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Abstract: Biological pathways are thought to be robust against a variety of internal and external
perturbations. Fail-safe mechanisms allow for compensation of perturbations to maintain the
characteristic function of a pathway. Pathways can undergo changes during aging, which may
lead to changes in their stability. Less stable or less robust pathways may be consequential to
or increase the susceptibility of the development of diseases. Among others, NF-κB signaling is
a crucial pathway in the process of aging. The NF-κB system is involved in the immune response
and dealing with various internal and external stresses. Boolean networks as models of biological
pathways allow for simulation of signaling behavior. They can help to identify which proposed
mechanisms are biologically representative and which ones function but do not mirror physical
processes—for instance, changes of signaling pathways during the aging process. Boolean networks
can be inferred from time-series of gene expression data. This allows us to get insights into the
changes of behavior of pathways such as NF-κB signaling in aged organisms in comparison to young
ones.
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1. Introduction

Systems Biology, the study of complex biological systems, is an emerging field in science.
Many different disciplines like biology, chemistry, physics and computer sciences among others are
employed to analyze biological systems. Traditional life science follows a reductionist approach.
This approach has successfully identified many components and their interactions [1]. However, it does not
describe system properties emerging from the interactions of these components. In contrast, Systems Biology
focuses on the integration of whole biological systems. In Systems Biology, dynamic models allow for
simulation of the behavior of such systems. The simulation gives valuable insights into the behavior of
complex systems and hypotheses about the system can be extracted [2]. Boolean networks are one kind of
dynamic models that can be used to simulate, for instance, signaling pathways [3].

Aging is a highly complex biological process which impacts health-related quality of life
and life expectancy. It is characterized as the inability of tissues to maintain homeostasis [4].
Several theories have been postulated concerning the cause of aging. On a cellular level aging
is, for instance, provoked by DNA damage, protein aggregation or cellular differentiation [5–9].
As a consequence, aging is commonly accompanied by a plethora of aging-related diseases such as

Biology 2017, 6, 46; doi:10.3390/biology6040046 www.mdpi.com/journal/biology

http://www.mdpi.com/journal/biology
http://www.mdpi.com
https://orcid.org/0000-0002-3050-0618
https://orcid.org/0000-0002-5153-0269
https://orcid.org/0000-0002-4759-5254
http://dx.doi.org/10.3390/biology6040046
http://www.mdpi.com/journal/biology


Biology 2017, 6, 46 2 of 12

cancer, neurodegeneration, diabetes, osteoporosis and cardiovascular diseases [10]. Thus, a better
understanding of the underlying pathways regulating life span serves as a basis for establishing
therapy concepts for age-related diseases.

In this manuscript, Boolean network reconstruction and the resulting Boolean networks are used
to get insights into the changes a pathway undergoes during the process of aging. The NF-κB signaling
network is analyzed with respect to changes in its susceptibility to perturbations during aging using
Boolean networks inferred from gene expression data.

The transcription factor NF-κB and its intracellular signaling pathway are critical factors in muscle
homeostasis [11]. Several homeostatic responses such as autophagy, apoptosis and tissue atrophy are
regulated by the NF-κB signaling pathway [12]. NF-κB modulation is considered to be a factor that
influences aging [13,14].

In this manuscript a time-series gene expression dataset of healthy male human muscle
samples [15] was used for inferring Boolean networks. The samples in the dataset can be divided into
two different stages of aging: one group of samples between 21 and 27 years and the other group
between 67 and 75 years of age. The real-valued expression data is first binarized and then used to
infer Boolean networks. The Boolean networks of the young and the aged phenotype are analyzed to
determine their ability to maintain their function under perturbed conditions. The ability to mount an
effective response to environmental and cellular stressors may play an important role in determining
the onset and progression of late-life disease and aging [16].

2. Results

The method to investigate the changing stability during aging via Boolean networks can be
separated into several steps (Figure 1). In the following, these steps and their results are explained
in detail.

2.1. Experimental Settings

2.1.1. Data Processing

A publically available dataset (NCBI GEO ID GSE362) of human expression data containing
samples (muscle tissue) of 15 healthy human males between 21 and 75 years of age was used.
The samples were divided into two groups: the young (21 to 27 year-olds) and the aged (67 to
75 year-olds) group.

To preprocess the dataset the Affymetrix probes were mapped to Entrez IDs using the R-package
biomaRt [17]. Multiple Affymetrix samples which matched to the same Entrez ID were averaged using
geometric mean. Relevant genes of NF-κB signaling were selected and extracted according to the
NF-κB signaling pathway in the KEGG database (95 genes; [18]). 86 of these 95 genes could be found in
the aforementioned human gene expression dataset. The gene expression values of these 86 genes were
selected and binarized using the BASC A algorithm [19,20]. Binarization was done using the same
threshold for all samples. To reduce the size of the Boolean networks all genes that were significantly
binarizable (p < 0.05) according to BASC’s significance test were used for network reconstruction.
This resulted in a set of 22 genes: TAB1 (Entrez ID 10454), CHUK (1147), CSNK2A2 (1459), ERC1 (23085),
CARD10 (29775), IRAK1 (3654), LBP (3929), LTA (4049), LTBR (4055), PLCG2 (5336), PRKCB (5579),
PRKCQ (5588), PTGS2 (5743), BTK (695), TNF (7124), TRAF1 (7185), TRAF3 (7187), TRAF5 (7188),
TNFSF11 (8600), BCL10 (8915), CD14 (929), CD40 (958). After binarization, the data was divided into
the two different groups and the Boolean networks for NF-κB signaling of each age group was inferred
using the best-fit algorithm.
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Figure 1. Schematic representation of a Boolean network approach to investigate stability changes
in aging signaling networks. First, the time-series data is binarized and reduced using the BASC
A algorithm of the R-package BiTrinA [20]. The resulting time-series data is split into two age
groups (young (n = 7) and aged (n = 8)) and used to infer Boolean networks using the R-package
BoolNet [21]. In the next step, the stability of the resulting Boolean networks is investigated by
perturbation experiments. The best-fit algorithm can return a number of different Boolean functions
for each gene in the network. From these possible functions 1000 synchronous Boolean networks are
created for each age group by randomly drawing one of the inferred Boolean functions for each gene.
Next, randomly generated states (x(t)) are perturbed using bitflips (x′(t)). The normalized Hamming
distance (H(x, x′)) of the successor states x(t + 1) and x′(t + 1) and x(t + 5) and x′(t + 5) of x(t) and
x′(t) is computed. This is repeated for 1000 random states, the successor states of 1000 random states
and random attractor state following 1000 random states with random bitflips. Finally, the mean
normalized Hamming distance of these 3000 tests for each of the 1000 networks of each phenotype
is compared.



Biology 2017, 6, 46 4 of 12

2.1.2. Inferring Boolean Networks from Binarized Time-Series Data

The best-fit algorithm [22] as implemented in the R-Package BoolNet [21] returned a number
of Boolean functions which explain the time-series data for each gene in the network—similar to
a probabilistic Boolean network with equal probability for each function of one gene. For both
the young and the old phenotype, each gene was reconstructed with a number of possible function
variations. The functions could be reconstructed without any errors. An adjacency matrix displaying all
dependencies for each component can be found in the supplement (Table S1). The network of the young
phenotype shows a total number of 158 different dependencies, the network of the aged phenotype
125. These dependencies were validated by comparison to the interaction database STRING DB (www.
string-db.org; [23]). In this database direct or indirect connections for all reconstructed dependencies
could be found (Table S2). In the STRING DB query only experimentally verified interactions or
interactions from curated databases were taken into account. In order to get synchronous Boolean
networks with one function per gene, 1000 networks with randomly sampled functions were created
for each of the age group networks. Figure 2 shows one example of such a synchronous Boolean
network for each of the two groups.

Figure 2. Network wiring of reconstructed Boolean networks, showing one of the possible combinations
of the reconstructed functions which were drawn. (A) shows a network representing the young
phenotype and (B) the aged phenotype.

2.2. Stability Measure of Boolean Networks

Biological pathways need to be fail-safe and robust against internal and external perturbations [24]
in order to maintain their characteristic function. In this manuscript a number of different
measurements were performed to investigate how the stability of a pathway changes during the
process of aging.

The best-fit algorithm as implemented in the BoolNet package returns a number of possible
Boolean functions for each gene of the pathway. All these functions have equal probability to represent
the dependencies in the pathway. The number of constant genes was measured as well. A gene that is
constantly set to ON/OFF is over/below the binarization threshold. If a gene is only ON/OFF in one
of the age groups it can be concluded that it is differentially expressed in the different age groups.

The stability of a Boolean network can be measured by perturbing the network and then
comparing the simulation results of the perturbed network with those of the original network.
A network that is stable against perturbations is expected to have more similar simulation results
compared to the original network than a less stable network.

Perturbation can be simulated using a random, temporary bitflip in the current state x(t) of
a network. This bitflip corresponds to a temporary, punctual node shift in the network. Next, a state

www.string-db.org
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transition is applied to the original state x(t) and the perturbed state x′(t). The successor state x′(t + 1)
of x′(t) can be compared to the successor state of the original state x(t + 1). The number of differing
bits in x′(t + 1) in comparison to x(t + 1) can be measured using the normalized Hamming distance
Hn. Hn between two Boolean vectors of size n is here defined as:

Hn(x, x′) :=
1
n

n

∑
i=1
|xi − x′i | (1)

A smaller, normalized Hamming distance can be linked to a more stable network. In chaotic
networks a perturbation spreads exponentially throughout the network whereas in close-to-chaotic
networks the perturbation spreads algebraically [25]. The more noise resistant a network is the less
a perturbation is able to spread [25]. Therefore, we evaluated the Boolean networks by measuring the
mean normalized Hamming distance of 1000 randomly drawn states after perturbation of one and five
state transitions.

Analysis of Reconstructed Boolean Networks

The resulting Boolean networks for the young and the aged phenotypes were analyzed according
to their robustness against perturbations. These perturbations are bitflips of randomly drawn states
of the network. For this analysis, 1000 random combinations of Boolean functions which the best-fit
algorithm returned for both the young and the aged network were drawn - one function for each
gene. For the resulting Boolean networks, one and five state transitions based on the synchronous
update scheme were applied on the initially drawn state and the perturbed state. The difference in the
resulting states was then measured using the normalized Hamming distance. This was performed
for each network using 1000 random initial states, a set of successor states of another 1000 randomly
drawn states and a third set of random attractor states of the attractors resulting from 1000 randomly
drawn initial states. These three different sets of states were analyzed as not every state in the Boolean
network is equally plausible in the biological context. Results of these different kinds of perturbed
states are shown in Figure 3. The number of perturbed bits was set to one. For each group of start states
(random, successor, attractor) the average resulting Hamming distance for each of the 1000 networks
was returned.

Figure 3. (A) shows the mean of the number of inputs of all Boolean functions of the young and
aged phenotype Boolean networks as a bar plot. The standard deviations are included as error bars.
(B) The boxplot shows the average, normalized Hamming distance between the successor states
t + 1 and t + 5 of 1000 random states, the successor states of 1000 random states, attractor states
following on 1000 random states and their perturbed versions for 1000 random combinations of
inferred Boolean functions of the young and aged phenotype (Wilcoxon rank sum test p < 2.2× 10−16

for all robustness comparisons).
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2.3. Boolean Functions

As mentioned above, the Boolean functions of each gene were derived from time-series
in a data-driven way. Each of the genes in the young phenotype was reconstructed with one
to up to 59 possible functions (17 possible functions per gene in the mean; data not shown).
In case of four genes (TNF receptor associated factor 5 (TRAF5), Phospholipase gamma 2 (PLCγ2),
Interleukin-1 receptor-associated kinase 1 (IRAK1), and Caspase recruitment domain-containing
protein 10 (CARD10)) the reconstruction algorithm revealed a Boolean function which was constantly
set to zero in the aged phenotype. These genes are all involved in the activation or upregulation
of NF-κB [26–29]. The other 18 genes were reconstructed with one to up to 39 possible functions
(seven in mean). However, the mean number of inputs per function for the reconstructed young
networks (1.32) and old networks (1.27) was nearly equal (Figure 3A).

2.4. Network Stability

As can be seen in Figure 3B the variation in the Hamming distances between the perturbed and
the original states increases with each transition in both age groups. However, in the aged group
the increase in distance is more distinct. The mean Hamming distance of 0.048 (random states, rnd),
0.048 (successor states, succ) and 0.047 (attractor states, attr) in the young phenotype compared to
0.053 (rnd), 0.055 (succ) and 0.054 (attr) in the aged phenotype is an increase of roughly 15 percent for
each of the settings after one state transition. The mean Hamming distance after five state transitions
is increased in both age groups. However, the difference in the mean robustness of the different age
groups is even higher. The mean Hamming distance in the young phenotype networks is 0.063 (rnd),
0.064 (succ) and 0.060 (attr) after five state transitions. In the aged phenotype the mean Hamming
distance after five transitions is 0.085 (rnd), 0.087 (succ) and 0.083 (attr). The increase of the mean
Hamming distance from the young to the old phenotype grows from about 15% after one state
transition to about 35% after five state transitions (see Table 1).

Table 1. Overview over the measured normalized Hamming distances of the young and aged
phenotypes starting from random initial states, random successor states and random attractor states
compared to perturbed networks after one and after five state transitions.

After One State Transition After Five State Transitions

Young Phenotype Aged Phenotype Young Phenotype Aged Phenotype

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

random initial state 0.041 0.056 0.048 0.044 0.065 0.053 0.028 0.151 0.063 0.040 0.201 0.085
random successor state 0.041 0.057 0.048 0.045 0.067 0.055 0.027 0.143 0.064 0.034 0.209 0.087
random attractor state 0.036 0.057 0.047 0.037 0.064 0.054 0.004 0.144 0.060 0.007 0.211 0.083

3. Discussion

In this manuscript we analyzed binarized time-series data from high-throughput experiments
using Boolean networks. Both the network reconstruction and the analysis of the resulting Boolean
networks indicate differences between the two age groups. The results show that both the network
representing the young phenotype and the one representing the aged phenotype were reconstructed
with about the same mean input for each gene (Figure 3A). However, the interconnections between
different genes vary. The aged phenotype shows some constant genes (always OFF) in contrast to the
young phenotype. As these genes are not connected to other nodes by regulatory interactions they
cannot be influenced by the network itself. These unregulated, constant genes are: TRAF5, PLCγ2,
IRAK1 and CARD10.

NF-κB is involved in immune response. Both Tumor necrosis factor alpha (TNFα) and Interleukin 1
(IL-1) are known inducers of fever and inflammation in immune responses. TRAF5 [26] as well as
PLCγ2 [27] are downstream targets of TNF receptor 1, whereas IRAK1 is a transcription factor
which upregulates NF-κB in response to cellular stimulation with IL-1 [28]. Antigen contact with
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immunogenic substances such as lysophosphatidic acid (LPA) leads to activation of NF-κB through
PLCγ2 and CARD10 [29]. According to the binarization results these factors are constantly expressed
below threshold in the aged phenotype. This correlates to Welle et al. [15]: here, the authors stated
a lower activity of a variety of genes in the aged group of the same dataset.

Besides the interactions, the number of different dependencies which were found by the
reconstruction algorithm (158 in young phenotype, 125 in aged phenotype networks) also is decreased
in the aged phenotype. The stability measurements show differing results for the networks of the
two age groups. Using bitflips to perturb the network behavior is supposed to simulate internal
stresses such as genotoxic stress. After perturbation, the Hamming distance was measured after
one (t + 1) and five (t + 5) state transitions. Based on these two measurements it can be analyzed
wether the perturbation spreads or the network goes back to normal after one or more state transitions.
Not all states in a Boolean network might be of the same biological relevance. Thus, the perturbation
experiments were examined starting from three different types of states. In addition to randomly
drawn states, successors of randomly drawn states and attractor states following randomly drawn
states were used in the analysis. The results of these different setups barely differ as can be seen in
Table 1. On average, perturbations in the aged networks have a stronger effect on network behavior
compared to the young networks: while the mean Hamming distance of both groups is increased after
five state transitions (from about 15 to about 30%), the difference in the mean robustness is even higher
in the young group compared to the aged group.

The number of inputs influencing each Boolean function is higher in the young phenotype,
but only by a small margin. This means that the nodes in the aged phenotype are as well connected
as in the young phenotype. Taken together, we can conclude that the decline in stability of the aged
phenotype represented by the normalized Hamming distance is not due to a reduction in the number
of input nodes. Thus, one conclusion could be that the aging NF-κB signaling pathway is less robust
against internal stresses in the aged group due to a lack of redundancy in the Boolean functions.

Robustness of biological systems, for instance in the context of aging, is an emerging research
topic [30–32]. Even though these results were based on a relatively small time-series, they show that
Boolean networks can be helpful tools that allow for analysis of robustness of signaling pathways
against various stresses.

For future work we plan to collect larger datasets with more time steps to increase the
network reconstruction quality and to further investigate the robustness of biological pathways
using Boolean networks.

4. Conclusions

Aging has been analyzed with Boolean networks, usually by recreating biological networks from
literature and then evaluating the network patterns: e.g., Albert and Othmer [33] studied Drosophila
embryonic development in a single network, and Herrmann et al. [34] designed a network which
recreated mouse heart development. In this paper we introduce—to the best of our knowledge—
a new combination of methods to create and analyze Boolean network models in the context of aging.
Network construction of our models is data-driven instead of literature-based to ensure a bias-free
and balanced Boolean function generation. Multiple models are constructed and then stability and
expression of the models are compared. It is known that the systemic regulation of signaling pathways
changes with aging. This can be seen in our data: not only is the model created based on the expression
profile of the aged group less stable and robust but also some nodes of the aged model are not regulated
from within the model anymore.
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5. Materials and Methods

5.1. Data

For the analysis described in this manuscript a dataset of human expression data (Affymetrix
Human Genome U133A Array, 22,215 samples, obtained from NCBI GEO with ID GSE362) [15] was
used. The samples were obtained from muscle cells from 15 healthy human males. These humans
were divided into two groups: one group of seven humans between 21–27 years (young group) and
one group of eight humans between 67 and 75 years (aged group). The samples of all 21, 23, 24, 25, 26
and 27 years old humans were used as time-series of the young group. Samples of 67, 68, 69, 71, 73, 74,
75 years old humans were used for the aged group (Figure 4). The dataset contains two samples of age
25 and two samples of age 69 which were averaged and used as one sample for each age.

Figure 4. Schematic representation of one gene in the gene expression data (NCBI GEO ID GSE362).
In the experiments muscle samples from 15 healthy humans of different age (21–75) were taken.
The samples were arranged in ascending order by age to form a time-series. Samples of all humans
between 21–27 years represent the young phenotype. The samples of all humans between 67–75 years
represent the aged phenotype.

5.2. Boolean Networks

Models are simplified representations of a real-world system aiming to mimic essential features
of such a system. The models are dynamic as they describe how the systems properties change over
time. There is a wide spectrum of different dynamic models. Ordinal differential equations allow for
modeling the concentration rates of components like proteins [35]. Modeling differential equations for
a biological system requires detailed knowledge about kinetic parameters. Often this kind of data is
not available. Boolean networks are another approach to model biological processes. These models can
be built when only qualitative knowledge is available. Regulatory factors of the system such as genes
are represented by Boolean variables which can be either TRUE or FALSE [2,36]. The dependencies
between different components of the system are described by Boolean functions. There are three
major types of Boolean networks - synchronous [2,36], asynchronous [37] and probabilistic [38].
Both, synchronous and asynchronous Boolean networks are comprised of a set of Boolean variables
X = {x1, ..., xn}, xi ∈ B and the corresponding Boolean functions F = { f1, ..., fn}, fi : Bn → B.
In synchronous Boolean networks all components of the system are updated at the same time while in
asynchronous Boolean networks only one component is updated at each time step. In probabilistic
Boolean networks each component xi has a number of corresponding transition functions each of which
is applied at their own probability ( fi1, pi1), ..., ( fim, pim), fi : Bn → B, ∑m pim = 1 [38]. Updates in
probabilistic Boolean networks are performed synchronously after one of the possible functions for
each component is selected by chance. Although asynchronous and probabilistic networks may be
closer to the biological behavior both update schemes need additional assumptions in comparison to
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synchronous Boolean networks. Asynchronous Boolean networks have different strategies to choose
which factor to update. In probabilistic Boolean networks it is necessary to determine the probability
of the different transition functions [35]. This work is based on synchronous updates as they can be
performed without any additional knowledge or parameters. Albeit their simplistic setup, synchronous
Boolean networks proved to be valid models for various regulatory networks in different species and
tissues [33,34,39–42].

As Boolean networks are dynamic models, their behavior over time is analyzed. The state
of the network x(t) = (x1(t), ..., xn(t)) is defined by the value of all regulatory factors xi at
time t. In synchronous Boolean networks a transition to the next point in time t + 1 is performed
by applying all the transition functions simultaneously. This results in the successor state
x(t + 1) = ( f1(x(t)), ..., fn(x(t))) of x(t). The dynamics of a Boolean network can be represented
by a state transition graph where nodes denote states and edges the transitions from one state to
another. A Boolean network with n regulatory factors has 2n possible states.

Due to their finite number of states Boolean networks eventually converge on recurrent cycles
of states after a number of state transitions. These recurrent states - so-called attractors - describe the
long-term behavior of Boolean networks. Attractors are of special interest as they are often assumed to
correspond to biological phenotypes [36,43]. All states which lead to the same attractor are associated
with its so-called basin of attraction [44]. The dynamics of a Boolean network vary greatly due
to the state transitions and the underlying Boolean functions. The dynamics of Boolean networks
are still an active research field, e.g. temporal extensions of synchronous Boolean networks that
allow to express processes on different time scales [45], model-checking-based methods for attractor
identification [46] or the identification of stable states and subspaces in Boolean networks [47,48].

5.3. Inferring Boolean Networks

One approach to create Boolean network models is to automatically infer Boolean functions from
time-series data such as gene expression data. Similar to our inference approach, a time-series of
metagenomic sequencing data has been used to create a Boolean network for the gut microbiome [49] as
well as measured concentration changes over time were used to construct a model of drug metabolism
in leukemia [50]. Inferring Boolean networks from time-series data can be separated into two major
steps: binarization and reconstruction. First the data is binarized and second the Boolean transition
functions are extracted from the binarized time-series.

5.3.1. Binarization of Time-Series Data

There is a variety of algorithms to binarize time-series data, for example different cluster-based
approaches [51]. In this work the BASC A algorithm as proposed by Hopfensitz et al. [19] was used.
The algorithm uses a series of step functions to get a robust binarization threshold. The binarization
process starts by rearranging the input values in an ascending order to generate an initial step function.
Next, step functions with fewer discontinuities are calculated using a dynamic programming approach.
The aim is to minimize the Euclidean distance to the initial step function. Afterwards, the data was
binarized by applying a threshold based on the strongest discontinuities in the step function. For a fully
detailed description the reader is referred to Hopfensitz et al. [19].

5.3.2. Inferring Boolean Functions

There are various types of algorithms to extract knowledge about the dependencies of the
regulatory factors from time-series data. These algorithms are based on correlation [52] and Fourier
transformation [53]. An algorithm to infer Boolean functions from binarized time-series data was
given by Lähdismäki et al. [22]. In our work the implementation of this best-fit algorithm [22] in the
R-Package BoolNet [21] was used. We briefly describe the procedure in the following. The algorithm
searches for X′ ⊆ {x1, ..., xn}, |X′| = k ≤ n regulatory factors that explain xi with the least error and
a Boolean function that is in line with the observations in the data. Finding a network which is
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consistent with the observations given in a time-series dataset is known as the consistency problem [54].
Solving this problem means to establish a Boolean function f which correctly separates true and
false examples given in the data [22]. This is done by partially defined Boolean functions (pdBf).
These functions denote the set of examples which are true (T = {X′(t) ∈ Bn : xi(t + 1) = 1}) or
false F = {X′(t) ∈ Bn : xi(t + 1) = 0}. All pairs of X′(t) and xi(t + 1) are extracted from the
given time-series and added to T or F. Next, the error size ε = |F ∩ T| is defined by the number of
inconsistencies in the pdBf. The algorithm chooses X′ with the least error. To determine consistent
Boolean functions truth tables are generated. Here, a Boolean function f is represented as a truth
table indexed from 1 to 2n−1. The ith element of f is one of {1, 0, ∗, ?}, where ? means undefined and
∗ indicates a conflict. The truth table is then filled by iterating through all examples s ∈ F ∪ T over all
time steps j = 1, ..., m. The truth table is updated as follows :

f j
i =


0 if s ∈ F ∧ f j−1

i =?

1 if s ∈ T ∧ f j−1
i =?

∗ otherwise.

where j is the index of current time step. f 0 = (?, ..., ?). i = 1, ..., 2n−1 is the index in the truth table.
The algorithm returns all Boolean functions for each component which recreate the time-series.

Supplementary Materials: The following are available online at www.mdpi.com/2079-7737/6/4/46/s1, Table S1:
Adjacency matrices of BNs, Table S2: Interactions from STRING DB.
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