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Abstract: Allorecognition, the ability to distinguish self or kin from unrelated conspecifics,
plays several important biological roles in invertebrate animals. Two of these roles include negotiating
limited benthic space for colonial invertebrates, and inbreeding avoidance through self-incompatibility
systems. Subphylum Tunicata (Phylum Chordata), the sister group to the vertebrates, is a promising
group in which to study allorecognition. Coloniality has evolved many times independently
in the tunicates, and the best known invertebrate self-incompatibility systems are in tunicates.
Recent phylogenomic studies have coalesced around a phylogeny of the Tunicata as well as the Order
Stolidobranchia within the Tunicata, providing a path forward for the study of allorecognition in
this group.
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1. Allorecognition in Invertebrate Animals

Allorecognition, broadly defined as the ability to recognize self from non-self, is widespread
across the tree of life [1]. Allorecognition may have initially evolved as a way to alert the immune
system to a pathogen or parasite, as innate immunity is evolutionarily conserved [2,3]. Interspecific
immune-related systems seem to be the foundation upon which intraspecific recognition systems
evolved [4]. Intraspecific recognition systems tied to disease resistance include MHC-mediated mate
choice in many vertebrates (reviewed in [5]), gametic interactions in plants [6,7] and invertebrates [8,9],
and fusion in invertebrates [10,11].

This review focuses on intraspecific recognition systems and will therefore use a narrower definition
of allorecognition: the ability to distinguish self or kin from unrelated conspecifics. In invertebrate
animals, allorecognition plays two important biological roles: negotiating space and regulating mating.

In space-limited benthic habitats, colonial growth forms are common, and colonies often encounter
conspecifics [12,13]. There are at least two explanations for why allorecognition systems evolved in
the context of coloniality: (1) to re-connect sections of colonies that were separated by predation,
disease, or storms [14] (2) as an adaptation to stem cell parasitism [1]. Stem cell parasitism is a potential
outcome of fusion between two colonies, where the stem cells of a winning colony invade the losing
colony [15]. Stem cell parasitism often results in a precipitous decline in fitness for the losing colony,
as usually only the winner’s genotype is represented in the offspring of the fused colony [15]. If fusions
are restricted to kin, then the fitness declines experienced by losing colonies are mitigated [1].

Allorecognition is also linked to self-incompatibility mating systems in marine invertebrates.
Self-incompatibility systems prevent inbreeding depression, and may be selected for in marine
invertebrates that broadcast spawn (release sperm and eggs, fertilization occurs in the water) or
spermcast (release sperm only, fertilization occurs inside the maternal animal) [16]. In these species,
there is no copulatory behavior through which selection can favor individuals who choose unrelated
mates [17].
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Inbreeding prevalence in marine invertebrates is more common than previously thought [17].
The percentage of FIS values greater than 0.1 in broadcast or spermcast spawning species is 62%
(raw data obtained from [17]). In these species, lowering the fitness cost of inbreeding through the
purging of recessive deleterious alleles [18] may have evolved as an alternative to self-incompatibility
systems. However, 38% of broadcasting and spermcasting species have FIS values less than 0.1
(raw data obtained from [17]). In these outcrossing species, selection for inbreeding avoidance,
including self-incompatibility systems, should be strong.

In this review, allorecognition will be explored in the Tunicata. Subphylum Tunicata (Phylum
Chordata), the sister group to the vertebrates, is a promising group in which to study allorecognition.
One of the best-known systems of allorecognition, and furthermore one of the only invertebrate
allorecognition systems for which the genetic underpinnings are known, occurs in the botryllid
ascidians (family Styelidae). The evolution of allorecognition can be examined in the context of
coloniality and mating systems. The tunicates contain both colonial and solitary species, and coloniality
has evolved many times independently [19]. The best known invertebrate self-incompatibility systems
are in tunicates: in the phlebobranch ascidian Ciona robusta [20] and the stolidobranch ascidians
Halocynthia aurantium and Halocynthia roretzi [21,22].

2. Relationships within the Subphylum Tunicata

Tunicate biologists have long debated the evolution of coloniality, and therefore allorecognition,
owing to uncertainties in the phylogenetic relationships within this group. Recent phylogenomic
studies have coalesced around a phylogeny of the Tunicata, providing a path forward for the study of
allorecognition in this group.

Subphylum Tunicata comprises Class Appendicularia (pelagic larvaceans), Class Ascidiacea
(benthic ascidians), and Class Thaliacea (pelagic doliolids, pyrosomes, and salps) [23]. For the last
20 years, phylogenies based on 18S rRNA [24–27] and mitochondrial genomes [28–30] have consistently
agreed that Class Ascidiacea is paraphyletic with respect to Class Thaliacea: thaliaceans belong in
a monophyletic group with the ascidian orders Phlebobranchia and Aplousobranchia (Figure 1).
This thaliacean/phlebobranch/aplousobranch clade is sister to a clade comprising the ascidian order
Stolidobranchia (Figure 1). But the relationships within the thaliacean/phlebobranch/aplousobranch
clade, and the position of Class Appendicularia, were unresolved.

Recent nuclear phylogenomic studies [31,32] have made progress on the unresolved nodes. In both
studies, the thaliaceans are the outgroup to the phlebobranch/aplousobranch clade, with Appendicularia
as the outgroup to the rest of the Tunicata (Figure 1). The remaining unanswered question is whether
Phlebobranchia is paraphyletic with respect to Aplousobranchia (Figure 1a), or whether Phlebobranchia
and Aplousobranchia are monophyletic groups (Figure 1b). The majority of the analyses in [32] recovered
phlebobranch paraphyly, but with variable support. A subset of the 50 genes with the most stable amino
acid frequencies across the tree produced a monophyletic and well-supported Phlebobranchia [32].
The analyses in [31] resulted in a paraphyletic Phlebobranchia, but with no statistical support.
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Figure 1. Phylogeny of the Subphylum Tunicata, based on [31,32]. The tree includes Subphylum 
Vertebrata as the outgroup. Red text denotes a group where all species have solitary growth forms, 
blue text denotes a group where all species have colonial growth forms, and purple text denotes a 
group with both solitary and colonial growth forms. Vertical bars represent independent evolutions 
of the colonial growth form. (a) Phlebobranchia paraphyletic, (b) Phlebobranchia monophyletic. 

3. Evolution of Allorecognition within the Subphylum Tunicata: Negotiating Space 

As discussed above, allorecognition in many colonial invertebrates likely evolved as a response 
to competitive interactions in crowded benthic environments [13]. Therefore, the evolution of 
allorecognition systems governing fusion is closely linked to the evolution of coloniality. Within the 
Subphylum Tunicata, only Class Ascidiacea has adopted a benthic lifestyle, so ascidians will be the 
focus of this section. For each ascidian order (Aplousobranchia, Phlebobranchia, Stolidobranchia), 
the evolution of coloniality will be reviewed, followed by the evolution of allorecognition. 

Tunicata and Vertebrata together form the clade Olfactores [33], and the ancestor of this clade 
most likely had a solitary growth form and a benthic lifestyle [34]. The tunicate ancestor was also 
likely to be solitary (Figure 1). Coloniality likely evolved independently on the lineage, leading to 
Class Thaliacea (Figure 1), because the asexual buds develop from an endostyle outgrowth, a 
mechanism distinct from other tunicates [35]. 

3.1. Order Stolidobranchia 

3.1.1. Coloniality in Order Stoliobranchia 

The families at the base of the stolidobranch tree (Molgulidae and Pyuridae) are solitary (Figure 2). 
The third family in the Order Stolidobranchia, Styelidae, contains both solitary and colonial species 
[23]. Within the Styelidae, coloniality evolved twice, once in the ancestor of the Botryllinae + 
Polyzoinae clade [25,36] and again in Polyandrocarpa zorritensis [36] (Figure 2). Convergent rather than 

Figure 1. Phylogeny of the Subphylum Tunicata, based on [31,32]. The tree includes Subphylum
Vertebrata as the outgroup. Red text denotes a group where all species have solitary growth forms,
blue text denotes a group where all species have colonial growth forms, and purple text denotes a group
with both solitary and colonial growth forms. Vertical bars represent independent evolutions of the
colonial growth form. (a) Phlebobranchia paraphyletic, (b) Phlebobranchia monophyletic.

3. Evolution of Allorecognition within the Subphylum Tunicata: Negotiating Space

As discussed above, allorecognition in many colonial invertebrates likely evolved as a response
to competitive interactions in crowded benthic environments [13]. Therefore, the evolution of
allorecognition systems governing fusion is closely linked to the evolution of coloniality. Within the
Subphylum Tunicata, only Class Ascidiacea has adopted a benthic lifestyle, so ascidians will be the
focus of this section. For each ascidian order (Aplousobranchia, Phlebobranchia, Stolidobranchia),
the evolution of coloniality will be reviewed, followed by the evolution of allorecognition.

Tunicata and Vertebrata together form the clade Olfactores [33], and the ancestor of this clade
most likely had a solitary growth form and a benthic lifestyle [34]. The tunicate ancestor was also likely
to be solitary (Figure 1). Coloniality likely evolved independently on the lineage, leading to Class
Thaliacea (Figure 1), because the asexual buds develop from an endostyle outgrowth, a mechanism
distinct from other tunicates [35].

3.1. Order Stolidobranchia

3.1.1. Coloniality in Order Stoliobranchia

The families at the base of the stolidobranch tree (Molgulidae and Pyuridae) are solitary
(Figure 2). The third family in the Order Stolidobranchia, Styelidae, contains both solitary and
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colonial species [23]. Within the Styelidae, coloniality evolved twice, once in the ancestor of the
Botryllinae + Polyzoinae clade [25,36] and again in Polyandrocarpa zorritensis [36] (Figure 2). Convergent
rather than homologous evolution of coloniality in the family Styelidae is indicated by two strong lines
of evidence. First, Botryllinae + Polyzoinae create colonies through peribranchial budding [36,37],
with Botryllinae + Symplegma in the Polyzoinae also capable of vascular budding [38,39], whereas
P.zorritensis is unique among the tunicates in its use of vasal budding [40]. Second, an evolution of
coloniality in the most recent common ancestor of Botryllinae, Polyzoinae, and P.zorritensis would
contradict the principle of parsimony, requiring four to six character state changes [36].
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Figure 2. Phylogeny of the Order Stolidobranchia, based on [36]. The order contains three families:
Molgulidae, Pyuridae, and Styelidae. Red text denotes a group where all species have solitary growth
forms, Blue text denotes a group where all species have colonial growth forms.

3.1.2. Allorecognition in Order Stolidobranchia

While there is evidence for tunic fusion in two species of solitary stolidobranchs (Molgula complanata
and Styela plicata) it is unclear whether the fusion involves the creation of a common vascular system
and whether the fusion is discriminatory [41,42]. Setting aside these uncertain cases, allorecognition
evolved at least twice: at least once the base of the Polyzoinae/Botryllinae clade when coloniality
evolved in this group, and again when coloniality evolved in P. zorritensis (Figure 2).

Allorecognition occurs in Symplegma reptans in the subfamily Polyzoinae [43] and in 10 species in
the subfamily Botryllinae: Botrylloides diegensis, Botrylloides fuscus, Botrylloides lentus, Botrylloides
simodensis, Botrylloides violaceus, Botryllus delicatus, Botryllus primigenus, Botryllus promiscuus,
Botryllus puniceus, and Botryllus scalaris [44–52]. Symplegma and botryllids have similarities in their
rejection reactions [43]. It would be interesting to determine if the genes involved in allorecognition in
botryllids [53] are found in S. reptans. This information could help determine whether allorecognition
evolved at the base of the Polyzoinae/Botryllinae clade (as is posited for coloniality in [36]), or separately
in each subfamily.
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The evolution of allorecognition within the subfamily Botryllinae is well understood, owing to
60 years of study by Oka, Saito, Watanabe and students. Each botryllid species studied thus far exhibits
one of three types of allogeneic rejection responses, which vary in the amount of physical interaction
between colonies before points of rejection are formed [10]. In Type I, the outer coverings (tunics)
fuse in limited areas, whereas the complete fusion of the outer tunics occurs in Type II and III [10].
In Type III but not Type I or II responses, the vascular systems fuse prior to rejection [10]. Type III
allorecognition evolved first, followed by Type II and Type I [10], with the amount of physical contact
and tissue remodeling before rejection occurs decreasing over evolutionary time. B. scalaris, the only
known species with Type III allorecognition, occupies the basal position in the botryllid phylogeny [10],
followed by two species with Type II allorecognition: B. primigenus and Botryllus schlosseri [10,54].
Type I allorecognition is found in Botrylloides species, which are the most derived in the botryllid
phylogeny [10,54]. This evolution from allorecognition mechanisms requiring extensive physical
contact between colonies to those requiring limited contact suggests that external allorecognition in
botryllids evolved from systems that already existed within individuals: defense against pathogens or
stem cell parasitism, self-incompatibility or lineage sorting during development [10].

One botryllid species, Botryllus horridus, does not engage in fusion or rejection reactions under
natural conditions [50]. While B. horridus is an early-branching lineage in the Botryllus/Botrylloides
phylogeny [54], B. primigenus branches earlier and has allorecognition abilities [47]. Therefore,
the B. horridus lineage must have lost the ability to engage in allorecognition reactions.

Returning to P.zorritensis, the second place in the stolidobranch phylogenetic tree where coloniality
exists, no one has published on allorecognition in this species. A congener, Polyandrocarpa misakiensis,
exhibits no allorecognition behaviors [55]. However, P. misakiensis and P. zorritensis are not closely
related; Polyandrocarpa is a polyphyletic genus [36]. Because coloniality likely evolved separately in
Polyzoinae + Botryllinae and P. zorritensis, it would be interesting to learn whether the allorecognition
mechanisms in Symplegma, Botryllus/Botrylloides and P. zorritensis share any similarities at the genetic
level, assuming P. zorritensis evolved allorecognition.

3.2. Order Phlebobranchia

3.2.1. Coloniality in Order Phlebobranchia

The Order Phlebobranchia contains both colonial and solitary species, but each family has
a single growth form [23]. The ancestor of the Phlebobranchia was likely solitary, as the majority of
the Phlebobranchia are solitary. There are three colonial genera and 58 colonial species within the
Phlebobranchia: Ecteinascidia (29 species), Perophora (23 species), and Plurella (6 species), compared
with 36 solitary genera and 278 solitary species [23]. In the genera Ecteinascidia and Perophora
(family Perophoridae), the inner vesicle is derived from the stolonial mesenchymal septum [35,56].
There are no published phylogenetic trees that include Plurella, but Kott [57] did not find evidence
for a close relationship between Plurella and Perophoridae because Plurella zooids are embedded in
a test rather than being connected by stolons as in Perophoridae. Although the mechanism of budding
is unknown in Plurella, it is very unlikely to be stolonic as in Perophoridae. Evolutionarily, Plurella
should be close to the solitary phlebobranch family Ascidiidae [57]. For these reasons, coloniality
likely evolved twice in the Phlebobranchia: once in the ancestor of the Perophoridae, and once in the
ancestor of the genus Plurella.

3.2.2. Allorecognition in Order Phlebobranchia

Within the Order Phlebobranchia, there are two colonial groups: family Perophoridae and Genus
Plurella. There are no studies of Plurella species in an allorecognition context. Within the family
Perophoridae, Ecteinascidia tortugensis, Perophora bermudensis, Perophora japonica, Perophora sagamiensis
and Perophora viridis show evidence of allorecognition abilities, whereas Perophora orientalis does not
undergo natural fusion with either self or non-self-colonies [58–60]. Further study of the evolution
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of allorecognition in the colonial phlebobranchs awaits investigations of allorecognition in a larger
number of species, as well as a phylogeny of the family Perophoridae.

3.3. Order Aplousobranchia

3.3.1. Coloniality in Order Aplousobranchia

The ancestral aplousobranch was colonial [30]. The species in the Order Aplousobranchia are all
colonial, with the interesting exception of the family Diazonidae; genera Pseudorhopalaea and Rhopalaea
are solitary but the genera Diazona, Pseudodiazona and Tylobranchion are colonial [30,61,62]. Given that
the rest of the Aplousobranchia are colonial, the solitary Diazonidae genera must be a reversion back
to the ancestral growth form found at the base of the Phlebobranchia/Aplousobranchia clade [30].

In the genera of the family Clavelinidae within the Aplousobranchia for which budding is known
(Clavelina and Nephtheis), the inner vesicles of the buds form from the stolonial mesenchymal septum,
the same mechanism as in the phlebobranch family Perophoridae [35]. Both of these families have
zooids connected by stolons [63]. However, these two groups are separated by family Stomozoidae
(Figure 3). Although budding in Stomozoidae is unknown, there is no evidence that species in this group
reproduce by stolonic budding [61]. Polycitor circes, a member of the polyphyletic family Polycitoridae,
groups with family Clavelinidae and also shows no evidence of stolonic budding [63]. An ancestral
aplousobranch with stolonic budding would mean a loss of stolonic budding in Stomozoidae and
P. circes (Figure 3), so the convergent evolution of this trait in the families Perophoridae and Clavelinidae
is the more parsimonious explanation.

Aside from the family Clavelinidae, there are three additional budding modes in the
Aplousobranchia, and therefore three more possibilities for the independent evolution of coloniality in
this group. The next clades after the family Clavelinidae are family Diazonidae and a clade including
the following members of the family Polycitoridae: Brevicollus, Eudistoma, Exostoma, and Polycitor
crystallinus (Figure 3). In these groups, inner bud vesicles form by epidermal constriction of the abdomen
when budding type is known [63]. The final clade in the aplousobranch phylogeny experienced two
evolutions of coloniality: inner bud vesicles formed by epidermal constriction of the post-abdomen
(Figure 3: Euherdmaniidae through Polyclinidae), and then epicardial budding with no constriction of
the abdomen or post-abdomen as the most derived budding mechanism (Figure 3: Holozoidae and
Didemnidae) [63].

3.3.2. Allorecognition in Order Aplousobranchia

Although studies on this topic are not common in the speciose Order Aplousobranchia,
allorecognition occurs across the aplousobranch phylogenetic tree, in the Polycitoridae, Polyclinidae,
and Didemnidae. Researchers have not studied the two families that occupy the basal positions in the
phylogenetic tree of Aplousobranchia [63], Stomozoidae and Clavelinidae, in a fusion or allorecognition
context, so it is hard to speculate whether the ancestral aplousobranch was capable of allorecognition.

In the family Polycitoridae, Cystodytes dellechiajei exhibits allorecognition [64]. However, Cystodytes,
Eudistoma and Archidistoma, all polycitorids, fall in different places in the phylogenetic tree [65],
so C. dellechiajei likely does not represent all members of this polyphyletic family. In the family
Polyclinidae, Aplidium constellatum [58] and Aplidium yamazii [66] exhibit allorecognition. In the
family Didemnidae, Didemnum moseleyi [47,67] and Didemnum vexillum [68,69] exhibit allorecognition.
The family Didemnidae is exceptionally speciose, so the behaviors of two species should not be
taken to represent the entire family. Four other species in the family Didemnidae: Didemnum fulgens,
Didemnum rodriguesi, Trididemnum solidum, and Trididemnum tenerum, fuse with conspecifics, but colony
specificity is an open question [70–73].
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Figure 3. Phylogeny of the Order Aplousobranchia, based on [30,63,65]. The tree includes family
Perophoridae (Order Phlebobranchia) as the outgroup. Vertical bars represent budding types. 1: stolonic;
2: inner bud vesicles form by epidermal constriction of the abdomen; 3: inner bud vesicles formed by
epidermal constriction of the post-abdomen; 4: epicardial budding with no constriction of the abdomen
or post-abdomen.

In Diplosoma listerianum [74], a lack of colony specificity leads to indiscriminate fusion.
Indiscriminate fusion in this species may be explained by loss of alleles in the allorecognition
genes if the benefits of fusion are greater than the costs [74]. A potential risk of fusion is that one partner
may contribute more to the tunic production than the other partner, but the tunic in D. listerianum is
thin and insubstantial [74], even compared with other members of the genus.

4. Evolution of Allorecognition within the Subphylum Tunicata: Regulating Mating

Researchers have studied the genes/proteins involved in self-incompatibility in three ascidian
species: the phlebobranch C. robusta [20] and the stolidobranchs H. aurantium and H. roretzi [21,22].
Some Ciona intestinalis and C. robusta individuals can self-fertilize in vitro, likely because of the high
concentration of sperm used in the experiments [75–77]. However, individuals in these species cannot
self-fertilize in a laboratory flume and are therefore unlikely to do so in nature [78]. In C. robusta,
the proposed mechanism of the self-incompatibility system operates by self-recognition [20] and is
under genetic control [79,80]. There are two sets of proteins involved: s-Themis A and B (sperm),
which act as ligands, and v-Themis A and B (egg), which act as receptors [20]. When s-Themis ligands
bind to v-Themis receptors, s-Themis recognizes self v-Themis, s-Themis detaches from v-Themis,
and the sperm do not penetrate the vitelline coat [20].

In contrast to Ciona, species in the stolidobranch genus Halocynthia are not self-fertile, even at high
sperm concentrations [81]. While researchers have not confirmed genetic control of allorecognition in
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Halocynthia, they have identified candidate molecules [81]. A protein on the surface of the vitelline coat
in H. roretzi, named HrVC70, binds more effectively to non-self-sperm than to self-sperm [21]. HrVC70
binds to a sperm protein called HrUrabin [82]. While HrUrabin is not highly polymorphic, it seems to
be necessary for self-sperm to bind to HrVC70, and also mediates the higher affinity of HrVC70 to
non-self-sperm [81]. HaVC80 is a homologous protein to HrVC70 in H.aurantium [22].

Experimental fertilizations provide evidence for the existence of self-incompatibility systems
in other tunicate species, although the genes and proteins underlying such systems are unknown.
In the colonial stolidobranch B. schlosseri, classic studies show that sperm from one colony is not
released at the same time that eggs in the same colony are mature [83,84], which limits the possibility of
self-fertilization. However, if colonies are large enough, systems within the same colony can develop
asynchronous development and self-fertilization could occur [78]. Indeed, some colonies in Monterey,
California, contained newly ovulated eggs and mature testes releasing sperm at the same time [85].
Through a series of crossing experiments, B. schlosseri was shown to limit fertilizations, where the
gametes are from the same colony, or from sibling colonies [85]. The fusibility locus was thought
to control self-sterility, or the fusibility locus and the self-sterility locus were thought to be tightly
linked [85]. Similar results were obtained from B. primigenus [86]. However, there was no evidence for
allorecognition genotypes influencing sperm–egg interactions in a subsequent study in B. schlosseri [4],
and the fusibility gene (FuHC) is not expressed in germline tissue in B. schlosseri [87]. Researchers have
not subsequently investigated self-sterility in B. schlosseri, nor have they studied linkages between
fusibility and self-sterility in B. primigenus.

The phlebobranch Ciona savignyi is self-fertile, but self-fertilization takes longer than
non-self-fertilization, and non-self-fertilization was 100% in a mixture of self and non-self-sperm [88].
The phlebobranch Corella willmeriana is capable of both self-fertilization and outcrossing, and success at
self-fertilization varies widely between individuals [89,90]. While this could result from varying levels
of self-compatibility, varying levels of inbreeding depression is more likely [89]. The phlebobranchs
Ascidia ceratodes [85] and Ascidia mentula [91] possess a block to self-fertilization as does the stolidobranch
Herdmania momus [92]. The aplousobranch ascidian D. listerianum shows incompatibilities between
potential mates [93,94], although these incompatibilities cannot be predicted by genetic relatedness [94].

5. Conclusions

In invertebrate animals such as tunicates, allorecognition is linked to coloniality and
self-incompatibility mating systems. Within the subphylum Tunicata, coloniality likely evolved
independently at least six times: once in the Class Thaliacea, twice in the Phlebobranchia, once in
the Aplousobranchia, and twice in the Stolidobranchia. There are two colonial groups within the
Phlebobranchia; of these colonial species, five species exhibit allorecognition and one does not.
Further study of the evolution of allorecognition in the colonial phlebobranchs awaits investigations
of allorecognition in a larger number of species. In the Aplousobranchia, allorecognition seems to
be found across the phylogenetic tree, in the families Polycitoridae, Polyclinidae, and Didemnidae.
Within the Stolidobranchia, allorecognition evolved either at the base of the Polyzoinae/Botryllinae
clade, or separately in each subfamily.

Researchers have studied the genes/proteins involved in self-incompatibility in three ascidian
species: the phlebobranch C.robusta and the stolidobranchs H.aurantium and H.roretzi. In C.robusta,
the proposed mechanism of the self-incompatibility system operates by self-recognition and is under
genetic control. There are two sets of proteins involved: s-Themis A and B (sperm), which act as
ligands, and v-Themis A and B (egg), which act as receptors. When s-Themis ligands bind to v-Themis
receptors, s-Themis recognizes self v-Themis, s-Themis detaches from v-Themis, and the sperm do
not penetrate the vitelline coat. In H. roretzi, a protein on the surface of the vitelline coat, HrVC70,
binds more effectively to non-self-sperm than to self-sperm. HrVC70 binds to a sperm protein called
HrUrabin, which seems to be necessary for self-sperm to bind to HrVC70 and also mediates the higher
affinity of HrVC70 to non-self-sperm.
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