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Abstract: Chromosome congression during prometaphase culminates with the establishment of
a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than
100 years of research on this topic have attempted to explain chromosome congression based on the
balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle
equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores
are not required for chromosome congression, whereas the mechanisms of chromosome congression
are not necessarily involved in the maintenance of chromosome alignment after congression.
Thus, chromosome congression and maintenance of alignment are determined by different principles.
Moreover, it is now clear that not all chromosomes use the same mechanism for congressing
to the spindle equator. Those chromosomes that are favorably positioned between both poles
when the nuclear envelope breaks down use the so-called “direct congression” pathway in which
chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule
attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces
along chromosome arms that drive chromosome oscillatory movements during and after congression.
The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore
microtubule-attachments and relies on the dominant and coordinated action of the kinetochore
motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral
chromosomes along microtubules, first towards the poles and subsequently towards the equator.
How the opposite polarities of kinetochore motors are regulated in space and time to drive congression
of peripheral chromosomes only now starts to be understood. This appears to be regulated by
position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule
diversity by means of tubulin post-translational modifications. This so-called “tubulin code” might
work as a navigation system that selectively guides kinetochore motors with opposite polarities
along specific spindle microtubule populations, ultimately leading to the congression of peripheral
chromosomes. We propose an integrated model of chromosome congression in mammalian cells that
depends essentially on the following parameters: (1) chromosome position relative to the spindle
poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule
attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors;
and (4) spatial signatures associated with post-translational modifications of specific spindle
microtubule populations. The physiological consequences of abnormal chromosome congression,
as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
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1. Introduction

1.1. What is Chromosome Congression?

In preparation for cell division, two poles and an equator start to be defined by the mitotic
spindle axis. Precisely at the onset of mitosis, when chromosomes start condensing and the nuclear
envelope breaks down, dispersed chromosomes initiate directed movements that culminate with
their position at the spindle equator before migrating to the poles after sister chromatid separation.
This stochastic motion towards the equator coincides with the beginning of prometaphase and is known
as “chromosome congression” (from the English “to come together”; terminology first introduced
by Darlington [1]). Chromosome congression truly represents the first challenge of mitosis and
culminates with the formation of a metaphase plate, a hallmark of mitosis in metazoans, and occurs
in tight spatiotemporal coordination with the assembly of the mitotic spindle that mediates the
microtubule-chromosome interactions required for chromosome movement.

1.2. Why do Chromosomes Congress?

At first glance, it may seem counterintuitive that before chromosomes segregate to the poles
(during anaphase), they first meet at the equator. This likely reflects millions of years of evolution
aiming to improve chromosome segregation fidelity. For instance, if one imagines a mitotic cell in
which chromosomes do not congress, the risk of chromosome missegregation after sister chromatid
separation at anaphase would be too high, unless all chromatids are extensively moved apart, like in
the budding yeast S. cerevisiae, in which the anaphase spindle elongates about 5-fold relative to
the metaphase spindle length [2]. In contrast, metazoan spindles only elongate less than 2-fold the
metaphase spindle length [3] and thus must rely on different strategies to ensure faithful chromosome
segregation during anaphase. One of these strategies is precisely the formation of a metaphase plate,
forcing all chromosomes to start subsequent poleward motion from the same position relative to
the spindle axis, i.e., from the equator. The other is to trigger an abrupt cleavage of cohesin by
separase-mediated degradation of securin, leading to the synchronous separation and movement
of sister chromatids towards the pole. This anaphase synchrony has been shown to depend on the
uniform distribution of spindle forces acting on all chromosomes prior to anaphase [4]. Aligning
chromosomes at the equator also maximizes the chances of kinetochore capture by microtubules
emanating from both spindle poles leading to chromosome bi-orientation, which is required to satisfy
the spindle assembly checkpoint (SAC; see [5]). Finally, chromosome congression is important to
prevent unstable/erroneous kinetochore-microtubule attachments because the proximity to the poles
promotes microtubule destabilization at kinetochores due to high Aurora A kinase activity that leads
to phosphorylation of Ndc80 (among others), thereby reducing its affinity for microtubules [6–8].
In addition, tension generated by opposing pulling forces on aligned bi-oriented chromosomes is
required and sufficient to stabilize correct attachments [9].

2. Mechanisms of Chromosome Congression

2.1. Historical Perspective

In contrast to many other fundamental concepts behind cell division, if one looks for
references to the problem of chromosome congression in the early compilations about “The Cell”
by E. B. Wilson at the turn of the 20th century, one finds a huge gap in knowledge between the
so-called “prophases”, which dealt essentially with the condensation and resolution of visible
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threads/chromatids, and metaphase, by which chromosomes already lie at the equator. The very
few references to what happens between these two stages can be resumed in a single sentence:
“After definite formation of the chromosomes the nuclear membrane usually disappears and the
chromosomes ( . . . ) are set free in the protoplasm (and) take up their position in the equatorial plane
of the spindle” [10]. Most of the attention at that time was focused on the mechanisms of anaphase
and, due to the lack of live-cell studies, the longest stage of mitosis in vertebrates that comprises the
entire prometaphase (a term that was only later introduced by Lawrence [11]) was completely left out
of the equation.

The first ideas that attempted to explain the process of chromosome congression date back to 1895
from the works of Drüner [12], and later further developed in the works of Belar, Darlington, Rashevsky,
Wada and Östergren [1,13–17] (reviewed in [18]). These models conceived that chromosomes
are either repelled from the pole by a pushing force that decreases with distance, or attracted to
the pole by a pulling force that increases with distance, until all chromosomes eventually reach
an equilibrium condition at the equator (Figure 1). One key conceptual difference between these
models was the assumption (by some authors) of the existence of kinetochore-to-pole connections
from the very beginning of prometaphase. For instance, Belar conceived unaligned chromosomes
attached to a “traction fiber” sliding along continuous fibers (most likely interpolar microtubules,
as we know them today) until chromosomes eventually reach the equator. However, it was unclear
whether bi-orientation and the formation of effective kinetochore-microtubule attachments that
connect unaligned chromosomes with the poles was required for initial chromosome congression
towards the equator. Moreover, it had been naively assumed that the mechanisms required for initial
chromosome congression also play a role in maintaining the equatorial position of chromosomes
(see Section 2.10). This is particularly evident in the model proposed by Östergren, who explained
chromosome congression by a model in which pulling forces on a given kinetochore act as a linear
function of kinetochore-fiber (k-fiber) length. Östergren based his arguments on work with naturally
occurring trivalents during meiosis I that were often found positioned off the equator, with their
two-kinetochore side closer to the pole, based on the assumption that the pulling force on two
kinetochores is higher than on single kinetochores [17,19].
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Figure 1. First models of chromosome congression involving either pushing or pulling forces on
chromosomes. (a) Model of chromosome congression proposed by Darlington [1] involving a balance of
pushing forces on chromosomes. These forces are higher when chromosomes are closer to spindle poles;
(b) Model of chromosome congression proposed by Östergren involving pulling forces on chromosomes
that are proportional to k-fiber length. Adapted from Östergren, 1950 [13] and displayed under
a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International license, as described at
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
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Direct evidence that the equatorial position of (already aligned) chromosomes is determined
by antagonistic pulling forces on opposing kinetochores was provided by the works of Izutsu
and colleagues. They irradiated one kinetochore region of a grasshopper bivalent chromosome
in metaphase I using a focused UV microbeam, resulting in the gradual motion of the irradiated
bivalent towards the spindle pole facing the non-irradiated kinetochore [20–22] (Figure 2a). Similar
findings were subsequently reported by McNeal and Berns for mitotic chromosomes in cultured
PtK2 cells [23] (see Figure 2b for a representative example using Drosophila S2 cells). Hays and
colleagues also estimated the force-length relationship on experimentally generated trivalents in living
grasshopper spermatocytes and found it to be consistent with Östergren’s hypothesis [24]. However,
ideas that the pulling force on kinetochores is not a function of k-fiber length, but rather of their
diameter (as function of the number of microtubules attached) started to emerge [25], but even
this view has been controversial. For instance, a balance of microtubule numbers on opposite
kinetochores has been suggested by elegant experiments using laser microsurgery combined with
correlative light and electron microscopy of meiosis I spermatocytes [26], but recent work that
measured birefringence retardation of k-fibers of maloriented bivalents challenged this model [27].
In addition, no positive correlation between the number of kinetochore microtubules and the direction
of chromosome movement could be observed in vertebrate cells [28]. Overall, these pioneering studies
provided definitive demonstration that chromosome position at the equator is maintained (but not
necessarily achieved) through a balance of pulling forces acting on opposite kinetochores from the
same chromosome that do not strictly depend on k-fiber length or kinetochore microtubule number.

2.2. Polar Ejection Forces

Several subsequent works have challenged aspects of Östergren’s hypothesis based on the
prediction that kinetochore-pulling forces depend on k-fiber length. If that were the case, one would
expect that severing a k-fiber on a metaphase chromosome should lead to a significant displacement of
the aligned chromosome towards the pole facing the undamaged k-fiber. However, several experiments
that aimed to cut through k-fibers in different systems (from plant to human cells in culture) have
revealed that chromosomes either do not shift at all or shift only slightly towards the pole of the
unperturbed k-fiber [21,22,29–38].

Important observations that shed light on the mechanism of chromosome congression came
from studies of chromosome behavior during transient monopolar spindle formation in newt cells
by Bajer and Mole-Bajer. They astutely noticed that “ . . . the chromosomes approached the pole
only up to a certain distance and it was evident that they could not come closer to the pole.” [39].
These observations further challenged Östergren’s hypothesis based exclusively on pulling forces acting
on kinetochores from the same chromosome, as it would have been predicted that a mono-oriented
chromosome would travel all the way to the pole, which was not the case. Overall, these data
indicate that although kinetochore pulling forces are important to position chromosomes at the equator,
as proposed by Östergren, their magnitude is independent of k-fiber length, implying the existence of
additional mechanisms.

Based on their observations on transient monopolar spindles, Bajer and Mole-Bajer proposed
that “The only logical explanation for the behavior of chromosomes in monopolar division is that
the chromosomes approach the center of the aster only to the point at which there is equilibrium
between the aster elimination property and the pulling of kinetochore fibers.” [39]. Although this
“aster elimination property” or “polar ejection force (PEF)” has been noted more than a century
ago by Drüner, who refers to a pressure by “growing beams” [i.e., microtubules] from the poles
when they encounter an obstacle such as chromosomes [12] (Figure 3a), and was quite evident in the
invaginations of the nuclear envelope as the aster develops in prophase (see [10]; Figure 3b) and found
to exclude large organelles (e.g., mitochondria) from the centriolar region (reviewed in [40]; Figure 3c),
it was Darlington that firmly proposed its involvement in chromosome congression (although he
assumed this was essentially due to electrostatic repulsions). This view was based on the analysis
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of pollen-grain mitosis, in which the distance of peripheral centromeres relative to the spindle pole
was highly variable [1] (Figure 3d). This irregular pattern likely reflected the dynamic behavior of
chromosomes on monopolar spindles, which was subsequently extensively characterized by Bajer
and colleagues [39,41,42] (Figure 3e,f). Together, these studies supported a new view of chromosome
congression involving a balance of PEFs and kinetochore-pulling forces.
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Figure 2. Evidence that forces on kinetochores are required to position chromosomes at the equator.
(a) Original drawings from Izutzu depicting the loss of equatorial position when one of the kinetochore
regions from a bivalent chromosome was irradiated with an UV microbeam. Note the displacement
of the bivalent from the metaphase plate towards the pole facing the non-irradiated kinetochore after
irradiation. Scale bar is 10 µm. Reprinted from Izutsu et al., 1959 [20]; (b) Laser microsurgery of one
of the kinetochores from an equatorially-aligned chromosome in a Drosophila S2 cell. Kinetochores
were directly labelled with the Centromere Protein A (CENP-A) homologue Cid fused with Green
Fluorescent Protein (GFP). Likewise, the chromosome was displaced from the equator after surgery
and underwent poleward migration towards the pole facing the undisturbed kinetochore from the
pair. Red arrows track the undisturbed kinetochore from the irradiated pair. Green arrows track the
congression of an undisturbed chromosome. Laser microsurgery was performed as described in [29].
Scale bar is 2 µm.
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Figure 3. Evidence that centrosome-derived microtubules can exert pushing forces. (a) Original
Drawings by Drüner depicting the invasion of the chromosomal region by microtubules, which exert
a pushing force that assists chromosome alignment at the spindle equator. Reprinted from Drüner,
1895 [12]. Image courtesy of Biodiversity Heritage Library. http://www.biodiversitylibrary.org;
(b) Schematic drawing by E. B. Wilson illustrating the pushing action of centrosomal microtubules on
the nuclear envelope and subsequent rupture. Reprinted from Wilson, 1925 [10]. Image displayed under
a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International license, as described
at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode. Image courtesy of the Wellcome
Library. http://wellcomelibrary.org; (c) Schematic drawing by Luykx illustrating the repulsive action
of centrosomal microtubules over large organelles (mitochondria). Reprinted from Luykx, 1970 [40].
Courtesy of Elsevier; (d) Original drawings by Darlington illustrating the variability in chromosome
positioning in pollen grain cells. Reprinted from Darlington, 1937 [1]. Image courtesy of Biodiversity
Heritage Library. http://www.biodiversitylibrary.org; (e,f) Phase contrast image of a newt lung cell
undergoing transient monopolar configuration. Kinetochore position was tracked over time, clearly
demonstrating the oscillatory behavior of mono-oriented chromosomes in this system. Note that
chromosomes do not travel all the way towards the pole. Reprinted from Bajer et al., 1982 [41] and
displayed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International license,
as described at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
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The exact nature and mode of action of PEFs was only elucidated by Rieder and colleagues
using an elegant combination of laser microsurgery and correlative light-electron microscopy
experiments [43]. First, they demonstrated that the distal kinetochore from an oscillating
mono-oriented chromosome was indeed devoid of microtubules and consequently was not
under opposing kinetochore pulling forces. Second, by cutting near the kinetochore regions of
mono-oriented chromosomes to generate acentric fragments (i.e., without kinetochore), they found
that kinetochore-free chromosome arms were immediately ejected away from the spindle pole
with velocities similar to the outward movement of an oscillating chromosome [44], whereas the
remaining kinetochore-containing fragment moved closer to the pole [43] (see also [44,45]; Figure 4a,b).
Subsequent studies by Salmon, Rieder and colleagues have further demonstrated that when astral
microtubules were reversibly depolymerized/polymerized, mono-oriented chromosomes moved
closer to or were pushed away from the pole, respectively [44,46,47]. These studies revealed no
difference in the mechanism of chromosome positioning between monopolar and bipolar spindles,
including average distances from the pole. Finally, it was shown that kinetochores moving away from
their associated pole do not exert a significant pushing force on the chromosome [48,49] and PEFs
determine the amplitude of chromosome oscillations near the pole [50]. Thus, PEFs derived from astral
microtubules acting along chromosome arms oppose kinetochore-pulling forces. This “push-pull”
mechanism was proposed to account for chromosome oscillations, while determining chromosome
position relative to the spindle pole. In the context of a bipolar spindle, chromosome congression
could now be explained in light of the balance of four forces on a chromosome: two antagonistic
poleward forces acting at the kinetochores and two opposing PEFs acting along chromosome arms.
As so, formation of a metaphase plate equidistant to the spindle poles would result from the net
forces applied to the chromosomes being zero [44,47]. An integrated view of these studies can be
found in a landmark essay that firmly established the contribution of PEFs and kinetochore directional
instability (i.e., kinetochores can switch from poleward to anti-poleward motion) for chromosome
congression in vertebrates [51].
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Figure 4. Demonstration that polar ejection forces act along the entire chromosome. (a) Phase contrast
image of a newt lung cell in which the chromosome arms on one chromosome (arrowheads) were
physically separated from the kinetochore region using laser microsurgery. Note the ejection of the
acentric chromosome arms away from the polar region. In contrast, the kinetochore-containing region
(arrow) moves closer to the polar region. Reprinted from Rieder et al., 1986 [43] and displayed under
a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International license, as described at
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode; (b) Schematic representation of the
experiment illustrated in (a). Reprinted from Salmon, 1989 [44]. Courtesy of Elsevier.
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PEFs are likely associated with the pushing action of elongating astral microtubules undergoing
dynamic instability along the length of the chromosome. Consistent with this idea, taxol-induced
polymerization of polar microtubules can push chromosome arms away from the pole [45,52], whereas
nocodazole or colcemid treatment completely abolished PEFs on chromosomes [45]. Importantly,
dynamic microtubules were shown to be required for continuous ejection of chromosome arms away
from the poles [45]. Theoretical predictions and calculation of PEFs distribution further indicate that
PEFs are stronger closer to the center of the aster, where microtubule density is higher, and depend on
chromosome size [47,50]. In vitro measurements of the force produced by a polymerizing microtubule
against a rigid surface or inside lipid vesicles have determined maximal forces between 2–4 pN [53,54].
Interestingly, it was found that forces on short buckling microtubules tend to be higher than those
on long buckling microtubules, likely reflecting the length-dependent stiffness of microtubules [53].
Attempts to measure the scale of PEFs by individual microtubules on chromosomes using either in vitro
reconstitution or in vivo systems have estimated a force between 0.5–1 pN per microtubule [55,56] and
~100 pN near the pole where microtubule density is higher [56]. While the PEF produced by individual
microtubules is compatible with that generated by polymerizing microtubules in vitro [53,54], it was
also consistent with the force generated by single Kinesin motors [57–59], suggesting their involvement
in PEFs [44,60].

2.3. The Role of Chromosome Arm-Associated Motors in the Generation of Polar Ejection Forces

Chromokinesins are Kinesin-like motor proteins that have DNA-binding properties and associate
with chromosomes during mitosis [61,62]. The best characterized mammalian Chromokinesins are
Kif4A and Kid, which belong to two distinct families: Kinesin-4 and Kinesin-10, respectively (reviewed
in [63]). Functional analysis revealed a combined role for Kinesin-4 and Kinesin-10 in chromosome
congression, arm-orientation and normal chromosome oscillations, consistent with an active role
of Kinesin-4 and Kinesin-10 in the generation of PEFs [6,62,64–72]. Both Kinesin-4 and Kinesin-10
were shown to have microtubule plus-end directed motility [73–75], but they appeared to be non- or
weakly-processive motors under load [74,75]. Nevertheless, antibody-blocking experiments in vitro
suggested that Kinesin-10 is a major contributor for PEFs [56]. In vitro reconstitution experiments
have indicated that, despite of its slower motility compared to Kinesin-4 [74,75], Kinesin-10 binds
more strongly to microtubules and dominates over Kinesin-4 during cooperative microtubule motility
associated with chromatin [76]. Similar findings have been reported upon functional perturbation of
these two Chromokinesin families in Drosophila and human cells, which suggested a combined role
during chromosome congression, with Kinesin-10 providing the major PEF required for arm orientation
and Kinesin-4 mainly regulating microtubule dynamics [68,71]. Altogether, these data can be reconciled
in light of the “soft” nature of the chromosomes. If strong and highly processive motors worked as
PEF generators, this would likely lead to chromatin deformations/damage and loss of chromosome
structure. Indeed, overexpression of Kinesin-10 in Drosophila S2 cells was shown to stretch and deform
chromatin when microtubules impact or pass by the chromosomes [77]. As discussed by Brouhard
and Hunt for Kinesin-10 [56], the combined action of Kinesin-10 and Kinesin-4 on chromosome arms
is ideal for exerting PEFs against microtubules through slow, weak, and discontinuous action, which
would be sufficient to bias chromosome ejection away from the poles without inducing damage.
Finally, direct demonstration that Kinesin-4 and Kinesin-10 collectively mediate PEFs on chromosome
arms in human cells was only recently obtained. By combining RNAi-mediated depletion of Kid and
Kif4A with laser microsurgery to generate acentric chromosome fragments in human culture cells,
it was shown that arm ejection forces operating in the absence of kinetochore-pulling forces relied
on the cooperative action between Kinesin-4 and Kinesin-10, with only a minor fraction that could
be attributed to the pushing force of polymerizing microtubules impacting on chromosome arms [6].
Most importantly, this work revealed that PEFs operating on acentric fragments caused the ejection of
chromosome arms in random directions, including towards the cortex. This indicated that although
PEFs mediated by Kinesin-4 and Kinesin-10 are sufficient to exert a pushing force on chromosome
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arms that leads to chromosome ejection away from the pole, they are not the critical players that
conduct chromosome movement exclusively towards the equator.

A critical aspect of the model proposed by Rieder and Salmon was that congressing mono-oriented
chromosomes experience tension at kinetochores as result from the push-pull between PEFs along
chromosome arms and kinetochore-pulling forces [51,78]. This was a reasonable assumption based on
findings that mono-oriented chromosomes during transient monopolar formation in newt cells showed
robust k-fibers on the attached kinetochore [43,46]. However, kinetochore-microtubule attachments
on mono-oriented chromosomes are highly unstable, unless constant tension away from the pole
is applied [9,79,80] (see also [47]). This apparent paradox could only be solved if PEFs produce
sufficient kinetochore tension independently of opposing kinetochore-pulling forces that result from
chromosome bi-orientation. This hypothesis has been recently tested in Drosophila culture cells. Elegant
experiments involving overexpression of Kinesin-10 have first indicated that elevated PEFs could
indeed stabilize kinetochore-microtubule attachments [77]. These proof-of-concept experiments were
followed by studies of Drosophila cultured cells undergoing mitosis with unreplicated genomes (MUGs),
where the function of individual kinetochores could be investigated in the context of single chromatids
that are unable to bi-orient [81]. In this work it was shown that PEFs mediated by Kinesin-4 and
Kinesin-10 stabilize kinetochore-microtubule attachments on mono-oriented chromosomes. Over time,
mono-oriented chromosomes were also shown to experience significant intra-kinetochore stretch or
structural deformation (see discussion in [82–84]) comparable with those typically experienced by
bi-oriented chromosomes [81]. Taken together, these data indicate that Chromokinesin-mediated PEFs
oppose kinetochore-pulling forces and contribute to tension-dependent stabilization of microtubule
attachments on mono-oriented chromosomes.

2.4. Coordination between PEFs and Kinetochore-Pulling Forces Drives Chromosome Congression
after Bi-Orientation

A related problem that derives from the existence of kinetochore-pulling forces on attached
chromosomes concerns their nature. One model is based on the action of pulling forces resulting from
depolymerization of attached kinetochore microtubules. This model stems from original work by
Shinya Inoue on the effect of colchicine on spindle microtubules and chromosome movement using
oocytes from the marine annelid worm Chaetopterus pergamentaceous. In this system, the metaphase
arrested spindle is anchored by one of its poles to the cell cortex and, upon addition of colchicine or
cold treatment (now well established treatments that induce spindle microtubule depolymerization),
the aligned chromosomes at the spindle equator were observed to move towards the anchored
pole [31,85]. Based on these observations, Inoue concluded that the spindle affected by colchicine or
cold is able to perform mechanical work and exert a pulling force on chromosomes (reviewed in [86]).
In vitro reconstitution works have provided additional evidence that microtubule depolymerization
at their plus-ends can exert a pulling force on the kinetochore that is independent of ATP hydrolysis
and is sufficient to move chromosomes [87–89]. In agreement, nocodazole-induced microtubule
depolymerization has been shown to occur near the kinetochore during poleward chromosome
movement in prometaphase [90]. Moreover, oscillating mono-oriented chromosomes have been
proposed to switch from microtubule depolymerization and polymerization states, as inferred by
accumulation of EB proteins at growing microtubule plus-ends at kinetochores [91]. However,
based on the analysis of the profile of individual microtubule plus-ends within a k-fiber, it has
been proposed that two-thirds adopt a conformation compatible with a microtubule depolymerizing
state, regardless of the directional instability associated with poleward and anti-poleward chromosome
oscillations [92]. These apparently contradicting findings have recently been reconciled by the
observation that EB protein bursts near kinetochores are rather infrequent and only represent
a small bias for microtubule polymerization within an incoherent k-fiber that contains a mixture
of polymerizing and depolymerizing microtubules [93]. Overall, these data support a model in
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which regulation of microtubule dynamics favoring depolymerization can generate pulling forces on
attached kinetochores.

Any model of chromosome congression involving kinetochore-pulling forces implies
that any perturbation of end-on kinetochore-microtubule attachments or defects in spindle
assembly/organization would lead to chromosome alignment problems. Indeed, an extensive
survey of the literature revealed more than 100 proteins that have been implicated in chromosome
alignment (Table 1), yet it is only for a select handful that we know the mechanism and thus will
represent our focus in this review. Probably the best studied case is the one involving the KMN
network, which forms the core microtubule interface at kinetochores and all respective regulatory
proteins, such as Aurora B and Plk1 kinases (reviewed in [94]). Additionally, proteins that modulate
kinetochore-microtubule attachments and their dynamic state are also likely to play an important
role. Among these, microtubule plus-end-tracking proteins (+TIPs) are of special interest due to
their specific accumulation at the plus-ends of microtubules [95–97] where they promote microtubule
growth by catalyzing the addition of tubulin subunits to microtubule plus-ends [98], by inducing
rescue [99], or by stabilizing microtubules [100,101]. CLIP-170 was the first +TIP reported [102] and
was initially associated with microtubule rescue [99]. Functional inhibition of CLIP-170 during mitosis
results in chromosome alignment defects, possibly associated with defective kinetochore-microtubule
attachments [103,104]. However, CLIP-170 inhibition does not seem to affect kinetochore microtubule
dynamics or stability, possibly because it is stripped from the kinetochore by Dynein upon the
establishment of end-on kinetochore-microtubule attachments [103,104]. Moreover, phosphorylation
of CLIP-170 at S312 by Plk1 regulates its binding to microtubules and is crucial for chromosome
alignment [105]. CLIP-170 appears to promote kinetochore-microtubule attachments and chromosome
congression by counteracting Dynein/Dynactin [106]. The XMAP215/Ch-TOG and CLASP families of
+TIPs have also been implicated in chromosome congression. The XMAP215/Ch-TOG proteins act as
microtubule polymerases at microtubule plus-ends and promote microtubule assembly [98,107,108],
whereas CLASPs promote microtubule rescue and suppress catastrophe [109,110]. Depletion of
proteins from the XMAP215/Ch-TOG family results in the presence of unattached kinetochores and
chromosome alignment defects [111–114]. Moreover, XMAP215/Ch-TOG contributes to chromosome
oscillations [115]. Recruitment of CLASPs to microtubule plus-ends requires interactions with CLIP-170
and EB1 [100,101]. Importantly, CLASPs also localize to kinetochores in a microtubule-independent
manner and remain at kinetochores upon microtubule attachment [116,117]. This localization at the
kinetochore-microtubule interface favors a role of CLASPs in the regulation of microtubule dynamics
at the kinetochore [118,119], thereby contributing for chromosome congression [116]. Surprisingly,
perturbation of either CLASPs or XMAP215/Ch-TOG increases the stability of kinetochore-microtubule
attachments [115,119]. One possibility might be that during mitosis the activity of these proteins
is regulated by phosphorylation and/or binding to other proteins that promote microtubule
depolymerization [120,121].

The members of the Kinesin-13 family Kif2a, Kif2b and Kif2c/MCAK are also important regulators
of microtubule dynamics, including at kinetochores [122]. Kinesin-13 proteins are non-motile but
use the energy from ATP hydrolysis to promote microtubule depolymerization by binding both
the plus- and the minus-ends of microtubules and inducing a conformational change that leads to
a catastrophe event [123–125]. In the context of the mitotic spindle, Kinesin-13 proteins associate with
both spindle poles and kinetochores where they play distinct roles [124,126]. Kif2b and MCAK regulate
microtubule plus-end dynamics at the kinetochore where they play an important role in the correction
of erroneous microtubule attachments [124,127–130], while Kif2a appears to have a preference for
microtubule minus-ends where it plays an important role in the regulation of spindle microtubule
flux [131,132]. Interestingly, Kif2a and MCAK are dispensable for chromosome congression [132],
whereas Kif2b appears to be required for proper chromosome oscillation on a monopolar spindle
configuration [124]. However, because Kif2b only transiently associates with kinetochores before
microtubule attachments [124] it is unlikely to play an important role assisting chromosome congression
after bi-orientation, suggesting the involvement of other players.
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The widely conserved Kinesin-8 family has been proposed to function both as plus-end-directed
motors and as microtubule depolymerases [133–136]. However, the depolymerase activity of
human Kif18A remains controversial. Although Kif18A was initially proposed as a microtubule
depolymerase [134], further studies suggested that Kif18A suppresses microtubule growth by capping
the microtubule plus-ends [137,138]. This would be consistent with the emerging role of Kinesin-8
motors as negative regulators of microtubule length, since loss of Kinesin-8 activity generally
leads to longer cellular microtubules [134,139–142]. Importantly, genetic and siRNA-based studies
demonstrate that Kinesin-8 motors are necessary for proper chromosome alignment by suppressing
chromosome oscillations on bi-oriented chromosomes [68,70,134,139,143,144]. Accordingly, in the
absence of functional Kif18A, kinetochores exhibit an increase in the oscillation amplitude leading to
a deregulation of metaphase plate organization [144]. Furthermore, loss of Kif18A leads to a modest
increase in spindle size and longer microtubules [134,144]. In agreement, overexpression of Kif18A
decreases chromosome oscillations, favoring chromosome alignment at the metaphase plate [144,145].
Overall, these data are consistent with a model of chromosome congression after bi-orientation,
in which Kif18A forms a gradient along attached kinetochore microtubules, directly regulating their
length and dynamics to facilitate chromosome alignment at the spindle equator [144].

The co-existence of PEFs acting along the entire chromosome arms and kinetochore-pulling
forces driven by microtubule depolymerization suggests that they might work in parallel to regulate
chromosome oscillations during congression after bi-orientation. Disruption of PEFs by inhibition
of Chromokinesin function in cultured cells altered chromosome oscillations on both monopolar
and bipolar spindles [65–67,71]. Although perturbation of Chromokinesin functions did not fully
compromise chromosome congression, few monooriented chromosomes remained close to the poles,
suggesting that PEFs might increase the efficiency of chromosome congression by facilitating the
stabilization of end-on kinetochore microtubule attachments and biorientation [77,81]. Furthermore,
despite having opposite effects on chromosome movement, PEFs and Kif18A synergistically promote
the position of bi-oriented chromosomes near the spindle equator [146]. Overall, these findings suggest
that the coordinated activities of Kif18A and PEFs regulate chromosome oscillations and are important
for chromosome congression after bi-orientation.

Table 1. Proteins that have been implicated in chromosome alignment.

Protein Name Subcellular Localization
Misaligned

Chromosomes/
Chromatids

Chromosome
Congression Defects

(by Live Cell Imaging)
References

Astrin Spindle pole; kinetochores Yes Yes [147–150]

HICE1/HAUS8 Centrosome; mitotic spindle;
spindle midzone; midbody Yes ND [151]

Aurora A Centrosome; central spindle Yes Yes [152–154]

CENP-E Kinetochore Yes Yes [6,155–157]

CEP57 Centrosome Yes ND [158]

Cep72 Centrosome Yes ND [159]

Cep90 Centrosome;
Pericentriolar satellites Yes ND [160]

ChTOG Centrosome; spindle pole Yes Yes [112,150,161]

CLASPs
Centrosome; kinetochore;

microtubule plus ends;
central spindle

Yes Yes [150,162]

Aurora-B Centromere; spindle; spindle
midzone Yes Yes [163,164]

Haspin Chromosome; centrosome Yes Yes [165–167]

ILK Plasma membrane;
focal adhesion; cytosol Yes ND [168]

Kinastrin/SKAP Spindle pole; kinetochore;
microtubule plus ends Yes yes [148,149,169]

HEC1 Kinetochore Yes Yes [170–173]
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Table 1. Cont.

Protein Name Subcellular Localization
Misaligned

Chromosomes/
Chromatids

Chromosome
Congression Defects

(by Live Cell Imaging)
References

Spc24 Kinetochore Yes ND [174]

Spc25 Kinetochore Yes ND [174]

Nuf2 Kinetochore Yes Yes [174,175]

NuMA Nucleus; spindle pole Yes ND [176]

Sgo1/Shugoshin Centromere; kinetochore;
centrosome; spindle pole Yes Yes [177]

Spindly Kinetochore; spindle pole Yes Yes [178,179]

TACC3 Centrosome Yes Yes [161,180–182]

CHC (Clathrin heavy
chain) Mitotic spindle Yes Yes [181,183]

4.1r Mature centriole Yes ND [184]

Ska1 Kinetochore; mitotic spindle Yes Yes [185–188]

Ska2 Kinetochore; mitotic spindle Yes Yes [185–188]

Ska3/RAMA1 Kinetochore; mitotic spindle Yes Yes [186–190]

Kid Chromosome arms;
spindle poles Yes Yes [70,71,191]

Kif4A Chromosome arms;
spindle midzone Yes Yes [69–71]

Kif18A Plus-ends of kMTs Yes Yes [134,144,146,192,193]

Kif18B Astral microtubule
plus ends Yes Yes [194–196]

MCAK Spindle poles; spindle
midzone; kinetochore Yes Yes [70,124,197]

HURP Kinetochore Yes Yes [198–200]

CENP-L Kinetochore Yes Yes [201]

NuSAP1 Central spindle Yes Yes [202,203]

SAF-A/hnRNP-U Spindle microtubules;
spindle midzone Yes Yes [204]

Bub1 Kinetochore Yes Yes [164,205]

BubR1 Kinetochore Yes Yes [164,206–208]

NUP188 Centrosomes Yes Yes [209]

CENP-F/mitosin Kinetochore Yes Yes [210–212]

Plk1 Centrosome Yes Yes [213–215]

NudC Kinetochore Yes Yes [216,217]

RRS1 Chromosome periphery Yes Yes [218]

Nucleolin Nucleoli;
chromosome periphery Yes Yes [219]

KIBRA ND Yes ND [220]

DDA3 Spindle microtubules;
kinetochores; midbody Yes Yes [221,222]

HIP1r Mitotic spindle Yes Yes [223]

Nucleophosmin Perichromosomal region Yes Yes [224]

Kif2a Spindle poles Yes Yes [124,221]

Beclin-1 Kinetochore Yes Yes [225]

CLIP-170 Kinetochore; mitotic spindle Yes Yes [104,106]

ATRX Pericentromeric
heterochromatin Yes Yes [226]

CHICA Mitotic spindle Yes Yes [227,228]

p38γ Kinetochore; spindle poles Yes Yes [229]

SPICE Mitotic spindle; centrioles Yes Yes [230]

Zw10 Kinetochore Yes Yes [231,232]



Biology 2017, 6, 13 13 of 56

Table 1. Cont.

Protein Name Subcellular Localization
Misaligned

Chromosomes/
Chromatids

Chromosome
Congression Defects

(by Live Cell Imaging)
References

DHC/DYNC1H1 Kinetochore; mitotic spindle Yes Yes [6,178]

DIC2/DYNC1I2 Kinetochore; mitotic spindle Yes Yes [178]

Roadblock-1/DYNLRB1 Kinetochore; mitotic spindle Yes Yes [178]

Lis1/PAFAH1B1 Kinetochore; mitotic spindle Yes Yes [178]

Nde1 Kinetochore; mitotic spindle Yes Yes [178]

Ndel1 Kinetochore; mitotic spindle Yes Yes [178]

ARP1 Kinetochore; mitotic spindle Yes Yes [178]

TAO1/MARKK Microtubules Yes Yes [233]

Kif14 Spindle poles; mitotic
spindle; midbody Yes Yes [70,234]

CENP-W Kinetochore yes yes [235–237]

CENP-T Kinetochore Yes ND [235,238]

CENP-H Kinetochore Yes Yes [239]

Chl4r Kinetochore Yes Yes [239]

Nnf1R Kinetochore Yes Yes [239,240]

CENP-Q Kinetochore Yes Yes [241]

CENP-U Kinetochore Yes Yes [238,242]

CENP-N Kinetochore Yes ND [238]

CENP-M Kinetochore Yes ND [238,243]

Septin 7 Spindle poles; mitotic
spindle; midbody Yes ND [244]

TRAMM Perinuclear region Yes Yes [245]

Shp2 Kinetochore; centrosome;
spindle midzone; midbody Yes Yes [246,247]

Bod1 Centrosomes; kinetochores Yes Yes [248,249]

PTEN Centrosome; mitotic
spindle; midbody Yes Yes [250]

RSK2/RPS6KA3
Centrosomes; mitotic

spindle; midbody;
kinetochore

Yes Yes [251–253]

Nup62 Nuclear envelope;
cytoplasm; centrosomes Yes ND [254,255]

Mdp3 Mitotic spindle Yes Yes [256]

ANKRD53 Spindle poles Yes Yes [257]

NF-1 (neurofibromatosis
type 1)

Astral microtubules;
mitotic spindle;

centrosomes; midbody
Yes ND [258]

Hsp72 Mitotic spindle; midbody Yes Yes [259]

RGS2 Centrosome; mitotic spindle;
astral microtubules Yes ND [260]

B56 Centromere Yes Yes [174,207,261,262]

And-1 (acidic
nucleoplasmic

DNA-binding protein 1)
Cytoplasm Yes ND [263]

ASURA (PHB2) Cytoplasm Yes ND [264]

Rab5 Early endosomes Yes Yes [211]

MST1 ND Yes Yes [265]

GAK Trans-Golgi network Yes ND [266]

Usp16 Cytoplasmic in
interphase; kinetochore Yes Yes [267]

TTL Mitotic spindle Yes Yes [345]

TCP ND Yes Yes [345]

ND (not determined).
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2.5. The Role of Kinetochore Motors in Chromosome Congression

A concurrent model for the explanation of kinetochore-pulling forces is based on the presence
of ATP-dependent motor proteins at kinetochores. The best candidate for such force generator is the
cytoplasmic form of the microtubule minus-end-directed motor Dynein, which has been shown to
localize to kinetochores [268,269] and was proposed to counteract the action of PEFs on chromosome
arms by generating kinetochore poleward motion [51]. However, despite some evidence (mostly from
studies in anaphase) supporting a requirement for kinetochore Dynein in chromosome poleward
motion, this remains a highly controversial issue (reviewed in [270]). The strongest arguments against
such a role are based on the fact that chromosome-to-pole velocities in anaphase are about one order
of magnitude slower than those typically observed by Dynein-dependent transport and Dynein
accumulation at kinetochores is negatively regulated by microtubule attachments [271,272]. Moreover,
inhibition of Dynein motor activity did not affect minus-end-directed chromosome motion driven by
microtubule depolymerization in vitro [88,273,274]. Although it remains possible that few molecules
of Dynein are able to generate kinetochore-pulling forces after the establishment of end-on microtubule
attachments during chromosome congression, the rate of motion is likely governed by other processes,
such as microtubule depolymerization.

Although a major role played by kinetochore Dynein in the generation of kinetochore-pulling
forces after the establishment of end-on microtubule attachments is disputable, its role in the stages that
precede chromosome congression is well supported. It has long been noticed by Schneider that some
chromosomes tend to move toward the poles before congressing to the spindle equator [275]. Bajer and
Mole-Bajer, in their classic cinematographic studies of mitosis also clearly demonstrate and recognize
that some chromosomes undergo poleward motion before migrating to the equator [276,277]. Similar
findings have been reported in cultured newt cells by Zirkle and colleagues, who first recognized
the frequent appearance of “centrophilic” chromosomes (i.e., that lie near the centrosomes) that
do not migrate straightaway to the equator [278–280], as well as in insect spermatocytes [281]
and PtK1 cells [282]. These sharp observations have indicated that the process of chromosome
congression is complex and that not all chromosomes follow the same path, suggesting the existence
of concurrent mechanisms.

The implication of Dynein in the poleward movement of chromosomes that precede congression
of some chromosomes was proposed even a few months before the report of its localization to
kinetochores [268,269], based on the characterization of initial kinetochore-microtubule interactions
during early prometaphase [283]. This study showed that a single astral microtubule extending
well beyond the kinetochore region was sufficient to mediate the initial attachment and subsequent
poleward movement of some chromosomes. Importantly, this association involved the tangential
interaction between the microtubule and the kinetochore fibrous corona (the outermost domain of the
kinetochore that expands into crescents in the absence of attached microtubules) and was independent
of microtubule depolymerization. Based on the recorded velocities of chromosomes during this fast
poleward movement after initial lateral interaction between kinetochores and microtubules (typically
ranging between 25–55 µm/min in newt lung cells in culture), Rieder and Alexander proposed that
Dynein at kinetochores could account for this behavior. This proposal was seconded by Merdes and
De Mey (after the discovery of Dynein at kinetochores) who reported similar findings [284]. Shortly
thereafter, it was shown that kinetochore Dynein is indeed a component of the fibrous corona [285],
but direct demonstration of this hypothesis came only several years later. By studying the specific
role of kinetochore Dynein by RNAi-mediated depletion of its kinetochore-targeting factor ZW10,
as well as injection of function-blocking antibodies against Dynein Intermediate Chain, or injection
of Dynamitin protein that disrupts the Dynein/Dynactin complex, several laboratories reported
a role for Dynein in the fast poleward movement of chromosomes during the initial encounters
between microtubules and kinetochores, but not in k-fiber formation [231,232,286]. Consequently,
in some of these perturbations, particularly evident after ZW10 RNAi, some chromosomes failed
to complete congression and remained outside the spindle pole with mono-oriented or unattached
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kinetochores [231,232]. Similar findings were also reported after RNAi of Spindly, a protein that is
required to recruit Dynein to kinetochores without affecting the SAC [179]. Overall, these data indicated
a role for kinetochore Dynein in the poleward movement of chromosomes during early prometaphase,
with possible implications for the mechanism of congression in a subset of chromosomes.

In addition to a microtubule minus-end-directed motor activity, in vitro studies have also
revealed the existence of a microtubule plus-end-directed activity at kinetochores from purified
chromosomes [287,288]. Independent work by Yen and colleagues led to the discovery of CENP-E,
which is enriched at prometaphase kinetochores [289] and was subsequently shown to be a Kinesin-like
(Kinesin-7) motor protein [290] associated with the kinetochore fibrous corona [291,292]. Direct
demonstration of microtubule plus-end-directed activity was obtained after characterization of
CENP-E in Xenopus, where immunodepletion/immunoblocking experiments in oocyte extracts
revealed a role in chromosome alignment [293]. Similar findings were reported after microinjection
of function-blocking antibodies, expression of a dominant-negative motor-less CENP-E construct
and antisense oligonucleotide blocking in human cells in culture [294,295] or analysis of CENP-E
mutants in Drosophila [296]. However, these experiments were unable to make a clear distinction
whether CENP-E motor activity was required for chromosome congression or maintenance of
chromosome alignment after reaching the equator. This was only firmly established by live-cell
recordings from nuclear envelope breakdown (NEB) after perturbation of CENP-E function by antibody
microinjection in human cells in culture, where some chromosomes that were found to undergo
initial poleward movement were unable to complete congression within the next 2h after NEB [297].
Overall, these studies demonstrated the existence of a Kinesin-like motor protein with microtubule
plus-end-directed activity that is associated with the kinetochore fibrous corona and plays a role in
chromosome congression. Importantly, because most chromosomes are able to align at the equator after
perturbation of CENP-E function, it was concluded that the dependence on CENP-E for chromosome
congression must be critically linked to chromosome position within the spindle (see Section 2.6),
further demonstrating the existence of concurrent mechanisms.

For years, it was believed that CENP-E function at kinetochores required for chromosome
congression and bi-orientation was related to the regulation of end-on kinetochore microtubule
attachments [297–299], in part through a contribution of CENP-E in maintaining attachment of
kinetochores to the end of a depolymerizing microtubule [273]. However, this capacity to couple
kinetochores to depolymerizing microtubule plus-ends does not require ATP, suggesting that the role of
CENP-E in chromosome congression relies on a different mechanism. The paradigm shift occurred after
the demonstration that chromosomes can congress to the spindle equator before bi-orientation [300].
In this work, Khodjakov and colleagues demonstrated that mono-oriented chromosomes located near
the poles could glide towards the equator along pre-existing spindle microtubules, including k-fibers,
in a CENP-E-dependent manner. These observations provided an explanation for the involvement of
CENP-E microtubule plus-end-directed motility at the kinetochore fibrous corona for chromosome
congression (Figure 5).

One controversial issue has been related with CENP-E processivity. In vitro microtubule gliding
assays with recombinant CENP-E motor domain revealed a velocity around 5 µm/min [293,301].
Similar microtubule gliding assays with the full-length protein reported velocities around
1 µm/min [301,302]. More recently, single CENP-E molecule measurements (either the full length
or motor domain only) have indicated a much faster velocity in the order of 20 µm/min [303,304],
suggesting that CENP-E binding to the coverslip in traditional gliding assays is partially inhibitory of its
function. Interestingly, the measured chromosome velocity during CENP-E-dependent congression of
polar chromosomes in human cells was around 1.5 µm/min [6,305] indicating that, in vivo, cumulative
CENP-E processivity is significantly attenuated by a yet unknown mechanism. One possibility could
be related with the presence of non-motile microtubule-associated proteins (MAPs) or residual Dynein
activity on microtubules that could slow down CENP-E-dependent transport of chromosomes during
congression in vivo.
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Figure 5. Demonstration that chromosome congression is independent of bi-orientation. From A-F, 

the movement of a polar chromosome along a pre-existing k-fiber is illustrated in a PtK1 cell. The 

leading kinetochore is indicated (yellow arrows). The kinetochore of a neighbor k-fiber on a bi-

oriented chromosome is also indicated (yellow arrowheads). Time is in sec. In G, serial sections of a 

sliding mono-oriented chromosome with the leading kinetochore laterally attached to a neighbor k-

fiber. Kinetochores of the congressing chromosome are indicated (white arrows), as well as the 

kinetochore of a neighbor k-fiber (black arrowheads). Images adapted from Kapoor et al., 2006 [300]. 
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Figure 5. Demonstration that chromosome congression is independent of bi-orientation. From A-F,
the movement of a polar chromosome along a pre-existing k-fiber is illustrated in a PtK1 cell.
The leading kinetochore is indicated (yellow arrows). The kinetochore of a neighbor k-fiber on
a bi-oriented chromosome is also indicated (yellow arrowheads). Time is in sec. In G, serial sections of
a sliding mono-oriented chromosome with the leading kinetochore laterally attached to a neighbor
k-fiber. Kinetochores of the congressing chromosome are indicated (white arrows), as well as the
kinetochore of a neighbor k-fiber (black arrowheads). Images adapted from Kapoor et al., 2006 [300].
Reprinted with permission from The American Association for the Advancement of Science (AAAS).

2.6. Chromosome Positioning Relative to Spindle Poles at NEB Defines the Mechanism of Congression

Another critical question has been what determines that some chromosomes use (or not) the
motor-dependent pathway for congression. Classical correlative light and electron microscopy studies
in PtK1 cells at the onset of prometaphase have suggested that chromosomes that were equidistant from
the two spindle poles immediately bi-orient (the so-called “direct congression”), whereas chromosomes
that were closer to only one of the spindle poles become mono-oriented before congressing to the
equator [282,306]. Interestingly, inhibition of CENP-E function in human cultured cells only prevents
congression of about 20% of the chromosomes [6,241], suggesting that most chromosomes utilize
a motor-independent pathway to align at the equator. By back-tracking those chromosomes that
were found locked at the spindle poles after CENP-E inhibition, it was found that they were mostly
located outside the interpolar region at NEB [6], suggesting that chromosomes that are favorably
positioned between the two spindle poles at NEB undergo direct motor-independent congression
involving PEFs and kinetochore-pulling forces after bi-orientation. This might be facilitated by
the organization of chromosomes in a ring-like configuration and by the expansion of the outer
kinetochore, thereby facilitating microtubule capture and immediate bi-orientation during early
prometaphase [72,307]. Interestingly, early embryonic divisions in the nematode C. elegans, which
lacks a CENP-E orthologue but has holocentric centromeres extending along the entire chromosome
length, occur in a stereotypical manner, always with two fully separated centrosomes at NEB [308].
The combination of large kinetochores with fully separated centrosomes at NEB might favor the direct
congression of chromosomes in this system, where PEFs mediated by Chromokinesins also appear
to play a critical role [309]. Thus, the action of Dynein and CENP-E motors at kinetochores appears
to be only critical to align peripheral chromosomes that lie much closer to one of the spindle poles,
where bi-orientation at NEB is unlikely to occur. A corollary of this hypothesis is that the action of
kinetochore Dynein in bringing peripheral chromosomes to the vicinity of the spindle poles after initial
lateral attachments, followed by CENP-E-mediated congression, increases the chances of bi-orientation
as chromosomes approach the equator.
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2.7. Coordination between Kinetochore- and Arm-Associated Motors

As all great solutions to a problem, they usually open up more questions. The existence of
two distinct motor activities operated by Dynein and CENP-E, both localized at the kinetochore
fibrous corona, but with opposite directional preferences along microtubules, posed obvious questions
regarding their coordination to mediate chromosome congression (see Sections 2.8 and 2.9). In addition,
the identification of microtubule plus-end-directed activities at kinetochores and chromosome arms
demanded clarification of their relative contribution in moving chromosomes away from the pole.
The critical role of kinetochores for chromosome movement towards the equator is known since the
works of Zirkle and colleagues using focused UV or proton microbeams on parts of chromosomes in
cultured newt cells [278–280]. They found that “centrophilic” chromosomes in which the kinetochore
region was irradiated lost their ability to move in a directed fashion, drifted about until anaphase and
never joined the metaphase plate. Similar findings were later reported in PtK1 and PtK2 cells [23,310,311].
These observations indicate that despite the action of PEFs on chromosome arms [43], they are not
sufficient to drive the congression of “centrophilic” chromosomes. Moreover, these observations
demonstrate that kinetochores are essential for this process, suggesting a dominant role over PEFs.
Work by Brinkley and colleagues using CHO cells undergoing MUGs, in which kinetochores completely
detach from chromatin, has further demonstrated that kinetochores are not only required, but they
are also sufficient to ensure chromosome migration to the equator [312,313] (see also [314] for
similar findings in HeLa cells undergoing MUGs). However, it should be noted that, under these
circumstances, chromatin-detached kinetochores frequently establish unorthodox attachments with
spindle microtubules, mostly resulting in merotelic attachments in which the same kinetochore binds
microtubules from opposite poles [313,314]. In agreement, merotelic attachments on chromosome
fragments with only one kinetochore have been shown to support chromosome congression [315].

A systematic dissection of the respective roles of kinetochore- and arm-associated motors for
chromosome congression in human cells has been recently performed [6]. Accordingly, by combining
molecular perturbations of the different motor functions with laser microsurgery of chromosome
arms, it was shown that “centrophilic” chromosomes rely on CENP-E motor activity at kinetochores to
counteract Dynein-mediated poleward force and move towards the equator. When chromosome arms
were released from the kinetochore region by laser microsurgery, about 20% of them did not move
towards the equator. Instead, they moved away towards the cortex in a Chromokinesin-dependent
manner. Thus, although Chromokinesin-mediated PEFs can mediate chromosome ejection away
from the poles, CENP-E-mediated forces at kinetochores are dominant and required to bias
chromosome motion exclusively towards the equator. This work further demonstrated that kinetochore
Dynein activity is dominant over PEFs along chromosome arms and this is required for poleward
motion after initial lateral kinetochore-microtubule attachments. This role of Dynein prevents
random chromosome ejection and stabilization of end-on kinetochore-microtubule attachments on
chromosomes positioned near the poles due to the action of PEFs along chromosome arms, while
bringing chromosomes close to the highest Aurora A activity near the poles [6,7,77,316]. This explains
why “centrophilic” chromosomes after perturbation of CENP-E function move abnormally close to
the pole and are mostly devoid of end-on attached microtubules [297,298] and lack any detectable
oscillatory motion [295,297]. Overall, Dynein activity was proposed to prevent the formation of
premature/erroneous kinetochore-microtubule attachments, thereby allowing CENP-E to undergo
processive motion necessary to transport polar chromosomes along pre-existing spindle microtubules
towards the equator [6,316].

Interestingly, CENP-E activity at kinetochores was shown to be required for chromosome
ejection from the poles, including in monopolar spindles in which chromosome bi-orientation does
not take place [6], probably by mediating the motion of leading kinetochores [300], since trailing
kinetochores do not seem to exert a significant pushing force [48]. Intriguingly, CENP-E activity
required for chromosome congression is independent of the establishment of stable end-on
kinetochore-microtubule attachments and the formation of k-fibers, but appears to require spindle
microtubule stabilization [305,317]. In contrast, Dynein was found to counteract PEFs also in
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monopolar spindles [6,179,231]. Thus, both CENP-E and Dynein are dominant over PEFs and
play antagonistic roles at the kinetochore, independently of the establishment of stable end-on
kinetochore-microtubule attachments and chromosome bi-orientation. Finally, simultaneous inhibition
of all kinetochore and arm-associated motors did not prevent congression of all chromosomes [6],
further demonstrating the existence of motor-dependent and -independent pathways that ultimately
mediate the alignment of all chromosomes at the spindle equator.

2.8. Motor Regulators

The mechanism of chromosome congression independent of chromosome bi-orientation requires
the spatial and temporal coordination of different motor activities. For instance, the direction of motor
movement at kinetochores in vitro has long been known to be regulated by phosphorylation, namely by
the activation of the plus-end-directed and/or inactivation of the minus-end-directed motor activities at
kinetochores [288]. The kinetochore motor CENP-E is extensively phosphorylated during mitosis [318],
although the functional significance of many of these phosphorylation events is not completely
understood. CENP-E phosphorylation at its C-terminal tail by Cdk1 and MAPK regulates CENP-E
interaction with microtubules [319,320]. This C-terminal tail is able to completely block CENP-E
motility in vitro due to a direct interaction with the motor domain [301]. This auto-inhibition of CENP-E
can be reversed by Mps1- or Cdk1-mediated phosphorylation of its C-terminal tail, thereby restoring
normal CENP-E motility in vitro [301]. Additionally, CENP-E is phosphorylated in a conserved residue
(T422) close to the motor domain by Aurora A and B [321]. This phosphorylation reduces the affinity of
CENP-E for microtubules and is required for congression of polar chromosomes. However, it remains
unclear how a reduction in microtubule affinity would promote CENP-E processivity necessary to
overcome Dynein-mediated poleward motion. Importantly, dephosphorylation of CENP-E at T422 by
PP1 phosphatase is required for stable chromosome bi-orientation after congression [321]. The recent
demonstration of the existence of an Aurora A activity gradient from the spindle poles [7] has provided
the necessary positional cues to control the extent of CENP-E phosphorylation at T422 as polar
chromosomes approach the equator. Interestingly, Dynein intermediate chain is phosphorylated by
Plk1 on T89 also in a chromosome position-dependent manner and this appears to be counteracted
by PP1 phosphatase [322,323]. This phosphorylation is required for normal Dynein recruitment to
kinetochores and inhibits its association with Dynactin, as well as Dynein poleward streaming along
attached microtubules. Since Dynactin is required for cytoplasmic Dynein processivity [324,325],
these results suggest that Dynein phosphorylation at T89 is inhibitory of its motor-mediated transport
functions, as originally predicted by in vitro studies [288].

The role of CENP-E in polar chromosome congression is also regulated by sumoylation
and farnesylation. When sumoylation is inhibited by overexpressing the SUMO isopeptidase
SENP2, CENP-E no longer localizes to kinetochores and chromosome congression is impaired [326].
Interestingly, cells treated with farnesyltransferase inhibitors (FTIs) exhibit a prometaphase delay,
suggesting the involvement of farnesylated proteins in chromosome alignment [327–330] (see also
Section 4.2). These mitotic defects observed after treatment with FTIs were initially attributed to
the inhibition of CENP-E and CENP-F farnesylation [327,328,331]. While inhibition of farnesylation
appears to interfere with CENP-E association with microtubules [327], the role of farnesylation in
regulating CENP-E localization and function at kinetochores remains controversial. Treatment of cells
with FTIs was reported to deplete CENP-E and CENP-F from metaphase, but not from prometaphase
kinetochores [328]. CENP-E is also degraded shortly after mitotic exit [332], and its degradation
requires farnesylation [333]. Interestingly, it was suggested that farnesylation of Spindly is also
involved in the regulation of kinetochore Dynein, since mutation of a potential farnesylation site in
Spindly prevented its localization at the kinetochore [179]. More recently, two independent studies
confirmed Spindly as a farnesylation substrate [334,335]. In one study, FTI treatment resulted in loss
of Spindly at kinetochores without affecting the RZZ complex or CENP-E and CENP-F kinetochore
localization [335]. In contrast, in another study, CENP-E and CENP-F kinetochore levels were also
affected by FTI treatment, but to a less extent compared to Spindly [334]. Both studies have shown that
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preventing farnesylation of Spindly delays chromosome congression, producing a similar phenotype
observed in cells treated with FTIs. Taking these findings together, it seems that the role of farnesylation
in regulating CENP-E function during chromosome congression rather represents a minor effect,
while loss of Spindly kinetochore localization (and consequently Dynein) after farnesylation inhibition
appears to be the major contributing factor to the congression defects observed in cells treated with FTIs.

Different studies have implicated Mps1 in chromosome alignment, but the underlying molecular
mechanism remains unclear [336–339]. Initially it was proposed that regulation of chromosome
alignment by Mps1 acts through modulation of Aurora B kinase activity [337]. However, recent
studies have provided evidence that regulation of chromosome alignment by Mps1 is independent of
Aurora B [336,340,341]. The regulation of chromosome alignment by Mps1 may be through CENP-E
phosphorylation [301], as this is necessary to recruit CENP-E to kinetochores [336,342]. These results
suggest that the role of CENP-E in polar chromosome congression might be regulated by Mps1.

Finally, motor proteins involved in chromosome congression are also regulated by proteolysis.
For instance, the Kinesin-10 Kid and the kinetochore motor CENP-E are degraded at the end of mitosis,
consistent with down-regulation of PEFs at the metaphase-anaphase transition to allow chromosome
poleward movement [44,65,332].

2.9. The Role of Tubulin PTMs as a Navigation System for Kinetochore-Based Motility of Chromosomes

In addition to the regulation of kinetochore motor activities, the possibility that tubulin
post-translational modifications (PTMs), as part of the so-called “tubulin code” [343,344], additionally
contribute with spatial cues required for chromosome congression has recently been proposed [345,346].
Tubulin, the building unit of microtubules, can be enzymatically processed to undergo different PTMs,
including detyrosination, (poly)glutamylation, glycylation, phosphorylation, acetylation and the
recently-discovered methylation [344,347]. Some of these modifications have been already shown
to regulate the motor activity of Kinesin-1, affecting its binding and transport in neurons [348–351].
In vitro reconstitution assays have further dissected the impact of tubulin PTMs on the performance
of motor proteins such as Kinesin-1, Kinesin-2, Kinesin-13, and Dynein [352,353]. Therefore, it is
plausible that the activities of the motor proteins involved in the directed transport of chromosomes
along distinct microtubule populations, before and during chromosome congression, are also regulated
by PTMs that differentiate the microtubule tracks on which they move [346]. Indeed, it has been
known for decades that different PTMs label distinct microtubule populations within the mitotic
spindle [354–357]. For instance, the dynamic, short-lived astral microtubules that extend from the
spindle poles towards the cell cortex are highly tyrosinated (i.e. they contain a tyrosine as the last
amino acid on the α-tubulin C-terminal tail), while more stable spindle microtubules, such as k-fibers
and possibly interpolar microtubules, are detyrosinated, acetylated and polyglutamylated [354–357].
Therefore, this patterned distribution of different tubulin PTMs within the mitotic spindle could
work as a navigation system for kinetochore-based motor proteins involved in the critical steps that
anticipate and mediate chromosome congression [345,346].

Such a navigation system would have particular implications for the congression of
peripheral chromosomes that are unable to bi-orient soon after NEB. According to this model,
the Dynein-mediated poleward movement of peripheral chromosomes upon the initial interaction
with astral microtubules would be regulated by their high tyrosinated state [355,356]. In support of
this concept, recent in vitro reconstitution studies of Dynein/Dynactin activity have indicated that
tubulin C-terminal tail tyrosination is of great importance for Dynactin-mediated initiation of Dynein
motion on microtubules [358]. Similar findings have been reported in vivo, where the Dynactin subunit
p150 and tubulin tyrosination were shown to mediate the initiation of retrograde vesicle transport in
neurons [359]. Finally, these data are in line with previous studies reporting that p150/Dynactin has
higher affinity for tyrosinated microtubules [325,360] and that the motility of both cytoplasmic and
axonemal Dyneins highly depends on tubulin C-terminal tails [325,361–363].

After the initial Dynein dominance during the poleward transport of peripheral chromosomes
along tyrosinated astral microtubules, Dynein is overtaken by CENP-E to drive the congression of
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polar chromosomes to the equator [6]. In concert with Aurora A kinase-mediated activation of CENP-E
by phosphorylation near the poles [321], and in agreement with the slow association of CENP-E with
microtubules observed in vitro [364], recent work revealed that CENP-E has a preference for the more
stable detyrosinated spindle microtubules, and this is important to guide polar chromosomes towards
the equator [345]. Accordingly, this study showed that, similar to CENP-E depletion/inhibition,
attenuation of tubulin detyrosination either by inhibition of the tubulin carboxypeptidase (TCP)
(the enzyme that removes the last tyrosine from the α-tubulin C-terminal tail on polymerized
microtubules), or by overexpression of the tubulin tyrosine ligase (TTL) (the enzyme that adds back
tyrosine to soluble α-tubulin), prevented polar chromosomes from congressing. In vitro reconstitution
experiments confirmed that CENP-E motility is enhanced on detyrosinated microtubules [345].
Moreover, RNAi-mediated depletion of TTL, which increases overall detyrosination of the mitotic
spindle, including astral microtubules, prevented peripheral chromosomes from reaching the spindle
pole [345]. Since this could only be partially rescued by co-depletion of CENP-E [345], it suggests
that increased detyrosination of astral microtubules further prevents kinetochore Dynein-mediated
poleward transport. Altogether, these data support that the state of α-tubulin detyrosination provides
important spatial cues for the regulation of chromosome movements during mitosis [346]. As so,
the difference in detyrosination levels between highly dynamic astral and more stable spindle
microtubules mediates an activity switch that enables the fine spatiotemporal regulation of the opposite
motility of Dynein and CENP-E at kinetochores. This ensures that peripheral chromosomes are first
transported poleward by Dynein along tyrosinated astral microtubules, followed by CENP-E-mediated
congression along more detyrosinated microtubules pointing to the equator.

This activity switch seems to be very finely regulated, since in vitro studies showed that tubulin
(de)tyrosination induced less than 2- and up to 4-fold changes in the processivity of CENP-E and
Dynein motors, respectively [345,358]. Importantly, a recent in vitro reconstitution study demonstrated
that single Kinesin and Dynein motors produce approximately similar forces [365], which helps to
explain how slight differences in tubulin (de)tyrosination can influence motor kinetics and determine
the directionality of chromosome movements. This is further supported by recent theoretical work,
which demonstrated that tubulin PTMs are sufficient to generate a 2-fold difference on motor kinetics
and target cargoes to specific locations along microtubules [366].

A critical emerging question is how a single amino acid change at the α-tubulin C-terminal tail
selectively affects motor recognition and function at the structural level. It is well established that
tubulin C-terminal tails regulate the binding and processivity of Kinesin-1 and Dynein in vitro [362,367].
CryoEM, backed-up by crystallographic studies, have allowed the visualization of the CENP-E motor
domain in complex with microtubules [368,369]. Although the exact interaction between CENP-E and
tubulin C-terminal tails has not been determined due to their flexible nature, these works indicate that
the CENP-E motor domain might interact with helix 12 from α-tubulin, close to the C-terminal tail.
Because the association of the CENP-E C-terminal kinetochore-binding domain with microtubules
depends little (20% reduction) on tubulin C-terminal tails [370], these results suggest that microtubule
detyrosination directly regulates recognition by the CENP-E motor domain. In contrast, the recognition
of tyrosinated microtubules by Dynein has been shown to involve p150/Dynactin [358,360] and
structural reconstructions have indicated that this interaction is mediated by the GKNDG motif on the
CAP-Gly domain of p150/Dynactin [371,372].

2.10. Chromosome Congression vs. Maintenance of Alignment

One poorly understood aspect of mitosis is whether the mechanisms that mediate chromosome
congression consist of the same principles that ensure the maintenance of a bi-oriented chromosome
at the equator after completing congression. Clearly, motor-dependent chromosome congression
does not rely on a force balance on a given kinetochore pair, as chromosome bi-orientation is not
required to complete congression [300]. Moreover, end-on kinetochore-microtubule attachments are
not even required for motor-driven congression to the equator, but are essential to maintain aligned
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chromosomes at the metaphase plate [305]. This is corroborated by microsurgery experiments in
which the kinetochore region of a once aligned chromosome is irradiated with a focused UV or laser
microbeam, causing the chromosome to immediately move towards the direction of the undisturbed
kinetochore [20–23]. In contrast, when k-fibers are cut on a bi-oriented chromosome positioned at the
equator, chromosomes either do not shift at all or shift only slightly towards the pole of the unperturbed
k-fiber [21,22,29–38]. Interestingly, inter-kinetochore tension in vertebrate and insect cells is proportional
to k-fiber length [37,38] (Figure 6). Overall, these data indicate that while force at kinetochores is
proportional to k-fiber length, maintenance of chromosome position near the equator is not.
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Figure 6. Forces at kinetochores are proportional with k-fiber length, but chromosome position at the
equator is independent of k-fiber length. (a,b) Laser microsurgery of k-fibers in Drosophila S2 cells
stably expressing GFP-α-tubulin to label microtubules (green) and Cid-mCherry to label kinetochores
(red). K-fibers were cut (yellow arrowhead) and grew back as described previously [29]. Inverted
contrast of GFP-α-tubulin is also shown, as well as the variation of inter-kinetochore distance over
time (kymograph; first frame corresponds to pre-surgery distance; second frame onwards are after
surgery). Measurement of the inter-kinetochore distance before and after laser surgery ablation
of k-fibers (yellow bars) indicates that kinetochores relax after surgery, and this relaxation is more
evident the closer the cut is to the kinetochore. Time is in min:sec. White scale bars are 2 µm;
(c) Quantification of the percentage of kinetochore relaxation after surgery (determined by the difference
between initial inter-kinetochore distance and the minimum observed distance after surgery) indicates
a negative correlation (R2 = −0.361; p < 0.001) with the cut distance from the kinetochore (n = 125 cells);
(d) Corresponding quantification of the inter-kinetochore distance over time as a function of the cut
distance from the kinetochore. Each group was normalized against its initial distance such that one
hundred percent corresponds to the average initial distance. The closer the cut is to the kinetochore,
the longer the recovery of inter-kinetochore distance and the higher is the relaxation. The inclusion of
a kinetochore marker in this study and the observed variability of inter-kinetochore distance after k-fiber
cut explains previous observations in which no detectable kinetochore relaxation was observed without
the use of a kinetochore marker [29]. Laser microsurgery was performed essentially as described in [373].
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Several theoretical and experimental studies have predicted or provided evidence for mechanical
coupling between kinetochore and non-kinetochore (interpolar) microtubules [4,37,38,374–381],
which might account for the maintenance of chromosome positioning at the equator independently
of k-fiber length. While the molecular nature of this spindle microtubule coupling system remains
unknown, it is likely to involve multiple players that possess the necessary molecular properties to
serve this purpose. These include several MAPs and motors with microtubule cross-linking properties,
such as PRC1, Kinesin-5, Kinesin-15, CLASPs, Clathrin/Ch-TOG/TACC3, Asp, NuMa, Kinesin-14 and
Dynein [382–384]. In addition, Chromokinesins, Kif4A in particular, might also work as a coupling
element between k-fibers and interpolar microtubules interacting with chromosome arms [71].

Interestingly, many loss-of-function studies of Chromokinesins revealed only a very minor
role during chromosome congression, while being critical to maintain chromosomes aligned at
the equator [6,71]. These results suggest that Chromokinesins might additionally contribute to the
stabilization of kinetochore-microtubule attachments of aligned chromosomes, possibly in coordination
with the activity of Kinesin-8 [146]. Indeed, recent works in Drosophila S2 cells have shown that
Chromokinesins promote kinetochore-microtubule stabilization and the conversion from lateral to
end-on attachments, independently of chromosome bi-orientation [77,81], which might be important to
maintain chromosomes aligned at the equator after congression. This implies that CENP-E is no longer
dominant over Chromokinesins once chromosome bi-orientation and equatorial alignment is achieved.
This would be consistent with the finding that CENP-E levels at the kinetochore decrease significantly
due to Dynein-mediated stripping upon microtubule attachment and chromosome bi-orientation [385].
However, whether CENP-E plays a role in maintaining chromosome positioning at the equator
after alignment has been controversial. For instance, CENP-E has been proposed to play a role in
stabilizing end-on kinetochore-microtubule attachments [297–299]. This model is supported by electron
microscopy studies after inactivation of CENP-E function, which showed a reduced microtubule
number at kinetochores of aligned bi-oriented chromosomes, supporting a role for CENP-E after
chromosome congression [297,298]. Importantly, the observed differences relative to controls appear
to be attenuated during a prolonged mitosis where the range of microtubule binding was similar to
controls, indicating that CENP-E is not essential for binding of a full complement of microtubules
at kinetochores of bi-oriented chromosomes [297]. Interestingly, original antibody micro-injection
experiments in metaphase cells have indicated that CENP-E is not required for maintenance of
chromosome alignment [289]. In contrast, treatment of metaphase cells with a CENP-E inhibitor
that forces CENP-E to bind tightly to microtubules (a “rigor” state) caused the displacement of
chromosomes from the equator, supporting a role of CENP-E in maintaining chromosome alignment
after bi-orientation, in addition to mediating chromosome congression [303]. The availability of
a second generation of CENP-E inhibitors that compromise ATPase activity without interfering with
microtubule binding [386] will be important to clarify the role of CENP-E after chromosome alignment.

Finally, many studies have reported chromosome misalignment problems after functional
perturbation of several proteins (see Table 1). However, since live-cell imaging was not used in
many of these studies, it remains unclear whether it truly reflects a direct role of these proteins in
chromosome congression or in the maintenance of chromosome alignment. The recent discovery
that apparently unrelated experimental perturbations associated with a metaphase delay often lead
to “cohesion fatigue” (i.e., the uncoordinated loss of sister chromatid cohesion after chromosome
congression but prior to anaphase onset, due to the action of mitotic spindle forces) [155,387,388]
incites for a systematic re-evalution of proteins formerly associated with chromosome alignment using
state-of-the-art live-cell imaging techniques.

2.11. An Integrated Model of Chromosome Congression

Based on the arguments expressed in the previous sections, we propose that chromosome
congression in humans can essentially be explained by two main mechanisms that operate in
parallel (Figure 7), meaning that not all chromosomes rely on the same mechanism to complete
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congression. A key aspect that determines which mechanism is used depends essentially on whether
chromosomes establish lateral or end-on attachments at their kinetochores on their way towards the
equator. This is influenced by the position of chromosomes relative to the spindle poles at NEB.
Those chromosomes that are able to bi-orient soon after NEB would use a “direct congression”
mechanism in which opposite kinetochore-pulling forces, resulting from the tight regulation of
microtubule dynamics and length at the kinetochores, in coordination with PEFs along chromosome
arms, drive chromosome oscillations until net force is zero near the equator. A corollary from
this model is that the establishment of stable end-on attachments inhibits the other congression
mechanism relying on lateral interactions between microtubules and kinetochores. This second
mechanism would take advantage of the high processivity of the Dynein/Dynactin motor localized on
unattached kinetochores to capture peripheral chromosomes, which are unable to bi-orient at NEB
and establish stable end-on kinetochore microtubule attachments. The minus-end directed motion of
Dynein/Dynactin along tyrosinated astral microtubules transports peripheral chromosomes close to
one of the spindle poles, where Aurora A activity is highest and prevents the stabilization of end-on
kinetochore-microtubule attachments. This configuration also imposes a dominance of kinetochore
Dynein/Dynactin over the action of Chromokinesin-mediated PEFs along chromosome arms that
would otherwise promote the premature stabilization of end-on kinetochore-microtubule attachments
and lead to errors resulting in chromosome missegregation. In addition, while travelling along
tyrosinated astral microtubules, Dynein/Dynactin will be dominant over the other kinetochore motor,
CENP-E, with plus-end-directed motility and a preference for more stable detyrosinated microtubules.
Once at the poles, phosphorylation by Aurora A will activate CENP-E, (while other centrosome kinases,
such as Plk1, inactivate Dynein/Dynactin), favoring the lateral transport of chromosomes by CENP-E
along detyrosinated microtubules (either k-fibers or interpolar microtubule bundles) towards the
equator, where the chances for bi-orientation are maximal. At the equator, Chromokinesins promote
the conversion from lateral to end-on attachments, which further downregulates CENP-E and Dynein,
thereby ensuring the maintenance of chromosome position at the metaphase plate. Once aligned and
bi-oriented at the metaphase plate, the coordination between kinetochore-pulling forces and PEFs
continue to determine the amplitude of chromosome oscillations, but maintenance of chromosome
position near the equator will depend on additional factors that mediate the cross-linking between
kinetochore and non-kinetochore microtubules.
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oscillations after bi-orientation. See text for a detailed description.
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2.12. A Note about Chromosome Congression in Acentrosomal Systems

The problem of chromosome congression in acentrosomal systems such as animal oocytes and
land plants is not less complex than in mammalian somatic cells. While the lack of centrosomes
could in principle simplify the process and decrease microtubule heterogeneity within the context
of the spindle, these systems have developed alternative microtubule organizing structures or
mechanisms that, in a way, functionally resemble the centrosomes. For instance, land plants
assemble a “prophase spindle” on opposite sides of the nucleus before NEB. These prophase spindle
microtubules undergo “search-and-capture” and eventually interact with chromosomes and assist
their motion (reviewed in [39,389,390]). There is, however, good evidence that canonical PEFs are
rather weak or absent in plants [39,391]. Mammalian oocytes form acentriolar microtubule-organizing
centers (aMTOCs) that assemble transient “multipolar” spindles that ultimately cluster into a bipolar
structure (and show astral-like microtubules) and mediate interactions with chromosomes towards
bi-orientation [392,393]. Therefore, “direct congression” of at least some chromosomes after NEB is
likely to take place in mammalian oocytes and land plants. In contrast, in Xenopus oocyte extracts,
microtubules organize “inside-out” in the vicinity of chromatin and in a Ran-GTP-dependent manner
(reviewed in [394]). As so, chromosomes already start “congressed” during spindle assembly and
do not need to be transported from the poles. Nevertheless, CENP-E and Kid/Chromokinesin
motors appear to be necessary to maintain chromosomes equidistant from the poles in this system,
either by promoting chromosome bi-orientation or simply by mediating persistent microtubule
plus-end-directed chromosome motion, such as in PEFs [65,66,293].

Recent insight from live-cell imaging of mammalian oocytes has revealed unprecedented
details about the process of chromosome congression in this system [395]. It was found that
chromosome congression is completed before bi-orientation due to the establishment of an intermediate
configuration, the “prometaphase belt”, in which chromosomes are organized around the spindle.
During congression, chromosomes that were located far from the equator moved towards it by
sliding along spindle microtubules, whereas chromosomes that were already located near the equator
remained stationary. Subsequently, chromosomes invaded the spindle area establishing the final
metaphase plate organization and bi-orientation. Interestingly, very similar findings have been
reported for human somatic cells in culture [72], suggesting conservation of the mechanisms of
chromosome congression between mammalian centrosomal and acentrosomal systems. In support
of this idea, chromosome congression in mammalian oocytes also does not seem to depend on the
Chromokinesin Kid [395,396], but CENP-E activity appears to be required, possibly by facilitating
bi-orientation [397]. Similar findings were also recently reported in Drosophila and C. elegans oocytes,
in which prometaphase chromosome motion and bi-orientation was shown to depend essentially
on lateral attachments [398,399]. However, while in Drosophila oocytes chromosome bi-orientation
and lateral attachments were shown to rely on CENP-E [398], in the case of C. elegans oocytes the
process might involve the Chromokinesin KLP-19 [399]. It should be noted that chromosomes in
Drosophila oocytes are compacted into a karyosome and, similar to Xenopus oocyte extracts, congression
is unnecessary, whereas in C. elegans KLP-19 is only required for chromosome alignment in metaphase
I-arrested, but not normally progressing oocytes [399,400]. Therefore, CENP-E and Chromokinesin
activities in these systems might only be required to maintain chromosomes at the equator. In the
case of land plants, they appear to lack cytoplasmic Dynein motors [390,401], but CENP-E-like
Kinesin-7 motors and Chromokinesins are conserved [390,402] and the former has been implicated
in chromosome congression in moss, even though it does not seem to localize at kinetochores [403].
Finally, it is worth remarking that even in animal somatic cells in which centrosome function was
genetically perturbed, chromosome congression was delayed but not prevented, further supporting
a marginal role for centrosome-mediated PEFs in chromosome alignment in metazoans [404].
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3. Consequences of Abnormal Congression

3.1. Aneuploidy, Tumor Suppression and Oncogenic Potential

Aneuploidy is defined as a karyotype state with a chromosome number that deviates from
a multiple of the haploid, and is a hallmark of human cancers. Aneuploidy is often accompanied
by high rates of chromosome missegregation, a phenomenon called chromosomal instability (CIN),
in which chromosomes are permanently gained and lost during multiple divisions [405]. Therefore,
CIN might contribute to tumorigenesis by changing the dosage of oncogenes and tumor suppressors
required for tissue homeostasis. CIN has also been associated with both poor patient prognosis
and resistance to some chemotherapeutic agents [406–410]. Paradoxically, there is also evidence that
excessive CIN is a disadvantage for tumor progression and is associated with better prognosis [411].
Whatever the case may be, and despite all controversy, direct targeting of CIN as a potential anti-cancer
therapy is now the subject of active research [412,413].

Chromosome congression defects are amongst the multiple pathways that could lead to
CIN [405,414,415]. Different studies reported that cell and animal models with reduced levels of
CENP-E generate high levels of aneuploidy. CENP-E deletion in mouse embryonic fibroblasts (MEFs)
and in liver tissues resulted in cells with several mitotic defects, including chromosome misalignment
and increased levels of lagging chromosomes, an indication of chromosome missegregation [298,416].
Homozygous disruption of the CENP-E gene causes early embryonic lethality [298], while
heterozygous loss of CENP-E causes aneuploidy and CIN that can both promote or suppress tumor
formation, depending on the context [417,418]. Mice heterozygous for CENP-E show a mild increase in
the rate of spontaneous lung and spleen tumors, but exhibit a decreased incidence of liver tumors [418].
CENP-E heterozygosity did not accelerate tumor initiation or progression after treatment with the
chemical carcinogen DMBA [417,418]. Moreover, when CENP-E heterozygosity was combined with
the loss of the tumor suppressor p19ARF (CENP-E+/− p19ARF−/−), most of the animals showed
a strong delay in tumorigenesis [417,418]. Furthermore, exacerbating the level of CIN in CENP-E+/−

mice by crossing them with Mad2+/− or APCMin/+ resulted in increased cell death and reduced tumor
progression [417,419]. These findings suggest that low levels of CIN caused by minor chromosome
congression and segregation defects could potentially lead to transformation, whereas an elevated rate
of CIN inhibits tumor formation.

Drosophila models have also been generated to investigate whether induction of aneuploidy by
knocking down CENP-E is tumorigenic . In one study, CENP-E depletion alone was not sufficient
to drive tumorigenesis [420]. However, another study found that knockdown of CENP-E and Nsl1
(which targets Bub3 to the kinetochore, compromising the SAC) induced a tumorigenic response [421].
These results suggest that, per se, minor chromosome congression defects are insufficient to drive
tumor formation in flies and that a significant level of aneuploidy is required.

Altered expression or mutations in CENP-E have been reported in some human diseases.
CENP-E is upregulated in individuals with rheumatoid arthritis [422] and with breast cancer [423].
Moreover, CENP-E expression negatively correlated with disease-specific survival in patients with
breast cancer [423]. In contrast, human hepatocellular carcinoma exhibits abnormally low levels of
CENP-E [424]. Several non-synonymous single nucleotide polymorphisms were also reported in
CENP-E and the Y63H point mutation, which disrupts the native conformation of the ATP-binding
region in the CENP-E motor domain, was found to be associated with cancer [425]. Finally, mutations
in CENP-E leading to chromosome congression problems were also associated with microcephalic
primordial dwarfism (MPD) [426].

Kif18A is overexpressed in human colorectal [427] and human breast cancers [428]. Kif18A
expression in breast cancers correlates with tumor grade, metastasis and survival, whilst suppression
of Kif18A expression in breast cancer cells inhibits tumor growth in vivo [428]. In addition, proteomic
analysis identified Kif18A as a potential biomarker of cholangiocarcinoma and lung cancer [429,430].
Genetic studies in mice demonstrated that disrupting Kif18A function affects male, but not female,
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fertility [193]. Kif18A−/− male mice develop relatively normally and exhibit defects in the testis,
but not in other organs. Testis atrophy in these mice is caused by impaired microtubule dynamics
and loss of spindle pole integrity associated with chromosome congression defects during mitosis
and meiosis. Another study showed that depletion of Kif18A protects animals from colitis-associated
colorectal (CAC) cancers [431]. Although suggestive, the involvement of Kif18A in cancer requires
further investigation.

Besides its function during chromosome congression, the Chromokinesin Kif4A plays several
other roles throughout mitosis, and loss of this protein leads to various mitotic defects including
chromosome hypercondensation, aberrant spindle formation, anaphase bridges, defective cytokinesis
and aneuploidy [69,432]. Kif4A is absent or expressed at low levels in 35% of human cancers [433].
Kif4A is also downregulated in gastric carcinoma tissues and Kif4A expression levels correlate with
tumor differentiation [434]. Interestingly, overexpression of Kif4A in gastric cancer cells inhibits
proliferation in vitro, as well as the ability to form tumors in vivo [434]. Kif4A is also overexpressed
in cervical cancer [435] and non-small cell lung cancer associated with poor patient outcome [436].
Furthermore, loss of Kif4A in murine embryonic stem cell results in several mitotic defects, including
chromosome misalignment, spindle defects and aberrant cytokinesis [433]. Additionally, a high
percentage of cells lacking Kif4A are aneuploid and injection of these cells into nude mice has the
ability to form tumors. Based on these findings, the aneuploidy associated with aberrant mitosis
after Kif4A depletion can promote tumor formation, but it remains unclear whether this is a direct
consequence of its role in chromosome congression. Altogether, these findings demonstrate that loss
of different Kinesin-like proteins involved in different aspects of chromosome congression might lead
to aneuploidy.

4. Targeting Chromosome Congression for Cancer Therapy

4.1. CENP-E Inhibitors

Microtubule poisons that disrupt spindle assembly and function have demonstrated to be
powerful tools in the treatment of many human cancers [437], but their efficacy is limited by side
effects such as neurotoxicity, neutropenia and acquisition of resistance [438–440]. Taxanes and
vinca alkaloids are amongst the most successful microtubule drugs and are known to compromise
chromosome congression by preventing the formation of proper kinetochore-microtubule attachments
that nevertheless satisfy the SAC, leading to an abnormal mitotic exit and apoptosis [441–445].
The discovery of new mitotic targets for cancer therapy has raised interest in developing antimitotic
agents that do not target microtubules [446,447]. The most notable targets are the Aurora kinases A
and B, as well as Plk1 [448]. Although there are obvious drawbacks (and the main reason for failure
in clinical trials) related with cytotoxicity of normal fast dividing cells, such as those in the bone
marrow, gut, and hair follicles, protein targets that are only expressed in dividing cells are attractive
for cancer therapy, since non-dividing differentiated cells should not be affected. CENP-E is expressed
predominantly in mitosis (and G2) [290] and plays an important role in peripheral chromosome
congression [293,295,300], thereby representing an attractive target for cancer therapeutics. GSK923295
is an allosteric inhibitor of CENP-E that blocks its microtubule stimulated ATPase activity and stabilizes
the interaction between the motor domain and microtubules [449,450]. GSK923295 has demonstrated
both in vitro and in vivo antitumor activity against various malignancies [449,451–455]. Cells treated
with GSK923925 assemble bipolar spindles and the majority of chromosomes align at the spindle
equator. However, some chromosomes remain clustered near the spindle poles, leading to mitotic
arrest and apoptosis [449,456]. The antitumor activity of GSK923925 has been evaluated in combination
with standard chemotherapies, as well as with other emerging targeted drugs [454]. Inhibition of ERK1
revealed a significant synergistic proliferation inhibition activity when combined with GSK923225
in neuroblastoma, lung, pancreatic and colon carcinoma cell lines [454]. Combination of GSK923225



Biology 2017, 6, 13 27 of 56

with Pgp-pump modulators also appeared to improve the antitumor effects against cells with Pgp
overexpression, thereby overcoming the resistance to Pgp inhibitors [457].

Another CENP-E inhibitor, PF-2771, selectively inhibits proliferation of basal breast cancer cell
lines compared with normal and premalignant cells. Moreover, the sensitivity to this inhibitor correlates
with the degree of CIN, suggesting that cancers with elevated CIN may benefit from CENP-E-targeted
therapy [423]. Finally, inhibition of CENP-E motor function by PF-2771 resulted in tumor regression
in a patient-derived basal-like breast cancer xenograft tumor model [423]. More recently, a new
inhibitor of CENP-E directly targeting its ATPase activity, known as compound A, was found to have
anti-proliferative activity in multiple cancer cell lines and in a xenograft nude mouse model [386,458].
CENP-E inhibition using compound A resulted in p53-dependent post-mitotic apoptosis triggered
by elevated chromosome missegregation [458]. Interestingly, both CENP-E inhibitors PF-2771 and
GSK923295 were found to increase CIN levels in a recent large-scale screen [459]. Taken together,
these data suggest that CENP-E may be an effective therapeutic target for cancer cells with high
levels of CIN.

Other compounds have been claimed to specifically inhibit CENP-E, but turned out to target
other proteins. For instance, the compound UA62784 was initially described to be a specific inhibitor
of the ATPase activity of CENP-E and highly cytotoxic against human pancreatic cancer cell lines with
a deletion of the DPC4 gene [460]. However, a subsequent study demonstrated that this compound
does not exert its cellular activity by inhibiting CENP-E and rather binds microtubules tightly [461,462].
Another study that tested the antitumor activity of UA62784 and 80 analogs against pancreatic cancer
cell lines revealed that these compounds potently inhibit several protein kinases that are overexpressed
in these cancer cells, but not mitotic Kinesins (Kinesin-5, CENP-E, MKLP-1, and MCAK) [463]. Another
compound, Syntelin, was also reported to be a highly selective CENP-E inhibitor [464]. Inhibition
of CENP-E by Syntelin caused misaligned chromosomes with syntelic attachments, in which sister
kinetochores stably attached to microtubules near the same spindle pole [464]. This was surprising,
since perturbation of CENP-E produces polar chromosomes that are mostly devoid of microtubules at
kinetochores [6,297,298], suggesting that Syntelin also targets other proteins (e.g., Aurora B).

To date, only one of the CENP-E inhibitors, GSK923295, has been evaluated in a Phase I clinical
trial [465]. In this trial, peripheral neuropathy, a well-known taxane adverse effect, was not evident.
As such, the use of CENP-E inhibitors as anticancer drugs could be better tolerated than taxanes and
possibly easier to use in combination with other cancer therapies. Thus, better understanding of the
molecular mechanisms behind CENP-E inhibition might help to find optimal clinical strategies for
certain human cancers.

4.2. Farnesyltransferase Inhibitors (FTIs)

FTIs are promising agents for therapeutic intervention in several diseases, including cancer,
malaria and progeria [466–473]. Due to the clinical relevance of these drugs it became important the
identification of the cellular substrates of the farnesyltransferase. There are several proteins that are
prone to be farnesylated [474] and several studies have shown that FTIs prevent the farnesylation
of Ras family and some mitotic proteins involved in chromosome congression (such as CENP-E,
CENP-F and Spindly) [327,334,335,475,476]. Since farnesylation is required for the recruitment of
Ras proteins to the plasma membrane and many tumors exhibit mutations in Ras, FTIs were initially
developed as therapeutic agents that target Ras activity in cancer cells [477]. Indeed, FTIs exhibited
a potent inhibitory effect on the proliferation and invasive capabilities of breast cancer cells with
active H-Ras in culture [478]. However, it became evident that the target of FTIs might not be only
Ras proteins [479], and there was some evidence that FTIs demonstrated activity in cancer cells
irrespective of Ras mutations [330,480–482]. Moreover, some studies have shown that treatment of
different cancer cells with FTIs enhanced the anti-proliferative and apoptotic effects of cisplatin [483],
5-fluorouracil [484], MEK inhibitors [485], Cdk inhibitors [486], mTOR inhibitor (rapamycin) [487] and
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taxol [488]. Finally, and most relevant for our purposes, FTIs were shown to affect bipolar spindle
assembly and chromosome congression [328,329,335].

Some FTIs, such as Tipifarnib (or R115777), Lonafarnib (or SCH66336), BMS-214662, L-778123 and
SCH44342 are currently in clinical trials for the treatment of various solid tumors and hematological
malignancies [471,489–493]. Although FTIs have been extensively tested in the clinics, their mechanism
of cytotoxicity is not fully understood. In some clinical trials, treatment with FTIs alone or in
combination with chemotherapeutic agents failed to improve the overall outcome of patients with
solid tumors and leukemia [494–501]. However, other clinical trials demonstrated that the combination
of FTIs with conventional chemotherapeutic agents might be useful in hematologic and some solid
tumors [502–508]. Moreover, patients with poor-risk acute myeloid leukemia may benefit from FTIs
maintenance therapy following cytotoxic induction and consolidation therapies [509]. Understanding
the mechanisms by which these drugs inhibit cell proliferation and induce cell death might facilitate
the development of new therapeutic strategies.

4.3. Inhibitors of Tubulin PTMs

The levels of various tubulin PTMs, including acetylation, detyrosination, ∆2 deglutamylation,
polyglutamylation and glycylation, are altered in different cancer cell lines and tissues, contributing
to tumor growth and enhancing their metastatic potential [510–521]. α-tubulin acetylation and
detyrosination are increased in breast cancer cells and correlate with tumor aggressiveness and
poor prognosis in patients [511,517]. A balance of tubulin acetylation and deacetylation by α-TAT1
and HDAC6 enzymes with opposite activities was proposed to regulate the migratory and invasive
capacities of breast tumor cells [510]. Low expression of TTL, the enzyme responsible for tubulin
retyrosination, leads to increased microtubule detyrosination and is correlated with inhibition of
neuronal differentiation and increased cell growth in neuroblastoma with poor prognosis [518].
TTL expression was found to be suppressed during tumor growth in mice [516], as well as during
epithelial-to-mesenchymal transition in human mammary epithelial cells in vitro [521], implicating
the tubulin tyrosination cycle in both tumor propagation and metastasis. Such highly acetylated and
detyrosinated microtubules can indeed form microtentacle protrusions that enhance cellular invasive
migration and re-attachment [511,517]. Experimental microtubule deacetylation, achieved by mutating
the α-tubulin acetylation site at Lysine 40, decreased the incidence of microtentacles and inhibited
cellular migration and invasiveness, confirming the interdependence between cancer progression and
tubulin PTMs [511].

Because of their correlation with cancer, tubulin PTMs present a very promising target for novel
therapeutic approaches in human cancers. One of the most obvious strategies would rely on the
pharmacological inhibition of the enzymes responsible for tubulin PTMs. A promising group of
potential anti-cancer drugs that target tubulin detyrosination are sesquiterpene lactones, a series of
bioactive compounds isolated from the Asteraceae family of plants [522]. The most studied compound
is parthenolide, which has already been used in cancer clinical trials [523,524] and suppresses several
different steps within the nuclear factor kappa B (NF-κB) signaling pathway [525–528]. In addition,
parthenolide prevents microtubule detyrosination by inhibiting TCP, independently from its effect
on NF-κB [529]. Therefore, parthenolide-mediated targeting of TCP and microtubule detyrosination
might have a preventive effect on tumor growth, aneuploidy and metastasis, independently from its
interference with the NF-κB pathway. Indeed, parthenolide-mediated suppression of cell invasiveness
and re-attachment of breast cancer metastatic cells was shown to be independent of NF-κB [530].
Interestingly, several studies reported that various sesquiterpene lactones induced a G2 or M
arrest [531–533], which might account for their anti-cancer activity. More recently, the effect of
parthenolide over TCP inhibition was found to cause chromosome congression defects during
mitosis [345,346], reinforcing the potential of targeting chromosome congression for cancer therapy.

The great advantage of parthenolide as an anti-cancer drug is that it appears to selectively target
cancer cells, as documented by several different in vitro studies [524]. Moreover, parthenolide was



Biology 2017, 6, 13 29 of 56

the first small molecule shown to selectively kill cancer stem cells, while leaving normal stem cells
intact [524,534]. This is of enormous therapeutic importance, since the presence of cancer stem cells is
considered as one of the main reasons underlying chemotherapy resistance and tumor relapse due to
their capacity of self-renewal and differentiation into multiple cell types [535,536]. The mechanism
behind parthenolide selectivity towards cancer stem cells is not completely understood, but it is
believed that the reason lies in its ability to target multiple major pathways required for cancer stem
cell survival and self-renewal, such as MAPK, JAK/STAT, PI3K and NF-κB signaling [524,537]. Whether
TCP inhibition by parthenolide contributes to cancer stem cell eradication remains to be elucidated.

The biggest disadvantage of parthenolide as a therapeutic drug is its high hydrophobicity, which
limits its bioavailability for oral usage and solubility in plasma [523]. This is partially circumvented by
the synthesis of a more water-soluble analog dimethylamino-parthenolide (DMAPT), which possesses
an increased oral bioavailability [524]. DMAPT has already proved effective in selective eradication of
human acute myeloid leukemia primary cultured stem cells [538] and breast cancer stem-like cultured
cells [539], and has been shown to inhibit tumor growth and metastasis of prostate, lung and bladder
cancer xenografts in mice [531,540]. However, although parthenolide and DMAPT demonstrated
high potential in prevention of metastasis and treatment of cancer stem cells, they were not able to
reduce tumor volumes. In contrast, radiotherapy and more conventional chemotherapeutic drugs,
including the microtubule poisons taxanes, are able to reduce tumor volume, but usually fail to target
cancer stem cells. Therefore, a therapy that includes radiotherapy or conventional chemotherapeutics,
in combination with parthenolide/DMAPT could simultaneously target all types of cancer cells.
Indeed, a synergistic effect of parthenolide in combination with either taxanes [541,542] or vinca
alkaloids [543] was observed in breast cancer xenograft models in mice, affecting both tumor cells and
cancer stem cells, while preventing metastasis. The development of new drugs that more specifically
target enzymes that account for tubulin PTMs might reveal useful in evaluating potential clinical
applications in the future.

5. Conclusions and Future Perspectives

Overall, we conclude that chromosome congression in mammalian cells relies on the concerted
action of motor-dependent and -independent mechanisms, which are determined by the establishment
of end-on or lateral kinetochore-microtubule interactions. Therefore, any perturbation that introduces
alterations of microtubule dynamics or kinetochore function will likely compromise the congression
of at least some chromosomes during mitosis. In addition, the recent discovery that tubulin PTMs
have an impact on kinetochore motors and might work as a navigation system during chromosome
congression brings together two old research fields, while opening up new and exciting avenues for
investigation in the future. To date, more than 100 proteins have been implicated in chromosome
alignment (Table 1), but their exact role in the activities necessary for either congression or maintenance
of alignment remains unknown for >90% of them. A systematic analysis of the respective role of
these proteins in chromosome congression will be an important challenge for future studies of mitosis.
Moreover, the functional relationship between forces involved in chromosome congression and mitotic
spindle architecture remains poorly understood and deserves further attention [415]. Finally, it will be
important to firmly establish whether problems in chromosome congression are directly responsible
for human diseases, such as cancer, and whether targeting chromosome congression represents a valid
therapeutic approach.
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The following abbreviations are used in this manuscript:

SAC Spindle Assembly Checkpoint
UV Ultra-violet
PEF Polar Ejection Force
GFPMUGs Green Fluorescent ProteinMitosis with Unreplicated Genomes
+TIPs Microtubule Plus-End-Tracking Proteins
ATP Adenosine Triphosphate
RNAi RNA interference
MAPs Microtubule-Associated Proteins
NEB Nuclear Envelope Breakdown
PTMs Post-Translational Modifications
TCP Tubulin Carboxypeptidase
TTL Tubulin Tyrosine Ligase
aMTOCs acentriolar microtubule-organizing centers
CIN Chromosomal Instability
MPD Microcephalic primordial dwarfism
CAC Colitis-Associated Cancer
DMAPT Dimethylamino-parthenolide
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