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Abstract: Positive-sense RNA viruses have a small genome with very limited coding capacity and are
highly reliant on host factors to fulfill their infection. However, few host factors have been identified
to participate in wheat yellow mosaic virus (WYMV) infection. Here, we demonstrate that wheat
(Triticum aestivum) light-induced protein (TaLIP) interacts with the WYMV nuclear inclusion b protein
(NIb). A bimolecular fluorescence complementation (BIFC) assay displayed that the subcellular
distribution patterns of TaLIP were altered by NIb in Nicotiana benthamiana. Transcription of TaLIP
was significantly decreased by WYMV infection and TaLIP-silencing wheat plants displayed more
susceptibility to WYMV in comparison with the control plants, suggesting that knockdown of TaLIP
impaired host resistance. Moreover, the transcription level of TaLIP was induced by exogenous
abscisic acid (ABA) stimuli in wheat, while knockdown of TaLIP significantly repressed the expression
of ABA-related genes such as wheat abscisic acid insensitive 5 (TaABI5), abscisic acid insensitive 8
(TaABI8), pyrabatin resistance 1-Llike (TaPYL1), and pyrabatin resistance 3-Llike (TaPYL3). Collectively,
our results suggest that the interaction of NIb with TaLIP facilitated the virus infection possibly by
disturbing the ABA signaling pathway in wheat.
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1. Introduction

Plant RNA viruses are an important cause of agricultural economic losses [1]. It is particularly
important to understand the interaction of the virus with plant host factors in the process of infecting
plants. Due to their limited coding capacity, RNA viruses recruit some host proteins via direct or
indirect interactions to complete their own reproduction and, hence, only survive in living cells [2–4].
More and more evidence supports the idea that versatile host factors are involved in different periods
of virus infection. For example, the Potyvirus VPg protein may selectively interact with eukaryotic
initiation factor 4E (eIF4E) or its isoform to regulate virion disassembly via potyviral genome translation,
Brome mosaic virus (BMV) 1a can interact with reticulon homology proteins (RHPs) to re-localize
them from peripheral ER tubules to the interior of the spherules, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), a crucial host factor, performs an uncanonical function in TBSV replication
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via interacting with p92 protein [5–7]. Therefore, identifying these host factors at the molecular level
and understanding their functions in the process of viral infection could help to develop new disease
resistance strategies and reveal novel plant antiviral mechanisms [3].

Potyviruses include many agriculturally and economically important pathogens such as Wheat
yellow mosaic virus (WYMV), which belongs to the genus Bymovirus (Potyviridae) [8,9]. The WYMV
genome consists of two positive single RNA strands, RNA1 (7.5 kb) and RNA2 (3.6 kb), which each
encode a polyprotein [10]. The polyprotein encoded by RNA1 produces eight proteins including the
coat protein (CP) and a nuclear inclusion b (NIb) protein that functions as an RNA-dependent RNA
polymerase (RdRp), which is important for virus replication. RNA2 encodes a polyprotein (101 kDa)
that gives rise to two proteins of 28 kDa (P1) and 73 kDa (P2) [10].

The potyviral NIb is a nuclear targeting protein and is a vital part of the virus infection process.
For example, the (Turnip mosaic virus) TuMV NIb protein interacts with SCE1 and the interaction is
necessary for virus infection [11]. Furthermore, SUMOylation of TuMV NIb promotes virus infection by
counteracting the NPR1-mediated resistance pathway [12]. NIb is present in viral replication complexes
and is capable of recruiting host proteins such as HSP70, NbSCE1, AtRH8, and AtRH9 via interactions
to promote potyviral RNA replication [11,13–15]. Furthermore, NIb from several other potyviruses can
be recognized by dominant resistance genes (R genes) such as Pvr1, Pvr2, Pvr4, Pvr8, and Pvr9, which
encode resistance proteins and trigger a Pvr-mediated hypersensitive response [4,16–20]. Nevertheless,
WYMV NIb is not only one of the most conserved portions in the WYMV genome, but is also a good
candidate for broad spectrum resistance [21]. Indeed, transgenic wheat containing the antisense virus
NIb has durable field resistance to WYMV [21]. In addition, WYMV P1 proteins can interact with NIb
and recruit it into P2-induced aggregates through its association with P1 [22]. However, we still do not
fully understand the function of WYMV-NIb during the process of viral infection.

To investigate the potential roles of NIb during WYMV infection, we used NIb as a bait to screen a
wheat (Triticum aestivum) yeast cDNA library. We obtained light-induced protein (TaLIP) (accession
number: AK454210.1), which is a member of the Fibrillin family in wheat, and verified the interaction
between TaLIP and NIb in vivo. A bimolecular fluorescence complementation (BiFC) assay indicated
that the interaction between TaLIP and NIb affects their sub-cellular distribution. Furthermore, the
transcription level of TaLIP was downregulated in WYMV-infected wheat and the TaLIP gene silenced
wheats were more susceptible to WYMV in comparison to the control wheat plant. Quantitative
real-time PCR (qRT-PCR) showed that TaLIP is responsive to external ABA stimuli and silencing
the TaLIP downregulated the transcription level of ABA signaling genes such as TaNCED, TaNCED2,
TaABI5, TaABI8, TaPYL1, TaPYL3, and TaPYL5. Our results provide a basis for exploring the molecular
mechanisms of WYMV pathogenicity in wheat and for providing candidate genes to develop plant
transgenic disease resistance.

2. Materials and Methods

2.1. Plant Materials and Plasmids

Nicotiana benthamiana plants were grown in a glasshouse at 23 ◦C with a 16 h light/8 h dark
photoperiod. WYMV-infected seedlings of Yangmai 158 with typical mosaic symptoms were collected
from a diseased nursery in Yantai City, Shandong Province, China.

2.2. Phylogenetic Analysis and Promoter Cis-Acting Element Prediction Analysis

Using TaLIP gene and the representative fibrillin genes mainly from Arabidopsis thaliana, Oryza sativa,
Triticum aestivum, and several other plants to construct the evolutionary tree. Then, we classified them
using a previously reported method of Arabidopsis thaliana fibrillin proteins [23]. The construction of
the evolutionary tree utilizes MEGA 4.0 software [24].
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For the promoter prediction analysis, we obtained the sequence of about 2000 bp before the
translation initiation site of TaLIP from the wheat genome database (NCBI), then input this sequence
into the PlantCARE database [25] for the promoter prediction analysis.

2.3. Yeast Two-Hybrid Assay

Yeast two-hybrid assays were performed following the method described in the Takara protocol
handbook. The full length of TaLIP (accession number: AK454210.1) and WYMV NIb were cloned
and fused to the Gal DNA-binding domain (vector: pGBKT7) or Gal4 activation domain (vector:
pGADT7), respectively, using primers listed in Supplementary Table S2. Yeast cells (strain Y2H Gold)
carrying the co-transformed plasmids were plated onto a low-stringency selective medium lacking
tryptophan and leucine (SD/-Trp-Leu) to confirm the transformation and plated onto a high-stringency
selective medium lacking tryptophan, leucine, histidine, and adenine (SD/-Trp-Leu-His-Ade) to analyze
the interaction.

2.4. Sub-Cellular Localization, Bimolecular Fluorescence Complementation and Co-Immunoprecipitation
(Co-IP) Assays

For subcellular localization analyses and BiFC, a series of recombinant plasmids including NIb-GFP,
TaLIP-GFP, NIb-nYFP, and TaLIP-cYFP were constructed using Gateway technology according to the
manufacturer’s instructions (Invitrogen). The first PCR used the primer pairs NIb-GFPN/NIb-GFPC
(NIb for localization), TaLIP-GFPN/TaLIP-GFPC (TaLIP for localization), NIb-nYFPN/NIb-nYFPC (NIb
for BiFC), and TaLIP-cYFPN/TaLIP-cYFPC (TaLIP for BiFC) (Supplementary Table S2). The second PCR
was performed using primers attB1 and attB2 (Supplementary Table S2) and the amplified product of the
first PCR as a template. The amplified product was then introduced into pDONR207 by the BP reaction
and the entry clones pENTR-NIb-GFP, pENTR-TaLIP-GFP, pENTR-NIb-nYFP, pENTR-TaLIP-cYFP, and
pENTR-TaLIP-HA were constructed. Finally, the LR-clonase reaction was used to transfer NIb and
TaLIP fragments from the entry clones to the destination vector and recombinant plasmids including
pGWB5C-NIb, pGWB5C-TaLIP, pGTQL1221-NIb, pGTQL1211-TaLIP, and TaLIP-HA were constructed.
These recombinants were used to transform the competent E.coli strain DH5α using heat shock and
selected on a medium containing 50 µg/mL kanamycin and 50 µg/mL hygromycin.

The recombinant binary constructs were introduced into Agrobacterium tumefaciens strain GV3101
by electroporation (Bio-Rad Gene Pulser, 0.2 cm cuvettes, 25 micro F, >2.1 kV). Agroinfiltration was
performed as described by [4]. Briefly, cultures of GV3101 containing a relevant binary plasmid were
grown in yeast extract tryptone (YEP) medium containing rifampicin (50 µg/mL) and kanamycin
(100 µg/mL) at 28 ◦C for 16 h.

For sub-cellular localization, Agrobacterium cultures containing pGWB5C-NIB and pGWB5C-TaLIP
were centrifuged for 30 s at 8000 rpm, resuspended, and then diluted to an OD600 of 0.6 (10 mM MES,
pH 5.6, 10 mM MgCl2, 200 mM acetosyringone) before leaf infiltration. The expression of fluorescent
proteins was examined at 72 h post agroinfiltration.

For the BiFC assay, GV3101 strains containing the BiFC plasmids with pGTQL1221-NIb-nYFP and
pGTQL1211-TaLIP-cYFP were resuspended and adjusted to an OD600 in a 1:1 ratio with infiltration
medium before leaf infiltration. The combinations pGTQL1221-NIb-nYFP/pGTQL1211-GUS-cYFP
and pGTQL1221-GUS-nYFP/pGTQL1211-TaLIP-cYFP were used as negative controls. The cell
suspensions were incubated at room temperature for 2 h to 4 h and then used to infiltrate 5- to
6-week-old N. benthamiana leaves. The expression of fluorescent proteins was examined at 72 h post
agroinfiltration [26].
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For the in vivo co-IP analysis, about 0.5 g Agro-infiltrated leaf tissue frozen in liquid nitrogen was
ground to a fine powder and thawed in plant protein extraction buffer containing 10% glycerol, 25 mM
Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 2% polyvinylpolypyrrolidone (PVPP), 10 mM DTT, 1×
protease inhibitor cocktail (Sigma, Shanghai, China), 0.2% Triton X-100 (Sigma-Aldrich, St. Louis, MO,
USA) (1 g tissue per sample/2 mL buffer). The mixture was centrifuged at 18,000 g for 10 min at 4 ◦C.
Each supernatant (500 µL) was mixed with 45 µL anti-GFP conjugated agarose beads (Sigma) and
incubated at 4 ◦C for 1.5 h with gentle shaking. Agarose beads were pelleted and washed three times
with the co-IP buffer (10% glycerol, 25 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 2% PVPP,
1 mM DTT, 0.1% Triton X-100). The resulting pellets were mixed individually with SDS loading buffer
boiled at 100 ◦C for 8 min. For immunoblot, proteins were separated in 10% SDS-PAGE gels through
electrophoresis, and then transferred to NC membranes. The blots were probed with an anti-HA
(1:5000), anti-GFP (1:5000), followed by an HRP-conjugated secondary antibody. The detection signals
were developed using an electrochemiluminescence (ECL) reagent as instructed (Thermo Scientific,
Hudson, NH, USA), and visualized using a Bio-Rad ChemiDoc Touch imaging system (Bio-Rad,
Hercules, CA, USA).

2.5. Plant RNA Isolation and Quantitative Real Time PCR Analysis

Leaves were collected from infected wheat plants, frozen, and stored at−80 ◦C until use. Total RNAs
were extracted from plants using Trizol reagent (Invitrogen) and stored at −80 ◦C. Quantitative real
time (qRT)-PCR analysis was performed using an ABI7900HT Sequence Detection System (Applied
Biosystems, CA, USA) with an AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing, Jiangsu,
China). At least three biological replicates, with three technical replicates, were used for each assay.
The Triticum aestivum cell division cycle (CDC) gene (Accession Number: XM_020313450) was used
as the internal reference gene for analysis to calculate the fold changes in gene expression. The fold
changes were calculated using the 2-∆∆C(t) method [27]. All gene-specific primers for qRT-PCR are
shown in Supplementary Table S2.

2.6. Virus-Induced Gene Silencing

Barley stripe mosaic virus (BSMV)-based gene silencing vectors were kindly provided by
Dr Dawei Li, China, and have been widely used in barley and wheat [28]. TaLIP (200 bp) from
the leaf cDNA of wheat was amplified by RT-PCR (Supplementary Table S2), inserted into the BSMV γ

gene (BSMV:TaLIP), and digested with Pac I and Not I restriction enzymes. Additionally, the BSMV:00
was used as the negative control.

2.7. Mechanical Friction Inoculation of Barley stripe mosaic virus and Wheat yellow mosaic virus

Virus in vitro transcription followed by friction inoculation was performed as previously
described [29,30]. Briefly, in vitro transcription of linearized plasmid transcripts of BSMV RNA
α, β, and γ in a molar ratio of 1:1:1 were mixed with an equal amount of excess inoculation buffer
(named as FES) (0.06 M potassium phosphate, 0.1 M glycine, 1% bentonite, 1% sodium pyrophosphate
decahydrate, 1% celite, pH 8.5) and then inoculated into leaves of 7–10-day-old wheat seedlings.
In vitro transcription of linearized plasmid transcripts of WYMV RNA R1 and R2 were also mixed at a
molar ratio of 1:1, then inoculated into the upper leave of the BSMV-infected wheat seedling.

3. Results

3.1. TaLIP Interacts with Wheat Yellow Mosaic Virus NIb and C-Terminus of NIb196–380aa Is the Major Region
for This Interaction

NIb plays an important role in the process of virus infection. To investigate the host factors that
interact with the NIb, we used NIb as a bait to screen a wheat (Triticum aestivum) yeast cDNA library.
A series of proteins were identified via the yeast two-hybrid screening technology including two
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clones of partial fragment of chlorophyll a-b binding protein 50, eight clones of partial fragment of
light-induced protein, and five clones of full length of GDP-L-galactose phosphorylase (Supplementary
Table S1). Consider the number of selected proteins, the light-induced protein was selected for
further investigation. The sequence alignment between Triticum aestivum light-induced protein and
its homologous genes of Nicotiana tabacum, Capsicum baccatum, Helianthus annuus, and Lactuca sativa
indicated that the homology was 83.23% (Supplementary Figure S1). For convenience, we named
Triticum aestivum light-induced protein as TaLIP in this study. Subsequently, yeast two-hybrid assays
also demonstrated an interaction between TaLIP and WYMV NIb (Figure 1a). Furthermore, to
determine the key domain for interaction, WYMV NIb (380 aa) was further divided into two smaller
fragments, NIb1–195 (encoding aa 1–195) and NIb196–380 (encoding aa 196–380) for yeast two-hybrid
assays (Figure 1b). Although both NIb1–195 and NIb196-380 interacted with TaLIP, the yeast two-hybrid
assays revealed a stronger interaction between NIb196–380 and TaLIP (Figure 1c). Thus, residues 196 to
380 of NIb appear to be crucial for its interaction with TaLIP.
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Figure 1. Interaction of Wheat yellow mosaic virus (WYMV)NIb with and TaLIP in a yeast two-hybrid
analysis. (a) NIb was fused to the DNA-binding domain and TaLIP was fused to the activation domain
(AD-TaLIP), co-transformed into yeast cells, and then coated uniformly on selection plates of SD/-Trp,
-Leu, -Ade, -His solid medium. Positive and negative controls were co-transformed with AD-T/BK-53
and AD-T/BK-Lam, respectively. (b) NIb was divided into two parts and fused to the DNA-binding
domain, co-transformed with AD-TaLIP into yeast cells, and then coated uniformly on selection plates
of SD/-Trp, -Leu, -Ade, and -His solid medium. AD-T/BK-53 and AD-T/BK-lam were used as the
positive control and negative control, respectively. (c) Illustration of the WYMV NIb sequence, which
divided into two segments and summary of TaLIP interactions with WYMV NIb. The red region
represents the conserved domains of NIb.

3.2. TaLIP Interacts with WYMV NIb In Vivo

To test the interaction between NIb and TaLIP in vivo, co-immunoprecipitation (Co-IP) assays
were conducted. For the Co-IP assays, GFP-tagged NIb (NIb-GFP) was transiently co-expressed
with HA-tagged TaLIP (TaLIP-HA) and GFP-tagged was transiently co-expressed with TaLIP-HA in
N. benthamiana leaves as the control. Leaf tissues were then collected at 60 h post infiltration (hpi).
Total protein extracts were immunoprecipitated using anti-GFP antibody coupled to agarose beads,
and the resulting precipitates were analyzed by immunoblot using anti-HA antibodies. We observed



Biology 2019, 8, 80 6 of 15

that TaLIP co-immunoprecipitated with NIb-GFP, but not with GFP alone (Figure 2). Taken together,
these results further demonstrate an interaction between WYMV NIb and TaLIP in vivo.
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Figure 2. Co-immunoprecipitation analysis of the interaction between NIb and TaLIP. The Green
fluorescent protein (GFP) was fused at the C-terminus of NIb (NIb-GFP) and transiently co-expressed
with the TaLIP-HA in N. benthamiana leaves. GFP-tagged was transiently co-expressed with TaLIP-HA
in N. benthamiana leaves as the control. The TaLIP-His tag (HA) was used to co-immunoprecipitate
with NIb-GFP. The blots were probed with a GFP specific antibody or a HA specific antibody. IP,
immunoprecipitation with special antibody. IB, immunoblot with special antibody. The sizes of the
proteins in kDa are shown to the left.
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3.3. Sub-Cellular Localization of WYMV NIb and TaLIP Is Altered by Their Interaction in
Nicotiana Benthamiana

To determine whether the sub-cellular localization of TaLIP and NIb was affected by the interaction
of these proteins, the recombinant plasmids expressing TaLIP or WYMV NIb fused with Green
fluorescent protein (GFP) at their C terminus (TaLIP:GFP and NIb:GFP) were constructed and introduced
into N. benthamiana epidermal cells by Agrobacterium infiltration. At 72 h post infiltration (hpi), GFP
fluorescence was detected by confocal microscopy. TaLIP:GFP was observed in the chloroplast and
NIb:GFP was observed in the nucleus and cytoplasm (Figure 3). Subsequently, we performed BiFC
assays to analyze the interactions between TaLIP and WYMV NIb. pGTQL1211-GUS-cYFP and
pGTQL1221-GUS-nYFP were used as the two negative controls, respectively. These combinations of
fusion proteins were all expressed in N. benthamiana via agroinfiltration. When pGTQL1221-NIb-nYFP
(YN-NIb) and pGTQL1211-TaLIP-cYFP (YC-TaLIP) were co-expressed in N. benthamiana epidermal
cells, some aggregates were observed in the cytoplasm and strong GFP signals (we changed the
pseudo-color of the YFP signal to green for convenience) were observed around the chloroplast, but not
in the chloroplast. In contrast, no significant fluorescence signal was detected in the negative controls
(Figure 4). It is interesting that the sub-cellular localization of TaLIP and WYMV NIb were completely
different from that observed when performing the BiFC assay. Based on these data, we speculate that
the interaction between NIb and TaLIP may affect the distribution patterns of WYMV NIb and TaLIP.
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Figure 3. Localization of the TaLIP and WYMV NIb protein in Nicotiana benthamiana leaves agroinfiltrated
with pENTR-NIb-GFP or pENTR-TaLIP-GFP. The green fluorescent signal of TaLIP proteins was
co-localized with the red auto-fluorescent signal of chloroplasts. Fluorescence photographs were taken
at 3 dpi. Scale bar: 50 µm.
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Figure 4. Bimolecular fluorescence complementation (BiFC) assay of the WYMV NIb and TaLIP
interactions in Nicotiana benthamiana. The pseudo-color of the Yellow fluorescent protein (YFP) signal was
changed into green for convenience. The red fluorescent signal is a chloroplast auto-fluorescence signal.
β-Galactosidase (GUS)-fused vectors pGTQL1211-GUS-cYFP/pGTQL1221-NIb-nYFP (YN-NIb/YC-GUS)
and pGTQL1221-GUS-nYFP/pGTQL1211-TaLIP-cYFP (YN-GUS/YC-TaLIP) are the negative controls.
Fluorescence photographs were taken at 3 dpi. Scale bar: 50 µm.

3.4. The Transcriptional Level of TaLIP Is Downregulated in WYMV-Infected Wheat

To clarify whether TaLIP was affected at the transcriptional level by WYMV infection, we
then designed primer pairs for quantitative RT-PCR (qRT-PCR) and characterized the expression
profile of TaLIP in Triticum aestivum with or without WYMV infection. The expression level of
TaLIP was significantly downregulated 0.23-fold in WYMV-infected wheat when compared to that
of WYMV-uninfected wheat (Figure 5). These results indicate that the expression of TaLIP in the
WYMV-infected wheat plants can be regulated, potentially to benefit WYMV infection in this host.
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3.5. Knockdown the TaLIP Facilitate WYMV Infection in Wheat

To investigate the relationship between TaLIP expression and WYMV infection in wheat, we
inoculated six wheat seedling with an RNA transcript representing BSMV + WYMV or BSMV:TaLIP +

WYMV. After 7 dpi, we analyzed the silencing level of the TaLIP gene in the BSMV:TaLIP + WYMV
co-inoculated wheat seedling through qRT-PCR using TaLIP specific primers. The results showed that
the TaLIP transcript level in the plants co-inoculated with BSMV:TaLIP + WYMV were better silenced
(p < 0.01) than the plants co-inoculated with BSMV + WYMV (Figure 6a). Then, the expression level of
WYMV CP was also detected by qRT-PCR using the CP specific primers in these plants. The results
showed that the expression level of WYMV CP was detected by qRT-PCR and the WYMV CP expression
level of BSMV:TaLIP + WYMV inoculated wheat was significantly higher than the inoculated wheat
(BSMV + WYMV) (Figure 6b). These results suggest that knockdown of TaLIP impaired host resistance.
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Figure 6. Silencing TaLIP gene expression through virus-induced gene silencing (VIGS) significantly
promoted WYMV infection in Triticum aestivum. (a) The quantitative RT-PCR analysis of WYMV
CP expression in the inoculated leaves harvested from the TaLIP-silenced or non-silenced plants.
(b) Quantitative RT-PCR analysis of TaLIP expression silenced by BSMV-mediated VIGS in
Triticum aestivum. The TaCDC was used as the internal control. Bar represents the SD of three
experiments (each with three technical replicates), Asterisks indicate ** p < 0.01 to the amount of relative
WYMV CP and TaLIP expression by the Student’s t-test.
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3.6. TaLIP Belongs to the FBN1 Subspecies of the Fibrillin Family and Has Three Copies of ABA Responsive
Promoter Element

Based on the above findings, we can speculate that NIb interacting with TaLIP might facilitate
the WYMV infection by perturbing the pathway mediated by TaLIP in wheat. To predict the potential
function of TaLIP in the process of WYMV infection, the phylogenetic relationship of TaLIP between
other FBN proteins was constructed. Fourteen Arabidopsis thaliana FBN proteins, eight Oryza sativa FBN
proteins, 12 Triticum aestivum FBN proteins, and nine other plant FBN proteins were selected for further
analyses. The phylogenetic analysis was performed using the MEGA4 program [24]. Phylogenetic
analysis indicated that TaLIP was categorized into subfamily FBN1 (Figure 7a). There is some evidence
that the plant hormones regulate FBN gene expression in plants such as ABA [31]. Interestingly, the
Cis-acting element information of the TaLIP gene showed that there were nine copies of the ABA
responsive promoter element (Figure 7b). We predicted that the TaLIP gene is involved in the response
to ABA.
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Figure 7. The TaLIP protein belongs to the FBN1 (fibrillin family) and have three copies of the
abscisic acid (ABA) responsive element. (a) Phylogenetic analysis of TaLIP and the construction of the
evolutionary tree utilizing MEGA4 program [24]. The 11 distinct subfamilies were designated as 1~11
and labeled with different colored branches respectively. (b) promoter Cis-acting element prediction
analysis of TaLIP.
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3.7. TaLIP Is Responsive to External ABA Stimuli, Silencing the TaLIP Gene Suppressing the ABA
Signaling Pathway

To determine how TaLIP responds to exogenous applications of hormones, we investigated the
transcription profiles of TaLIP in wheat treated with ABA. After ABA treatment, expression was induced
from 0.5 to 12 h post-treatment (hpt), rapidly increased to 2.15-fold at 0.5 hpt, reached a peak at 6 hpt
(about 3.29-fold that of nontreatment), then decreased to 2.60-fold higher than the nontreated control (N)
from 6 to 12 hpt (Figure 8a). These results suggest that TaLIP transcription was induced by exogenous
ABA stimuli. Next, we investigated the expression of mRNA level of the ABA-related genes including
the ABA biosynthetic pathway gene TaNCED, TaNCED2, and the ABA signaling pathway gene TaABI5,
TaABI8, TaPYL1, TaPYL3, and TaPYL5 in TaLIP-silenced wheat (Figure 8b). The transcription level of
TaABI5, TaABI8, TaPYL1, and TaPYL3 were suppressed in TaLIP-silenced wheat.
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Figure 8. Exogenous ABA treatment induced the expression of TaLIP and the ABA signaling pathway
was suppressed in TaLIP-silenced wheat. (a) Expression patterns of TaLIP in wheat after treatment
with exogenous hormones ABA for 0.5, 1, 3, 6, and 12 h. Relative expression of TaLIP is shown as
fold change in transcription over the non-treatment control (0 h). Each relative expression level is
presented as the mean ± SD from three biological samples and each biological sample had four technical
replicates. Statistical analyses were done using the Student’s t-test. Asterisks indicate a significant
difference when compared to the control. * p < 0.05; ** p < 0.01. (b) Quantitative RT-PCR analysis of
TaNCED, TaNCED2, TaABI5, TaABI8, TaPYL1, TaPYL3, and TaPYL5 expression in the inoculated leaves
harvested from the TaLIP-silenced or non-silenced wheat. The TaCDC was used as the internal control.
Each relative expression level is presented as the mean ± SD from three biological samples and each
biological sample had four technical replicates. Statistical analyses were done using the Student’s t-test.
Asterisks indicate a significant difference when compared to the control. * p < 0.05; ** p < 0.01.

4. Discussion

Numerous studies have demonstrated that to cause an infection in plants, virus have evolved to
encode factor(s) to defeat plant defense machinery. As stated in the introduction, the potyviral NIb is a
vital protein response for virus infection. However, we still do not fully understand the function of
WYMV-NIb during the viral infection. In this study, we obtained a fibrillin (FBN) protein, TaLIP, by
performing yeast two-hybrid screening, that could interact with NIb and the C-terminal of NIb was
the key domain for this interaction (Figure 1). Then, the co-IP assay confirmed the interaction between
NIb and TaLIP (Figure 2). FBNs are a large protein family present in photosynthetic organisms ranging
from cyanobacteria to higher plants [32], and FBNs are involved in plant responses to biotic stress [23].
Previous study has demonstrated that the NIb of several potyvirals can interact with host protein(s)
to promote viral infections such as HSP70, NbSCE1, and AtRH9 [11,13,15]. Additionally, recent
research has shown that fibrillin/CDSP 34 (FBN1) protein levels decreased in tobacco plants infected
with tobacco mosaic virus (TMV), which supported our result that the TaLIP transcription level of
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WYMV-infected wheat was significantly downregulated when compared to that of WYMV-uninfected
wheat (Figure 5). Therefore, we predicted that TaLIP is possibly involved in the process of WYMV
infection. Some researchers have proven that FBNs are involved in disease resistance. For example,
knockdown of expression of the LeChrC (FBN1) gene in tomato caused greater susceptibility to
Botrytis cinereal; knockdown of FBN4 expression in apple and a mutation of FBN4 in Arabidopsis
caused greater susceptibility to the pathogenic bacteria Erwinia amylovora and Pseudomonas syringae
pv. tomato, respectively; and a mutant of the FBN1b in Arabidopsis was more susceptible to P. syringae
pv. Maculicola [31,33,34]. Consistent with these findings, knockdown of TaLIP expression facilitated
WYMV infection in wheat (Figure 6). According to these data, we suggest that Nib–TaLIP interaction
possibly promotes WYMV infection. Many FBNs have been previously reported to be chloroplast
related proteins such as cucumber CHRC (FBN1) [35]. Consistently, sub-cellular localization analysis
showed that TaLIP was also located in chloroplast (Figure 3). Previous study has demonstrated that
the NIb of several other potyvirals was located in the nucleus and cytoplasm [12]. Consistent with this,
sub-cellular localization analysis of NIb showed that NIb was also located in the nucleus and cytoplasm
(Figure 3). Interestingly, BiFC assay revealed a fact that the NIb-TaLIP interaction completely changed
their sub-cellular localization in N. benthamiana epidermal cells and a large number of fluorescent signals
around the chloroplast, but not in the chloroplast (Figure 4). It is possible that Nib–TaLIP interaction
affects the function of TaLIP through changing the sub-cellular localization to facilitate WYMV infection.
This assumption is supported by findings showing that TuMV NIb interacting with NbEXPA1 recruits
NbEXPA1 to the viral replication complex and promotes TuMV infection [9]. Early study has shown
that the negatively regulated ABA responses abscisic acid insensitive 2 (ABI2) interacts with the
Arabidopsis FNB1a to regulate its localization, leading to perturbing the ABA pathway [36]. In addition,
ABA appears to enhance plant antiviral defense as shown for several viruses [37–39]. Hereby, we
reasonably speculate the interaction between the NIb and TaLIP facilitated the WYMV infection by
affected the ABA pathway associated with TaLIP. Indeed, there is some evidence that hormones can
regulate FBN gene expression [23]. For example, in chromoplasts of bell pepper fruit, indole-3-acetic
acid can delay the accumulation of FBN protein, whereas ABA can accelerate it [40]. Indeed, the
promoter Cis-acting element assay of TaLIP showed that it has three copies of the ABA responsive
promoter element (Figure 7b), and the expression of the TaLIP gene was significantly induced by
external ABA stimuli (Figure 8a). Thus, we speculate that TaLIP is a responsible gene involved in
the ABA signal pathway. Consistent with this notion, the mRNA expression level of ABA pathway
genes TaABI5, TaABI8, TaPYL1, and TaPYL3 were downregulated in TaLIP-silenced wheat (Figure 8b).
TaABI5 and TaABI8 were reported as positive modulators of ABA signaling and PYL 1 and PYL3 were
reported to be ABA receptors positively responsive to ABA [41]. While transcriptome analysis revealed
that the transcription levels of TaABI5, TaABI8, TaPYL1, and TaPYL3 were also significant lower in
WYMV-infected wheat when compared to that of healthy wheat (Supplementary Figure S2). In the
last few decades, ABA has been reported as a key hormone involved in tuning responses to several
abiotic stresses and also induces different resistance mechanisms to viruses, regardless of the induction
time [33]. Taken together, our work revealed that WYMV NIb interacts with host TaLIP to promote the
WYMV infection possibly through affecting the ABA signal pathway.

5. Conclusions

In this study, we analyzed the function of the TaLIP gene in the process of WYMV infection.
The sub-cellular localization changes of TaLIP and NIb under the interaction indicated that the
TaLIP–NIb interaction may affect the function of TaLIP. Furthermore, the result of the TaLIP knockdown
experiment indicated that TaLIP may act as a host protein interacting with WYMV NIb to facilitate
WYMV infection. External ABA stimuli and the ABA pathway gene expression of TaLIP silenced
wheat results indicated that TaLIP may be a responsible gene involved in the ABA signal pathway.
In summary, our study revealed that WYMV NIb interacts with host TaLIP to promote the WYMV
infection possibly through affecting the ABA signal pathway. Additionally, this work provides a basis
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for exploring the molecular mechanisms of WYMV pathogenicity in wheat and in providing candidate
genes to develop plant transgenic disease resistance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/8/4/80/s1,
Figure S1. Sequence homology alignment between LIP homologous genes of six different species; Figure S2.
Transcriptome analysis of WYMV-infected wheat. Healthy wheat was used as the negative control; Table S1.
Information of proteins list obtained from Yeast two-hybrid assay; Table S2. The sequences of the primers used in
these experiments.
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