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Abstract: In mammals several cell adhesion molecules are involved during the pre- and postnatal
development of all organ systems. A very prominent member of this family is the neural cell adhesion
molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational
modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues,
only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar
polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing
dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes
on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the
developing brain the essential role of polysialylated NCAM has been demonstrated in many studies.
In comparison to the neuronal system, however, during the formation of other organs the impact of
the polysialylated form of NCAM is not well characterized and the number of studies is limited so
far. This review summarizes these observations and discusses possible roles of polysialylated NCAM
during the development of organs other than the brain.

Keywords: polysialic acid; NCAM; sialic acids; cell adhesion molecule; organogenesis; pre- and
postnatal development

1. Introduction

Sialic acid polymers (Figure 1) are frequently present in nature ranging from echinoderms to
mammals [1–5]. However, distinct bacteria strains, like Escherichia coli (E. coli) K1, are also able to generate
different polysialic acid (polySia) species [1,6,7]. In the brain of mammals polySia is mainly present on
the neural cell adhesion molecule (NCAM) [8]. Based on the first detection of the polysialylated form
of NCAM in the brain by Jukka Finne 35 years ago [9,10], numerous studies characterized the various
biological functions of polysialylated NCAM in the brain of vertebrates depending among other things
on the stage of development [5,11–13]. Not least through the observation of many substantial defects
during brain development in polySia knock-out mice by Rita Gerardy-Schahn’s lab and cooperation
partners, the essential impact of this posttranslational modification was demonstrated for the neuronal
system [14]. However, the additional lethal phenotype of polySia knock-out mice may not only be the
result of the dramatic changes in the brain, since polysialylated NCAM is also present in several other
essential organs during organogenesis like the developing heart, kidney and liver.

This review recaps selected discoveries regarding the polysialylated forms of NCAM outside the
neuronal system, and starts with an overview concerning the polysialylation process of NCAM and
the biochemical impact of polySia on NCAM.
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The structure of the NCAM was created with the homology modeling software Modeler [23]. 

Template search in the Protein Data Bank [24] as well as the creation of sequence alignments was 

performed with the BLAST service [25]. Carbon atoms of the glycan chains are colored by residue 

types using the color scheme of the symbol nomenclature for glycans (SNFG) [26]. 

Six N-glycosylation sites have been described. The polysialylation of the protein backbone 

typically takes place on N-glycans at glycosylation sites 5 and 6 of the 5th Ig-domain in vivo [22–26]. 

In postnatal mouse brains, the majority of these N-glycans bear two or more polySia chains and 

polymers with more than 90 sialic acid residues could be detected [27]. Remarkably, between 60 and 

90 N-acetylneuraminic acid (Neu5Ac) residues seem to be present on the largest part of N-glycans. 

Figure 1. Chemical structure of polysialic acid (polySia): In mammals polySia consists of α2,8-linked
N-acetylneuraminic acid residues (Neu5Ac) (linkage in red). Neu5Ac belongs to the wider family of
sialic acids [15–17]. It is an α-keto acid with a nine carbon backbone (numbering in green) bearing
a carboxylate anion under physiological conditions (orange). R: N-glycan or O-glycan.

2. Polysialylation of NCAM

Three major isoforms of NCAM are expressed and can be polysialylated in mammals; NCAM-180,
NCAM-140, and NCAM-120 [18–21]. NCAM-180 and NCAM-140 are transmembrane proteins,
whereas NCAM-120 is a glycosyl-phosphatidylinositol (GPI)-anchored protein. All three isoforms
contain five immunoglobulin (Ig)-like domains and two fibronectin (FN) domains (Figure 2).
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Figure 2. Models of NCAM and polySia: (A) All three major isoforms of NCAM consist of two
fibronectin (FN) and five immunoglobulin like (Ig) domains, and six N-glycosylation sites were
characterized (green triangles) [18]. PolySia (orange balls) can be present on N-glycans of glycosylation
sites 5 and 6. (B) The 3D model of NCAM was created as described in Ulm et al. [22]. The structure of
the NCAM was created with the homology modeling software Modeler [23]. Template search in the
Protein Data Bank [24] as well as the creation of sequence alignments was performed with the BLAST
service [25]. Carbon atoms of the glycan chains are colored by residue types using the color scheme of
the symbol nomenclature for glycans (SNFG) [26].

Six N-glycosylation sites have been described. The polysialylation of the protein backbone
typically takes place on N-glycans at glycosylation sites 5 and 6 of the 5th Ig-domain in vivo [22–26].
In postnatal mouse brains, the majority of these N-glycans bear two or more polySia chains and
polymers with more than 90 sialic acid residues could be detected [27]. Remarkably, between 60 and
90 N-acetylneuraminic acid (Neu5Ac) residues seem to be present on the largest part of N-glycans.
As illustrated in Figure 3, already with a degree of polymerization (DP) of 40 sialic acid residues
polySia chains represent the dominating element of NCAM.
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Figure 3. 3D models of polysialylated NCAM: Four different polysialylation stages are depicted: (A) no
polySia; (B) DP 20; (C) DP 40; and (D) DP 60. The polySia chains of the glycan models were created as
described earlier [22].

Two polysialyltransferases were described to modify NCAM; ST8SiaII and ST8SiaIV [28,29].
Interestingly, in vitro the polysialyltransferases can also polysialylate themselves [30,31]. However, so
far only the polysialylated form of ST8SiaII has been detected in vivo [32]. In addition to NCAM and
the polysialyltransferases six further polySia-carriers were identified in mammals:

• A sodium channel in adult rat brain [33];
• Cluster of differentiation (CD) 36 in murine and human milk [34];
• Neuropilin-2 on dendritic cells, macrophages and microglia (mouse and human) [22,35–37];
• C-C chemokine receptor type 7 (CCR7) on dendritic cells (mouse and human) [38];
• Synaptic cell adhesion molecule SynCAM-1 on polydendrocytes (NG2) cells in postnatal mouse

brain [39]; and
• E-selectin ligand-1 on microglia and macrophages (mouse and human) [40].

Whereas the mechanisms of protein specific polysialylation for these six polySia carriers are more
or less unknown, several studies characterized the polysialylation process of NCAM [2,41].

Twenty years ago the minimal structure of NCAM was determined by Nelson and colleagues,
which is needed for an efficient polysialylation [42]. Additionally, the place of polysialylation, the 5th
Ig-domain, the 4th Ig-domain, as well as the first FN domain were found to be necessary. Eight years
later Colley and Co-workers demonstrated that also a truncated form without the 4th Ig-domain
represent an adequate acceptor structure [43].

During the last 10 years especially the team of Karen Colley follows the idea that a protein-protein
interaction between NCAM and the polysialyltransferases could be essential and they were able to
define the structural requirements in more detail. Using a charge distribution analysis, an acidic
patch was recognized in the first FN-domain, which is formed by Asp520, Glu521, and Glu523 [44].
Furthermore, the three positively-charged amino acids were not only shown to be important for
the polysialylation capacity, but also for an initial binding of the polysialyltransferase ST8SiaIV [45].
In accordance with the acidic patch of the first FN-domain in the case of NCAM, europilin-2 also
exhibits an acidic area located in the MAM domain, which was shown to be essential for polysialylation
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by ST8SiaIV [46]. Thus, distinct negatively-charged areas of the acceptor protein might be generally
important for the initiation of polysialylation.

Interestingly, polysialyltransferases comprise basic regions suggesting that an enzyme acceptor
complex is initiated by electrostatic attraction with the acidic regions of NCAM to start polysialylation
of NCAM (illustrated in Figure 4A) [47,48]. Troy and co-workers described a polysialyltransferase
domain (PSTD) localized close to the sialylmotif-S (SM-S) consisting of 32 amino acids. This basic
patch is necessary for polysialylation of NCAM. In the case of ST8SiaIV, the amino acids Ile275, Lys276,
Arg272, and Arg252 seem to be particularly important. Moreover, this basic region is discussed to switch
from a protein-protein interaction between NCAM and ST8SiaIV to a protein-carbohydrate interaction
with the nascent polySia chain during the polysialylation process (Figure 4B) [47].
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Figure 4. Proposed polysialylation mechanism based on [2,29,41,47,48]. (A) To start polysialylation,
polysialyltransferases interact with areas of the 4th Ig- and the first FN-domain [2,41]. In addition,
a terminal sialylation must be present [49]. After the initiation phase polysialylation starts. (B) Since
the polymers are negatively charged and the chain length continuously increases, it was proposed that
the polysialyltransferases switch from a protein-protein interaction to a glycan-protein interaction to
continue polySia synthesis [47].

Further amino acids modulating the recognition of NCAM were identified when in Karen Colley’s
labs the amino acid sequences were examined for positively-charged areas. They identified a polybasic
region (PBR) between the amino acids 86–120 and 71–105 in ST8SiaII and ST8SiaIV, respectively [50].
Arg82 and Arg93 are discussed to play a special role during interaction and polysialylation process [51].
Very recently, the team could be verified by nuclear magnetic resonance (NMR) analysis that the acidic
patch of the FN-domain interacts with the outlined basic region of ST8SiaIV [48]. All of the studies
are focused on ST8SiaIV, but it is likely that similar mechanisms take place during the polysialylation
by ST8SiaII. Intriguingly, Arg82 is also involved in the recognition and/or binding phase during the
polysialylation of neuropilin-2 and SynCAM-1 [51].
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The crystal structure of ST8SiaIII, which is discussed to build sialic acid oligomers [4], support the
models of Frederic Troy and Karen Colley [52]. Strynadka and colleagues compared—on the basis of
their crystal structure—the amino acid sequences of ST8SiaII and IV with ST8SiaIII. The generated 3D
model of ST8SiaIV nicely visualizes the potential interaction areas between ST8SiaIV and NCAM. PSTD
seems to be involved in binding and coordinating of the glycan acceptors forming a positively-charged
stretch to the active site. Interestingly, PBR, as well as PSTD, seem to initiate the interaction between
the polysialyltransferase and the acidic patch of the first FN-domain. Thereby, Arg93 of ST8SiaIV forms
a salt bridge with Asp521.

Nevertheless, many questions have still to be answered concerning the “specific” recognition and
polysialylation mechanisms by ST8SiaII and ST8SiaIV. For example, are all of these acceptor proteinsin
acidic patches present? In addition, the elongation process is still mysterious, since the sialic acid
polymers can be longer than the complete protein backbone of NCAM [22]. Moreover, N-glycans
of both glycosylation sites (5th and 6th) are potential acceptors and the present N-glycans can be
modified with more than one polySia chain. How can the polysialyltransferases handle this situation?
Is a switch between protein-protein and protein-glycan interaction (Figure 4), as well as a parallel
switch between nascent chains on glycosylation site 5 and 6, possible during the elongation phase,
and what is the exact mechanism? It will be interesting to see how understanding of these issues will
evolve in the coming years.

3. Impact of PolySia

The dimension and number of polySia chains present on NCAM already suggest that the function
of NCAM is strongly modulated by these linear but very flexible carbohydrate chains (Figure 3) [22].
However, polySia does not only modulate NCAM-dependent mechanisms, but can also influence
numerous processes by itself [2].

Nevertheless, the most prominent example is still the tuning of cell-cell adhesion mechanism
by the inhibition of the homophilic NCAM-NCAM interaction. More than twenty-five years ago
Rutishauser and co-workers proposed that the cell-cell interaction is triggered depending on the
polySia ratio of NCAM [53,54]. While unpolysialylated NCAM manifests cell adhesion via homophilic
binding in trans mode, increasing amounts of polySia abolish the interaction between NCAM molecules
expanding the area between cells. Due to the dramatic increase of the hydrodynamic radius also cell-cell
interactions mediated by other adhesion molecules like cadherins can also be negatively affected [55].
Thus, polySia represents a strong regulator of cell-cell interactions, as well as communication processes.
In the developing brain the loss of polySia has enormous consequences. For instance, the enzymatic
degradation of polySia on olfactory precursors leads to an inhibition of their migration capacity, and
fewer cells reach the bulbus olfactorius [56,57].

As already mentioned, polySia can regulate physiological processes independently of its carrier.
Especially Sato’s and Kitajima’s groups identified several biomolecules, which bind polySia inducing
or inhibiting distinct signaling pathways [2,58]. Interestingly, some of these interactions seem to require
a minimum degree of polymerization (DP). For example, brain-derived neurotrophic factor (BDNF)
can only bind polySia chains consisting of more than eleven sialic acid residues [59]. Based on their
finding, Sato and co-workers proposed that these interactions lead to an accumulation of BDNF
on the cell surface resulting in a reservoir of the neurotrophin BDNF. Since the affinity between
BDNF and its receptors is higher than between polySia and BDNF, it seems to be possible that
BDNF molecules can continuously switch from the polySia-BDNF-reservoir to their receptors TrkB
and p75NTR. Comparable results were obtained, when nerve growth factor (NGF), neurotrophin-3
(NT-3), as well as neurotrophin-4 (NT-4) were analyzed [59]. Interestingly, they also show that the
BDNF-polySia complex leads to an up-regulation of growth or/and survival of neuroblastoma cells.
Their results are in line with previous findings demonstrating a connection between the formation of
BDNF-polySia complexes and the survival of neurons [60].
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Moreover, fibroblast growth factor 2 (FGF2) was shown to be an interaction partner of polySia [61].
The complex formation requires a minimum chain length of 17 sialic acid units. Intriguingly, polySia
mediates FGF2 signaling in a negative way leading to an inhibition of FGF2-stimulated cell growth.
It seems to be that in contrast to BDNF, FGF2 cannot be directly transferred to its receptor and
a previous migration to heparin sulfate is necessary, before FGF2 can be recognized by fibroblast
growth factor receptors (FGFR).

In addition to the presented modulation of NCAM functions as well as interaction partners,
some others functionalities of polySia were described (excellently reviewed in [2,5,11,13,18,56,58,62]).
However, the addressed examples represent the main roles of polySia which, so far, have been
discussed to take place during the development of other organs than the brain.

4. PolySia-NCAM during the Development of the Liver

The liver is the central organ for metabolism and the biggest gland in vertebrates playing an essential
role in physiological balance. Already in the 1990s polySia was detected during prenatal development of
the liver [63]. Whereas hepatocytes and liver parenchyma showed no polySia signal, interstitial areas
were polySia positive during liver organogenesis. Later, Forbes and co-workers observed that murine
hepatic progenitor cells express polysialylated NCAM and that during differentiation to hepatocytes the
expression levels decrease [64]. Using cell based assays they demonstrated that polySia inhibits the
cell matrix interaction, counteracts cell aggregation and increases hepatocyte growth factor-induced
migration of hepatic progenitor cells (Figure 5). Furthermore, polySia weakens the interaction with
NCAM-positive myofibroblasts.
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Figure 5. PolySia modulates the migration of hepatic progenitor cells: Inactive hepatic progenitor
cells express unpolysialylated NCAM [64]. Hepatic progenitor cells interact with myofibroblasts
and laminin via NCAM. After activation by hepatic growth factor (HGF) polysialylation is induced,
allowing a migration of activated hepatic progenitor cells.
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Interestingly, in postnatal polySia knockout mice, impaired bile duct structures were observed.
Moreover, polySia is involved during regeneration after liver injury. During liver injury the ductular
reaction is initiated leading among other things to an increasing number of ducts associated with
matrix production, migration and proliferation of progenitor cells, as well as subsequent differentiation
into hepatocytes [65]. This reaction comes along with an upregulation of polySia on the cell surface of
hepatic progenitor cells. Intriguingly, enzymatic removal of sialic acid polymers inhibits the ductular
reaction since the cell-cell and cell-matrix adhesion can no longer be fine-tuned by polySia [64].
Thus, polysialylated NCAM represent a key element during organogenesis, as well as regeneration
also in the liver.

5. PolySia-NCAM during the Development of the Heart

During the 1990s polysialylation status was examined in rat and chicken hearts by Western
blotting against polySia and NCAM using several pre- to postnatal and adult stages [66,67]. It seems
that the concentration of polysialylated NCAM increases during prenatal development, whereas during
postnatal development the expression levels decrease. No polySia was detectable in adult samples and
only small amounts of unpolysialylated NCAM were stained. Additionally, immunohistochemistry
was performed to localize polySia generation using tissue slides. In rat, as well as in chicken, samples
myocardial cells were polySia-positive. The authors suggested that due to the anti-adhesive properties,
polySia takes part during the modeling of the myocardium representing the muscle tissue of the heart.

Furthermore, the epicardial layer, consisting mainly of connective tissue, exhibited polySia signals.
Additionally, in areas of migrating cells, forming the mesenchyme, polySia was present suggesting
that also here the migration capacity of the cells is modulated by polySia. Finally, the innervation of
the heart is characterized by high levels of polySia [66]. Since myocardial cells, as well as the areas
of neuronal areas, revealed polySia staining, the invasive growth of neuronal connections, as well as
the subsequent formation of muscle structure seem to be polySia-dependent events [66]. The impact
of polySia, however, cannot be determined, because no data were published so far using a polySia
knockout system or other possibilities to prevent a polysialylation during heart development.

6. PolySia-NCAM during the Development of the Kidney

The kidney, as a further essential organ of vertebrates, exhibits distinct regions of
polySia-NCAM-positive cells during organogenesis in rats [68]. In adult kidneys polySia is no longer
synthesized. Primarily early structures, like the ureteric bud—later building the collecting duct system,
which connects the nephrons and the ureter—in addition to the metanephrogenic mesenchyme—forming
after conversion to epithelium cells the nephrons—are polySia-NCAM-positive. Additionally, after the
onset of nephrogenesis polySia is still present. Roth and co-workers suggested that polySia may support,
via its anti-adhesive properties and modulation of cell-cell interaction, the assembly of the complex
structure of the nephron. The nephron is the functional unit of the kidney and, thereby, regulating the
concentration of water and soluble substances. An impaired formation of the tight junction between
the epithelial cells of the nephron during organogenesis would lead to disturbance of renal function.
Animal studies elucidating the exact role of polySia during kidney formation and the consequences of
a loss of polySia have not yet been published.

7. PolySia-NCAM during the Development of the Testis

The testis contains mainly seminiferous tubules consisting of developing germ cells (spermatogonia,
spermatocytes, spermatids, and spermatozoon). In addition, interstitial cells are located between the
tubules. In addition to interstitial macrophages, Leydig cells are primarily present in the interstitium.
Leydig cells belong to the endocrine system and they release, inter alia, testosterone and other
androgens, such as androstenedione and dehydroepiandrosterone (DHEA). Thus, Leydig cells are
important regulators for sexual development and spermatogenesis. Mayerhofer et al. detected NCAM
on Leydig cells of adult testes in the beginning of the 1990s [69]. Shortly thereafter they also observed
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that, during development of murine testicular Leydig cells, the polysialylated form of NCAM is also
present [70]. Intriguingly, clustered Leydig cells show stronger polySia staining than isolated Leydig
cells and the authors proposed that besides the involvement during the migration into the developing
testis, cytodifferentiation and/or cluster formation of Leydig cells is also controlled by polySia and
NCAM [69].

Not only interstitial cells, but also Sertoli cells and germ cells, seem to express the polysialylated
form of NCAM during fetal development. In feline (fetal samples) and murine (postnatal day 1) testes,
membranes of Sertoli cells and/or spermatogonia are polySia-positive [71].

Since neurotrophins like BDNF, NGF, and NT-3 are discussed to support the forming of the
seminiferous cord, as well as the persistence of germ cells [72], and polySia directly interacts with
these biomolecules influencing their mode of action [2,58,73], the authors propose that polySia might
have a direct impact during seminiferous tubule development and initiation of spermatogenesis [74].

This possibility is supported by findings using the roe deer as a model for seasonal initiation and
termination of spermatogenesis [74]. In wildlife the mating season is often a restricted period [75].
Thus, spermatogenesis is not necessary during the whole year. For instance, in roe deer, during winter,
the seminiferous tubule consists mainly of spermatogonia and Sertoli cells representing the “governess”
of germ cells [76,77]. In spring, however, proliferation of spermatogonia rapidly increases and the first
spermatocytes and spermatids can be present. During the next weeks the germinal epithelium reaches
complete functionality. Already in August the activity of spermatogenesis decreases. Intriguingly,
polysialylated NCAM is mainly present during the onset of spermatogenesis (April), as well as when
a complete offset occurs (December) [74]. Mainly spermatogonia and Sertoli cells showed polySia
staining during these periods. In April, spermatocytes are also present in polySia-positive areas.
However, it seems that the signal belongs to Sertoli cells and not to the first wave of spermatocytes.

The initiation of polysialylation during these key points of seasonal spermatogenesis and the
ability of polySia to modulate cell-cell interaction and communication, as well as the functionality of
growth factor, may contribute to the regulatory system of spermatogenesis. A study showing that
spermatogonia differentiation is reversible and stem cell potential is regained when their connections
are detached [78,79] let us speculate that polySia might be able to support such a recovery event
(Figure 6). However, as of yet, no functional assays were applied to test this hypothesis.
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Figure 6. Is a recovery of stem cell potential by polysialylation possible? (A) Spermatogonia stem cells
(SSC) start to differentiate [80]. The daughter cells are connected via cytoplasmic bridges. A mechanical
fragmentation of the connected daughter cells leads to a recovery of stem cell potential [78,79]. (B) It was
speculated that polysialylation may support a destruction of cytoplasmic bridges and the separation of
daughter cells [74]. So far, however, no direct experimental evidence exists.
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8. PolySia-NCAM during the Development of the Epididymis

During epididymal transit sperm matures. This maturation step includes an exchange of several
surface components between epithelial cells and sperm cells, which is essential for them to become
fertile [81]. Interestingly, it seems to be that the secretion of polysialylated NCAM, as well as
polysialylated ST8SiaII by epithelial cells, represents a part of this maturation stage [32].

Nevertheless, also during the postnatal development of murine epididymis polysialylated NCAM is
expressed [71]. In addition to scattered epithelial cells in all areas of the epididymis, primarily proliferating
smooth muscle cells exhibit strong polySia staining directly after birth. Intriguingly, comparable results
were also obtained, when the postnatal oviduct was examined [71]. In the epididymis during the first
ten days after birth the amount of polysialylated NCAM decreases slightly, whereas a dramatic drop
down was observed thereafter. On postnatal day 25, for example, no polySia-positive cells, and also no
proliferating smooth muscles cells, were detectable. Similar to testis development, during epididymis
development neurotrophins and their receptors were also described, which were mainly present in areas
of α smooth muscle actin (SMA) positive cells [72]. Taken together, polySia might also modulate the
proliferation and/or differentiation of smooth muscle via interactions with neurotrophins as described
for neuronal cells [58,71] (illustrated in Figure 7A).

Remarkably, the reduction of the polySia levels comes along with increasing quantities of
extracellular collagen during the formation of these contractile areas. A comparable interrelation was
also observed in the postnatal tunica albuginea [71], which enclose the testis and consists of fibroblast,
myofibroblast and smooth muscle cells and extracellular matrix components like collagen [82]. An in
cellulo study by Curtis and co-workers described a possible explanation for the contrarily-regulated
amounts of polysialylated NCAM and collagen [83]. They observed an internalization and desialylation
of polySia-NCAM, specifically triggered by extracellular collagen. Thus, polySia might play a role
during the establishment of contractile arrangements between smooth muscle cells in developing
organs and may represent a modulator of proliferation and/or differentiation (Figure 7B).
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Figure 7. Proposed models of polySia-dependent mechanisms on smooth muscle cells during
postnatal development of epididymis [71]. (A) The model is based on studies by Sato and co-workers
demonstrating that polySia binds neurotrophins modulating the induction of proliferation [58].
Since polySia was observed on proliferating smooth muscle cells and smooth muscle cells express
neurotrophin receptors during postnatal development [72] it was suggested that polySia contributes
to the induction of proliferation [71]. (B) With increasing amounts of collagen the polysialylation of
smooth muscle cells stops. Based on cell culture experiments in the lab of Curtis showing that collagen
induces the internalization of polySia-NCAM and degradation of polySia chains [83], a functional
relationship between increasing amount of collagen and decreasing amount of polySia-NCAM was
discussed [71].



Biology 2017, 6, 27 10 of 15

9. PolySia during the Development of the Placenta

In mammals the placenta is essential for the development of new life. Interestingly, during
pregnancy in humans the placenta consists of embryonic, as well as maternal, cells. This is possible,
since embryonic cells invade the uterus leading to the crucial formation of a nutrient/waste exchange
system [84]. Thereby, trophoblasts initiate the invasion and are also important to maintain the connection
between the mother and her child [85]. Whereas progenitor cytotrophoblasts form together with
syncytiotrophoblasts, the villi—a branching system and the functional unit of the placenta—are invasive
cytotrophoblasts that invade the uterus to form an “anchor”. Furthermore, invasive cytotrophoblasts
support tissue remodeling events in the uterus to increase the perfusion of the system. In humans all
three cell types express polySia early in pregnancy [86]. So far, however, the carrier is unknown.

Remarkably, at term nearly no polysialylation occurs. Fisher and co-workers performed in
addition functional assays to get an idea, which processes may depend on the polysialylation status
of invasive cytotrophoblasts. By an enzymatic removal of polySia they demonstrated in cell culture
models that the migration, as well as invasion capacity of invasive cytotrophoblasts, are significantly
impaired [86].

Furthermore, it seems that cancer cells of gestational trophoblastic disease tumors overexpress
polySia [86]. The occurrence of polySia on cancer cells was also observed on several other tumors like
neuroblastoma [87–91]. Thus, polySia might not only represent an essential part during pregnancy,
but also an important regulator during placental pathologies.

10. Conclusions

Especially due to pioneering work of the lab of Jürgen Roth and cooperation partners, we have
known for many years that the polysialylated form of NCAM is not only restricted to the neuronal
system during pre- and postnatal development in mammals. In addition to the outlined organs, the
development of other physiological systems seems to be supported by polySia-NCAM. For instance,
during hair follicle formation, as well as during the development of the digestive and the respiratory
elements, the polysialylated form of NCAM is present, as shown in Lackie et al. [63]. Furthermore,
polysialylated NCAM in hair cells was discussed to modulate the connection between nerves and
sensory cells during cochlea development in mice [92].

Taken together, the described localization, as well as the abilities of polySia to influence cell-cell
interaction/communication and proliferation, in addition to differentiation processes, seems to trigger
the maturation of organs throughout the body. Nevertheless, organ and/or cell specific ablation of
polySia in murine systems will be necessary to determine exactly the various functions of polySia as
a posttranslational modification of NCAM in all different physiological systems.
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