to be corrected specifically (for detailed information 
see [42]) Visual inspection of the data was then carried out in order to exclude segments which  
show artefacts created by muscle activity and extensive eye movements which could not be corrected 
with ICA. 

The sampling rate of the raw EEG was changed from 1000 Hz to 1024 Hz based on spline interpolation 
in order to get a power of two for application of Fast Fourier Transformation later. The data recorded 
during the retention interval of each trial were then segmented into epochs of 1000 ms each, resulting in 
two time intervals per retention period (t1: from stimulus offset until 1000 ms later and t2: from 1000 ms 
after stimulus offset until probe onset at 2000 ms after stimulus offset). The rationale behind the 
subdivision of the retention interval into two separate time periods is that in the manipulation conditions 
the mental manipulation most likely takes place during the first half of the retention interval while 
retention processes like rehearsing the newly acquired letter sequence are taking place during the second 
half (see [40,43]). The average number of segments per condition and time period was 45.91 artefact 
free trials (with a minimum of 42 trials per condition). The amount of match and non-match trials that 
were included in the EEG analysis for each condition did not differ and hence should not influence 
obtained EEG results. 

2.5.1. Scalp Level EEG Analysis 

For the analysis of the EEG signal on scalp level (as recorded by the scalp electrodes) Laplacian 
Current Source Density Transformation (CSD) was calculated (order of splines: 4; maximal degree of 
Legendre polynomials: 10; Lambda: 1 e�5) in order to attenuate effects of volume conduction. CSD reduces 
global unspecific activity while increasing local activity (for a detailed description see [44]). In order to 
obtain frequency power estimates (power spectra) Fast Fourier Transformation (FFT) was carried out 
(Hamming window of 10%) and regions of interest (ROIs) were defined (see [29,30,45–48], or for a 
review [49]) for the frequencies of interest; resulting in one frontal ROI (frontal-midline/FM = electrode 
sites AFz and Fz) and one posterior ROI (parieto-occipital/PO = electrode sites P3, Pz, P4, PO3, PO4, 
O1 and O2) which was later additionally divided into one right lateral posterior ROI (rPO; P4, PO4 and 
O2) and one left lateral posterior ROI (lPO; P3, PO3 and O1) for complementary analysis of hemispheric 
distribution. Frequencies of interest for this study were theta (4–7 Hz), upper alpha (10–13 Hz), lower 
beta (beta1, 13–20 Hz), upper beta (beta2, 20–30 Hz), slow gamma (gamma1, 30–50 Hz) and fast gamma 
(gamma2, 50–70 Hz). The frequency specific EEG amplitude was then collapsed over electrodes to 
obtain the estimates for the defined ROIs and trials were averaged for every participant within each 
condition for time window one and time window two separately. 
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2.5.2. Source Level EEG Analysis 

For the analysis on source level the derived scalp EEG signal was analysed using Standardized Low 
Resolution Electromagnetic Tomography (sLORETA; [50]) in order to estimate cortical sources of 
oscillatory activity in specific frequencies. The cortical grey matter and hippocampus are represented by 
6430 voxels at 5 mm spatial resolution each, according to a three-shell spherical head model registered 
to the Talairach human brain atlas (for details see [50]). Taking volume conductance (CSD implemented 
into LORETA) and possible dipole structure into account and assuming that neighbouring neurons tend 
to fire in a synchronized fashion, sLORETA computes a current distribution throughout the full volume 
of the brain directly and looks for the smoothest possible 3-dimensional current distribution [51]. The 
raw scalp EEG is estimated back to the most likely source. The procedure for present analysis involved 
specification of a certain frequency band and comparison of two different conditions or time intervals 
with each other across participants for each single voxel. For each comparison (t-tests), 5000 
randomisations were run in order to correct for multiple comparisons and to determine a critical t-value 
(two-tailed; see [52]). Cortical voxels exhibiting a t-value beyond the critical (positive or negative)  
t-value obtained in the bootsrapping procedure were defined as showing a significant difference in current 
source density between conditions. 

2.6. Statistical Analysis 

For statistical analysis of the scalp EEG data and behavioural data the Statistic Package of Social 
Sciences (IBM SPSS Version 19, IBM, Armonk, NY, USA) was used. 

2.6.1. Behavioural Analysis 

Behavioural performance was monitored in order to assess task difficulty as higher task demand was 
shown to require allocation of more cognitive resources reflected by oscillatory brain activity (e.g., [30]). 
It is assumed that the manipulation conditions are more difficult than the simple retention condition as 
more cognitive effort is required for the execution of a mental manipulation than for pure retention of 
information. Therefore, the mean percentage of correct responses (hits and correct rejections) in each 
condition was calculated and statistically compared using repeated-measures ANOVA (with the factor 
CONDITION) after being tested for normal distribution. Paired sample t-tests were used for post-hoc 
comparisons and FDR (false discovery rate, [53]) correction was calculated to account for family-wise 
error rate. 

2.6.2. EEG Data Analysis 

For statistical analysis of scalp EEG signals all trials (match and non-match, correct and incorrect) 
were used. Incorrect trials were included in the analysis due to the fact that their number was rather 
small; and secondly, incorrect responses might also be caused by erroneous encoding or retrieval processes, 
whereas the current analysis exclusively focused on processes during the delay interval. For statistical 
analysis of amplitude estimates two-way repeated-measures ANOVAs with the factors CONDITION 
(retention, backwards manipulation, semantic manipulation), ROI (frontal, posterior) were calculated 
with the Fast Fourier transformed data for each frequency band individually for the first time window of 
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the retention interval (see EEG Analysis 2.5.). Greenhouse-Geisser corrections were applied if necessary 
and significance level was set to p < 0.05. Paired sample t-tests were used for post-hoc comparisons of 
conditions for each time interval and ROI separately for all frequency bands; FDR correction was used 
to account for multiple testing. 

3. Results and Discussion 

3.1. Behavioural Data 

Performance, as measured by percentage of correct responses, was very high for all three conditions 
(RET (92.98%, SD 5.71), BACK (84.79%, SD 10.13), SEM (82.65%, SD 10.36)). The one-way repeated 
measures ANOVA comparing correct responses between the three conditions revealed a main effect of 
CONDITION (F(1.54, 27.71) = 14.12, p < 0.001, �p2 = 0.44). Post-hoc paired sample t-tests show that 
both manipulation conditions differ significantly from the retention condition with performance being 
higher in the retention condition (RET vs. BACK t(18) = 4.14, p < 0.001 and RET vs. SEM t(18) = 6.67, 
p < 0.001). Performance for the backwards manipulation and semantic manipulation conditions, on the 
other hand, does not differ significantly. These results indicate that the manipulation of the consonant 
letters was generally more difficult than the mere maintenance thereof. The nature of the manipulation 
on the other hand seemed to not significantly impact on task difficulty. 

3.2. EEG Data 

3.2.1. Frontal Midline Theta and Distributed Theta Activity (4–7 Hz) 

An ANOVA comparing frontal midline theta activity (4–7 Hz) on EEG scalp level over the  
frontal region of interest (frontal ROI) between the retention (RET), backwards manipulation (BACK) 
and semantic manipulation (SEM) conditions yielded a significant main effect of CONDITION  
(F(2, 36) = 4.28, p = 0.024, �p2 = 0.19) showing an increase of frontal midline theta activity with 
increasing cognitive demand (Figure 2). Post-hoc paired sample t-tests showed that frontal midline theta 
activity was significantly higher in the SEM than in the RET condition (t(18) = �2.67, p = 0.016)  
(Figure 2A,B). Furthermore, theta activity seems to be higher in the SEM than in the RET condition at 
posterior areas (posterior ROI; F(2, 36) = 4.05, p = 0.032, �p2 = 0.18; t(18) = �2.67, p = 0.028). 

On source level (sLORETA), frontal midline theta showed significant differences in anterior cingulate 
cortex (ACC) and medial frontal lobe (BA 9) between conditions. Current source density was higher in 
the SEM condition than in the RET condition (t > tcrit = 3.28, p < 0.05) (Figure 2C) and higher than in 
the BACK condition (t > tcrit = 3.32, p < 0.05) (Figure 2D). Additionally, the theta frequency band 
showed stronger activation in SEM than in BACK (t > tcrit = 3.32, p < 0.05) in the right parietal cortex 
(precuneus and cingulate gyrus). All p-values were corrected for multiple comparisons using the FDR 
correction approach [53]. 
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Figure 2. Increase in frontal midline theta (FMtheta) activity with increasing cognitive 
demand. (A) Headmap depicting significantly higher FMtheta activity over medial frontal 
electrode positions during semantic manipulation (SEM) of information in working memory 
(WM) than during the simple retention (RET) thereof; (B) Line chart depicting the significant 
amplitude difference between the retention (RET) and the semantic manipulation (SEM) 
conditions. Error bars show standard errors; (C) Standardised sLORETA cortex depicting 
areas with significantly higher FMtheta activity during the semantic manipulation (SEM) of 
information in working memory than the simple retention (RET) thereof; (D) Depiction of 
cortical areas on source level which show significantly stronger theta activity during the 
semantic manipulation (SEM) of information in working memory than during the backwards 
manipulation (BACK) thereof. Warm colours depict increase in activity and cold colours 
depict activity decrease.  

This linear increase of FMtheta activity is well in line with existing literature highlighting the 
association of increase of activity in the theta frequency range over medial frontal brain sites with task 
difficulty and the complexity of mental operations [18]. In our task this would indicate that simple 
retention of four consonant letters (RET) requires less cognitive resources or involvement of medial 
frontal executive processing than backwards manipulation thereof (BACK); which in turn is less effort 
than re-arranging the consonants according to alphabetical order (SEM). In our experiment there is no 
specific difference in FMtheta activity between conditions that would indicate its special involvement 
in semantic LTM access or the interfacing between WM and semantic LTM specifically. Hence, we 
suggest that medial frontal theta activity is a measure of general cognitive processing effort and resource 
allocation depending on the complexity of the task at hand rather. 
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3.2.2. Upper Alpha (10–13 Hz) 

A repeated measures ANOVA comparing upper alpha (10–13 Hz) oscillatory activity over posterior 
brain areas between the three conditions (RET, BACK and SEM) showed a significant main effect of 
CONDITION (F(1.224,22.03) = 8.33, p = 0.006, �p2 = 0.32), see Figure 3) with the retention condition 
(RET) showing significantly stronger upper alpha synchronisation over posterior sites than both, the 
backwards (BACK) (t(18) = 2.88, p = 0.01) and the semantic manipulation (SEM) (t(18) = 3.08, p = 0.006) 
conditions. Importantly, no significant differences were found between the backwards manipulation 
(BACK) and the semantic manipulation (SEM) conditions (t(18) = 0.479, p = 0.638). Moreover, source 
level analysis did not show any significant differences between conditions after correcting for multiple 
comparisons using the FDR correction approach [53]. 

 

Figure 3. Line chart depicting the significant amplitude difference in posterior upper alpha 
activity between the two manipulation conditions and the retention condition. Upper alpha 
activity over posterior brain areas is stronger during the retention (RET) of information in 
working memory than during either the backwards manipulation (BACK) or the semantic 
manipulation (SEM) thereof. Error bars show standard errors. 

Given the association between oscillatory activity in the upper alpha frequency range and semantic 
LTM access, we hypothesized that upper alpha activity over posterior brain areas would specifically 
respond to semantic LTM utilisation. Hence, we expected it to show a clear difference in strength of 
activity between the semantic manipulation condition (SEM) and the two conditions without semantic 
LTM access (RET and BACK). In our task no such difference was obtained but upper alpha seemed to 
respond to the manipulation of information in WM in general, as indicated by the significant difference 
between RET and BACK and RET and SEM but not between BACK and SEM. Our results suggest that 
suppression of oscillatory activity over posterior brain areas reflects unspecific distributed cortical 
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activation during complex mental processes rather than access of semantic LTM specifically. This 
interpretation would be in line with findings by Rihs and colleagues [54] who suggest that the purpose 
of alpha increase during a maintenance phase over occipito-parietal areas is attention related and the 
inhibition of interfering information processing in general and is not necessarily related to semantic 
LTM. In our experiment this would indicate that the manipulation of information (BACK and SEM), 
irrespectively of the nature of the manipulation (with or without semantic information retrieved from 
LTM), needs less active inhibition of posterior cortical areas, i.e., a larger posterior area/network being 
actively involved in the (more cognitively demanding) manipulation of information in opposition to 
simple retention thereof. Whereas, when the task is to simply retain four consonants (RET) a larger part 
of the posterior cortex can be inhibited to protect the actively maintained memory trace from interfering 
cortical activations. 

3.2.3. Lower Beta (13–20 Hz) 

A repeated measures ANOVA yielded a significant main effect for CONDITION (F(1.33,24.08) = 9.86, 
p = 0.002, �p2 = 0.35)) at posterior areas of the brain in the lower beta frequency range (13–20 Hz).  
Post-hoc testing showed that lower beta power at posterior parts of the brain was significantly  
higher for the retention of the verbal material (RET) than the backwards manipulation (BACK)  
(t(18) = 2.84, p = 0.01) and the semantic (SEM) manipulation (t(18) = 3.62, p = 0.002) thereof. The 
backwards manipulation (BACK) condition and semantic manipulation (SEM) condition did not differ 
significantly over the posterior ROI (t(18) = 1.70, p = 0.106) but complementary analysis looking at 
hemispheric distribution (repeated measures ANOVA with the factor ROI split into left posterior and 
right posterior; (FCondition x Region(1.20,21.62) = 4.61, p = 0.037, �p2 = 0.21)) showed a significant difference 
between the two manipulation conditions over the right hemisphere (BACK vs. SEM t(18) = 3.94, p = 0.001) 
(Figure 4). All comparisons were FDR corrected. No significant differences between conditions were 
obtained on source level after FDR correction [53] was applied. 

Suppression of oscillatory activity in the beta frequency range has recently been associated with 
higher cognitive processing outside of the motor domain [31] and has been linked to semantic LTM 
processing specifically [33]. Hanslmayr and colleagues [32] for example discuss the role of posterior 
beta frequency suppression in relation to retrieval of information from semantic LTM by reviewing 
studies which explicitly controlled for cognitive processes with and without semantic LTM access.  
They convincingly conclude that beta can not only be actively increased in order to prevent competing 
memories from interfering but also actively suppressed in order to promote sensory reactivation of  
a relevant memory. In the present study we could not find an increase or decrease in the beta frequency 
specifically related to semantic LTM processing but rather a linear decrease in beta activity from the 
retention condition (RET) via the backwards manipulation condition (BACK) to the semantic manipulation 
condition (SEM). We suggest that decrease in the beta frequency band at posterior brain sites more 
generally reflects task complexity. In accordance with this, Engel and Fries [31] argue that beta 
frequency oscillations seem to be related to the maintenance of a current cognitive or sensorimotor state. 
They reviewed literature reporting increase or decrease of oscillations in the beta frequency range and 
concluded that activity increase is strongly linked to the maintenance of the current status quo. 
Furthermore, they link abnormal enhancement in beta activity with abnormal persistence and deterioration 



Biology 2015, 4 12 
 

 

of flexible behavioural and cognitive control. In our task this would mean that in the retention condition 
(RET) beta activity should be stronger than in the two manipulation conditions (BACK and SEM), which 
is exactly what we found. Moreover, following the hypothesis by Engel and Fries [31], the significant 
difference between the backwards manipulation condition (BACK) and the semantic manipulation 
condition (SEM) would indicate that the maintenance of the status quo is more relevant in the backwards 
manipulation (BACK) while the re-arrangement according to alphabetical order (SEM) requires significantly 
more reshuffling, i.e., cognitive flexibility. 

 

Figure 4. Line chart depicting the significant amplitude difference in right posterior lower 
beta activity between the three experimental conditions. Lower beta activity over posterior 
brain areas is stronger during the retention (RET) of information in working memory than 
during either the backwards manipulation (BACK) or the semantic manipulation (SEM) 
thereof. Furthermore, the backwards manipulation condition (BACK) shows significantly 
stronger lower beta activity than the semantic manipulation condition (SEM). Error bars 
show standard errors. 

No significant differences were found on scalp or source level for the upper beta (20–30 Hz), lower 
gamma (30–50 Hz) or upper gamma (50–70 Hz) frequency bands after correction for multiple comparisons 
by applying FDR correction [53]. This could be due to the gamma activity being strongly linked to 
general maintenance functions in memory contexts in general [34], which did not differ significantly in 
our task. An alternative explanation could be that we were simply unable to pick up differences between 
conditions in the fast frequencies with EEG because of the spatial filtering which generally makes it 
harder to obtain subtle differences in the faster frequency ranges. 

4. Conclusions 

We conclude that oscillatory activity in the upper alpha frequency range might not, after all, have  
a clear cut role as marker for accessing semantic long-term memory and its utilisation in working 
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memory, specifically. Instead, it reflects rather unspecific cortical activation during complex mental 
processes in general. Activity in the theta and the lower beta frequency range on the other hand seem to 
be an indicator of general cognitive effort, complexity of the mental operation at hand and cognitive 
flexibility. Importantly, our findings did not highlight one specific oscillatory frequency band as 
indicator of the interfacing between working memory and semantic long-term memory. Rather our 
findings suggest that the boundary between the two memory systems might be blurry, which 
furthermore, does not suggest a clear cut distinction between working memory and long-term memory. 

Author Contributions  

Serif Omer, Paul Sauseng implementation of study; Barbara Berger, Serif Omer, Paul Sauseng data 
recording; Barbara Berger, Serif Omer, Paul Sauseng, Tamas Minarik, Annette Sterr data analysis; 
Barbara Berger, Paul Sauseng, Tamas Minarik data interpretation; Barbara Berger, Paul Sauseng,  
Tamas Minarik, Annette Sterr writing up of publication 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 
829–839. 

2. Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 
4, 417–423. 

3. Baddeley, A. Working memory. Sci. New Ser. 1992, 255, 556–559. 
4. Cowan, N. Attention and Memory: An Integrated Framework; Oxford Psychology Series, No. 26; 

Oxford University Press: Oxford, UK, 1995. 
5. Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage 

capacity. Behav. Brain Sci. 2001, 24, 87–185. 
6. Ruchkin, D.S.; Grafman, J.; Cameron, K.; Berndt, R.S. Working memory retention systems: A state 

of activated long-term memory. Behav. Brain Sci. 2003, 26, 709–777. 
7. Fuster, J.M. More than working memory rides on long-term memory. Behav. Brain Sci. 2003, 26, 

doi:10.1017/S0140525X03300160. 
8. Fuster, J.M. Cortex and memory: Emergence of a new paradigm. J. Cogn. Neurosci. 2009, 21, 

2047–2072. 
9. Fuster, J.M.; Bressler, S.L. Cognit activation: A mechanism enabling temporal integration in 

working memory. Trends Cogn. Sci. 2012, 16, 207–218. 
10. D’Esposito, M. From cognitive to neural models of working memory. Philos. Trans. R. Soc. Lond. 

B Biol. Sci. 2007, 362, 761–772. 
11. Postle, B.R. Working memory as an emergent property of the mind and brain. Neuroscience 2006, 

139, 23–38. 
12. Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. 



Biology 2015, 4 14 
 

 

13. Sauseng, P.; Griesmayr, B.; Freunberger, R.; Klimesch, W. Control mechanisms in working 
memory: A possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 2010, 34, 1015–1022. 

14. Klimesch, W.; Freundberger, R.; Sauseng, P.; Gruber, W. A short review of slow phase synchronization 
and memory: Evidence for control processes in different memory systems? Brain Res. 2008, 1235, 
31–44. 

15. Womelsdorf, T.; Vinck, M.; Stan Leung, L.; Everling, S. Selecive theta-synchronization of  
choice-relevant information subserves goal-directed behavior. Front. Hum. Neurosci. 2010, 4, 1–13. 

16. Sauseng, P.; Hoppe, J.; Klimesch, W.; Gerloff, C.; Hummel, F.C. Dissociation of sustained attention 
from central executive functions: Local activity and interregional connectivity in the theta range. 
Eur. J. Neurosci. 2007, 25, 587–593. 

17. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance:  
A review and analysis. Brain Res. Rev. 1999, 29, 169–195. 

18. Griesmayr, B.; Berger, B.; Stelzig-Schoeler, R.; Aichhorn, W.; Bergmann, J.; Sauseng, P.  
EEG theta phase coupling during executive control of visual working memory investigated in 
individuals with schizophrenia and in healthy controls. Cogn. Affect. Behav. Neurosci. 2014, 
doi:10.3758/s13415-014-0272-0. 

19. Payne, L.; Kounios, J. Coherent oscillatory networks supporting short-term memory retention. 
Brain Res. 2009, 1247, 126–132. 

20. Klimesch, W.; Schimke, H.; Schwaiger, J.; Doppelmayer, M.; Ripper, B.; Pfurtscheller, G.  
Event-related desynchronization (ERD) and the Dm-effect: Does alpha desynchronization during 
encoding predict alter recall performance? Int. J. Psychophysiol. 1996, 24, 47–60. 

21. Klimesch, W.; Schack, B. Activation of long-term memory by alpha oscillations in a working-memory 
task? Behav. Brain Sci. 2003, doi:10.1017/S0140525X03370165. 

22. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. 
Trends Cogn. Sci. 2012, 16, 606–617. 

23. Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. 
Brain Res. Rev. 2007, 53, 63–88. 

24. Pfurtscheller, G. Induced oscillations in the alpha band: Functional meaning. Epilepsia 2003, 44, 
2–8. 

25. Jensen, O.; Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by 
inhibition. Front. Hum. Neurosci. 2010, 4, 1–8. 

26. Gould, I.C.; Rushworth, M.F.; Nobre, A.C. Indexing the graded allocation of visuospatial attention 
using anticipatory alpha oscillations. J. Neurophysiol. 2011, 105, 1318–1326. 

27. Haegens, S.; Handel, B.F.; Jensen, O. Top-down controlled alpha band activity in somatosensory 
areas determines behavioral performance in a discrimination task. J. Neurosci. 2011, 31, 5197–5204. 

28. Palva, S.; Palva, J.M. Functional roles of alpha-band phase synchronization in local and large-scale 
cortical networks. Front. Psychol. 2011, 2, 1–15. 

29. Sauseng, P.; Klimesch, W.; Doppelmayr, M.; Pecherstorfer, T.; Freunberger, R.; Hanslmayr, S. 
EEG alpha synchronization and functional coupling during top-down processing in a working 
memory task. Hum. Brain Mapp. 2005, 26, 148–155. 

30. Jensen, O.; Gelfand, J.; Kounios, J.; Lisman, J.E. Oscillations in the alpha band (9–12 Hz) increase 
with memory load during retention in a short-term memory task. Cereb. Cortex 2002, 12, 877–882. 



Biology 2015, 4 15 
 

 

31. Engel, A.K.; Fries, P. Beta-band oscillations—Signalling the status quo? Curr. Opin. Neurobiol. 
2010, 20, 156–165. 

32. Hanslmayr, S.; Staudigl, T.; Fellner, M.-C. Oscillatory power decreases and long-term memory: 
The information via desynchronization hypothesis. Front. Hum. Neurosci. 2012, 6, 1–12. 

33. Hanslmayr, S.; Spitzer, B.; Bäuml, K.-H. Brain oscillations dissociate between semantic and 
nonsemantic encoding of episodic memories. Cereb. Cortex 2009, 19, 1631–1640. 

34. Buzsáki, G.; Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. 
35. Gevins, A.; Smith, M.E.; McAvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation 

related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 
1997, 7, 374–385. 

36. Sauseng, P.; Klimesch, W.; Gruber, W.; Doppelmayr, M.; Stadler, W.; Schabus, M. The interplay 
between theta and alpha oscillations in the electroencephalogram reflects the transfer of information 
between memory systems. Neurosci. Lett. 2002, 324, 121–124. 

37. Kizilirmak, J.M.; Rösler, F.; Khader, P.H. Control processes during selective long-term memory 
retrieval. NeuroImage 2012, 59, 1830–1841. 

38. Ishii, R.; Shinosaki, K.; Ukai, S.; Inouye, T.; Ishihara, T.; Yoshimine, T.; Hirabuki, N.; Asada, H.; 
Kihara, T.; Robinson, S.E.; Takeda, M. Medial prefrontal cortex generates frontal midline theta 
rhythm. Neuroreport 1999, 10, 675–679. 

39. Khader, P.H.; Rösler, F. EEG power changes reflect distinct mechanisms during long-term memory 
retrieval. Psychophysiology 2011, 48, 362–369. 

40. Griesmayr, B.; Gruber, W.; Klimesch, W.; Sauseng, P. Human frontal midline theta and its 
synchronization to gamma during a verbal delayed match to sample task. Neurobiol. Learn. Mem. 
2010, 93, 208–215. 

41. Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 
1971, 9, 97–113. 

42. Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Seijnowski, T.J. 
Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 
37, 163–178. 

43. Sauseng, P.; Klimesch, W.; Schabus, M.; Doppelmayr, M. Fronto-parietal EEG coherence in theta 
and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 2005, 
57, 97–103. 

44. Perrin, F.; Pernier, J.; Bertrand, O.; Echallier, J.F. Sperical splines for scalp potential and current 
density mapping. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 184–187. 

45. Jokisch, D.; Jensen, O. Modulation of gamma and alpha activity during a working memory task 
engaging the dorsal and ventral stream. J. Neurosci. 2007, 27, 3244–3251. 

46. Palva, J.M.; Palva, S.; Kaila, K. Phase synchrony among neuronal oscillations in the human cortex. 
J. Neurosci. 2005, 25, 3962–3972. 

47. Sauseng, P.; Klimesch, W.; Gruber, W.; Birbaumer, N. Cross-frequency phase synchronization:  
A brain mechanism of memory matching and attention. NeuroImage 2008, 40, 308–317. 

48. Sauseng, P.; Klimesch, W.; Heise, K.F.; Gruber, W.; Holz, E.; Karim, A.A.; Glennon, M.; Gerloff, C.; 
Birbaumer, N.; Hummel, F.C. Brain oscillatory substrates of visual short-term memory capacity. 
Curr. Biol. 2009, 15, 1846–1852. 



Biology 2015, 4 16 
 

 

49. Sauseng, P.; Klimesch, W. What does phase information of oscillatory brain activity tell us about 
cognitive processes? Neurosci. Biobehav. Rev. 2008, 32, 1001–1013. 

50. Pascual-Marqui, R.D. Standardized low resolution electromagnetic tomography (sLORETA): 
Technical details. Methods Find. Exp. Clin. Pharmacol. 2002, 24, 5–12. 

51. Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography:  
A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. 

52. Nichols, T.E.; Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: A primer 
with examples. Hum. Brain Mapp. 2002, 15, 1–25. 

53. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful 
approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. 

54. Rihs, T.A.; Michel, C.M.; Thut, G. A bias for posterior �-band power suppression versus enhancement 
during shifting versus maintenance of spatial attention. NeuroImage 2009, 44, 190–199. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 


