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Abstract: As a consequence of global warming, tropical invasive species are expected to expand
their range pole-ward, extending their negative impacts to previously undisturbed, high-latitude
ecosystems. Investigating the physiological responses of invasive species to environmental
temperature is important because the coupled effects of climate change and species invasion on
ecosystems could be more alarming than the effects of each phenomenon independently. Especially
in poikilotherms, the rate of motion in muscle-driven biomechanical systems is expected to double for
every 10 ◦C increase in temperature. In this study, we address the question, “How does temperature
affect the speed of jaw-movement during prey-capture in invasive fishes?” Kinematic analysis
of invasive-fish prey-capture behavior revealed that (1) movement velocities of key components
of the feeding mechanism did not double as water temperature increased from 20 ◦C to 30 ◦C;
and (2) thermal sensitivity (Q10 values) for gape, hyoid, lower-jaw rotation, and cranial rotation
velocities at 20 ◦C and 30 ◦C ranged from 0.56 to 1.44 in all three species. With the exception
of lower-jaw rotation, Q10 values were significantly less than the expected Q10 = 2.0, indicating
that feeding kinematics remains consistent despite the change in environmental temperature. It is
conceivable that the ability to maintain peak performance at different temperatures helps facilitate
the spread of invasive fishes globally.
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1. Introduction

Projected variations in global temperature as a consequence of climate change have underscored
renewed interest in addressing questions about temperature-dependent organismal performance [1–5].
The re-emergence of emphasis on ecological physiology of organisms is rooted in the notion that
physiological traits are strong determinants of species response to climate change [6–13]. In light of
the climate change phenomenon, what mechanisms underlie organismal response to environmental
temperature variations? In an attempt to establish the foundation for continuing investigations
addressing this central question, this study was designed to explore the effects of temperature on
whole-organism performance, specifically prey-capture kinematics, in three orders of invasive-teleost
fishes. To our knowledge, these are the first three invasive species used to investigate the effects of
environmental temperature on feeding kinematics in light of climate change. The use of invasive fishes
to examine temperature-dependent performance increases the relevance of this study because of the
belief that the coupled effects of climate change and species invasion on ecosystems are more alarming
than the effects of each taken independently [14]. It is predicted that, as a consequence of global
warming, tropical invasive species expand their range poleward, thus, extending their well-known
negative biological impacts to previously undisturbed, high-latitude ecosystems [14–16].
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The effects of environmental temperature on physiological processes are widespread in both
animals and plants, but in fishes its effects on skeletal-muscle performance and property have been
the focus of most basic and applied physiological studies. It is expected that the direct effects of
environmental temperature on body temperature mediate physiological processes, most especially
metabolic rate. In fishes, as with any poikilothermic vertebrate, physiological performance peaks at a
narrow range of body temperature, and environmental temperature remains a major constraint in their
range of distribution [4,5,17–20]. Metabolic rate, in general, and contraction rate of skeletal muscle
fibers, in particular, increase with environmental temperature until a threshold level is achieved, after
which these rates decline with further increase in environmental temperature [18,21–26]. The ability of
an individual to perform a certain task (e.g., prey capture) driven by a temperature-dependent process
(e.g., rate of contraction of buccal-expansion muscles) is constrained by the reduction in biological
rates as a consequence of decrease in environmental temperature. Furthermore, the expression
of temperature-induced changes in fish-muscle physiology varies according to different temporal
scales (i.e., daily, seasonal, or life-history, developmental time scales) and levels of organization (i.e.,
from molecular to organismal to ecosystem) [27]. For example, intracellular and extracellular ionic
concentration and acid balance are destabilized by instant changes in environmental temperature [28].
Seasonal temperature change may induce modifications of the properties and composition of the
contractile elements of the muscle fiber [27]. This time scale may allow fish to acclimate to
the new ambient temperature and drive plastic response in muscle-fiber phenotypes and trigger
behavioral and other mechanisms that buffer temperature effects and maintain homeostasis [28–30].
At the whole-organism level, responses to environmental temperature change may be taxon- and
ontogenetic- specific. Indeed, environmental temperature has a profound influence on the fish’s
ability to successfully accomplish relevant tasks such as swimming, feeding, mating, and escaping
from predators.

Interestingly, previous studies investigating temperature effects on whole-organism performance
in fishes have revealed mixed results. The kinematics of routine-swimming in teleost fishes have
been largely consistent with physiological expectations. For example, swimming velocity doubles in
response to a 10 ◦C increase in environmental temperature, that is, Q10 values are at least 2.0 [31–34].
The physiological quotient (Q10 value) indicates the magnitude of change in biological rates (e.g.,
swimming speed) for every 10 ◦C change in temperature [31–34]. An attempt to arrive at a consensus on
the effects of temperature on feeding kinematics in teleost fishes remains unsuccessful perhaps because
of the differences in the experimental design employed by the relatively few studies investigating
this subject matter. In investigating how decrease or increase in environmental temperature, between
18 ◦C and 24 ◦C, affect prey-capture performance, Wintzer and Motta [19] concluded that it took
bluegill (Lepomis macrochirus) longer to achieve maximum gape and lower-jaw rotation as water
temperature decreased. DeVries and Wainwright [20] found that a 15 ◦C decrease in temperature
caused only the time to reach maximum gape, among all timing parameters that underlie suction
feeding performance in largemouth bass (Micropterus salmoides), to slightly increase. In Sloan and
Turingan [35], and Turingan and Sloan [36], Repeated Measures Multivariate Analysis of Covariance
revealed that environmental temperature, raised from 20 ◦C to 30 ◦C at a rate of 1 ◦C daily, had no
effect on the magnitude and timing of prey-capture kinematics of nonnative teleost fishes in Florida,
USA. Considering that the ability to successfully capture prey determines individual survivorship,
it is imperative to elucidate how environmental temperature mediates prey-capture performance
in organisms.

Three invasive Florida fishes—Pike killifish, Belonesox belizanus (Cyprinidontiformes); lionfish,
Pterois volitans (Scorpaeniformes); and Mayan cichlid, Cichlasoma urophthalmus (Perciformes)—were
used to determine how variable or consistent whole-organism response is, particularly in invasive
species, to environmental temperature. Consistent with the prediction of climate-driven range
expansion of invasive-species poleward, these invasive fishes have continued to extend their
distribution northward from where they were introduced in south Florida [37–40]. The average
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annual temperature within the current distribution of these invasive fishes ranges between 20 ◦C and
30 ◦C [41]. This is used as the basis for the selection of experimental temperatures in this study.

Identified as one of the most abundant nonnative fishes in Florida, Belonesox belizanus is native
to waters (temperature is 25–37 ◦C) in Mexico and Central America, and was introduced into a ditch
in south Florida in the late 1950s [37–43]. It is a specialist predator, feeding on small fishes using a
feeding mechanism that is well designed for piscivory. This piscivore is capable of achieving a large
gape with its elongated premaxillae and mandibles lined with large teeth [44–46]. The ability of pike
killifish to independently rotate its premaxilla posterodorsally, facilitated by the premaxillomandibular
ligament and a twisting maxilla, further enhances gape formation [45].

Pterois volitans is native to the Indo-Pacific Ocean (temperature is 22–28 ◦C) [47]. After its initial
introduction in south Florida in the early 1990s, it has rapidly expanded its invasive population
southward to the Caribbean and northward along the Atlantic coast of the USA [48–51]. The invasive
lionfish has been identified as the likely worst threat to marine biodiversity in the Mid-Atlantic,
Gulf of Mexico, and Caribbean regions [48–51]. This invasive predator feeds on a diverse group of
fishes in the region, including 21 families and 41 species of teleost fishes, the majority of which have
commercial, recreational, and ecological importance [50,52]. The predatory success of the lionfish is
perhaps enhanced by its ability to modulate its suction-feeding repertoire, including a characteristic
rapid-strike on more mobile, elusive fish and crustacean prey [53].

The native distribution of Cichlasoma urophthalmus ranges from eastern Mexico to Nicaragua
(temperature is 22–39 ◦C) [54]. Following its introduction into south Florida in the 1980s, it has
spread into north Florida and the Florida Bay regions [55–57]. Perhaps among the traits that enable
the invasive Mayan cichlid to spread northward in Florida is its tolerance to extreme variations in
salinity [55–58] and temperature [56,58]. In addition, the invasive Mayan cichlid has a generalist diet,
feeding on detritus, plants, invertebrates and fish [59–62]. Its feeding apparatus includes an oral-jaw
mechanism for prey capture and a well-developed pharyngeal-jaw apparatus for prey-processing [63].

This study was designed to test the hypothesis that the velocity of prey-capture kinematics,
particularly buccal expansion and compression behaviors powered by skeletal-muscle in teleost fishes
doubles when ambient-water temperature is raised by 10 ◦C.

2. Materials and Methods

Four B. belizanus, collected from the Florida Everglades National Park, four C. urophthalmus,
collected from Merritt Island, Florida, and four P. volitans, collected from Port St. Lucie, Florida were
acclimated to 20 ◦C water temperature and trained for high-speed video in the fish ecophysiology
laboratory at Florida Institute of Technology for two weeks before the experiment was initiated. Each
fish was housed in 38 L filming tanks filled with water that matched their Florida habitats: 0 ppt for
B. belizanus; 24 ppt for C. urophthalmus, and 35 ppt for P. volitans. The twelve fishes were subjected to a
repeated measures experimental design, in which, each fish was filmed successively in each of the three
experimental temperatures 20 ◦C, 25 ◦C and 30 ◦C (Figure 1). Temperature in each filming tank was
raised from 20 ◦C to the higher filming temperatures at a rate of 1 ◦C daily using a water heater. Once
the experimental temperature was achieved, feeding sessions were recorded every other day from
each fish. Each fish was filmed using a RedLake High-Speed Motionscope 2000S camera with a shutter
speed of 1/1000 s at 250 frames per second while feeding on live mosquitofish (Gambusia holbrooki) prey
at 20 ◦C, 25 ◦C and 30 ◦C. Prey was maintained at 20 ◦C ambient-room temperature. Prey girth was
about 80% of peak gape of each fish; previous analyses of feeding kinematics in these fishes indicated
that this relative prey-size elicited maximum prey-capture performance in fish [35,36,46]. The effects
of temperature on the prey was not investigated in this study. Experimental fish was not fed 1–2 days
before each recording session to ensure fish was motivated to eat and exhibit maximum performance
during feeding trials [19,20].

Each fish was filmed until at least 10 feeding bouts were recorded in which the fish was
perpendicular to the camera and exhibited maximum prey-capture performance. The best four films
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were analyzed per fish at each of the three experimental temperatures using MaxTRAQ (Version 2.2.4.1
Innovision Systems, Inc., Columbiaville, MI, USA). Each film was played back frame-by-frame to
measure maximum gape (mm), hyoid depression (mm), lower-jaw rotation (degree), and cranial
rotation (degree), as well as the time (ms) to reach each of these maximum kinematic-displacement
variables. Time to reach each of these maximum kinematic-displacement variables was calculated
using the frame prior to mouth opening as time = 0. Reference points (i.e., kinematic hotspots)
used to measure these variables are illustrated in Figure 2. Average velocity was calculated as
the value of the maximum kinematic-displacement variable divided by the corresponding time to
reach this maximum displacement: Gape Velocity = Maximum Gape ÷ Time to Reach Maximum
Gape; Hyoid Velocity = Maximum Hyoid Depression ÷ Time to Reach Maximum Hyoid Depression;
Lower-Jaw Rotation Velocity = Maximum Lower-Jaw Rotation ÷ Time to Reach Maximum Lower-Jaw
Rotation; Cranial Rotation Velocity = Maximum Cranial Rotation ÷ Time to Reach Maximum Cranial
Rotation. Physiological quotient (Q10) was calculated for each of the kinematic-velocity variables as
Q10 = (Kinematic Velocity at 30 ◦C/Kinematic Velocity 20 ◦C) (modified from Schmidt-Nielsen [64]).

Biology 2016, 5, 46 4 of 15 

 

to measure maximum gape (mm), hyoid depression (mm), lower-jaw rotation (degree), and cranial 

rotation (degree), as well as the time (ms) to reach each of these maximum kinematic-displacement 

variables. Time to reach each of these maximum kinematic-displacement variables was calculated 

using the frame prior to mouth opening as time = 0. Reference points (i.e., kinematic hotspots) used 

to measure these variables are illustrated in Figure 2. Average velocity was calculated as the value of 

the maximum kinematic-displacement variable divided by the corresponding time to reach this 

maximum displacement: Gape Velocity = Maximum Gape ÷ Time to Reach Maximum Gape; Hyoid 

Velocity = Maximum Hyoid Depression ÷ Time to Reach Maximum Hyoid Depression; Lower-Jaw 

Rotation Velocity = Maximum Lower-Jaw Rotation ÷ Time to Reach Maximum Lower-Jaw Rotation; 

Cranial Rotation Velocity = Maximum Cranial Rotation ÷ Time to Reach Maximum Cranial Rotation. 

Physiological quotient (Q10) was calculated for each of the kinematic-velocity variables as Q10 = 

(Kinematic Velocity at 30 °C/Kinematic Velocity 20 °C) (modified from Schmidt-Nielsen [64]). 

 

Figure 1. Diagram depicting the experimental design investigating the effects of environmental 

temperature on the kinematic velocity to reach maximum gape, hyoid depression, cranial rotation, 

and lower-jaw rotation. Four individuals of each invasive species Belonesox belizanus, Pterois volitans, 

and Cichlasoma urophthalmus were filmed while feeding on live-fish prey at 20 °C, 25 °C, and 30 °C 

using high-speed video. The best four films of each individual feeding at each temperature were 

digitized to measure the four kinematic velocities stated above and to calculate Q10 values. Kinematic 

velocities and Q10 values were subjected to the appropriate statistical tests to determine the effects of 

temperature on prey-capture performance. 

Each of the four kinematic-velocity variables was subjected to a Model I least-squares regression 

against temperature to define the model y = a + bx; where y = kinematic velocity, a = intercept, b = 

slope, and x = environmental temperature (=20 °C, 25 °C, and 30 °C). To test the hypothesis that the 

Q10 of each of the kinematic-velocity variables was different from 2.0, a series of Paired t-Tests were 

conducted to compare the empirical Q10 values with the theoretical Q10 value of 2.0. All statistical 

tests were conducted using R. 

After the experiment, each fish was sacrificed using an overdose of MS-222 solution, fixed in 

10% formalin solution, and then stored in 75% ethanol solution. All specimens have been stored 

appropriately in the fish ecophysiology and evolution laboratory at Florida Institute of Technology 

for use in current and future teaching and research. All procedures for housing, maintaining and 

sacrificing experimental fishes strictly followed the guidelines and procedures of the Institutional 

Animal Care and Use Committee (IACUC) of the Florida Institute of Technology (IACUC Approval 

# 101202). 

Figure 1. Diagram depicting the experimental design investigating the effects of environmental
temperature on the kinematic velocity to reach maximum gape, hyoid depression, cranial rotation,
and lower-jaw rotation. Four individuals of each invasive species Belonesox belizanus, Pterois volitans,
and Cichlasoma urophthalmus were filmed while feeding on live-fish prey at 20 ◦C, 25 ◦C, and 30 ◦C
using high-speed video. The best four films of each individual feeding at each temperature were
digitized to measure the four kinematic velocities stated above and to calculate Q10 values. Kinematic
velocities and Q10 values were subjected to the appropriate statistical tests to determine the effects of
temperature on prey-capture performance.

Each of the four kinematic-velocity variables was subjected to a Model I least-squares regression
against temperature to define the model y = a + bx; where y = kinematic velocity, a = intercept,
b = slope, and x = environmental temperature (=20 ◦C, 25 ◦C, and 30 ◦C). To test the hypothesis that
the Q10 of each of the kinematic-velocity variables was different from 2.0, a series of Paired t-Tests were
conducted to compare the empirical Q10 values with the theoretical Q10 value of 2.0. All statistical
tests were conducted using R.

After the experiment, each fish was sacrificed using an overdose of MS-222 solution, fixed in
10% formalin solution, and then stored in 75% ethanol solution. All specimens have been stored
appropriately in the fish ecophysiology and evolution laboratory at Florida Institute of Technology for
use in current and future teaching and research. All procedures for housing, maintaining and sacrificing
experimental fishes strictly followed the guidelines and procedures of the Institutional Animal Care
and Use Committee (IACUC) of the Florida Institute of Technology (IACUC Approval # 101202).
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Figure 2. Diagram of the pike killifish, Belonesox belizanus (top), lionfish, Pterois volitans (middle),
and Mayan cichlid, Cichlasoma urophthalmus (bottom) showing the homologous hotspots used to
measure peak gape (= maximum distance measured from the anteriormost tip of the premaxilla (A)
to the anteriormost tip of the dentary (C)), peak hyoid depression (= maximum distance between the
center of the eye (E) to the anteriormost tip of the hyoid bar (D)), peak lower-jaw rotation (= maximum
posteroventral rotation of the lower-jaw, measured as the angle formed by line segments AB (= jaw-joint)
to BC), and peak cranial rotation (= maximum posterodorsal rotation of the neurocranium, measured
by the angle formed by line segments AG (= dorsal tip of the pectoral-fin base) to GF (= anterior tip of
the dorsal-fin base)).

3. Results

The three Florida invasive-fish species fed voraciously upon introduction of the prey during
feeding-recording sessions at each of the three environmental temperatures, 20 ◦C, 25 ◦C, and 30 ◦C
(Figure 3). Examination of the films revealed that the feeding behavior of each fish was consistent
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with previous studies [35,36,46,53]. The pike killifish stalked its prey and within a very short distance
between the predator and the prey, the fish lunged toward the prey, opened its mouth widely and
snapped at the prey. The lionfish used its pectoral fins to herd the prey closer to its mouth before
suction feeding to capture prey. The Mayan cichlid behaved more aggressively; as soon as the prey
was introduced into the filming tank, the cichlid rapidly swam toward the prey and suction-fed on
it instantaneously.
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Figure 3. Select frames of representative films of two lionfish showing the sequence of kinematic events
during prey capture in lionfish, Pterois volitans, at 20 ◦C, and 30 ◦C. Note that all species of invasive
fishes successfully captured prey in both temperatures.
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Linear regression models indicated that the average velocity of kinematic events during feeding in
all three invasive species remained consistent across environmental temperatures, with the exception
of the average velocity of hyoid depression in the Mayan cichlid and average velocity of lower-jaw
rotation in the lionfish. Species-specific variation in elevation (=y-intercept, a) is apparent, but, the
slopes of the regression, b, were not statistically different from zero, indicating that kinematic velocities
were unaffected by environmental temperature (Table 1 and Figure 4).
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Figure 4. Scatterplot showing the relationship between each of the four kinematic-velocity variables
and feeding temperature 20 ◦C, 25 ◦C, and 30 ◦C. Results of the regression analysis that quantified the
effect of temperature on each of the kinematic events are presented in Table 1.

Table 1. Results of the regression analysis examining the effects of temperature on the kinematic
velocities of maximum gape, hyoid depression, cranial rotation and lower-jaw rotation.

Kinematics Species a b r2 p

Gape P 0.245 0.0343 0.0734 0.163
L 1.797 −0.0357 0.0859 0.130
M 1.821 −0.0376 0.0893 0.122

Hyoid P 0.393 −1.14 × 10−3 4.53 × 10−4 0.914
Depression L 0.738 −0.0162 0.0853 0.131

M 0.980 −0.0267 0.227 0.010
Cranial P 11.385 −0.243 0.0419 0.296

Rotation L 8.808 −0.107 9.38 × 10−3 0.624
M −1.817 0.368 0.101 0.099

Lower-Jaw P 13.365 −0.179 0.0286 0.390
Rotation L −3.568 0.610 0.233 0.009

M 8.089 0.0664 3.61 × 10−3 0.761

Coefficients defining the regression equation, y = a + bx are shown. y = velocity to reach maximum Gape,
Hyoid Depression, Cranial Rotation, and Lower-Jaw Rotation. a = intercept; b = slope. R2 = Coefficient
of Determination. p = probability associated with the null hypothesis that the slope of each regression is
significantly different from zero. P = Pike killifish, Belonesox belizanus; L = Lionfish, Pterois volitans; M = Mayan
cichlid, Cichlasoma urophthalmus.
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The mean Q10 values of each of the kinematic velocities were significantly less than the expected
Q10 value of 2.0, with the exception of the average velocity of lower-jaw rotation in the lionfish and
Mayan cichlid (Table 2 and Figure 5).
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Figure 5. Mean Q10 values for kinematic-velocity in each of the three invasive-fish species. Note that
except for the mean Q10 values for lower-jaw rotation in the Mayan cichlid and lionfish, all Q10 values
of kinematic velocity were significantly less than the expected Q10 value of 2.0 for fish feeding at 20 ◦C
and 30 ◦C. Error bars indicate standard error of the mean.

Table 2. Results of the Paired t-Tests comparing the difference between mean Q10s of each of the
kinematic velocity variables and the expected value of 2.0.

Kinematics Species Mean Q10 t-Statistic Df p

Gape P 0.973 −7.6174 3 0.005
L 0.922 −6.4448 3 0.008
M 1.046 −4.3859 3 0.022

Hyoid P 1.047 −30.0273 3 8.113 × 10−5

L 0.559 −67.1036 3 7.239 × 10−6

M 0.876 −9.8617 3 0.002
Cranial P 1.049 −6.8275 3 0.006

Rotation L 1.054 −9.7247 3 0.002
M 1.033 −19.0769 3 3.145 × 10−4

Lower-Jaw P 1.004 −6.9719 3 0.006
Rotation L 1.294 −2.8106 3 0.063

M 1.444 −1.6617 3 0.195

Relevant statistics are shown for P = Pike killifish, Belonesox belizanus; L = Lionfish, Pterois volitans; M = Mayan
cichlid, Cichlasoma urophthalmus. Note that except for the Q10 of the velocity of lower-jaw rotation in Mayan
cichlid and lionfish, all Q10 values of kinematic velocities are statistically less than the expected value of 2.0.

4. Discussion

Empirical evidence of how organismal performance is affected by environmental change
advances our understanding of the consequences of climate change and invasion of nonnative species.
Investigations into the combined effects of both phenomena on native-community structure and
dynamics, as well as range expansion of invasive species, are especially important considering
that their combined effects are perhaps more devastating than each taken independently ([64],
www.invasivespecies.gov.). It has been predicted that as a consequence of the pole-ward warming

www.invasivespecies.gov.
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of the earth, tropical-invasive species will continue to expand their range toward higher-latitude
ecosystems at alarming rates [14,65]. Well known characteristics of invasive species that enable them to
impart damage in the stability of native ecosystems include: (1) they have high propensity to introduce
and spread diseases [66–68]; (2) they alter community and food web structure through competition and
predation [38,69–73]; (3) they hybridize with native species [74–76]; and (4) they outcompete native
species and ultimately displace and even drive native species to extinction [1,2,67,69]. The latter results
in the reduction of biodiversity and may even lead to biological homogenization. Although empirical
evidence demonstrating the direct and indirect interactions between invasive and native species, as well
as the cause-effect mechanism underlying post-invasion changes in community structure of invaded
ecosystems, are elusive, it is hypothesized that climate change exacerbates the negative impacts of
invasive species to ecology and society [77,78]. In our attempt to contribute to the advancement of
our understanding of the impacts of the invasive species and climate change coupling to ecosystem
dynamics, our discussion of the results of this study centers on the question, “How do invasive fishes
deal with variations in temperature within their invasive range?”

As poikilotherms, the feeding performance of invasive fishes are expected to conform with the
known effects of temperature on the physiology and ecology of heterothermic, aquatic animals [79].
For example, first, the velocity of fin propulsion during swimming and mouth-opening during feeding,
behaviors fueled by skeletal-muscle contraction and relaxation, are expected to double when ambient
temperature is increased by 10 ◦C. This is because at the physiological level of analysis, there is
a two-fold increase in the rate of muscular contraction and relaxation for every 10 ◦C increase in
temperature (i.e., Q10 = 2.0) [18,21–24,31]. Second, at the ecological level of analysis, predictable
seasonal cooling and warming of lakes and rivers have contributed to the evolution of acclimatization
in teleost fishes [80–82]. Third, the food habit of some temperate fishes, such as largemouth bass,
Micropterus salmoides, and pumpkinseed sunfish, Lepomis gibbosus, change seasonally, consistent with
the seasonal cooling and warming of lakes or rivers in temperate ecosystems [80–82].

Results of this study, as well as those of Sloan and Turingan [35] and Turingan and Sloan [36]
underscore the thermal independence of prey-capture performance in invasive-teleost fishes.
Suction-feeding, which is the most dominant and generalized mode of prey-capture in teleost fishes,
relies primarily on the high-speed movement of cranial elements such as the jaws, hyoid, suspensorium,
and cranium during mouth opening and closing (see Figure 3; [46,83–89]). A successful strike and
capture of prey relies heavily on the almost simultaneous and rapid expansion of the buccal cavity to
generate subambient-pressure in the buccal chamber and mouth opening [83–85]. These kinematic
events are accomplished primarily by the posterodorsal rotation of the cranium, depression of the hyoid
apparatus, lateral extension of the suspensorial and opercular bones, and the posteroventral rotation
of the lower-jaws [83–89]. These cranial movements are driven by skeletal muscles including the
epaxialis, sternohyoideus, retractor arcus palatini, levator operculi, and dilator operculi [83–85,87]. It is
well known that the rate of contraction of skeletal muscle is expected to at least double for every 10 ◦C
increase in environmental and body temperature in ectotherms such as teleost fishes [20,31,33,34,90–92].
However, temperature has no significant effects on the velocity of movement of the key elements of the
prey-capture mechanism in the three contrasting models of invasive species reported here. Although,
on average, prey-capture kinematics significantly differ among the three invasive species, the absence
of a temperature-induced change in kinematic velocity is evident in all three invasive species [35,36].

Thermal independence of fast-start behaviors and kinematics has been found in other vertebrate
animals. Navas et al. [93] concluded that the Q10 for “jump take-off velocity and mean swimming
velocity” in the frog Rana temporaria was lower than Q10 = 2.0. “Running velocity during burst activity”
in several species of lizards were less affected by temperature, as evident in the low Q10 values for this
behavior [94–96]. “Ballistic mouth opening and tongue projection dynamics” in toads (Bufo terrestris)
were thermally independent [91]. Lack of temperature-induced variation in the dynamics of “ballistic
mouth opening” was also evident in the frog Rana pipiens [96].
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It is noteworthy that our results do not agree with the conclusions of the only two papers
reporting the effects of temperature on the feeding kinematics of native teleost fishes. Prey-capture
kinematics in North American native centrarchid fishes, bluegill Lepomis microchirus, and largemouth
bass Micropterus salmoides, responded to environmental-temperature change in a manner that is
consistent with physiological predictions [19,20]. Among other feeding-kinematic variables that
were affected by temperature, it took longer for fishes to reach peak gape in colder than in warmer
temperatures [19,20]. The prevalence of thermally independent prey-capture kinematics in invasive
teleost fishes underscores the need to address how they compensate for the effects of temperature on
the contractile properties and contraction velocity of skeletal muscles. A direct comparison between
any of the invasive fishes in this study and an ecologically relevant (e.g., as a competitor or prey)
native species in Florida is imperative, given the need to address the direct impacts of invasive on
native species.

Translation of the physiological effects of temperature on muscle contractile properties to
whole-animal performance may be mitigated by the central nervous system [27,97–99]. Central
nervous-system governed compensatory mechanisms may allow whole animals to perform at optimum
levels despite variation in environmental and body temperatures [100–102]. Such compensatory
mechanisms likely include (1) plasticity in the recruitment of muscle fiber types [102–105];
(2) involvement of elastic strain energy storage and recovery in muscular and tendinous tissue [106,107];
(3) occurrence of temperature-induced change in acid-base balance in muscle fiber [107,108];
(4) plasticity of thermal sensitivity of myofibrillar ATPase activity [107,108]. For example,
Rome et al. [104] concluded that at lower temperatures, carp (Cyrprinus carpio) recruited more
fast-contracting (fast anaerobic) muscle fibers when environmental temperature was lower than
ambient. Navas et al. [93] found that at 10 ◦C, optimal whole animal performance was accomplished
by only 34% of muscle-power output. In the sartorius muscle of the toad Bufo bufo, Renaud and
Stevens [107] demonstrated that short-term change in intracellular pH associated with decrease in
water temperature from 25 ◦C to 5 ◦C was enough “to increase maximum force and, hence, power
during isotonic shortening of muscle fiber, providing a short-term mechanism for compensation to
low temperature”.

Global-climate change in general and global-temperature change in particular have important
consequences for the performance of invasive species because of (1) the temperature-induced effects
on physiological and mechanical processes [79,108]; (2) the likelihood that these physiological effects
extend to whole-organism performance (e.g., [19,20]); and (3) the resilience of invasive species and
the resistance of whole-organism performance to temperature change ([35,36]; this study]). These
plausible avenues where the interplay between climate-change and invasive-species phenomena may
be demonstrated need further investigation and confirmation.

5. Conclusions

The velocity of jaw movements during prey capture in the invasive fishes, Belonesox belizanus,
Pterois volitans, and Cichlasoma urophthalmus, were statistically unaffected by water temperature. Within
the range of temperature used in this study, all invasive fishes successfully captured their prey using a
stereotypical suction-feeding kinematic pattern that is unaltered by temperature. It is plausible that
this seemingly temperature-resilient behavior will facilitate the successful expansion of the invasive
range of these tropical-fish species as a consequence of global warming.
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