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Abstract: Anthropogenic eutrophication has caused widespread environmental problems in
freshwater lakes, reducing biodiversity and disrupting the classic pelagic food chain. Increasing our
understanding of the exact role of nutrients and physicochemical variables on microbial dynamics,
and subsequent microalgal and cyanobacterial blooms, has involved numerous studies ranging
from replicate microcosm-based studies through to temporal studies of real lake data. In a previous
experimental microcosm study, we utilised metaproteomics to investigate the functional changes
of a microalgal-bacterial community under oligotrophic and eutrophic nutrient levels. Here, we
analyse the time series data from this experiment with a combination of typically used univariate
analyses and a more modern multivariate approach, structural equation modelling. Our aim was
to test, using these modern methods, whether physicochemical variables and nutrient dynamics
acted additively, synergistically, or antagonistically on the specific biotic community used in the
microcosms. We found that nutrients (nitrogen and phosphorus) and temperature acted additively on
the interactions between the microalgae and bacteria present, with the temperature effects elevated in
the eutrophic conditions we applied. The data suggests that there may be no synergistic interaction
between nutrients and temperature in the tested microcosms. Our approach demonstrates how the
application of multivariate methods to existing datasets, in our case from nutrient-enriched freshwater
microcosms, enables new information to be extracted, enhancing interpretations as well as allowing
more reliable comparisons to similar published studies.

Keywords: algal-bacterial interactions; ecosystem function; eutrophication; microcosm; structural
equation modelling

1. Introduction

Nutrient enrichment, referred to as eutrophication, can lead to blooms of eukaryotic microalgae or
cyanobacteria and associated shifts in the number of trophic levels supported and the diversity of species
in lakes and ponds [1]. Understanding the effect of eutrophication on freshwater ecosystems requires an
analysis of factors both internal and external to the system, as well as the complex interactions among
them. Research into the process of eutrophication is typically centred on a univariate assessment of a
subset of indicator variables, including nutrient concentrations, physicochemical factors, and biological
characteristics. These studies have regularly identified increasing nutrient concentrations as a key factor
responsible for promoting blooms [2,3]. However, more recent studies indicate that physicochemical
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factors, such as temperature, are also a key factor in microalgal bloom promotion [4–6]. Thus, there is
no consensus regarding the relative importance of nutrient concentrations and physicochemical factors
in bloom promotion.

A feature of this historical research is the use of statistical tools such as correlation and multiple
linear regression. For example, Muylaert et al. (2000) used multiple regression to study variation of
the phytoplankton community in a freshwater tidal estuary. Phytoplankton dynamics were shown to
be controlled by varying irradiance, temperature, and salinity. However more than 40% of species
variation remained unexplained [7]. Rigosi et al. (2014), in an analysis of over 1000 USA lakes, used
correlations and multiple linear regression to assess how cyanobacterial biovolume and chlorophyll a
responded to nutrient availability and temperature [8]. Although a full interpretation of the dataset was
not possible, the results suggested that in most cases the interaction between nutrient and temperature
was additive rather than synergistic. In a later study, Bhattacharya and Osburn (2017) utilised
an innovative mix of multiple regression and fluorescence spectroscopy to predict phytoplankton
dynamics in a freshwater river network. While it was shown to be a fast and cost-effective method to
study large river ecosystems, the models failed to explain more than 50% of the variance in the data [9].

These are just a few examples that illustrate shortcomings of traditional analyses. These models
often lack explanatory power, cannot separate correlation from causation, and may reveal an incomplete
picture because they fail to capture potential interactions among nutrients, physicochemistry, and the
biotic community. Therefore, a multivariate tool with multiple predictor and response variables that
captures simultaneous covariation among variables is needed. Structural equation modelling (SEM)
can provide such a tool. These have the added advantage of being applicable to existing time-series or
spatially resolved data sets, whether these are relatively small microcosms studies or aquatic samples
taken from lakes from different sites over many years.

Path analysis is a widely used technique for proposing and testing plausible sets of causal relations
among three or more observed variables. As a multivariate technique, it deals explicitly with multiple
testing and calculates partial correlations between all variables, controlling for all others [10]. Path
analysis does not intend to discover causes but to determine the feasibility of a series of informed
hypotheses (i.e., causal paths) based on pre-existing knowledge of the system. By aiming to explain,
and not predict, these model structures can avoid the correlation/causation fallacy [11].

Traditional path analysis models are somewhat restrictive due to their reliance on single indicators
(e.g., NO3

−). SEM improves upon this by allowing the incorporation of multivariate indicator variables
(i.e., latent variables). Latent variables refer to variables that cannot be directly inferred by single
indicators (i.e., nutrients) and require multiple indicators to capture their essence. Latent variables also
provide the opportunity to statistically test ideas about how groups of variables might co-vary together
and structure relationships among variables and function. Given the importance and complexity of
phytoplankton dynamics, SEM has become an increasingly popular tool to study these phenomena.
For example, in recent years, SEM has been successfully used to determine the drivers of diatom
diazotroph associations in western tropical north Atlantic blooms [12], test hypotheses regarding the
impact of climate factors on algal assemblages in a shallow temperate estuary [13], and explore the
biotic and abiotic variables that contributed to the establishment of Ceratium furcoides in a shallow
eutrophic reservoir [14].

In this study, we utilise SEM, in a proof-of-concept, to explain the dynamics between
physicochemical variables, nutrient dynamics, and a microbial community in specific freshwater
microcosms. In a previous study, the authors designed freshwater microcosm experiments and
applied metaproteomics to investigate the functional changes to algal and bacterial communities,
over time, in oligotrophic and eutrophic conditions [15]. Here we apply SEM to the time series
from Russo et al. (2016), along with more traditional univariate correlation analyses used in the past.
Our aim was to determine the relative importance of bottom-up (NO3

−, PO4
3−, and NH4

+) and
physicochemical controls (temperature, dissolved oxygen (DO), and pH) in driving the dynamics
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of freshwater microbial groups (eukaryotic microalgae, cyanobacteria, and bacteria) under low
(oligotrophic) and high (eutrophic) nutrient treatments.

We formulate the structural equation model with a hypothesis that three multivariate, “latent”,
variables are central to disentangling the importance of bottom-up vs. physiochemical processes:
Nutrients, Physicochemistry and Biotic Interactions (Figure 1A). This path-analytic framework allows
evaluation of various hypotheses about the presence and absence of interactions among latent variables,
potential direct and indirect interactions among them, and the variance, covariance, and correlation
among components of the latent variables.
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Figure 1. Structural equation models showing proposed relationships between latent variables
physicochemistry, nutrients, and biotic. Rectangles represent directly measured variables (e.g., DO).
Ovals represent latent variables (e.g., biotic). In model (A) a full ecosystem model, incorporating all
measured variables, is proposed. Models (B,C) were proposed to test the effect of the strength and
importance of the removed latent variables.
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This study specifically answered the following questions which were not evaluated in the
previous metaproteomics study: (1) How do the univariate relationships found in the experimental
microbial system compare to previous studies? (2) Do nutrients and physicochemistry act additively,
synergistically, or antagonistically to influence the biological component of the microbial community?
and (3) Does the nature of the relationships among nutrients, physicochemistry, and biological
components of the system vary with nutrient enrichment?

2. Materials and Methods

2.1. Experimental Design and Sampling

This study is a reanalysis of a previously published time series dataset [15], therefore, only a brief
explanation of the experimental design and sampling regime is provided. Briefly, 30 L were housed
in controlled environment facilities at the Arthur Willis Environmental Centre at the University of
Sheffield, U.K. and filled with 15 L of oligotrophic artificial freshwater growth medium (for detailed
composition see Table A1). These were kept under 100 µmol m−2 s−1 with a 12:12 light dark cycle
and no mixing. A microbial community sourced from water samples collected at Weston Park Lake,
Sheffield (53◦22′56.849” N, 1◦29′21.235” W) was filtered with a 200 micron fine mesh cloth and utilised
to inoculate the microcosms. This was done to remove all non-microbial grazers. The filtered sample
was cultured for five days in the conditions described to allow acclimation to the controlled conditions.
Subsequently, each 15 L media was inoculated with 2.5 L of this sample. Two nutrient treatments
were applied to the microcosms: (1) non-enriched growth medium to simulate oligotrophic conditions
(NO3

− = 0.42 mg L−1 and PO4
3− = 0.03 mg L−1) and (2) NO3

− and PO4
3−-enriched growth medium

(NO3
− = 4.20 mg L−1 and PO4

3− = 0.31 mg L−1) to simulate eutrophic conditions. The nutrients were
added as NH4Cl, KH2PO4, and K2PO4 (Appendix A) and levels chosen were based on the oligotrophic
and eutrophic ranges according to several international freshwater lake standards [15]. Over the course
of the experiment DO, pH, and temperature were measured at 12:00 and 18:00 daily with a Professional
Plus Quatro (YSI, Yellow Springs, OH, USA). For the daily estimation of NO3

−, PO4
3−, and NH4

+,
15 mL aliquots were collected, filtered (0.45 µm), and stored until measurement. NO3

− and NH4
+ were

measured with a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Sunnyvale, CA, USA).
PO4

3− concentrations were estimated according to protocols defined by the International Standards
Organization (ISO 6878:2004) [16]. Chlorophyll a and phycocyanin fluorescence were measured daily
with the AlgaeTorch (bbe Moldaenke GmbH, Schwentinental, Germany). Total heterotrophic bacteria
were measured using culturable heterotrophic bacteria as a proxy [17]. Aliquots of 100 µL were plated,
in triplicate, on R2A agar (Oxoid, Basingstoke, UK) and incubated for 24 h at 38 ◦C. Colony forming
units (CFU mL−1) were counted using OpenCFU software [18].

2.2. Pairwise Correlations among Variables

In order to compare the data to previous published studies, where pairwise relationships were
made, the Pearson correlation coefficients among all of the variables were estimated. p-values were
adjusted with a Bonferroni correction to account for multiple testing and, after correction, differences
were deemed significant for p < 0.001.

2.3. Quantifying Direct and Indirect Effects among Functional Biology, Nutrients, and Physicochemistry

SEM was employed to formally test the hypothesis that the latent variables of nutrients and
physicochemistry act additively on the biotic community latent variable. The effort simultaneously
estimates the strength and direction of covariation among the latent variables, and the covariation
among component variables. First, a baseline causal model that allows relationships among nutrients,
physicochemistry, and the biotic community during the process of eutrophication was constructed.
The baseline model (Figure 1A) is comprised of three latent variables. The physicochemical latent
variable is comprised of pH, temperature, and DO. The nutrient latent variable is comprised of NH4

+,
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NO3
−, and PO4

3−. The biotic latent variable is comprised of colony forming bacterial units (CFU
mL−1), and microalgal and cyanobacterial concentrations (µg L−1). The baseline model allowed the
estimation of direct and indirect effects among all latent variables. It also allowed the estimation of
variance and covariance among contributing variables within the latent variables (Figure 1A). Two
additional models were also specified to evaluate, against Figure 1A, the effect of each of the nutrients
and physicochemistry latent variables on the biotic community. The models removed either the latent
variable nutrients or physicochemistry (Figure 1B,C). Comparing each reduced model to the full
model (Figure 1A) tests the hypotheses regarding the strength and importance of the removed latent
variable. The structural equation models were fit in the R Statistical Programming Environment [19]
by employing the package “lavaan” [20]; all variables were scaled to one standard deviation prior
to analysis.

3. Results

This study used time series data from Russo et al. (2016) [15]. To support the application of SEM
to these data we report them in Appendix A (Figure A1).

3.1. Pairwise Correlations among Variables

As in more traditional studies, we made Pearson correlations among variables (we note that
cross−correlation analysis is more appropriate for time-series data, but this is rarely used in previous
work) [21]. A total of 12 of the 54 pairwise correlations, between physicochemical, nutrient, and biotic
variables (Table 1), were significant, after Bonferroni correction, at p < 0.001. In the oligotrophic treatment,
heterotrophic bacterial concentrations have negative correlations with PO4

3− (r = −0.44) and microalgal
(r = −0.45) concentrations. In the eutrophic treatment, heterotrophic bacterial concentrations have negative
correlations with NO3

− (r = −0.46) and PO4
3− (r = −0.45) concentrations. Microalgal concentrations

have positive correlations, in both the oligotrophic and eutrophic treatments, with DO (r = 0.56 and 0.49,
respectively) and pH (r = 0.58 and 0.55, respectively). In addition, microalgal concentrations have a
positive correlation with cyanobacterial concentrations in the eutrophic treatment (r = 0.61). Microalgal
concentrations have no significant correlations with NH4

+, NO3
−, or PO4

3− concentrations in either
treatments. Cyanobacterial concentrations have a positive correlation with DO (r = 0.65), pH (r = 0.74),
and temperature (r = 0.50) in the eutrophic treatment. Cyanobacterial concentrations have no significant
correlations with NH4

+, NO3
−, or PO4

3− concentrations in either treatment.

3.2. SEM Analysis: Quantifying Direct and Indirect Effects among Latent Variables Biotic, Nutrients, and
Physicochemistry

In the full SEM model, in both the oligotrophic and eutrophic treatments, the partial correlation
between physicochemistry and nutrients was not significant (p = 0.654 and p = 0.987, respectively),
indicating independent and thus additive effects of these two variables upon the biological variables
and an absence of any indirect effects.

Comparing the full model to each of the reduced models, each omitting one of the latent
variables, indicated that both nutrients and physicochemistry explained a significant component
of variation in microbial dynamics in the experimental aquatic system; this was true for both the
oligotrophic and eutrophic treatments (Table 2). Several patterns emerge from the full model comprising
inter-relationships among biotic, nutrients, and physicochemistry (Figure 2; asterisks indicate significant
values). In both the oligotrophic and eutrophic treatments, the latent variable biotic is more strongly
influenced by physicochemistry than by nutrients and the effect of physicochemistry increases in
strength with eutrophication (ρxy (partial correlation coefficient) = 0.56 (p = 0.046) in the oligotrophic
treatment; ρxy = 0.83 (p < 0.001) in the eutrophic treatment). In contrast, the influence of the nutrient
variables decreases from ρxy = 0.36 (p = 0.063) in the oligotrophic treatment to ρxy = 0.26 (p = 0.009) in
the eutrophic treatment.
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Table 1. Correlation matrix of measured variables. The asterisks indicate significant values after
Bonferroni correction (p < 0.001).

Variable 1 Variable 2 Oligotrophic Eutrophic

Bacteria

NO3
−

−0.40 −0.46 *
PO4

3− −0.44 * −0.45 *
NH4

+ 0.22 0.36
Temp. 0.27 −0.03

DO −0.08 0.00
pH 0.02 −0.15

Microalgae

NO3
− 0.38 0.20

PO4
3− 0.40 0.21

NH4
+

−0.31 −0.37
Temp. 0.17 0.29

DO 0.56 * 0.49 *
pH 0.58 * 0.55 *

Cyanobacteria

NO3
− 0.06 0.14

PO4
3− 0.06 0.17

NH4
+

−0.23 −0.41
Temp. 0.37 0.50 *

DO 0.33 0.65 *
pH 0.41 0.74 *

Temperature
NO3

− 0.08 0.19
PO4

3− 0.07 0.16
NH4

+
−0.37 −0.48 *

DO
NO3

−
−0.19 −0.33

PO4
3− −0.13 −0.31

NH4
+

−0.06 −0.22

pH
NO3

− 0.04 0.03
PO4

3− 0.10 0.00
NH4

+
−0.36 −0.57 *

Table 2. SEM model comparison, reporting outcome of likelihood ratio test between full and reduced
models. (A) Full ecosystem model. (B) Reduced model excluding the latent variable nutrients. (C)
Reduced model excluding the latent variable water quality.

Model
Comparison Condition DF Difference χ2 Difference p-Value

A vs. B
Oligotrophic 16 71.558 <0.001

Eutrophic 16 73.305 <0.001

A vs. C
Oligotrophic 16 46.881 <0.001

Eutrophic 17 76.334 <0.001
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Figure 2. Structural equation models showing proposed relationships between latent variables
physicochemistry, nutrients and biotic: (A) oligotrophic and (B) eutrophic treatments. The numbers in
circles correspond to errors. All other numbers correspond to the standardised path coefficients. The
asterisks indicate significant values (p < 0.05).
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4. Discussion

This study aimed to determine the relative importance of nutrient concentrations and
physicochemical factors in explaining the variation observed in bacterial, microalgal, and cyanobacterial
concentrations over time under oligotrophic and eutrophic conditions, in our specific microcosms.
Presently, it is not clear how the interconnectivity of abiotic factors is affected by nutrient enrichment
and how nutrients and physicochemistry combine to drive ecosystem productivity [22]. Given that
changes in microalgal and cyanobacterial concentrations are the dominant indicator of eutrophication,
such an understanding is important for managing freshwater resources. While the results discussed
here are specific to the microcosm design and the composition of the microbial community, our
analysis demonstrates how the methodology and findings might be extrapolated to natural systems
and larger experiments.

Overall, nutrient concentrations and physicochemical factors were found to act additively on
the experimental biotic community of microalgae, cyanobacteria, and heterotrophic bacteria, and
physicochemical factors exerted a strong influence on both microalgal and cyanobacterial concentrations,
which became stronger in eutrophic conditions (Figure 2). In the following sections we scrutinise these
observations their ecological context.

4.1. Comparison of Observed Univariate Relationships with Previous Studies

Prior to the SEM analysis, one of the objectives was to assess whether the abstracted experimental
system still generated commonly found correlations among variables, whether or not these are correct
and capable of providing inference. For example, previous research indicates that microalgae and
cyanobacterial concentrations are expected to have a strong positive correlation with NO3

− and
PO4

3− [2]. General consensus is also that the magnitude and duration of the blooms increase with
increasing nutrient loads [2]. This provides an immediate assessment of how our microcosms compared
under nutrient enrichment. In our pairwise analysis of both experimental conditions (Table 1), NO3

−

and PO4
3− concentrations did not have a significant correlation with microalgal or cyanobacterial

concentrations in either of our treatments. However, two phases of exponential growth were observed
in the variation of microalgal and cyanobacterial concentrations. The latter exponential growth
phase coincides with the appearance of detectable NH4

+ concentrations (Figure A1I) following the
peak of bacterial abundance. This sudden increase in NH4

+ concentrations may be due to bacterial
mineralization, possibly promoted by an increase in organic nitrogen in the media following microbial
cell lysis. Overall, the lack of correlation between NO3

−/PO4
3− and microalgae/cyanobacteria could

be due to the fact that the microcosms in this study lacked the complexity of natural environments
where variations in parameters, such as water depth and stratification, and environmental gradients of
dissolved organic carbon and minerals can drive the timing of bloom events [23–25].

Due to the lack of correlation between phytoplankton and nutrients, we proceeded to
assess whether there were any significant correlations between microalgae or cyanobacteria and
physicochemical variables. The pairwise analysis (Table 1) showed a significant positive correlation
between cyanobacterial abundance and temperature was confirmed in the eutrophic treatment (r =

0.50). It has been shown previously that, under nutrient-enriched conditions, cyanobacterial species
are favoured, in detriment of green microalgae, with an increase in water temperature [6,25]. This
is also in line with recent limnological studies where a strong correlation between cyanobacterial
concentrations and temperature has been observed [26,27]. In freshwater ecosystems, temperature
drives cyanobacterial concentrations directly, through increased growth rates, and indirectly, through
its influence on hydrological processes.

4.2. Utilising SEM to Quantify Direct and Indirect Effects among Functional Biology, Nutrients, and
Physicochemistry

In this proof-of-concept study, SEM was successfully used to address a substantial multivariate
question: is the biological response to increasing nutrient enrichment an additive function of nutrients
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and physicochemistry, or does the effect of nutrient dynamics on the biotic community depend
on physicochemistry (i.e., is there an interaction between them). In the full model, in both the
oligotrophic and eutrophic treatments, the partial correlation between physicochemistry and nutrients
was not significant. This suggests that the effects are additive. This contrasts with recent literature
suggesting that the interaction between nutrient concentrations and physicochemical factors may
be synergistic [28,29]. This opinion may stem from an overrepresentation of studies that focus on
eutrophic environments where the interaction between temperature and nutrient is enhanced [8,27,30].
Furthermore, the independent strength and significance of nutrients and physicochemistry was
assessed by comparing this additive model to models without one or the other. This assessment,
capturing several components of the nutrient dynamics and physicochemical components, revealed
that nutrients and physicochemistry were both necessary to describe the dynamics of the biological
variables and their response to enrichment.

Finally, in addition to this high-level, multivariate assessment of function, the partial correlation
coefficients from the SEM allowed a comparison of specific pairwise variable relationships, which have
been used extensively in the past. As noted above, no evidence was found for an interaction between
nutrients and physicochemistry. Furthermore, the direct effects (Figure 2) of nutrients (
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although artificial microcosms have the potential to be used as tools to develop novel hypotheses 
regarding natural phenomena, an SEM approach enables more insightful comparisons using existing 
data sets. It also highlights directions for further work, including increased data collection and more 
complex experimental setups (e.g., higher trophic levels and environmental gradients), which are 
required in order to truly elucidate the network of interactions established in the process of 
eutrophication. 

5. Conclusions 

This study aimed to demonstrate how SEM can be applied to existing ecology datasets to 
generate new hypotheses and understanding of direct and indirect interactions between measured 
parameters. Here, we explored the array of effects between physicochemistry and nutrient 
concentrations and their influence on the microbial community, which, via productivity and nutrient 
recycling, define the difference between low and high levels of nutrients (eutrophication) in our 
experimental system. The results show that the dynamics of the experimental community in this 
study were weakly correlated to nutrient enrichment and, in eutrophic conditions, physicochemical 
factors became superior predictors of biological variables. Lastly, in line with recent studies, the 
model results showed that nutrients and physicochemical factors have an independent but additive 
effect upon the biotic variables. Despite the results being comparable to previous studies, it is 
important to note that this study was undertaken in artificial microcosms with a limited timeframe 
and a reduced number of overly simplistic variables. All these factors can potentially influence the 
results of the study. Future work will move from artificial to natural enclosures and expand the 
measured variables to provide a closer approximation of the local environment. 
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= 0.56 Oligo; 0.83 Eutrophic). This
generally agrees with both our dataset and published work that supports the ongoing hypothesis that,
in eutrophic conditions, physicochemistry may become a driver of phytoplankton abundance [8,27,30].

The application of an SEM-based analysis to the multiple, potentially direct and indirect
interactions, among several features of aquatic communities, provides a holistic approach to understand
ecosystem drivers. SEM allows for the inclusion of multiple dependent variables and biologically
meaningful collections of them, i.e., latent variables, to obtain a better overall picture of the system.
Additionally, as can be seen in this study, each path represents a potential causal hypothesis based on
pre-existing knowledge of the system. Therefore, by explicitly testing strong hypotheses (e.g., changes
in nutrient levels cause changes in the biotic component of the system), SEM avoids potential issues
such as autocorrelation. However, there are some shortcomings that need to be recognised. First,
the obtained datasets are relatively small; however, the fact that the conclusions are supported by
previously published work provided confidence in the explanatory power of the model. Second, some
of the parameters selected in this study do not act in a strictly unidirectional manner. For example, it
is known that both DO and pH will vary as a consequence of variation in community composition
(i.e., ratio between autotrophic and heterotrophic production) [22]. In terms of SEM analysis, this
bidirectionality has the potential to exacerbate the apparent correlation between the physicochemical
and biotic components. Overall, this study showed that although artificial microcosms have the
potential to be used as tools to develop novel hypotheses regarding natural phenomena, an SEM
approach enables more insightful comparisons using existing data sets. It also highlights directions for
further work, including increased data collection and more complex experimental setups (e.g., higher
trophic levels and environmental gradients), which are required in order to truly elucidate the network
of interactions established in the process of eutrophication.

5. Conclusions

This study aimed to demonstrate how SEM can be applied to existing ecology datasets to generate
new hypotheses and understanding of direct and indirect interactions between measured parameters.
Here, we explored the array of effects between physicochemistry and nutrient concentrations and
their influence on the microbial community, which, via productivity and nutrient recycling, define the
difference between low and high levels of nutrients (eutrophication) in our experimental system. The
results show that the dynamics of the experimental community in this study were weakly correlated to
nutrient enrichment and, in eutrophic conditions, physicochemical factors became superior predictors
of biological variables. Lastly, in line with recent studies, the model results showed that nutrients and
physicochemical factors have an independent but additive effect upon the biotic variables. Despite the



Biology 2019, 8, 87 10 of 12

results being comparable to previous studies, it is important to note that this study was undertaken in
artificial microcosms with a limited timeframe and a reduced number of overly simplistic variables.
All these factors can potentially influence the results of the study. Future work will move from artificial
to natural enclosures and expand the measured variables to provide a closer approximation of the
local environment.
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Appendix A

Table A1. Complete composition of artificial freshwater growth medium (mg L−1).

NaHCO3 192

MnCl2·4H2O 0.18

MgSO47H2O 115

KCl 0.45

H2SeO3 0.0016

Ca(NO3)24H2O 0.8

NH4Cl 1

KH2PO4 0.025

K2PO4 0.025

ZnSO4·7H2O 0.022

Na2EDTA.2H2O 0.5

H3BO3 0.114

FeSO4·7H2O 0.05

CuSO4·5H2O 0.016

CoCl2·6H2O 0.016

(NH4)6Mo7O24·4H2O 0.011
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Figure A1. Time series of the measured variables in the oligotrophic and eutrophic treatments. (A) 
microalgae, (B) cyanobacteria, (C) culturable heterotrophic bacteria, (D) DO, (E) pH, (F) temperature, 
(G) NO3−, (H) PO43−, and (I) NH4+ concentrations. Legend is shown in the top left panel (triangles 
indicate the oligotrophic treatment, circles indicate the eutrophic treatment, and crosses indicate the 
control). Error bars show standard errors (n = 3). Data adapted from [15]. 
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