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Abstract: Recently, several studies have reported relationships between the abundance of organisms
in an ecological community and their mean body size (called cross-community scaling relationships:
CCSRs) that can be described by simple power functions. A primary focus of these studies has been
on the scaling exponent (slope) and whether it approximates −3/4, as predicted by Damuth’s rule
and the metabolic theory in ecology. However, some CCSR studies have reported scaling exponents
significantly different from the theoretical value of −3/4. Why this variation occurs is still largely
unknown. The purpose of our commentary is to show the value of examining both the slopes and
elevations of CCSRs and how various ecological factors may affect them. As a heuristic exercise,
we reanalyzed three published data sets based on phytoplankton, rodent, and macroinvertebrate
assemblages that we subdivided according to three distinctly different ecological factors (i.e., climate
zone, season, and trophic level). Our analyses reveal significant variation in either or both the CCSR
slopes and elevations for marine phytoplankton communities across climate zones, a desert rodent
community across seasons, and saltwater lagoon macroinvertebrate communities across trophic
levels. We conclude that achieving a comprehensive understanding of abundance-size relationships
at the community level will require consideration of both slopes and elevations of these relationships
and their possible variation in different ecological contexts.
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1. Introduction

Since the 1930s, researchers observed that average plant size was inversely related to
population density. This density-dependent effect is observed by comparing several populations of
the same species. The common occurrence of this relationship, which often shows a log-log scaling
exponent of −3/2, has led to it being considered a rule or law, often called the self-thinning rule (STR),
the −3/2 power rule, or Yoda’s law [1]. The STR is so general that it has even been applied to animals,
though the scaling exponent may take on other values, such as −4/3. The generality of the STR has
thus spurred many investigators to explain it in both plants [2–4] and animals (e.g., insects [5–7],
marine invertebrates [8–13] and fish [14–19]).

Recently, the STR has also been extended to include comparisons of ecological communities of
multiple species, and not just conspecific populations. Remarkably, power functions have also been
successfully applied at the community level, thus starting a new wave of analyses of cross-community
scaling relationships (CCSR). CCSRs describe negative relationships between the total number or
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density of organisms in an assemblage or community of species and their average body size [20]. These
relationships are often so regular that they can be described by the power function:

N = kBb, (1)

where N is population density, k is a normalization constant, B is individual body mass, and b is the
scaling exponent. According to Damuth’s Rule, which is based on comparisons of species populations,
the scaling exponent should be −3/4 [21–24]. The ‘metabolic theory of ecology’ makes a similar
prediction, by assuming that the scaling exponent for population density should be the inverse of
that based on the 3/4-power law for metabolic rate [25]. This assumption derives from the Energetic
Equivalence Rule (EER), which posits that species populations use approximately the same amount of
energy regardless of body size (calculated as energetic demand per individual, scaled to body mass
according to the 3/4-power law, times the number of individuals in a population [23,24]).

However, when ecological densities are compared among community assemblages of closely
related species, the slope of the CCSR may deviate from the theoretical value of −3/4. These deviations
may occur if the EER is not obeyed. For example, a less steep slope may occur if large species acquire
more energy than smaller species. In contrast, a steeper slope may occur if small species acquire more
energy than larger species [21–23]. These deviations from that expected by the EER or MTE show that
the amount of energy used is not the same for all species, which may result from the effects of various
biotic and abiotic environmental factors.

To date, several studies of CCSRs have been carried out on diverse assemblages of plants [26],
phytoplankton [27], bacteria, algae and protozoa [20,28], fish, amphibians and macroinvertebrates [29–32],
birds [33], and rodents [34]. However, the focus of these studies has been chiefly on the scaling exponent
and whether it matches the theoretically predicted value of −3/4. In this commentary, we advocate
expanding the focus of studies of CCSRs to include explorations of the biological meaning of both their
slopes and elevations, especially in relation to various intrinsic (biological) and extrinsic (ecological)
factors. We support this view by re-analyzing selected data sets from previously published papers
to show that either the slopes or elevations (or both) of CCSRs vary considerably in relation to three
distinctly different ecological factors: climate zone, season and trophic level. The results of our heuristic
exercise add to the growing literature showing that diverse kinds of biological and ecological scaling
relationships do not necessarily follow simple universal laws, but vary substantially in relation to
various biological and ecological contexts (e.g., [35–40]).

2. Case Studies

2.1. Across Climate Zones (Biogeographic Regions)

The scaling slope for the CCSR of 635 marine phytoplankton community assemblages in the
Northern Hemisphere of the Atlantic Ocean was found to be −0.78 (95% confidence interval = −0.74 to
−0.81, based on reduced major axis (Model II) regression; Figure 1A), which does not differ significantly
from the theoretical value of −3/4 [27]. This analysis and other phytoplankton studies [4,41] support
the generality of the −3/4-power rule of Damuth and the MTE (but note that a least squares (Model I)
regression (LSR) analysis of the data of [27] yields an exponent (−0.68: Table 1) significantly less than
−3/4). However, plankton communities consisting of both phyto- and zooplankton show CCSR scaling
exponents of −1, apparently resulting from a dominance of small-sized species [42]. Here we show
that the CCSR scaling exponent may vary not only with plankton species composition, but also with
climate zone or biogeographic region.

We divided the dataset of [27] according to four climate zones. Our LSR analyses show that the
CCSR exponents and intercepts for cell density versus mean cell size (carbon content) vary significantly
across the four climate zones (Figure 1B). In particular, although the slopes are not significantly different
from −3/4 in the assemblages occupying the southern climate zones (Gulf Stream and Northwest
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Atlantic Shelves), they are significantly lower than −3/4 in the assemblages occupying the northern
climate zones (Atlantic Arctic and Boreal Polar) (see Table 1, Figure 1B).Biology 2020, 9, 42 3 of 13 

 

 
Figure 1. Scaling of cell density versus cell size (carbon mass) of phytoplankton communities in the 
Atlantic Ocean (data from [27]): (A) CCSR for all assemblages; (B) CCSRs of each of four major 
assemblages occupying four major climate zones (biogeographic regions): Atlantic Arctic, Boreal 
Polar, Gulf Stream and Northwest Atlantic Shelves. 

Table 1. Results of the LSR analyses of log10 population density (cell/m−2) in relation to log10 body 
size (cell carbon) of phytoplankton communities in the Atlantic Ocean (data from [27]).  

CCSR Slope 95% CI Intercept n r2 p 
All assemblages −0.68 −0.71 to −0.65 11.89 635 0.77 *** 
Atlantic Arctic −0.39 −0.53 to −0.24 12.07 59 0.33 *** 

Boreal Polar −0.44 −0.60 to −0.27 11.81 124 0.31 *** 
Gulf Stream −0.67 −0.77 to −0.71 11.96 31 0.77 *** 

NW Atlantic Shelves −0.74 −0.78 to −0.56 11.84 479 0.85 *** 

*** p < 0.001. 

Furthermore, size-specific cell densities (and thus overall scaling elevations) tend to be higher 
in the northern vs. southern climate zones (ANCOVA analysis comparing 95% confidence interval; 
Table 2). This could be explained hypothetically as the result of two major influences: larger cells are 
favored in colder more northerly climate zones (following the temperature size rule, as the data 
seem to show) and lower temperatures cause lower metabolic (nutrient) demand per cell, thus 
enabling higher total cell densities [43–45].  

This hypothesis may also help explain why the scaling slopes of the CCSRs are lower in the 
northern versus southern climate zones. This difference may arise because although small-celled 
species show similar densities in all climate zones, larger-celled species show significantly higher 
densities in northern vs. southern climate zones. This may be because much fewer small-celled 
species occur in the northern climate zones, thus freeing up resources (nutrients) for larger-celled 
species that can then build up higher densities. However, many small-celled species occur in the 
southern climate zones, and their competitive exploitation of shared nutrients limits the densities of 
larger-celled species to lower levels. In short, a shift in competitive advantage from small to large 
cells with increasing latitude and decreasing temperature may cause changes in both the scaling 
slopes and elevations of the CCSRs observed. 
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Figure 1. Scaling of cell density versus cell size (carbon mass) of phytoplankton communities in
the Atlantic Ocean (data from [27]): (A) CCSR for all assemblages; (B) CCSRs of each of four major
assemblages occupying four major climate zones (biogeographic regions): Atlantic Arctic, Boreal Polar,
Gulf Stream and Northwest Atlantic Shelves.

Table 1. Results of the LSR analyses of log10 population density (cell/m−2) in relation to log10 body
size (cell carbon) of phytoplankton communities in the Atlantic Ocean (data from [27]).

CCSR Slope 95% CI Intercept n r2 p

All assemblages −0.68 −0.71 to −0.65 11.89 635 0.77 ***

Atlantic Arctic −0.39 −0.53 to −0.24 12.07 59 0.33 ***
Boreal Polar −0.44 −0.60 to −0.27 11.81 124 0.31 ***
Gulf Stream −0.67 −0.77 to −0.71 11.96 31 0.77 ***

NW Atlantic Shelves −0.74 −0.78 to −0.56 11.84 479 0.85 ***

*** p < 0.001.

Furthermore, size-specific cell densities (and thus overall scaling elevations) tend to be higher
in the northern vs. southern climate zones (ANCOVA analysis comparing 95% confidence interval;
Table 2). This could be explained hypothetically as the result of two major influences: larger cells are
favored in colder more northerly climate zones (following the temperature size rule, as the data seem
to show) and lower temperatures cause lower metabolic (nutrient) demand per cell, thus enabling
higher total cell densities [43–45].

This hypothesis may also help explain why the scaling slopes of the CCSRs are lower in the
northern versus southern climate zones. This difference may arise because although small-celled
species show similar densities in all climate zones, larger-celled species show significantly higher
densities in northern vs. southern climate zones. This may be because much fewer small-celled
species occur in the northern climate zones, thus freeing up resources (nutrients) for larger-celled
species that can then build up higher densities. However, many small-celled species occur in the
southern climate zones, and their competitive exploitation of shared nutrients limits the densities of
larger-celled species to lower levels. In short, a shift in competitive advantage from small to large cells
with increasing latitude and decreasing temperature may cause changes in both the scaling slopes and
elevations of the CCSRs observed.
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Table 2. P value for slope and intercept comparison of the LSR analyses in Table 1. The differences
among slopes were assessed by comparing 95% CI. When the slopes were not significantly different,
the differences between elevations were estimated by ANCOVA (with body mass as a covariate).

Climate Zone
p Value for Slope a p Value for Intercept b

AA BP GS NWAS AA BP GS NWAS

Atlantic Arctic (AA) - ns *** *** - *** - -

Boreal Polar (BP) ns - *** *** *** - - -

Gulf Stream (GS) *** *** - ns - - - **

NW Atlantic Shelves
(NWAS) *** *** ns - - - ** -

a Significance of slope differences; b Significance of intercept differences; ** p < 0.005; *** p < 0.001; ns—not significant;
- not measurable.

2.2. Across Seasons

The CCSR of a desert rodent community also shows an exponent not significantly different
from the theoretical value of −3/4 [34]. LSR analysis of overall abundance with mean body size
at the same sampling site in Portal Arizona over a 25-year period (1987 to 2002), showed a CCSR
exponent of −0.57 (n = 25, 95% confidence interval: −0.97 to −0.18). The CCSR was constructed from
community assemblages at different time periods (rather than different spatial locations, as typically
done). Each data point was based on monthly sampling during a specific year, which was performed
three or four times. However, the data set includes only the species that occurred during a 6-month
period in at least five years during the 25 years period of the data set.

We obtained an updated data set covering 41 years of sampling, kindly provided by Ethan White,
and divided it according to season. Our LSR analysis of this dataset, including all species sampled,
yielded a CCSR scaling exponent similar to that found over the 25-year period analyzed by [34], and not
significantly different from the theoretical value of −3/4 (Table 3, Figure 2A). Moreover, the CCSR
scaling exponents for each of the four seasons did not differ significantly from each other (Table 3,
Figure 2B), nor with −3/4. However, the CCSR elevation was significantly higher during the spring
than during the winter (ANCOVA analysis comparing 95% confidence interval; Table 4).

Rodents may have reached their highest density during spring, because this is when reproduction
and the appearance of juveniles tend to peak for most species [46–48]. However, during the winter,
density is relatively low because breeding is low, thus causing a net loss of individuals by mortality.
The relative heights of the elevations of these relationships are consistent with the proposed hypothesis.
As shown in Figure 2B, rodent densities tended to be lowest during winter, rising to the highest
level during spring, and then declining again through summer and autumn. Therefore, our analysis
suggests that although the energy flow of the desert rodent community has apparently not changed
over the 25-year period studied by [34], it has changed seasonally during each year (as indicated by
seasonal changes in the scaling elevation for population density).

Table 3. Results of LSR analyses of log10 population abundance (number of individuals) in relation to
log10 body size (mg) of a desert rodent community in Portal Arizona (updated data from [34]).

CCSR Slope 95% CI Intercept n r2 p

All assemblages −0.55 −1.06 to −0.03 2.96 41 0.11 *

Autumn −0.77 −1.24 to −0.31 3.32 38 0.25 **
Spring −0.61 −1.16 to −0.07 3.14 38 0.13 *

Summer −0.94 −1.28 to −0.22 3.62 38 0.42 ***
Winter −0.79 −1.47 to −0.25 3.30 38 0.12 *

* p < 0.05; ** p < 0.005; *** p < 0.001.
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Figure 2. Scaling of density versus mean body size (live weight) of a desert rodent community in Portal
Arizona through 41 years, from 1978 to 2018 (updated data from [34]): (A) CCSR for all assemblages;
(B) CCSRs for each of four seasons (autumn, spring, summer, and winter) through 39 years (following
the data cleaning described in Appendix A).

Table 4. p values for slope and intercept comparisons of the LSR analyses in Table 3. The differences
among slopes were assessed by comparing 95% CI. When the slopes were not significantly different,
the differences between elevations were estimated by ANCOVA (with body mass as a covariate).

Seasons
p Value for Slope a p Value for Intercept 1 b

AU SP SU WI AU SP SU WI

Autumn (AU) - ns ns ns - ns ns ns

Spring (SP) ns - ns ns ns - ns **

Summer (SU) ns ns - ns ns ns - ns

Winter (WI) ns ns ns - ns ** ns -
1 Note that the calculated intercepts lie far outside the range of observed data points. Therefore, although the CCSR
intercept during spring is lower than that for all other seasons (Table 3) because of a shallow CCSR scaling slope,
within the range of observed data points, the scaling elevation is highest for spring (see Figure 2B); a Significance of
slope differences; b Significance of intercept differences; ** p < 0.005; ns—not significant; - not measurable.

2.3. Across Trophic Levels

Although some CCSR scaling exponents reported in the literature so far are not significantly
different from the theoretical value of −3/4 ([27,32–34]; see also Section 3), a recent analysis of 158
aquatic macroinvertebrate community assemblages has revealed an exponent significantly lower than
−3/4 (−0.27, 95% confidence interval =−0.411 to−0.131) [29]. This data set included spring and summer
samples from saltwater lagoons in the biogeographic regions of the Eastern Mediterranean Sea and the
Black Sea. It suggests that large macroinvertebrate species seem to be acquiring more energy than
smaller species.

We reanalyzed the data set of [29] by averaging the data for spring and autumn. Again, the
CCSR scaling exponent (−0.43) is not significantly different from the value obtained by [29], and is
still significantly lower than −3/4 (Table 5, Figure 3A). Furthermore, after separating the data by
trophic level, the CCSR scaling exponent is significantly lower than −3/4 for predator and prey species
analyzed separately (−0.45 and −0.39, respectively: see Table 5, Figure 3B). However, the elevation of
the scaling relationship is significantly higher for prey than predators (ANCOVA analysis comparing
95% confidence intervals; Table 6).
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Figure 3. Scaling of population density versus body size (AFDW: ash free dry weight) across
macroinvertebrate communities in Mediterranean and Black Sea lagoons (data from [29,30]): A) CCSR
for all assemblages at various sampling sites; (B) CCSRs for prey and predators analyzed separately
across sampling sites. Note that since the mean body size and population density were analyzed
separately for prey and predator species across sampling sites, the number of points are greater and
located at different positions in graph (A) vs. graph (B).

Table 5. Results of the LSR analyses of log10 population density (number of individuals per m2)
in relation to log10 body size (AFDW: ash free dry weight) of macroinvertebrate communities in
Mediterranean and Black Sea lagoons (data from [29,30]).

CCSR Slope 95% CI Intercept n r2 p

All assemblages −0.43 −0.60 to −0.25 3.36 85 0.22 ***

Prey −0.39 −0.53 to −0.24 3.40 75 0.25 ***
Predators −0.45 −0.78 to −0.24 2.32 45 0.23 ***

*** p < 0.001.

Table 6. p values for slope and intercept comparisons of the LSR analyses in Table 5. The differences
among slopes were assessed by comparing 95% CI. When the slopes were not significantly different,
the differences between elevations were estimated by ANCOVA (with body mass as a covariate).

Trophic Level p Value for Slope a p Value for Intercept b

Prey Predators Prey Predators

Prey - ns - ***

Predators ns - *** -
a Significance of slope differences; b Significance of intercept differences; *** p < 0.001; ns—not significant; -
not measurable.

The higher CCSR elevation for prey vs. predators may be explained in terms of both general
theory and observations specific to saltwater lagoons. Following the second law of thermodynamics,
as energy is transformed from lower to higher trophic levels in a food web, much energy is lost as
heat [49,50]. Therefore, since prey tend to have more energy available to them than predators that feed
upon them, they can also sustain higher population densities at equivalent body sizes. In addition,
macroinvertebrate prey in shallow, highly productive, saltwater lagoons are mainly detritus and
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suspension feeders. The energy available to them from abundant, easily acquired detritus and fine
organic matter in the water column and at the bottom of lagoons is much more abundant than that
available to predators that feed chiefly on animal tissue, which is more difficult to acquire [51–53].
Our results are consistent with previous findings showing that prey tend to have higher population
abundances than that of predators, even if predators affect the abundance of prey [54–58].

3. Discussion

Most previous studies of abundance-size relationships across ecological communities have focused
on the scaling exponent, and whether it is similar to the −3/4 values predicted by Damuth’s rule
and the MTE [21–25]. Although three major studies have yielded CCSR exponents not significantly
different from −3/4, three other studies have reported exponents significantly higher or lower than
−3/4 (Table 7). Why this is so is still little understood. Some of this variation may relate to taxonomic
and/or environmental differences.

Table 7. CCSR slopes for various community assemblages of species, including field (e.g., phytoplankton,
macroinvertebrate, amphibian, fish, bird and rodent assemblages) and experimental studies (e.g., algae,
bacteria and protozoa) reported in the literature. 95% confidence intervals and significant deviation of
the slopes from the theoretical expected value of −3/4 are also shown.

Assemblages N Slope 95% CI Deviation from −3/4 Reference

Phytoplankton 656 −0.78 −0.74 to −0.811 = [1]

Algae, bacteria & protozoa

20 −0.35 −0.01 to −0.71 1 >

[27]

20 0.36 0.00 to −0.72 2 >

20 −1.15 −0.96 to −1.34 3 <

20 −1.34 −1.01 to−1.67 4 <

20 −1.05 −1.21 to −0.89 5 <

20 −1.02 −1.16 to −0.88 6 <

Macroinvertebrates 158 −0.27 −0.41 to −0.131 > [28]

Macroinvertebrates

75 −0.35 −0.55 to −0.23 7 >

[29]68 −0.35 −0.62 to −0.08 8 >

65 −0.58 −0.78 to −0.37 9 >

64 −0.44 −0.58 to 0.31 10 >

45 −0.45 −0.67 to−0.24 11 >

Macroinvertebrates 32 −0.36 −0.67 to −0.06 > [30]

Amphibians, fishes 18
−0.64 −1.00 to −0.28 = [31]

& macroinvertebrates

Winter land birds 285 −1.00 −1.43 to −0.57 < [32]

Desert rodents 25 −0.57 −0.97 to −0.18 = [33]
1 Week 1; 2 Week 2; 3 Week 3; 4 Week 4; 5 Week 5; 6 Week 6; 7 Deposit feeders; 8 Suspension feeders;
9 Shredders/Scrapers; 10 Gathering Collectors; 11 Predators.

In our commentary, we suggest that better understanding of CCSRs may be achieved by
examining both the slopes and elevations of these relationships, and how they are affected by
various ecological factors. To support this point, we reanalyzed three data sets published in the
literature. Instead of examining these data sets as a whole, as done by the original authors, we divided
them using various ecological factors, including climate zone, season and trophic level. In all of our
case studies, we found significant variation in CCSR slopes and/or elevations (intercepts) among our
ecologically classified subsamples.

First, we found significant differences in slopes and elevations between CCSRs of marine
phytoplankton communities from northern cold climate zones versus southern warmer climate zones
that could be explained in terms of plausible temperature effects on the cell size, metabolic rate
and density of phytoplankton (Section 2.1). Second, we discovered significant seasonal differences
in the elevations of CCSRs based on temporal samples of a desert rodent community that could
be explained as a result of seasonal differences in offspring production (Section 2.2). Third, we
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found significant differences in the elevations of CCSRs for prey versus predators of saltwater lagoon
macroinvertebrate communities that could be explained by lower availability of energy at higher
trophic levels (Section 2.3).

All of these case studies reveal the value of subdividing ecologically heterogeneous data sets into
more homogeneous ecological categories. By doing so, significant differences in CCSRs may be found
that can help elucidate the mechanisms underlying them. Our analyses also reveal the importance
of exploring the biological meaning of both the slopes and elevations of CCSRs, as recommended in
general for allometric scaling analyses (e.g., [35,36,59,60]).

4. Conclusions

Although abundance−size relationships have received much attention by ecologists at the
population level, little is known about these relationships at the community level. We hope that our
analyses will serve as heuristic examples that will motivate other researchers to explore ecological and
taxonomic effects on both the slopes and elevations of CCSRs. Although universal laws are useful
for testing theoretical expectations on major ecological issues, various contingent factors may cause
many kinds of biological and ecological scaling relationships to deviate from universal laws [34–40].
We suggest that the search for and understanding of regular patterns in nature benefit from not only
employing general theories based on single, hypothetically universal, deterministic mechanisms,
but also an awareness that multiple contingent mechanisms that vary with biological and ecological
context may underlie the diversity that we often see.
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Appendix A

In order to minimize stochastic effects on the size−abundance relationship of the desert rodent
community analyzed by [34], we removed 3 years (i.e., 1993, 1994, 2010) of the original data that
included too low densities of rodents. These 3 years showed from 51 to 54 individuals averaging per
month all the seasons. However, dividing into the four seasons and averaging per month each season,
the lower number of the individuals reaches 27 individuals. This reduced data set was considered for
all subsequent LSR analyses of the CCSRs on the rodent communities across seasons.

Here, we show the LSR analyses of the rodent community CCSRs based on all of the years of the
original data set. In this case, the only significant difference that was observed was a scaling exponent
of −0.35 for the spring samples, which was significantly lower than −3/4 and that observed for samples
taken during the other three seasons (Table A1, Figure A1). The scaling exponents for the autumn,
summer and winter samples were not significantly different as well from the theoretical value of −3/4.
The elevations among the four seasons were not significantly different because of the high variation
and the wide range of the 95% confidence interval of all four CCSRs (ANCOVA analysis comparing
95% confidence interval; Table A2).
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Spring −0.35 2.67 −1.05 to −0.34 41 0.03 ns 

Summer −0.75 3.26 −1.28 to −0.22 41 0.17 ** 
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Figure A1. Scaling of density versus mean body size (live weight) of a desert rodent community in
Portal Arizona through 41 years, from 1978 to 2018 (data from [34]) across the four seasons.

Table A1. Results of LSR analyses of log10 population abundance (number of individuals) in relation
to log10 body size (mg) of a desert rodent community in Portal Arizona (updated data from [34]).

CCSR Slope Intercept 95% CI n r2 p

Autumn −0.71 3.18 −1.27 to −0.15 41 0.15 *
Spring −0.35 2.67 −1.05 to −0.34 41 0.03 ns

Summer −0.75 3.26 −1.28 to −0.22 41 0.17 **
Winter −0.61 2.97 −1.47 to −0.25 41 0.05 ns

* p < 0.05; ** p < 0.005; ns—not significant.

Table A2. p values for slope and intercept comparisons of the LSR analyses in Table A1. The differences
among slopes were assessed by comparing 95% CI. When the slopes were not significantly different,
the differences between elevations were estimated by ANCOVA (with body mass as a covariate).

Seasons
p Value for Slope a p Value for Intercept b

AU SP SU WI AU SP SU WI

Autumn (AU) - ns ns ns - ns ns ns

Spring (SP) ns - ns ns ns - ns ns

Summer (SU) ns ns - ns ns ns - ns

Winter (WI) ns ns ns - ns ns ns -
a Significance of slope differences; b Significance of intercept differences; ns—not significant; - not measurable.
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